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ABSTRACT

We give a novel method for performing statistically
signi�cant detection of speci�ed object features which
operates directly on X-ray (Gaussian) or radio-isotope
(Poisson) tomographic projection data. The method
is based on constructing an exact (1 � �)100% con�-
dence region on the object derived by backprojecting a
projection-domain con�dence region into object space.
The projection-domain con�dence region is a minimal
volume hyper-rectangle speci�ed by the projection data
and the appropriate quantiles of the standard Gaus-
sian or Poisson distribution. We implement the back-
projection step using a very accurate bounded error
estimation algorithm which sequentially approximates
the feasible set (object-domain con�dence region) given
the data and its specifed error bounds (known Gaus-
sian or Poisson quantiles). By testing whether this
object-domain (1� �)100% con�dence region contains
objects with hypothesized features we obtain a feature
detection algorithmwhich has constant false alarm rate
(CFAR) � and is adaptive in the sense that no image
reconstruction is required and no unknown nuisance
parameters need be estimated.

1. BACKGROUND

In a 1992 paper [1] we applied bounded error estima-
tion, also known as set theoretic estimation, to image
reconstruction from projections and in a followup 1993
paper [2] the resultant set estimates were used to spec-
ify a multi-dimensional statistical con�dence region on
the true object. In particular we showed that when
the error bounds were suitably chosen as quantiles of
the projection noise distributions the Ellipsoid Paral-
lel Cuts (EPC) algorithm [3] could be used to specify
a set estimate of the object which corresponds to a
region that is guaranteed to contain the true object
with probability at least 1 � �. Consistent with sta-
tistical terminology, we called this set estimate a level

THIS RESEARCH WAS SUPPORTED IN PART

BY THE NATIONAL CANCER INSTITUTE UNDER

GRANT R01-CA-54362-02

(1��)100% con�dence region for the object. In a sub-
sequent paper [4] we used this methodology to study
con�dence levels and statistical feasibility of popular
image reconstructions such as �ltered back projection,
weighted-least-squares, and iterative maximum likeli-
hood (EM algorithm) for emission computed tomog-
raphy. Recently, Combettes published a paper which
nicely lays out the equivalence between set theoretic es-
timation and statistical con�dence regions in a general
context [5].

The EPC algorithm is a bounded error estimation
algorithm which �nds a minimal volume ellipsoid con-
taining the set of images which are consistent with the
error bounds, called the feasible set. EPC is usually
applied to measurements of a system output to �nd a
(point) estimate of the input of the system which is
robust to bounded error perturbations of the system
matrix (mismodeling error) or the system output (ad-
ditive measurement noise). Various point estimation
strategies have been proposed which use the centroid
or some other point within the �nal ellipsoid estimate
of the feasible set [6]. When a feasible set estimator
such as EPC is used to obtain con�dence regions it
is important that the size of the estimated set have
coverage probability as close to 1�� as possible to en-
sure a high precision, i.e. small volume, con�dence re-
gion. However, we have found that the EPC algorithm
may yield feasible sets whose true coverage probability
greatly exceeds 1 � �. This �nding is consistent with
remarks made by other investigators that the EPC al-
gorithm tends to signi�cantly oversestimate the size of
the feasible set.

Recently a new feasible set algorithm was intro-
duced in the context of robust adaptive control which
�nds a minimal volume paralellotope containing the
feasible set [7]. This remarkable algorithm, which we
call parallelotope parallel cuts (PPC), is faster than
EPC, appears to be less sensitive to roundo� errors,
and converges to the exact feasible set in a �nite num-
ber of iterations for square system matrices. In the
present context this means that for square matrices
PPC can be applied to obtain con�dence regions which
have coverage probability which is exactly equal to 1��
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Figure 1: Feasible set, sequence of parallel cuts (PPC),
�nal ellipsoid (EPC) and parallelotope (PPC) (dark
outline). Note how PPC only slightly over-estimates
the feasible set.

and have minimal volume. As a result we can use the
well known duality between minimal volume con�dence
regions and rejection regions of optimal binary hypoth-
esis tests [8] to specify an optimal detector. Speci�cally,
by testing whether the minimal volume (1 � �)100%
con�dence region contains objects with hypothesized
features we obtain a feature detection algorithm which
has constant false alarm rate (CFAR) � and is adaptive
in the sense that no reconstruction is required and no
unknown nuisance parameters need be estimated.

Simulation results for a parallel ray projection ge-
ometry in emission and transmission tomography ap-
plications will be given.

2. BOUNDED ERROR ESTIMATION

Assume a nominal linear measurement model: Y k =
�T (k)�, k = 1; :::; N , where Y k is the model output,

�T (k) is a vector speci�c to the system, e.g. the k-th
row of the tomographic system matrix A, � 2 IRp is
the parameter vector to be estimated, e.g. the object
intensity �, and k is the measurement index. If it is
known that the error e(k) = Yk � Y (k) is bounded
within [emin(k); emax(k)]:

emin(k) � Yk � �T (k)� � emax(k); k = 1; :::; N; (1)

then the set of all values of � consistent with (1) is given
by the polytope � = \Nk=1Hk, called the feasible set,
which is the intersection of the hyperslabs: Hk = f� :
Yk � emax(k) � �T (k)� � Yk � emin(k)g, k = 1; :::; N .

