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Accurate, distributed localization algorithms are needed for a wide variety of wireless sensor
network applications. This paper introduces a scalable, distributed weighted-multidimensional

scaling (dwMDS) algorithm that adaptively emphasizes the most accurate range measurements

and naturally accounts for communication constraints within the sensor network. Each node

adaptively chooses a neighborhood of sensors, updates its position estimate by minimizing a local
cost function and then passes this update to neighboring sensors. Derived bounds on communi-
cation requirements provide insight on the energy efficiency of the proposed distributed method
versus a centralized approach. For received signal-strength (RSS) based range measurements, we

demonstrate via simulation that location estimates are nearly unbiased with variance close to
the Cramér-Rao lower bound. Further, RSS and time-of-arrival (TOA) channel measurements

are used to demonstrate performance as good as the centralized maximum-likelihood estimator
(MLE) in a real-world sensor network.

Categories and Subject Descriptors: C.2.4 [Computer-Communication Networks]: Distri-
buted Systems—Distributed applications; I.5.4 [Pattern Recognition]: Applications—Signal

processing

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Distributed optimization, multidimensional scaling, node
localization, position estimation, sensor networks

1. INTRODUCTION

For monitoring and control applications using wireless sensor networks, automatic
localization of every sensor in the network will be a key enabling technology. Sensor
data must be registered to its physical location to permit deployment of energy-
efficient routing schemes, source localization algorithms, and distributed compres-
sion techniques. Moreover, for applications such as inventory management and
manufacturing logistics, localization and tracking of sensors are the primary pur-
poses of the wireless network. For large-scale networks of inexpensive, energy-
efficient devices, it is not feasible to include GPS capability on every device or to
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require a system administrator to manually enter all device coordinates. In this
paper, we consider the location estimation problem for which only a small fraction
of sensors have a priori coordinate knowledge, and range measurements between
many pairs of neighboring sensors permit the estimation of all sensor coordinates.

Two major difficulties hinder accurate sensor location estimation: first, accurate
range measurements are expensive; and second, centralized estimation becomes
impossible as the scale of the network increases. This paper proposes a distributed
localization algorithm, based on a weighted version of multidimensional scaling
(MDS), which naturally incorporates local communication constraints within the
sensor network. Its key features are:

(1) A weighted cost function that allows range measurements that are believed to
be more accurate to be weighted more heavily.

(2) An adaptive neighbor selection method that avoids the biasing effects of select-
ing neighbors based on noisy range measurements.

(3) A majorization method which has the property that each iteration is guaranteed
to improve the value of the cost function.

Simulation results and experimental channel measurements show that even when
using only a small number of range measurements between neighbors and relying on
fading-prone RSS, the proposed algorithm can be nearly unbiased with performance
close to the Cramér-Rao lower bound.

1.1 Sensor Localization Requirements

For a network of thousands or even millions of sensors, the large scale precludes
centralized location estimation. Sending pair-wise range measurements from each
sensor to a single point and then sending back estimated device coordinates would
overwhelm the capacity of low-bandwidth sensor networks and waste energy. De-
centralized algorithms are vital for limiting communication costs (which are usually
much higher than computation costs) as well as for balancing the communication
and computational load evenly across the sensors in the network. Furthermore,
when a sensor moves, the ability to recalculate location locally rather than globally
will result in energy savings which, over time, may dramatically extend the lifetime
of the sensor network.

Sensor energy is also conserved by limiting transmission power. Since the trans-
mit power impacts the SNR of the range measurement, there is a tradeoff between
energy cost and accuracy. There is also a tradeoff between device cost and range
accuracy: using ultrawideband (UWB) [Fleming and Kushner 1995; Correal et al.
2003] or hybrid ultrasound/RF techniques [Girod et al. 2002] can achieve accura-
cies on the order of centimeters, but at the expense of high device and energy cost.
Alternatively, very inexpensive wireless devices can measure RF received signal
strength (RSS) just by listening to network packet traffic, but range estimates from
RSS incur significant errors due to channel fading. All range measurements tend
to degrade in accuracy with increasing distance. In particular, RSS-based range
measurements experience errors whose variance is proportional to the actual range.
Accurate localization algorithms must take into account the range dependence of
the ranging variance.
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Finally, measurement of ranges between every pair of devices would require O(n2)
measurements for n sensors. The dwMDS algorithm reduces measurement costs by
requiring range measurements only between a small number of neighboring sensors.

1.2 Multidimensional Scaling

The goal of multidimensional scaling is to find a low dimensional representation
of a group of objects (e.g., sensor positions), such that the distances between ob-
jects fit as well as possible a given set of measured pairwise “dissimilarities” that
indicate how dissimilar objects are (e.g., inter-sensor RSS). MDS has found many
applications in chemical modeling, economics, sociology, political science and, espe-
cially, mathematical psychology and behavioral sciences [Cox and Cox 1994]. More
recently, MDS has been used by the machine learning community for manifold
learning [Tenenbaum et al. 2000]. In the sensor localization context, MDS can be
applied to find a map of sensor positions (in 2-D or 3-D) when dissimilarities are
measurements of range obtained, for example, via RSS or TOA.

For the last 70 years many approaches to solving the MDS problem have been
formulated (see [Cox and Cox 1994] and references therein). On the one hand,
when the measured dissimilarities are equal to the true distances between sensors,
classical MDS provides a closed formed solution by singular value decomposition
of the centered squared dissimilarity matrix (see Section 3). On the other hand,
when dissimilarities are measured in noise, other techniques should be used, usually
based on iteratively minimizing a loss function between dissimilarities and distances.
This framework encompasses techniques such as alternating nonlinear least squares
(ALSCAL) [Takane et al. 1977], nonlinear least squares via majorizing functions
(SMACOF) [Groenen 1993], nonmetric scaling [Kruskal 1964a; 1964b] or maximum
likelihood formulations [Ramsay 1982; Zinnes and MacKay 1983]. Common to all
these methods is the need for a central processing unit to gather all the available
dissimilarities and perform the function minimization.

