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Abstract as small a8 x 10~ N have been detected using MRFM
[5]. However, despite several advances, detection of an iso-
In single spin Magnetic Resonance Force Microscopy lated single electron spin has not yet been accomplished.
(MRFM), the objective is to detect the presence of an elec-Progress towards this goal will require advances in physical
tron (or nuclear) spin in a sample volume by measuring measurements and advances in signal processing of these
spin-induced attonewton forces using a micromachined can-measurements.
tilever. In the OSCAR method of single spin MRFM, the

spins are manipulated by an external rf field to produce . . . .
small periodic deviations in the resonant frequency of the Cantilever-driven Adlabatlc_Reversals (OS(.:AR) [6] has
been proposed to detect single spins. This method, ex-

cantilever. These deviations can be detected by frequency lained below. uses a modulated external radio frequenc
demodulation followed by conventional amplitude or en- P ! d Y

ergy detection. In this paper, we present an alternative to (rf) magnetic field t(.) manlpulate the electrop spmns, in or-
der to produce periodic forces on the cantilever that can

these Qetection methods, based on optjmal d.etection theo%e detected as small frequency shifts. Detection of these
and Gibbs sampling. On the basis of simulations, we ShOWfrequency shifts identifies the presence of the electron

that our detector outperforms the conventional amplitude _~. ) ) )

- . . spin. If successful, single electron spin detection would
and energy detectors for realistic MRFM operating condi- be an important step towards the long-term goal of three-
tions. For example, to achieve a 10% false alarm rate and dimensional imaging of subsurface atomic structure [7]
an 80% correct detection rate our detector has an 8 dB SNR '
advantage as compared with the conventional amplitude or  Unfortunately, accurate single-spin detection in OSCAR
energy detectors. Furthermore, at these detection rates itis hampered by several factors. The spin-induced frequency
comes within 4 dB of the omniscient matched-filter lower shift signal is extremely weak as a spin induces a frequency
bound. shift of only one partinl0*. Thus long integration times are
required to detect such a signal. However, spin relaxation
and decoherence significantly reduce the usable integration
time, especially at room temperature. This makes the use
of cryogenics (cooling the experimental apparatus down to

Magnetic Resonance Force Microscopy (MRFM) is a re- a fraction of a degree Kelvin) necessary to reduce these ef-
cently developed technique with which physicists can po- fects. However, in this regime the measurements are prone
tentially push the limits of force detection to the single elec- to thermal noise from various sources. Noise and decoher-
tron spin level, with sub-angstrom spatial resolution [1-3]. ence effects must be taken into account by the detection al-
The experimentinvolves detection of perturbations of a thin gorithm in order to achieve the most accurate and reliable
micrometer-scale cantilever whose tip incorporates a sub-single spin detection. Very simple detectors are the base-
micron ferromagnet. Any spinning electrons in the sam- band "amplitude detector” and “energy detector” which op-
ple will act as magnetic dipoles, exerting perturbing forces erate on a frequency demodulated version of the cantilever
that can be measured from cantilever displacements. Thergosition signal. Such detection schemes are widely used in
have been several successful experimental demonstration®!RFM, NMR spectroscopy, MRI, and other applications.
of MRFM for imaging micron-size ensembles of spins. For
example, three-dimensional imaging with micrometer spa-
tial resolution has been achieved [4]. Furthermore, forces

Recently a MRFM method known as OScillating

1. INTRODUCTION

In this paper, we present a new approach to baseband de-
tection in OSCAR experiments. The detector is based on
a random telegraph model for the baseband signal incor-
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initial spin polarity, and Additive White Gaussian Noise |Gain phase shif, Interferometer

(AWGN). In order to accurately decide between the hy- fems
potheses of spin absence and presence, we propose a hy- o
brid detection scheme which combines optirBalyesand ~ Cemievef sefosclationloop Hom.ca| e
General Likelihood RatidGLR) detection principles im- S Caniiever mMagneticTip
plemented with Gibbs sampling. Simulations show that our Detector  — in absent/
proposed detector can significantly outperform the conven- el ¢Spin present?
tional baseband amplitude and energy detector for realistic m <
post-demodulation signal-to-noise ratios (SNR). Puis contoler
The outline of the paper is as follows. After briefly re- L Clock generator

viewing the OSCAR experiment in Sec. 2, we describe the
proposed signal detection scheme in Sec. 3, and present re-

. ) . ) Fig. 1. Schematic of the MRFM experiment.
sults of numerical simulations in Sec. 4.

