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in Sensor Networks

Sensor networks for geolocation and tracking
The sensor self localization problem
Manifold learning algorithms for sensor geolocalization
Application to anomaly detection in Abilene
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Wireless Sensor Applications

Inventory 
Management
Logistics
Environmental 
Monitoring
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SN Collaborators and Students
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S. Kyperountas, Motorola
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R. Moses, OSU
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R. Nowak, UWisc
M. Rabat, UWisc
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Main Issues
Stress points for this talk: 

Accurate self-localization essential for SN applications
Algorithms robust to unknown channel characteristics
Principled approach required for performance 
assessment and uncertainty management

Distributed numerical optimization algorithms  
Information theoretic measures of performance
Adaptation by active sensing and manifold learning 

Non-stress points for this talk
Communications issues

MAC 
Multi-user interference
Multi-hop network routing

Mathematical details of algorithms and bounds (refs)
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Sensor Network Source Localization

Network Geometry

+

+
+ +

+

+

+

.

Environmental monitoring: common statistics measured
Source location: information captured by range measurements

Blatt&Hero:TSP05

Loglikelihood surface
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Network Source Localization: G and IG recursions

Ref: Rabat&Nowak:ICASSP04
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Acceleration: POCS 

Network Geometry Loglikelihood surface

+

+
+ +

+
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+

.

•Each likelihood component is annular Gaussian      
with ridge along circular feasible region

Blatt&Hero:TSP05
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POCS Method (Blatt&Hero:TSP2005)

Ref: Blatt&Hero:TSP05
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Acceleration: Incremental Aggregated Gradient (IAG)

Standard POCS/IG require vanishing step size for convergence: this 
leads to slow convergence, e.g. for IG:

Simple solution: Incremental Aggregated Gradient (IAG) 
(Blatt&Hero&Gauchman:SIOPT05)

Properties
Faster convergence for large class of Lipshitz functions
Network-implementable with distributed updates, like IG, POCS
Applicable to many different problems

Distributed source localization in sensor networks – SIOPT05
Distributed boosting of weak classifiers (Logitboost) – SIOPT05
Accelerated iterative image reconstruction algos for CT  - TMI05
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Example: source localization
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Source Tracking with Sensor Swarms
Available: large number (100’s or 1000’s) 
of (cheap, low performance) sensors

Model problem:

An unknown number of moving ground 
targets 

Sensors are to determine the number of 
targets and states of each (position and 
velocity) through repeated interrogation of 
the ground

Sensors “hover” at a fixed height and stare 
directly down

Sensor detects targets w/ probability Pd
The sensor (falsely) detects targets in 
empty regions with probability Pf

The sensor management problem in this 
setting is to recursively determine the best 
motion for each sensor (so as to change 
the ground patch it views)

Main ingredients of solution:
Bayesian with particle filtering
Information theoretic path planning
Must tradeoff tracking existing targets for 
maintaining adequate coverage to detect 
new targets.

Targets
in 

target plane

Sensors 
in

sensor plane

Kreucher&Kastella&Hero:SPIE05
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Information Gain Criterion
“Information state” determines variance of predicted reward

IG policy: choose actions that improve information state

Information gain captures concentration of info state

k=1 k=2 k=3 k=4
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Molecular Fluid Path Planning Model
Objectives

– Accurately detect and track targets
– Maintain  coverage of surveillance area
– Focus resources on target locations
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Attractive forces due 

to information gradient

Non-linear fluid dynamics approach:
– Sensors exert attractive and repulsive forces 

on each other following a molecular BM 
model

1. Candidate target locations extert attractive 
forces in proportion to gradient of IG

0
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LJ + IG Fluid Dynamical Model
Total attractive force on i-th sensor at time t 

The acceleration of a unit mass object obeys the Langevin equation

Can integrate this to determine the sensor position versus time – however 
in general no closed form solution exists