In contrast, we present a distributed MDS algorithm, which operates by mini-
mizing multiple local loss functions. The local nonlinear least squares problem is
solved using quadratic majorizing functions as in SMACOF. Since each local cost
distributes additively over the network, each sensor contributes to the minimization
of the global MDS loss function. In this way, our algorithm produces a sequence
of position estimates with corresponding non-increasing global cost and limited
communication between sensors.

1.3 Related Work

Many aspects of the sensor localization problem have been addressed in recent lit-
erature. Notably, bounds on estimation performance have been derived for the
cases when pair-wise measurements are RSS, TOA, AOA (Angle Of Arrival), or a
combination [Moses et al. 2003; Patwari et al. 2003; Catovic and Sahinoglu 2004;
Niculescu and Nath 2004]. Furthermore, centralized algorithms based on multi-
dimensional scaling [Shang et al. 2003], convex optimization [Doherty et al. 2001],
and maximum-likelihood [Moses et al. 2002] have demonstrated good estimation
performance. Research has also demonstrated the feasibility of distributed local-
ization algorithms [Niculescu and Nath 2001; Savvides et al. 2002; Nagpal et al.
2003; Čapkun et al. 2001; Albowicz et al. 2001; Savarese et al. 2001], which are
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required for scalability and balancing computational costs across large sensor net-
works.

Although using a different formulation than the one proposed here, the following
papers also apply MDS-type techniques to sensor localization:

— Manifold Learning: Centralized manifold learning techniques are used in [Pat-
wari and Hero III 2004] to estimate sensor locations, without explicit range esti-
mation, in cases where sensor data has correlation structure that is monotone in
inter-sensor distance. Nonlinear dimensionality reduction is used to estimate phys-
ical location coordinates from the high-dimensional sensor data. The present paper
uses direct measurements of range between pairs of neighboring devices to estimate
locations.

— Plain MDS: In [Shang et al. 2003], devices have connectivity information
(whether or not two devices are in range). The distance between two connected
nodes is defined to be 1, while the distance between two nodes not in range is
set to the number of hops in the shortest path between them (similar to Isomap
[Tenenbaum et al. 2000]). The matrix of distances between each pair of devices is
used by an MDS algorithm to estimate the coordinates of the devices. Compared
to the present paper, this centralized MDS method weights each distance equally.
Unlike [Shang et al. 2003], the method proposed here avoids the (usually inaccurate)
estimation of distances between out-of-range sensors.

— Local MDS: In [Ji and Zha 2004], a local version of MDS is used to compute
maps of many local arrangements of nodes. These local maps are pieced together
to obtain global maps. This method tends to perform better than the global MDS
method when node density is non-uniform, or “holes” in coverage exist. The lo-
cal calculations allow a distributed implementation, but weights are restricted to
be either 0 or 1. The formulation introduced in the present paper removes that
restriction, by allowing arbitrary non-negative weights, and naturally bypasses the
complex step of fusing the local maps into a global map.

Common to most sensor localization methods is the process of selecting sensor
neighborhoods for range measurements. Most methods propose using only ranges
measured between nearby neighbors, in order to limit communication costs and
computational complexity. However, when ranges are measured with noise, the
act of choosing neighbors based on these measurements will tend to select devices
whose measured distances are shorter than the true distances. This paper addresses
this biasing effect and proposes a two-stage neighbor selection process that can be
used to unbias location estimates even in high-noise environments. We remark that,
to our knowledge, this problem has not been previously considered in the sensor
localization literature.

1.4 Outline

The remainder of this paper is organized as follows. Section 2 provides a formal
statement of the sensor localization problem considered here. In Section 3 we de-
scribe the solution to the classical MDS formulation and discuss its shortcomings
in a distributed and sensor network environment. The proposed algorithm is in-
troduced in Section 4. In Section 5 we discuss statistical models for TOA and
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RSS measurements to show why a weighted MDS solution is important. Section 6
discusses the bias effect associated with using these noisy range measurements to
select neighboring devices and proposes a solution. In Section 7 we show results on
both simulated measurement data and on measured range data recorded for a 44-
node sensor network in an indoor office environment. Finally, Section 8 concludes
the paper with a discussion about the proposed method, improvements and future
work.

2. PROBLEM STATEMENT

To be specific about sensor localization, we now formally state the estimation prob-
lem addressed in this paper.

Consider a network of N = n + m devices, living in a D-dimensional space
(D = 2 or 3, although the proposed formulation can handle arbitraryD-dimensional
localization, as long as D < N). Let {xi}Ni=1, xi ∈ RD, be the actual vec-
tor coordinates of sensors, or, equivalently, define the matrix of coordinates X =
[x1, . . . ,xn,xn+1, . . . ,xN ]. The last m sensors (i = n + 1, . . . , N) have perfect a

priori knowledge of their coordinates and are called anchor nodes. The first n sen-
sors (i = 1, . . . , n) have either no knowledge or some imperfect a priori coordinate
knowledge and are called unknown-location nodes. Imperfect a priori knowledge
about sensor i ≤ n is encoded by parameters ri and xi, where, with accuracy ri, xi
is believed to lie around xi. If no such knowledge is available, ri = 0. Summarizing,
three distinct sets of sensors can be considered in this formulation based on their
a priori information: perfect (i > n), imperfect (i ≤ n, ri > 0), or zero coordinate
knowledge (i ≤ n, ri = 0). Note that one or two of these sets might be empty, e.g.,
no anchor nodes available and/or no prior information on sensors locations. These
and other notation used throughout this paper is gathered in Table I.

The localization problem we consider is the estimation of the coordinates {xi}ni=1
given the coordinates of the anchor nodes, {xi}Ni=n+1, imperfect a priori knowledge,

{(ri,xi)}ni=1 and many pairwise range measurements, {δ(t)ij }, taken over time t =
1 . . . K. We use the terms ’dissimilarity’ and ’range measurement’ interchangeably,
in order to seamlessly merge terms common to MDS and localization literature.
The available range measurements (i, j) are some subset of {1 . . . N}2. We assume
that this subset of range measurements results in a connected network; otherwise,
each connected subset should be considered individually.

