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Abstract. Entropy has been widely employed as an optimization func-
tion for problems in computer vision and pattern recognition. To gain
insight into such methods it is important to characterize the behavior
of the maximum-entropy probability distributions that result from the
entropy optimization. The aim of this paper is to establish properties of
multivariate distributions maximizing entropy for a general class of en-
tropy functions, called R�enyi's �-entropy, under a covariance constraint.
First we show that these entropy-maximizing distributions exhibit in-
teresting properties, such as spherical invariance, and have a stochastic
Gaussian-Gamma mixture representation. We then turn to the question
of stability of the class of entropy-maximizing distributions under addi-
tion.

1 Introduction

Entropy has been widely employed as an optimization function for problems in
computer vision, communications, clustering, and pattern recognition; see [1{6]
for representative examples. In particular, entropy maximization/minimization
methods have found natural application in areas where an entropy or information
divergence can be used as a discriminant of the data. These include: texture
classi�cation, feature clustering, image indexing or image registration, which are
all core problems in areas such as geographical information systems, medical
information processing, multi-sensor fusion and image content based retrieval.
For example, the mutual information method of image registration (see [5] and
references therein) searches through a set of coordinate transformations to �nd
the one that minimizes the �-entropy of the joint feature distribution of the two
images. In a similar way, a statistical image retrieval algorithm ([5]) searches
trough a database of images to choose the image whose feature distribution is
the closest to the query image in a minimum information divergence sense. Thus,
studying the entropy maximizing distributions is important for understanding
the advantages and limitations of such entropy maximization methods.
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The R�enyi �-entropy [7] is a generalization of the Shannon entropy and is
de�ned as follows:

S� (f) =
1

1� �
log

Z
IRn

f� (x) dx ; (1)

where f is the multivariate probability density of the n-dimensional random
variable X, and � is a real positive parameter. It can be easily shown that, as
�! 1, the �-entropy S� converges to the well known Shannon entropy:

S1 (f)
�
= lim

�!1
S� (f) = �

Z
IRn

f (x) log f (x) dx : (2)

It is well-known that among all multivariate continuous distributions, the
classical Gaussian distribution maximizes the Shannon entropy under a covari-
ance (power) constraint. The question addressed in this paper is the charac-
terization of the maximizing distribution of the R�enyi entropy under the same
covariance constraint.

The remainder of this paper is organized as follows. In Section 2, we show that
the multivariate Student-t (� < 1) and Student-r (� > 1) densities are the max-
imum entropy distributions under a covariance constraint for di�erent ranges
of the parameter �. We then show that these distributions are elliptically in-
variant, which will allow a representation in terms of Gaussian scale mixtures.
In addition, we give an alternative characterization for the maximum entropy
distributions in terms of the Shannon entropy and a logarithmic constraint. In
Section 3, we address the question of stability of the class of entropy-maximizing
distributions under addition.

2 The Multivariate �-entropy Maximizing Distribution

R�enyi-entropy maximizing distributions have been studied for the restricted case
of � > 1; by Moriguti in the scalar case [8] and by Kapur [9] in the multivariate
case. The case of � 2 [0; 1] is of special interest since, in this region, the R�enyi-
entropy generalizes easily to R�enyi-divergence via measure transformation [5].

Throughout, X will denote an n�dimensional real random vector with co-
variance matrixK = E(X��X)(X��X)T . In what follows, we consider, without
loss of generality, the centered case �X = EX = 0: De�ne next the following
constants:

m =

�
n+ 2

��1 if � > 1
2

1�� � n if � < 1
, C� =

�
(m+ 2)K if � > 1
(m� 2)K if � < 1

,

and

A� =

8><
>:

1

j�C�j
1
2

�(m2 +1)
�(m�n

2 +1)
if � > 1

1

j�C�j
1
2

�(m+n
2 )

�(m2 )
if n
n+2 < � < 1

;

and the following sets


� =

��
x 2 IRn : xTC�1

� x � 1
	
if � > 1

IRn if n
n+2 < � < 1

:
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De�ne the n�variate probability density f� as follows:

{ if � > 1

f� (x) =

(
A�

�
1� xTC�1

� x
� 1
��1 if x 2
�

0 otherwise
(3)

{ if n
n+2 < � < 1

f� (x) = A�
�
1 + xTC�1

� x
� 1
��1 8x 2 IRn (4)

The following theorem provides a general description of the ��entropy max-
imizing densities.

