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ABSTRACT

High Dimensional Separable Representations for Statistical Estimation and Controlled Sensing

by
Theodoros Tsiligkaridis

Chair: Alfred O. Hero III

Separable approximations are effective dimensionality reduction techniques for

high dimensional data. The statistical estimation performance of separable models

is largely unexplored in high dimensions and model mismatch errors need to be

accurately controlled. The need for performance bounds associated with statistical

estimators in sample starved settings has been a topic of great interest in the field

of signal processing and high-dimensional statistics.

Many signal processing methods, including classical filtering, prediction and de-

tection, are intimately linked to the data covariance. In multiple modality and

spatio-temporal signal processing, separable models for the underlying covariance

may be exploited for dimensionality reduction, improved estimation accuracy and

reduction in computational complexity.

In controlled sensing (or inference), estimation performance can be greatly opti-

mized at the expense of query design (or control). Query-based multisensor controlled

sensing systems used for target localization consist of a set of sensors (possibly het-

erogeneous and of different modality) that collaborate (through a fusion center or



by local information sharing) to estimate the location of a target. In the centralized

setting, at each time instant, a fusion center designs queries for the sensors on the

presence of the target in a given region and noisy responses are obtained. For a

large number of sensors and/or high-dimensional targets, separable representations

of the query policies can be exploited to maintain tractability. For very large sen-

sor networks, decentralized estimation methods are of primary interest and local

message-passing techniques can be exploited to increase flexibility, robustness and

scalability.

Motivated by this fundamental set of high dimensional problems, the thesis makes

contributions in the following areas: (1) performance bounds for high dimensional

estimation for structured Kronecker product covariance matrices, (2) optimal query

design for a centralized collaborative controlled sensing system used for target lo-

calization, and (3) global convergence theory of decentralized controlled sensing for

target localization.

A rich class of covariance models widely applicable to spatio-temporal settings are

sums of Kronecker products (KP). For the special case of a single KP model with

optional sparsity in the factors, a block-coordinate descent method used to solve the

penalized MLE problem is proven to achieve a tight global MSE convergence rate

in high dimensions. More generally, under a convex optimization framework, high

dimensional MSE convergence rates are derived that show a fundamental tradeoff

between estimation error and the approximation error induced by the dimensionality

reduction on the space of covariance matrices in terms of KP’s. The results improve

upon the current state-of-the-art methods.

Under the minimum entropy criterion, the optimality conditions for the joint pol-

icy for control of a centralized collaborative system of sensors for target search are

i



derived and are shown to generalize the probabilistic bisection policy of one player.

For high-dimensional targets and/or large number of players, the design of such poli-

cies become intractable. A separable bisection policy is introduced and shown to

achieve the same expected information gain as the jointly optimal scheme. The MSE

performance is characterized and the results are extended to the case of unknown

sensor reliabilities. This centralized methodology is extended to decentralized coop-

erative target search where players are obtaining new noisy information as a function

of their current belief and exhange local beliefs among their neighbors at each time in-

stant. Global consistency of the decentralized sequential estimation scheme is proven

and it is shown that local information sharing improves estimation performance in

low signal-to-noise ratio environments.
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ἀεὶ ὁ θεὸς γεωμετρεῖ

Translation: God forever geometrizes.

-Plato
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CHAPTER I

Introduction

1.1 Overview

Separable approximations are effective dimensionality reduction techniques for

high dimensional data. The statistical estimation performance of separable mod-

els is largely unexplored in high dimensions and model mismatch errors need to

be accurately controlled. A key performance aspect of many signal processing sys-

tems is performance bounds associated with statistical estimators in sample starved

settings; a line of research that has received considerable attention in the field of

high-dimensional statistics.

Many signal processing methods are intimately linked to second order measures of

the data, an example being the data covariance. In multiple modality data sets and

spatio-temporal signal processing, separable models for the underlying covariance

may be exploited for dimensionality reduction, and as a result they can improve

estimation accuracy and reduce computational complexity in the algorithms.

In controlled sensing (or controlled inference), a field that has recently gained

attention in the signal processing community, estimation performance can be greatly

optimized at the expense of query design (or control). A multisensor controlled

sensing system used for target localization consists of a set of sensors (possibly het-
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erogeneous and of different modality) that collaborate (through a fusion center or

local information sharing) to estimate the location of a target, taking into account

the quality of the sensors. In the centralized setting, at each time instant, a cen-

tral authority (i.e., a fusion center) sequentially designs queries for these sensors on

the presence of the target in a given region and the sensors yield noisy responses.

This iterative process continuously refines the posterior distribution of the target

such that it concentrates fast towards its true location X∗. For a large number of

sensors and/or high-dimensional targets, optimal query policies become intractable

and separable representations of the policies can be exploited to maintain tractabil-

ity and ease of implementation. Furthermore, the sensor responses may be based

on a statistic computed as a function of the data covariance. Since the covariance

is generally unknown, each sensor estimates the covariance using data it collected

from a certain region over a period of n time instants. Using further processing,

sensors make a decision on the presence of the target (with some error). Choosing

too many samples n introduces delays and consumes resources such as energy and

storage, while too few samples lead to poor estimates due to high dimensionality of

the covariance matrix. Such an active tracking system is illustrated in Figure 1.1.

For large-scale sensor networks, it is impractical for all sensors to transmit in-

formation to a fusion center due to finite bandwidth or power constraints. Further,

sensors that are far apart from the fusion center might not be able to transmit their

information reliably to the fusion center due to a combination of factors including en-

vironmental constraints, interference conditions and limited resources. In these cases,

decentralized methods for active estimation of an unknown target become necessary.

Here, a separable representation of the information in the network up to the current

time takes the form of a collection of posterior distributions (one per agent). Our
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Figure 1.1: Illustration of basic centralized collaborative tracking system. At each time instant

n, the controller (here, fusion center) designs queries {A(m)
n : 1 ≤ m ≤ M} and the

sensors focus a beam in each region and provide a noisy response Y
(m)
n+1 after doing some

covariance-based target detection. The responses {Y (m)
n+1 : 1 ≤ m ≤M} are transmitted

back to the fusion center and the posterior distribution of the target is refined. This
process is repeated until the target is localized to within an acceptable accuracy.

approach iteratively refines this separable representation through repeated querying

and belief sharing. In the decentralized setting, at each time instant, each agent in

the network first designs a query using a low-complexity controller (i.e., bisection

method) as a function of its local current belief and yields a noisy response which

is used to update its local belief. Second, the belief of each agent is updated as a

convex combination of its refined belief (from the first step) and its neighbors’ beliefs

at the previous time instant (before they were updated). An illustration of such a

decentralized active tracking system in shown in Figure 1.2.

In a parameter estimation setting, it is a common theme that exploiting the struc-

ture of the data distribution often yields superior estimation performance as com-

pared to naive estimators. Often, even though the data may lie in a high dimensional

space, most of the relevant information lies in a much lower dimensional space. The

search for good low-dimensional representations of high dimensional data sets has
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Figure 1.2: Illustration of basic decentralized collaborative tracking system. At each time instant

n, each sensor in the network designs a query A
(m)
n and focuses a beam in a region

and provides a noisy response Y
(m)
n+1 after doing some covariance-based target detection.

Each sensor uses its response Y
(m)
n+1 to refine the posterior distribution of the target

and updates its belief using a convex combination of its refined belief and the beliefs
of its neighbors at the previous time instant n (the incoming neighbors are shown as
directed red arrows). This process is repeated until the target is localized to within
an acceptable accuracy, and a consensus on the target location is reached across the
network.

recently yielded breakthroughs in multivariate statistics and signal processing. This

modern theme of studying high-dimensional objects having small intrinsic dimension,

has sparked new results and methodologies in signal processing, an excellent example

being compressed sensing, where s-sparse vectors of dimension d can be recovered

with n = Ω(s log(d/s)) appropriately designed measurements [28, 6, 26, 47]. Similar

results have appeared for the matrix completion problem, where a low-rank d×d ma-

trix C can be recovered by nuclear norm minimization given only n = Ω(rd log2(d))

observed entries, assuming r = rank(C) and C satisfies an incoherence condition

[24, 25, 27, 102].

Covariance estimation is a fundamental problem in multivariate statistics and

finds application in many diverse areas, including economics, geostatistics and signal

processing. It can be a very challenging problem when the number of samples n is

fewer than the number of variables d, which is increasingly true in applications where
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resources are limited. Sparsity is one of the most well-studied constraints imposed on

the inverse covariance (i.e. precision) matrix. The graphical lasso (Glasso) estimator

is a convex optimization approach proposed in [136, 5] for estimating a sparse inverse

covariance, under an i.i.d. Gaussian observation model. The high dimensional con-

vergence rate of Glasso was established by Ravikumar et al [99] and by Rothman et

al [103] for a slight variant, showing that n = Ω((d+ s) log(d)) samples are sufficient

for accurate covariance estimation (wrt. Frobenius norm), where s is the number of

nonzero off-diagonal entries in the underlying d×d precision matrix. Low-rank struc-

ture is another covariance constraint that comes up in factor analysis [50], random

effect models [51] and spiked covariance models [74]. A convex optimization problem

was proposed in [85] to derive a consistent estimate of the low-rank covariance in

high dimensions. The high dimensional convergence rate for low-rank approxima-

tions was established in considerable generality in Lounici [85] and includes the case

of missing observations. It was shown that n = Ω(rd log(d)) suffices for recovering

the rank r covariance matrix Σ0 of size d× d (wrt. Frobenius norm).

A class of covariance models that finds applications in multimodal data are Kro-

necker product (KP) models. In their simplest form, these separable models assume

that the covariance can be represented as the Kronecker product of two lower di-

mensional covariance matrices, i.e. Σ0 = A0 ⊗ B0, with p × p p.d. matrix A0 and

q × q p.d. matrix B0 [49, 130]. Chapter II considers the statistical estimation of

covariance matrices constrained to obey the Kronecker product factorization, with

possibly sparse structure in the precision matrices X0 = A−1
0 ,Y0 = B−1

0 . It is

shown that the separable structure of the covariance Σ0 effectively reduces the high

dimensionality of the ambient space. For the case of sparse inverse of the factors,

`1-penalized MLE estimators are proposed. In [111], a global `1 penalty on the pre-
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cision matrix is imposed under Kronecker product structure and a block coordinate

optimization method is shown to be empirically fast. In [115, 116], two additive `1

penalties are imposed on the MLE, each one for each Kronecker factor. To keep

the algorithm computationally tractable, a block coordinate method was proposed

to solve the underlying nonconvex (nonsmooth) optimization problem. Under mild

conditions on the sample size, it was shown that this method (KGlasso) converges

to a local minimum of the objective. For a fixed number of iterations, it was shown

that the structured covariance estimate greatly outperforms previous state-of-the-art

estimators in the high dimensional setting in terms of mean-square-error (MSE). The

analysis yields considerably improved scaling laws for minimal sample size require-

ments for accurate estimation of these structured covariance matrices and aids the

choice of regularization parameters.

In Chapter III, a more general class of KP covariance models is considered that

finds applications in spatiotemporal signal processing where the covariance admits

an additive decomposition of Kronecker products. This modeling approach allows

any covariance matrix to be arbitrarily approximated by such a representation and

as a result, it offers a dimensionality reduction when the covariance has a low dimen-

sional representation on a Kronecker product basis. The number of components on

this Kronecker product basis will be called the separation rank [112]. Product sepa-

rability is imposed through the Kronecker product models and additive separability

is obtained through the addition of Kronecker product forms. This decomposition

has strong analogies to low rank matrix expansions. In [112], a convex optimization

framework is proposed for obtaining asymptotically consistent estimators for this

type of covariance structures. The objective is based on a model-free least-squares

approach with nuclear norm penalization. The nuclear norm regularization implic-
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itly projects the sample covariance matrix into a space of covariances admitting low

separation rank. The computational complexity of the estimation algorithm, PRLS,

remains scalable in terms of the separation rank (i.e., the model order). High di-

mensional MSE convergence rates are derived that generalize the convergence rates

obtained for the single term unstructured Kronecker product. The results further

show a fundamental tradeoff between approximation error (i.e., the error induced by

model mismatch between the true covariance and the model) and estimation error

(i.e., the error due to finite sample size). When the model order is exactly known, the

estimation performance can be explicitly characterized in terms of the true separation

rank of the underlying model. For models where the model order is approximately

known or unknown, to obtain a desired estimation accuracy ε, the minimal separa-

tion rank needs to be calculated to arrive at a meaningful MSE convergence rate.

More details on this are given in Section 1.2.

Returning to the original target localization problem, at each time instant n a set

of M sensors need to make a decision about the presence of a target in a given set

of regions An = {A(m)
n : 1 ≤ m ≤ M}. Given estimates of the covariance formed

using N samples from a certain region A
(m)
n , a decision about the presence of a

target in a region A
(m)
n is made by the mth sensor. Due to finite sample noise in the

covariance estimate, nonstationarities in the data caused by moving targets or other

factors in the environment, the mth sensor will make an error with some probability

εm ∈ (0, 1/2). In an active sensing problem (e.g. frequency agile radar), each sensor

may choose to focus a beampattern on an region A
(m)
n and obtain a small number

N of samples that are locally stationary, which can be used to form an empirical

estimate of the covariance.

Chapter IV considers the problem of optimal query design for a set of sensors;
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a problem that arises in centralized active collaborative target search. In this con-

text, each query would be a question of the form “Is the target in the region An?”.

Through this lens, the search for jointly optimal policies for control of a collaborative

set of sensors can be viewed as a collaborative 20 questions game. A 20 questions

game aims to locate a target after asking a set of carefully designed questions. It can

be formulated as the sequential design of questions such that entropy of the posterior

distribution of the target’s location after asking n questions is minimized [73]. Un-

der the minimum expected entropy criterion and conditional independence between

players, the optimality conditions for the joint policy (i.e., the policy that asks all

players questions in parallel at each time instant) were derived in [119] and shown to

generalize the probabilistic bisection policy of one player. For targets lying in a high

dimensional space or for a large number of players, the design of such jointly optimal

policies becomes intractable. A separable bisection policy is introduced for construct-

ing questions and queries each player in sequence (after intermediately refining the

posterior of the target location).

In [119], it is proven that this separable approach achieves the same expected

information gain (or entropy loss) as the jointly optimal scheme. Upper and lower

bounds on the MSE are also derived in [118]. This equivalence was also generalized

to cover the case of unknown sensor reliabilities in [117, 118] under a joint Bayesian

setting. This framework allows a mathematical model for incorporating a human in

the loop in active machine learning systems. More details on the value of the human

in the loop are included in Section 1.3.

Chapter V considers the problem of decentralized collaborative stochastic search.

In this context, each sensor m in the network is faced with queries of the form

“Is the target in the region A
(m)
n ?”, where the query region A

(m)
n is obtained as a
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function of the current local belief p
(m)
n (·). Once a (noisy) response is obtained to

this query, first, the local belief (i.e., the posterior distribution) of each sensor m is

updated using Bayes’ rule and second, the local belief is further updated by linearly

combining the Bayesian updated local belief with its neighbors’ beliefs at the previous

time instant. This scheme combines new information through repeated querying and

shares information throughout the network by local belief sharing between neighbors.

In [120], under mild assumptions on the network structure (i.e., strong connectiv-

ity and strictly positive self-reliances), it is proven that this decentralized sequential

estimation scheme yields a sequence of posterior distributions that globally converge

almost surely to the true target location. Thus, asymptotically all agents in the

network will reach a consensus on the space of beliefs and the limiting belief will be

centered at the true target location. More details on this decentralized scheme and

results are contained in Section 1.4.

The thesis is organized as follows. This chapter summarizes the main results

in the thesis. More specifically, Section 1.2 displays the main results of the Kro-

necker product covariance models in high dimensions and Section 1.3 contains the

main results of the centralized collaborative 20 questions model for target localiza-

tion. Chapter 2 explores how Kronecker product structure and sparsity affect the

mean-square-error (MSE). Using a greedy alternating minimization method, it is

shown that significantly higher convergence rates can be obtained by exploiting both

of these constraints. Chapter 3 generalizes these fast convergence rates to models

with additive Kronecker product structure using a convex formulation. Chapter 4

studies the problem of optimal query selection for multiple collaborative observers

that arises in the context of centralized active collaborative target localization. A

basic equivalence is established between jointly optimal query policies and separable
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query policies. Chapter 5 introduces and studies the decentralized collaborative tar-

get localization problem and convergence theory is presented that shows successful

aggregation of information is guaranteed under mild assumptions on the network

structure.

1.2 High Dimensional Covariance Estimation under Kronecker Product
Structure

1.2.1 Introduction

Covariance estimation is a fundamental problem in several disciplines including

signal processing, economics, and geostatistics. For the special case of jointly Gaus-

sian zero mean observations, the sample covariance matrix is the minimal sufficient

statistic and summarizes the necessary information for inference. Several applications

that involve covariance matrices are filtering, prediction, detection, and inference on

graphical models. Often, better estimates of the covariance lead to improved task

performance.

One of the seminal papers on structured covariance matrix estimation is the work

by Burg et al [19], in which the general constrained maximum-likelihood estimator

(MLE) problem was studied in the multivariate Gaussian setting. In [19], general

optimality conditions for structured MLE’s were derived. Assuming n ≥ d, a varia-

tional principle was derived that characterizes the solution of the constrained MLE

problem. For certain low dimensional special cases, closed form expressions for the

constrained MLE are obtained. A general iterative method for finding a solution

to the necessary conditions is presented. Although the framework in [19] is fairly

general, it does not give insight into mean-square-error (MSE) performance of the

estimator and the role of inherent dimensionality is unclear. In addition, the algo-

rithm proposed to solve for the constrained MLE boils down to solving a sequence of
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linear systems of the form Ax = b, which can be of high dimension and the coeffi-

cients depending on a basis of the constraint space, so a basis for the constraint space

needs to be obtained. Thus, the computational complexity of the proposed method

in [19] largely depends on the constraint space and the complexity of obtaining the

solution to the linear inverse problems.

With computational tractability and MSE performance of the estimator (in high

dimensions) as key motivators, the high dimensional statistics and signal processing

community has recently shifted focus on convex relaxations of nonconvex optimiza-

tion problems that arise from constraining the MLE. Popular methods involve pe-

nalizing a data-fit term (i.e., log-likelihood or loss function) to enforce constraints on

the structure of the estimator in some manner. Through proper regularization, con-

sistent estimators for the covariance can be obtained for high dimensional settings.

A good example is sparse inverse covariance matrix estimation, where a covariance

estimate with a sparse inverse is desired. In the multivariate Gaussian setting, this

can be written as the nonconvex constrained optimization problem:

min
Θ∈Sd++

tr(ΘŜn)− log det(Θ) subject to ‖vec(Θ)‖0 ≤ C

where C ≥ d controls the number of nonzero entries in the estimate and Ŝn is the

sample covariance matrix (SCM). Since the `0 norm often leads to combinatorially

difficult problems, the convex relaxation to `1 norm has been proposed and has been

shown to yield great theoretical and practical results. The approach is known as the

Graphical Lasso method [136, 5]:

(1.1) min
Θ∈Sd++

tr(ΘŜn)− log det(Θ) + λ|Θ|1

Efficient ways to optimize (1.1) have been proposed in the literature [52, 66] and

have worst case computational complexity O(d4). For reasonably sparse problems,
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the block coordinate method in [52] is roughly O(d3).

Gaussian graphical models encode the conditional independence relationships be-

tween random variables [80]. For the special case of jointly Gaussian distribution

on the observation Z ∈ Rd, zeros in the (i, j)th element of the precision matrix Θ0

are equivalent to having variables i, j conditionally independent given the rest of the

variables, corresponding to no edge joining the variables i and j in the underlying

graphical model [80]. Thus, the zero pattern of the inverse covariance Θ0 determines

the sparsity of the Gaussian graphical model. There has been much work related to

Gaussian graphical model estimation and model selection [99, 88, 5, 140, 79].

For variables with a natural ordering (i.e., in time series modeling), an estimator

based on maximum likelihood with `p regularization on the generalized autoregres-

sive parameters has been proposed that exploit the banded structure of the mod-

ified Cholesky decomposition of the precision matrix [67]. In addition, covariance

banding, thresholding and tapering techniques have also been proposed for the high

dimensional setting to exploit sparsity or banded forms on the covariance matrix

[13, 14, 104].

For data sets of spatiotemporal or multimodal character, Kronecker product mod-

els for the covariance have been proven useful for obtaining a reduction in the number

of model parameters and obtaining superior estimation and task performance than

other naive estimators (e.g. SCM) [131, 16, 137, 54, 39, 116, 114].

The high dimensional MSE convergence rate of Glasso was originally derived by

Rothman et. al [103]:

(1.2) ‖Θ̂Glasso,n −Θ0‖2
F = OP

(
(d+ sΘ0) log(d)

n

)
where

sΘ0 = card ({(i, j) : [Θ0]i,j 6= 0, i 6= j})
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is twice the number of edges in the underlying graph. The rate in (1.2) offers an

improvement over the sample covariance matrix (SCM) rate:

(1.3) ‖Θ̂n −Θ0‖2
F = OP

(
d2

n

)
It has been shown in [95, 97] that the SCM suffers in the high dimensional regime

from large eigenvalue spread. This phenomenon makes the SCM singular for d larger

than n. It was also shown that the estimation of eigenvectors of the SCM becomes

impossible if the ratio n/d is below a critical threshold.

While much is known about the convergence of the SCM and the Graphical Lasso

estimator, it is largely unknown what type of high dimensional convergence rates one

can expect from the Kronecker product covariance estimators. This is the subject

of Chapters 2 and 3; the inherent dimensionality of the Kronecker product structure

plays a dominant role in the high dimensional MSE convergence rate. The next

subsections summarize the main results that characterize the benefits of Kronecker

product-based covariance models.

1.2.2 Single Kronecker Product Covariance Model

Chapter 3 considers covariance estimation under the assumption that the data

are i.i.d. zero mean multivariate Gaussian with covariance:

(1.4) Σ0 = A0 ⊗B0

where A0 and B0 are p×p and q×q p.d. matrices, respectively. We let the precision

matrices be X0 = A−1
0 and Y0 = B−1

0 . The model (1.4) is relevant to channel

modeling for MIMO wireless communications, where A0 is a transmit covariance

matrix and B0 is a receive covariance matrix [131]. The model is also relevant to

other transposable models arising in recommendation systems like NetFlix and in

gene expression analysis [2].
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Using the KP constraint (1.4) under the maximum likelihood objective function,

we seek to solve the nonconvex optimization problem:

(1.5) J(X,Y) = tr((X⊗Y)Ŝn)− q log det(X)− p log det(Y)

where Ŝn is the SCM. Since the problem (1.5) is biconvex, a block coordinate ap-

proach is adopted [49, 130] that yields closed-form updates for X and Y, known as

the Flip-Flop (FF) algorithm.