Discretization via Verlet BM algorithm yields an update to the position and 
velocity of sensor i given by

Kreucher&Kastella&Hero:SPIE05
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Simulation

At initialization, the 
information surface is 
uniform (lots of uncertainty) 
and so sensor behavior is 
dictated by the Lennard-
Jones forces : The sensors 
spread out uniformly 
through the region

After some time, targets are 
detected and sensors tend to 
clump over target locations; 
however, the Lennard-Jones 
force ensures sensors still 
cover the region to address 
the possibility of new target 
arrival



UCLA Oct. 17, 2005 © 2005 Alfred Hero Slide 16

Demo

Kreucher&Kastella&Hero:Birkhauser05
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Monte Carlo Results

This plot shows the performance of the Info-based AP method (compared to a 
purely AP method) at detecting and tracking 10 targets
Two ways of comparing : The number of true targets successfully detected and 
the filter estimate of target number 
Coupling to information surface results in factor of 5 to 10 improvement in number 
of sensors required to meet a performance criteria

Kreucher&Kastella&Hero:Birkhauser05
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On the Choice of β, the Mixing Parameter

β=.04

β=.01 β=.02

β=.08
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Sensor self-localization problem

Measurement 
Active (telemetry)
Passive (correlation)S1

S2

S3

S4

S5

S8

S6

S9

Communication
Wired or Wireless
Limited S7
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GPS / LPS Won’t Fill Needs

LPS: Local Positioning Systems
Triangulation / Trilateration

Unknown Location

Wireless Sensors

Known Location 

Data 
link

central 
computer

1

2

4

5
6

8

9

A
B

C

7

3

1

Cons:  Sensors 
need long-range TX
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Cooperative Localization

Additionally, use measurements made 
between pairs of unknown-location devices

Data 
link

central 
comput

er

1
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1

Unknown Location

Wireless Sensors

Known Location 
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What Pair-wise Measurements?

Time-of-Arrival (TOA)
Received Signal Strength (RSS)

Connectivity (Proximity)
Quantized RSS (QRSS)

Angle-of-Arrival (AOA)

Media: RF / Light / Acoustic
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TOA and RSS Localization Experiments

Credit to collaborators at Motorola Labs, 
Plantation, FL: Matt Perkins, Neiyer Correal, 
Yanwei Wang
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Measurement Exp II: Environment

Typical (Dilbert) office environment
13 by 15 m area, and 44 devices (0.2 / m2)
Multipoint-to-multipoint: 44 x 43 x 5 = 9460 measurements
Data set available online: 

Node locations 
measured

Cubicle 
Partitions

http://www.eecs.umich.edu/~hero/localize



UCLA Oct. 17, 2005 © 2005 Alfred Hero Slide 25

Measurement Exp II: Equipment
Wideband Measurement System

DS-SS Tx and Rx, fC = 2443 MHz
Sleeve Dipole Antennas, Height 1 m
Power Delay Profiles (PDP)
TOA estimated (template-matching)
RSS estimated (sum multipath powers)

SigTek Receiver

Sigtek 515 Receiver
RS= 120 MHz

Sigtek 515 Transmitter
RC= 40 MHzPT= 10 mW

10 MHz IN Ext Trigger

Datum ExacTime
GPS & Rubidium Osc.

10 MHz OUT 1 PPS OUT

10 MHz IN Ext Trigger

Datum ExacTime
GPS & Rubidium Osc.