Theorem 1. For any probability density f with covariance matrix K and � >
n

n+2 ,
S� (f) � S� (f�) ;

with equality if and only if f = f� almost everywhere.

Note that Theorem 1 implies that the entropy S� (f) has a unique maximizer
f�. We also point out that, when 0 < � � n

n+2 , f� has in�nite covariance and
so the covariance constraint cannot be met.

We prove this theorem by introducing a new divergence measure and adopt-
ing an information theoretic approach similar to that used by [10, Theorem 6.9.5]
to prove that the Gaussian distribution maximizes Shannon entropy.

Consider the following non-symmetric directed divergence measure

D� (f jjg) = sign (�� 1)

Z
IRn

�
f�

�
+
�� 1

�
g� � fg��1

�
(5)

The general theory of directed divergence measures is discussed in [11] and [12].
Convexity of D� gives the following positivity property: for any two probability
densities f and g; we have

D� (f jjg) � 0

with equality if and only if f = g a.e.

Lemma 1. For any n�variate probability density f with covariance matrix K;Z
IRn

ff��1� �
Z
IRn

f� ; (6)

with equality i� supp(f) � 
�.

Proof. Suppose for example � > 1. ThenZ
IRn

ff��1� =

Z

�

f(x)A��1�

�
1� xTC�1

� x
�
dx

�
Z
IRn

f(x)A��1�

�
1� xTC�1

� x
�
dx ;
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with equality i� supp(f) � 
�. But, as f and f� have the same covariance
matrix, Z

IRn

xTC�1
� xf (x) dx =

Z
IRn

xTC�1
� xf� (x) dx ;

which impliesZ
IRn

ff��1� �
Z
IRn

f�A
��1
�

�
1� xTC�1

� x
�
dx =

Z
IRn

f�� :

The proof is similar in the case � < 1. ut
We can now deduce the extremal property of the density f�.

Proof (of Theorem 1). Suppose, for example, � > 1. Then, by Lemma 1 and
positivity of D�,

0 � D� (f jjf�) �
Z
IRn

�
f�

�
+
�� 1

�
f�� � f��

�
=

1

�

Z
IRn

(f� � f�� ) :

Theorem 1 now follows. The proof is similar for � < 1. ut
Although the case � = 1 was not explicitly addressed above, it can easily

be shown that f� converges pointwise to the density of N (0;K) when � ! 1.
Likewise, the corresponding entropies also converge to the Shannon entropy, thus
extending, by continuity, Theorem 1 to the well known case of � = 1.

De�nition 1. A distribution is called elliptically invariant if it has the form

pX (x) = �X
�
xTC�1x

�
(7)

for some function �X : IR+ ! IR+ and some positive de�nite matrix C; called
the characteristic matrix.

It is easily seen that f�, de�ned by equations (3) and (4), is an elliptically
invariant density. A consequence of this elliptical invariance property is that if
X is a random vector with density f�, � < 1, then it can be represented as a
Gaussian scale mixture [13]: X = AN, where A is a Gamma random variable
with shape parameter m

2 = 1
1�� � n

2 and scale parameter 2, i.e., A � � (m2 ; 2).