Further, assuming the precision matrices X0 and Y0 are sparse, a pair of `1

penalties is added to the smooth objective (1.5):

(1.6) Jλ(X,Y) = J(X,Y) + λ̄X |X|1 + λ̄Y |Y|1.

where λ̄X and λ̄Y are nonnegative regularization parameters. Due to the biconvexity

of (1.6), a block coordinate descent method decomposes into first computing the

FF solution and then sparsifying the resulting precision matrix using the Glasso

framework. The resulting alternating minimization algorithm is called the KGlasso

algorithm [116, 114, 115].

It is proven that under mild conditions on the sample size n, the sequence of iter-

ations convergences to a local minimum of the objective function (1.6). In addition,

in Chapter 2 it is proven that for a fixed number of iterations, the MSE convergence

rate for the FF algorithm is [116, 115]:

(1.7) ‖ΘFF,n −Θ0‖2
F = OP

(
(p2 + q2) log max(p, q, n)

n

)
offering a dramatic improvement in MSE performance over the unstructured SCM

rate (1.3). The same rate holds for the estimation of the covariance matrix. We note

that the inherent dimensionality of the unstructured Kronecker product model is of

the order O(p2+q2)) since there are at most p(p+1)/2+q(q+1)/2 unknown covariance
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parameters that characterize the model. The MSE convergence rate in (1.7) implies

that to get an accurate covariance estimate, the sample size needs to scale in terms

of the inerent dimensionality of the KP model, i.e., n = Ω((p2 + q2) log max(p, q, n)).

For sparse precision matrices, i.e., sX0 = O(p), sY0 = O(q), the inherent dimen-

sionality of the Kronecker product model is of the order O(p+ q). In Chapter 2 it is

shown that KGLasso offers a better MSE convergence rate [116, 115] in the case of

sparse precision matrices:

(1.8) ‖ΘKGlasso,n −Θ0‖2
F = OP

(
(p+ q) log max(p, q, n)

n

)
Thus, for accurate covariance estimation under the sparse Kronecker product model,

n = Ω(p + q) samples suffice. KGLasso outperforms the Glasso estimator, the Flip-

Flop estimator and the SCM. The results are supported by several synthetic simu-

lations.

1.2.3 Series of Kronecker Products Covariance Model

There are applications where the model (1.4) does not suffice to model the data-

i.e., it is too rigid of a model. To this end, we consider a nontrivial extension of

the single Kronecker product model (1.4) and represent the covariance as a series of

Kronecker products of two lower dimensional factor matrices, where the number of

terms in the summation may depend on the factor dimensions:

(1.9) Σ0 ≈
r∑

γ=1

A0,γ ⊗B0,γ

where {A0,γ} are p × p linearly independent matrices and {B0,γ} are q × q linearly

independent matrices. We note 1 ≤ r ≤ r0 = min(p2, q2) and refer to r as the sepa-

ration rank. The subject of Chapter 3 is to obtain consistent covariance estimators

for the model (1.9) and derive tight MSE rates in high dimensions. We note that
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the coordinate descent techniques of Chapter 2 do not easily apply to the additive

model (1.9) since the log-determinant of a summation of bilinear forms is a difficult

term to deal with. Moreover, the issue of local minima is not well understood in

high dimensions, unlike in the separable structure of (1.4) (see Chapter II for more

details).

The model (1.9) has been applied to several applications. In spatiotemporal

MEG/EEG covariance modeling [41, 40, 15, 75], the model (1.9) is used as a general

model for the spatiotemporal covariance matrix of MEG residuals. Different terms

in the sum describe different independent phenomena related to background activity,

which can further be interpreted as generated by randomly distributed dipoles with

a certain spatial and temporal distribution. The model (1.9) also find concrete appli-

cations in synthetic aperture radar (SAR) data [110, 105]. In [110], each term in the

summation was used to recover a different scattering mechanism present in the sig-

nal. In that setting of polarimetric SAR imaging, the left Kronecker factors A0,γ are

polarimetric signatures and B0,γ are interferometric coherences and backscattered

powers of the corresponding scattering mechanism.

The model (1.9) is analogous to separable approximation of continuous functions

[12]. It is evocative of a type of low rank principal component decomposition where

the components are Kronecker products. Van Loan and Pitsianis [84] have derived

a correspondence that shows low separation rank is equivalent to low rank in a

permuted space defined by a reshaping operator R(·). Using the singular value

decomposition (SVD) as the main tool, Van Loan and Pitsianis [84] showed that any

pq × pq matrix can be written as an orthogonal expansion of Kronecker products.

Thus, it follows that any covariance matrix can be arbitrarily approximated by a

bilinear decomposition of the form (1.9).
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Recent work on high dimensional covariance estimation by Lounici [85] has shown

that a simple convex optimization program can be used to give optimal MSE rates

of convergence for low rank covariance matrices. Specifically, the singular value

thresholding (SVT) problem was proposed:

(1.10) Σ̂λ
n ∈ arg min

S∈Sd++

‖Ŝn − S‖2
F + λtr(S)

where λ > 0 is a regularization parameter. For λ = C ′‖Σ0‖2

√
r(Σ0) log(2d)

n
, where

C ′ > 0 is large enough, and n ≥ cr(Σ0) log2(max(2d, n)) for some constant c > 0

sufficiently large, Corollary 1 in [85] establishes a tight Frobenius norm error bound,

which states that with probability 1− 1
2d

:

‖Σ̂λ
n −Σ0‖2

F ≤ inf
S�0

{
‖Σ0 − S‖2

F + C‖Σ0‖2
2rank(S)

r(Σ0) log(2d)

n

}
where r(Σ0) = tr(Σ0)

‖Σ0‖2
≤ min{rank(Σ0), d} is the effective rank [85].

Motivated by the correspondence between Kronecker product series decomposi-

tion and low rank series decompositions [84], and the high dimensional rates obtained

by Lounici [85], we propose the permuted rank-penalized least-squares (PRLS) esti-

mator:

(1.11) Σ̂λ
n ∈ R−1

(
arg min

R
‖R(Ŝn)−R‖2

F + λ‖R‖∗
)

where R(·) is a permutation reshaping operator (see Chapter 3 for more details), Ŝn

is the SCM, and ‖ · ‖∗ is the nuclear norm. Since the nuclear norm of a matrix is

the sum of absolute values of singular values, it enforces low rank structure in the

permuted space; thus enforcing low separation rank in the original pq × pq domain.

The solution of the nuclear norm penalized least squares problem

(1.12) min
R
‖R(Ŝn)−R‖2

F + λ‖R‖∗
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is given by:

(1.13) R̂λ
n =

r0∑
j=1

(
σj(R̂n)− λ

2

)
+

ujv
T
j

Thus, the singular value spectrum is regularized through the nuclear norm penalty

in a way to enforce low separation rank solutions. The permuted singular value

thresholding problem (1.12) can be efficiently solved using fast optimization meth-

ods, without computing the full SVD [21, 22]. Although empirically observed to be

fast, the computational complexity of the algorithms presented in [21] and [22] is

unknown. Standard computation of the rank r SVD in the permuted space requires

on the order O(p2q2r) floating point operations. However, faster probabilistic-based

methods for truncated SVD take O(p2q2 log(r)) computational time [61]. Thus, the

computational complexity of solving (3.5) scales well with respect to the designed

separation rank.

The convex optimization problem (1.12) is a convex relaxation of the rank con-

strained least-squares problem:

(1.14) min
R:rank(R)≤r

‖R(Ŝn)−R‖2
F

The estimator arising from the solution of (1.14) will be called the covariance match-

ing (CM) estimator. Working with the convex optimization problem (1.12) instead

of (1.14) makes the MSE analysis more tractable and the solution can be efficiently

computed using machinery from convex optimization [18], without computing the

full SVD. Interestingly enough, even if the true model order r is known, the PRLS

estimator outperforms the CM estimator in the small sample regime [113, 112].

In Chapter III, the positive definiteness of the PRLS estimator Σ̂λ
n is established

under mild assumptions on the sample size n [113, 112]. In Chapter III, the high

dimensional MSE convergence rate associated with the PRLS estimator is shown to
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be [112]:

‖Σ̂λ
n −Σ0‖2

F ≤ inf
R:rank(R)≤r

‖R−R0‖2
F

+OP

(
r(p2 + q2 + log max(p, q, n))

n

)
(1.15)

The rate (1.15) shows a fundamental tradeoff between approximation error (i.e., the

error induced by model mismatch between the true covariance and the model) and

estimation error (i.e., the error due to finite sample size). For exactly separation

rank r covariances, in the large p, q, n regime where p2 + q2 + logM = O(n), the

convergence rate simplifies to:

‖Σ̂λ
n −Σ0‖2

F = OP

(
r(p2 + q2 + log max(p, q, n))

n

)
In this scenario, the PRLS rate (1.15) reflects the inherent dimensionality of the

model, which is of the order of O(r(p2 + q2)). Finally, the rate generalizes the high

dimensional rates obtained in Chapter II for the single Kronecker product model,

i.e., for r = 1.

For covariance models characterized by singular value spectra that have no sharp

cutoff at some k = r point, the approximation error will be nonzero for any r. In

some cases, the singular value spectrum of R0 = R(Σ0) may follow a power law

decay. In that case, we can hope to estimate the covariance up to some bounded

approximation error ε. To maintain this bounded approximation error as p, q →∞,

we need to ensure the approximation error infR:rank(R)≤r ‖R −R0‖2
F stays bounded

above by ε > 0 as p, q grow to infinity.

From least-squares approximation theory, we have the relation:

inf
R:rank(R)≤r

‖R−R0‖2
F =

r0∑
k=r+1

σ2
k(R0)
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where r0 = min(p2, q2) grows to infinity, which can make the approximation error

infinite. To ensure the sum remains finite as p, q → ∞, the singular values of the

permuted covariance R0 must decay to zero fast enough.

A nontrivial example where the approximation error can be explicitly controlled

is the case of block-Toeplitz matrices. Such covariance matrices naturally arise as

covariance matrices of multivariate stationary random processes y of dimension m

and take a block-form:

(1.16) Σ0︸︷︷︸
(N+1)m×(N+1)m

=



Σ(0) Σ(1) . . . Σ(N)

Σ(−1) Σ(0) . . . Σ(N − 1)

...
...

. . .
...

Σ(−N) Σ(−N + 1) . . . Σ(0)


where each submatrix is of size m × m. For a zero-mean vector process y =

{y(0), . . . ,y(N)}, the submatrices are given by Σ(τ) = E[y(0)y(τ)T ]. For con-

creteness, consider a block-Toeplitz p.d. matrix Σ0 of size (N + 1)m × (N + 1)m

1. Under a mild assumption on the off-diagonal decay of the covariance, namely

‖Σ(τ)‖2
F ≤ C ′u2|τ |q for all τ = −N, . . . , N and constant u ∈ (0, 1), the minimal

separation rank can be obtained as a function of the desired approximation accuracy

ε:

r ≥ log(pq/ε)

log(1/u)
.

Then, the PRLS algorithm estimates Σ0 up to an absolute tolerance ε ∈ (0, 1) with

convergence rate guarantee:

‖Σ̂λ
n −Σ0‖2

F ≤ ε+ C ′r
p2 + q2 + logM

n

for appropriately scaled regularization parameter λ > 0, and absolute constant C ′ >

0.
1Here, the factor dimensions are p = N + 1 and q = m.
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Several synthetic simulations are presented in Chapter III to show the benefits of

PRLS over the standard SCM, the SVT estimator of Lounici [85] (which is tailored

for low rank covariance matrices) and the covariance matching (CM) estimator (i.e,

the solution of (1.14)). The PRLS estimator also displayed superior performance on

a wind speed prediction task using real data collected by the NCEP [113, 112].

1.3 Centralized Collaborative Stochastic Search

1.3.1 Introduction

To locate a target quickly and efficiently, tools from stochastic search and optimal

control are used. A series of sequentially designed questions about the location of the

target are asked and noisy responses are obtained that are used to refine the estimate

of the target location. The sequential aspect of the problem is key to speeding up

the location estimation of targets, and this framework can be applied to various

target localization applications. In our framework, asking a set of questions in the

collaborative setting requires, the mth sensor to collect N data samples from a region

A
(m)
n and performing a detection task that yields a noisy response about the presence

of a target within that region A
(m)
n .

The roots of the techniques for optimal query design lie in stochastic control

[96, 11]. Applications of this methodology include active learning [108, 31, 29, 30]

and sequential experimental design [42, 132]. The adaptation of decision increases

efficiency at the expense of cost for finding the optimal decision policy. More specifi-

cally, for Bayesian formulations, it is known that the Bayes-optimal policy that arises

is the solution to a partially observed Markov decision process (POMDP) which is

described by a dynamic programming recursion. While sometimes it is possible to

obtain explicit solutions to this recursion [56, 10], in many cases it is intractable.

As a result, when the globally optimal policy is too difficult to compute, a one-step
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lookahead heuristic is often used as a greedy approximation [138].

A key motivator for our work is the paper by Jedynak et al [73], where a Bayesian

formulation is considered for sequential estimation of the target location. The prob-

lem was formulated in the context of a 20 questions game and it was shown that the

greedy policy is Bayes-optimal under the minimum expected entropy criterion. In

addition, under noisy responses with a symmetric noise model, bisecting the poste-

rior yields globally optimal policies after a finite number of questions. This posterior

bisection policy has been previously known as the probabilistic bisection policy, or

Horstein’s scheme, and has its roots in information theory [65], where sequential en-

coding of a message through a binary symmetric channel (BSC) was considered. The

origins of 20 questions lie in information theory and binary search [35]. The binary

search procedure was generalized in [92], where under some incoherence conditions,

the generalized binary search (GBS) can learn a ”correct” binary-valued function

through a sequence of O(logN) queries in a space of N hypothesized functions. This

method was also applied to the problem of learning halfspaces in machine learning.

Another related problem to the stochastic target search problem is stochastic root-

finding. In this problem, the target is the zero of a decreasing function f , and the

task is to locate the root of f given noisy observations of the function. The controller

chooses the query points x1, x2, . . . and observes noisy versions of f(x1), f(x2), . . . .

The queries in this setting are questions of the form ‘Is f(x) < 0?’, and rates of

convergence are well known. In [125], it was shown that under mild conditions on

the noisy response models, a probabilistic bisection method converges to the root of

f almost surely. In addition, for the constant error rate case, it was also shown that

it converges exponentially fast; contrary to the best stochastic approximation rate

of n−1/2 [100, 78].
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All the above mentioned works consider the single player case-i.e., there is one

query to be designed at each time instant and one noisy response on the target’s

location is obtained. Next, let us consider the collaborative setting. In this setting,

the joint controller sequentially selects a set of queries for the M players and uses the

noisy responses to formulate the next set of questions. The questions are chosen such

that an information criterion is maximized in order to extract as much information as

possible about the target from the players. Chapter IV addresses this design problem

for the criterion of minimizing expected entropy after asking n questions (i.e., finite

horizon); with entropy quantifying the uncertainty in the target’s location.

An application of this collaborative setting is human-in-the-loop active learning.

For simplicity, a machine (player 1) and a human (player 2) may be available to

collaborate in order to learn a target’s location more efficiently. At each time instant,

the queries have to be chosen such that the value of adding the human in the loop is

maximized. The human-machine interaction can be modeled as a noisy collaborative

20 questions game and the design of queries can be addressed using the minimum

expected entropy formulation (see Chapter IV).

1.3.2 Structure of Jointly Optimal Queries

To quantitatively describe the structure of optimal policies, the criterion of mini-

mum expected entropy is adopted as in Jedynak et al [73]. In [73], a noisy oracle is

repeatedly queried about the presence of a target X∗ in a measurable set An ⊆ Rd.

At time n, the noisy response Yn+1 is a probabilistic function of the indicator function

Zn = I(X∗ ∈ An) 2. Starting with a prior distribution p0(·) on the target’s location,

the objective is to minimize the expected entropy of the distribution after asking N

2The channel is also assumed to be memoryless and time-invariant.
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questions:

(1.17) inf
π
Eπ [H(pN)]

where π = (π0, π1, . . . ) denotes the policy and the entropy is the standard differen-

tial entropy [35]. The posterior distribution pN(·) is the distribution of the target

X∗ given the history of the previous questions {An}N−1
n=0 and responses {Yn+1}N−1

n=0 .

The median of the posterior distribution pN(·) can be used to estimate the target

location after N questions. It was shown that the bisection policy is optimal under

the minimum entropy criterion. Assuming the noisy channel is a binary symmetric

channel (BSC), all optimal policies are characterized by:

(1.18) Pn(An) :=

∫
An

pn(x)dx = 1/2

In the collaborative setting, M collaborating players can be asked questions at

each time instant n. The mth player’s query at time n is of the form ‘Does X∗ lie in

the region A
(m)
n ⊆ Rd?’. These queries can be summarized as binary variables Z

(m)
n =

I(X∗ ∈ A(m)
n ) and themth player yields a noisy response Y

(m)
n+1 ∈ {0, 1}. for simplicity,

let us define the M -tuples Yn+1 = (Y
(1)
n+1, . . . , Y

(M)
n+1 ) and An = {A(1)

n , . . . , A
(M)
n }.

Under the assumptions of conditional independence of players and binary sym-

metric channels (BSC) for each player (with crossover probabilities εm ∈ (0, 1/2)),

the structure of the optimal policy can be fully characterized. Define the set of

subsets of Rd:

γ(A(1), . . . , A(M)) =

{
M⋂
m=1

(A(m))im : im ∈ {0, 1}

}

where (A)0 := Ac and (A)1 := A. The cardinality of this set of subsets is 2M and

these subsets partition Rd. All optimal policies under this criterion must satisfy the
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following set of equalities:

(1.19) Pn(R) =

∫
R

pn(x)dx = 2−M , ∀R ∈ γ(An)

As in Jedynak et al [73], the one-step lookahead policy is the Bayes-optimal policy for

the multisensor setup also. At each time instant, the expected entropy decreases by

the sum of the capacities of all BSC’s-i.e., C =
∑M

m=1C(εm) [119]. Surprisingly, de-

spite the fact that all players are conditionally independent, the joint policy does not

decouple into separate single player optimal policies. This is analogous to the non-

separability of the optimal vector-quantizer in source coding even for independent

sources [55].

According to the optimality condition (1.19), jointly optimal policies require over-

lapping, but non-identical queries. Thus, there is a nontrivial structure associated

with the optimal set of questions. This structure becomes increasingly more intricate

as the number of players M grows.

1.3.3 Equivalence Principle

Although the structure of the optimal policies is explicitly given by (1.19), the

problem of designing optimal queries becomes intractable as the dimensions of the

target d or number of players M become large.

As an alternative, a separable sequential coordinate-by-coordinate design is intro-

duced: ask an optimal query to the first player, then update posterior density and

ask an optimal query to the second player, and so on. The optimal query of each

player is given by the probabilistic bisection policy [73]. This sequential bisection

scheme has access to a more refined filtration (e.g., since the query and response

of the first player are used to design the query of the second player), but requires

more intermediate posterior updates. In Chapter IV, it is shown that this separable
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scheme achieves the same expected entropy loss as the joint optimal design.

Thus, the complexity is transferred from the joint controller design to the posterior

updates, since the posterior density needs to be re-updated after obtaining each

player’s response for the separable bisection scheme. The separable scheme effectively

allows for an implementation of the joint scheme, without any performance loss on

average.

1.3.4 Performance Bounds

The value of the 20 questions game is measured by the expected entropy reduction,

which is the sum of capacities of all players. This quantity provides a fundamental

limit of the MSE performance of the sequential Bayesian estimator [119]. Assuming

H(p0) is finite, the MSE of the joint or sequential query policies satisfies:

(1.20)
K

2πe
de−2nC/d ≤ E[‖ X∗ −Xn ‖2

2]

where K = e2H(p0) and Xn is the posterior median 3. The expected entropy loss per

iteration is C =
∑

mC(εm).

The performance analysis of the bisection method is difficult primarily due to the

continuous nature of the posterior [30]. A discretized version of the probabilistic bi-

section method was proposed in [20], using the Burnashev-Zingagirov (BZ) algorithm,

which imposes a piecewise constant structure on the posterior. Using this framework,

in Chapter IV, an upper bound on the MSE for the case of one-dimensional targets

is obtained for the separable scheme:

(1.21) E[(X∗ − X̂n)2] ≤ (2−2/3 + 21/3) exp

(
−2

3
nC̄

)
where C̄ =

∑M
m=1 C̄(εm), C̄(ε) = 1/2 −

√
ε(1− ε) is a measure of channel quality

different from the capacity. The combination of the lower bound (1.20) and the upper
3For general dimensions d ≥ 1, the posterior median Xn is defined as Pn([0, Xn,1]× · · · × [0, Xn,d]) = 1/2.
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bound (1.21) imply that the MSE converges to zero at an exponential rate with rate

constant between 2C and 2/3C̄. Almost sure convergence is also shown for both the

discretized-space and continuous-space (standard) versions of the separable scheme.

As an application, in Chapter IV, this methodology is applied to different noisy

response models, e.g., human-like error models in which the human is more prone

to making errors as the estimate Xn gets closer to the target X∗. It is shown that

under the human error model, the value of including the human-in-the-loop for a

sequential target localization task provides the largest gain in the beginning few

question iterations and the additional contribution of the human decreases as the

number of iterations grow to infinity. Synthetic simulations are also presented to

validate the analysis.

1.3.5 Unknown Error Probabilities

We also extend the equivalence principle between the joint optimal query gain

and the sequential bisection query gain to the case of unknown error probabilities.

In this setting, the probabilistic bisection algorithm cannot be directly used since the

Bayesian update is not well-defined. In the most generic setting of having unknown

εm ∈ (0, 1/2), we propose a joint estimation scheme to estimate the target X∗ and

the error probabilities ε = (ε1, . . . , εM).

We consider the evolution of the joint posterior distribution of the joint random

vector (X∗, ε) in time given the designed queries and noisy responses, because the

error probabilities are coupled with the target through the Bayesian update. In this

case, we prove in [117, 118] that the maximum entropy loss that can be achieved

by the joint optimal design at time n is the expected sum of the capacities of the

players conditioned on the information up to the current time instant n. This implies

that the entropy loss is time-varying across iterations. The equivalence principle
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states that the joint and sequential schemes are equivalent in the sense that the

maximum entropy loss for each scheme is the sum of the capacities conditioned on

the information available at each time instant (or at every set of sub-instants for the

sequential scheme).