2. DESCRIPTION OF EXPERIMENT the rotating framep3; is the amplitude of the rf magnetic
field, B,(t) is the magnetic field caused by the magnetic
tip of the cantilever, and\B,(t) = B,(t) — wrs /7 is the
off-resonance field magnitude {s the gyromagnetic ratio).
Spins are in resonance on the spherical shell (resonant slice)
fdeﬁned by those spatial locations for whicly matches the
Larmor frequencyy B, (t).

Fig. 1 is a schematic description of the OSCAR exper-
iment. In OSCAR, a submicron ferromagnet is placed at
the tip of a cantilever which sits at a distance of approx-
imately 50 nanometers above a sample. In the presence o
an applied rf field, electrons in the sample undergo magnetic
resonance if the rf field frequency matches the Larmor fre-  If AB,(t) varies sufficiently slowly such that the adia-
guency. Since the Larmor frequency is proportional to the batic criterion
field from the magnetic tip, and because the tip field falls dAB,(t)
off rapidly with distance, only those spins that are within a —— A
thin "resonant slice” just the right distance from the tip will dt
satisfy the condition for magnetic resonance and contributeis met, the spin can be assumed to remain aligned or anti-
to the signal. If the cantilever is forced into mechanical aligned with the vectoB . (¢). This is thespin-lockcondi-
oscillation by positive feedback, the tip oscillation induces tion. Let the vertical position of the cantilever tip be denoted
small shifts in the Larmor frequencies of the spins. Specif- by z wherez = 0 denotes its rest position. Under the influ-
ically, the tip motion gives rise to an oscillating magnetic ence of the external rf fielB, (¢), electron-spin forces, and
field which sweeps the Larmor frequency of the spins in random (thermal) force noisE, (¢), the motion of the can-
the resonance slice back and forth through resonance. Thisilever tip obeys the simple harmonic oscillator equation:
causes the spin to reverse polarity synchronously with the

<« vB? 2)

|plG?2(t)

cantilever motion, and in return, the spin reversals affect mi(t) + Ti(t) + kz(t) = +F,(b),
the cantilever motion by changing the effective stiffness of G?z(t)2 + B?
the cantilever. When an electron spin is present the spin- (3)

cantilever interaction can be detected by measuring small _ _ _ _
shifts in the period of cantilever oscillation using laser in- Wherem is the cantilever's effective mass, is the can-
terferometric cantilever position sensing. For more details tilever spring constant]” is the friction coefficient char-

about OSCAR, see [7-9]. acterizing cantilever energy dissipatidp,| is the magni-
tude of the spin magnetic momeidt, = 0B,,/0z is the

~ A classical (non-quantum) electro-mechanical descrip- z_direction field gradient at the spin location. The natural
tion of the spin-cantilever interactions can be developed mechanical resonance frequency of the cantilever is given

in the framework adopted by Bermatal [10] and Rugar by w, = /k/m, andT can be related to the cantilever
etal[11]. We briefly review this framework here. Consider quality factor,Q, vial’ = k/(w,Q)

a spin in a rotating frame which rotates at the frequency

of the applied rf magnetic field3; (Fig. 2). The effective Under the small tip displacement approximatj6iz| <
magnetic fieldB . (¢) in this frame is given by B, we obtain
B.g(t) = DBii+ABy(t)k, 1) mi(t) + Tz(t) + (k + Ak)z(t) ~ Fo(t), (4)

where: andk are unit vectors in the andz directions in where Ak = —|u|G?/B;. This shift in spring constant



results in a shifAw, of the cantilever resonant frequency: Cantilever
z=0
e I
Aw, =~ —=w, . (5) ~_ B,
27" kB

In a version of the protocol called “Interrupted OSCAR,”
the B, field is turned off everyT,;;, seconds over a
half cycle duration £/w,) to cause periodic transitions
between thespin-lock and anti-spin-lockspin states (see
middle panel of Fig. 4). In the spin-lock state the spin
aligns with the fieldB.g(¢) and in the anti-lock state the
spin aligns with—B 4 (t). Therefore, the frequency shift
Aw, of the cantilever alternates between the two values
+1w,(|n])G?/(kBy) with periodTyy. In the absence of
noise ¢, (t) = 0 in (3)) the cantilever motion can be ex-
pressed as the frequency modulated (FM) signal:

t
z(t) = Acos <wot + / s(t)dt' + 0) . (6) Fig. 2. In the coordinate system rotatingaty, the off-resonance
0 field AB,, and therefore the effective fidl.4 (¢), vary with time.