When m = 2
1�� � n is a positive integer, A can be represented as a Chi-square

random variable with m degrees of freedom. N is a n-variate Gaussian random
vector, independent of A, with covariance matrix C�. For more details see [14].
Equivalently, X can be rewritten as

X =
C

1
2
�N0pPm
i=1N

2
i

; (8)

whereN0 is a zero mean Gaussian random vector with identity covariance matrix
In. As

C
1
2
�pPm

i=1N
2
i

=
K

1
2q

1
m�2

Pm
i=1N

2
i
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converges a.s. to the constant matrix K
1
2 when m ! +1 (i.e. � ! 1), it is

evident that, by Slutzky's theorem, X converges in distribution to a Gaussian
random vector.

Although the Gaussian scale mixture representation does not hold in the case
� > 1, we can extend the stochastic representation based on the existence of a
natural bijection between the cases � < 1 and � > 1. This gives the following
proposition:

Proposition 1. If X is an n�variate random vector distributed according to f�
with � > 1; and if m, de�ned as

� =
m+ n

m+ n� 2
; (9)

is an integer not equal to zero, then X has the representation

X� = C
1
2
�

Nq
kNk22 +N2

1 + � � �+N2
m

; (10)

where fNig1�i�m are Gaussian N (0; 1) mutually independent, and independent
of N which is Gaussian N (0; In).

We remark here that the denominator in (10) is a chi random variable with
m+n degrees of freedom which, contrarily to the case � < 1; is not independent
of the numerator. Using these stochastic representations, random samples from
f� with integer degrees of freedom can be easily implemented with a Gaussian
random number generator and a squarer.

Characteristic Function The characteristic function '� of f� can be deduced
from the following formula [15]:

'� (u) = L �w�2fW �
w�1

��
s=uTC�u

;

where L denotes the Laplace transform.

(a) { Case � < 1. From [16],

L �w�2fW �
w�1

��
=

21�
m

2

�
�
m
2

�sm2 Km

2
(s) :

The characteristic function of the R�enyi distribution can then be written as

'� (u) =
21�

m

2

�
�
m
2

� �uTC�u
�m

2 Km

2

�
uTC�u

�
; (11)

where Km

2
denotes the modi�ed Bessel function of the second kind.
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(b) { Case � > 1. Although the preceding technique does not apply in the case
� > 1; a direct computation yields the characteristic function in this case as

'� (u) = 2
m

2 �
�m
2
+ 1

��
uTC�u

��m

2 Jm
2

�
uTC�u

�
; (12)

where Jm
2
denotes the Bessel function of the �rst kind.

We remark that both families of characteristic functions (11) and (12) are
normalized in such a way that

'� (u) = 1 +O
��
uTC�u

�2�
:

Moreover, it can be checked that, as �! 1; these functions converge pointwise
to the classical Gaussian characteristic function.

2.1 An Alternative Entropic Characterization

The R�enyi-entropy maximizing distribution can be characterized as a Shannon
entropy maximizer under a logarithmic constraint: this property was �rst derived
by Kapur in his seminal paper [9]. It was remarked also by Zografos [17] in
the multivariate case, but not connected to the R�enyi entropy. We state here
an extension of Kapur's main result to the correlated case. This result can be
proven using the stochastic representation (see [14] for details).

Theorem 2. f� with � < 1 (resp. � > 1) and characteristic matrix C� is the
solution of the following optimization problem

f� = argmax
f

S1 (f)

under constraintZ
log

�
1 + xTC�1

� x
�
f (x) dx =  

�
m+ n

2

�
�  

�m
2

�
(13)

�
resp.

R
log

�
1� xTC�1

� x
�
f (x) dx =  

�
m
2

��  
�
m+n
2

��
, where  (m) = � 0(m)

� (m)

is the digamma function.

We make the following observations. Firstly, the constraint in this multivari-
ate optimization problem is real-valued, and its value is independent of the char-
acteristic matrixC�. Secondly, as the logarithmic moment E log

�
1 +XTC�1

� X
�

exists for all � > 0; the distributions f� as de�ned by (4) are solutions of the
logarithmic constrained maximum Shannon entropy problem even in the case
� < n

n+2 . However, in this case the covariance matrix does not exist and there-
fore the matrix C� can not be interpreted as a covariance matrix.