Since the maximum entropy loss is time-varying, we also consider a sensor se-

lection scheme where at each time instant, the sensor with the highest information

gain is selected. Finally, it is shown [117, 118] that even in the one-dimensional case

with one sensor, for the setup of unknown probabilities, the optimal query policy

is not equivalent to the (marginalized with respect to the noise) probabilistic bi-

section policy. Specifically, the optimal query policy can still be determined by a

one-dimensional optimization (similar to the median search) as the solution xn to:

(1.22) max
x∈[0,1]

hB(g1,n(x))

where hB(·) is the binary entropy function [35] and g1,n(x) is a function dependent

on the posterior distribution pn(x, ε) given by

g1,n(x) =

∫ x

0

µn(x′)dx′ +

∫ 1

x

(pn(x′)− µn(x′))dx′

µn(x′) =

∫ 1/2

ε=0

εpn(x′, ε)dε

pn(x′) =

∫ 1/2

ε=0

pn(x′, ε)dε

The solution to (1.22) is clearly not equivalent to the median of the marginalized

distribution pn(x).

Simulations are also provided to illustrate the effectiveness of the methodology. It

is empirically observed that the target estimation performance continues to be fast,

robust to the simultaneous learning of the sensor error probabilities.
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1.4 Decentralized Collaborative Stochastic Search

1.4.1 Introduction

Due to limited resources (e.g. power, bandwidth, hardware constraints), environ-

mental factors (e.g. occlusions, geographic distance) and synchronization issues, it

may be impractical to assume that all sensors can reliably transmit information to

a fusion center at each time instant. In the decentralized setting, there is no fusion

center available for centralized sequential Bayesian estimation of the target location

as studied in [118].

To locate a target in a decentralized manner implies that sensors have to collabo-

rate between each other in order to achieve the common objective of estimating the

target location. In this setting, each sensor in the network has access to its own local

belief (i.e., distribution) on the target location. Due to finite bandwidth, power,

delay constraints and other environmental factors, sensors cannot communicate with

all other sensors in the network, but may be able to communicate reliably with a

few sensors close to them. This topology constraint can be described mathematically

by a graph G = (N , E), where the vertex set N = {1, . . . ,M} indexes the sensors

in the network and the edge set E contains all allowable directed links of informa-

tion. Sharing the beliefs with its neighbors using a linear combination and repeating

indefinitely may lead to a common limiting belief across all sensors in a network if

convergence occurs. However, the limiting belief may not converge to the true target

location. Thus, new information needs to be injected into the system in order to

guide the beliefs to a unique belief centered at the true target location X∗.

The basis of collaboration for a common task can be traced back to the early work

of Tsitsiklis [121] on distributed estimation and detection. Works on distributed

averaging consensus have followed since in fields including the social sciences and
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engineering. Althrough consensus is usually presented in the form of distributed

averaging, consensus has broad applications including distributed optimization [121,

122], load-balancing [37] and distributed detection [106].

Consensus has appeared in the literature under different facets, including gossip

algorithms and distributed averaging. Gossip algorithms are being recently studied

primarily due to their robustness and flexibility; when link failures or packet losses

occur randomly due to the unreliable and/or dynamic nature of wireless channels, the

distributed information schemes may still converge, while centralized counterparts

may fail or be impractical to implement. Even under specialized routing schemes to

the fusion center, aggregating data towards a fusion center may require significant

overhead (e.g. to maintain routes) causing communications bottlenecks and creates

a single source of failure. Gossip algorithms require no specialized routing protocols;

at each iteration, subsets of nodes exchange information and local updates are made

at the receiving agents.

One of the first works that studied the convergence rate of these scheme in detail

is the randomized gossip formulation presented by Boyd et al. [17], in which it

was shown that the convergence rate of the averaging problem under randomized

gossip (i.e., choose a pair of agents in the graph and do averaging) is controlled by

the second largest eigenvalue of a doubly stochastic matrix defining the algorithm,

making evident a natural relation between mixing times of random walks on the

graph defined by a matrix of transition probabilities and averaging time of a gossip

algorithm. One of the drawbacks of randomized gossip on random graphs was slow

convergence. Further works, including geographic gossip [46], where nodes pair up

with geographically distant nodes and exhange informaiton via multihop routing

methods, and randomized path averaging [8], where routing nodes contributed their
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own estimates along the way, requiring only a number of tranismission on ther order

of the number of nodes in the network, offered faster convergence rates.

The survey paper by Dimakis et al. [45] reviews applications of gossip algorithms

in sensor networks used for distributed estimation, source localization and compres-

sion. Recent work has also extended randomized gossip method to broadcast setting

for consensus [3]. Futher, for the problem of gossip distributed estimation for linear

parameter estimation, it was shown that under appropriate conditions on the network

structure and observation models, the distributed estimator achieves the same per-

formance as the best centralized linear estimator (in terms of asymptotic variance)

[77]. Recently in [91], a new consensus scheme called hierarchical averaging was

proposed to improve tradeoffs between resource consumption and quantization error

for wireless links. Our work differs from this literature as the agents’ observations

are controlled through the query-response models, since the queries are functions of

agents’ local beliefs (and thus time-varying).

Another related large body of literature includes opinion dynamics over networks,

spanning engineering to social sciences. The recent advances in sensor networks, so-

cial networks, etc. have sparked interest in convergence-related issues over networks

with different assumptions on the observation models of the agents and network

structure. There have been works proposed on learning over networks when agents

follow simple updates to learn parameters including the works of DeGroot [43], Golub

and Jackson [58] and Acemoglu et al. [1]. In these simple models, agents have an

initial belief on the unknown state and agents aggregate this information in the pres-

ence of biases. Problems of agent coordination have been studied in detail in the

distributed control literature [69, 89], where conditions for reaching consensus were

studied for networks with changing topologies and time-dependent communication
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links. In addition, problems of distributed estimation and detection have been stud-

ied in engineering by Tsitsiklis [121], where the problem of convergence to a common

posterior (about a common unknown parameter) was studied under a belief exchnage

scheme over a network with possible communication delays. In this early work, the

models considered assumed that the network and observation structuers of all agents

is common knowledge across all agents. This strong assumption will be abandoned

in our work.

In our methodology, each agent acts greedily as an individual; he only knows

his own error probability εm and the query is only a function of his own local be-

lief. Although the estimation scheme is not fully Bayesian, this decentralized model

probvides a tractable mathematical model for studying the evolution of dynamics of

agents that repeately make new measurements based on designed queries in addition

to observing beliefs of their neighbors.

1.4.2 Intractability of a fully Bayesian decentralized approach

The difficulty with the fully Bayesian approach stem from limited observability

(i.e., observations of an agent are not observable by other agents) combined with

the interactions of beliefs spread around the network. These two factors render

the Bayesian approach impractical. In scenarios where agents have only partial

information on the networks structure and the probability distribution of the signals

observed by other agents (i.e., the observation densities of neighbors), the Bayesian

approach becomes more complicated because agents would need to form and update

beliefs on the states of the while, in addition to the networks struture and the rest

of the agents’ signal structures. This would increase the computational burden of

the estimation scheme considerably, and given the assumptions that agents are naive

(i.e., may act greedily and afford minimal computation), the scheme would simply
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be impractical. Even if the network structure is known, agents would still need to

update beliefs on the information of every other agent in the network, given only the

neighbors’ beliefs at each iteration. These complexities of a fully Bayesian scheme

make it prohibitive, except for a few special cases [90] which do not apply to our

decentralized estimation problem driven by local active queries and responses. Thus,

Bayesian social learning has focused on simple networks [53, 34].

A key motivator for our semi-Bayesian (or non-Bayesian) approach is the recent

work of Jadbabaie et al. [70]. In [70], it was shown that under a simple non-

Bayesian scheme, all agents in the network asymptotically learn the true state of

the world (i.e., the true parameter) even though agents and their neighbors may

not have enough information to infer the true parameter by themselves. Contrary

to this line of thought, in our problem, each agent in the network eventually has

enough information to estimate the target X∗ up to an arbitrary accuracy4. The

surprising contribution is that consistency is maintained globally across all agents in

the network under a non-Bayesian learning rule. In addition, in low signal-to-noise

ratio settings, local belief sharing improves estimation performance.

1.4.3 Decentralized Estimation

Define the neighborhood of sensor m as Nm = {m′ ∈ N : (m′,m) ∈ E}. The

weights {ai,j} for weighing the neighbor’s beliefs at each iteration in the algorithm

are summarized in a row-stochastic matrix A.

Starting with a collection of prior distributions pi,0(·) on X , the objective is to

iteratively refine these distributions to reach global consensus towards the true tar-

get location across the network through repeated querying and information sharing.

Motivated by the optimality of the bisection rule for symmetric channels proved in

4This follows from the strong consistency results recently derived for the one player setting in [126].
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[73] and the simple non-Bayesian learning rule from [70], the decentralized estimation

algorithm consists of two stages; at the beginning of each time step n, each agent m

designs a query Am,n solely as a function of its local belief pn,m(·) and yields a noisy

response to this query, say Ym,n+1. The semi-Bayesian scheme proposed consists of:

(1) first, each agent forms the Bayesian posterior given his response Ym,n+1 as an in-

termediate step, and (2) second, updates his belief to the convex combination of his

Bayesian posterior and his neighbors’ beliefs. This can be described mathematically

as, for each agent m ∈ N :

(1.23) pm,n+1(x) = am,mpm,n(x)
lm(Ym,n+1|x,Am,n)

Zm,n(Ym,n+1)
+
∑

m′∈Nm

am,m′pm′,n(x), x ∈ X

where lm(Ym,n+1|x,An,m) is the observation likelihood which is a function of the

controls (i.e., query region) An,m. The denominator Zm,n(·) is a normalizing factor

to ensure that p̃m,n(x) := pm,n(x) lm(Ym,n+1|x,An,m)

Zm,n(Ym,n+1)
is a valid density over X .

1.4.4 Asymptotic Convergence of Beliefs

In [120], it is proven that in strongly connected networks (i.e., the matrices A

and P are irreducible), the deterministic and randomized decentralized estimation

schemes motivated by a semi-Bayesian approach enables successful aggregation of

dispersed information. Although agents act greedily and the scheme is not fully

Bayesian, the controlled dynamical system (1.23) is shown to converge to a common

limiting belief centered at the true target location.

While similar results on non-Bayesian asymptotic learning have been derived in

[70], our work differs significantly because (1) we consider a continuous-valued tar-

get space, (2) we make no assumptions on the collective identifiability of the true

state of the world (i.e., the true target location), and (3) we consider observations

that are based on active queries and responses of each agent. We remark that in
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[70], the strong connectivity assumption on the network was made in order to prove

convergence of the densities towards the true state of the world. In the absense of

this assumption, agents in each strongly connected component of the network will

asymptotically reach consensus to the true belief. Thus, this is a mild assumption.

The first principal result in [120] shows that consensus is achieved over intervals

of the domain X = [0, 1]. For any pair of agents (i, j) in the network, it is shown

that for any B = [0, b], 0 ≤ b ≤ 1:

max
i

Pi,t(B)−min
i

Pi,t(B)
p.→ 0

as t→∞.

The second principal result in [120] is a consistency result for the target estimates

and characterizes the structure of the limiting belief. Specifically, it is shown that

for any interval B = [0, b]:

Pi,t([0, b])
p.→

 0 , b < X∗

1 , b > X∗

Thus, asymptotically as t → ∞ all the mass is concentrated on the point x = X∗

(i.e. a Dirac measure). This further implies consistency of the estimates to X∗.

Simulations are also provided to show that the proposed methodology is valid

under different graph topologies.
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CHAPTER II

Kronecker Graphical Lasso

This chapter studies iteration convergence of Kronecker graphical lasso (KGLasso)

algorithms for estimating the covariance of an i.i.d. Gaussian random sample un-

der a sparse Kronecker-product covariance model and MSE convergence rates. The

KGlasso model, originally called the transposable regularized covariance model by

Allen et al [2], implements a pair of `1 penalties on each Kronecker factor to enforce

sparsity in the covariance estimator. The KGlasso algorithm generalizes Glasso,

introduced by Yuan and Lin [136] and Banerjee et al [5], to estimate covariances

having Kronecker product form. It also generalizes the unpenalized ML flip-flop

(FF) algorithm of Dutilleul [49] and Werner et al [130] to estimation of sparse Kro-

necker factors. We establish that the KGlasso iterates converge pointwise to a local

maximum of the penalized likelihood function. We derive high dimensional rates

of convergence to the true covariance as both the number of samples and the num-

ber of variables go to infinity. Our results establish that KGlasso has significantly

faster asymptotic convergence than Glasso and FF. Simulations are presented that

validate the results of our analysis. For example, for a sparse 10, 000 × 10, 000 co-

variance matrix equal to the Kronecker product of two 100× 100 matrices, the root

mean squared error of the inverse covariance estimate using FF is 2 times larger than

38
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that obtainable using KGlasso for sample size of n = 100.

2.1 Introduction

Covariance estimation is a problem of great interest in many different disciplines,

including machine learning, signal processing, economics and bioinformatics. In

many applications the number of variables is very large, e.g., in the tens or hundreds

of thousands, leading to a number of covariance parameters that greatly exceeds the

number of observations. To address this problem constraints are frequently imposed

on the covariance to reduce the number of parameters in the model. For example,

the Glasso model of Yuan and Lin [136] and Banerjee et al [5] imposes sparsity

constraints on the covariance. The Kronecker product model of Dutilleul [49] and

Werner et al [130] assumes that the covariance can be represented as the Kronecker

product of two lower dimensional covariance matrices. The transposable regularized

covariance model of Allen et al [2] imposes a combination of sparsity and Kronecker

product form on the covariance. When there is no missing data, an extension of

the alternating optimization algorithm of [130], that the authors call the flip flop

(FF) algorithm, can be applied to estimate the parameters of this combined sparse

and Kronecker product model. In this chapter, we call this extension the Kronecker

Glasso (KGlasso) and we analyze pointwise convergence (Theorem II.2) and MSE

convergence (Lemma II.7 and Thm. II.13) analyze convergence of the algorithm in

the high dimensional (d� n) setting.

We adopt the notation of [130] and assume that there are pf variables whose

covariance Σ0 has the separable positive definite Kronecker product representation:

(2.1) Σ0 = A0 ⊗B0

where A0 is a p × p positive definite matrix and B0 is an f × f positive definite
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matrix. When the variables are multivariate Gaussian with covariance following the

Kronecker product model (2.1) the variables are said to follow a matrix normal dis-

tribution [38, 49, 60]. As shown by [131] the Kronecker product model is relevant

to channel modeling for MIMO wireless communications, where A0 is a transmit

covariance matrix and B0 is a receive covariance matrix. The model has been ap-

plied to many other domains including: geostatistics [36], genomics [134], multi-task

learning [16], face recognition [137], recommendation systems [2] and collaborative

filtering [135]. The Kronecker product model (2.1) can easily be generalized to the

k-fold case, where Σ0 = A1 ⊗A2 ⊗ · · · ⊗Ak.

When there are n i.i.d. measurements from a matrix normal distribution with

covariance factorization (2.1), the maximum likelihood (ML) estimator of Σ0 can be

formulated [86]. While the ML estimator has no known closed-form solution, an ap-

proximation to the solution can be iteratively computed via an alternating algorithm

[49, 86] called the flip-flop (FF) algorithm in [130]. As compared to the standard sat-

urated (unstructured) covariance model, the number of unknown parameters in (2.1)

is reduced from order Θ(p2f 2) to order Θ(p2) + Θ(f 2). This results in a significant

reduction in estimator mean squared error (MSE) and in the computational complex-

ity of the maximum likelihood (ML) covariance estimator. This chapter establishes

that further reductions MSE are achievable when the inverse of the covariance (2.1)

is known to be sparse, i.e., the measurements obey a Kronecker structured Gaussian

graphical model.

The graphical lasso (Glasso) estimator was originally proposed in [136, 5] for

estimating a sparse inverse covariance, also called the precision matrix, under an

i.i.d. Gaussian observation model. An algorithm for efficiently solving the nonsmooth

optimization problem that arises in the Glasso estimator, based on ideas from [5], was
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proposed in [52]. Glasso has been applied to the time-varying coefficients setting in

Zhou et al [139] using the kernel estimator for covariances at a target time. Rothman

et al [103] derived high dimensional convergence rates for a slight variant of Glasso,

i.e., only the off-diagonal entries of the estimated precision matrix were penalized

using an `1-penalty. The high dimensional convergence rate of Glasso was established

by Ravikumar et al [99]. This chapter extends their analysis to the case that the

covariance has the Kronecker structure of (2.1) and shows that significantly higher

rates of convergence are achievable.

The main contribution of this chapter is the derivation of tight high-dimensional

MSE convergence rates for KGlasso as n, p and f go to infinity. When both Kro-

necker factors are sparse, it is shown that KGlasso strictly outperforms FF and

Glasso in terms of MSE convergence rate. More specifically, we show KGlasso

achieves a convergence rate of OP

(
(p+f) log max(p,f,n)

n

)
and FF achieves a rate of

OP

(
(p2+f2) log max(p,f,n)

n

)
as n→∞, while it is known [103, 139] that Glasso achieves

a rate of OP

(
(pf+s) log max(p,f,n)

n

)
, where s denotes the number of off-diagonal nonzero

elements in the true precision matrix Θ0. Simulations show that the performance

improvements predicted by the high-dimensional analysis continue to hold for small

sample size and moderate matrix dimension. For the example studied in Sec. 2.9

the empirical MSE of KGlasso is significantly lower than that of Glasso and FF for

p = f = 100 over the range of n from 10 to 100.

The starting point for the MSE convergence analysis is the large-sample analysis

of the FF algorithm (Thm. 1 in [130]). The KGlasso convergence proof uses a

novel large deviation inequality (Lemma II.7) that shows that the dimension of one

estimated Kronecker factor, say A, acts as a multiplier on the number of independent

samples when performing inference on the other factor B. This result is then used
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to obtain tight MSE rates in terms of Frobenius norm error between the KGlasso

estimated matrix and the ground truth. The asymptotic MSE convergence analysis is

useful since it can be used to guide the selection of sparsity regularization parameters

and to determine minimum sample size requirements.

Independently, in the related work of Yin and Li [134], published after submission

of our paper [116] for publication, high-dimensional MSE bounds for the same matrix

normal estimation problem were considered. However, our MSE bounds are tighter

than the bounds given in Yin and Li. In particular, neglecting terms of order log(pf),

our bounds are of order p+f as compared to Yin and Li’s bounds of order pf , which

is significantly weaker for large p, f . We obtain improved bounds due to the use

of a tighter concentration inequality, established in Lemma II.7. While our paper

[116] was being reviewed similar results to Thm. II.13 were published, but using a

different method of proof, by Leng and Tang [83].

2.2 Notation

For a square matrix M, define |M|1 = ‖vec(M)‖1 and |M|∞ = ‖vec(M)‖∞,

where vec(M) denotes the vectorized form of M (concatenation of columns into a

vector). ‖M‖2 is the spectral norm of M. Mi,j and [M]i,j are the (i, j)th element

of M. Let the inverse transformation (from a vector to a matrix) be defined as:

vec−1(x) = X, where x = vec(X). Define the pf × pf permutation operator Kp,f

such that Kp,fvec(N) = vec(NT ) for any p×f matrix N. For a symmetric matrix M,

λ(M) will denote the vector of real eigenvalues of M and define λmax(M) = ‖M‖2 =

maxλi(M) for p.d. symmetric matrix, and λmin(M) = minλi(M). Define the

sparsity parameter associated with M as sM = card({(i1, i2) : [M]i1,i2 6= 0, i1 6= i2}).

Let κ(M) := λmax(M)
λmin(M)

denote the condition number of a symmetric matrix M.
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For a matrix M of size pf × pf , let {M(i, j)}pi,j=1 denote its f × f block sub-

matrices, where each block submatrix is M(i, j) = [M](i−1)f+1:if,(j−1)f+1:jf . Also

let {M(k, l)}fk,l=1 denote the p × p block submatrices of the permuted matrix M =

KT
p,fMKp,f .

Define the set of symmetric matrices Sp = {A ∈ Rp×p : A = AT}, the set of

symmetric positive semidefinite (psd) matrices Sp+, and the set of symmetric positive

definite (pd) matrices Sp++. Id is a d× d identity matrix. It can be shown that Sp++

is a convex set, but is not closed [18]. Note that Sp++ is simply the interior of the

closed convex cone Sp+.

Statistical convergence rates will be denoted by the OP (·) notation, which is de-

fined as follows. Consider a sequence of real random variables {Xn}n∈N defined on a

probability space (Ω,F , P ) and a deterministic (positive) sequence of reals {bn}n∈N.

By Xn = OP (1) is meant: supn∈N Pr(|Xn| > K) → 0 as K → ∞, where Xn is a

sequence indexed by n, for fixed p, f . The notation Xn = OP (bn) is equivalent to

Xn
bn

= OP (1). By Xn = op(1) is meant Pr(|Xn| > ε) → 0 as n → ∞ for any ε > 0.

By λn � bn is meant c1 ≤ λn
bn
≤ c2 for all n, where c1, c2 > 0 are absolute constants.

The asymptotic notation an = O(bn) means lim supn→∞ |anbn | ≤ C for some constant

C > 0, while cn = Ω(dn) means lim infn→∞ | cndn | ≥ C ′ for some constant C ′ > 0.

2.3 Graphical Lasso Framework

For simplicity, we assume the number of Kronecker components is k = 2. Available

are n i.i.d. multivariate Gaussian observations {zt}nt=1, where zt ∈ Rpf , having zero-

mean and covariance equal to Σ = A0 ⊗ B0. Then, ignoring irrelevant constants,

the log-likelihood l(Σ) is:

(2.2) l(Σ) = log det(Σ−1)− tr(Σ−1Ŝn),
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where Σ is the positive definite covariance matrix and Ŝn = 1
n

∑n
t=1 ztz

T
t is the sample

covariance matrix. Recent work [5, 52, 99] has considered `1-penalized maximum

likelihood estimators for the saturated model where Σ belongs to the unrestricted

cone of positive definite matrices. These estimators are known as graphical lasso

(Glasso) estimators and are obtained as the solution to the `1-penalized minimization

problem:

(2.3) Σ̂n ∈ arg min
Σ∈Sp++

{−l(Σ) + λ|Σ−1|1},

where λ ≥ 0 is a regularization parameter. If λ > 0 and Ŝn is positive definite, then

Σ̂n in (2.3) is the unique minimizer.

