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Network Monigoring and Diagnosis

Delay, Packet Loss Rate, Traffic Type, ...

Problems with direct measurement (rmon):
Diagnosis unavailable or disabled at internal nodes.
Non-cooperative internal nodes.
All internal nodes must be synchronized
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Network Tomography Problem

End-to-End Measurements

Active vs. Passive Method
Active Method: Send probe packets
Passive Method: Monitor existing flows
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Importance of Link Delay Statistics

Assessment and updating of routing/flow control 
QoS assurance, especially for video/audio streaming 
Network upgrade/maintenance planning
Security, e.g., distributed Denial-of-Service (DoS) 
attacks 
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Problem Formulation: General Notations
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Problem Formulation: General Assumptions
Network Assumptions

N1) Network topology known.
N2) Probe paths (routing table) known.
N3) Cooperating edge nodes are synchronized

Statistical Assumptions
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       For a given packet along path ,   mutually independent. 

S2) Temporal Independence and Stationarity

       If path  and  both contain link ,  and 

l

i n

i n
l l

l
i X

i k l X X

∈
i

M

2, )  i.i.d.j n



7

Discrete Delay Model
Link delays are discretized with bin size q
Link delay values { }( , )
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Link Delay P.M.F. 

l d

i n

l
p P X d= =

Lemma 1.
The delay p.m.f. with two bins at each link is uniquely 
identifiable from end-to-end packet delays, except when the 
delay p.m.f.’s at all links are identical.
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Continuous Delay Model: Gaussian Mixture
Arbitrary shapes of link delay distributions

,
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Let ( )  be the link delay p.d.f at link .
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Continuous Delay Model: Identifiability Problem
Example: Two leaf tree. Le
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Mixed Finite Mixture Model
Utilization factor of a queueing system 

Introduce a delta component at (or near) 0 with probability 
mass 
Link delay p.d.f. becomes

Sufficient condition for identifiability (asymptotic)
The delay distribution defined above is identifiable from 
end-to-end measurements if (1)                            (2) All the 
Gaussian components in link delay distributions have 
distinct means and variances.
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Mixed Finite Mixture Model: Example

2 2 22
( ) 0.3 ( ) 0.7 ( ; 14, 2)xf x x xδ φ= ⋅ + ⋅

1 1 11
( ) 0.1 ( ) 0.9 ( ; 10, 1)xf x x xδ φ= ⋅ + ⋅

3 3 3 3 31 2
( ) 0.03 ( ) 0.27 ( ; 10, 1) 0.07 ( ; 14, 2) 0.63 ( ; 24, 3)x xf x x x x xδ φ φ φ+ = ⋅ + ⋅ + ⋅ + ⋅
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EM Estimation Algorithm: Notations
{ }lkAssume prior knowledge of

Component indicator vector 
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EM Estimation Algorithm
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EM Estimation Algorithm

E-Step 
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Computer Experiment

Matlab Simulation with 15000 i.i.d. end-to-end 
delays for each probe path.

Numbers of Gaussian mixture components and 
true/estimated delta factor
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True (solid) and estimated 
(dotted) Gaussian mixture 
components.
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Conclusion and Extensions

Conclusions
Discussion of discrete and continuous delay models.
Proposed mixed finite Gaussian mixture model for link 
delay.
EM algorithm implementation with known model orders.

Extensions
Unsupervised model order estimation.
Adaptive algorithm for parameter and model order update.
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