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Abstract

In this paper, we study the stability under convolution of the maximizing distrib-
utions of the Tsallis entropy under energy constraint (called hereafter Tsallis dis-
tributions). These distributions are shown to obey three important properties: a
stochastic representation property, an orthogonal invariance property and a duality
property. As a consequence of these properties, the behaviour of Tsallis distributions
under convolution is characterized. At last, a special random convolution, called
Kingman convolution, is shown to ensure the stability of Tsallis distributions.
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Introduction

It is well-known that the Boltzmann distributions are the maximizers of the
Shannon-Boltzmann entropy under energy (covariance) constraint. These Boltz-
mann distributions enjoy the stability property for addition: if X and Y are
independent vectors, each distributed according to a Boltzmann law, then
their sum Z = X+Y is again of the Boltzmann type. This property is impor-
tant in physics since it is involved in some very general results like the central
limit theorem [6].

The Tsallis entropy was introduced by Tsallis [10], and proved as a very effi-
cient tool to describe the behavior of complex systems like the interior solar
plasma [1] or self-gravitating systems [2]. A particular case of the Tsallis en-
tropy family is the Shannon-Boltzmann entropy.

The maximizers of the Tsallis entropy under covariance constraint - called
Tsallis distributions in this paper - were studied in detail by several authors,
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in the scalar case in [3], in the multivariate case in [4] and more recently in [5].
A natural question is thus to explore the stability under convolution of these
Tsallis distributions. This is the problem addressed in this paper.

1 Tsallis distributions

The order-q Tsallis entropyHq (f) of a continuous probability density f writes

Hq (f) =
1

q ¡ 1
µ
1¡

Z
Ω
f q

¶
.

It can be easily checked that limq→1Hq (f) exists and coincides with the cele-
brated Boltzmann-Shannon entropy

H1 (f) = ¡
Z
f log f.

In this paper, x denotes an n¡dimensional real-valued random vector with co-
variance matrixK=E (x¡ µX) (x¡ µX)T . Without loss of generality, we con-
sider only the centered case µX = 0. We define next the following n¡variate
probability density fq as follows:

if
n

n+ 2
< q, fq (x) = Aq

³
1¡ (q ¡ 1)βxTK−1x

´ 1
q−1
+

8x 2 Rn (1)

with x+ = max (0, x), β = 1
2q−n(1−q) . The problem of maximization of the

Tsallis entropy under energy constraint can be easily solved using a Bregman
information divergence, as described in the following theorem.

Theorem 1 fq defined by (1) is the only probability density that verifies

fq = arg max
f :ExxT=K

Hq (f) .

PROOF. Consider the following non-symmetric Bregman divergence

Dq (f jjg) = sign (q ¡ 1)
Z f q

q
+
q ¡ 1
q
gq ¡ fgq−1. (2)

The positivity of Dq (f jjg) (with nullity if and only if f = g pointwise) is a
consequence of the convexity of function x 7! sign (q ¡ 1) xq/q. Suppose for
example q > 1 : the fact that distribution f has the same covariance K as fq
defined by (1) can be expressed byZ

f qq =
Z
f q−1q f
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so that

0 · Dq (f jjfq) =
Z f q

q
+
q ¡ 1
q
f qq¡f qq =

1

q

Z
f q¡f qq =

q ¡ 1
q

(Hq (fq)¡Hq (f)) .

The proof in the case q < 1 follows accordingly.

The Tsallis distributions verify three important properties:

² the stochastic representation property. If X is Tsallis distributed with pa-
rameter q < 1 and covariance matrix K then

X
d
=
CN

A
(3)

where A is a chi random variable withm = ¡n+ 2
1−q degrees of freedom, in-

dependent of the Gaussian vectorN (ENNT = I) and with C = (m¡ 2)K.
If Y is Tsallis distributed with parameter q > 1, then

Y
d
=

CNq
A2 + kNk22

(4)

where A is a chi random variable with 2
q−1+2 degrees of freedom. Note that

the denominator is again a chi random variable, but that contrary to the
case q < 1, it is now dependent on the numerator.

² the orthogonal invariance property. The Tsallis distributions write as
fq (x) = φq

³
xTK−1x

´
.

This property is a direct consequence of the invariance under orthogonal
transformation of the covariance constraint.

² the duality property. There is a natural bijection between the cases q < 1
and q > 1: if X is Tsallis with parameter q < 1, m = ¡n + 2

1−q and
C = (m¡ 2)K then

Y =
Xp

1¡XTC−1X
is Tsallis with covariance matrix m−2

m+2
K and parameter q0 > 1 such that

1

q0 ¡ 1 =
1

1¡ q ¡
n

2
¡ 1.