A fast iterative algorithm, based on a block coordinate descent approach, exhibit-

ing a computational complexity O((pf)4), was developed in [52] to solve the convex

program (2.3). A fast algorithm, based on an active-set second-order method, with

the same computational complexity was developed in [66] to solve the convex pro-

gram. The Glasso mapping (2.3) is written as G(·, λ) : Sd → Sd,

(2.4) G(T, λ) = arg min
Θ∈Sd++

{
tr(ΘT)− log det(Θ) + λ|Θ|1

}
.

Under the assumption λ �
√

log(pf)
n

solution of (2.3) was shown to have high dimen-

sional convergence rate [103, 139]:

(2.5) ‖G(Ŝn, λ)−Θ0‖F = OP

(√
(pf + s) log(pf)

n

)

where s is an upper bound on the number of non-zero off-diagonal elements of Θ0.

When s = O(pf), this rate is better than that achieved in the case of the standard

sample covariance estimator (λ = 0):

(2.6) ‖Ŝn −Σ0‖F = OP

(√
p2f 2

n

)
.
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2.4 Kronecker Graphical Lasso

Let Σ0 = A0 ⊗ B0 denote the true covariance matrix, where A0 = X−1
0 and

B0 = Y−1
0 are the true Kronecker factors. Let Ainit denote an initial guess of

A0 = X−1
0 .

Define J(X,Y) as the negative log-likelihood

(2.7) J(X,Y) = tr((X⊗Y)Ŝn)− f log det(X)− p log det(Y)

Although the objective function (2.7) is not jointly convex in (X,Y), it is biconvex.

This motivates the flip-flop algorithm [49, 130]. Adapting the notation from [130],

define the mappings Â(·), B̂(·):

Â(B)︸ ︷︷ ︸
p×p

=
1

f

f∑
k,l=1

[B−1]k,lŜn(l, k),(2.8)

B̂(A)︸ ︷︷ ︸
f×f

=
1

p

p∑
i,j=1

[A−1]i,jŜn(j, i),(2.9)

where Ŝn = KT
p,f ŜnKp,f (see Sec. 3.2 for definition of Kp,f ). For fixed B ∈ Sf++, Â(B)

in (2.8) is the minimizer of J(A−1,B−1) over A ∈ Sp++. A similar interpretation holds

for (2.9). The flip-flop algorithm starts with some arbitrary p.d. matrix Ainit and

computes B using (2.9), then A using (2.8), and repeats until convergence. This

algorithm does not account for sparsity.

If Θ0 = X0 ⊗Y0 is a sparse matrix, which implies that at least one of X0 or Y0

is sparse, one can penalize the outputs of the flip-flop algorithm and minimize

(2.10) Jλ(X,Y) = J(X,Y) + λ̄X |X|1 + λ̄Y |Y|1.

where λX = λ̄X/f and λY = λ̄Y /p. This leads to an algorithm that we call KGlasso

(see Algorithm 1), which sparsifies the Kronecker factors in proportion to the pa-

rameters λ̄X , λ̄Y > 0. This is the same objective function that was proposed in [2]
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when specialized to the case that there is no missing data. A similar algorithm was

presented in [134], where only the off-diagonal elements of the precision matrices

were penalized.

Algorithm 1 Kronecker Graphical Lasso (KGlasso)

1: Input: Ŝn, p, f , n, λ̄X > 0, λ̄Y > 0
2: Output: Θ̂KGlasso

3: Initialize Ainit to be positive definite satisfying Assumption II.10.
4: X̌← A−1

init

5: repeat
6: B̂← 1

p

∑p
i,j=1 [X̌]i,jŜn(j, i) (see Eq. (2.8))

7: Y̌ ← G(B̂, λ̄Y

p ), where G(·, ·) is defined in (2.4)

8: Â← 1
f

∑f
k,l=1 [Y̌]k,lŜn(l, k) (see Eq. (2.9))

9: X̌← G(Â, λ̄X

f )
10: until convergence
11: Θ̂KGlasso ← X̌⊗ Y̌

As compared to the O(p4f 4) computational complexity of Glasso, KGlasso has a

computational complexity of only O(p4 + f 4) 1.

2.5 Convergence of KGlasso Iterations

In this section, we provide an alternative characterization of the KGlasso algo-

rithm (Algorithm 1) and show the iterations converge pointwise to a local minimum

of the objective.

2.5.1 Block-Coordinate Reformulation of KGlasso

The following lemma shows that exploiting the property that the KGlasso algo-

rithm is a block-coordinate optimization of the penalized objective function (2.10),

each subproblem takes the form of standard Glasso applied on a compressed version

of the SCM that is relevant for inference in each step.

Lemma II.1. The KGlasso objective function (2.10) has the following properties:

1In the sparse Kronecker factor case, this cost can be reduced to O(p3 + f3).
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1. Assume λ̄X , λ̄Y ≥ 0 and X ∈ Sp++,Y ∈ S
f
++. When one argument of Jλ(X,Y)

is fixed, the objective function (2.10) is convex in the other argument.

2. Assume Ŝn is positive definite. Consider Jλ(X,Y) in (2.10) with matrix X ∈

Sp++ fixed. Then, the dual subproblem for minimizing Jλ(X,Y) over Y is:

(2.11) max
|W− 1

p

∑p
i,j=1 Xi,j Ŝn(j,i)|∞≤λY

log det(W)

where λY := λ̄Y /p.

On the other hand, consider (2.10) with matrix Y ∈ Sf++ fixed. Then, the dual

problem for minimizing Jλ(X,Y) over X is:

(2.12) max
|Z− 1

f

∑f
k,l=1 Yk,lŜn(l,k)|∞≤λX

log det(Z)

where Ŝn := KT
p,f ŜnKp,f and λX := λ̄X/f .

3. Strong duality holds for (2.11) and (2.12).

4. The solutions to (2.11) and (2.12) are positive definite.

Proof. See Appendix.

Since the dual subproblems (2.11) and (2.12) are maximizations of a strictly

concave function over a closed convex set they have unique solution attaining the

maximum. Lemma II.1 is similar to the result obtained in [5], but with the pair

(1
p

∑p
i,j=1 Xi,jŜn(j, i), λY ) playing the role of (Ŝn, λ), for the fixed X subproblem.

2.5.2 Limit Point Characterization of KGlasso

The following theorem establishes that KGlasso converges to a local minimum of

the penalized likelihood function (2.2).
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Theorem II.2. Assume n ≥ max( p
f
, f
p
)+1. Then the KGlasso iterations converge to

a local minimum of the negative penalized likelihood function (2.10) and if (X(0),Y(0))

is not a local minimum, strict descent follows.

Proof. This theorem is a specialization of the more general Theorem II.6. See Ap-

pendix of Theorem II.6 for proof.

The proof of Thm. II.2 is built on several lemmas included in the Appendix. The

main line of argument is as follows. For n ≥ max( p
f
, f
p
)+1, the Kronecker structured

MLE exists [49], and this implies that the objective function is bounded below. This

can be used to show that the iterates generated by Algorithm 1 converge to a critical

point. The coordinate convexity and continuity properties of the objective rule out

existence of local maxima and saddle points. Combining this result with the KKT

optimality conditions and the strict descent property of the algorithm, we arrive at

the claim in Thm. II.2. A similar limit theorem was obtained in [2] but they only

established convergence to a stationary point of (2.10).

The details follow next. We will first show that KGlasso converges to a fixed

point. Let Jλ(X,Y) be as defined in (2.10) and define J
(k)
λ = Jλ(X

(k),Y(k)) for

k = 0, 1, 2, . . . .

Theorem II.3. If n ≥ max( p
f
, f
p
) + 1, KGlasso converges to a fixed point. Also, we

have J
(k)
λ ↘ J

(∞)
λ .

Proof. See Appendix.

The following analysis uses Theorem II.3 to prove convergence of the KGlasso

algorithm to a local minimum. To do this, we consider a more general setting. The

KGlasso algorithm is a special case of Algorithm 2. Assuming a k-fold Kronecker

product structure for the covariance matrix, the optimization problem (2.10) can be
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written in the form:

(2.13) Jλ(X1, . . . ,Xk) = J0(X1, . . . ,Xk) +
k∑
i=1

Ji(Xi) + λ̄iη1(Xi)

where Xi ∈ Sdi++, η1(Xi) := |Xm|1, J0(X1, . . . ,Xk) := tr((X1 ⊗ X2 ⊗ · · · ⊗ Xk)Ŝn)

and Ji(Xi) = −
∏

i′ 6=i di′ · log det(Xi) for i = 1, . . . , k.

Without loss of generality, by reshaping matrices into appropriate vectors, (2.13)

can be rewritten as:

(2.14) Jλ(x1, . . . ,xk) = J0(x1, . . . ,xk) +
k∑
i=1

Ji(xi) + λ̄iηi(xi)

where the optimization variable is x := [xT1 ,x
T
2 , . . . ,x

T
k ]T ∈ Rd′ , where xi ∈ Rd2i and

d′ =
∑k

i=1 d
2
i . For example, ηi(Xi) = |Xi|1 = ‖vec(Xi)‖1 = ‖xi‖1 = ηi(xi). The

mapping {Ji}ki=0 can be similarly written in terms of the vectors xi instead of the

matrices Xi.

The reader can verify that the objective function (2.13) satisfies the properties

(for n ≥ max( p
f
, f
p
) + 1) in Appendix 2.11.4.

The general optimization problem of interest here is:

(2.15) min
x∈Rd′

Jλ(x) subject to vec−1(xi) = Xi ∈ Sdi++, i = 1, . . . , k

The positive definiteness constraints are automatically taken care of by the con-

struction of the algorithm (see Lemma II.1.4). Let the dimension of the covariance

matrix be denoted by d :=
∏k

i=1 di. We assume n > d. To solve (2.15), a block

coordinate-descent penalized algorithm is constructed:

Remark II.4. The positive definiteness constraint at each coordinate descent iteration

of Algorithms 1 and 2 need not be explicit since the objective function Jλ(·) acts as

a logarithmic barrier function.
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Algorithm 2 Block Coordinate-Descent Penalized Algorithm

1: Input: Ŝn, di, n, ε > 0, λi > 0
2: Output: Θ̂
3: Initialize X0

1,X
0
2, . . . ,X

0
k matrices as positive definite matrices, e.g., scaled identity.

4: Θ̂0 ← X0
1 ⊗X0

2 ⊗ · · · ⊗X0
k

5: m← 0
6: repeat
7: Θ̂prev ← Θ̂
8: Xm

1 ← arg minA1�0 Jλ(A1,X
m−1
2 , . . . ,Xm−1

k )
9: Xm

2 ← arg minA2�0 Jλ(Xm
1 ,A2, . . . ,X

m−1
k )

10:
...

11: Xm
k ← arg minAk�0 Jλ(Xm

1 ,X
m
2 , . . . ,Ak)

12: Θ̂← Xm
1 ⊗Xm

2 ⊗ · · · ⊗Xm
k

13: m← m+ 1
14: until ‖Θ̂prev − Θ̂‖ ≤ ε

Note that Algorithm 1 is a special case of Algorithm 2. An extension of Theorem

II.3, assuming n > d or J∗λ > −∞, based on induction, can be used to show that the

limit points of the sequence of iterates (xm)m≥0 = (xm1 , . . . ,x
m
k )m≥0 are fixed points.

Remark II.5. Note that a necessary condition for x∗ to minimize Jλ is 0 ∈ ∂Jλ(x∗).

This is not sufficient however.

We next show that the limit point(s) of (xm)m≥0 are nonempty and are local

minima.

Theorem II.6. Let (xm) = (xm1 , . . . ,x
m
k )m≥0 be a sequence generated by Algorithm

2. Assume n > d 2.

1. The algorithm converges to a local minimum.

2. If x0 is not a local minimum, strict descent follows.

Proof. See Appendix.

As a consequence of Theorem II.6, we have Theorem II.2.

2This requirement on the sample size n > d can be significantly relaxed. For the two-fold case, this can be relaxed
to n ≥ max( p

f
, f
p

) + 1.
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2.6 Large-Deviation Bound for Linear Combination of SCM submatrices

Since the FF and KGLasso algorithms involve matrices formed from linear com-

binations of submatrices of the sample covariance, it is important to understand how

the concentration of measure behaves for updates of the form (2.8) and (2.9). We

note that to get tight bounds on the rate of concentration is not an easy task since

submatrices of the SCM are non-symmetric in general and can be highly correlated.

The following theorem derives a tight bound for this rate and will be used in the

proofs of Thm. II.11 and Thm. II.13.

Lemma II.7. Let X be a p×p data-independent matrix. Define the linear operator T

as T(X) = B̂(X−1), where B̂(·) is defined in (2.9). Assume maxk[B0]k,k, ‖X‖2, ‖A0‖2

are uniformly bounded constants as p, f →∞. Define B∗ := tr(XA0)
p

B0. Let c, τ > 0.

Define ψ(u) =
∑∞

m=0
(2m+2)!!

m!
um 3. Let C̄ := 4(2+τ)2 max(2,c)

ψ( 1
2+τ

)
< np

log(max(f,n))
4. Then,

with probability 1− 2
max(f,n)c

,

|T(X)−B∗|∞ ≤ K(c, τ)

√
log(max(f, n))

np

where K(c, τ) = k ·
√

4ψ( 1
2+τ

) max(2, c), k = maxk[B0]k,k · ‖X‖2‖A0‖2.

Remark II.8. Choosing c ≤ 2 in Lemma II.7, the best relative constant is obtained

by taking τ to infinity, which yields
√

4ψ( 1
2+τ

) max(2, c)→ 4.

Remark II.9. For the case of symmetric matrices X ∈ Sp, the constant k can be

improved to maxk[B0]k,k · ‖XA0‖2.

We provide some intuition on this bound below. Assume that Xinit = X0, or

Ainit = X−1
init = A0. Define W = X

1/2
0 ⊗ Ip and z̃t = Wzt, with i.i.d. zt ∼

3The double factorial notation is defined as

m!! =

 m · (m− 2) · · · · · 3 · 1 if m > 0 is odd
m · (m− 2) · · · · · 4 · 2 if m > 0 is even
1 if m = −1 or m = 0

.
4If p = f = nc

′
for some c′ > 0, this condition will hold for n large enough.
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N(0,A0 ⊗B0), t = 1, . . . , n. Then, z̃t has block-diagonal covariance

Cov(z̃t) = Ip ⊗B0.

When W is applied to the transformed pf × pf sample covariance matrix, ŜWn :=

WŜnW
T , the first step of KGlasso produces an iterate Ŷ

(1)
n = G(B̂, λY ) with B̂ =

1
p

∑p
i=1 ŜWn (i, i) (recall (2.9)). For suitable λY = λ

(1)
Y , Ŷ

(1)
n converges to Y0 with

respect to maximal elementwise norm at a rate OP

(√
logM
np

)
. The convergence of

Ŷ
(1)
n is easily established by applying the Chernoff bound and invoking the jointly

Gaussian property of the measurements and the block diagonal structure of Cov(z̃t).

Lemma II.7 establishes that this rate holds even if Xinit 6= X0 in Assumption II.10.

In view of the rate of convergence of Ŷ(1), to achieve a reduction in the MSE of Y,

either the sample size n or the dimension p must increase.

2.7 High Dimensional Consistency of FF

In this section, we show that the flip-flop (FF) algorithm achieves the optimal

(non-sparse) statistical convergence rate of OP

(√
(p2+f2) logM

n

)
. This result (see

Thm. II.11) will be compared to the statistical convergence rate of KGlasso (see

Thm. II.13) to establish that KGlasso has lower asymptotic MSE than FF. We make

the following boundedness assumptions on the spectra of the Kronecker factors.

Assumption II.10. Uniformly Bounded Spectra

There exist absolute constants kA, kA, kB, kB, kAinit , kAinit such that:

1a. 0 < kA ≤ λmin(A0) ≤ λmax(A0) ≤ kA <∞

1b. 0 < kB ≤ λmin(B0) ≤ λmax(B0) ≤ kB <∞

2. 0 < kAinit ≤ λmin(Ainit) ≤ λmax(Ainit) ≤ kAinit <∞

Let ΣFF (3) := Â(B̂(Ainit)) ⊗ B̂(Â(B̂(Ainit))) denote the 3-step (noniterative)

version of the flip-flop algorithm [130].
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Theorem II.11. Let A0,B0, and Ainit satisfy Assumption II.10 and define M =

max(p, f, n). Assume p ≥ f ≥ 2 and p logM ≤ C ′′n for some finite constant C ′′ > 0.

Finally, assume n ≥ p
f

+ 1. Then,

(2.16) ‖ΘFF (3)−Θ0‖F = OP

(√
(p2 + f 2) logM

n

)

as n→∞.

Proof. See Appendix.

Remark II.12. The sufficient conditions are symmetric with respect to p and f -i.e.

for f ≥ p, the corresponding conditions would become f logM ≤ C ′′n for some

constant C ′′ > 0, and n ≥ f
p

+ 1.

For the special case of p = f , the sufficient conditions of Thm. II.11 become

p logM = O(n). The relation (2.16) indicates that the error is asymptotically

bounded as long as n is of order Ω((p2 + f 2) logM). The relation (2.16) specifies

the rate of reduction of the estimation error for the three step FF algorithm (k = 3)

[130]. This relation will also hold for the multi-step FF as long as the number of

steps are finite. Note that (2.16) specifies a faster rate than that of the ordinary ML

sample covariance matrix estimator (2.6).

2.8 High Dimensional Consistency of KGlasso

Here a relation like (2.16) is established for KGlasso. Recall that a p× p matrix

is called sparse if its number of nonzero elements is of order p. Recall λ̄X = λXf and

λ̄Y = λY p, as in (2.10).

Theorem II.13. Assume X0 and Y0 are sparse-i.e., sX0 = O(p) and sY0 = O(f).

Let A0,B0,Ainit satisfy Assumptions II.10. Let M = max(p, f, n). Let λ
(1)
Y �



54

√
logM
np

, and λ
(2)
X , λ

(3)
Y �

(
1√
p

+ 1√
f

)√
logM
n

. Then, if max
(
p
f
, f
p

)
logM = o(n),

(2.17) ‖ΘKGlasso(3)−Θ0‖F = OP

(√
(p+ f) logM

n

)
as n→∞.

Proof. See Appendix.

Theorem II.13 offers a strict improvement over standard Glasso [103, 5] and gen-

eralizes Thm. 1 in [103] to the case of sparse Kronecker product structure. Thm.

II.13 generalizes Thm. II.11 to the case of sparse Kronecker structure. The rate in

(2.17) offers a significant improvement over the rate OP (
√

(p+f)pf log(pf)
n

) shown in

Theorem 3 in [134], as the dimensions p, f grow to infinity.

Comparison between the error expressions (2.5), (2.16) and (2.17) show that, by

exploiting both Kronecker structure and sparsity, KGlasso can attain significantly

lower estimation error than standard Glasso [103] and FF [130]. To achieve accurate

covariance estimation for the sparse Kronecker product model, the minimal sample

size needed is n = Ω((p+ f) logM).

The minimal sample size required to achieve accurate covariance estimation is

graphically depicted in Fig. 2.1 for the special case p = f . The regions below the

lines are the MSE convergence regions-i.e., the MSE convergence rate goes to zero as

p, n grow together to infinity at a certain growth rate controlled by these regions. It

is shown that KGlasso allows the dimension p to grow almost linearly in n and still

achieve accurate covariance estimation (see (2.17)) and thus, uniformly outperforms

FF, Glasso and the naive SCM estimators in the case both Kronecker factors are

sparse. Although Thm. II.13 shows a rate on the inverse covariance matrix, this

asymptotic rate can be shown to hold for the covariance matrix as well (see proof

of Thm. II.13 in Appendix). Lemma II.7 provides a tight bound that makes the
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Figure 2.1: Regions of convergence for KGlasso (below upper curve), FF (below second highest
curve), Glasso (below third highest curve), and standard sample covariance matrix
estimator (SCM) (bottom curve). These regions are obtained from the analytical ex-
pressions in equations (2.17), (2.16), (2.5) and (2.6), respectively. The simulation shown
in Fig. 2.5 establishes that the FF algorithm indeed diverges when the parameters p
and n fall inbetween the KGlasso and FF curves in the above figure.
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dependence of the convergence rate explicit in p, f and n. Theorem II.13 uses Lemma

II.7 to show that KGlasso converges to X0 ⊗Y0 with rate OP

(√
(p+f) logM

n

)
with

respect to Frobenius norm.

2.9 Simulation Results

In this section, we empirically validate the convergence rates established in pre-

vious sections using Monte Carlo simulation.

Each iteration of the KGlasso involves solving an `1 penalized covariance estima-

tion problem of dimension 100 × 100 (Step 6 and Step 8 of KGlasso specified by

Algorithm 1). To solve these small sparse covariance estimation problems we used

the Glasso algorithm of Hsieh et al [66] where the Glasso stopping criterion was

determined by monitoring when the duality gap falls below a threshold of 10−3.

In each of the simulations the true covariance matrix factors X0 = A−1
0 and

Y0 = B−1
0 were unstructured randomly generated positive definite matrices. First,

p random nonzero elements were placed on the diagonal of a square p× p matrix C.

Then, on average p nonzero elements were placed on the off-diagonal and symmetry

was imposed. On average, a total of 3p elements were nonzero. The resulting matrix

C̃ was regularized to produce the sparse positive definite inverse covariance Y0 =

C̃ + ρIf , where ρ = 0.5 − λmin(C̃). A total of NMC = 50 simulation runs were

performed for each sample size n, where n ranged from 10 to 100. Performance

assessment was based on normalized Frobenius norm error in the covariance and

precision matrix estimates. The normalized error was calculated using√√√√ 1

NMC

NMC∑
i=1

‖Σ0 − Σ̂(i)‖2
F

‖Σ0‖2
F

where Σ̂(i) is the covariance estimate for the i-th simulation. The same formula was

used to calculate the normalized error in the precision matrix Θ̂0. In the implementa-
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tion of KGlasso, the regularization parameters were chosen as follows. The initializa-

tion was Xinit = Ip. The regularization parameters were selected as λ
(1)
Y = cy

√
logM
np

,

λ
(2)
X = cx

√
logM
nf

+ λ
(1)
Y , λ

(2)
Y = λ

(2)
X , λ

(3)
X = λ

(2)
X and so on. We set cx = cy = 0.4. In

real-world applications, the constants cx and cy can be chosen via cross-validation or

by optimizing an information criterion on the training data.

