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Abstract

In single spin Magnetic Resonance Force Microscopy
(MRFM), the objective is to detect the presence of an elec-
tron (or nuclear) spin in a sample volume by measuring
spin-induced attonewton forces using a micromachined can-
tilever. In the OSCAR method of single spin MRFM, the
spins are manipulated by an external rf field to produce
small periodic deviations in the resonant frequency of the
cantilever. These deviations can be detected by frequency
demodulation followed by conventional amplitude or en-
ergy detection. In this paper, we present an alternative to
these detection methods, based on optimal detection theory
and Gibbs sampling. On the basis of simulations, we show
that our detector outperforms the conventional amplitude
and energy detectors for realistic MRFM operating condi-
tions. For example, to achieve a 10% false alarm rate and
an 80% correct detection rate our detector has an 8 dB SNR
advantage as compared with the conventional amplitude or
energy detectors. Furthermore, at these detection rates it
comes within 4 dB of the omniscient matched-filter lower
bound.

1. INTRODUCTION

Magnetic Resonance Force Microscopy (MRFM) is a re-
cently developed technique with which physicists can po-
tentially push the limits of force detection to the single elec-
tron spin level, with sub-angstrom spatial resolution [1–3].
The experiment involves detection of perturbations of a thin
micrometer-scale cantilever whose tip incorporates a sub-
micron ferromagnet. Any spinning electrons in the sam-
ple will act as magnetic dipoles, exerting perturbing forces
that can be measured from cantilever displacements. There
have been several successful experimental demonstrations
of MRFM for imaging micron-size ensembles of spins. For
example, three-dimensional imaging with micrometer spa-
tial resolution has been achieved [4]. Furthermore, forces
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as small as8 � 10�19 N have been detected using MRFM
[5]. However, despite several advances, detection of an iso-
lated single electron spin has not yet been accomplished.
Progress towards this goal will require advances in physical
measurements and advances in signal processing of these
measurements.

Recently a MRFM method known as OScillating
Cantilever-driven Adiabatic Reversals (OSCAR) [6] has
been proposed to detect single spins. This method, ex-
plained below, uses a modulated external radio frequency
(rf) magnetic field to manipulate the electron spins, in or-
der to produce periodic forces on the cantilever that can
be detected as small frequency shifts. Detection of these
frequency shifts identifies the presence of the electron
spin. If successful, single electron spin detection would
be an important step towards the long-term goal of three-
dimensional imaging of subsurface atomic structure [7].

Unfortunately, accurate single-spin detection in OSCAR
is hampered by several factors. The spin-induced frequency
shift signal is extremely weak as a spin induces a frequency
shift of only one part in104. Thus long integration times are
required to detect such a signal. However, spin relaxation
and decoherence significantly reduce the usable integration
time, especially at room temperature. This makes the use
of cryogenics (cooling the experimental apparatus down to
a fraction of a degree Kelvin) necessary to reduce these ef-
fects. However, in this regime the measurements are prone
to thermal noise from various sources. Noise and decoher-
ence effects must be taken into account by the detection al-
gorithm in order to achieve the most accurate and reliable
single spin detection. Very simple detectors are the base-
band ”amplitude detector” and “energy detector” which op-
erate on a frequency demodulated version of the cantilever
position signal. Such detection schemes are widely used in
MRFM, NMR spectroscopy, MRI, and other applications.

In this paper, we present a new approach to baseband de-
tection in OSCAR experiments. The detector is based on
a random telegraph model for the baseband signal incor-
porating Poisson-distributed random spin reversals, random



initial spin polarity, and Additive White Gaussian Noise
(AWGN). In order to accurately decide between the hy-
potheses of spin absence and presence, we propose a hy-
brid detection scheme which combines optimalBayesand
General Likelihood Ratio(GLR) detection principles im-
plemented with Gibbs sampling. Simulations show that our
proposed detector can significantly outperform the conven-
tional baseband amplitude and energy detector for realistic
post-demodulation signal-to-noise ratios (SNR).

The outline of the paper is as follows. After briefly re-
viewing the OSCAR experiment in Sec. 2, we describe the
proposed signal detection scheme in Sec. 3, and present re-
sults of numerical simulations in Sec. 4.