2 The stability issue

The stability problem can be solved using the properties described above, and
the main theorem is the following.
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Theorem 2 (1) if X is a Tsallis n¡vector with parameter q and if H is a
full-rank ñ £ n matrix with ñ · n then X̃ = HX is a Tsallis ñ¡vector
with parameter q̃ such that

2

1¡ q̃ ¡ ñ =
2

1¡ q ¡ n

(2) as a particular case, if X1 and X2 are mutually Tsallis distributed (as
components of a Tsallis vector XT =

h
XT
1 ,X

T
2

i
) 1 , then any linear com-

bination
Y = H1X1 +H2X2

where H1 and H2 are full-rank matrices, is a Tsallis vector
(3) ifX1 andX2 are both Tsallis but independent (and thenXT =

h
XT
1 ,X

T
2

i
is not Tsallis), then a linear combination Y = H1X1+H2X2 is not Tsallis

(4) if X1 and X2 are scalar, each with parameter q < 1, then there exists a
convolution of the random type (called Kingman convolution)

Y = X1 ©X2
such that Y is Tsallis with the same parameter q as X and Y.

The three first results, that hold in both cases q < 1 and q > 1, are a direct
consequence of the orthogonal invariance property, and their detailed proofs
can be found in [5]. The last statement is developed and proved in the next
section. We stress the point that, contrary to the Boltzmann (q = 1) case,
stability under addition holds only if X1 and X2 are dependent, in the sense
that they share the same mixing random variable A as introduced in (3) and
(4). This result sheds a new light on the relationship between independence
and stability in the set of Tsallis distributions.

3 Kingman convolution (case q < 1)

The results about Kingman convolution are described in the following theo-
rem.

Theorem 3 If X and Y are independent and scalar Tsallis random variables
with parameter 1

2
< q · 1 and if λ is a Tsallis random variable independent

of X and Y and with parameter q0 = q
2q−1 ¸ 1, then the random variable

Z =
XYp

X2 + Y 2 + 2λXY
(5)

1 note that this assumption implies that X1 and X2 are dependent
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is Tsallis with parameter q and variance σ2Z such that

σ−1Z = σ−1X + σ−1Y .

PROOF. A classical result about Hankel transform writes (see [9, formula
6.565.4]) Z +∞

−∞
Ωm (u jxj) fq (x) dx = e−

1
σX
√
m−2u 8u > 0 (6)

with m = 2
1−q ¡ 1, where the Bessel convolution kernel Ωm writes

Ωm (u) = jm
2
−1

µ
1

u

¶
u > 0 (7)

and where jν denotes the normalized Bessel function of the first kind

jν (x) = 2
νΓ (ν + 1) x−νJν (x) .

Considering a scalar Tsallis random variable X with parameter q < 1, equality
(6) writes equivalently

EXmΩm (u jXj) = e−
1

σX
√
m−2u 8u > 0.

Now Sonine-Gegenbauer’s integral writes ([7] cited by [8]):

Ωm (x)Ωm (y) =
Γ
³
m
2

´
p
πΓ

³
m−1
2

´ Z +1

−1
Ωm

Ã
1p

x−2 + y−2 + 2λx−1y−1

!³
1¡ λ2

´m−3
2 dλ

and we remark that the function
Γ(m2 )√
πΓ(m−12 )

³
1¡ λ2

´m−3
2 is the distribution of a

Tsallis random variable λ with parameter qλ such as

qλ =
m¡ 1
m¡ 3 > 1.

Now choose X and Y independent and Tsallis with parameter q < 1 and
respective variances σ2X and σ2Y so that

Ωm (u jXj)Ωm (u jY j) = EλΩm

Ã jXY jp
X2 + Y 2 + 2λXY

u

!
, 8u > 0.

But as

EXΩm (u jXj)EYΩm (u jY j) = e−
1

u
√
(m−2)

³
1

σX
+ 1

σY

´
,

we deduce, by defining

Z =
XYp

X2 + Y 2 + 2λXY
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that

EZ,λΩm (u jZj) = e−
1

u
√
(m−2)

³
1

σX
+ 1

σY

´
. (8)

From equality (8), we conclude, using [8, lemma 4], that Z is Tsallis with
parameter q and variance σ2Z such that

σ−1Z = σ−1X + σ−1Y .

We note that the Kingman convolution expressed by (5) is associative and
commutative (see [8]); moreover, it is a convolution of random type, since it
combines both random variables X and Y with a third one, λ, that should be
chosen independent of X and Y, and acts as a ”mixing variable”. The physical
interpretation of these results is currently under study.
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