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ABSTRACT

We give a novel method for performing statistically
significant detection of specified object features which
operates directly on X-ray (Gaussian) or radio-isotope
(Poisson) tomographic projection data. The method
is based on constructing an exact (1 — «)100% confi-
dence region on the object derived by backprojecting a
projection-domain confidence region into object space.
The projection-domain confidence region is a minimal
volume hyper-rectangle specified by the projection data
and the appropriate quantiles of the standard Gaus-
sian or Poisson distribution. We implement the back-
projection step using a very accurate bounded error
estimation algorithm which sequentially approximates
the feasible set (object-domain confidence region) given
the data and its specifed error bounds (known Gaus-
sian or Poisson quantiles). By testing whether this
object-domain (1 — «)100% confidence region contains
objects with hypothesized features we obtain a feature
detection algorithm which has constant false alarm rate
(CFAR) « and is adaptive in the sense that no image
reconstruction is required and no unknown nuisance
parameters need be estimated.

1. BACKGROUND

In a 1992 paper [1] we applied bounded error estima-
tion, also known as set theoretic estimation, to image
reconstruction from projections and in a followup 1993
paper [2] the resultant set estimates were used to spec-
ify a multi-dimensional statistical confidence region on
the true object. In particular we showed that when
the error bounds were suitably chosen as quantiles of
the projection noise distributions the Ellipsoid Paral-
lel Cuts (EPC) algorithm [3] could be used to specify
a set estimate of the object which corresponds to a
region that is guaranteed to contain the true object
with probability at least 1 — «. Consistent with sta-
tistical terminology, we called this set estimate a level
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(1 —a)100% confidence region for the object. In a sub-
sequent paper [4] we used this methodology to study
confidence levels and statistical feasibility of popular
image reconstructions such as filtered back projection,
weighted-least-squares, and iterative maximum likeli-
hood (EM algorithm) for emission computed tomog-
raphy. Recently, Combettes published a paper which
nicely lays out the equivalence between set theoretic es-
timation and statistical confidence regions in a general
context [5].

The EPC algorithm is a bounded error estimation
algorithm which finds a minimal volume ellipsoid con-
taining the set of images which are consistent with the
error bounds, called the feasible set. EPC is usually
applied to measurements of a system output to find a
(point) estimate of the input of the system which is
robust to bounded error perturbations of the system
matrix (mismodeling error) or the system output (ad-
ditive measurement noise). Various point estimation
strategies have been proposed which use the centroid
or some other point within the final ellipsoid estimate
of the feasible set [6]. When a feasible set estimator
such as EPC is used to obtain confidence regions it
is important that the size of the estimated set have
coverage probability as close to 1 — « as possible to en-
sure a high precision, i.e. small volume, confidence re-
gion. However, we have found that the EPC algorithm
may yield feasible sets whose true coverage probability
greatly exceeds 1 — . This finding is consistent with
remarks made by other investigators that the EPC al-
gorithm tends to significantly oversestimate the size of
the feasible set.

Recently a new feasible set algorithm was intro-
duced in the context of robust adaptive control which
finds a minimal volume paralellotope containing the
feasible set [7]. This remarkable algorithm, which we
call parallelotope parallel cuts (PPC), is faster than
EPC, appears to be less sensitive to roundoff errors,
and converges to the exact feasible set in a finite num-
ber of iterations for square system matrices. In the
present context this means that for square matrices
PPC can be applied to obtain confidence regions which
have coverage probability which is exactly equal to 1—«
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Figure 1: Feasible set, sequence of parallel cuts (PPC),
final ellipsoid (EPC) and parallelotope (PPC) (dark
outline). Note how PPC only slightly over-estimates
the feasible set.

and have minimal volume. As a result we can use the
well known duality between minimal volume confidence
regions and rejection regions of optimal binary hypoth-
esis tests [8] to specify an optimal detector. Specifically,
by testing whether the minimal volume (1 — «)100%
confidence region contains objects with hypothesized
features we obtain a feature detection algorithm which
has constant false alarm rate (CFAR) « and is adaptive
in the sense that no reconstruction is required and no
unknown nuisance parameters need be estimated.

Simulation results for a parallel ray projection ge-
ometry in emission and transmission tomography ap-
plications will be given.

2. BOUNDED ERROR ESTIMATION

Assume a nominal linear measurement model: Y, =
qST(k)Q, k =1,...,N, where Y} is the model output,
QST(/C) is a vector specific to the system, e.g. the k-th
row of the tomographic system matrix A, § € R? is
the parameter vector to be estimated, e.g. the object
intensity A, and k is the measurement index. If it is
known that the error e(k) = Y; — Y (k) is bounded
within [emin (k), €maz (k)]

emzn(k) S Yk - ¢T(k)g S emax(k)a

then the set of all values of @ consistent with (1) is given
by the polytope A = NY_, Hy, called the feasible set,
which is the intersection of the hyperslabs: Hy = {8 :
Yi — emar(k) < 67 (k)8 < Vi — emin(k)}, k=1,..., N.