3 Convolution of Entropy Maximizing Distributions

We �rst discuss the issue of renormalization as presented by Mendes et al. [18].
Then we address the issue of stability under the addition operation.
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3.1 Renormalizability of f�

Mendes and Tsallis ([18]) have shown that R�enyi distributions have the impor-
tant property of \renormalizability", but contrarily to the Gaussian case, they
are not \factorizable". f� has the renormalizability property whenZ +1

�1

f� (x1; x2) dx2 = f�0 (x1)

for some �0: In statistical terms, this expresses the fact that the 2�dimensional
distributions remain of the same type after marginalization. Using the elliptical
invariance property, we provide here a much more general result, as stated by
the following theorem.

Theorem 3. Let XT =
�
XT

1 ;X
T
2

�
(dimXi = ni; n1+n2 = n) be a random vec-

tor distributed according to f� with characteristic matrix C = [C11;C12;C21;C22]
(dimCij = ni � nj). Then the marginal density of vector Xi (i = 1; 2) is f�i ,
with index �i such that

1

1� �i
=

1

1� �
� ni

2
;

and characteristic matrix Cii.

Proof. Suppose �rst � < 1 and consider the stochastic representation

X = C
1
2

�
NT

1 ;N
T
2

�T
�m

;

where
�
NT

1 ;N
T
2

�
is a Gaussian vector with identity covariance and partitioned

similarly to X: Then the stochastic representation of Xi is

Xi =
~Ni

�m

for some ni�variate Gaussian vector ~Ni so that the indices � and �i are char-
acterized by

� =
m+ n� 2

m+ n
; �i =

m+ ni � 2

m+ ni
:

Hence
1

1� �i
=

1

1� �
� ni

2
:

The characteristic matrix of Xi can be deduced by remarking that Xi can be
expressed as

Xi =HX ;

where H is a ni � n matrix whose i� th block is the ni � ni identity matrix so
that the characteristic matrix of Xi writes (see [15, corollary 3.2])

HCHT = Cii :

The case � > 1 follows accordingly. ut
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Thus the renormalization property, as observed in [18], is nothing but a
consequence of the elliptical invariance property, which is itself induced by the
orthogonal invariance of both the R�enyi entropy and the covariance constraint.

3.2 Stability of R�enyi Distributions

It is well known that the Gaussian distributions are stable in the sense that the
sum of two Gaussian random vectors is also Gaussian, although with possibly
di�erent means and variances. An interesting question is the stability of the class
of R�enyi-entropy maximizing distributions de�ned as the set of all densities f�
of the form (3)-(4) for some � 2 (0; 1] and some positive de�nite characteristic
matrix C�. In the following, we characterize the conditions under which stability
of the R�enyi-entropy maximizing distributions is ensured, and link this feature
with their elliptical invariance property, distinguishing between three important
cases: the R�enyi mutually dependent case, the mutually independent case and
the special case of odd degrees of freedom. For proofs of these results see the
referenced articles or [14].

Mutually Dependent Case

Theorem 4 ([15]). If X1 and X2 are n1 and n2-variate vectors mutually dis-
tributed according to a R�enyi-entropy maximizing density f� with index � and
characteristic matrix C�; and if H is a n0 � n matrix with n = n1 + n2, then
the n0-variate vector

Z = H

�
X1

X2

�

is distributed according to a R�enyi-entropy maximizing density f�0 with index �0

and characteristic matrix C�0 such that

C�0 = HC�H
T ;

1

1� �0
=

1

1� �
+
n0 � n

2
:

Independent R�enyi-entropy Maximizing Random Variables

Theorem 5 ([19]). If X and Y are two scalar i.i.d. random variables with
density f�, then Z = X + Y has a density which is nearly equal to f�0 , with
index �0 such that