The method developed is general enough to adapt to any range measurement
method, such as TOA, RSS, or proximity. We focus in particular on RSS-based
range measurements, due to its desirability as a low-device cost method, but we
also test the method using TOA range measurements in Section 7.

3. CLASSICAL METRIC SCALING

If we assume that we measure all the pairwise dissimilarities {δij}Ni,j=1 between
points, and that these correspond to the true Euclidean distances, then

δij = dij = d(xi,xj) = ‖xi − xj‖ =
√

(xi − xj)T (xi − xj) . (1)

By writing the squared distances as d2ij = xTi xi − 2xTi xj + xTj xj , one can re-
cover the matrix of inner products between points in the following way. Defining
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Table I. Symbols used in text and derivations

Notation Description

D Dimensions of location estimates (D = 2 unless noted)

N = n+m Total number of sensors
n Sensors with imperfect or no a priori coordinate information

m Sensors with perfect a priori coordinate knowledge (‘anchor’ nodes)

Pij Power received (dB) at sensor i transmitted by sensor j

Pthr Minimum received power for successful reception

dthr Distance at which mean received power = Pthr

dR Threshold distance for neighborhood selection

xi Actual coordinate vector of sensor i, i = 1 . . . n+m

X Actual coordinate matrix, [x1, . . . ,xn+m]
dij , dij(X ) Actual distance between sensors i and j in matrix X

δ
(t)
ij Range measured at time t between sensors i and j

w
(t)
ij Weight given to the range measured at time t between sensors i and j

δij Weighted average measured range between sensors i and j
wij Weight given to the average measured range between sensors i and j

S Global objective function to be minimized

Si Local objective function to be minimized at sensor i = 1 . . . n

x
(k)
i Estimated coordinates of sensor i at iteration k

X (k) Estimated coordinate matrix at iteration k

ψ = [xT1 x1, . . . ,x
T
NxN ]T , the squared distance matrix, D = [d2ij ]

N
i,j=1, can now be

written as

D = ψeT − 2XTX + eψT ,

where e is the N -dimensional vector of all ones. Defining H to be the centering
operator, I − eeT /N , it follows that

B = −H D H = H XTX H .

After multiplication with H, the columns of X TX have zero mean. Now, given B ,
one can recover matrix X , up to a translation and orthogonal transformation, by

X = diag(λ
1/2
1 , . . . , λ

1/2
D )UT , (2)

where

B = U diag(λ1, . . . , λD)UT

is the singular vale decomposition (SVD) of matrix B (see [Cox and Cox 1994] for
details).

The above derivation exposes the shortcomings of classical MDS. First, obtain-
ing matrix B requires the knowledge of all the pairwise dissimilarities, a scenario
highly unlikely in a dense sensor network due to power and/or bandwidth con-
straints. Second, due to a lack of any special sparse structure, computing matrix
B and its SVD requires that all the dissimilarities be communicated and processed
by a central processing unit, a communication-intensive operation in most sensor
networks. Finally, (2) assumes that the true distances between points are available.
For the realistic case in which range measurements have errors, classical metric scal-
ing minimizes the squared error between the squared distances d2ij and δ2ij (rather
than the distances themselves) which tends to amplify the measurement errors,
resulting in poor noise performance.
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4. DISTRIBUTED WEIGHTED MULTIDIMENSIONAL SCALING

We propose a distributed weighted MDS algorithm (dwMDS) that fits the sensor
networks framework of distributed computations and restricted communications
and also accounts for measurement errors.

4.1 The dwMDS Cost Function

We minimize the following global cost function (a.k.a. STRESS function [Cox and
Cox 1994]):

S = 2
∑

1≤i≤n

∑

i<j≤n+m

∑

1≤t≤K
w
(t)
ij

(

δ
(t)
ij − dij(X )

)2

+
∑

1≤i≤n
ri ‖xi − xi‖2 . (3)

where the actual Euclidean distance dij(X ) is given by (1), and we assume that for
each pair (i, j), up to K dissimilarity measurements are available. The arbitrary

weight w
(t)
ij (t = 1, . . . ,K) can be selected to quantify the predicted accuracy of

measurement δ
(t)
ij . If no such measurement is available between i and j, or its

accuracy is zero, then w
(t)
ij = 0. We assume that w

(t)
ij ≥ 0, w

(t)
ii = 0 and w

(t)
ij =

w
(t)
ji , i.e., the weights are symmetric. Note, function (3) differs from the standard

MDS objective function in that we have added a penalty term to account for prior
knowledge about node locations.

We remark that, under a Bayesian perspective, (3) can be interpreted as the pos-
terior density of the nodes locations given the observed dissimilarities, f({xi}|{δij}),
if we assume that the dissimilarities {δ(t)ij } are i.i.d. Gaussian with mean dij and

variance (2w
(t)
ij )

−1 and the points {xi} have a Gaussian prior with mean xi and

variance (2 ri)
−1.

After simple manipulations, S can be rewritten as follows:

S =

n
∑

i=1

Si + c , (4)

where local cost functions Si are defined for each unknown-location node (ie. 1 ≤
i ≤ n),

Si =

n
∑

j=1
j 6=i

wij

(

δij − dij(X )
)2

+

n+m
∑

j=n+1

2wij

(

δij − dij(X )
)2

+ ri‖xi − xi‖2 , (5)

and c is a constant independent of the nodes locations X . In (5), the K weights
and range measurements between i and j are summarized by a single weight wij =
∑K

t=1 w
(t)
ij and measurement δij =

∑K
t=1 w

(t)
ij δ

(t)
ij /wij . As Si only depends on the

measurements available at node i and the positions of neighboring nodes, i.e., nodes

for which w
(t)
ij > 0 (for some t), it can be viewed as the local cost function at node

i. We note that if m = 0 (i.e., no anchor nodes are available) and ri = 0, for all i
(i.e., no prior information on the nodes locations), then ∂S/∂xi = 2 ∂Si/∂xi. This
implies that the influence of xi on the local cost Si determines its influence on the
global cost S. Motivated by this cost structure, we propose an iterative scheme in
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which each sensor updates its position estimate by minimizing the corresponding
local cost function Si, after observing dissimilarities and receiving position estimates
from its neighboring nodes.

