System Modeling and Image Reconstruction for a C-SPECT Scanner

Alfred Hero
EECS Department
University of Michigan
Ann Arbor, MI

Thursday, 2 March 2000

Outline

- Overview of Nuclear Medicine
- Tomographic Imaging
 - Analytical methods
 - Statistically based methods
- Compton SPECT
- Reconstruction and Feasibility Analysis

Whole-Body Imaging

- Osteosarcoma, metastatic to lung
- Bone scan with MDP-Tc^{99m}

Planar Projection Images

Brain Imaging

• Brain planar projection

Q: Is there reduced blood flow to the left cortex?

Planar Projection Image

R Anterior View

Transverse Section

- Brain Transverse Section
- HMPAO blood flow study
- Diagnosis: Evidence of stroke in left cortex

Tomographic Image

Tomographic Brain Imaging

- Brain Transverse Section
- X-Ray CT
- Diagnosis: Lesions in left cortex

Tomographic Image

Myocardial Blood Flow Rest-Stress Study

- Thallium 201
- Myocardial Blood Flow
- Rest-Stress Study
- Diagnosis: Interior Wall Ischemia

Single Photon Emission Computed Tomography (SPECT)

- 1958 Anger camera
- 1963 first ECT device
- 1964 parallel-hole collimators
- 1972 statistical image reconstruction
- 1973 first CT scanner
- Late 70's first commercial SPECT (Tomomatic)
- 1979 dual head SPECT & fan-beam collimators
- 1980 triple head SPECT
- 1984 ring geometry SPECT
- 90's combined CT/SPECT and PET/SPECT

Tomographic Imaging: Data Collection

Tomographic Imaging: Forward Projections

Tomographic Imaging: Back Projections

Filtered Backprojection

Sensitivity / Resolution Tradeoff

High Resolution Collimator

- Small position uncertainty (high resolution)
- Collects less photons

High Sensitivity Collimator

- Collects more photons
- Large position uncertainty (low resolution)

Deficiencies of Existing SPECT Systems

- Mechanical collimators required to infer photon direction
- Low Sensitivity: only small fraction (~10⁻⁵ or less) of total photons detected
- Resolution Limit: Increasing collimator size increases signal, but lose resolution
- Dose Limitations: Total photon flux limited by allowable radiation dose to patient
- **Septal Penetration:** Off-axis particles have significant probability of penetrating collimator at higher energies

Generic Emission Tomography Measurement Equation

$$\underline{Y} \sim Poisson(A_+ + \underline{b})$$
 where

- $Y_i = \#$ photons detected in the ith detector bin
- _ = mean object intensity
- \underline{b} = mean background intensity
- $A = \text{system matrix } (m \times n) (m \quad n)$ $a_{ij} = P(i^{\text{th}} \text{ bin } | \text{emit } j^{\text{th}}, \text{ Detect}) P(\text{Detect } | \text{emit } j^{\text{th}})$

Note: Y is what we measure, but _ is what we want!

Statistical Image Reconstruction

Form log-likelihood function for Poisson statistics

$$l(\underline{\ }) = \left[Y_i \ln(\mu_i) - \mu_i \right] + C \text{ where } \mu_i = \left[A_{\underline{\ }} + \underline{b} \right]_i$$

 If desired, augment likelihood function with prior information on _ and/or roughness penalties

$$l_{pen}(\underline{\hspace{0.1cm}}) = l(\underline{\hspace{0.1cm}}) + p(\underline{\hspace{0.1cm}})$$

Solve for lambda that maximizes l(_)

$$\hat{\underline{}} = \underset{\hat{\underline{}}}{\operatorname{arg\,max}} l(\underline{\underline{}})$$

Linear Least-Squares Image Reconstruction

$$\hat{\underline{}}_{LS} = (A^T K^{-1} A)^{-1} A^T K^{-1} (\underline{Y} - \underline{b})$$

Pros

- Optimal Linear Estimator
- Maximizes log-likelihood function *l(_)* for linear additive Gaussian measurement statistics (or high count-rate Poisson statistics)
- Non-iterative direct solution

Cons

- Requires solving large # of simultaneous equations
- III-conditioned
- __LS may have negative values (!)
- Difficult to incorporate roughness penalties

Iterative Image Reconstruction: The EM Algorithm

$$\hat{s}_{j}^{k+1} = \frac{\hat{s}_{j}}{s_{j}} \quad \frac{a_{ij}Y_{i}}{a_{il}\hat{s}_{l}} \quad \text{where } s_{j} \quad a_{ij}$$

Pros

- Maximizes log-likelihood function l(_) for Poisson statistics
- Non-negativity constraints "built-in"
- Can easily incorporate roughness penalty functions

Cons

- Iterative (when do you stop iterating?)
- Slow to converge (what is convergence criteria?)

