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Abstract. Entropy has been widely employed as an optimization func-
tion for problems in computer vision and pattern recognition. To gain
insight into such methods it is important to characterize the behavior
of the maximum-entropy probability distributions that result from the
entropy optimization. The aim of this paper is to establish properties of
multivariate distributions maximizing entropy for a general class of en-
tropy functions, called Renyi’s a-entropy, under a covariance constraint.
First we show that these entropy-maximizing distributions exhibit in-
teresting properties, such as spherical invariance, and have a stochastic
Gaussian-Gamma mixture representation. We then turn to the question
of stability of the class of entropy-maximizing distributions under addi-
tion.

1 Introduction

Entropy has been widely employed as an optimization function for problems in
computer vision, image reconstruction, communications, clustering, and pattern
recognition, see [2,3, 6, 5, 8] for representative examples. Entropy has also played
a role in statistical physics where physical probability laws are deduced from
maximum entropy principles [6]. Among many other applications, maximum
entropy models have been successful in describing the distribution of the interior
solar plasma [1], the behavior of dissipative, low dimensional chaotic systems [2]
and self-gravitating systems [3]. Studying the properties of entropy maximizing
distributions is important for understanding the advantages and limitations of
entropy maximization methods. In this paper we give an overview of properties
of multivariate distributions maximizing entropy for a general class of entropy
functions, called Renyi’s a-entropy, under a covariance constraint.

The Renyi a-entropy [7] is a generalization of the Shannon entropy and is
defined as follows:

Sa(f)= =g los | £ () 1)

where f is the n-variate probability distribution of the n-dimensional random
variable X, and « is a real positive parameter. It can be easily shown that as
a — 1 the a-entropy S, converges to the well known Shannon entropy

Su(f) 2 fim Sa (£) = = [ f (x)log f (x) . (2)

a—1



It is well-known that among all multivariate continuous distributions, the
classical Gaussian distribution maximizes the Shannon entropy under a covari-
ance (power) constraint. The question addressed in this paper is the characteriza-
tion of the maximizing distribution of Renyi entropy under the same covariance
constraint: this distribution will be called Renyi distribution in the following.
We show below that the multivariate Student-t (o < 1) and Student-r (a > 1)
densities are the maximum entropy distributions under a covariance constraint
for different ranges of the parameter . In addition they satisfy the following
properties: 1) the multivariate a-entropy maximizing distributions maximize the
Shannon entropy under a logarithmic constraint; 2) these distributions satisfy
can be represented as Gaussian scale mixtures; 3) these distributions are spher-
ically invariant.

2 The multivariate a-entropy maximizing distribution

Renyi-entropy maximizing distributions have been studied for the restricted case
of a > 1, by Moriguti in the scalar case [4] and by Kapur [5] in the multivariate
case. The case of a € [0,1] is of special interest since in this region the Renyi-
entropy generalizes easily to Renyi-divergence via measure transformation [4].

Throughout, x will denote an n—dimensional real random vector with co-
variance matrix

K=E (x — pux) (x — px)"
_ / (x — pux) (x = px)” fx (x) dx

In what follows, we consider, without loss of generality, the centered case ux = 0.
Define next the following constants:

2 _pifa<l

I—a
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Tl m-2)Kifa<1
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and the following sets

0 - {xeRk : xTC'x <1}ifa>1
o= R if 2 <a<l

Define the n—variate probability density f, as follows:



—ifa>1

ST (=1 ast :
fa (X) — Aoz (1 X Ca X) if x EQa (3)
0 else

—ifnLH<a<1

1
fo(x) =4, (1+x"C'x)"T VvxeR" (4)

The following theorem provides a general description of the a—entropy max-
imizing densities.