2. DESCRIPTION OF EXPERIMENT

Fig. 1 is a schematic description of the OSCAR exper-
iment. In OSCAR, a submicron ferromagnet is placed at
the tip of a cantilever which sits at a distance of approx-
imately50 nanometers above a sample. In the presence of
an applied rf field, electrons in the sample undergo magnetic
resonance if the rf field frequency matches the Larmor fre-
quency. Since the Larmor frequency is proportional to the
field from the magnetic tip, and because the tip field falls
off rapidly with distance, only those spins that are within a
thin ”resonant slice” just the right distance from the tip will
satisfy the condition for magnetic resonance and contribute
to the signal. If the cantilever is forced into mechanical
oscillation by positive feedback, the tip oscillation induces
small shifts in the Larmor frequencies of the spins. Specif-
ically, the tip motion gives rise to an oscillating magnetic
field which sweeps the Larmor frequency of the spins in
the resonance slice back and forth through resonance. This
causes the spin to reverse polarity synchronously with the
cantilever motion, and in return, the spin reversals affect
the cantilever motion by changing the effective stiffness of
the cantilever. When an electron spin is present the spin-
cantilever interaction can be detected by measuring small
shifts in the period of cantilever oscillation using laser in-
terferometric cantilever position sensing. For more details
about OSCAR, see [7–9].

A classical (non-quantum) electro-mechanical descrip-
tion of the spin-cantilever interactions can be developed
in the framework adopted by Bermanetal [10] and Rugar
etal [11]. We briefly review this framework here. Consider
a spin in a rotating frame which rotates at the frequency
of the applied rf magnetic field,B1 (Fig. 2). The effective
magnetic fieldBe� (t) in this frame is given by

Be� (t) = B1î+�Bo(t)k̂; (1)

whereî andk̂ are unit vectors in thex andz directions in
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Fig. 1. Schematic of the MRFM experiment.

the rotating frame,B1 is the amplitude of the rf magnetic
field, Bo(t) is the magnetic field caused by the magnetic
tip of the cantilever, and�Bo(t) = Bo(t) � !rf = is the
off-resonance field magnitude ( is the gyromagnetic ratio).
Spins are in resonance on the spherical shell (resonant slice)
defined by those spatial locations for which!rf matches the
Larmor frequencyBo(t).

If �Bo(t) varies sufficiently slowly such that the adia-
batic criterion

d�Bo(t)

dt
� B2

1 (2)

is met, the spin can be assumed to remain aligned or anti-
aligned with the vectorBe� (t). This is thespin-lockcondi-
tion. Let the vertical position of the cantilever tip be denoted
by z wherez = 0 denotes its rest position. Under the influ-
ence of the external rf fieldB1(t), electron-spin forces, and
random (thermal) force noiseFn(t), the motion of the can-
tilever tip obeys the simple harmonic oscillator equation:

m�z(t) + � _z(t) + kz(t) =
j�jG2z(t)p
G2z(t)2 +B2

1

+ Fn(t);

(3)

wherem is the cantilever’s effective mass,k is the can-
tilever spring constant,� is the friction coefficient char-
acterizing cantilever energy dissipation,j�j is the magni-
tude of the spin magnetic moment,G = @Boz=@z is the
z-direction field gradient at the spin location. The natural
mechanical resonance frequency of the cantilever is given
by !o =

p
k=m, and� can be related to the cantilever

quality factor,Q, via� = k=(!oQ).

Under the small tip displacement approximationjGzj �
B1, we obtain

m�z(t) + � _z(t) + (k +�k)z(t) � Fn(t); (4)

where�k = �j�jG2=B1. This shift in spring constant



results in a shift�!o of the cantilever resonant frequency:

�!o � �
1

2
!o
j�jG2

kB1
: (5)

In a version of the protocol called “Interrupted OSCAR,”
the B1 field is turned off everyTskip seconds over a
half cycle duration (�=!o) to cause periodic transitions
between thespin-lock and anti-spin-lockspin states (see
middle panel of Fig. 4). In the spin-lock state the spin
aligns with the fieldBe� (t) and in the anti-lock state the
spin aligns with�Be� (t). Therefore, the frequency shift
�!o of the cantilever alternates between the two values
� 1

2!o(j�j)G
2=(kB1) with periodTskip . In the absence of

noise (Fn(t) = 0 in (3)) the cantilever motion can be ex-
pressed as the frequency modulated (FM) signal:

z(t) = A cos

�
!ot+

Z t

0

�s(t0)dt0 + �

�
: (6)