Roughness Penalty

 Adding a quadratic roughness penalty to log-likelihood function biases estimate _ towards "smoother" images

Example: EM Algorithm with Roughness Penalty

10⁶ counts, 100 iterations

Compton Scatter Angle / Energy Relationship (Simple Model)

$$E = E \quad 1 - \frac{1}{1 + \left(\frac{E}{511}\right)(1 - \cos)}$$

Compton Scatter Angle / Energy Relationship (Detailed Model)

Electron at rest

$$E' = \frac{E}{1 + \frac{E}{m_0 c^2} 1 - \cos \frac{E}{m_0 c^2}}$$

$$E' = \frac{E}{1 + \frac{E}{m_0 c^2} 1 - \cos}$$

$$p_z c = -(m_0 c^2) \frac{1 - \frac{E'}{E} - \frac{E'}{m_0 c^2} 1 - \cos}{\sqrt{1 + \frac{E'}{E} - 2\frac{E'}{E} \cos}}$$

Doubly differential cross section

$$f(,E) = \frac{r_0^2 \sin}{E} + \frac{E}{E} - \sin^2$$

Doubly differential cross section

$$f(\cdot,E') = \frac{r_0^2 \sin}{E} \cdot \frac{E'}{E} + \frac{E}{E'} - \sin^2 \frac{p_z \left(\frac{1-\cos z}{m_0 c^2} \right)}{1 - \frac{E'}{E} + \frac{E}{m_0 c^2} (1-\cos z)}$$

Compton profiles

Compton Scatter Angle / Energy Relationship (Detailed Model)

Compton-SPECT Camera Operating Principles

Single Measurement Backprojection Cone

Multiple Measurements Intersecting at Source Location

University of Michigan Compton-SPECT System

- Silicon 1st-Detector
 - 4.5cm x 1.4cm x 0.03cm
- Nal 2nd Detector
 - 50cm diameter
 - 10cm deep
 - 11 detector modules, arranged around circumference

Silicon Pad Detector Unit (1st Detector)

Silicon Pad Detector (1st Detector)

- 300 µm thick and rectangular (4.5 cm × 1.4 cm)
- 32×8 (256) pads, pixel size 1400 μm, fully depleted at 60 V

Sodium Iodide Scintillater Module (2nd Detector)

- Ring detectors consists of 11 Nal scintillation detector modules arranged around a 50cm diameter, 10cm long cylinder.
- Each module is composed of a 15cm array of 1.27cm thick and 3mm wide Nal bars viewed by 20 photomultiplier tubes.
- Intrinsic spatial resolution is 3 mm FWHM. Energy resolution is 18keV FWHM (13%) at 140 keV.

Compton-SPECT System Block Diagram

What do we end up measuring?

- Measure various attributes of each photon detection
 - Position
 - Energy deposited
- Photon measurements are stored in a sequential list

What do we do with all that data?

- HUGE system matrix for C-SPECT if we calculate probabilities a_{ii} for every possible measurement
 - Example: simple 2D reconstruction

• Source Plane Pixels 64²

• 1st Detector Pixels 1 (point detector)

• 2nd Detector Pixels 512 x 128 (3mm x 3mm square)

• Matrix Size 2²⁸ elements (256 megabytes)

Add a few more parameters...

3D Source Pixels
 64 additional source planes

• 1st Detector Pixels 32 x 8 array

Energy Channels
 64 (~750eV resolution)

• Matrix Size 2⁴⁸ elements (petabyte range...)

Cutting down the Computations

- Not all measurement bins contain measurements
 - Typically collect 10⁵ to 10⁷ counts (photon measurements)
 - Even for simple Compton-SPECT example,
 number of bins = 2²⁸ 10^{8.4} >> number of counts
- What happens when bin-size becomes infinitesimal?
 - Continuous measurements
 - Each measurement is of a single photon
 - Calculate probability of a single photon measurement
 - Listmode Likelihood

Listmode EM

From before

$$a_{ij} = P(i^{th} - bin | Detect, emit j^{th}) P(Detect | emit j^{th})$$

• We now treat each measurement in the list as its own "bin", containing a single photon measurement \underline{A}_i

$$\underline{\mathbf{A}}_{i} = \begin{bmatrix} e_{1}, x_{1}, y_{1}, z_{1}, e_{2}, x_{2}, y_{2}, z_{2} \end{bmatrix}_{i} \text{ with associated density}$$

$$p\left(\underline{\mathbf{A}}_{i} \middle| \text{ Detect, emit j}^{\text{th}}\right) P\left(\text{Detect } \middle| \text{ emit j}^{\text{th}}\right)$$

Model Approximations

- Dominant factors include:
 - Doppler Broadening
 - Energy Measurement Error
- Approximations & Assumptions:
 - Perfect position resolution (-function)
 - Gaussian energy measurement error
- Results in tractable expressions for f(,E) and a_{ij} which can be pre-computed and stored.