Theorem 1. the functions f, defined by equations (3) and (4) are the unique
solutions of the following problem

o = ar max So 5
fmorg | max L Sa() (5)

We prove this theorem by introducing a new divergence measure and adopting

an information theoretic approach similar to that used by [7, p.234 theorem

6.9.5]) to prove that the Gaussian distribution maximizes Shannon entropy.
Consider the following non-symmetric directed divergence measure

a—1

Pa (Zllo) = sign (e = 1)/9 % +——g" = fg" (6)

The general theory of dirrected divergence measures is discussed in [12] and [13].
Convexity of D, gives the following positivity property: for any two probability
densities f and g, we have

Do (fllg) > 0
with equality if and only if
f=ga.e.

Proposition 1. For any n—uvariate probability density f with covariance matriz
K

)

/ PN~ ) =0 (7)
24

Proof. suppose for example a > 1 then
/ fx) fet(x)dx = / f(x)As—! (1 — xTcglx) dx
(o8 Q2a
But f and f, have the same covariance matriz, so that

/ O () = | XTI xf () dx

Qa



and finally

/ f(x) fo (x) dx:/ fa A2 (1 - x"Cy'x) dx
(o8 24

z/gaffé

The proof is similar in the case a < 1 and will be omitted.

Observe that for o = 1, the orthogonality property (7) implies

[ r1ogsi= [ fitos p

Now we can deduce the extremal property of the density f,.

Theorem 2. For any probability density f with covariance matriz K and any

n
oz>—n+2

Sa (f) < Sa (fa)

with equality if and only if f = f, almost everywhere.

Proof. suppose for example a > 1 then

Datfilro) = [ (L4 - aa)

a

but, from the orthogonality property:

/Qaf;':/gafﬁlf

and thus
o< a(ilii = [ (L w2t ge)
1 o a  a—1
ot G SRR CAISEENT))

The proof is similar in the case a < 1.

Note that theorem 2 implies that the entropy S, (f) has a unique maximizer

fa-
Definition 1. a distribution is called elliptically invariant if it has the form
px (X) = dx (XTCAX) (8)

for some function ¢x : Rt — Rt and some positive definite matriz C, called
the characteristic matriz.



It is easily seen that f,, defined by equations (3) and (4), is an elliptically
invariant density. A consequence of this elliptical invariance property is that if
X is a random vector with density f, having a < 1, then it can be represented
as a Gaussian scale mixture [10]):

X = AN (9)

where A is a scalar Chi-square random variable with m = % — n degrees of
freedom and N is an n-variate Gaussian random vector independent of A and
with covariance matrix C,. For more details see [1]. Rewriting equivalently X

as
1
CiNp
V2o N}

where Ny is a zero mean Gaussian random vector with covariance matrix I, it
is evident that, by Slutzky’s theorem, as m — +o00

X = (10)

1

c: K>
m 5 m
\/Zi:l NZ \/ﬁ Ei:l Nl2

(11)

converges a.s. to the constant matrix K2 and X converges to a Gaussian random
vector.

Although the Gaussian scale mixture representation does not hold in the case
a > 1, we can extend the stochastic representation based on the existence of a
natural bijection between the cases a < 1 and a > 1 gives the following theorem.

Proposition 2. If X is an n—wvariate random vector distributed according to fo
with a > 1, and if m defined as

m-+n
= 12
= (12)

s an integer not equal to zero, then X has the representation
N
VINIE+ N2 4+ N,

Qrol—

Xy=C

where {N;}, <, <,, are Gaussian N (O, 1) mutually independent, and independent
of N which is Gaussian N (0,1,,) .

We remark here that the denominator in (13) is a chi random variable with
m + n degrees of freedom which, contrarily to the case a < 1, is not independent
of the numerator. Using these stochastic representations, random samples from
fa with integer degrees of freedom can be easily implemented with a Gaussian
random number generator and a squarer.