HereA is the cantilever oscillation amplitude,� is a random
phase, and�s is equal to0 if no spin coupling occurs, while
it is equal to a periodic square wave of period2Tskip and
of amplitudej�!oj if spin coupling occurs. Thus, in this
ideal noiseless case, the presence of spin coupling can be
perfectly detected either by detecting a spectral peak near
j�!oj radians in the periodogram or by frequency demod-
ulation of z to baseband (incorporating subtraction of the
known center frequency!o) followed by amplitude detec-
tion, energy detection, or other algorithm, as discussed be-
low. As baseband and narrowband are equivalent represen-
tations we focus on the baseband method here. These meth-
ods correlate the baseband signal against the known square
wave signal derived fromB1. The resultant signal, which
we cally(t), forms the statistic which is used for spin de-
tection, as illustrated in Fig. 3.

Unfortunately, in a practical (non-ideal) experiment the
cantilever tip-displacement signalz(t) is degraded by sev-
eral factors which reduce correlation peak detection accu-
racy. One factor is the presence of laser interferometric
measurement noise. This adds a noise floor to the demod-
ulated square wave signal�s(t). Another factor is spin re-
laxation which over a period of time causes the spin to
go out of alignment with the effective fieldBe� . While
several models for single-spin relaxation have been pro-
posed [10,11], a full understanding of the physics of single-
spin relaxation interactions with cantilevers remains open.
One model, adopted here, is that the single spins main-
tain spin lock or anti-lock states but spontaneously and asy-
chronously change polarity during the course of measure-
ment at some rate� flips/second. In the sequel we develop
an optimal single-spin detection approach under a random
Poisson model for these polarity flips.
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Fig. 2. In the coordinate system rotating at!rf , the off-resonance
field�Bo, and therefore the effective fieldBe� (t), vary with time.
Under the spin lock assumption, the spin always follows�Be� (t).

3. SIGNAL DETECTION IN NOISE

The signal detectors we will consider operate on the
baseband output signaly(t) of the frequency demodulator,
e.g. a Phase-Lock Loop (PLL), followed by multiplication
by a square wave referencep(t) 2 f�1g of period2Tskip ,
whose transitions are synchronous with the (known) rf turn-
off times (see Fig. 3).
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Fig. 3. Baseband detector frequency demodulates the interfer-
ometric signal, correlates the output against a square wavep(t)
whose transitions are synchronous with the turn-off times of the
rf field B1(t), and generates a test statistic, e.g. accumulated
squared frequency deviations, for detecting presence of a spin.

We model the baseband outputy(t) of the frequency de-
modulator and correlator as a random telegraph plus addi-
tive Gaussian white noise (see lower panel of Fig. 4). Let
[0; T ] be the total measurement time period over which the
correlator integrates the measurements, and letf�ig; i =



1::N , be the time instants within this period at which spin
reversals occur. We assumef�ig are the arrival times of
a Poisson process with intensity�. ConsequentlyN is a
Poisson random variable with rate�T [12]. Thus,y(t) =
s(t) + v(t) wherev(t) is AWGN with variance =�2v , and
s(t) is a random telegraph signal containing only the ran-
dom transitions:

s(t) = �j�!oj
NX
i=0

(�1)ig(
t� �i

�i+1 � �i
); (7)

where� is a random variable that takes on�1 with equal
probability, representing a random initial spin polarity,�0 =
0, �N+1 = T , andg(t) is the standard rectangle function:
g(t) = 1 for t 2 [0; 1] andg(t) = 0 otherwise. If there are
no random spin flips in the time period[0; T ], thens(t) =
�j�!oj is constant over time, which we obtain in (7) by
using the convention that whenN = 0, �o = 0 and�1 =1.

The baseband spin detection problem is to design a test
between the two hypotheses:

H0 (spin absent): y(t) = v(t)

H1 (spin present): y(t) = s(t) + v(t) (8)

for t 2 [0; T ].
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Fig. 4. Top: Sample cantilever position signal,z(t), at 10 kHz.
Middle: Sample rf magnetic field magnitude,B1, has synchronous
half-cycle skips at 1 ms, 2 ms, and 3 ms. Bottom: In the presence
of a single spin,�s in Eq. 6 has both deterministic transitions due
to the rf skips at 1 ms, 2 ms and 3 ms, and random ones due to
spin relaxation. The random transitions,f�ig, occur as a Poisson
process. The initial polarity is� = 1 for this example. The noisy
signal at bottom is�s with AWGN contamination.