The Ellipsoid Parallel Cuts (EPC) and the Paral-
lelotope Parallel Cuts (PPC) algorithms can be put in
the common framework of �nding a sequence of suc-
cessively smaller sets fEkgNk=1 all of which contain the

feasible set � and such that EN is set of minimal vol-
ume:

Ek = E(�k; Ck) = f� : kCk(� � �k)k � 1g (2)

where �k is a vector governing the center of Ek, Ck
is a non-singular matrix governing the shape of Ek,
and k � k is a norm. For EPC k � k corresponds to

the l2 norm (kzk =
p
zT z), the Ek's are ellipsoids, �k

is the centroid of Ek, and Ck is a matrix governing
the principal and minor axes of Ek. For PPC k � k
corresponds to the l1 norm (kzk = max jzij), the Ek's
are parallelopipeds, �k is the geometric center of Ek,
and Ck determines the length and orientation of the
edges of Ek. In [3] and [7], respectively, the EPC and
PPC algorithms are introduced and various theoretical
properties are established. In particular, they establish
that as long as N � p, the EPC and PPC algorithms
are guaranteed to generate sequences Ek, k = 1; : : : ; N
which after N steps yields the minimal volume ellipsoid
(EPC) or parallelopiped (PPC) containing �.

As reported in [7] the PPC algorithm has similar
computational complexity as EPC yet consistently con-
verges to a smaller feasible set estimate than EPC. Fur-
thermore, unlike EPC, the PPC algorithm converges to
the exact polyhedral feasible set � when the system
matrix A is square and invertible. Our simulations
show that in fact the Parallotope algorithm requires
only about 80% of the runtime per iteration as com-
pared to the EPC algorithm when implemented on a
HP735.

3. CONFIDENCE REGIONS AND

DETECTION

Let Y be random data which has probability distribu-
tion P�(Y ) which depends on an unknown parameter
vector (an image) � 2 �. A (1��)100% con�dence re-
gion for � is de�ned as a subset �1��(Y ) of � such that
P (� 2 �1��) � 1 � �, which is to be read \the prob-
ability that the random subset �1��(Y ) contains the
non-random parameter �. Now assume that we want
to test at some level of false alarm � whether the true
image � has some simple feature, e.g. � = �o for some
test image �o. Speci�cally, we need to specify a test of

H0 : � = �o

H1 : � 6= �o

subject to the false alarm constraint

P�o(decide H1) � �:

It is obvious that the 1�� con�dence region �1�� spec-
i�es such a test: if �o 2 �1�� then decide H0, otherwise

decide H1. More generally, if we have a composite fea-
ture that we want to test, e.g. speci�ed by some set



of images S, a level � test is speci�ed by the following
decision rule: decide the true image has the composite

feature when �1�� � S. For more discussion of the du-
ality between tests and con�dence regions the reader is
referred to [8].

When emax and emin are selected to correspond to
speci�c quantiles of the projection noise distribution
the feasible set � can be identi�ed as a (1 � �)100%
con�dence region for �. For X-ray computed tomog-
raphy (X-ray CT) the projection data Y1; : : : ; YN , are
distributed as independent Gaussian random variables
with variances �2

1
; : : :�2N which do not depend on the

object. When the variance is known the measurement
variables (Yi�A�)=�i can be used to give the standard
(1� �)100% con�dence rectangle on A�:

X
N
k=1[Lmin(k); Lmax(k)] =

XN
k=1

�
Yk � �kZ1��=2; Yk + �kZ1��=2

�
(3)

where Z� is the �th percentile of the standard Gaus-
sian distribution. When the variance is unknown the
studentized (1��)100% con�dence rectangle can be ap-
plied. This rectangle is identical to (3) except that �k
is replaced by the square root ofthe sample variance �̂k
and Z1��=2 is replaced by the T1��=2 where T� is the
�th percentile of the student-t distribution. One can
also use a studentized con�dence interval by replacing
�k with some asymptotically independent estimate of
standard deviation.

On the other hand, for emission computed tomog-
raphy (ECT), the projection data are distributed as in-
dependent Poisson random variables with rates E[Y ] =
A�. It can be shown [9] that for a Poisson variable Yk, a
(1��)�100% con�dence rectangle for the rate E[Yk] is:

X
N
k=1[Lmin(k); Lmax(k)] =

X
N
k=1

�
1

2
�2�=2(2Yk);

1

2
�2
1��=2(2[Yk + 1])

�
(4)

where �2�(�) is the �th percentile of the chi-square dis-
tribution with � degrees of freedom.