Characteristic function The characteristic function ¢, of f, can be deduced
from the following formula [9]:

Pa (ll) =L [wisz (wil)]s:uTCau

where £ denotes the Laplace transform.

a- Case a < 1 As, in the case a < 1 ([17]),

Llw™fw ()] = 7y

where K% denotes the modified Bessel function of the second kind.
b- Case o > 1 Although the preceding technique does not apply in the case

a > 1, a direct computation yields the characteristic function in this case as

m m -z
po () =221 (5 + 1) (u'Cuu) 2 Jm (u'C,u) (15)
where Jz denotes the Bessel function of the first kind.

We remark that both families of characteristic functions (14) and (15) are
normalized in such a way that

fa (W) =1+0 ((u"Cou)’)

Moreover, it can be checked that, as a — 1, these functions converge to the
classical Gaussian characteristic function.

2.1 An alternative entropic characterization

The Renyi-entropy maximizing distribution can be characterized as a Shannon
entropy maximizer under a logarithmic constraint: this property was first derived
by Kapur in his seminal paper [5]. It was remarked also by Zografos [14] in
the multivariate case, but not connected to the Renyi entropy. We state here
an extension of Kapur’s main result to the correlated case. This result can be
proven using the stochastic representation (see [1] for details).

Theorem 3. f, with a <1 (resp. a > 1) and characteristic matriz C, is the
solution of the following optimization problem

foa= arg max Si(f)



under constraint

/QQ log (1+XTC;1x)f(x)dx:1/J<m;_n> —1/1(%) (16)

(resp.

/Qalog(l—xTcglx)f(X)dx:d,(%) _d](m;n))

where ¢ is the digamma function.

We make the following observations. Firstly, the constraint in this multivari-
ate optimization problem is real-valued, and its value is independent of the char-
acteristic matrix C,. Secondly, as the logarithmic moment E log (1 + XTC;1X)
exists whenever a > 0, the distributions f, as defined by (4) are solutions of
the logarithmically constrained maximum Shannon entropy problem even in the
case a < --. However, in this case the covariance matrix does not exist and

n+2°
therefore the matrix C, can not be interpreted as a covariance matrix.

3 Convolution of entropy maximizing distributions

We first discuss the issue of renormalization as presented by Mendes et al. [15].
Then we address the issue of stability by addition.

3.1 Renormalizability of f,

Mendes and Tsallis ([15]) have shown that Renyi distributions have the impor-
tant property of “renormalizability,” but contrarily to the Gaussian case, they
are not ”factorizable.” f, has the renormalizability property when

+o0
/ Jo (w1, 22) dry = for (71)

— 00

for some o'. In statistical terms, this expresses the fact that the 2—dimensional
distributions remain of the same type after marginalization. Using the elliptical
invariance property, we provide here a much more general result, as stated by
the following theorem.

Theorem 4. If X is an n—wvariate Renyi random variable with inder o and
characteristic matriz C, if X1 = [X{,Xg] (dim X; = n;,n1 +n2 =n) and C is
partitioned accordingly as C = [C11, Ci2; Co1, Ca2] (dim C;; = n; X nj), then the
marginal distribution of vector X; (i = 1,2) is nothing but a Renyi distribution

with index a; such that
1 1 n;

l—a; 11—« 2

and characteristic matriz C;;




Proof. suppose first a < 1 and consider the stochastic representation

N7, NZ]"
Xm

X =C:

where [NlT,NQT] is a Gaussian vector with identity covariance and partitioned
according to X. Then the stochastic representation of X; is

for some n;—variate Gaussian vector N; so that the indices a and «; are char-
acterized by

m+n—2 m+n; —2
aQ=—, Q= —-—
m-+n m + n;
thus
1 1 n;

1— o - l-a 2
The characteristic matriz of X; can be deduced by remarking that X; can be
expressed as

X; =HX

where H is a n; X n matrix whose i — th block is the n; X n; identity matriz so
that the characteristic matriz of X; writes (see [9, corollary 3.2])

HCH' = C;;
The case a > 1 writes accordingly.