4.2 Minimizing the dwMDS Cost Function

Unlike classical MDS, no closed form expression exists for the minimum of the cost
function S or Si. By assuming that each node has received position estimates from
neighboring nodes, we minimize Si = Si(xi) iteratively using quadratic majorizing
functions as in SMACOF (Scaling by MAjorizing a COmplicated Function [Groenen
1993]). This method has the attractive property of generating a sequence of non-
increasing STRESS values.

A majorizing function Ti(x,y) of Si(x) is a function Ti : RD × RD → R that
satisfies: (i) Si(x) ≤ Ti(x,y) for all y, and (ii) Si(x) = Ti(x,x). This function
can then be used to implement an iterative minimization scheme. Starting at an
initial condition x0, the function Ti(x,x0) is minimized as a function of x. The
newly found minimum, x1, can then be used to define a new majorizing function
Ti(x,x1). This process is then repeated until convergence (see [Groenen 1993] for
details). The trick is to use a simple majorizing function that can be minimized
analytically, e.g., a quadratic function. Following [Groenen 1993], we start by
rewriting Si as:

Si(xi) = η2δ + η2(X )− 2 ρ(X ) ,

where

η2δ =

n
∑

j=1
j 6=i

wij δ
2

ij +

n+m
∑

j=n+1

2wij δ
2

ij , (6)

η2(X ) =

n
∑

j=1
j 6=i

wij d
2
ij(X ) +

n+m
∑

j=n+1

2wij d
2
ij(X ) + ri‖xi − xi‖2 , (7)

ρ(X ) =

n
∑

j=1
j 6=i

wij δij dij(X ) +

n+m
∑

j=n+1

2wij δij dij(X ) . (8)

Term (6) does not depend on xi and term (7) is quadratic in xi. Only term (8)
depends on xi through a more complicated (sum of square roots) function. Define
Ti(x,y) as:

Ti(xi,yi) = η2δ + η2(X )− 2 ρ(X ,Y ) , (9)

where

ρ(X ,Y ) =

n
∑

j=1
j 6=i

wij
δij

dij(Y )
(xi−xj)T (yi−yj)+

n+m
∑

j=n+1

2wij
δij

dij(Y )
(xi−xj)T (yi−yj) .

(10)
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Using the fact that, by Cauchy-Schwarz inequality,

dij(X ) =
dij(X ) dij(Y )

dij(Y )
≥ (xi − xj)T (yi − yj)

dij(Y )
,

it is easily seen that Ti majorizes Si. Minimizing Si through a majorizing algorithm
is now a simple task of finding the minimum of Ti:

∂Ti(xi,yi)

∂xi
= 0 . (11)

An expression for this gradient is given in Appendix A. If X (k) is the matrix whose
columns contain the position estimates for all points at iteration k, one can derive
an update for the position estimate of node i using equation (11):

x
(k+1)
i = ai

(

ri xi + X (k)b
(k)
i

)

, (12)

where

a−1i =

n
∑

j=1
j 6=i

wij +

n+m
∑

j=n+1

2wij + ri , (13)

and b
(k)
i = [b1, . . . , bn+m]T is a vector whose entries are given by:

bj = wij

[

1− δij/dij(X
(k))

]

j ≤ n , j 6= i

bi =
∑n

j=1
j 6=i

wij δij/dij(X
(k)) +

∑n+m
j=n+1 2wij δij/dij(X

(k))

bj = 2wij

[

1− δij/dij(X
(k))

]

j > n

. (14)

As the weights w
(t)
ij can be made nonzero only for a relative neighborhood of node i,

only the corresponding entries of vector b will be nonzero, and the update rule for
xi will depend only on this neighborhood (as opposed to the whole matrix X (k)).

We remark, that unlike the centralized SMACOF algorithm described in [Groe-
nen 1993], the computation of (12) does not require the evaluation of a n × n
Moore-Penrose matrix inverse.

4.3 Algorithm

The proposed algorithm is summarized in Figure 1. We make the following com-
ments:

(1) The choice of weighting function wij should reflect the accuracy of mea-
sured dissimilarities, such that less accurate measurements are down-weighted in
the overall cost function. If a noise measurement model is available, wij can be
tailored to the variance predictions of the model. For example, one might select
wij = 1/(c1δij + c2)

2 if the measurements are Gaussian distributed with standard
deviation increasing linearly with the true distances, i.e., σ = c1dij + c2. When a
reliable model is not available, one can adopt a model-independent adaptive weight-
ing scheme. This is the approach adopted in this paper. Inspired by the weighting
frequently used in locally weighted regression methods (LOESS) [Cleveland 1979],
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Inputs: {δ
(t)
ij }, {w

(t)
ij }, m, {ri}, {xi}, ε, initial condition X (0)

Initialize: k = 0, S(0), compute ai from equation (13)

repeat

k ← k + 1

for i = 1 to n

compute b
(k−1)
i from equation (14)

x
(k)
i = ai

(

ri xi + X (k−1)b
(k−1)
i

)

compute S
(k)
i

S(k) ← S(k) − S
(k−1)
i + S

(k)
i

communicate x
(k)
i to neighbors of node i (i.e., nodes for which wij > 0)

communicate S(k) to node i+ 1 (modn)

end for

until S(k−1) − S(k) < ε

Fig. 1. Algorithm for decentralized weighted-multidimensional scaling

we propose the following weight assignment:

wij =

{

exp
{

−δ2ij/h2i
}

, if δij is measured
0 , otherwise

, (15)

where hi = maxj δij . This choice of wij , which equalizes the (nonzero) weight
distribution in all sensors, has robust performance as shown in the experiments
reported in Section 7.