�0 = 2� (2� �)

�
1� 4

� (�� 1)

(3�� 5) (�+ 3)

�
: (14)

The relative mean square error of this approximation is numerically bounded by
10�5.
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Relation (14) was obtained in [19] by evaluating all derivatives up to order
5 at point 0 of the distribution of X + Y and showing that they are nearly
identical (up to numerical precision of the simulations) to those of a R�enyi-
entropy maximizing distribution f�0 with the given parameter �0. In the case
where m is an odd integer stronger results can be established. For economy of
notation, we de�ne, for m a positive integer,

f (m) = f� ; � =
m+ n� 2

m+ n
: (15)

The �rst original result we state now is an extension to the multivariate case
of the classical one-dimensional result, for which a rich literature already exists
(see for example [20],[21]).

Theorem 6. Suppose that X and Y are two independent n-variate random vec-
tors with densities f (mX) and f (mY), respectively, and characteristic matrices
CX = CY = In, with odd degrees of freedom mX and mY: Then, for 0 � � � 1;
the distribution of Z = �X+ (1� �)Y is

pZ (z) =

kZX
k=0

�kf
(2k+1) (z) ; (16)

where kZ � mX+mY
2 � 1.

Proof. Denote kX 2 N such that, by hypothesis, mX = 2kX + 1; and kY
accordingly: The characteristic function of X in this special case writes

�X (u) = e�kukQkX (kuk) ;
where kuk =

p
uTu and QkX is a polynomial of degree d (QkX) = kX: By the

independence assumption, the characteristic function of Z writes

�Z (u) = �X (�u) �Y ((1� �)u)

= e�j�jkukQkX (� kuk) e�j1��jkukQkY ((1� �) kuk)
= e�kukQkX (� kuk)QkY ((1� �) kuk) :

As each polynomial Qk has exactly degree k, the set of polynomials fQlg0�k�kZ
is a basis of the linear space of polynomials with degree lower or equal to kX+kY :
thus, QkX (� kuk)QkY ((1� �) kuk), itself a polynomial of degree kZ � kX +
kY = mX+mY

2 �1, can be expressed in a unique way in this basis. Consequently,
there exists a unique set f�kg0�k�kZ of real numbers such that

QkX (� kuk)QkY ((1� �) kuk) =
kZX
k=0

Qk (kuk)

and

�Z (u) = e�kuk
kZX
k=0

�kQk (kuk) :
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Result (16) now follows by inverse Fourier transform. Note that coeÆcients f�kg
depend on �. ut

This result can be restated as follows: the distribution of a convex linear
combination of independent R�enyi-entropy maximizing random variables with
odd degrees of freedom is distributed according to a discrete scale mixture of
R�enyi-entropy maximizing distributions with odd degrees of freedom. However,
although the fact that

kZX
k=0

�k = 1

holds trivially by integrating relation (16) over IRn, the positiveness of the co-
eÆcients �k has, to our best knowledge, never proved in the literature. We are
currently working on this conjecture, for which numerical simulations have con-
�rmed the positivity of �k's for a large number of special cases.

A Second Result: an Information Projection Property

The second result that we propose in this context allows us to characterize the
projection of the R�enyi entropy maximizing distribution onto a convolution of
f (m

0)'s with odd degrees of freedom.

Theorem 7. Consider X and Y two independent n-variate random vectors
following densities f (mX) and f (mY), respectively, with characteristic matrices
CX = CY = In and odd degrees of freedom mX and mY. Let Z = 1

2 (X+Y).
Then, the R�enyi distribution which is the closest to the distribution of Z in the
sense of the Kullback-Leibler divergence has m0 degrees of freedom such that

wn (m
0) = Ewn [M ] ; (17)

where,

{ function wn is de�ned as

wn (m) =  

�
m+ n

2

�
�  

�m
2

�
;

{ the random variable M is distributed according to

PrfM = 2k + 1g = �k ; (18)

where coeÆcients �k are de�ned by (16) for � = 1
2 .