Thus the renormalization property as observed in [15] is nothing but a con-
sequence of the elliptical invariance property, which is itself induced by the or-
thogonal invariance of both the Renyi entropy and the covariance constraint.

3.2 Stability of Renyi distributions

It is well known that the Gaussian distributions are stable in the sense that the
sum of two Gaussian random vectors is also Gaussian, although with possibly
different means and variances. An interesting question is the stability of the class
of Renyi-entropy maximizing distributions defined as the set of all densities f,
of the form (3)-(4) for some a € (0,1] and some positive definite characteristic
matrix C,. In the following, we characterize the conditions under which stability
of the Renyi-entropy maximizing distributions is ensured, and link this feature
with their elliptical invariance property, distinguishing between three important
cases: the Renyi mutually dependent case, the mutually independent case and
the special case of odd degrees of freedom. For proofs of these results see the
referenced article or [1].



Mutually dependent case

Theorem 5 ([9]). If X; and X5 are ny and nz-variate vectors mutually dis-
tributed according to a Renyi-entropy mazimizing density with index o and char-
acteristic matriz C,, and if H is a n' x n matriz with n = ny + na, then the

n'-variate vector
_ X
Z—H [X2]

is distributed according to a Renyi-entropy maximizing density fo with index o
and characteristic matriz C, such that

C, =HC,HT

1 1 n'—n
+

Independent Renyi-entropy maximizing random variables

Theorem 6 ([18]). If X and Y are two scalar Renyi random variables with
index « then Z = X +Y is nearly Renyi with index o/ such that

1 _ a(a_l)
a—2—(2—a)<1—4m> (17)

The relative mean square error of this approxzimation is numerically bounded by
1075,

The relation (17) was obtained in [18] by evaluating all derivatives up to
order 5 at point 0 of the distribution of X +Y and showing that they are nearly
identical (up to numerical precision of the simulations) to those of a Renyi-
entropy maximizing distribution with parameter o'. In the case where m is an
odd integer stronger results can be established. For the sake of clarity, we denote
in the following by f("™) a Renyi-entropy maximizing distribution with m degrees
of freedom 1.

The first original result we state now is an extension to the multivariate case
of the classical one-dimensional result, for which a rich literature already exists
(see for example [19],[20]).

Theorem 7. Suppose that X andY are two independent n-variate (o < 1) ran-
dom vectors from fU™ with respective characteristic matrices Cx = Cy = I,
and odd degrees of freedom mx and my. Then if 0 < 8 < 1, the distribution of
Z=pX+(1-8)Y is

kz
pa(a) =Y [ () (15)
k=0

where kz < % — 1.

Lthus (™) (x) = f, (x) with g = mtn=2

m+n



Proof. denote kx € N such that, by hypothesis, mx = 2kx+1, and ky accordingly.
The characteristic function of X in this special case writes

¢x (u) = e Q. ([lul)

where ||u]] = VuTu and Qpx is a polynomial of degree d (Qrx) = kx. By the
independence assumption, the characteristic function of Z writes

¢z (u) = ¢x (Bu) ¢y ((1 - F)u)
— e llml g, (B1ul)) e =FRlIQ,, (1= 8) |lul)
= e Q. (81ul)) @iy (1= B) [lul)

As each polynomial Q, has ezactly degree k, the set of polynomials {Q1}o<j<y,
a basis of the linear space of polynomials with degree lower or equal to kx + ky:
thus, Qix (B llul]) Quy (1= B) [ull), itself a polynomial of degree kz < kx +
ky = w — 1, can be expressed in a unique way in this basis and conse-
quently, there exists a unique set {ak}0<k<kz of real numbers such that

Qux (B[ul]) Qry (1 = B) [lul) = ZQk (Ilall)

so that

kz
¢z (0) = e M1~ 2, Q. (J[ul)

k=0

and the result (18) is obtained by inverse Fourier transform. Note that coeffi-
cients {ay} depend on 3.