(2) The question of how to adaptively choose the neighbors of each node (i.e.,
which weights are made positive) in order to decrease communication costs or im-
prove localization performance is addressed in Section 6.

(3) Regarding the initialization of the algorithm, every node requires an initial
estimate of its position. This can be done using the algorithms proposed in [Savarese
et al. 2001] or [Čapkun et al. 2001]: each node builds its local coordinate system,
which is then passed along the network until a rough global map of the network is
built. In the experiments reported in Section 7, we found that the algorithm was
robust with respect to “rough” initial position estimates.

(4) In the description of the algorithm, it was assumed for notational conve-
nience, that the algorithm cycles through the network in an ordered fashion (i.e.,
messages are passed between nodes in the order 1, 2, . . . , n). However, many other
non-cyclic update rules are possible. In particular, one possibility is for (spatial)
clusters of sensors to iterate among themselves until their position estimates stabi-
lize. These estimates can then be transmitted to the neighboring clusters, before
starting a new iteration step.

(5) Although the majorization approach used guarantees a non-increasing se-
quence of STRESS vales, it may converge to a local minimum of this cost function,
instead of the global one, like any gradient search method. This behavior can be
alleviated to some extent by using some of the advanced search techniques proposed
in [Groenen 1993].

4.3.1 Computational Complexity and Energy Consumption. Regarding compu-
tational complexity, it is easily seen that the algorithm in Figure 1 scales as O(nL),
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where L is the total number of iterations required until the stopping rule is satis-
fied. This compares favorably to classical MDS, which requires O(n2 T ) operations,
where T is the number of steps required by the Lanczos method to compute the
necessary SVD.

However, in sensor network applications, far more important than computational
complexity, is the amount of communication required by the algorithm, as the
energy consumed by a single wireless transmission can far outweigh the energy
necessary for local computations. As we are interested in how communication
complexity scales with the size of the network, we adopt the model proposed in
[Rabbat and Nowak 2004]. In this model, the average total energy used by a
general data processing algorithm, as function of the number of nodes n, is given
by

E(n) = b(n)× h(n)× e(n) ,

where b(n) is the average number of bits/packets transmitted, h(n) is the average
number of hops over which communication occurs, and e(n) is the average amount
of energy required to transmit one bit/packet over one hop.

For simplicity, we assume, in the following analysis, that the sensors are uni-
formly distributed over a square or cube of unit side length, for, respectively, a
D = 2 or D = 3 dimensional network. The proposed algorithm requires that each
node transmits its position estimate to other nodes from which it obtained range
measurements. If we assume that a node is able to sense all other nodes within
a threshold distance dthr, then the average number of neighbors a node can com-
municate with is upper bounded by c1(n − 1) dDthr, where c1 is the volume of the
D-dimensional unit sphere (nodes close to the border of the unit square or cube
actually have fewer expected neighbors). As this operation occurs for each itera-
tion for every node, an upper bound on the average number of transmitted bits is
bdwMDS(n) ≤ O(n2 LdDthr). Each communication to its neighbors can be made in
one hop, so hdwMDS(n) = 1. Thus, the average energy required for communication
by the proposed algorithm is:

EdwMDS(n) ≤ O
(

n2 LdDthr edwMDS(n)
)

. (16)

Notice that edwMDS(n) depends on dthr (in a nonlinear way).
We remark that the same bound (16) on energy consumption is also valid for a

sensor network with nodes distributed over a uniform grid of side length O(n−1/D)
(see Fig. 3). This scenario makes it easier to compare the proposed method to a
centralized algorithm, assuming a multi-hop communication protocol. To simplify
the analysis, we consider the threshold distance dthr = O(n−1/D). In this case, each
node communicates only with its immediate neighbors in the uniform grid, making
the average hop distance the same in the centralized and distributed case. This
implies that the same energy is required to transmit a bit/packet over one hop, i.e.,
edwMDS(n) = ecentr(n). For dthr = O(n−1/D), each node will, on the average, receive
range measurements from a fixed number of neighborhood nodes, no matter how big
the network is. The centralized algorithm must transmit them to a fusion center.
After a simple calculation, it can be shown that this results in bcebtr(n) = O(n) bits
transmitted. For the uniform grid geometry, a simple calculation shows that the
average number of hops from a node to the fusion center is hcentr(n) = O(n1/D).
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Finally, we obtain the average energy required by a centralized algorithm,

Ecentr(n) = O
(

n1+1/Decentr(n)
)

. (17)

Substituting for the assumed dthr in expression (16), we obtain the ratio between
energies required by a centralized versus a distributed algorithm, in the uniform
grid case:

Ecentr(n)

EdwMDS(n)
= O

(

n1/D

L

)

. (18)

For dense networks of the same size n, and fixing a priori the maximum num-
ber of iterations allowed, a centralized algorithm will require an order of n1/D

more energy than the proposed distributed algorithm. Note that the costs of the
centralized algorithm aren’t evenly distributed - nodes near the fusion center will
disproportionately bear the forwarding costs.

To conclude this section, we remark that, for D = 2 and dthr = O(n−1/D), the
proposed algorithm has a transport requirement of O(n2 LdDthr) × dthr = O(

√
n)

bit-meters/sec, which is the same as the transport capacity of a wireless network on
a unit area region [Gupta and Kumar 2000]. This suggests that the implementation
of the proposed algorithm is pratically feasible, even with more resource aggressive
update rules (e.g., parallel updates of all nodes), for a large sensor network.

5. RANGE MEASUREMENT MODELS

For concreteness, we assume throughout the rest of this paper that range measure-
ments between sensors are obtained either via RSS or TOA or a combination of the
two. Both RSS and TOA can be measured via RF or by acoustic media; both media
are subject to multipath and fading phenomena which impair range estimates.