Conditioned on the random parametersf�ig; N; �, the
signals(t) is deterministic and known. Under this condi-
tioning theoptimaldetection structure would be the simple

matched filter [13]

1

T

Z T

0

y(t0)s(t0; �; � ; N)dt0
H1

>
<

H0

� (9)

where s(t;�; � ; N) is a synthesized random telegraph
signal of the form (7) parametrized byj�!oj (assumed
known),�; � andN . The value� is a threshold that can ei-
ther be set to satisfy aprobability of false alarm(PF ) con-
traint PF � �, � 2 [0; 1], or as a function of the prior
probabilitiesa ln[P (H0)=P (H1)] + b wherea; b are known
constants. In the former case the detector is called themost
powerful(MP) test of level�, which has maximumproba-
bility of detection(PD), while in the latter case the detector
is called the minPe detector as it achieves minimum average
probability of decision error (minPe).

As the values of the random parameters are always un-
known, we call the detector (9) theomniscient matched fil-
ter, which is unimplementable. However, as the omniscient
matched filter is optimal for known parameter values it es-
tablishes a useful upper bound on performance.

Perhaps the simplest baseband detection scheme, and the
most widespread in MRFM applications, is theamplitude
detectorwhich acts as if there were no random flips and
declares a spin present if the magnitude of the average am-
plitude of the correlator output exceeds a threshold

�����
1

T

Z T

0

y(t0)dt0

�����
H1

>
<
H0

� (10)

where� is a threshold set to give the desiredPF . Improved
performance can be obtained by explicitly accounting for
the equally likely initial polarity and assuming AWGN to
derive the minPe detector. The amplitude detector (10) is
the minPe detector under the assumption thaty(t) is a ran-
dom polarity constant embedded in AWGN. This is a valid
assumption when there are no random spin flips over the
integration period[0; T ].

When there are random spin flips over[0; T ] due to spin
relaxation and decoherence, the performance of the ampli-
tude detector suffers. Indeed, as the number of random flips
increases the average amplitude ofy(t) converges to zero.
As the energy ofs(t) is independent of number of transi-
tions, transition times, and initial polarity, it is natural to
propose anenergy detector[13]

Z T

0

[y(t0)]2dt0
H1

>
<
H0

� (11)

where� is a threshold set to give the desiredPF . It can
be shown that the energy detector is a minPe test for the
case thatv(t) is additive white gaussian noise,s(t) =



�!o cos(2�t=Tskip+�), and� is uniformly distributed over
[0; 2�] [14]. It can also be shown that the energy detector is
the minPe test under a Gaussian approximation to the ran-
dom telegraph process in the limit of high SNR [15]. Note
that in our case the detection performance of the energy test
is independent of the average flip rate�.

As we will show in the sequel, the performance of the
amplitude and energy detectors can be far from the optimal
performance achieved by the omniscient matched filter de-
tector.

3.1. The Hybrid Bayes/GLR Detector

The minPe detector for a signal with random parame-
ters is a Bayes likelihood ratio test that averages an omni-
scient likelihood ratio test statistic over all random parame-
ters [14]:

log�(y) (12)

= log
E� ;N [E� [f (y; � ; N; �jH1)]]

f(yjH0)

H1

>
<

H0

�:

As above � is a threshold selected to achieve a de-
sired level� of PF . The functionf is the joint p.d.f
of fy(t)gt2[0;T ] parametrized by the random parameters
� ; N; �, andEx[�jA] denotes conditional expectation over
random variablesx given eventA.

While the expectation over� in (12) is simple to evalu-
ate, the expectation overff�ig; Ng is very difficult since the
integration region is of very high (infinite) dimension. An
alternative to this performing this second expectation is to
invoke the Generalized Likelihood Ratio (GLR) principle.
The GLR consists of replacing the unknown parameters in
(12) byMaximum Likelihood(ML) estimates.

log�(y) (13)

= log
max� ;N fE� [f (y; � ; N; �jH1)]g

f(yjH0)

H1

>
<
H0

�;

where, again,� is a threshold chosen for a desiredPF . Note
that in (13) we have averaged over� while we have max-
imized overff�ig; Ng, leading to what we call a hybrid
Bayes/GLR test.