99mTc and 131 Point Source Images (2D)

Single on-axis point source at 10 cm

100K coincident events

99mTc Line Source Image (2D)

Hot Spot on Warm Background (131, 2D)

70K coincident events

Hot Spots placed on Uniform Disk Background (99mTc, 2D)

- Ordered-Subsets EM
 - 4 iterations @ 10subsets / iteration
- No smoothing penalty
- 77k counts

Feasibility Analysis

- Question: Can we get as good or better C-SPECT images as with SPECT?
- Can test performance by:
 - Constructing Prototype (...or...)
 - Performing Extensive Simulations (...or...)
 - Establish tight lower bounds on achievable accuracy of reconstructed images
- Criteria:

- Bias
$$b \begin{pmatrix} \hat{1} \end{pmatrix} = E \begin{pmatrix} \hat{1} - \hat{1} \end{pmatrix}$$

- Variance
$$\operatorname{var}\left(\hat{a}\right) = E\left(\hat{a}\right) - E\left(\hat{a}\right)^2$$

- Mean Square Error
$$MSE \binom{\hat{}}{1} = var \binom{\hat{}}{1} + b^2 \binom{\hat{}}{1}$$

Unbiased Cramer-Rao Bound

$$\operatorname{var}\left(\hat{}\right)$$
 $F_{\underline{\ }}^{-1}$ for any unbiased estimator $\hat{}(y)$

$$F = E[-^2l(])$$
 is the Fisher Information Matrix

$$l(\underline{\ })$$
 is the log-likelihood function

 Difficulty: Image reconstruction is usually biased due to finite resolution limits

Biased Cramer-Rao Bound

$$\operatorname{var}\left(\hat{j}\right) \left[e_j + b \left(\hat{j}\right)\right]^T F_{-1}^{-1} \left[e_j + b \left(\hat{j}\right)\right]$$
 for any estimator \hat{j} with bias b_j

 Difficulty: This bound is only useful for comparing between estimators with identical bias gradients

Uniform Cramer-Rao Bound

$$\operatorname{var}_{-}(\hat{a}_{j}) \left[e_{j} + \underline{d}_{\min}(\underline{a}_{j})\right]^{T} F_{-}^{-1} \left[e_{j} + \underline{d}_{\min}(\underline{a}_{j})\right]$$
for any estimator \hat{a}_{j} with bias gradient length \hat{a}_{j} and \hat{a}_{j} satisfying \hat{a}_{j} and \hat{a}_{j} are satisfying \hat{a}_{j

Issue: Achievability

Example Uniform Cramer-Rao Bound Curve

Achievability of UCRB

For _ = source intensity vector _,
UCRB is nearly attainable by the
Penalized Maximum Likelihood estimator

$$\hat{\underline{}} = \underset{\hat{\underline{}}}{\operatorname{arg\,max}} \{ l(\underline{\underline{}}) + \underline{\underline{}}^T P_{\underline{}} \}$$

Issue: What is the meaning of bias gradient constraint?

UCRB Calculation

Bias Gradient Approximates Recoverable Resolution

For the PML Estimator,

$$b_{\hat{j}} = F_{\hat{j}} = F_{\hat{j}} = F_{\hat{j}} + P_{\hat{j}}^{-1} e_j - e_j + O(1/2)$$
 so that

Estimation Performance Comparison with 99mTc

Same counts, estimate center pixel of a 7.5cm diameter uniform disk

Estimation Performance Comparison with ¹³¹I

Same counts, estimate center pixel of a 7.5cm diameter uniform disk

Compton Advantage

- Same imaging time (take efficiency into account)
- Assume a 9x9x0.5 cm³ silicon 1st-detector (20x efficiency advantage)

Future Directions

- Fully 3D Tomographic reconstruction
- Binned vs. list-mode acceleration methods
- Experimental verification of bound achievability
- Incorporation of side information