10 MHz OUT 1 PPS OUT

Averaging
Time 
Reciprocal Channel

Block Diagram of 
Measurement System
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Model for Received Signal Strength

Log-log RSS residual,                            , is 
approximately Gaussian with σdB = 3.9 dB

Figure 2.8: Measured Path Gain 
vs Path Length.  
X   Measured Power, 

with np = 2.30



UCLA Oct. 17, 2005 © 2005 Alfred Hero Slide 27

Model for Time-of-Arrival

Positive bias due to multipath
Resulting TOA statistic is Gaussian with 
positive mean:

Measurements: µ = 10.9 ns, σT = 6.1 ns

Good model for short path lengths
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Distributions of Measured Data

Quantile-Quantile: compare distributions to Gaussian

Both TOA and 
RSS (in dB) 
are compared 
to Normal CDF

Measured data 
shows heavier 
tails → mixture 
models?
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Connectivity isn’t Deterministic
Devices which can communicate are connected:
Connectivity is not solely determined by geometry!

Architectural blueprint

“out-of-range” of 

“in-range” of 

Distance at which 
P(“in-range”)=1/2
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Model for Connectivity: QRSS
Approximation:

RSS > Threshold Power:  Devices ‘in-range’
RSS < Threshold Power:  Devices ‘out-of-range’

Connectivity is a binary quantization of RSS
Arbitrary K-level Quantized RSS (QRSS) is possible

In reality, RSS must be sampled
Automatic Gain Control (AGC) changed in steps

Considered in [3]

[3] N. Patwari and A.O. Hero, “Using Proximity and Quantized RSS for Sensor Localization in Wireless 
Networks”, 2nd ACM Wireless Sensor Nets. and Apps. (WSNA), San Diego, CA, Sept. 19, 2003.
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Benchmarking achievable performance

Design Questions 
What measurement method should be used?
What is a good density / placement strategy 
for known-location sensors?
How do channel parameters / nuisance 
parameters impact performance?
What configurations of  a sensor network 
provide acceptable performance?

To answer these questions in an algorithm-
independent manner a benchmark is required



UCLA Oct. 17, 2005 © 2005 Alfred Hero Slide 32

Design tool: Information Theory
Average curvature (FIM) of log-likelihood gives lower 
bound on variance of any unbiased estimator

Results for TOA/AOA, RSS, QRSS, connectivity [4,5]
Rate distortion theory for quantized measurements

[4] R. L. Moses, D. Krishnamurthy, R. Patterson, “An auto-calibration method for unattended 
ground sensors,” ICASSP, May 2002.

[5] N. Patwari, A.O. Hero, M. Perkins, N. S. Correal, R. J. O'Dea, “Relative Location Estimation in 
Wireless Sensor Networks”, IEEE Transactions on Signal Processing, vol. 51, no. 8, Aug. 2003.

[6] R. Gupta, A.O. Hero, “High rate vector quantization for detection”, IEEE Transactions on 
Information Theory, vol. 49, No. 8, pp. 1951-1969, Aug. 2003.
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Key Intuition Obtained From CRB

As we scale the diameter of network
TOA bounds remain constant
AOA, RSS bounds increase proportionally

Proportionality to channel parameters
TOA variance prop. to  
AOA variance prop. to
RSS, QRSS, Connectivity prop. to  

Effect of RSS Quantization
Connectivity best case:
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CRB GUI

Measurement data available on our website

Figure 3.2: GUI for calculation of 
cooperative localization CRB and 
simulation of maximum likelihood 
estimator (MLE) performance

CRB code available online 
(all modes)
GUI: Collaboration with J. 
Ash at OSU [7]

[7] N. Patwari, J. Ash, S. Kyperountas, A. O. Hero, R. M. Moses, N. S. Correal, “Locating the Nodes”, 
IEEE Signal Processing, July 2005.

Localization CRB when measuring RSS, QRSS, 
Connectivity
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Model Free Approach: Manifold Learning 

Extract low-dim structure from high-dim data
Data may lie on curved (but locally linear) 
subspace

[8] J.B. Tenenbaum, V. de Silva, J.C. Langford “A Global Geometric Framework for Nonlinear 
Dimensionality Reduction” Science, 22 Dec 2000.

[9] Sam T. Roweis and Lawrence K. Saul, “Nonlinear dimensionality reduction by local linear 
embedding,” Science, Dec 2000.