We considered the setting where X0 and Y0 are large sparse matrices of dimen-

sion p = f = 100 (see Fig. 2.2) yielding a covariance matrix Θ0 of dimension

10, 000 × 10, 000. This dimension was too large for implementation of Glasso even

when implemented using the state-of-the-art algorithm by Hsieh et al [66]. Approx-

imately 2% of the elements of each precision matrix are nonzero and approximately

0.04% of the elements of the full precision matrix Θ0 are nonzero. Figures 2.3 and

2.4 compare the root-mean squared error (RMSE) performance in precision and co-

variance matrices as a function of n. As expected, KGlasso outperforms FF over the

range of n for both covariance and inverse covariance estimation problems. KGlasso

outperforms FF in the small-sample regime since it exploits sparsity in addition to

Kronecker structure.

We also compare KGlasso to a natural extension of the FF algorithm that ac-

counts for both sparsity and Kronecker structure. The flip-flop thresholding method

(FF/Thres) that we consider consists of first computing the FF solution and then

thresholding each estimated precision matrix. To ensure a fair comparison we set

the threshold level of FF/Thres that yields exactly the same sparsity factor as the

KGLasso estimated precision matrices.

From Fig. 2.3 and 2.4, we observe that KGLasso outperforms all methods uni-

formly across all n. For n = 10, there is a 72% (≈ 5.53 dB) RMSE reduction for

the precision matrix and 41% RMSE reduction for the covariance matrix when using
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KGLasso instead of FF. For n = 10, there is a 70% (≈ 5.26 dB) RMSE reduction for

the precision matrix and 62% RMSE reduction for the covariance matrix when using

KGLasso instead of FF/Thres. For n = 100, there is a 53% (≈ 3.28 dB) RMSE re-

duction for the precision matrix and 33% RMSE reduction for the covariance matrix

when using KGLasso instead of FF. For n = 100, there is a 50% (≈ 3.01 dB) RMSE

reduction for the precision matrix and 41% RMSE reduction for the covariance ma-

trix when using KGLasso instead of FF/Thres. For the small sample regime, there

is approximately a 5.53 dB reduction for the precision matrix, which is a significant

performance gain. Next, we show a borderline case p = f = dn0.6e. In this case, ac-

cording to Thm. II.11 and Thm. II.13, the FF diverges (MSE increases in n), while

the KGlasso converges (MSE decreases in n). This is illustrated in Fig. 2.5. Our pre-

dicted rates are plotted on top of the empirical curves. Dutilleul initially developed

the MLE algorithm for the matrix normal model and it was first applied to detect

periodicities in multivariate time series [49]. More recent real-data experiments for

the Kronecker-structured covariance model have been performed for spatiotemporal

data [54], recommendation systems [2] and multi-tissue gene expression data [134].

2.10 Conclusion

We established high dimensional consistency for Kronecker Glasso algorithms that

use iterative `1-penalized likelihood optimization to exploit both Kronecker struc-

ture and sparsity of the covariance. A tight MSE convergence rate was derived

for KGlasso, showing significantly better MSE performance than standard Glasso

[103, 5] and FF [130]. In addition, our rate for KGlasso in (2.17) offers a significant

improvement over the rate derived in [134] (independently from ours) in the high

dimensional regime, thereby yielding a smaller sample size requirement for accurate
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Figure 2.2: Sparse Kronecker matrix representation. Left panel: left Kronecker factor. Right panel:
right Kronecker factor. As the Kronecker-product covariance matrix is of dimension
10, 000 × 10, 000, standard Glasso is not practically implementable for this example.
The sparsity factor for both precision matrices is approximately 200.
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Figure 2.3: Normalized RMSE performance for precision matrix as a function of sample size n.
KGlasso (Kronecker graphical lasso) uniformly outperforms FF (flip-flop) algorithm
and FF/Thres (flip-flop thresholding) for all n. Here, p = f = 100 and NMC = 40. The
error bars are centered around the mean with ± one standard deviation. For n = 10,
there is a 72% RMSE reduction from the FF to KGLasso solution and a 70% RMSE
reduction from the FF/Thres to KGLasso.
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Figure 2.4: Normalized RMSE performance for covariance matrix as a function of sample size n.
KGlasso (Kronecker graphical lasso) uniformly outperforms FF (flip-flop) algorithm for
all n. Here, p = f = 100 and NMC = 40. The error bars are centered around the mean
with ± one standard deviation. For n = 10, there is a 41% RMSE reduction from the
FF to KGLasso solution and a 62% RMSE reduction from the FF/Thres to KGLasso.
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Figure 2.5: Precision Matrix MSE as a function of sample size n for FF and KGlasso. The dimen-
sions of the Kronecker factor matrices grow as a function of n as: p(n) = f(n) = dn0.6e.
The true Kronecker factors were set to identity (so their inverses are fully sparse).
The predicted MSE curves according to Thm. II.11 and Thm. II.13 are also shown.
As predicted by our theory, and by the predicted convergent regions of (n, p) for FF
and KGlasso in Fig. 2.1, the MSE of the FF diverges while the MSE of the KGlasso
converges as n increases.
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covariance estimation under the sparse Kronecker covariance model. Simulations

validated our theoretical predictions.

As expected, the proposed KGlasso algorithm outperforms both algorithms (Glasso,

FF) that do not exploit all prior knowledge about the covariance matrix, i.e., sparsity

and Kronecker product structure, that KGlasso exploits. The theory and experiments

in this chapter establish that this performance gain is substantial, more so as the

variable dimension increases. Furthermore, as compared to a simple thresholded FF

algorithm, which does account for both sparsity and Kronecker structure, KGlasso

has significantly better estimation performance.

2.11 Appendix

2.11.1 Proof of Lemma II.1

Proof. 1. Without loss of generality, fix Y ∈ Sf++. The function tr((X⊗Y)Ŝn) is

linear in X. The function g(X1) := − log det(X1) is a convex function in X1

over the set Sp++ [18]. The triangle inequality implies | · |1 is convex. Finally, the

sum of convex functions is convex. The set Sp++ is a convex set for any p ∈ N.

2. By symmetry we only need prove that (2.12) is the dual of minY∈Sf++
Jλ(X,Y).

By standard duality relations between `1 and `∞ norms [18] and symmetry of

Y 5:

|Y|1 = max
U∈Sf :|U|∞≤1

tr(YU)

Using this in (2.10) and invoking the saddlepoint inequality:

min
Y∈Sf++

tr((X⊗Y)Ŝn)− p log det(Y) + pλY |Y|1

≥ max
|U|∞≤λY

min
Y∈Sf++

{
tr((X⊗Y)Ŝn)− p log det(Y) + ptr(YU)

}
(2.18)

5The maximum is attained at Ui,j =
Yi,j

|Yi,j |
for Yi,j 6= 0 and at Ui,j = 0 for Yi,j = 0.
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When the equality in (2.18) is achieved, (U,Y) is a saddlepoint and the duality

gap is zero. Rewrite the objective function, denoted J̃λ(·, ·), in the minimax

operation (2.18):

J̃λ(X,Y) := tr((X⊗Y)(Ŝn + Ũ(X)))− p log det(Y)

where Ũ(X) = p Ip⊗U

tr(X)
. Define M = Ŝn+Ũ(X). To evaluate minY∈Sf++

J̃λ(X,Y)

in (2.18), we invoke the KKT conditions to obtain the solution

Y =

(
1

p

p∑
i,j=1

Xi,jM(j, i))

)−1

.

Define W = Y−1 as the dual space variable. Using this in (2.18):

(2.19) max
|W− 1

p

∑p
i,j=1 Xi,j Ŝn(j,i)|∞≤λY

p log det(W) + pf

where the constraint set was obtained after noting that Ũ(X)(j, i) = pU
tr(X)

I(j =

i), and I(·) is the indicator function. It is evident that (2.19) is equivalent to

(2.11).

3. It suffices to verify that the duality induced by the saddle point formulation

is equivalent to Lagrangian duality (see Section 5.4 in [18]). Slater’s con-

straint qualification (see Section 5.3.2 in [18]) trivially holds for the convex

problem minY∈Sf++
J̃λ(X,Y), and thus for the corresponding convex problem

minY∈Sf++
Jλ(X,Y). Since the objective function of each dual problem has an

optimal objective that is bounded below, Slater’s constraint qualification also

implies that the dual optimal solution is attained.

4. From [130], it follows that if Ŝn is p.d., each “compression step” (see lines 6

and 8 in Algorithm 1) yields a p.d. matrix. Combining this with the positive

definiteness of the Glasso estimator [5], we conclude that the first subiteration
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of KGlasso yields a p.d. matrix. A simple induction, combined with the fact

that the Kronecker product of p.d. matrices is p.d., establishes that (2.11) and

(2.12) are p.d.

2.11.2 Proof of Theorem II.3

Proof. Recall that the basic optimization problem (2.3) is

min
X∈Sp++,Y∈S

f
++

Jλ(X,Y)

Let J∗ := infX∈Sp++,Y∈S
f
++
Jλ(X,Y) be the optimal primal value. Note that J∗λ >

−∞ when n ≥ max( p
f
, f
p
) + 1. Now, consider the first step in Algorithm 1. Fix

X = X(k−1) and optimize over Y ∈ Sf++. Invoking Lemma II.1, we have Y(k) =

arg minY∈Sf++
Jλ(X

(k−1),Y). Note, by induction Y(k) remains positive definite if X(0)

is positive definite. Considering the second step in Algorithm 1, we fix Y = Y(k)

and obtain X(k) = arg minX∈Sp++
Jλ(X,Y

(k)), so that

(2.20) Jλ(X
(k),Y(k)) ≤ Jλ(X

(k−1),Y(k)) ≤ Jλ(X
(k−1),Y(k−1))

By induction on the number of iterations of the penalized flip-flop algorithm, we

conclude that the iterates yield a nonincreasing sequence of objective functions. Since

λX |X|1, λY |Y|1 ≥ 0, we see that the objective function evaluated at the Kronecker

structured MLE provides a lower bound to the optimal primal value 6

(2.21) Jλ(XKGlasso,YKGlasso) ≥ J∗λ ≥ Jλ(XMLE,YMLE) > −∞

Thus, the sequence {J (k)
λ : k ≥ 0} forms a nonincreasing sequence bounded be-

low (since for n > pf , the log-likelihood function is bounded above by the log-

likelihood evaluated at the sample mean and sample covariance matrix). The mono-

6The Kronecker structured MLE (XMLE ,YMLE) exists for n ≥ max( p
f
, f
p

) + 1.
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tone convergence theorem for sequences [7] implies that {J (k)
λ } converges monoton-

ically to J
(∞)
λ = infk J

(k)
λ . By the alternating minimization, we conclude that the

sequence of iterates {(X(k),Y(k))}k converges since the minimizer at each Glasso

step is unique.

2.11.3 Subdifferential Calculus Review

As sparse Kronecker Glasso involves non-smooth objective functions, we review a

few definitions and facts from subdifferential calculus [101].

Definition II.14. By J-attentive convergence denoted as, xn
J→ x, we mean that:

xn → x with J(xn)→ J(x) as n→∞.

The role of J-attentive convergence is to make sure that subgradients at a point

x reflect no more than the local geometry of epi(J) around (x, J(x)).

Definition II.15. Consider a proper lower semicontinuous (LSC) function g : Rd →

R ∪ {+∞}. Let x be such that J(x) <∞.

For v ∈ Rd,

a) v is a regular subgradient of J at x (i.e., v ∈ ∂̂J(x)) if

lim inf
x6=x,x→x

J(x)− J(x)− vT (x− x)

‖x− x‖
≥ 0

.

b) v is a general subgradient of J at x (i.e., v ∈ ∂J(x)) if there exists subsequences

xn
J→ x and vn ∈ ∂̂J(xn) such that vn → v.

Let x be such that J(x) < ∞. It can be shown that ∂J(x) = lim sup
x
J→x
∂̂J(x),

∂̂J(x) ⊂ ∂J(x) and both sets are closed.

Define the set of critical points CJ := {x : 0 ∈ ∂J(x)} = CJ,min∪CJ,saddle∪CJ,max,

where CJ,min contains all the local minima, CJ,saddle contains all the saddle points

and CJ,max contains all the local maxima.
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Definition II.16. Let A ⊆ Rn. Define the distance from a point x ∈ Rn to the set

A as d(x, A) := infa∈A ‖x− a‖2.

2.11.4 Properties of objective function Jλ

The following set of properties will be used in Lemmas II.18, II.19 and Theorem

II.6.

Property II.17. 1. J0 : Rd → R is continuously differentiable (i.e., f0 ∈ C1)

2. ∇J0 : Rd → Rd is uniformly continuous on bounded subsets B ⊂ Rd

3. Ji : Rdi → R ∪ {+∞} is proper 7 and lower semicontinuous (LSC), for i =

1, . . . , k

4. ηi : Rd → R+ is uniformly continuous and bounded on bounded subsets B ⊂ Rd,

for i = 1, . . . , k

5. Jλ is bounded below-i.e. J∗λ > −∞

6. Jλ is strictly convex in at least one block (for all the rest of the blocks held fixed)

where J∗λ = inf
Xi∈S

di
++
Jλ(X1, . . . ,Xk) is the optimal primal value.

2.11.5 Lemma II.18

Lemma II.18. Given the notation established in Definition II.15 and Jλ given by

(2.14), we have:

∂Jλ(x1, . . . ,xk) = ×ki=1{∇xiJ0(x1, . . . ,xk) + ∂Ji(xi) + λ̄i∂ηi(xi)}

= ×ki=1{∂xiJλ(x1, . . . ,xk)}(2.22)

where ∂xiJλ(x1, . . . ,xk) is the partial differential operator while all {xj : j 6= i} are

held fixed.
7A function J : X→ R ∪ {±∞} is proper if dom(J) = {x ∈ X : J(x) <∞} 6= ∅ and J(x) > −∞, ∀x ∈ X.
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Proof. First note that we have:

∂Jλ(x1, . . . ,xk) = ∇J0(x1, . . . ,xk) + ∂{
k∑
i=1

Ji(xi) + λ̄iηi(xi)}(2.23)

= ∇J0(x1, . . . ,xk) + ∂{
k∑
i=1

Ji(xi)}+ ∂{
k∑
i=1

λ̄iηi(xi)}(2.24)

= ∇J0(x1, . . . ,xk) +×ki=1{∂Ji(xi)}+×ki=1{λ̄i∂ηi(xi)}(2.25)

= ×ki=1{∇xkJ0(x1, . . . ,xk) + ∂Ji(xi) + λ̄i∂ηi(xi)}(2.26)

where (2.23) follows from Property II.17 and Exercise 8.8(c) in [101], (2.24) follows

from Corollary 10.9 in [101], (2.25) follows from Proposition 10.5 and Equation 10(6)

p.438 in [101] since λi > 0, and finally (2.26) follows from Minkowski sum properties.

2.11.6 Lemma II.19

Lemma II.19. Let m denote the iteration index. For m ∈ N, define:

(xm1 )◦ := ∇x1J0(xm1 ,x
m
2 . . . ,x

m
k )−∇x1J0(xm1 ,x

m−1
2 . . . ,xm−1

k )

(xm2 )◦ := ∇x2J0(xm1 ,x
m
2 . . . ,x

m
k )−∇x2J0(xm1 ,x

m
2 ,x

m−1
3 . . . ,xm−1

k )

...

(xmj )◦ := ∇xjJ0(xm1 ,x
m
2 . . . ,x

m
k )−∇xjJ0(xm1 , . . . ,x

m
j ,x

m−1
j+1 . . . ,xm−1

k )

...

(xmk )◦ := 0

Then, ((xm1 )◦, . . . , (xmk )◦) ∈ ∂Jλ(xm1 , . . . ,xmk ). Also, for all convergent subsequences

(xmj)j of the sequence (xm)m, we have

d(0, ∂Jλ(x
mj
1 , . . . ,x

mj
k ))→ 0 as j →∞
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Proof. From Algorithm 2, we have:

xm1 ∈ arg min
x1

Jλ(x1,x
m−1
2 , . . . ,xm−1

k )

xm2 ∈ arg min
x2

Jλ(x
m
1 ,x2,x

m−1
3 , . . . ,xm−1

k )

...

xmk ∈ arg min
xk

Jλ(x
m
1 , . . . ,x

m
k−1,xk)

The first subiteration step of the algorithm implies that 0 ∈ ∂x1Jλ(x
m
1 ,x

m−1
2 , . . . ,xm−1

k ),

the second subiteration step implies 0 ∈ ∂x2Jλ(x
m
1 ,x

m
2 ,x

m−1
3 , . . . ,xm−1

k ), etc. Rewrit-

ing these using Lemma II.18, we have:

0 ∈ ∇x1J0(xm1 ,x
m−1
2 , . . . ,xm−1

k ) + ∂J1(xm1 ) + λ̄1∂η1(xm1 )

0 ∈ ∇x2J0(xm1 ,x
m
2 ,x

m−1
3 , . . . ,xm−1

k ) + ∂J2(xm2 ) + λ̄2η2(xm2 )

...

0 ∈ ∇xkJ0(xm1 ,x
m
2 , . . . ,x

m
k ) + ∂Jk(x

m
k ) + λ̄k∂ηk(x

m
k )

This implies that for i = 1, . . . , k:

(xmi )◦ ∈ ∇xiJ0(xm1 ,x
m
2 , . . . ,x

m
k ) + ∂Ji(x

m
i ) + λ̄i∂ηi(x

m
i )

It is important to note that ∂ηi(x) 6= ∅,∀x ∈ Rdi , for i = 1, . . . , k, as a result of

property II.17.4. To see why, apply Corollary 8.10 in [101] since ηi is finite and

locally LSC at every point in its domain. This in turn implies ((xm1 )◦, . . . , (xmk )◦) ∈

∂Jλ(x
m
1 , . . . ,x

m
k ) by Lemma II.18.

Now, take an arbitrary convergent subsequence (x
mj
1 , . . . ,x

mj
k )j of (xm1 , . . . ,x

m
k )m.

The convergence of (x
mj
1 , . . . ,x

mj
k )j implies the convergence of (x

mj
1 ,x

mj−1
2 , . . . ,x

mj−1
k )j,

and (x
mj
1 , . . . ,x

mj
i ,x

mj−1
i+1 , . . . ,x

mj−1
k )j for i = 2, . . . , k − 1. Taking j →∞ and using

properties II.17.2, we conclude

lim
j→∞

d(0, ∂Jλ(x
mj
1 , . . . ,x

mj
k )) = 0
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since limj→∞((x
mj
1 )◦, . . . , (x

mj
k )◦) = (0, . . . , 0).

2.11.7 Proof of Theorem II.6

Proof. 1. Let L(x0) = L(x0
1, . . . ,x

0
k) be the set of all limit points of (xm)m≥0 start-

ing from x0. The block-coordinate descent algorithm, Algorithm 2, implies

J0(xm1 ,x
m−1
2 , . . . ,xm−1

k ) + J1(xm1 ) + λ̄1η1(xm1 )

≤ J0(α1,x
m−1
2 , . . . ,xm−1

k ) + J1(α1) + λ̄1η1(α1)

for any α1 ∈ Rd21 . Now, assume there exists a subsequence (xmj)j of (xm)m that

converges to x∗, where x∗ is a limit point. This implies (x
mj
1 ,x

mj−1
2 , . . . ,x

mj−1
k )→

x∗ as j →∞. The above inequality combined with properties II.17.1 and II.17.4

(i.e. the continuity J0 and ηi) then implies that

lim sup
j→∞

J1(x
mj
1 ) + J0(x∗1, . . . ,x

∗
k) ≤ J1(α1)

+ J0(α1,x
∗
2, . . . ,x

∗
k) + λ̄1(η1(α1)− η1(x∗1))

for all α1 ∈ Rd21 . Taking α1 = x∗1 then yields lim supj→∞ J1(x
mj
1 ) ≤ J1(x∗1).

Using the lower semicontinuity property of J1 (property II.17.3), we have

lim inf
j→∞

J1(x
mj
1 ) ≥ J1(x∗1)

. Thus, limj→∞ J1(x
mj
1 ) = J1(x∗1).

By a similar line of reasoning, it can be shown that Ji(x
mj
i )→ Ji(x

∗
i ) as j →∞,

for i = 1, . . . , k. As a result,
∑k

i=1 Ji(x
mj
i ) →

∑k
i=1 Ji(x

∗
i ) as j → ∞. Since

J0(·) is jointly continuous, J0(x
mj
1 , . . . ,x

mj
k )→ J0(x∗1, . . . ,x

∗
k). By continuity of

ηi(·),
∑k

i=1 λ̄iηi(x
mj
i )→

∑k
i=1 λ̄iηi(x

∗
i ). Thus, Jλ(x

mj)→ Jλ(x
∗) as j →∞.
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Now, Lemma II.19 implies that ((xmj)◦) ∈ ∂Jλ(x
mj). Since the subsequence

(xmj)j is convergent, by Lemma II.19, we have (xmj)◦ → 0 as j → ∞. As a

result, since ∂Jλ(x
mj) is closed (see Theorem 8.6 in [101]) for all j, we conclude

that x∗ ∈ CJ . Thus, L(x0) ⊆ CJ .

We have thus proved that limit points are critical points of the objective func-

tion.

We can rule out convergence to local maxima thanks to property II.17.6. Let us

show this rigorously. Assume there exists a local maximum at x′ = (x′1, . . . ,x
′
k).

Then, there exists r > 0 such that Jλ(x) ≤ Jλ(x
′) for all x such that ‖x−x′‖2 <

r. Fix xi = x′i for all i 6= 1. Without loss of generality, assume Jλ is strictly

convex in the first block. Since strict convexity is maintained through linear

transformation, without loss of generality, assume d1 = 1. Let ε < r. Define

x1,ε = x′1 − ε and x2,ε = x′1 + ε. Define xθ = θx1,ε + (1− θ)x2,ε, where θ ∈ (0, 1).

Since ‖[xθ; x6=1] − x′‖2 = |xθ − x′1| = ε(1 − 2θ) < r, by the local maximum

definition, there exists ε ∈ (0, r) small enough such that

θJλ(x1,ε,x
′
6=1) + (1− θ)Jλ(x2,ε,x

′
6=1) ≤ Jλ(xθ,x

′
6=1)

for some θ ∈ (0, 1). Since ε > 0, we have x1,ε 6= x2,ε, and this contradicts strict

convexity. Thus, there are no local maxima. 8

Next, we use the non-existence of local maxima and continuity of Jλ to rule out

convergence to saddle points. Assume there exists a saddlepoint at xs. Then,

by definition, 0 ∈ Jλ(xs) and xs is not a local maximum or a local minimum.