The con�dence rectangle (4) can be calculated re-
cursively using known relations between Gamma(k) and
Gamma(k+1) distributions. However this is very time-
consuming and for our simulations we implement ap-
proximate con�dence regions based on the normalizing
square root transformations of Poisson random vari-
ables used in [1]. There and here we use the fact that
2(
p
y �p

A�) is approximately distributed as a vector

of i.i.d. N (0; 1) (standard normal) random variables.
Then, after applying a square root transformation to
the Gaussian distribution, an approximate 1 � � con-
�dence rectangle for A� can be obtained by using (3).
It has been our experience that for the typical count

rates encountered in ECT there is little perceptible dif-
ference in size and coverage probability between the
simple approximate Gaussian con�dence interval and
the Chi-square based interval (4).

By setting � = 1 � (1� �)
1

N in either (3) or (4) a
(1� �)100% con�dence region for � is obtained:

�1�� = f� : Lmin � A� � Lmaxg
= f� : emin � Y �A� � emaxg (5)

where emin
def
= Y �Lmax; emax def= Y �Lmin. The (1�

�)% con�dence region (5) is in the form of a bounded
error (1) to which EPC or PPC can be directly applied.
The resulting �nal set EN will be a minimum volume
ellipsoid (EPC) or polytope (PPC) EN which contains
�1�� and is therefore a valid (1� �)100% region.

In order that the PPC or EPC algorithms give a
sequence of sets which converge to a bounding set on
the feasible region �1�� it is required that �1�� be
a subset of the initial PPC/EPC region E1. In the
simulations reported below we use an analytical bound
on maximum parallelotope facet length to select such
a region E1. With [Lmin(i); Lmax(i)] de�ned as the
[1� (1��)1=N )]�100% con�dence interval on the i-th
element of the vector A� de�ne

lo = jjj[ATA]�1AT jjj1
�
max
i
fLmax(i) � Lmin(i)g

�
:

Using well known relations between matrix and vector
norms it can be shown that the hypercube of radius ro
centered at

[ATA]�1AT �Y ;

where

�Y
def
=

�
Lmax(1) + Lmin(1)

2
; : : : ;

Lmax(N ) + Lmin(N )

2

�

covers the feasible polytope �1��. This hypercube was
used to initialize the PPC algorithm in the simulations
of this paper.

4. NUMERICAL COMPARISONS

First we compare the performance of the EPC and PPC
algorithms for a very simple two dimensional prob-
lem with additive Gaussian noise. In this problem
� = [�1; �2]T and the system matrix A is 6� 2. Figure
1 shows the actual feasible set �, the sequence of PPC
parallel cuts and the �nal ellipsoid and �nal parallelo-
tope, respectively, for the same Gaussian noise realiza-
tion. Note that the �nal ellipsoid is many times larger
than the �nal parallelotope which closely approximates
the actual feasible set. In tables 1 and 2 we compare the
actual coverage probabilities of the �nal ellipsoid and
�nal parallelotope, estimated empirically from 1000 tri-
als, vs the prespeci�ed con�dence level 1� � for 2� 2



Con�dence level PEPC PPPC
0:5 0:792 0:496
0:6 0:860 0:617
0:7 0:928 0:678
0:8 0:971 0:797
0:9 0:997 0:907
0:95 0:998 0:947

Table 1: H0 coverage probabilities of the �nal ellip-
soid and parallelotope containing for a 2 � 2 system.
Observe that �nal parallelotope essentially meets the
prescribed con�dence level and is therefore of much
smaller volume than the �nal ellipsoid satisfying the
same con�dence level constraint.

Con�dence level PEPC PPPC
0:5 0:911 0:617
0:6 0:941 0:729
0:7 0:983 0:792
0:8 0:990 0:879
0:9 0:998 0:941
0:95 0:999 0:978

Table 2: H0 coverage probabilities of the �nal ellipsoid
and parallelotope con�dence regions for a 6�2 system.

Figure 2: 17�17 phantom image, PPC centroid for high
count regime (total mean number of counts = 3:8�106),
and PPC centroid for low count regime (total mean
number of counts = 3:8� 105). Initial hypercubecube
facet length = 4:1635� 1010; con�dence level = 80%.
Object was tomographically sampled using Anger cam-
era geometry with 17 parallel collimated detector bins
over 45 detector angles in [0o; 180o]

and 6� 2 A matrices, respectively. Note that only the
PPC algorithm gives a �nal set estimate E6 having cov-
erage probability close to the speci�ed value 1 � � in
each of these cases.

We next turn to the tomographic imaging problem
for object detection and classi�cation using a small par-
allel ray Anger tomograph. The phantom is the mean
intensity A� of the spatial Poisson emission process
shown in the �rst panel of Fig. 2. The two other pan-
els show the true phantom and the centroids of the
�nal parallelopipeds of PPC at two di�erent phantom
intensity levels for a single realization of the Poisson
noise. Note that for high counts the 80% PPC cen-
troid is very close to the phantom, indicating that the
con�dence region is centered near the object. For this
case the centroid gives a good reconstruction. On the
other hand, for lower counts the PPC centroid becomes
a much more noisy facsimile of the object; the geomet-
ric center of the con�dence region is further away from
the object. We also found that the centroid is a poor
estimator when the system matrix A becomes close to
ill conditioned.
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