[10] David L. Donoho and Carrie Grimes, “Hessian eigenmaps: New locally linear embedding 
techniques for highdimensional data,” Tech. Rep. TR2003-08, Dept. of Statistics, Stanford 
University, March 2003.
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Simple version: MDS/PCA for TOA
Key property for geolocation of planar sensor networks

Matrix                                of pairwise distances is linearly related to 
sensor locations

Pairwise measurements (TOA, RSS, QRSS) are related to physical 
geometry
In the case of TOA this relation is linear and MDS is applicable
In other cases, the relation is non-linear or not known precisely
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Manifold Learning: Preserve Neighbors

Preserve local structure (nearest neighbors)
Isomap: Preserve shortest path distances in nearest-
neighbor graph
Distributed weighted multi-dimensional scaling (dwMDS): 
Preserve weighted distances (weight = 0 for non-neighbors)
Laplacian eigenmaps (LE): Preserve similarity, i.e., inverse 
distance, which is zero for non-neighbors.

Locally Linear Embedding (LLE), Hessian-based LLE
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Two Perspectives on one Solution

Equivalent Problems:
Find coordinates for sensor’s data
Find location of sensor

Figure 4.6:  The intrinsic geometric structure 
(represented using Isomap K=6) of 
a sequence of 64x64 pixel images 
of a face rendered with different 
poses and lighting directions. 

[8] J.B. Tenenbaum, V. de Silva, J.C. 
Langford “A Global Geometric 
Framework for Nonlinear 
Dimensionality Reduction” Science, 
22 Dec 2000.
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Compare Manifold Learning Algorithms

Eigen-de-
composition

Iterative, distributed 
majorization

Eigen-
decomposition

Algorithm 
Basis

Natural for 
connectivity

Can incorporate 
prior info

Sensitive to large 
range errors

Notes

Cost to 
Minimize

SimilarityDistanceDistanceDistance or 
Similarity?

Laplacian
Eigenmap [13]

dwMDS [12]MDS-MAP [11] 
or Isomap

[11] Y. Shang, W. Ruml, Y. Zhang, M.P.J. Fromherz, “Localization from mere connectivity,” in Mobihoc
’03, June 2003, pp. 201–212.

[12] J. Costa, N. Patwari, A.O. Hero III “Distributed Weighted Multidimensional Scaling for Node 
Localization in Sensor Networks”, IEEE/ACM Trans. Sensor Networks, to appear Dec. 2005.

[13] N. Patwari, A.O. Hero III “Adaptive neighborhoods for manifold learning-based sensor localization”, 
IEEE SPAWC 2005, June 2005.
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4 known-location devices
45 unknown-location
devices
Run 100 trials per 
estimator to find mean 
and covariance
Compare estimator 
covariance to CRB

Example: 7 by 7 Grid of Devices

Unknown-loc Device

Known-loc Device

d

y

m1=d
Figure:  Actual device locations in the 7 by 7 
grid example
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Iterative self-localization algorithm
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Simulation of dwMDS: RSS
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Simulation of Isomap: Connectivity

Measure Connectivity
Use Isomap / MDS-MAP [11]

0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

EstimatorCRB
1-σ uncertainty ellipses Actual Location

Estimator Mean
Reference Device

Key:

MDS-Map with R = 0.5

[11]Y. Shang, W. Ruml, Y. Zhang, M.P.J. Fromherz, “Localization from mere 
connectivity,” in Mobihoc ’03, June 2003, pp. 201–212.
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Comparison to LE: Connectivity

[13] N. Patwari, A.O. Hero, “Adaptive Neighborhoods for Manifold Learning-based Sensor 
Localization,” IEEE Signal Processing & Wireless Commun. Conf. (SPAWC), June 2005.
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Application: Adaptive Internet Anomaly Detection

Spatio-temporal measurement vector:

day

te
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t
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day

day
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e

SNVA

STTL

LOSA KSCY

HSTN

DNVR
CHIN

IPLS

ATLA

WASH

NYCM
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Internet anomaly detection

Anomalies:  Worm outbreaks, DoS attacks, 
Intrusion activity (scans)
Monitor:  Collect set from sensors (routers) in 
space and time
Hypothesis:  Anomalies will change 
distribution of traffic across sensors

‘Distribution’: traffic by src/dst port, IP addresses; 
packet sizes, etc.