Since xs is not a local minimum, for all ε > 0, there exists a point x′ such that

‖x′ − xs‖2 < ε and Jλ(xs) > Jλ(x
′). By continuity, it follows that there exists

8An alternative way to get a contradiction is to assume there exists a strict local maximum and use only convexity,
instead of strict convexity.
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δ > 0 such that for all x satisfying ‖x − x′‖2 < δ, we have Jλ(xs) > Jλ(x),

which implies that xs is a local maximum. This is a contradiction and thus, xs

is a local minimum. So, no saddle points exist.

Theorem II.3 implies that L(x0) is nonempty and singleton.

2. We show that if we do not start at a local minimum, strict descent follows. Let

µ(·) denote the point-to-point mapping during one iteration step, i.e., xm+1 =

µ(xm). We show that if x0 /∈ CJ , then L(x0) ⊆ CJ,min. The result then

follows by using the proof of the first part 9. To this end, let x
′

be a fixed

point under µ, i.e., µ(x
′
) = x

′
. Then, the subiteration steps of the algorithm

yield 0 ∈ ∂xiJλ(x
′
1, . . . ,x

′

k) for i = 1, . . . , k, which implies 0 ∈ ∂Jλ(x
′
), i.e.,

x
′ ∈ CJ . The contrapositive implies that if x /∈ CJ , then Jλ(µ(x)) < Jλ(x)

(strict descent). A simple induction on the number of iterations then concludes

the proof.

2.11.8 Proof of Lemma II.7

Proof. This proof is based on a large-deviation theory argument. Fix (k, l) ∈ {1, . . . , f}2.

Note that E[T(X)] = B∗. First we bound the upper tail probability on the difference

T(X)−B∗ and then we turn to the lower tail probability. Bounding the upper tail

9The first part of the proof showed CJ = CJ,min.
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by using Markov’s inequality, we have

Pr ([T(X)]k,l − [B∗]k,l > ε)

= Pr

(
1

p

p∑
i,j=1

Xi,j[Ŝn(j, i)]k,l −
tr(XA0)

p
[B0]k,l > ε

)

= Pr

(
exp

{
t

n∑
m=1

p∑
i,j=1

Xi,j

(
[zm](i−1)f+k[zm](j−1)f+l − [A0]i,j[B0]k,l

)}
> etnpε

)

≤ e−tnpε
(
E
[

exp
{
tỸ (k,l)

}])n(2.27)

where we used the i.i.d. property of the data in (2.27) and

Ỹ (k,l) :=

p∑
i,j=1

Xi,j([z](i−1)f+k[z](j−1)f+l − [A0]i,j[B0]k,l).

Define p2 × 1 random vector z(k,l) as

[z(k,l)](i−1)p+j := [z](i−1)f+k[z](j−1)f+l − [A0]i,j[B0]k,l

for 1 ≤ i, j ≤ p. Clearly, this random vector is zero mean. The expectation

term inside the parentheses in (2.27) is the MGF of the random variable Ỹ (k,l) =

vec(X)Tz(k,l). For notational simplicity, let φ̃Y (t) = E[etY ] denote the MGF of a

random vector Y .

Performing a second order Taylor expansion on φ̃Ỹ (k,l) about the origin, we obtain:

φ̃Ỹ (k,l)(t) = φ̃Ỹ (k,l)(0) +
dφ̃Ỹ (k,l)(0)

dt
t+

1

2

d2φ̃Ỹ (k,l)(δt)

dt2
t2

for some δ ∈ [0, 1]. Trivially, φ̃Ỹ (k,l)(0) = 1 and
dφ̃
Ỹ (k,l) (0)

dt
= E[vec(X)Tz(k,l)] = 0.

Using the linearity of the expectation operator, we have:

d2φ̃Ỹ (k,l)(δt)

dt2
= E[(Ỹ (k,l))2etδỸ

(k,l)

]

=
∞∑
m=0

(δt)m

m!
E[(vec(X)Tz(k,l))m+2]
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Using the elementary inequality 1 + y ≤ ey for y > −1, and after some algebra,

we have:

(2.28) n ln(φ̃Ỹ (k,l)(t)) ≤
n

2
t2
∞∑
m=0

Tm(t)

where Tm(t) := (tδ)m

m!
E[(vec(X)Tz(k,l))m+2]. Note that

t2Tm(t) ≤ tm+2

m!
E

( p∑
i,j=1

Xi,j([z](i−1)f+k[z](j−1)f+l − [A0]i,j[B0]k,l)

)m+2


=
tm+2

m!

p∑
i1,j1=1

· · ·
p∑

im+2,jm+2=1

Xi1,j1 · · ·Xim+2,jm+2

× E
[m+2∏
α=1

(
[z](iα−1)f+k[z](jα−1)f+l − [A0]iα,jα [B0]k,l

)]
≤ tm+2

m!
(2m+ 2)!! · p

(
max
k

[B0]k,k‖X‖2‖A0‖2

)m+2

(2.29)

=
(2m+ 2)!!

m!
(tk)m+2p

where (2.29) follows from Isserlis’ formula [114]. Also, we defined the absolute

constant k = maxk[B0]k,k‖X‖2‖A0‖2. Summing the result over m, and letting

u := tk > 0, am(u) := (2m+2)!!
m!

um, ψ(u) =
∑∞

m=0 am(u), we obtain:

(2.30) t2
∞∑
m=0

Tm(t) ≤ pu2ψ(u)
∣∣∣
u=tk

By the ratio test [7], the infinite series
∑∞

m=0 am(u) converges if u < 1/2. Using

(2.30) in (2.28), and the result in (2.27), we obtain the exponential bound:

Pr([T(X)]k,l − [B∗]k,l > ε) ≤ exp
{
− tnpε+

np(tk)2

2
ψ(tk)

}
Let t < 1

(2+τ)k
and ε < 1

2+τ
ψ( 1

2+τ
)k <∞. By the monotonicity of ψ(·), we have:

(2.31) Pr([T(X)]k,l − [B∗]k,l > ε) ≤ exp
{
− tnpε+

npt2k
2

2
ψ(

1

2 + τ
)
}
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Optimizing (2.31) over t, we obtain t∗ = ε

k
2
ψ( 1

2+τ
)
. Clearly, t∗ < 1

(2+τ)k
. Plugging this

into (2.31) and letting C := 1

2k
2
ψ( 1

2+τ
)

10, we obtain for all ε < 1
2+τ

ψ( 1
2+τ

)k:

(2.32) Pr([T(X)]k,l − [B∗]k,l > ε) ≤ e−npε
2C

From (2.32) and a similar lower tail bound, we conclude that for all ε < 1
2+τ

ψ( 1
2+τ

)k:

Pr(|[T(X)]k,l − E[[T(X)]k,l]| > ε) ≤ 2e−npε
2C

The union bound over (k, l) ∈ {1, . . . , f}2 completes the proof. This bound can be

re-expressed as in the statement of Lemma II.7 (see [114] for more details).

2.11.9 Proposition II.20

Proposition II.20. Let Sp,f,n be a d′ × d′ (where d′ = p or d′ = f) random matrix

such that with probability 1 − 2
n2 , |Sp,f,n − Σ∗|∞ ≤ rp,f,n. Assume Σ∗ ∈ Sd

′
++ has

uniformly bounded spectrum as p, f →∞ (analog to Assumption 1). Choose λp,f,n =

c·rp,f,n for some absolute constant c > 0. Consider the Glasso operator G(·, ·) defined

in (2.4). Let s = sΘ∗ be the sparsity parameter associated with Θ∗ := Σ−1
∗ . Assume

√
d′ + s · rp,f,n = o(1). Then, with probability 1− 2

n2 ,

‖G(Sp,f,n, λp,f,n)−Θ∗‖F ≤
2
√

2(1 + c)

λmin(Σ∗)2

√
d′ + s · rp,f,n

as p, f, n→∞.

Proof. The proof follows from a slight modification of Thm. 1 in [103], or Thm. 3

in [139]. This modification is due to the different rp,f,n.

2.11.10 Proof of Theorem II.11

Proof. As in the proof of Thm. 1 in [130], let B∗ =
tr(A0A−1

init)

p
B0 and A∗ =

(
tr(A0A−1

init)

p
)−1A0. Note that Assumption 1 implies that ‖B∗‖2 = Θ(1) and ‖A∗‖2 =

10Since ψ( 1
2+τ

) is finite, C > 0 is finite.
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Θ(1) as p, f →∞. For conciseness, the statement “with probability 1− cn−2 (where

c > 0 is a constant independent of p, f, n)” will be abbreviated as “w.h.p.”-i.e., with

high probability.

For concreteness, we first present the result for k = 2 iterations. Then, we general-

ize the analysis to all finite flip-flop iterations by induction. The growth assumptions

in the theorem imply

(2.33) max

p, f, f
2

p
,


√
pf + f

√
f
p

+ p
√

p
f

p+ f


2 logM ≤ C ′n

for some constant C ′ > 0 large enough 11. In fact, the growth assumption in the

theorem statement can be relaxed to (2.33).

As in the proof of Thm. 1 in [130], we vectorize the operations (2.8) and (2.9):

vec(Â(B)) =
1

f
R̂Avec(B−1)

vec(B̂(A)) =
1

p
R̂Bvec(A−1)

where R̂A and R̂B are permuted versions of the sample covariance matrix [130].

Define intermediate error matrices:

B̃0 = B̂(Ainit)−B∗

Ã1 = Â(B̂(Ainit))−A∗

Define Y∗ = B−1
∗ and X∗ = A−1

∗ . Also, define:

Y1 = B̂(Ainit)
−1

X2 = Â(B̂(Ainit))
−1

These inverses exist if n ≥ max( p
f
, f
p
) + 1 (see [87]). Define the error Σ̃FF (k) =

ΣFF (k) − Σ0 for k ≥ 2. For notational simplicity, let Bmax
0 := maxk[B0]k,k and

Amax
0 := maxi[A0]i,i, ψτ := ψ( 1

2+τ
), where ψ(·) is defined in Lemma II.7.

11This constant is independent of p, f, n, but may depend on the constants in Assumption II.10.
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Lemma II.7 implies that for

(2.34) n >
8(2 + τ)2

ψτ
logM

then with probability 1− 2n−2, we have:

(2.35) ‖B̃0‖F ≤ C0fp
−1/2

√
logM

n

where C0 = 2
√

2ψτB
max
0 ‖A−1

initA0‖2.

Let ε′ > 1. Note that from (2.35), for

(2.36) n ≥ (ε′C0)2f 2p−1 logM

with probability 1− 2n−2,

λmin(B̂(Ainit)) = λmin(B̃0 + B∗) ≥ λmin(B∗)− ‖B̃0‖2

≥ λmin(B∗)− ‖B̃0‖F ≥
(

1− 1

ε′

)
λmin(B∗) > 0

Thus, letting ∆1
Y = Y1 −Y∗, w.h.p.,

‖∆1
Y ‖F = ‖Y1(B̂(Ainit)−B∗)Y∗‖F

≤ ‖Y1‖2‖Y∗‖2‖B̃
0‖F =

‖B̃0‖F
λmin(B∗)λmin(B̂(Ainit))

≤ C0

(
1− 1

ε′

)−1

‖Y∗‖2
2fp

−1/2

√
logM

n
(2.37)

Expanding Ã1:

vec(Ã1) =
1

f
R̂Avec(Y1)− vec(A∗)

=
tr(B0∆

1
Y )

f
vec(A0) + vec(Â(B∗)−A∗)

+
1

f
R̃Avec(∆1

Y )(2.38)
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where we used RA = vec(A0)vec(BT
0 )T (see Eq. (91) from [130]). Using the trian-

gle inequality in (2.38), the Cauchy-Schwarz inequality, and standard matrix norm

bounds:

‖Ã1‖F ≤
√
p

f
‖Σ0‖2‖∆

1
Y ‖F︸ ︷︷ ︸

T1

+ p|Â(B∗)−A∗|∞︸ ︷︷ ︸
T2

+
p

f
‖R̃Avec(∆1

Y )‖∞︸ ︷︷ ︸
T3

We note upon expanding:

1

f
‖R̃Avec(∆1

Y )‖∞ =

∣∣∣∣∣ 1f
f∑

k,l=1

[∆1
Y ]k,l

¯̂
Sn(k, l)− tr(B0∆

1
Y )

f
A0

∣∣∣∣∣
∞

From (2.37), there exists c > 0 such that:

P

(
T1 ≥ C1f

1/2

√
logM

n

)
≤ cn−2

where C1 = ‖Σ0‖2C0(1− 1/ε′)−1‖Y∗‖2
2 is an absolute constant. Lemma II.7 implies:

P

(
T2 ≥ C2f

−1/2

√
logM

n

)
≤ 2n−2

where C2 = 2
√

2ψτA
max
0 ‖Y∗B0‖2 is an absolute constant. To bound T3, we define

the following events:

E0 =

{
‖∆1

Y ‖F ≤
C1

‖Σ0‖2

fp−1/2

√
logM

n

}

E1 =

{∣∣∣ 1
f

f∑
k,l=1

[∆1
Y ]k,l

¯̂
Sn(k, l)− tr(B0∆

1
Y )

f
A0

∣∣∣
∞
≤ 2
√

2ψτA
max
0 ‖∆1

Y ‖F‖B0‖2

√
logM

nf

}

E2 =

{
T3 ≤ C3

√
pf

√
logM

n

}

where C3 = 2
√

2ψτA
max
0 ‖B0‖2C0(1 − 1/ε′)−1‖Y∗‖2

2 is an absolute constant. From

(2.37), it follows that P (E0) ≥ 1 − cn−2 and from Lemma (II.7), it follows that
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P (E1|E0) ≥ 1− 2n−2. As a result, we have P(E2) ≥ P(E1 ∩E0) = P(E1|E0)P(E0) ≥

1− (c+ 2)n−2. Putting it together with the union bound, we have:

P

(
‖Ã1‖F ≥ (C1f

1/2 + C2pf
−1/2)

√
logM

n
+ C3

√
pf

logM

n

)

≤ P

(
T1 ≥

C1

3
f 1/2

√
logM

n

)
+ P

(
T2 ≥

C2

3
pf−1/2

√
logM

n

)

+ P
(
T3 ≥

C3

3

√
pf

logM

n

)
≤ c′n−2(2.39)

for some c′ > 0 absolute constant.

Let c1 > 0. For

(2.40) n ≥
(

C3

c1 max(C1, C2)

)2
pf

(f 1/2 + pf−1/2)2
logM

then, from (2.39), we have w.h.p.,

(2.41) ‖Ã1‖F ≤ max(C1, C2)(1 + c1)(
√
f + pf−1/2)

√
logM

n

Using properties of the Kronecker product:

Σ̃FF (2) = Ã1 ⊗B∗ + A∗ ⊗ B̃0

+ Ã1 ⊗ B̃0(2.42)

From (2.35),(2.41), (2.42), under conditions (2.34),(2.36), and (2.40), w.h.p.,

‖Σ̃FF (2)‖F ≤ ‖Ã1‖F‖B∗‖F

+ ‖A∗‖F‖B̃
0‖F + ‖Ã1‖F‖B̃

0‖F

≤ C̃3(p+ 2f)

√
logM

n
+ C̃4(f

√
f/p+

√
pf)

logM

n
(2.43)

where C̃3 = max(‖B∗‖2 max(C1, C2)(1+ c1), C0‖A∗‖2) and C̃4 = C0 max(C1, C2)(1+

c1) are constants [114].
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Let c2 > 0. For

n ≥ (
C̃4

C̃3c2

)2 (f
√
f/p+

√
pf)2

(p+ 2f)2
logM

then, from (2.43) w.h.p.,

‖Σ̃FF (2)‖F ≤ C̃3(1 + c2)(p+ 2f)

√
logM

n

The proof for k = 2 iterations is complete. Using a simple induction, it follows

that the rate (2.16) holds for all k finite.

Next, we show that the convergence rate in the precision matrix Frobenius error

is on the same order as the covariance matrix error. Let ΘFF (2) := ΣFF (2)−1. From

(2.41), for

n > (ε′‖X∗‖2 max(C1, C2)(1 + c1))2(
√
f + pf−1/2)2 logM

then, letting ∆2
X = X2 −X∗, we have w.h.p.,

‖∆2
X‖F ≤

(
1− 1

ε′

)−1

‖X∗‖2
2C̃1(1 + c1)

× (
√
f + pf−1/2)

√
logM

n
(2.44)

Using (2.37) and (2.44), we have w.h.p.,

‖ΘFF (2)−Θ0‖F ≤ ‖∆
2
X‖F‖Y∗‖F

+ ‖∆1
Y ‖F‖X∗‖F + ‖∆2

X‖F‖∆
1
Y ‖F

≤ D̃1(2f + p)

√
logM

n
+ D̃2(f

√
f

p
+
√
pf)

logM

n
(2.45)

where D̃1 and D̃2 are constants.

For

n > (
D̃2

D̃1d′
)2(
f
√
f/p+

√
pf

2f + p
)2 logM
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the bound (2.45) becomes w.h.p.,

‖ΘFF (2)−Θ0‖F ≤ D̃1(1 + d′)(2f + p)

√
logM

n

Thus, the same rate OP

(√
(p2+f2) logM

n

)
holds for the precision matrix Frobenius

error.

2.11.11 Proof of Theorem II.13

Proof. We show that the first iteration of the KGL algorithm yields a fast statistical

convergence rate of OP

(√
(p+f) logM

n

)
by appropriately adjusting the regularization

parameters. A simple induction finishes the proof. Adopt the notation from the

proof of Thm. II.11.

Lemma II.7 implies that for

(2.46) n ≥ 8(2 + τ)2

ψτ
logM

then with probability 1− 2n−2,

(2.47) |B̃0|∞ ≤ C0p
−1/2

√
logM

n

where B̃0 = B̂(Ainit)−B∗. From Proposition II.20 and (2.47), we obtain w.h.p.,

‖Y1 −Y∗‖F ≤ 2
√

2(1 + cy)
√

1 + cY0‖Y∗‖
2
2

× C0

√
f logM

np
(2.48)

where we also used sY0 ≤ cY0f and Y1 := G(B̂(Ainit), λ
(1)
Y ) = B−1

1 . Note that

fp−1 logM = o(n) was used here. Let ∆1
Y = Y1 −Y∗.
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Let À1 := Â(B1)−A∗. Then, we have

vec(À1) =
1

f
R̂Avec(Y1)− vec(A∗)

=
tr(B0∆

1
Y )

f
vec(A0) + vec(Â(B∗)−A∗)

+
1

f
R̃Avec(∆1

Y )(2.49)

where we used RA = vec(A0)vec(BT
0 )T (see Eq. (91) in [130]).

From (2.49), applying the triangle inequality and using the Cauchy-Schwarz in-

equality:

|À1|∞ ≤
√
f‖B0‖2‖∆1

Y ‖F
f

|A0|∞︸ ︷︷ ︸
T1

+ |Â(B∗)−A∗|∞︸ ︷︷ ︸
T2

+
1

f
‖R̃Avec(∆1

Y )‖∞︸ ︷︷ ︸
T3

(2.50)

(2.51)

Let C̃0 = C02
√

2(1 + cy)
√

1 + cY0‖Y∗‖
2
2 and C̄1 = C̃0|A0|∞‖B0‖2. The bound (2.48)

implies

P

(
T1 ≥ C̄1

√
logM

np

)
≤ cn−2

for some c > 0. Let C̄2 = 2
√

2ψτA
max
0 ‖Y∗B0‖2. Lemma II.7 implies

P

(
T2 ≥ C̄2

√
logM

nf

)
≤ 2n−2

Let C̄3 = C̃02
√

2ψτA
max
0 ‖B0‖2. To bound T3, we use the same technique as in the

proof of Thm. II.11. Define the events:

E0 =

{
‖∆1

Y ‖F ≤ C̃0

√
f logM

np

}

E1 =

{
1

f
‖R̃Avec(∆1

Y )‖∞ ≤ 2
√

2ψτA
max
0 ‖B0‖2‖∆

1
Y ‖F

√
logM

nf

}

E2 =

{
T3 ≤ C̄3

1
√
p

logM

n

}
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From (2.48), we have P(E0) ≥ 1 − cn−2 and from Lemma II.7 we have P(E1|E0) ≥

1− 2n−2. Thus, P(E2) ≥ P(E1|E0)P(E0) ≥ 1− c′n−2.

Using (2.50) and the union bound:

P

(
|À1|∞ ≥ (

C̄1√
p

+
C̄2√
f

)

√
logM

n
+
C̄3√
p

logM

n

)

≤ P

(
T1 ≥

C̄1

3
√
p

√
logM

n

)
+ P

(
T2 ≥

C̄2

3
√
f

√
logM

n

)

+ P
(
T3 ≥

C̄3

3
√
p

logM

n

)
≤ c′′n−2

for some c′′ > 0. Thus, for n ≥ ( C̄3

C̄1c1
)2 logM , c1 > 0, we have w.h.p.,

(2.52) |À1|∞ ≤ max(C̄1, C̄2)(1 + c1)

(
1
√
p

+
1√
f

)√
logM

n

Let ∆1
X = X1 −X∗. From Proposition II.20 and (2.52), we obtain w.h.p.:

‖∆1
X‖F ≤ 2

√
2(1 + cx)

√
1 + cX0‖X∗‖

2
2 max(C̄1, C̄2)(1 + c1)

×
(

1 +

√
p

f

)√
logM

n
(2.53)

where we used sX0 ≤ cX0p and X1 := G(Â(B1), λ
(1)
X ), X∗ := A−1

∗ . Note that

(1 +
√
p/f)2 logM = o(n) was used here.