The Ellipsoid Parallel Cuts (EPC) and the Paral-
lelotope Parallel Cuts (PPC) algorithms can be put in
the common framework of finding a sequence of suc-
cessively smaller sets { E;}2_, all of which contain the

feasible set A and such that £y 1s set of minimal vol-
ume:

By =B, Cr) ={2:[ICh(e -l <1} (2)

where f, is a vector governing the center of Ey, C}
is a non-singular matrix governing the shape of Ejy,
and || - || is a norm. For EPC || - || corresponds to
the I3 norm (||z|] = /2T 2), the E}’s are ellipsoids, 8,
is the centroid of Ej, and C}% is a matrix governing
the principal and minor axes of Fj. For PPC || - ||
corresponds to the I norm (||z]] = max|z]), the Ep’s
are parallelopipeds, 8, is the geometric center of Fy,
and C determines the length and orientation of the
edges of Ep. In [3] and [7], respectively, the EPC and
PPC algorithms are introduced and various theoretical
properties are established. In particular, they establish
that as long as N > p, the EPC and PPC algorithms
are guaranteed to generate sequences Ey, k=1,... N
which after IV steps yields the minimal volume ellipsoid
(EPC) or parallelopiped (PPC) containing A.

As reported in [7] the PPC algorithm has similar
computational complexity as EPC yet consistently con-
verges to a smaller feasible set estimate than EPC. Fur-
thermore, unlike EPC, the PPC algorithm converges to
the exact polyhedral feasible set A when the system
matrix A 1s square and invertible. Our simulations
show that in fact the Parallotope algorithm requires
only about 80% of the runtime per iteration as com-
pared to the EPC algorithm when implemented on a
HP735.

3. CONFIDENCE REGIONS AND
DETECTION

Let Y be random data which has probability distribu-
tion Py(Y') which depends on an unknown parameter
vector (an image) 8 € ©. A (1 —a)100% confidence re-
gion for @ is defined as a subset A;_4(Y) of @ such that
P(0 € A1_o) > 1 — o, which is to be read “the prob-
ability that the random subset A;_,(Y) contains the
non-random parameter . Now assume that we want
to test at some level of false alarm o« whether the true
image # has some simple feature, e.g. # = §° for some
test image 6°. Specifically, we need to specify a test of
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subject to the false alarm constraint
Pyo(decide Hy) < a.

It 1s obvious that the 1 —« confidence region A;_, spec-
ifies such a test: if 8° € A1_, then decide Hy, otherwise
decide Hi. More generally, if we have a composite fea-
ture that we want to test, e.g. specified by some set



of images 8, a level « test is specified by the following
decision rule: decide the true image has the composite
feature when A1_, D &. For more discussion of the du-
ality between tests and confidence regions the reader is
referred to [8].

When ¢, ., and ¢,,,,, are selected to correspond to
specific quantiles of the projection noise distribution
the feasible set A can be identified as a (1 — «)100%
confidence region for §. For X-ray computed tomog-
raphy (X-ray CT) the projection data Y7,..., Yy, are
distributed as independent Gaussian random variables
with variances o7, ...c% which do not depend on the
object. When the variance is known the measurement
variables (Y; — AA)/o; can be used to give the standard
(1= 5)100% confidence rectangle on A\:

N
Xk:l[Lmin(k)a Lmax(k)] —
Xi, [Ye — 0k Z1-p/2, Y + 0k Z1-p/2] (3)

where Z; is the {th percentile of the standard Gaus-
sian distribution. When the variance is unknown the
studentized (1—3)100% confidence rectangle can be ap-
plied. This rectangle is identical to (3) except that oy,
is replaced by the square root ofthe sample variance &
and Z1_g/5 is replaced by the T)_g/5 where T¢ is the
&th percentile of the student-t distribution. One can
also use a studentized confidence interval by replacing
o, with some asymptotically independent estimate of
standard deviation.

On the other hand, for emission computed tomog-
raphy (ECT), the projection data are distributed as in-
dependent Poisson random variables with rates E[Y] =
AA. Tt can be shown [9] that for a Poisson variable Yy, a
(1—3)x100% confidence rectangle for the rate E[Y;] is:

Xt [Lomin(k), Linas (k)] =

N |1 1
Xi=1 §X%/2(2Yk),§X%—@/z(2[Yk‘1‘1]) (4)

where X?(V) is the &th percentile of the chi-square dis-
tribution with v degrees of freedom.