This result can be restated as follows: the distribution of a convex linear
combination of independent Renyi-entropy maximizing random variables with
odd degrees of freedom is distributed according to a discrete scale mixture of
Renyi-entropy maximizing distributions with odd degrees of freedom. However,
although the fact that

kz
S
k=0

holds trivially by integrating relation (18) over R, the positiveness of coefficients
ay, was, to our best knowledge, never proved in the literature. We are currently
working on this conjecture, for which numerical simulations show however that
it holds with high probability.

A second result: an information projection property The second result that we
propose in this context allows to characterize the Renyi distribution that is the
closest to a convolution of f(™) s with odd degrees of freedom.



Theorem 8. Consider X and Y two independent n-variate random vectors fol-
lowing density fo with a < 1, characteristic matrices Cx = Cy =1, and odd
degrees of freedom mx and my, and Z = % (X+Y). Then the Renyi distribu-
tion which is the closest to the distribution of Z in the sense of the Kullback-
Leibler divergence has degrees of freedom m' such that

wy, (m') = Ew, [M] (19)
where

— function wy is defined as

wn () =0 ("52) =6 ()

2 2
— the random wvariable M 1is distributed according to
Pr{M =2k +1} = oy (20)
where coefficients ay, are defined by (18) for B = 1.
Moreover, condition (19) is equivalent to
Ef(mr) log (1 + XTX) = FEy, log (1 + XTX)

Proof. the Kullback-Leibler distance between the distribution py of Z and a Renyi
distribution f(m’) with parameter m' writes

D (Pz||f(m’)) = /pzlog%

—~H (pz) - [ pzlog £

where Hy denotes the Shannon entropy. The distribution pz takes the form
kz
pz (z) = Z ap fERD (z)
k=0

with kz = "”‘2& — 1. Finding the optimal value of m' is thus equivalent to

mazimizing the integral [ pzlog f(m’) that can be explicitly computed using a
result obtained by Zografos [14]: if X ~ fm, then ?

Elog (1 +X'X) = w, (m) 2 psi (m ;_ n> — Psi (%)

% function wy, (m) is denoted as ws (m,n) in [14]



Thus

/pz log £(™) = /iakf@’”” (2)log (™) (2) da
k=0

m'4n

mz
= Zak/f(zk“) log Ao (1 +sz)_ * dz
k=0

mz m, + n mz
= Z (73 log Ay — 3 Z akEf(2k+1) (]. + ZTZ)
k=0 k=0
F(m’;n) m' 4 n X
=log L — arwy (2k + 1)
FOT 2 5t

Taking the derivative and equating to zero yields
wy, (m') = EBw,, (M)

where M is distributed according to (20). The fact that m' corresponds to a
maximum of the considered integral (and thus to a minimum of the Kullback-
Leibler distance) is a direct consequence of the negativity of the second derivative
of the ¢ function, together with

! 2

V) -0 () = o [ patog £0)

Finally, computing
E () log (14+Z"Z) = w, (m')

mz
= Z apwy, (2k + 1)
k=0
mz
= Z akEf(2k+1) IOg (]. + ZTZ)
k=0
= Ey, log (1+ Z"Z)

yields the final result.

The equation (19) defining variable m/' in terms of dimension n and degrees
of freedom m does not seem to have any closed-form solution. However, it can be
solved numerically?: the following figure represents the resulting values of o/ as
a function of a;, when m takes all odd values from 1 to 51 (red circles); moreover,
the superimposed solid line curve shows a' as a function of « as defined by (17)
in the approach by Oliveira et al. This curve shows a very accurate agreement,
between our results and Oliveira’s results.