5.1 Time-of-Arrival

For a TOA receiver, the objective is to identify the time-of-arrival (TOA) of the
direct line-of-sight (DLOS) path.1 The power in the DLOS path is attenuated by
any obstacles in between the transmitter and the receiver, and often, later-arriving
non-line-of-sight(NLOS) multipath components arrive at the receiver with equal
or greater power than the DLOS. As the distance between two devices increases,
measurements have shown that the late-arriving paths contribute an increasing pro-
portion of the overall received power [Pahlavan et al. 1998], effectively decreasing
the SNR of the TOA measurements, and increasing NLOS range error. Previous
research has suggested using weighted least-squares algorithms to improve localiza-
tion performance [Chen 1999].

5.2 Received Signal Strength

Similarly, range measurements based on RSS degrade with distance. Objects in the
environment between the transmitter and receiver have the effect of multiplying

1This is a different goal than for a communications receiver, which aims to synchronize to the

time which maximizes the SNR, regardless of whether the signal power comes from the DLOS

path or later arriving paths.
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the signal energy by attenuation factors. The cumulative effect of many such mul-
tiplications, by a central limit argument, result in a log-normal distribution of RSS
(or equivalently received power) at the receiver [Coulson et al. 1998]. If Pij(mW),
the received power in mW at sensor i transmitted by sensor j, is log-normal, then
received power in decibels, Pij = 10 log10 Pij(mW), is Gaussian. Furthermore, RF
channel measurements have shown that the variance of Pij is largely constant over
path length [Rappaport 1996][Patwari et al. 2003]. Thus Pij is typically modeled
as

Pij ∼ N (P̄ij , σ
2
dB) (19)

P̄ij = P0 − 10np log10(dij/d0)

where P̄ij is the mean power in decibel milliwatts at distance dij , σ
2
dB is the variance

of the shadowing, and P0(dBm) is the received power at a reference distance d0.
Typically d0 = 1 meter, and P0 is calculated from the free space path loss formula
[Rappaport 1996]. The path loss exponent np is a parameter determined by the
environment.

From this model for received power as a function of distance dij , the maximum
likelihood estimator of distance is:

δij = d010
(P0−Pij)/(10np). (20)

If Pij = P̄ij , then δij = dij . When Pij 6= P̄ij , we can see why distance errors
increase proportionally with distance. Consider a constant dB error in the received
power measurement: ∆ = P̄ij − Pij . For this error, δij = dij10

∆/(10np), thus the
actual distance is multiplied by a constant factor. In fact, the range estimation
error, δij − dij , is directly proportional to dij by the constant factor 10∆/(10np)− 1.
Assuming constant standard deviation σdB of received power with distance, the
range estimation error standard deviation will also increase proportionally with
distance.

This characteristic of RSS-based range estimation leads to very high errors at
large path lengths, which have limited its application in traditional location sys-
tems. However, in a dense sensor network, the distances between neighboring sen-
sors is small, and a weighted least-squares estimator can be designed to fully utilize
the accuracy of the range measurements made between the closest neighbors.

6. ADAPTIVE NEIGHBORHOOD SELECTION

Typically, neighbors are selected by choosing those devices which are closer than
a threshold distance. But, since the exact distance is not known, we need to use
noisy measurements to select neighbors. Range measurements, whether made via
TOA, RSS, or proximity, are all subject to errors. In this section we discuss the
biasing effects of selecting neighbors via noisy distance measurements, and how we
can unbias the selection.

When distance is measured in noise, the act of thresholding neighbors based
on the measured distance will tend to select the devices with smaller measured
distances. For example, consider two devices separated by distance R, when R
is also the threshold distance. With some positive probability (due to noise), the
measured distance, δ, will be greater than R, and the two will not be considered
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neighbors. Alternatively, if δ ≤ R, the two will be considered neighbors, and
δ will be used in the localization algorithm. The problem is that the expected
value of δ, for devices separated by R which consider themselves neighbors, is less
than R. Thus, the measured distance is negatively biased because of the effect
of thresholding. Note that selecting the K-nearest-neighbors effectively has an
adaptive threshold, and thus does not avoid this biasing effect.

This bias has not been specifically addressed in the sensor localization litera-
ture, because its effects are not severe in certain systems. Some proposed sensor
localization systems measure very accurate distances, eg., using TOA in UWB or a
combination of RF and ultrasound media – for these systems, the effect of selecting
neighbors based on measured distances will be minimal. Alternatively, if neighbors
are selected based an independent means (eg., based on RSS or connectivity when
range estimates are based on TOA), than the biasing effect is avoided2. Finally,
when studies show results for the case in which all devices are connected to every
other device, the thresholding step (and its biasing effect) is eliminated. In this
paper, we consider both noisy RSS measurements and small neighborhoods, so we
cannot avoid the biasing effect. We limit our discussion to RSS measurements in
this section, since low device costs and energy consumption are very attractive de-
vice characteristics of RSS, but the discussion is also applicable to systems which
use noisy TOA-based range measurements for neighbor selection.

6.1 RSS-based Biasing Effect

When discussing thresholding based on RSS, we must make a distinction between
the physical limits of the receiver and the threshold which we use to select neighbors,
because generally, the two do not need to be the same. If a device has a large radio
range to be robust to low device densities, it may want a stricter threshold when
there are very many devices with which it can communicate. Denote Pthr to be the
received power level below which a receiver cannot demodulate packets. (For most
digital receivers with large frames and FEC, the frame error rate is very close to
zero or very close to one for the vast majority of SNR, and the transition region
is narrow. Thus, to a good approximation, for a constant noise level, we can state
that packets above Pthr are received and demodulated correctly, while those below
are not [Patwari and Hero III 2003].) Denote PR to be the received power level
below which we do not include the transmitting device as a neighbor. Clearly,
PR ≥ Pthr. Equivalently, we can define distances dthr and dR from (19) to be the
range at which the mean received power is equal to Pthr and PR, respectively.

Whether or not we select neighbors based on connectivity (measured power is
greater than Pthr) or select them based on a power threshold (measured power is
greater than PR), the biasing effect will be the same. In following, we use PR and
dR to indicate the thresholds (which may be set equal to Pthr and dthr if desired).