) . o . ) Under the spin lock assumption, the spin always folles#. s (¢).
HereA is the cantilever oscillation amplitudéjs a random

phase, and is equal to0 if no spin coupling occurs, while
it is equal to a periodic square wave of periefi;, and
of amplitude|Aw,| if spin coupling occurs. Thus, in this 3. SIGNAL DETECTION IN NOISE

ideal noiseless case, the presence of spin coupling can be

perfectly detected either by detecting a spectral peak near

|Aw,| radians in the periodogram or by frequency demod- The signal detectors we will consider operate on the
ulation of z to baseband (incorporating subtraction of the baseband output signa(t) of the frequency demodulator,
known center frequency,) followed by amplitude detec-  €.9. @ Phase-Lock Loop (PLL), followed by multiplication
tion, energy detection, or other algorithm, as discussed beby a square wave referenpgt) € {£1} of period2T s,

low. As baseband and narrowband are equivalent represenwhose transitions are synchronous with the (known) rf turn-
tations we focus on the baseband method here. These mettpff times (see Fig. 3).

ods correlate the baseband signal against the known square

wave signal derived frorB;. The resultant signal, which Detector H,

we cally(¢), forms the statistic which is used for spin de-

tection, as illustrated in Fig. 3. measurement of Deroaior 220, satstc | To) n
from interferometer (PLL) generator

Unfortunately, in a practical (non-ideal) experiment the
cantilever tip-displacement signa(t) is degraded by sev- N
eral factors which reduce correlation peak detection accu- \ U
racy. One factor is the presence of laser interferometric R
measurement noise. This adds a noise floor to the demod-

UIate.d squa.re wave Slgnm.t)' Ano.ther factor is spin r_e_ Fig. 3. Baseband detector frequency demodulates the interfer-
laxation Wh',Ch over a.perlod of t'me cguses the s.pln to ometric signal, correlates the output against a square wait¢

go out of alignment with the effective fielBB.;. While whose transitions are synchronous with the turn-off times of the
several models for single-spin relaxation have been pro- field Bi(t), and generates a test statistic, e.g. accumulated
posed [10,11], a full understanding of the physics of single- squared frequency deviations, for detecting presence of a spin.
spin relaxation interactions with cantilevers remains open.

One model, adopted here, is that the single spins main-

tain spin lock or anti-lock states but spontaneously and asy- We model the baseband outpuft) of the frequency de-
chronously change polarity during the course of measure-modulator and correlator as a random telegraph plus addi-
ment at some rate flips/second. In the sequel we develop tive Gaussian white noise (see lower panel of Fig. 4). Let
an optimal single-spin detection approach under a random|0, T'] be the total measurement time period over which the
Poisson model for these polarity flips. correlator integrates the measurements, andgt,i =

from clock generator



1..N, be the time instants within this period at which spin matched filter [13]

reversals occur. We assunfe;} are the arrival times of "

a Poisson process with intensily ConsequentlyV is a _/ s(t', ¢, 7, N)dt > 0 @)
Poisson random variable with radd" [12]. Thus, y( ) = ’ ;0

s(t) + v(t) wherew(t) is AWGN with variance =02, and

v

s(t) is a random telegraph signal containing only the ran- where s(t; ¢, 7, N) is a synthesized random telegraph

dom transitions: signal of the form (7) parametrized Byr\w,| (assumed
N known),¢, 7 and N. The valuey is a threshold that can ei-

s() = ¢|Aw,] Z(_l)ig( t—mi ’ 7 the_r be set to satisfy probability of false a_larn(PF) con-
— Tit1 — Ti traint Pr < «, a € [0,1], or as a function of the prior

probabilitiesa In[P(H,)/P(H, )] + b wherea, b are known
constants. In the former case the detector is callednibst
powerful(MP) test of leveky, which has maximunproba-
bility of detection(Pp), while in the latter case the detector

is called the minPe detector as it achieves minimum average
probability of decision error (minPe).

where¢ is a random variable that takes ari with equal
probability, representing a random initial spin polarity,=