Finally, using (2.48) and (2.53), we obtain w.h.p.:

‖ΘKGL(2)−Θ0‖F = ‖X1 ⊗Y1 −X∗ ⊗Y∗‖F

≤ ‖∆1
Y ‖F
√
p‖X∗‖2 + ‖∆1

X‖F
√
f‖Y∗‖2

+ ‖∆1
Y ‖F‖∆

1
X‖F

≤ C̄ ′3(2
√
f +
√
p)

√
logM

n
+ C̄ ′4(1 +

√
f

p
)
logM

n
(2.54)
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where C̄ ′3 and C̄ ′4 are constants [114]. For

n > (
C̄ ′4
C̄ ′3c̄

)2

(
1 +

√
f/p

2
√
f +
√
p

)2

logM

the bound (2.54) further becomes:

‖ΘKGL(2)−Θ0‖F ≤ C̄ ′3(1 + c̄)(2
√
f +
√
p)

√
logM

n

Note that ‖ΘKGL(2)−Θ0‖2
F = OP

(
(p+f+

√
pf) logM
n

)
= OP

(
(p+f) logM

n

)
as p, f, n→

∞. This concludes the first part of the proof. The rest of the proof follows by simi-

lar bounding arguments coupled with induction. The rate remains the same as the

number of iterations increases, but the constant on front may change.

Next, we show that the convergence rate in the covariance matrix Frobenius error

is on the same order as the inverse. From (2.48), for

n > (ε′C̃0‖Y∗‖2)2fp−1 logM

we have w.h.p. λmin(Y1) ≥ λmin(Y∗) − ‖Y1 −Y∗‖F ≥ (1 − 1
ε′

)λmin(Y∗), which in

turn implies w.h.p.,

‖∆1
B‖F = ‖B1 −B∗‖F ≤ (1− 1/ε′)−1C̃0‖B∗‖2

2︸ ︷︷ ︸
C̄1
B

×

√
f

p

√
logM

n
(2.55)

12 Using a similar argument, from (2.53), for n ≥ C ′(1 +
√

p
f
)2 logM (for some

constant C ′) we have w.h.p.,

‖∆1
A‖F = ‖A1 −A∗‖F ≤ (1− 1/ε′)−1‖A∗‖2

2C̄
1
X︸ ︷︷ ︸

C̄1
A

×
(

1 +

√
p

f

)√
logM

n
(2.56)

12Here, B1 = Y−1
1 exists since Y1 is positive definite (see (2.4)).
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where A1 = X−1
1 .

Let ΣKGL(2) := ΘKGL(2)−1 = A1 ⊗B1. Then, w.h.p.,

‖ΣKGL(2)−Σ0‖F ≤ ‖∆
1
A‖F‖B∗‖F

+ ‖∆1
B‖F‖A∗‖F + ‖∆1

A‖F‖∆
1
B‖F

≤ D̄1(2
√
f +
√
p)

√
logM

n
+ D̄2(1 +

√
f

p
)
logM

n
(2.57)

where D̄1 and D̄2 are constants [114]. For

n > (
D̄2

D̄1d
)2

 1 +
√

f
p

2
√
f +
√
p

2

logM

then (2.57) implies w.h.p.,

‖ΣKGL(2)−Σ0‖F ≤ D̄1(1 + d)(2
√
f +
√
p)

√
logM

n

Thus, the same rate OP

(√
(p+f) logM

n

)
holds for the error in the covariance matrix.



CHAPTER III

Kronecker PCA: A Series Decomposition of Covariance
Matrices using Permuted Rank-Penalized Least Squares

This chapter presents a new method for estimating high dimensional covariance

matrices. The method, permuted rank-penalized least-squares (PRLS), is based on

a Kronecker product series expansion of the true covariance matrix. Assuming an

i.i.d. Gaussian random sample, we establish high dimensional rates of convergence

to the true covariance as both the number of samples and the number of variables

go to infinity. For covariance matrices of low separation rank, our results establish

that PRLS has significantly faster convergence than the standard sample covariance

matrix (SCM) estimator. The convergence rate captures a fundamental tradeoff be-

tween estimation error and approximation error, thus providing a scalable covariance

estimation framework in terms of separation rank, similar to low rank approximation

of covariance matrices [85]. The MSE convergence rates generalize the high dimen-

sional rates recently obtained for the ML Flip-flop algorithm [116, 114] for Kronecker

product covariance estimation. We show that a class of block Toeplitz covariance

matrices is approximatable by low separation rank and give bounds on the minimal

separation rank r that ensures a given level of bias. Simulations are presented to

validate the theoretical bounds. As a real world application, we illustrate the util-

ity of the proposed Kronecker covariance estimator for spatio-temporal linear least

84
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squares prediction of multivariate wind speed measurements.

3.1 Introduction

Covariance estimation is a fundamental problem in multivariate statistical anal-

ysis. It has received attention in diverse fields including economics and financial

time series analysis (e.g., portfolio selection, risk management and asset pricing [4]),

bioinformatics (e.g. gene microarray data [133, 63], functional MRI [44]) and machine

learning (e.g., face recognition [137], recommendation systems [2]). In many modern

applications, data sets are very large with both large number of samples n and large

dimension d, often with d � n, leading to a number of covariance parameters that

greatly exceeds the number of observations. The search for good low-dimensional

representations of these data sets has led to much progress in their analysis. Recent

examples include sparse covariance estimation [136, 5, 99, 103], low rank covariance

estimation [50, 51, 74, 85], and Kronecker product esimation [49, 130, 38, 116, 114].

Kronecker product (KP) structure is a different covariance constraint from sparse

or low rank constraints. KP represents a pq × pq covariance matrix Σ0 as the Kro-

necker product of two lower dimensional covariance matrices. When the variables

are multivariate Gaussian with covariance following the KP model, the variables are

said to follow a matrix normal distribution [38, 49, 60]. This model has applica-

tions in channel modeling for MIMO wireless communications [131], geostatistics

[36], genomics [134], multi-task learning [16], face recognition [137], recommendation

systems [2] and collaborative filtering [135]. The main difficulty in maximum like-

lihood estimation of structured covariances is the nonconvex optimization problem

that arises. Thus, an alternating optimization approach is usually adopted. In the

case where there is no missing data, an extension of the alternating optimization
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algorithm of Werner et al [130], that the authors called the flip flop (FF) algorithm,

can be applied to estimate the parameters of the Kronecker product model, called

KGlasso in [116].

In this chapter, we assume that the covariance can be represented as a sum of

Kronecker products of two lower dimensional factor matrices, where the number of

terms in the summation may depend on the factor dimensions. More concretely, we

assume that there are d = pq variables whose covariance Σ0 has Kronecker product

representation:

(3.1) Σ0 =
r∑

γ=1

A0,γ ⊗B0,γ

where {A0,γ} are p × p linearly independent matrices and {B0,γ} are q × q linearly

independent matrices 1. We assume that the factor dimensions p, q are known. We

note 1 ≤ r ≤ r0 = min(p2, q2) and refer to r as the separation rank. The model (3.1)

is analogous to separable approximation of continuous functions [12]. It is evocative

of a type of low rank principal component decomposition where the components are

Kronecker products. However, the components in (3.1) are neither orthogonal nor

normalized. The model (3.1) with separation rank 1 is relevant to channel modeling

for MIMO wireless communications, where A0 is a transmit covariance matrix and

B0 is a receive covariance matrix [131]. The rank 1 model is also relevant to other

transposable models arising in recommendation systems like NetFlix and in gene ex-

pression analysis [2]. The model (3.1) with r ≥ 1 has applications in spatiotemporal

MEG/EEG covariance modeling [41, 40, 15, 75], SAR data analysis [105] and other

multimodal data. Due to the spatiotemporal character of certain data sets, one ex-

pects the covariance matrix to be better represented by a low separation rank model

1Linear independence is with respect to the trace inner product defined in the space of symmetric matrices. We
note that the matrices {A0,γ}, {B0,γ} need not be positive semi-definite (psd), but the sum (3.1) must be as it is a
covariance matrix.



87

of the form (3.1) than a low algebraic rank model (i.e., a PCA decomposition). We

finally note that Van Loan and Pitsianis [84] have shown that any pq×pq matrix Σ0

can be written as an orthogonal expansion of Kronecker products of the form (3.1),

thus allowing any covariance matrix to be approximated by a bilinear decomposition

of this form. The Kronecker product can also be represented as a multi-way tensor.

The main contribution of this chapter is a convex optimization approach to esti-

mating covariance matrices with KP structure of the form (3.1) and the derivation of

tight high-dimensional MSE convergence rates as n, p and q go to infinity. We call our

method the Permuted Rank-penalized Least Squares (PRLS) estimator. Similarly

to other studies of high dimensional covariance estimation [23, 116, 103, 14, 124],

we analyze the estimator convergence rate in Frobenius norm of PRLS, providing

specific convergence rates holding with certain high probability. In other words, our

anlaysis provides high probability guarantees up to absolute constants in all sample

sizes and dimensions.

For estimating separation rank r covariance matrices of the form (3.1), we es-

tablish that PRLS achieves high dimensional consistency with a convergence rate

of OP

(
r(p2+q2+log max(p,q,n))

n

)
. This can be significantly faster than the convergence

rate OP

(
p2q2

n

)
of the standard sample covariance matrix (SCM). For separation

rank r = 1 this rate is identical to that of the FF algorithm, which fits the sample

covariance matrix to a single Kronecker factor.

The PRLS method for estimating the Kronecker product expansion (3.1) gener-

alizes previously proposed Kronecker product covariance models [49, 38] to the case

of r > 1. This is a fundamentally different generalization than the r = 1 sparse KP

models proposed in [2, 116, 114, 83]. Independently in [116, 114] and [83], it was

established that the high dimensional convergence rate for these sparse KP models
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is of order OP

(
(p+q) log max(p,q,n)

n

)
. While we do not pursue the the additional con-

straint of sparsity in this chapter, we speculate that sparsity can be combined with

the Kronecker sum model (3.1), achieving even better convergence.

Advantages of the proposed PRLS covariance estimator is illustrated on both sim-

ulated and real data. The application of PRLS to the NCEP wind dataset shows that

a low order Kronecker sum provides a remarkably good fit to the spatio-temporal

sample covariance matrix: over 86% of all the energy is contained in the first Kro-

necker component of the Kronecker expansion as compared to only 41% in the prin-

cipal component of the standard PCA eigen-expansion. Furthermore, by replacing

the SCM in the standard linear predictor by our Kronecker sum estimator we demon-

strate a 1.9 dB RMSE advantage for predicting next-day wind speeds from NCEP

network past measurements.

3.2 Notation

For a square matrix M, define |M|1 = ‖vec(M)‖1 and |M|∞ = ‖vec(M)‖∞,

where vec(M) denotes the vectorized form of M (concatenation of columns into a

vector). ‖M‖2 is the spectral norm of M. Mi,j and [M]i,j are the (i, j)th element

of M. Let the inverse transformation (from a vector to a matrix) be defined as:

vec−1(x) = X, where x = vec(X). Define the pq × pq permutation operator Kp,q

such that Kp,qvec(N) = vec(NT ) for any p×q matrix N. For a symmetric matrix M,

λ(M) will denote the vector of real eigenvalues of M and define λmax(M) = ‖M‖2 =

maxλi(M) for p.d. symmetric matrix, and λmin(M) = minλi(M). For any matrix

M, define the nuclear norm ‖M‖∗ =
∑rM

l=1 |σl(M)|, where rM = rank(M) and σl(M)

is the lth singular value of M.

For a matrix M of size pq × pq, let {M(i, j)}pi,j=1 denote its q × q block sub-
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matrices, where each block submatrix is M(i, j) = [M](i−1)q+1:iq,(j−1)q+1:jq. Also let

{M(k, l)}qk,l=1 denote the p × p block submatrices of the permuted matrix M =

KT
p,qMKp,q. Define the permutation operator R : Rpq×pq → Rp2×q2 by setting the

(i− 1)p+ j row of R(M) equal to vec(M(i, j))T . An illustration of this permutation

operator is shown in Fig. 3.1.
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Figure 3.1:
Original (top) and permuted covariance (bottom) matrix. The original covariance is
Σ0 = A0⊗B0, where A0 is a 10× 10 Toeplitz matrix and B0 is a 20× 20 unstructured
p.d. matrix. Note that the permutation operator R maps a symmetric p.s.d. matrix
Σ0 to a non-symmetric rank 1 matrix R0 = R(Σ0).

Define the set of symmetric matrices Sp = {A ∈ Rp×p : A = AT}, the set of

symmetric positive semidefinite (psd) matrices Sp+, and the set of symmetric positive

definite (pd) matrices Sp++. Id is a d× d identity matrix. It can be shown that Sp++

is a convex set, but is not closed [18]. Note that Sp++ is simply the interior of the

closed convex cone Sp+.

For a subspace U , define PU and P⊥U as the orthogonal projection onto U and
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U⊥, respectively. The unit Euclidean sphere in Rd′ is denoted by Sd′−1 = {x ∈ Rd′ :

‖x‖2 = 1}. Let (x)+ = max(x, 0).

Statistical convergence rates will be denoted by the OP (·) notation, which is de-

fined as follows. Consider a sequence of real random variables {Xn}n∈N defined on a

probability space (Ω,F , P ) and a deterministic (positive) sequence of reals {bn}n∈N.

By Xn = OP (1) is meant: supn∈N Pr(|Xn| > K) → 0 as K → ∞, where Xn is a

sequence indexed by n, for fixed p, q. The notation Xn = OP (bn) is equivalent to

Xn
bn

= OP (1). By Xn = op(1) is meant Pr(|Xn| > ε) → 0 as n → ∞ for any ε > 0.

By λn � bn is meant c1 ≤ λn
bn
≤ c2 for all n, where c1, c2 > 0 are absolute constants.

3.3 Permuted Rank-penalized Least-squares

Available are n i.i.d. multivariate Gaussian observations {zt}nt=1, zt ∈ Rpq, having

zero-mean and covariance equal to (3.1). A sufficient statistic for estimating the

covariance is the well-known sample covariance matrix (SCM):

(3.2) Ŝn =
1

n

n∑
t=1

ztz
T
t

The SCM is an unbiased estimator of the true covariance matrix. However, when the

number of samples n is smaller than the number of variables d = pq the SCM suffers

from high variance and a low rank approximation to the SCM is commonly used.

The most common low rank approximation is to perform the eigendecomposition of

Ŝn and retain only the top r principal components resulting in an estimator, called

the PCA estimator, of the form:

(3.3) ŜPCAn =
r∑
i=1

σ2
i νiν

T
i ,

where r < d is selected according to some heuristic. It is now well known [82, 97]

that this PCA estimator suffers from high bias when n is smaller than d = pq.
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An alternative approach to low rank covariance estimation was proposed in [85]

specifying a low rank covariance estimator as the solution of the penalized least

squares problem 2:

(3.4) Σ̂λ
n ∈ arg min

S∈Sd++

‖Ŝn − S‖2
F + λtr(S)

where λ > 0 is a regularization parameter.

The estimator (3.4) has several useful interpretations. First, it can be interpreted

as a convex relaxation of the non-convex rank constrained Frobenius norm minimiza-

tion problem

arg min
S∈Sd++,rank(S)≤r

‖ Ŝn − S ‖2
F ,

whose solution, by the Eckhart-Young theorem, is the PCA estimator (3.3). Second,

it can be interpreted as a covariance version of the lasso regression problem, i.e.,

finding a low rank psd `2 approximation to the sample covariance matrix. The term

tr(S) in 3.4 is equivalent to the `1 norm on the eigenvalues of the psd matrix S.

As shown in [85] the solution to the convex minimization in (3.4) converges to the

ensemble covariance Σ0 = E[ztz
T
t ] at the minimax optimal rate. Corollary 1 in

[85] establishes that, for λ = C ′‖Σ0‖2

√
r(Σ0) log(2d)

n
, n ≥ cr(Σ0) log2(max(2d, n)) and

C ′, c > 0 sufficiently large, establishes a tight Frobenius norm error bound, which

states that with probability 1− 1
2d

:

‖Σ̂λ
n −Σ0‖2

F ≤ inf
S�0
‖Σ0 − S‖2

F + C‖Σ0‖2
2rank(S)

r(Σ0) log(2d)

n

where r(Σ0) = tr(Σ0)
‖Σ0‖2

≤ rank(Σ0) is the effective rank [85]. The absolute constant C

is given by (1+
√

2)2

8
(C ′)2.

Here we propose a similar nuclear norm penalization approach to estimate low

separation-rank covariance matrices of form (3.1). Motivated by Van Loan and

2The estimator (3.4) was developed in [85] for the more general problem where there could be missing data.
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Pitsianis’s work [84], we propose:

(3.5) R̂λ
n ∈ arg min

R∈Rp2×q2
‖R̂n −R‖2

F + λ‖R‖∗

where R̂n = R(Ŝn) is the permuted SCM of size p2× q2 (see Notation section). The

minimum-norm problem considered in [84] is:

(3.6) min
R∈Rp2×q2 :rank(R)≤r

‖R̂n −R‖2
F

Specifically, let S =
∑r

i=1 Ai ⊗Bi where for all i the dimensions of the matrices Ai

and Bi are fixed. Then, as the Frobenius norm of a matrix is invariant to permutation

of its elements, it follows that ‖ Sn − S ‖F=‖ Rn − R ‖F where Rn = R(Sn) and

R = R(S) (which is a matrix of algebraic rank r).

We note that (3.5) is a convex relaxation of (3.6) and is more amenable to nu-

merical optimization. Furthermore, we show a tradeoff between approximation error

(i.e., the error induced by model mismatch between the true covariance and the

model) and estimation error (i.e., the error due to finite sample size) by analyzing

the solution of (3.5). We also note that (3.5) is a strictly convex problem, so there

exists a unique solution that can be efficiently found using well established numerical

methods [18].

The solution of (3.5) is closed form and is given by a thresholded singular value

decomposition:

(3.7) R̂λ
n =

min(p2,q2)∑
j=1

(
σj(R̂n)− λ

2

)
+

ujv
T
j

where uj and vj are the left and right singular vectors of R̂n. This is converted back

to a square pq× pq matrix Σ̂λ
n by applying the inverse permutation operator R−1 to

R̂n (see Notation section).
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Efficient methods for numerically evaluating penalized objectives like (3.5) have

been recently proposed [21, 22] and do not require computing the full SVD. Although

empirically observed to be fast, the computational complexity of the algorithms pre-

sented in [21] and [22] is unknown. The rank-r SVD can be computed with O(p2q2r)

floating point operations. There exist faster randomized methods for truncated SVD

requiring only O(p2q2 log(r)) floating point operations [61]. Thus, the computational

complexity of solving (3.5) scales well with respect to the desired separation rank r.

The next theorem shows that the de-permuted version of (3.7) is symmetric and

positive definite.

Theorem III.1. Consider the de-permuted solution Σ̂λ
n = R−1(R̂λ

n). The following

are true:

1. The solution Σ̂λ
n is symmetric with probability 1.

2. If n ≥ pq, then the solution Σ̂λ
n is positive definite with probability 1.

Proof. See Appendix.

We believe that the PRLS estimate Σ̂λ
n is positive definite even if n < pq for

appropriately selected λ > 0. In our simulations, we always found Σ̂λ
n to be positive

definite. We have also found that the condition number of the PRLS estimate is

orders of magnitude smaller than that of the SCM.

3.4 High Dimensional Consistency of PRLS

In this section, we show that RPLS achieves the MSE statistical convergence rate

of OP

(
r(p2+q2+logM)

n

)
. This result is clearly superior to the statistical convergence

rate of the naive SCM estimator [124],

(3.8) ‖Ŝn −Σ0‖2
F = OP

(
p2q2

n

)
,
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particularly when p, q →∞.

The next result provides a relation between the spectral norm of R̂n − R0, the

Frobenius norm of R − R0 and the Frobenius norm of the the estimation error

R̂λ
n −R0.

Theorem III.2. Consider the convex optimization problem (3.5). When λ ≥ 2‖R̂n−

R0‖2, the following holds:

(3.9) ‖R̂λ
n −R0‖2

F ≤ inf
R

{
‖R−R0‖2

F +
(1 +

√
2)2

4
λ2rank(R)

}

Proof. See Appendix.

3.4.1 High Dimensional Operator Norm Bound for the Permuted Sample Covariance
Matrix

In this subsection, we establish a tight bound on the spectral norm of the error

matrix

(3.10) ∆n = R̂n −R0 = R(Ŝn −Σ0).

The standard strong law of large numbers implies that for fixed dimensions p, q, we

have ∆n → 0 almost surely as n → ∞. The next result will characterize the finite

sample fluctuations of this convergence (in probability) measured by the spectral

norm as a function of the sample size n and Kronecker factor dimensions p, q. This

result will be useful for establishing a tight bound on the Frobenius norm convergence

rate of PRLS and can guide the selection of the regularization paramater in (3.5).

Theorem III.3. (Operator Norm Bound on Permuted SCM) Assume ‖Σ0‖2 < ∞

for all p, q and define M = max(p, q, n). Fix the constant ε′ < 1
2
. Assume t ≥

max(
√

4C1 ln(1 + 2
ε′

), 4C2 ln(1 + 2
ε′

)) and C = max(C1, C2) > 0 3. Then, with proba-

3The constants C1, C2 are defined in Lemma III.7 in Appendix B.
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bility at least 1− 2M− t
4C ,

(3.11) ‖∆n‖2 ≤
C0t

1− 2ε′
max

{
p2 + q2 + logM

n
,

√
p2 + q2 + logM

n

}

where C0 = ‖Σ0‖2 > 0 4.

Proof. See Appendix.

The proof technique is based on a large deviation inequality, derived in Lemma

III.7 in Appendix C. This inequality characterizes the tail behavior of the quadratic

form xT∆ny over the spheres x ∈ Sp2−1 and y ∈ Sq2−1. Using Lemma III.7 and a

sphere covering argument, the result of Theorem III.3 follows (see Appendix). Fig.

3.2 empirically validates the tightness of the bound (3.11) under the trivial separation

rank 1 covariance Σ0 = Ip ⊗ Iq.

3.4.2 High Dimensional MSE Convergence Rate for PRLS

Using the result in Thm. III.3 and the bound in Thm. III.2, we next provide a

tight bound on the MSE estimation error.

Theorem III.4. Define the variable M = max(p, q, n). Set the regularization param-

eter λ = λn = 2C0t
1−2ε′

max

{
p2+q2+logM

n
,
√

p2+q2+logM
n

}
with t satisfying the conditions

of Thm. III.3. Then, with probability at least 1− 2M− t
4C :

‖Σ̂λ
n −Σ0‖2

F ≤ inf
R:rank(R)≤r

‖R−R0‖2
F

+ C ′rmax

{(
p2 + q2 + logM

n

)2

,
p2 + q2 + logM

n

}
(3.12)

where C ′ =
(
C0t

1+
√

2
1−2ε′

)2

=
(
3(1 +

√
2)C0t

)2
> 0.

Proof. See Appendix.