Let E [δij |Pij > PR] be the expected value of the range estimate between devices
i and j given that the two are neighbors (i.e., the received power Pij is greater than

2Note, however, for the RSS/TOA example, that if both are available, we may wish to use a

combination of both; and if not, RSS and TOA for a link are correlated because objects in the

environment tend to degrade both measurements simultaneously.
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Fig. 2. The expected value of the RSS-based estimate of range given that that two devices are

neighbors (- - -), and the ideal unbiased performance (—). The channel has σdB/n = 1.7 and

dR = 1 (or equivalently, distances are normalized by dR).

PR). Using the RSS measurement model (see Section 5.2), it can be shown that

E [δij |Pij > PR] = ‖xi − xj‖C
1− Φ

(√
β log

‖xi−xj‖
dR

+ 1√
β

)

1− Φ
(√

β log
‖xi−xj‖

dR

) , (21)

where Φ(.) is the cumulative distribution function of a standard Gaussian random

variable, β =
10np

σdB log 10
, C = exp

(

1
2β2

)

and σdB , np are channel parameters. Equa-

tion (21) is plotted in Fig. 2 as a function of the ratio of the true distance to dR.
Ideally, the range estimator should have a mean value equal to the actual range.
However, as the range increases, the expected value of δij (given that i and j are
neighbors) deviates from linear and asymptotically becomes constant. There is a
strong negative bias for devices separated by dR or greater.

6.2 Neighborhood Prediction

Motivated by the negative bias phenomenon displayed in Fig. 2, we propose a two
stage neighborhood selection process, based on the predicted distances between
sensors.

In the first step, the dwMDS algorithm from Fig. 1 is run with a neighborhood
structure based on the available range measurements, i.e., set wij = 0 if δij >
dR. After convergence, this step provides an interim estimate {x̂i} of the sensors
locations. With high probability, the predicted distances between the estimated
sensor locations will be negatively biased.

In the second step, these predicted distances from the estimated sensor locations
are used to compute a new neighborhood structure, by assigning wij = 0 if ‖x̂i −
x̂j‖ > dR. Some neighbors with low range measurements will be dropped, and some
neighbors with possibly longer range measurements will be added. Then, using {x̂i}
as an initial condition and the new neighborhood structure, the dwMDS algorithm
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is re-run, resulting in the final location estimates. Note that the predicted distances
‖x̂i − x̂j‖ are used only to select neighbors (i.e., which weights are positive) – the
measured ranges δij are still used to determine the weight values.

We remark that this 2-step algorithm does not imply twice the computation.
The dwMDS algorithm is based on majorization, and each iteration brings it closer
to convergence. Since the first step only needs to provide coarse localization infor-
mation, it does not need to be very accurate, and so the dwMDS algorithm can
be stopped quickly with a large ε. Next, the second step begins with very good
(although biased) coordinate estimates, so the second run of the dwMDS algorithm
will likely require fewer iterations to converge.

Note that for some of the devices which are considered neighbors in the 2nd run of
the algorithm, the measured range δij will actually be greater than dR. Thus, to use
this 2-step algorithm, dR must be sufficiently less than the physical communication
limit of the devices, dthr, so that other range measurements can be considered.
If we consider the non-circular (real-world) coverage area of a device, dthr can be
considered to be the mean radius of the coverage area, while dR should be set to
the minimum radius of the coverage area.

7. EXPERIMENTAL LOCALIZATION RESULTS

We apply the proposed MDS algorithm to the location problem in a network, using
both simulated data and real data collected on an experimental sensor network.

7.1 Simulations

In this section, all the simulated data were generated from the RSS measurement
model presented in Section 5.2, with channel parameters σdB/np = 1.7.

We first demonstrate the performance of the proposed algorithms on a network
of 7 × 7 sensors arranged on a uniform grid of unit area, in which the four corner
devices are anchor nodes and the remaining 45 are unknown location devices. For
all experiments on this configuration, we use dR = 0.4m (yielding an average of
14 neighbors per device). We ran 200 Monte Carlo simulation trials to determine
confidence ellipses, root-mean-square error (RMSE) and bias performance (per sen-
sor) of the location estimates. The results are displayed in Figure 3, where we plot
the mean and 1-σ uncertainty ellipse of the estimator, and compare it to the actual
device location and the Cramér-Rao lower bound (CRB) on the uncertainty ellipses
[Patwari et al. 2003]. We remark that the CRB shown is calculated assuming full
connectivity (all devices measure range to all other devices), and as such provides
only a loose lower bound on the best performance achievable by any unbiased es-
timator. In the first experiment, we provide a baseline best-case scenario by using
perfect (noise-free) distance measurements to select neighborhoods. The baseline
assumes that we have an oracle to tell us when the true distance between i and j is
less than a threshold, ie., ‖xi − xj‖ < dR. This is shown in Figure 3(a), resulting
in a RMSE of the location estimates of 0.090m and an average bias of 0.019m.

For the second experiment, we remove the assumption of perfect connectivity
knowledge. Instead, we use RSS measurements to select neighbors, i.e., devices
i and j are neighbors if Pij ≥ PR, or, equivalently, if δij ≤ dR. The results are
shown in Figure 3(b). The estimates are strongly pulled towards the center of the
square, due to the negative bias of the range estimates which are ‘selected’ by the
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Fig. 3. Estimator mean (H) and 1-σ uncertainty ellipse (—) for each blindfolded sensor compared

to the true location (·) and CRB on the 1-σ uncertainty ellipse (- - -).

connectivity condition. Now, the RMSE is 0.162m and the bias is 0.130m.
A third experiment uses the adaptive neighborhood selection method proposed

in Section 6.2. The results are displayed in Figure 3(c), where it can be seen that
this method succeeds in removing the negative bias effect. The bias has gone back
down to 0.012m, while the RMSE is 0.092m, just slightly higher than the baseline
experiment using the oracle.