0, 7vy+1 = T, andg(t) is the standard rectangle function:
g(t) = 1fort € [0,1] andg(t) = 0 otherwise. If there are
no random spin flips in the time peridd, 7], thens(t) =
#|Aw,| is constant over time, which we obtain in (7) by
using the convention that whéw = 0, 7, = 0 andr;, = oo. As the values of the random parameters are always un-

known, we call the detector (9) thmnniscient matched fil-
The baseband spin detection problem is to design a teSter \yhich is unimplementable. However, as the omniscient

between the two hypotheses: matched filter is optimal for known parameter values it es-

H, (spin absent): y(t) = v(t) tablishes a useful upper bound on performance.
H; (spin present): y(t) = s(t) +v(t) (8) Perhaps the simplest baseband detection scheme, and the
most widespread in MRFM applications, is tamplitude
fort € [0,T].

detectorwhich acts as if there were no random flips and
declares a spin present if the magnitude of the average am-
plitude of the correlator output exceeds a threshold

1 T
T/ y(t)dt'
0

wheren is a threshold set to give the desirBd. Improved
performance can be obtained by explicitly accounting for
the equally likely initial polarity and assuming AWGN to
05 : umé"fmﬁ 2 25 3 derive the minPe detector. The amplitude detector (10) is
‘ ‘ ‘ ‘ ‘ the minPe detector under the assumption &} is a ran-
dom polarity constant embedded in AWGN. This is a valid
assumption when there are no random spin flips over the
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When there are random spin flips oyerT'] due to spin
Fig. 4. Top: Sample cantilever position signa(t), at 10 kHz. relaxation and decoherence, the performance of the ampli-
Middle: Sample rf magnetic field magnitude,, has synchronous tude detector suffers. Indeed, as the number of random ﬂIpS
half-cycle skips at 1 ms, 2 ms, and 3 ms. Bottom: In the presenceincreases the average amplitudey¢f) converges to zero.
of a single spings in Eq. 6 has both deterministic transitions due ~As the energy o%k(t) is independent of number of transi-
to the rf skips at 1 ms, 2 ms and 3 ms, and random ones due totions, transition times, and initial polarity, it is natural to
spin relaxation. The random transitiongr; }, occur as a Poisson  propose arenergy detectofl3]
process. The initial polarity i = 1 for this example. The noisy
signal at bottom i with AWGN contamination. T H,y
| wepar = a1
0 Hy
Conditioned on the random parametérs}, N, ¢, the wheren is a threshold set to give the desiréy. It can
signal s(¢) is deterministic and known. Under this condi- be shown that the energy detector is a minPe test for the
tioning theoptimaldetection structure would be the simple case thatv(t) is additive white gaussian noise(t) =



Aw, cos(2mt/Tskip +6), andd is uniformly distributed over ~ where s*(¢; 7, N) is the synthesized telegraph wave (7)
[0,27] [14]. It can also be shown that the energy detector is having initial polarity¢ = 1 and parameterized by and

the minPe test under a Gaussian approximation to the ran-V. It is well known that for a sufficiently large integration
dom telegraph process in the limit of high SNR [15]. Note time T the minPe and GLR tests are identical (see for ex-
that in our case the detection performance of the energy tesample [17]). Thus we can assert that the hybrid Bayes/GLR
is independent of the average flip rate test (13) is an asymptotically optimal test.

As we will show in the sequel, the performance of the
amplitude and energy detectors can be far from the optimal3.2. Solution via Gibbs Sampling
performance achieved by the omniscient matched filter de-

tector. The maximization in (14) by exhaustive search over the

uncountably infinite dimensional space of possible parame-
3.1. The Hybrid Bayes/GLR Detector ter values{{;}, N}, is impractical. An alternative, which
is guaranteed to converge to the maximizing solution, is
) ] . to more efficiently search over these parameters by Gibbs
The minPe detector for a signal with random parame- Sampling [18, 19]. As we know the Poisson intensityve

ters is a Bayes likelihood ratio test that averages an omni-¢5, generate sampléér; }, N'} from theprior Poisson dis-
scient likelihood ratio test statistic over all random parame- inution so as to maximiz,e the log-likelihood function. As

ters [14]: these samples are more likely (on the average) to mimic the
log A(y) (12 actual behavior of the parameters, we obtain a reduction in
H, search complexity.
f(y[Ho) ; The general descnpnpn of the Gibbs sample_r is as fol-
0 lows. Supposed there is a random vector varidlle=
As abover is a threshold selected to achieve a de- [zq,zs,...,7,]T having density functionfx from which