Problem: How do you find ‘anomalous’
relationships across space?

[14] N. Patwari, A. O. Hero, A. Pacholski, “Manifold Learning Visualization of Network 
Traffic Data”, ACM Wksp on Mining Net. Data (MineNet’05), Aug 2005.
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Router Map: High-Dim. Traffic Vectors

NYCM measures: WASH measures: ATLA measures:

705169.229.48.0
714207.46.248.0
716130.91.40.0
728206.240.24.0
888207.68.168.0
897158.130.0.0

1076207.68.176.0
1210130.14.24.0
1597171.66.120.0

FlowsSRC IP

1513158.42.128.0
1560140.247.56.0
1683128.187.200.0
1817207.68.168.0
2031207.68.176.0
2649128.112.128.0
3713130.14.24.0
4587204.179.120.0

19925140.123.64.0
FlowsSRC IP

1428128.112.136.0
1509207.68.176.0
1523158.130.0.0
1578158.42.128.0
2700152.2.208.0
2766128.112.128.0
6772130.91.40.0
9965130.14.24.0

20090140.123.64.0
FlowsSRC IP

Sensors at routers measure # flows per source IP address
07-Jan-2005 during 15:45-15:50 UTD  
Packets are sampled 1/100
Last 11 bits zeroed for privacy -> data are 221–length (sparse) vectors



UCLA Oct. 17, 2005 © 2005 Alfred Hero Slide 48

Data Vector Localization Algorithm

Place Routers on a map so that Euclidean 
distances          between vectors is preserved 

Traffic histograms (normalized so sum == 1)
Example from previous slide

ATLA

NYCM

WASH

0.132

0.138
0.064
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Results: Sensor Map Example
Typical router map, 18-Jan 17:00 UTD

Sensors (routers) as 
positioned by 
dwMDS
Coordinates are 
normalized (flows) 
so are unitless
Lines show physical 
Abilene links
Small dots (- - -) 
show distance from 
4-week mean coord
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Maps Respond to Anomalous Traffic
Wed. 19-Jan 2005, 
0:00-1:00 UTD
At 0:30, 0:35: large 
network scan 

22,000 anomalous 
flows observed at 
STTL, DNVR, 
KSCY, IPLS, ATLA
60-byte, TCP
From a few Miss. 
State U. IPs,  Src
Port < 1024
To range of 
Microsoft IPs, Dest
Port 113
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Pure Time Series: Small Change

Abilene 
Backbone 
Total Flows, 
by router
18-19 Jan
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0 6 12 18 24 30 36 42 48
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Hours after 0:00 UTD 18−Jan

Automatic Detection Algorithm
Multivariate t-test comparing the current coords to a
history of 
coordinates
Declare 
alarm when t-
value 
exceeds 
threshold
Eg: 18-19 
Jan-05

Network
Scan

2

2: 45kflow port scan 
from .tw to .dk

3: 46kflow port scan 
from .tw to .pl

3
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Conclusions

Approach grounded in optimization and 
information theory
Parametric model gives useful performance 
bounds 
Algorithms too strongly coupled to models are 
brittle.
Need for model-free algorithms that are 
capable of learning the important statistics 
Future work:

Decentralized decisionmaking
Communication bandwidth constraints
Joint target tracking and self-localization
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Publications (available on 
http://www.eecs.umich.edu/~hero)

Journal articles
D. Blatt and A. O. Hero, "Energy based sensor network source localization via 
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