Moreover, condition (17) is equivalent to

E
f(m

0) log
�
1 + xTx

�
= EfZ log

�
1 + xTx

�
:
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Proof. The Kullback-Leibler distance between the distribution pZ of Z and a

R�enyi distribution f(m
0) with parameter m0 is given by

D
�
pZjjf(m

0)
�
=

Z
pZ log

pZ

f (m
0)

= �S1 (pZ)�
Z
pZ log f(

m0) :

Distribution pZ takes the form

pZ (z) =

kZX
k=0

�kf
(2k+1) (z) ;

with kZ = mX+mY

2 � 1: Finding the optimal value of m0 is thus equivalent to

maximizing the integral
R
pZ log f(

m0) that can be explicitly computed using a
result obtained by Zografos [17]: if X � fm then 3

E log
�
1 +XTX

�
= wn (m)

�
=  

�
m+ n

2

�
�  

�m
2

�
:

Thus Z
pZ log f

(m0) =

Z mZX
k=0

�kf
(2k+1) (z) log f(m

0) (z) dz

=

mZX
k=0

�k

Z
f (2k+1) logA�0

�
1 + zT z

��m
0+n
2 dz

=

mZX
k=0

�k logA�0 � m0 + n

2

mZX
k=0

�kEf (2k+1)

�
1 + ZTZ

�

= log
�
�
m0+n

2

�
�
�
1
2

�
�
�
m0

2

� � m0 + n

2

mZX
k=0

�kwn (2k + 1) :

Taking the derivative and equating to zero yields

wn (m
0) = Ewn (M) ;

where M is distributed according to (18). The fact that m0 corresponds to a
maximum of the considered integral (and thus to a minimum of the Kullback-
Leibler distance) is a direct consequence of the negativity of the second derivative
of  , together with

 0(
m0 + n

2
)�  0(

m0

2
) =

@2

@m02

Z
pZ log f(m

0) :

3 Function wn (m) is denoted as w2 (m;n) in [17].
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Finally, computing

E
f(m

0) log
�
1 + ZTZ

�
= wn (m

0)

=

mZX
k=0

�kwn (2k + 1)

=

mZX
k=0

�kEf (2k+1) log
�
1 + ZTZ

�
= EfZ log

�
1 + ZTZ

�
yields the �nal result. ut

Equation (17) de�ning variable m0 in terms of dimension n and degrees of
freedom m does not seem to have any closed-form solution. However, it can be
solved numerically4: Fig. 1 represents the resulting values of �0 as a function of �;
when m takes all odd values from 1 to 51 (circles); moreover, the superimposed
solid line curve shows �0 as a function of � as de�ned by (14) in the approach
by Oliveira et al [19]. This curve shows a very accurate agreement between our
results and Oliveira's results.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

α’

Fig. 1. Equation (14) (solid line) and the solutions of equation (17) (circles). See text
for explanation

4 Note that in the case m = 1; the solution is obviously m0 = 1 since the Cauchy
distributions are stable.
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Moreover, by inspecting the numerical solutions m0 of equation (17) for dif-
ferent values of m and n; as depicted in Table 1, we propose an approximation
rule called the \m0 = 2m� 2" rule.

Table 1. m0 as a function of m

m = 3 5 9 11 21 51

n = 1 4:2646 8:0962 16:026 20:017 40:004 100:0
n = 2 4:2857 8:1116 16:047 20:021 40:005 100:0
n = 5 4:318 8:1406 16:032 20:031 40:008 100:0

Proposition 2. Given m and n; the solution m0 of (17) can be approximated,
for m suÆciently large, as:

m0 ' 2m� 2 ;

or, equivalently
�
as � = m+n�2

m+n

�

�0 ' (4 + n)�� n

(2 + n)�� (n� 2)
:

We note that this approximation is all the more accurate when � is near 1;
and it is in agreement with the approximation provided by Oliveira et al.