sired levela of Pr. The functionf is the joint p.d.f  we want to sample. Suppose also that we can simulate the
of {y(t)}+ep,r7 parametrized by the random parameters i-th element ofX given samples (already simulated) of the
T, N, ¢, and E4[-]A] denotes conditional expectation over other elements:

random variables given eventA.
Xilwy, @, i1, Tigr, -, Tp

While the expectation oves in (12) is simple to evalu- ~ filmiley, oy i1, Ty, ., mp)  fOri=1.p
ate, the expectation ovéfr; }, N} is very difficult since the (15)
integration region is of very high (infinite) dimension. An
alternative to this performing this second expectation is to Then a Markov sequence® = [z\", ..., z{17, can be
invoke the Generalized Likelihood Ratio (GLR) principle. simulated by the recursion
The GLR consists of replacing the unknown parameters in

(12) byMaximum LikelihoodML) estimates. X"~ fi@al, e,
log A(y) (13) X{ s foaalaf™Y 2, ),
o PN B I (T N9l HE T .
f(y|Ho) ;0 Xé”l) ~ fp(xp|x§t+1),xét+l), .- ,xétjll)).
where, againy is a threshold chosen for a desirBg. Note (16)

that in (13) we have averaged owemwhile we have max-
imized over{{r;}, N}, leading to what we call a hybrid 1 5ye stationary distributiofi . In our case, since the arrival
Bayes/GLR test. times{r;} are generated from a Poisson process, the condi-

As y(t) is a conditionally Gaussian random process tional distribu'Fipns (16) are easy to sample from, because
given{r;} andV, the log-likelihood functionin (13) can be ~they are conditionally uniform.
simplified by invoking the Cameron-Martin formula [16]:

1 T 4. SIMULATION METHODS AND RESULTS
[— / y(t)st(t; T, N)dt] }
0

After a certain amount of burn-in tinig,, X, ¢ > T, will

2
v

T n 5 The objective of our first three simulations was to com-
o2 /0 (s7(t;7, N))"dt (14) pare the detection performance of the matched filter, the am-



plitude detector, the energy detector, and the Bayes/GLRestablished by the matched filter for this level Bf and
detector on the basis of Receiver Operating CharacteristicP,. Note that the amplitude detector outperforms the en-
(ROC) curves, which are obtained by empirically generat- ergy detector for low SNR'’s but not for high SNR’s.This is
ing the pair{ Pr, Pp) for each detector. In our simulations, explained by the fact that even though the energy detector is
the four decision rules (9), (10), (11), and (13) were used not affected by random flips, at low SNR’s its test statistic
to generate the ROC curves in the Matlab 6.1 environment.is dominated by the noise.

Based on the Monte Carlo methodology [18], we generated
samples{yf;) (n)}, ya(n) = y(nTs), under both Hypothe-
sis 0 and 1, wher#; was the sampling period. The samples

In another simulation, we investigated the role of the
number of Gibbs samples on performance of the hybrid
Bayes/GLR detector, shown in Fig. 9. It is evident that

were input to the detector being evaluated, #adand Pg . . .
were statistically calculated. 500 detection trials were per- performance improves as we increase the number of Gibbs
y ' P samples. For example, 8- = 0.1, Pp increases from ap-

formed under each hypothesis. For each ROC curve, the

above process was repeated with a ranae of decision threshproximately 0.351t0 0.65 if we increase the number of Gibbs
P . P 9 . samples from 100 to 500. It increases further to around 0.9
old values;. This range of thresholds was chosen in order

and 0.95 if 500 or 5,000 Gibbs samples are used, respec-
to adequately sample the domap € [0, 1]. tively. Such improvements in performance are significant
The simulation parameter values were chosen accordingout yield diminishing returns as the number of Gibbs sam-
to typical OSCAR experimental values. The signal dura- ples is increased beyond 500.
tion T"was3 s and the sampling peridt, was0.5 ms. The

