Delay tomography for large scale networks

MENG-FU SHIHALFRED O. HERO IIICommunications and Signal Processing LaboratoryElectrical Engineering and Computer Science DepartmentUniversity of Michigan, 1301 Beal. Ave., Ann Arbor, MI 48109-2122

URSI General Assembly 2002

Network Monigoring and Diagnosis

Delay, Packet Loss Rate, Traffic Type, ...

Problems with direct measurement (rmon):

- Diagnosis unavailable or disabled at internal nodes.
- > Non-cooperative internal nodes.
- All internal nodes must be synchronized

Network Tomography Problem

End-to-End Measurements

- > Active vs. Passive Method
 - > Active Method: Send probe packets
 - > Passive Method: Monitor existing flows

Importance of Link Delay Statistics

- Assessment and updating of routing/flow control
- QoS assurance, especially for video/audio streaming
- Network upgrade/maintenance planning
- Security, e.g., distributed Denial-of-Service (DoS) attacks

Problem Formulation: General Assumptions

- > Network Assumptions
- N1) Network topology known.
- N2) Probe paths (routing table) known.
- N3) Cooperating edge nodes are synchronized
- Statistical Assumptions
- S1) Spatial Independence

For a given packet along path *i*, $\left\{X_{l}^{(i,n)}\right\}_{l \in M_{l}}$ mutually independent.

S2) Temporal Independence and Stationarity

If path *i* and *k* both contain link $l, X_l^{(i,n_1)}$ and $X_l^{(j,n_2)}$ i.i.d.

Discrete Delay Model

- > Link delays are discretized with bin size q
- > Link delay values $X_{l}^{(i,n)} \in \left\{0, q, 2q, \cdots, qD\right\}$
- > Link Delay P.M.F. $p_{I,d} = P\left(X_{I}^{(i,n)} = d\right)$

> Lemma 1.

The delay p.m.f. with two bins at each link is uniquely identifiable from end-to-end packet delays, except when the delay p.m.f.'s at all links are identical.

$$\mathbf{A} = n \begin{bmatrix} \frac{p_2 + p_3}{p_1} + \frac{2 - p_2 - p_3}{1 - p_1} + \frac{(1 - 2p_2)^2}{Q_1} + \frac{(1 - 2p_3)^2}{Q_2} & \frac{1}{Q_1} & \frac{1}{Q_2} \\ \frac{1}{Q_1} & \frac{p_1}{p_2} + \frac{1 - p_1}{1 - p_2} + \frac{(1 - 2p_1)^2}{Q_1} & \mathbf{0} \\ \frac{1}{Q_2} & \mathbf{0} & \frac{p_1}{p_3} + \frac{1 - p_1}{1 - p_3} + \frac{(1 - 2p_1)^2}{Q_2} \end{bmatrix}$$

$$Q_1 = p_1(1 - p_2) + p_2(1 - p_1) \qquad Q_2 = p_1(1 - p_3) + p_3(1 - p_1) \qquad 7$$

Continuous Delay Model: Gaussian Mixture

- Arbitrary shapes of link delay distributions Let $f_{l}(x) = \sum_{m=1}^{k_{l}} \alpha_{l,m} \phi(x; \theta_{l,m})$ be the link delay p.d.f at link l.
 - k_{i} : the number of mixture components.
 - $\alpha_{l,m}$: mixing probability for the *m*th component.

$$0 \leq \alpha_{l,m} \leq 1, \qquad \sum_{m=1}^{k_l} \alpha_{l,m} = 1$$

 $\phi(x; \theta_{I,m})$: Gaussian density function with mean and

variance
$$\theta_{l,m} = \left\{ \mu_{l,m}, \sigma_{l,m}^2 \right\}$$

0.2
0.1
0.5 $\phi(10,1) + 0.3\phi(11,2) + 0.2\phi(15,4)$

Continuous Delay Model: Identifiability Problem
Example: Two leaf tree. Let
$$k_1, k_2, k_3 = 1$$

 $f(y_1, y_2) = \phi(y_1; \{\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2\}) \cdot \phi(y_2; \{\mu_1 + \mu_3, \sigma_1^2 + \sigma_3^2\})$
 $\mu_{Y_1} = \mu_1 + \mu_2$
 $\mu_{Y_2} = \mu_1 + \mu_3$
 $\sigma_{Y_1} = \sigma_1 + \sigma_2$
 $\sigma_{Y_2} = \sigma_1 + \sigma_3$
4 equations with 6 unknowns!

Mixed Finite Mixture Model

- > Utilization factor of a queueing system ρ
 - $0 \le \rho < 1$ for stable system. $\Rightarrow P(\text{Queue is empty}) = 1 \rho = \alpha_0$
- > Introduce a delta component at (or near) 0 with probability mass α_0
- > Link delay p.d.f. becomes $f_l(x) = \alpha_{l,0} \delta(x) + \sum_{m=1}^{k_l} \alpha_{l,m} \phi(x; \theta_{l,m})$

$$\sum_{m=0}^{k_l} \alpha_{l,m} = 1$$

Sufficient condition for identifiability (asymptotic)
 The delay distribution defined above is identifiable from end-to-end measurements if (1) α_{1,0} > 0 for all l (2) All the Gaussian components in link delay distributions have distinct means and variances.