The confidence rectangle (4) can be calculated re-
cursively using known relations between Gamma(k) and
Gamma(k+1) distributions. However this is very time-
consuming and for our simulations we implement ap-
proximate confidence regions based on the normalizing
square root transformations of Poisson random vari-
ables used in [1]. There and here we use the fact that
2(\/g —/A}) is approximately distributed as a vector
of 1.i.d. A(0,1) (standard normal) random variables.
Then, after applying a square root transformation to
the Gaussian distribution, an approximate 1 — 3 con-
fidence rectangle for AX can be obtained by using (3).
It has been our experience that for the typical count

rates encountered in ECT there is little perceptible dif-
ference in size and coverage probability between the
simple approximate Gaussian confidence interval and
the Chi-square based interval (4).
By setting #=1—(1-— oz)% in either (3) or (4) a
(1 — @)100% confidence region for A is obtained:
Ao = {A:L,,, <AALL

max}

{A *C€min S Z - AA S Qmax} (5)

where Emin d:ef Z_Lmax’ Cmaz = Z_Lmzn The (1_
@)% confidence region (5) is in the form of a bounded
error (1) to which EPC or PPC can be directly applied.
The resulting final set £y will be a minimum volume
ellipsoid (EPC) or polytope (PPC) En which contains
Ai_, and is therefore a valid (1 — «)100% region.

In order that the PPC or EPC algorithms give a
sequence of sets which converge to a bounding set on
the feasible region A;_, it is required that A;_, be
a subset of the initial PPC/EPC region Ej. In the
simulations reported below we use an analytical bound
on maximum parallelotope facet length to select such
a region Ey. With [Lmin(4), Lmar(9)] defined as the
[1—(1—a)N)] x 100% confidence interval on the i-th
element of the vector AX define

def

lo = AT A] AT oo (max{ Linaz (1) = Linin()})

Using well known relations between matrix and vector
norms it can be shown that the hypercube of radius r,
centered at

AT A]TATY,

where

Y d_ef Lmax(l) + Lmzn(l) Lmax(N) + Lmzn(N)
= 2 PRI 2

covers the feasible polytope A;_,. This hypercube was
used to initialize the PPC algorithm in the simulations
of this paper.

4. NUMERICAL COMPARISONS

First we compare the performance of the EPC and PPC
algorithms for a very simple two dimensional prob-
lem with additive Gaussian noise. In this problem
A= [A1, A9]T and the system matrix A is 6 x 2. Figure
1 shows the actual feasible set A, the sequence of PPC
parallel cuts and the final ellipsoid and final parallelo-
tope, respectively, for the same Gaussian noise realiza-
tion. Note that the final ellipsoid is many times larger
than the final parallelotope which closely approximates
the actual feasible set. In tables 1 and 2 we compare the
actual coverage probabilities of the final ellipsoid and
final parallelotope, estimated empirically from 1000 tri-
als, vs the prespecified confidence level 1 — « for 2 x 2



Confidence level Prppc Pppc
0.5 0.792  0.496
0.6 0.860 0.617
0.7 0.928 0.678
0.8 0.971  0.797
0.9 0.997  0.907
0.95 0.998  0.947

Table 1: Hy coverage probabilities of the final ellip-
soid and parallelotope containing for a 2 x 2 system.
Observe that final parallelotope essentially meets the
prescribed confidence level and is therefore of much
smaller volume than the final ellipsoid satisfying the
same confidence level constraint.

Confidence level Prppc Pppc
0.5 0.911 0.617
0.6 0.941  0.729
0.7 0.983 0.792
0.8 0.990 0.879
0.9 0.998 0.941
0.95 0.999 0.978

Table 2: Hy coverage probabilities of the final ellipsoid
and parallelotope confidence regions for a 6 x 2 system.

Figure 2: 17x17 phantom image, PPC centroid for high
count regime (total mean number of counts = 3.8 x10°),
and PPC centroid for low count regime (total mean
number of counts = 3.8 x 10°). Initial hypercubecube
facet length = 4.1635 x 101%; confidence level = 80%.
Object was tomographically sampled using Anger cam-
era geometry with 17 parallel collimated detector bins
over 45 detector angles in [0°, 180°]

and 6 x 2 A matrices, respectively. Note that only the
PPC algorithm gives a final set estimate Fg having cov-
erage probability close to the specified value 1 — « in
each of these cases.

We next turn to the tomographic imaging problem
for object detection and classification using a small par-
allel ray Anger tomograph. The phantom is the mean
intensity AA of the spatial Poisson emission process
shown in the first panel of Fig. 2. The two other pan-
els show the true phantom and the centroids of the
final parallelopipeds of PPC at two different phantom
intensity levels for a single realization of the Poisson
noise. Note that for high counts the 80% PPC cen-
troid 1s very close to the phantom, indicating that the
confidence region is centered near the object. For this
case the centroid gives a good reconstruction. On the
other hand, for lower counts the PPC centroid becomes
a much more noisy facsimile of the object; the geomet-
ric center of the confidence region is further away from
the object. We also found that the centroid is a poor
estimator when the system matrix A becomes close to
ill conditioned.
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