rest of the parameters were set tb:= 1 x 10~3 N/m, ¥ iy & ol
wo/(2m) = 1 x 10* Hz, B, = 0.2 mT, G = 2 x 10° of ¥ R ]
T/m, andy = 9.3 x 10~2* J/T. With these parameters ot ¥ e T
the (noiseless) signal amplitude(t)|, was0.928 Hz ac- 5,5 L e
cording to (5). Two values oA, the average number of z | e 17
random flips per second, were evaluated. The detector §°% ..
noise was assumed AWGN and the noise variance was ad- § 05t fﬁy
justed to investigate the effect of SNR, which is defined as Z i
L0logio[(1/T) fy |s(t)*dt/o?). 5.0
We ran the Gibbs sampler for 5,000 iterations for the hy- 02t Eﬁ%%ggg%;m
brid Bayes/GLR detector. Fig. 5 and 6 show ROC curves for ot * _Bayes/GLR detector
SNR = -25 dB and -20 dB, respectively, far= 1 event- ]
per-second. In both cases, our hybrid Bayes/GLR detector % 01 0z 03 04 05 08 07 o8 08 1

significantly outperformed all the other detectors except for probeblly of Faise Aam (°F)

the ummp_lementa_ble matched filter. The ma’Fched filter had Fig. 5. Simulated Receiver Operating Characteristic (ROC)
complete information about the random flip times, and as aryes for the matched filter, energy detector, amplitude detector,
result it achieved almost perfect detection for both SNR val- ang hybrid Bayes/GLR detector, at SNR = -25 dB and 1 event-

ues. In Fig. 7 the value of was increased to 10 events-per- per-second. Unlike the other detectors, the matched filter assumes
second and the SNR was held at -20 dB. As expected, thecomplete information on the parameter values and is not imple-
performance of the amplitude and hybrid Bayes/GLR detec- mentable.
tors degrades, while the matched filter and energy detector,

whose performance does not depend\pare not affected.

In Fig. 8 the power curves for all detectors are plotted as

a function of SNR forA = 1. Here all detectors perform

at the same false alarm rak = 0.1, and we can make a

guantitative SNR comparison by fixil_”ng the detect_ion perfor- |4 this paper we presented a hybrid Bayes/GLR approach
mance level aP’, = 0.8, say. To attain this detection level, g getecting the presence of single spins for the OSCAR
the energy detector and amplitude detector require SNR's of\irEm experiment. We have shown by simulation that the
at least -14 dB and -17.5 dB, respectively, while the hybrid gayes/GLR detector performs significantly better than the
Bayes/GLR detector only requires -26 dB. As compared t0 ¢|assical amplitude and energy detectors. The improvement
the amplitude detector, this represents an improvement ofiy getection performance is due to the fact that, unlike the
almost 9 dB in SNR performance using our proposed detec-c|assical detectors, the new detector estimates the unknown
tor. Furthermore, the performance of our proposed detector 51 ,es of the random spin reversal times and the initial po-

is only 4 dB worse than the performance bound of -30 dB |4ity.  Of course this performance improvement comes at

5. CONCLUSION
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and hybrid Bayes/GLR detector, at SNR =-20 dB and 1 event-

per-second.
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Fig. 7.
curves for the matched filter, energy detector, amplitude detector,
and hybrid Bayes/GLR detector, at SNR = -20 dB and= 10
events-per-second.

th . ¢ 4 impl ati lexitv. Thi An interesting extension of our results would be to as-
€ price ot increased impiementation complexity. 'S sume that the frequency shjfhw,| is also unknown. This

comple_xnylncreases m_the randomreversalpacﬂgeto th? would lead to a hybrid Bayes/GLR detector which detects
necessity to perform Gibbs sampling over an increasingly the peak over the spectrum of the signal in addition to max-

large number of probable spin reversal sequences. Noneme‘l’mizing over the number and positions of the transitions.
less, for the experiments in the first simulation wih= 1

event-per-second, the run time of our detector (5,000 Gibbs The hybrid Bayes/GLR detector was derived using a
samples) was only on the order of about half a minute perbaseband signal model consisting of a random telegraph
3-second measurement record (our code was implementegvave with Poisson transitions and AWGN. This signal
in Matlab 6.5, under WindowsXP on a 2.26GHz PC, with model is theoretically justified under the spin-lock assump-
510MB RAM). tion. The validity of the spin-lock assumption remains to



be established. More sophisticated signal models of the[11] D. Rugar and R. Budakian. Classical dynamics of a
cantilever measurements, and associated detection methods  spin interacting with a MRFM cantilever. Technical
which bypass frequency demodulation and operate directly report, IBM, Almaden Research Center, July 11 2002.

on those measurements, are currently under investigation. .
[12] W. B. Davenport. Probability and Random Process

McGraw-Hill, New York, NY, 1970.
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