A Third Result: Almost Additivity Unfortunately, a closed form expression for

the distance between pZ and f(m
0) is diÆcult to derive. The following theorem,

however, allows us to derive an upper bound on this distance.

Theorem 8. The distribution of the form f(m
0) closest to pZ satis�es the or-

thogonality property

D
�
f(m

0)jjpZ
�
= S1

�
f(m

0)
�
� S1 (pZ) : (19)

Moreover, the corresponding minimum Kullback-Leibler distance can be bounded
as follows:

D
�
f(m

0)jjpZ
�
� S1

�
f(m

0)
�
� S1

�
f (m)

�
+

1

2
log 2 : (20)

Proof. Remarking thatZ
pZ log f(

m0) = logA�0 � m0 + n

2

mZX
k=0

�kwn (2k + 1)

= logA�0 � m0 + n

2
wn (m

0) ;



14 J. Costa, A. Hero, and C. Vignat

we deduce

D
�
pZjjf(m

0)
�
= �S1 (pZ)�

Z
pZ log f

(m0)

= S1

�
f(m

0)
�
� S1 (pZ) :

Let us now consider

S1 (pZ) = S1

�
pX+Y

2

�
= S1 (pX+Y)� log 2 :

A classical inequality on the Shannon entropy of the sum of independent random
variables is the so called entropy power inequality [10]:

S1 (pX+Y) � S1
�
p~X+~Y

�
; (21)

where ~X and ~Y are independent Gaussian random variables such that

S1
�
p~X
�
= S1 (pX) and S1

�
p~Y
�
= S1 (pY) :

These constraints are equivalent to

�~X = �~Y =
exp

�
m+n
2 wn (m)

�
A�
p
2�e

;

so that

S1
�
p~X+~Y

�
=

1

2
log

�
2�e2�~X

�
= S1

�
f (m)

�
+

1

2
log 2 :

ut
Let us remark that, as m grows, the Shannon inequality (21) and the bound

expressed by (20) become tighter.
For the sake of comparison, it is more convenient to consider a relative

Kullback-Leibler distance de�ned as

Drel

�
f(m

0)jjpZ
�
=

������
S1

�
f(m

0)
�
� S1 (pZ)

S1
�
f (m

0)
�

������ ; (22)

so that the computed upper bound is now de�ned by

Drel

�
f(m

0)jjpZ
�
�
������
S1

�
f(m

0)
�
� S1

�
f (m)

�
+ 1

2 log 2

S1
�
f (m

0)
�

������ : (23)

In Table 2, we present, for n = 1 and several values of m, the values of the
relative upper bound as de�ned by the right hand side of (23). Moreover, we
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Table 2. Relative Kullback-Leibler distance, upper bound and numerical approxima-
tion

m = 3 5 7 9 11 13 15 21 25 31

Drel(f(
m
0)jjpZ)�10

4 9:176 5:931 3:501 148:7 1:875 1:407 0:516 0:028 0:042 0:031
bound (23)�104 660 480 476 783 1718 2 75 1 25 33:18 18:75 9:82

give an approximated numerical value of the true relative distance as de�ned by
(22).

Inspection of the numerical values ofDrel(f
(m0)jjpZ) as a function ofm shows

that the approximation of pZ by f (m
0) holds up to a relative error bounded by

0:1%; which is decreasing a function of m, for m � 11: The bound (23) is weaker
but has the advantage of being in closed form.

4 Conclusion

In this paper, we have provided a complete characterization of the ��entropy
maximizers under covariance constraints for multivariate densities. Elliptical in-
variance and a Gaussian mixture representation where established and the issue
of stability of the entropy-maximizing densities was addressed. Applications of
these results to pattern recognition, inverse problems, communications, and in-
dependent components analysis are currently being pursued.
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