Comparing Figure 3(c) and 3(a), the localization errors of the two-step algorithm
are spread more evenly throughout the network compared to the first experiment
– the errors for edge devices are reduced, while those in the center have increased.
Based on the similarity of the RMSE in both experiments, we believe that the 2-step
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process eliminates most of the neighbor selection bias. Additionally, by changing
the neighbor lists (and therefore the weights) and re-running the dwMDS algorithm,
the 2nd iteration also provides the opportunity to break out local maxima, which
are more likely to affect edge devices. Finally, the low variance achieved by the 2-
stage algorithm is very close to the CRB which no unbiased location estimator can
outperform, despite the fact that the CRB is an optimistic bound for the scenario
considered here.

We also studied the influence of the threshold distance on the RMSE performance
of the proposed algorithms. Figure 4 shows a plot of the RMSE vs. threshold dis-
tance, for the 7×7 uniform grid example using adaptive neighborhood selection. It
can be seen that there is an optimal threshold distance, dR = 0.5m, beyond which,
no performance increase occurs. As dR is increased beyond this optimal value, more
distant sensors are included in the cost function. By the RSS measurement model,
the accuracy of range measurements degrades quickly with distance, thus adding
these far way sensors will not bring any gain to the estimation algorithm.

7.2 Localization in a Measured Network

To test the performance of the proposed algorithm on real-world channel measure-
ments, we used the RSS and TOA measurements presented in [Patwari et al. 2003].
This data set includes the RSS and TOA range measurements from a network of
44 devices (4 of which are anchor nodes) using a wideband direct-sequence spread-
spectrum (DS-SS) transmitter and receiver pair operating at a center frequency of
2.4 GHz. The measurements were made in an open plan office building, within a
14m square area. The RSS between each pair of devices was measured 10 times,
from which the average was calculated and labeled as Pij , for each pair (i, j).

We use the bias-corrected MLE to estimate range from the RSS, i.e.,

δij =
d0
C

10(P0−Pij)/(10np) . (22)
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We choose to divide by C in (22) because this estimator, as opposed to the MLE
in (20), is unbiased, ie., E[δij ] = dij . See [Patwari et al. 2003] for details.

To give the reader a feeling of how challenging is to to do sensor localization
using RSS range measurements in a real live scenario, we plot, in Figure 5, the
error between range measurements and real distances, i.e., δij − dij . Note that the
standard deviation of the RSS-based range estimator error increases steadily with
distance. But, most importantly, the error as a percentage of actual range is often
high: there are several range errors larger than 100% of the actual range.

We compare the performance of the dwMDS algorithm with adaptive neighbor-
hood selection to classical MDS and the MLE based solutions from [Patwari et al.
2003]. Figures 6(a) and 6(b) show the location estimates using classical MDS (which
used all the pairwise range measurements between sensors) and the dwMDS algo-
rithm, for the RSS measurement data set. The true and estimated sensor positions
are marked by ’o’ and ’O’, respectively, where the lines represent the estimation
errors. The anchor nodes are marked with an ’x’. It can be observed that the
dwMDS algorithm does much better than classical MDS. In fact, the RMSE for
the classical MDS solution is 4.301m, while for dwMDS, using dR = 6m (yielding
an average of 19 neighbors per sensor), it drops to 2.477m. This error is slightly
higher than the RMSE of 2.18m reported in [Patwari et al. 2003], using a central-
ized MLE. However, that method not only uses all pairwise range measurements,
but also relies on previously estimating the channel parameters. If we allow dR to
increase at the expense of increasing communication costs, the dwMDS algorithm
can reach an RMSE as low as 2.269m for dR = 8.5m.

Figure 6(c) and 6(d) shows again the location estimates using classical MDS and
the dwMDS algorithm, but this time for the TOA measurement data set. The
RMSE for the classical MDS solution is 1.959m and 1.117m for the dwMDS al-
gorithm using dR = 6m (wich yields an average of 17.5 neighbors per sensor).
This error is slightly better than the RMSE of 1.23m reported in [Patwari et al.
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Fig. 6. Location estimates using RSS and TOA range measurements from experimental sensor

network. True and estimated sensor locations are marked, respectively, by ’o’ and ’O’, while anchor

nodes are marked by ’x’. The dwMDS algorithm uses adaptive neighbor selection, with dR = 6m.

2003], using a centralized MLE. If we allow dR to increase at the expense of in-
creasing communication costs, the dwMDS algorithm can reach an RMSE as low
as 0.940m for dR = 7.5m. Once again, we stress that the dwMDS algorithm, un-
like the MLE estimator from [Patwari et al. 2003], does not use all the pairwise
range measurements and doesn’t assume knowledge of the distribution of the range
measurements.

8. CONCLUSION

This paper proposes a distributed weighted-MDS method specially suited for node
localization in a wireless sensor network. First, the method reflects the distributed
nature of the problem, incorporating network communication constraints in its
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design. In this way, the need to transmit all range measurements to a central unit
is eliminated, resulting in energy savings for a dense sensor network. Second, the
inhomogeneous character of range measurements in a wireless network is accounted
for by introducing weights that adaptively emphasize measurements believed to be
more accurate. We stress that the dwMDS algorithm is nonparametric in its nature,
i.e., it does not depend on any particular channel or range measurement models.
This makes it applicable to a broad range of distance measurements, e.g., RSS,
TOA, proximity, without the need to tweak any parameters. We have shown via
simulation that the algorithm has excellent bias and variance performance compared
to the CRB, and that its performance in a real-world sensor network is similar to
the centralized MLE algorithm.

We remark that the dwMDS algorithm can be applied more generally to di-
mensionality reduction problems across a network of processors, such as internet
monitoring or distributed sensor data compression. To make it more general, other
distance metrics can be used, such as Lp (1 ≤ p ≤ 2) metrics. In this case, a
majorization technique can still be used which guarantees a non-increasing cost
function. For other general distances (without any convex structure), gradient de-
scent techniques can be used. In particular, incremental gradient methods fit well
the framework considered in this paper and might provide faster convergence rates
at the cost of losing the monotonicity of the cost function.

A. APPENDIX

In this appendix, we give an expression for the gradient of the majorizing function
Ti defined by equation (9).

1

2

∂Ti(xi,yi)

∂xi
=


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