Mixed Finite Mixture Model: Example

EM Estimation Algorithm: Notations

Assume prior knowledge of {k_l}
 Component indicator vector z_l^(i,n) = {z_{l,0}^(i,n), z_{l,1}^(i,n), ..., z_{l,k_l}^(i,n)}

 $z_{l,m}^{(i,n)} = 1$ if $x_l^{(i,n)}$ is generated by the *m*th component,

$$z_{l,m}^{(i,n)} = 0$$
 otherwise

- > Unobserved data {x, z}, x = {x_l^(i,n)}, z = {z_l^(i,n)}
 > Observed data y = {y^(i,n)}
- Complete data $\{x, y, z\}$ Parameter waster $\Theta = \int \alpha = 0$
- > Parameter vector $\Theta = \{\alpha_{l,m}, \theta_{l,m}\}$

EM Estimation Algorithm

> Complete data likelihood $\propto \log L(\mathbf{x}, \mathbf{z} | \Theta)$

$$\log L(\mathbf{x}, \mathbf{z} \mid \Theta) = \sum_{l=1}^{L} \sum_{i:l \in M_{i}} \sum_{n=1}^{N_{i}} \left\{ z_{l,0}^{(i,n)} \log \alpha_{l,0} + \sum_{m=1}^{k_{l}} z_{l,m}^{(i,n)} \left(\log \alpha_{l,m} + \log \phi(x_{l}^{(i,n)}; \theta_{l,m}) \right) \right\}$$

> Let

$$\omega_{l,m}^{(i,n)} = E\left[z_{l,m}^{(i,n)} \mid y^{(i,n)}; \Theta^{t}\right]$$
$$Q_{l,m}^{(i,n)}(\theta_{l,m}, \Theta^{t}) = E\left[z_{l,m}^{(i,n)}\log\phi(x_{l}^{(i,n)}; \theta_{l,m}) \mid y^{(i,n)}; \Theta^{t}\right]$$

EM Estimation Algorithm

E-Step $E\left[\log L(\mathbf{x}, \mathbf{z} \mid \Theta) \mid \mathbf{y}; \Theta^{t}\right] = \sum_{i=1}^{L} \sum_{i=1}^{N_{i}} \sum_{i=1}$ l=1 $i:l\in M_i$ n=1 $\left\{\sum_{l,m}^{\kappa_l} \omega_{l,m}^{(i,n)} \log \alpha_{l,m} + \sum_{l,m}^{\kappa_l} Q_{l,m}^{(i,n)}(\theta_{l,m},\Theta^t)\right\}$ > M-step $\alpha_{l,m}^{t+1} = \frac{\sum_{i:l \in M_i} \sum_{n=1}^{N_i} \omega_{l,m}^{(i,n)}}{\sum_{i:l \in M_i} N_i}$ $\theta_{l,m}^{t+1} = \arg \max_{\theta} \sum_{i:l \in M} \sum_{n=1}^{N_i} Q_{l,m}^{(i,n)}(\theta, \Theta^t)$

Computer Experiment

source

3

6

Matlab Simulation with 15000 i.i.d. end-to-end delays for each probe path.

> Numbers of Gaussian mixture components and true/estimated delta factor $\alpha_{l,0}$

Link	1	2	3	4	5	6	7
k_{l}	3	2	2	2	2	2	2
$\alpha_{_{l,0}}$	0.25	0.3	0.1	0.2	0.15	0.3	0.2
$\hat{lpha}_{_{l,0}}$	0.253	0.304	0.099	0.199	0.152	0.313	0.201

Conclusion and Extensions

Conclusions

- > Discussion of discrete and continuous delay models.
- Proposed mixed finite Gaussian mixture model for link delay.
- > EM algorithm implementation with known model orders.

Extensions

- > Unsupervised model order estimation.
- > Adaptive algorithm for parameter and model order update.

References

- F. L. Presti, N. G. Duffield, J. Horowitz, D. Towsley, "Multicast-based inference of network-internal delay distributions," Umass CMPSCI 99-55, 1999.
 - > Logical multicast tree.
 - > Discrete link delays with finite levels.
 - > Canonical delay tree, i.e., there is a nonzero probability that a probe experiences no delay in traversing each link.
 - Sample-average approach. Identifibility is proved by showing bijection mapping exists from the link delay distributions to the probabilities of the events in which the end-to-end delay is no greater than *iq* for at least one receiver.
 - > Continuous model is discussed, but identifiability problem is left open.
- M. Coates and R. Nowak, "Network tomography for internal delay estimation," ICASSP 2001, Salt Lake City, May 2001.
 - Logical unicast tree.
 - > Discrete link delays with finite levels.
 - > Back-to-back packet pair measurements.
 - > MLE using EM-based algorithm.
 - > Sequential Monte Carlo tracking of time variation.