As y(t) is a conditionally Gaussian random process
givenf�ig andN , the log-likelihood function in (13) can be
simplified by invoking the Cameron-Martin formula [16]:

log�(y) = max
� ;N

�
log cosh

�
1

�2v

Z T

0

y(t)s+(t; � ; N)dt

��

�
1

�2v

Z T

0

(s+(t; � ; N))2dt (14)

where s+(t; � ; N) is the synthesized telegraph wave (7)
having initial polarity� = 1 and parameterized by� and
N . It is well known that for a sufficiently large integration
time T the minPe and GLR tests are identical (see for ex-
ample [17]). Thus we can assert that the hybrid Bayes/GLR
test (13) is an asymptotically optimal test.

3.2. Solution via Gibbs Sampling

The maximization in (14) by exhaustive search over the
uncountably infinite dimensional space of possible parame-
ter values,ff�ig; Ng, is impractical. An alternative, which
is guaranteed to converge to the maximizing solution, is
to more efficiently search over these parameters by Gibbs
Sampling [18,19]. As we know the Poisson intensity�, we
can generate samplesff�ig; Ng from theprior Poisson dis-
tribution so as to maximize the log-likelihood function. As
these samples are more likely (on the average) to mimic the
actual behavior of the parameters, we obtain a reduction in
search complexity.

The general description of the Gibbs sampler is as fol-
lows. Supposed there is a random vector variableX =
[x1; x2; : : : ; xp]

T having density functionfX from which
we want to sample. Suppose also that we can simulate the
i-th element ofX given samples (already simulated) of the
other elements:

Xijx1; x2; : : : ; xi�1; xi+1; : : : ; xp

� fi(xijx1; x2; : : : ; xi�1; xi+1; : : : ; xp) for i = 1::p

(15)

Then a Markov sequence,x(t) = [x
(t)
1 ; : : : ; x

(t)
p ]T , can be

simulated by the recursion

X
(t+1)
1 � f1(x1jx

(t)
2 ; : : : ; x(t)p );

X
(t+1)
2 � f2(x2jx

(t+1)
1 ; x

(t)
3 ; : : : ; x(t)p );

...

X(t+1)
p � fp(xpjx

(t+1)
1 ; x

(t+1)
2 ; : : : ; x

(t+1)
p�1 ):

(16)

After a certain amount of burn-in timeTb,X(t); t > Tb; will
have stationary distributionfX. In our case, since the arrival
timesf�ig are generated from a Poisson process, the condi-
tional distributions (16) are easy to sample from, because
they are conditionally uniform.

4. SIMULATION METHODS AND RESULTS

The objective of our first three simulations was to com-
pare the detection performance of the matched filter, the am-



plitude detector, the energy detector, and the Bayes/GLR
detector on the basis of Receiver Operating Characteristic
(ROC) curves, which are obtained by empirically generat-
ing the pairs(PF ; PD) for each detector. In our simulations,
the four decision rules (9), (10), (11), and (13) were used
to generate the ROC curves in the Matlab 6.1 environment.
Based on the Monte Carlo methodology [18], we generated
samplesfy(i)d (n)g, yd(n) = y(nTs), under both Hypothe-
sis 0 and 1, whereTs was the sampling period. The samples
were input to the detector being evaluated, andPD andPF
were statistically calculated. 500 detection trials were per-
formed under each hypothesis. For each ROC curve, the
above process was repeated with a range of decision thresh-
old values�. This range of thresholds was chosen in order
to adequately sample the domainPF 2 [0; 1].

The simulation parameter values were chosen according
to typical OSCAR experimental values. The signal dura-
tion T was3 s and the sampling periodTs was0:5 ms. The
rest of the parameters were set to:k = 1 � 10�3 N/m,
!o=(2�) = 1 � 104 Hz, B1 = 0:2 mT, G = 2 � 106

T/m, and� = 9:3 � 10�24 J/T. With these parameters
the (noiseless) signal amplitude,js(t)j, was0:928 Hz ac-
cording to (5). Two values of�, the average number of
random flips per second, were evaluated. The detector
noise was assumed AWGN and the noise variance was ad-
justed to investigate the effect of SNR, which is defined as
10log10[(1=T )

R T
0
js(t)j2dt=�2v ].