% note that in the case m = 1, the solution is obviously m’ = 1 since the Cauchy
distributions are stable



m = 3|5 9 11 21 51

n = 1{4.2646|8.0962(16.026|20.017{40.004|100.0
n = 2(4.2857|8.1116(16.047|20.021{40.005|100.0
n = 5|4.318 |8.1406|16.032(20.031|40.008|100.0
Table 1. m' as a function of m
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Oliveira’s results and the solutions of equation 19

Moreover, by inspecting the numerical solutions m' of equation(19) for dif-
ferent values of m and n, as depicted in the table below, we propose an approx-
imation rule called the ”m' = 2m — 2” rule.

Proposition 3. Given m and n, the solution m' of (19) can be approzimated,
for m large enough, as follows:
m' ~2m —2

m4n—2

or equivalently, as o = s,

4+n)a—n
2+n)a—(n—2)

o ~

We note that this approximation is all the more accurate when « is near 1,
and it is in agreement with the approximation provided by Oliveira et al.



A third result: almost additivity Unfortunately, a closed form expression for the

distance between py and f (m') is difficult to derive. The following theorem,
however, allows us to derive an upper bound on this distance.

Theorem 9. The distribution of the form f(m’) closest to pz satisfies the or-
thogonality property

D (f(ml) ||pz) =H; (f(m’)) — Hy (pz) (21)

Moreover, the corresponding minimum Kullback-Leibler distance can be bounded
as follows:

D (£ ipg) < iy (£00)) — By (77) + 1 log2 (22)
Proof. Remarking that

7,nl

’ +’I’L 2z
/pz log f(m ) = log Ay — 5 I;)akwn (2k+ 1)
!
=log Ay — m +nwn (m')

which is exactly the Shannon entropy H, (f(m’)), we deduce

D (pZ||f(m’)) = —H (pz) - /pz log £("")
=H, (f(m’)) — Hi (pz)
Let us now consider
Hi (pz) = Hi (10%) = Hi (px+v) —log2

A classical inequality on the Shannon entropy of the sum of independent random
variables is

Hi (px+v) > Hi (pg.v) (23)

where X and Y are independent Gaussian random variables such that

Hy (pg) = Hi (px) and Hy (pg) = Hi (py)

These constraints are equivalently

_exp (22w, (m))

.
Y A\ 2me

7%
so that
1
H, (pf(ﬂ?) =3 log (271'6205()

=H, (f(m)) + %logQ



m=3[5 |7 |9 |11 [13 |15 [21 [25 31
Dyl (f(m’)||pz) x10%(9.176 |5.931|3.501|148.7|1.875(1.407|0.516(0.028(0.042(0.031

bound (25)x10 660 480 |476 |783 (1718|275 (125 |33.18|18.75(9.82
Table 2. relative Kullback-Leibler distance, upper bound and numerical estimation

Let us remark that, as m grows, the Shannon inequality (23) and the bound
expressed by (22) become tighter.

For the sake of comparison, it is more convenient to consider a relative
Kullback-Leibler distance defined as

L(£0) =
Dyet (£™)llpz) = . (le (Z(m,i v (24)

so that the computed upper bound is defined now by
1, (#0")) = Hy (1) + §log2
1, ()

Dy (£)llpz) < (25)

In the following table, we present, for n = 1 and several values of m, the values
of the relative upper bound as defined by the right hand side of (25). Moreover,
we give an approximated numerical value of the true relative distance as defined
by (24).

Inspection of the numerical values of D, (f(m’)sz) as a function of m

shows that the approximation of pz by f (m") holds up to a relative error bounded
by 0.1%, which is decreasing function of m for m > 11. The bound (25) is weaker
but has the advantage of being in closed form.

4 Conclusion

In this paper, we have provided a complete characterizations of the a—entropy
maximizers under covariance constraints in the multivariate context. Elliptical
invariance and a Gaussian mixture representation where established and the
issue of stability of the entropy-maximizing densities was addressed. Applications
of these results to pattern recognition, inverse problems, communications, and
indpendent components analysis are currently being pursued.
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