We ran the Gibbs sampler for 5,000 iterations for the hy-
brid Bayes/GLR detector. Fig. 5 and 6 show ROC curves for
SNR = -25 dB and -20 dB, respectively, for� = 1 event-
per-second. In both cases, our hybrid Bayes/GLR detector
significantly outperformed all the other detectors except for
the unimplementable matched filter. The matched filter had
complete information about the random flip times, and as a
result it achieved almost perfect detection for both SNR val-
ues. In Fig. 7 the value of� was increased to 10 events-per-
second and the SNR was held at -20 dB. As expected, the
performance of the amplitude and hybrid Bayes/GLR detec-
tors degrades, while the matched filter and energy detector,
whose performance does not depend on�, are not affected.
In Fig. 8 the power curves for all detectors are plotted as
a function of SNR for� = 1. Here all detectors perform
at the same false alarm ratePF = 0:1, and we can make a
quantitative SNR comparison by fixing the detection perfor-
mance level atPD = 0:8, say. To attain this detection level,
the energy detector and amplitude detector require SNR’s of
at least -14 dB and -17.5 dB, respectively, while the hybrid
Bayes/GLR detector only requires -26 dB. As compared to
the amplitude detector, this represents an improvement of
almost 9 dB in SNR performance using our proposed detec-
tor. Furthermore, the performance of our proposed detector
is only 4 dB worse than the performance bound of -30 dB

established by the matched filter for this level ofPF and
PD . Note that the amplitude detector outperforms the en-
ergy detector for low SNR’s but not for high SNR’s.This is
explained by the fact that even though the energy detector is
not affected by random flips, at low SNR’s its test statistic
is dominated by the noise.

In another simulation, we investigated the role of the
number of Gibbs samples on performance of the hybrid
Bayes/GLR detector, shown in Fig. 9. It is evident that
performance improves as we increase the number of Gibbs
samples. For example, atPF = 0:1, PD increases from ap-
proximately 0.35 to 0.65 if we increase the number of Gibbs
samples from 100 to 500. It increases further to around 0.9
and 0.95 if 500 or 5,000 Gibbs samples are used, respec-
tively. Such improvements in performance are significant
but yield diminishing returns as the number of Gibbs sam-
ples is increased beyond 500.
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Fig. 5. Simulated Receiver Operating Characteristic (ROC)
curves for the matched filter, energy detector, amplitude detector,
and hybrid Bayes/GLR detector, at SNR = -25 dB and� = 1 event-
per-second. Unlike the other detectors, the matched filter assumes
complete information on the parameter values and is not imple-
mentable.

5. CONCLUSION

In this paper we presented a hybrid Bayes/GLR approach
to detecting the presence of single spins for the OSCAR
MRFM experiment. We have shown by simulation that the
Bayes/GLR detector performs significantly better than the
classical amplitude and energy detectors. The improvement
in detection performance is due to the fact that, unlike the
classical detectors, the new detector estimates the unknown
values of the random spin reversal times and the initial po-
larity. Of course this performance improvement comes at
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Fig. 7. Simulated Receiver Operating Characteristic (ROC)
curves for the matched filter, energy detector, amplitude detector,
and hybrid Bayes/GLR detector, at SNR = -20 dB and� = 10
events-per-second.

the price of increased implementation complexity. This
complexity increases in the random reversal rate� due to the
necessity to perform Gibbs sampling over an increasingly
large number of probable spin reversal sequences. Nonethe-
less, for the experiments in the first simulation with� = 1
event-per-second, the run time of our detector (5,000 Gibbs
samples) was only on the order of about half a minute per
3-second measurement record (our code was implemented
in Matlab 6.5, under WindowsXP on a 2.26GHz PC, with
510MB RAM).
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Fig. 8. The power curves (PD vs. SNR) for the four detectors
studied in this paper forPF = 0:1 and� = 1 event-per-second.
AtPD = 0:8 the hybrid Bayes/GLR detector performs within 4 dB
of the bound established by the matched filter.
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Fig. 9. Juxtaposition of ROC curves of hybrid Bayes/GLR detec-
tor, obtained with different numbers of Gibbs samples in the max-
imization step, at SNR = -20 dB and� = 10 events-per-second.
Performance improves as the number of Gibbs samples increases.

An interesting extension of our results would be to as-
sume that the frequency shiftj�!oj is also unknown. This
would lead to a hybrid Bayes/GLR detector which detects
the peak over the spectrum of the signal in addition to max-
imizing over the number and positions of the transitions.

The hybrid Bayes/GLR detector was derived using a
baseband signal model consisting of a random telegraph
wave with Poisson transitions and AWGN. This signal
model is theoretically justified under the spin-lock assump-
tion. The validity of the spin-lock assumption remains to



be established. More sophisticated signal models of the
cantilever measurements, and associated detection methods
which bypass frequency demodulation and operate directly
on those measurements, are currently under investigation.
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