4The constant C0t
1−2ε′ in front of the rate can be optimized by minimizing it as a function of ε′ over the interval

(0, 1/2).
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Figure 3.2:
Monte Carlo simulation for growth of spectral norm ‖∆n‖22 as a function of p for fixed
n = 10 and q = 5. The predicted curve is a least-square fit of a quadratic model
y = ax2 + b to the empirical curve, and is a great fit. This example shows the tightness
of the probabilistic bound (3.11).

When Σ0 is truly a sum of r Kronecker products with factor dimensions p and q,

there is no model mismatch and the approximation error inf{R:rank(R)≤r} ‖R−R0‖2
F

is zero. In this case, in the large-p, q, n asymptotic regime where p2 + q2 + logM =

o(n), it follows that ‖Σ̂λ
n − Σ0‖F = OP (

√
r(p2+q2+logM)

n
) = op(1). This asymptotic

MSE convergence rate of the estimated covariance to the true covariance reflects the

number of degrees of freedom of the model, which is on the order of the total number

r(p2 + q2) of unknown parameters. This result extends the recent high-dimensional

results obtained in [116, 114, 115] for the single Kronecker product model (i.e., r = 1).

Recall that r ≤ r0 = min(p2, q2). For the case when p ∼ q, and r ∼ r0, we have a

fully saturated Kronecker product model and the number of model parameters are

of the order p4 ∼ d2, and the SCM convergence rate (3.8) coincides with the rate
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obtained in Thm. III.4.

For covariance models of low separation rank-i.e., r � r0, Thm. III.4 asserts that

the high dimensional MSE convergence rate of PRLS can be much lower than the

naive SCM convergence rate. Thus PRLS is an attractive alternative to rank-based

series expansions like principal component analysis (PCA). We note that each term

in the expansion A0,γ ⊗B0,γ can be full-rank, while each term in the standard PCA

expansion is rank 1.

Finally, we observe that Thm. III.4 captures the tradeoff between estimation

error and approximation error. In other words, choosing a smaller r than the true

separation rank would incur a larger approximation error inf{R:rank(R)≤r} ‖R−R0‖2
F >

0, but smaller estimation error on the order of OP ( r(p
2+q2+logM)

n
).

3.4.3 Approximation Error

It is well known from least-squares approximation theory that the residual error

can be rewritten as:

(3.13) inf
R:rank(R)≤r

‖R−R0‖2
F =

r0∑
k=r+1

σ2
k(R0),

where {σk(R0)} are the singular values of R0. In the high dimensional setting, the

sample size n grows with the dimensions p, q so that the maximum separation rank

r0 also grows to infinity, and the approximation error (3.13) may not be finite. In this

case the bound in Theorem III.4 will not be finite. Hence, an additional condition

will be needed to ensure that the sum (3.13) remains finite as p, q →∞: the singular

values of R0 need to decay faster than O(1/k).

We show next that the class of block-Toeplitz covariance matrices have bounded

approximation error if the separation rank scales like log(max(p, q)). To show this,

we first provide a tight variational bound on the singular value spectrum of any p2×q2
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matrix R. Note that the work on high dimensional Toeplitz covariance estimation

under operator and Frobenius norms [23, 14] are not applicable to the block-Toeplitz

case. To establish Thm. III.6 on block Toeplitz matrices we first need the following

Lemma.

Lemma III.5. (Variational Bound on Singular Value Spectrum) Let R be an ar-

bitrary matrix of size p2 × q2. Let Pk be an orthogonal projection of Rq2 onto Rk.

Then, for k = 1, . . . , r0 − 1 we have:

(3.14) σ2
k+1(R) ≤ ‖(Iq2 −Pk)R

T‖2
2

with equality iff Pk = VkV
T
k . Also, Vk = [v1, . . . ,vk], where vi is the ith column of

V and R = UΣVT is the singular value decomposition.

Proof. See Appendix.

Using this fundamental lemma, we can characterize the approximation error for

estimating block-Toeplitz matrices with exponentially decaying off-diagonal norms.

Such matrices arise, for example, as covariance matrices of multivariate stationary

random processes of dimension m (see (3.17)) and take the block Toeplitz form:

(3.15) Σ0︸︷︷︸
(N+1)m×(N+1)m

=



Σ(0) Σ(1) . . . Σ(N)

Σ(−1) Σ(0) . . . Σ(N − 1)

...
...

. . .
...

Σ(−N) Σ(−N + 1) . . . Σ(0)


where each submatrix is of size m × m. For a zero-mean vector process y =

{y(0), . . . ,y(N)}, the submatrices are given by Σ(τ) = E[y(0)y(τ)T ].

Theorem III.6. Consider a block-Toeplitz p.d. matrix Σ0 of size (N + 1)m× (N +

1)m, with ‖Σ(τ)‖2
F ≤ C ′u2|τ |q for all τ = −N, . . . , N and constant u ∈ (0, 1). Let Σ̂λ

n
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be the de-permuted matrix R−1(R̂λ
n), where R̂λ

n is given in (3.7). Using the minimal

separation rank r:

r ≥ log(pq/ε)

log(1/u)
.

Then, the PRLS algorithm estimates Σ0 up to an absolute tolerance ε ∈ (0, 1) with

convergence rate guarantee:

(3.16) ‖Σ̂λ
n −Σ0‖2

F ≤ ε+ C ′r
p2 + q2 + logM

n

holding with probability at least 1 − max(p, q, n)−t/4C for λ chosen as perscribed in

Thm. III.4. Here, t > 1 is constant and C,C ′ > 0 are constants specified in Thm.

III.4.

Proof. See Appendix.

The exponential norm decay condition of Thm. III.6 is satisfied by a first-order

vector autoregressive process:

(3.17) Zt = ΦZt−1 + Et

with u = ‖Φ‖2 ∈ (0, 1), where Zt ∈ Rm. For Et ∼ N(0,Σε), this is a multivariate

Gaussian process. Collecting data over a time horizon of size N + 1, we concatenate

these observations into a large random vector z of dimension (N + 1)m, where m is

the process dimension. The resulting covariance matrix has the block-Toeplitz form

assumed in Thm. III.6. Figure 3.3 shows bounds constructed using the Frobenius

upper bound on the spectral norm in (3.14) and using the projection matrix Pk as

discussed in the proof of Thm. III.6. The bound given in the proof of Thm. III.6

(in black) is shown to be linear in log-scale, thus justifying the exponential decay of

the Kronecker spectrum.
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Figure 3.3:
Kronecker spectrum and bounds based on Lemma III.5. The upper bound ‘Bound -
frob’ (in green) is obtained using the bound (3.14) using the basis associated with the
minimum `2 approximation error (i.e., the optimal basis computed by SVD as outlined
in the equality condition of Lemma III.5). The upper bound ‘Bound GS - frob’ (in
magenta) is constructed using the variational bound (3.14) with projection matrix Pk

having columns drawn from the orthonormal basis constructed in the proof of Thm.
III.6. The upper bound ‘Bound GS - frob 2’ (in black) is constructed from the bound
(3.47) in the proof of Thm. III.6.

3.5 Simulation Results

We consider dense positive definite matrices Σ0 of dimension d = 625. Taking

p = q = 25, we note that the number of free parameters that describe each Kronecker

product is of the order p2 + q2 ∼ p2, which is essentially of the same order as

the number of unknown parameters required to specify each eigenvector of Σ0, i.e.,

pq ∼ p2.
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3.5.1 Sum of Kronecker Product Covariance

The covariance matrix shown in Fig. 3.4 was constructed using (3.1) with r = 3,

with each p.d. factor chosen as CCT , where C is a square Gaussian random matrix.

Fig. 3.5 shows the empirical performance of covariance matching (CM) (i.e., solution

of (3.6) with r = 3), PRLS and SVT (i.e., solution of (3.4)). We note that the

Kronecker spectrum contains only three nonzero terms while the true covariance is

full rank. The PRLS spectrum is more concentrated than the eigenspectrum and,

from Fig. 3.5, we observe PRLS outperforms covariance matching (CM), SVT and

SCM across all n.

3.5.2 Block Toeplitz Covariance

The covariance matrix shown in Fig. 3.6 was constructed by first generating a

Gaussian random square matrix Φ of spectral norm 0.95 < 1, and then simulating

the block Toeplitz covariance for the process shown in (3.17). Fig. 3.7 compares the

empirical performance of PRLS and SVT (i.e., the solution of (3.4) with appropriate

scaling for the regularization parameter). We observe that the Kronecker product

estimator performs much better than both SVT (i.e., the solution of (3.4)) and naive

SCM estimator. This is most likely due to the fact that the repetitive block structure

of Kronecker products better summarizes the covariance structure. We observe from

Fig. 3.6 that for this block Toeplitz covariance, the Kronecker spectrum decays more

rapidly (exponentially) than the eigenspectrum.

3.6 Application to Wind Speed Prediction

In this section, we demonstrate the performance of PRLS in a real world applica-

tion: wind speed prediction. We apply our methods to the Irish wind speed dataset

and the NCEP dataset.
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Figure 3.4:
Simulation A. True dense covariance is constructed using the sum of KP model (3.1),
with r = 3. Left panel: True positive definite covariance matrix Σ0. Middle panel:
Kronecker spectrum (eigenspectrum of Σ0 in permuted domain). Right panel: Eigen-
spectrum (Eigenvalues of Σ0). Note that the Kronecker spectrum is much more con-
centrated than the eigenspectrum.
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Figure 3.5:
Simulation A. Normalized MSE performance for true covariance matrix in Fig. 3.4 as a
function of sample size n. PRLS outperforms CM, SVT (i.e., solution of (3.4)) and the
standard SCM estimator. Here, p = q = 25 and NMC = 80. For n = 20, PRLS achieves
a 7.91 dB MSE reduction over SCM and SVT achieves a 1.80 dB MSE reduction over
SCM.
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Figure 3.6:
Simulation B. True dense block-Toeplitz covariance matrix. Left panel: True positive
definite covariance matrix Σ0. Middle panel: Kronecker spectrum (eigenspectrum of
Σ0 in permuted domain). Right panel: Eigenspectrum (Eigenvalues of Σ0). Note that
the Kronecker spectrum is much more concentrated than the eigenspectrum.
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Figure 3.7:
Simulation B. Normalized MSE performance for covariance matrix in Fig. 3.6 as a
function of sample size n. PRLS outperforms SVT (i.e., solution of (3.4)) and the
standard SCM estimator. Here, p = q = 25 and NMC = 80. For n = 108, PRLS
achieves a 6.88 dB MSE reduction over SCM and SVT achieves a 0.37 dB MSE reduction
over SCM. Note again that the Kronecker spectrum is much more concentrated than
the eigenspectrum.
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3.6.1 Irish Wind Speed Data

We use data consisting of time series consisting of daily average wind speed

recordings during the period 1961 − 1978 at q = 11 meteorological stations. This

data set has many temporal coordinates, spanning a total of ntotal = 365 · 8 =

2920 daily average recordings of wind speed at each station. More details on this

data set can be found in [62, 57, 39, 109] and it can be downloaded from Statlib

http://lib.stat.cmu.edu/datasets. We used the same square root transformation, es-

timated seasonal effect offset and station-specific mean offset as in [62], yielding the

multiple (11) velocity measures. We used the data from years 1969−1970 for training

and the data from 1971− 1978 for testing.

The task is to predict the average velocity for the next day using the average wind

velocity in each of the p − 1 previous days. The full dimension of each observation

vector is d = pq, and each d-dimensional observation vector is formed by concatenat-

ing the p time-consecutive q-dimensional vectors (each entry containing the velocity

measure for each station) without overlapping the time segments. The SCM was es-

timated using data from the training period consisting of years 1969− 1970. Linear

predictors over the time series were constructing by using these estimated covariance

matrices in an ordinary least squares predictor. Specifically, we constructed the SCM

linear predictor of all stations’ wind velocity from the p− 1 previous samples of the

q = 11 stations’ time series:

(3.18) v̂t = Σ2,1Σ
−1
1,1vt−1:t−(p−1)

where vt−1:t−(p−1) ∈ R(p−1)q is the stacked wind velocities from the previous p − 1

time instants and Σ2,1 ∈ Rq×q(p−1) and Σ1,1 ∈ Rq(p−1)×q(p−1) are submatrices of the
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qp× qp standard SCM:

Ŝn =

Σ1,1 Σ1,2

Σ2,1 Σ2,2


The PRLS predictor was similarly constructed using our proposed estimator of the

qp × qp Kronecker sum covariance matrix instead of the SCM. The coefficients of

each of these predictors, Σ2,1Σ
−1
1,1, were subsequently applied to predict over the test

set.

The predictors were tested on the data from years 1971− 1978, corresponding to

ntest = 365 · 8 = 2920 days, as the ground truth. Using non-overlapping samples and

p = 8, we have a total of n = d365·2
p
e = 91 training samples of full dimension d = 88.

Fig. 3.8 shows the Kronecker product factors that make up the solution of Eq.

(3.6) with r = 1 and the PRLS estimate. The PRLS estimate contains reff = 6

nonzero terms in the KP expansion. It is observed that the first order temporal factor

gives a decay in correlations over time, and spatial correlations between weather

stations are present. The second order temporal and spatial factors can potentially

give insight into long range dependencies.

Fig. 3.10 shows the root mean squared error (RMSE) prediction performance over

the testing period of 2920 days for the forecasts based on the standard SCM, PRLS es-

timator, Lounici’s SVT estimator [85], and regularized Tyler [33]. The PRLS estima-

tor was implemented using a regularization parameter λn = C‖Ŝn‖2

√
p2+q2+log(max(p,q,n))

n

with C = 0.13. The constant C was chosen by optimizing the prediction RMSE on

the training set over a range of regularization parameters λ parameterized by C. The

SVT estimator proposed by Lounici [85] was implemented using a regularization pa-

rameter λ = C
√

tr(Ŝn)‖Ŝn‖2

√
log(2pq)

n
with constant C = 1.9 optimized in a similar

manner. The regularized Tyler estimator was implemented using the data-dependent
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shrinkage coefficient suggested in Eqn. (13) in [33]. Fig. 3.11 shows a sample period

of 150 days. We observe that PRLS tracks the actual wind speed better than the

SCM-based predictor does.

3.6.2 NCEP Wind Speed Data

We use data representative of the wind conditions in the lower troposphere (sur-

face data at .995 sigma level) for the global grid (90◦N - 90◦S, 0◦E - 357.5◦E).

We obtained the data from the National Centers for Environmental Prediction re-

analysis project (Kalnay et al. [76]), which is available online at the NOAA web-

site ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis.dailyavgs/surface. Daily aver-

ages of U (east-west) and V (north-south) wind components were collected using a

station grid of size 144× 73 (2.5 degree latitude × 2.5 degree longitude global grid)

over the years 1948 − 2012. The wind speed is computed by taking the magnitude

of the wind vector.

Continental US Region

We considered a 10 × 10 grid of stations, corresponding to latitude range 25◦N-

47.5◦N and longitude range 125◦W-97.5◦W. For this selection of variables, q =

10 · 10 = 100 is the total number of stations and p − 1 = 7 is the prediction

time lag. We preprocessed the raw data using the detrending procedure outlined

in Haslett et al. [62]. More specifically, we first performed a square root transfor-

mation, then estimated and subtracted the station-specific means from the data and

finally estimated and subtracted the seasonal effect (see Fig. 3.12). The resulting

features/observations are called the velocity measures [62]. The SCM was estimated

using data from the training period consisting of years 2003− 2007. Since the SCM

is not full rank, the linear preictor (3.18) was implemented with the Moore-Penrose
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pseudo-inverse of Σ1,1. The predictors were tested on the data from years 2008−2012

as the ground truth. Using non-overlapping samples and p = 8, we have a total of

n = d365·5
p
e = 228 training samples of full dimension d = 800.

Fig. 3.13 shows the Kronecker product factors that make up the solution of Eq.

(3.6) with r = 2 and the PRLS covariance estimate. The PRLS estimate contains

reff = 6 nonzero terms in the KP expansion. It is observed that the first order tem-

poral factor gives a decay in correlations over time, and spatial correlations between

weather stations are present. The second order temporal and spatial factors give

some insight into longer range dependencies.

Fig. 3.15 shows the root mean squared error (RMSE) prediction performance over

the testing period of 1825 days for the forecasts based on the standard SCM, PRLS,

SVT [85] and regularized Tyler [33]. The PRLS estimator was implemented using

a regularization parameter λn = C‖Ŝn‖2

√
p2+q2+log(max(p,q,n))

n
with C = 0.036. The

constant C was chosen by optimizing the prediction RMSE on the training set over

a range of regularization parameters λ parameterized by C (as in Irish wind speed

data set). The SVT estimator proposed by Lounici [85] was implemented using

a regularization parameter λ = C
√

tr(Ŝn)‖Ŝn‖2

√
log(2pq)

n
with constant C = 0.31

optimized in a similar manner. Fig. 3.16 shows a sample period of 150 days. It is

observed that SCM has unstable performance, while the Kronecker product estimator

offers better tracking of the wind speeds.

Arctic Ocean Region

We considered a 10 × 10 grid of stations, corresponding to latitude range 90◦N-

67.5◦N and longitude range 0◦E-22.5◦E. For this selection of variables, q = 10 · 10 =

100 is the total number of stations and p− 1 = 7 is the prediction time lag. We pre-

processed the raw data using the detrending procedure outlined in Haslett et al. [62].
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More specifically, we first performed a square root transformation, then estimated

and subtracted the station-specific means from the data and finally estimated and

subtracted the seasonal effect (see Fig. 3.17). The resulting features/observations

are called the velocity measures [62]. The SCM was estimated using data from the

training period consisting of years 2003 − 2007. Since the SCM is not full rank,

the linear preictor (3.18) was implemented with the Moore-Penrose pseudo-inverse

of Σ1,1. The predictors were tested on the data from years 2008−2012 as the ground

truth. Using non-overlapping samples and p = 8, we have a total of n = d365·5
p
e = 228

training samples of full dimension d = 800.

Fig. 3.18 shows the Kronecker product factors that make up the solution of Eq.

(3.6) with r = 2 and the PRLS covariance estimate. The PRLS estimate contains

reff = 2 nonzero terms in the KP expansion. It is observed that the first order tem-

poral factor gives a decay in correlations over time, and spatial correlations between

weather stations are present. The second order temporal and spatial factors give

some insight into longer range dependencies.

Fig. 3.20 shows the root mean squared error (RMSE) prediction performance

over the testing period of 1825 days for the forecasts based on the standard SCM,

PRLS, and regularized Tyler [33]. The PRLS estimator was implemented using a

regularization parameter λn = C‖Ŝn‖2

√
p2+q2+log(max(p,q,n))

n
with C = 0.073. The

constant C was chosen by optimizing the prediction RMSE on the training set over

a range of regularization parameters λ parameterized by C (as in Irish wind speed

data set). The SVT estimator proposed by Lounici [85] was implemented using

a regularization parameter λ = C
√

tr(Ŝn)‖Ŝn‖2

√
log(2pq)

n
with constant C = 0.47

optimized in a similar manner. Fig. 3.21 shows a sample period of 150 days. It is

observed that SCM has unstable performance, while the Kronecker product estimator
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offers better tracking of the wind speeds.

3.7 Conclusion

We have introduced a framework for covariance estimation based on separation

rank decompositions using a series of Kronecker product factors. We proposed a

least-squares estimator in a permuted linear space with nuclear norm penalization,

named PRLS. We established high dimensional consistency for PRLS with guaran-

teed rates of convergence. The analysis shows that for low separation rank covariance

models, our proposed method outperforms the standard SCM estimator. For the

class of block-Toeplitz matrices with exponentially decaying off-diagonal norms, we

showed that the separation rank is small, and specialized our convergence bounds to

this class. We also presented synthetic simulations that showed the benefits of our

methods.

As a real world application we demonstrated the performance of the proposed Kro-

necker product-based estimator in wind speed prediction using an Irish wind speed

dataset and a recent US NCEP dataset. Implementation of a standard covariance-

based prediction scheme using our Kronecker product estimator achieved perfor-

mance gains as compared to standard with respect to previously proposed covariance-

based predictors.

There are several questions that remain open and are worthy of additional study.

First, while the proposed penalized least squares Kronecker sum approximation yields

a unique solution, the solution requires specification of the parameter λ, which spec-

ifies both the separation rank, and the amount of spectral shrinkage in the approx-

imation. It would be worthwhile to investigate optimal or consistent methods of

choosing this regularization parameter, e.g. using Stein’s theory of unbiased risk
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minimization. Second, while we have proven positive definiteness of the Kronecker

sum approximation when the number of samples is greater than than the variable

dimension in our experiments we have observed that positive definiteness is preserved

more generally. Maximum likelihood estimation of Kronecker sum covariance and

inverse covariance matrices is a worthwhile open problem. Finally, extensions of the

low separation rank estimation method (PRLS) developed here to missing data fol-

low naturally through the methodology of low rank covariance estimation studied in

[85].

3.8 Appendix

3.8.1 Proof of Theorem III.1

Proof. 1) Symmetry

Recall the permuted version of the sample covariance Ŝn, i.e., R̂n = R(Ŝn). The

SVD of R̂n can be obtained as a solution to the minimum norm problem (Thm. 1

and Cor. 2 in [84], Sec. 3 in [123]):

(3.19) min
{Ak,Bk}k

‖ Ŝn −
r∑

k=1

Ak ⊗Bk ‖2
F

subject to the orthogonality constraints tr(AT
kAl) = tr(BT

kBl) = 0 for k 6= l. Since

the Frobenius norm is invariant to permutations, we have the equivalent optimization

problem:

(3.20) min
{uk,vk}k

‖ R̂n −
r∑

k=1

σkukv
T
k ‖2

F

subject to the orthonormality conditions uTkul = vTk vl = 1 for k = l and 0 if k 6= l.

The correspondence of (3.19) with (3.20) is given by the mapping uk = vec(Ak) and

vk = σkvec(Bk). The SVD of R̂n can be written in matrix form as UΣVT .

We next show that the symmetry of Ŝn implies that the PRLS solution is symmet-

ric by showing that the reshaped singular vectors uk and vk correspond to symmetric
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matrices. From the SVD definition [59], the right singular vectors vk are eigenvectors

of Mn = R̂T
nR̂n and thus satisfy the eigenrelation:

(3.21) Mnvk = σ2
kvk

where σk = [Σ]k,k. Expressing (3.21) in terms of the permutation operator R, we

obtain:

(3.22)

p∑
i,j=1

〈
vk, vec(Ŝn(i, j))

〉
vec(Ŝn(i, j)) = σ2

kvk

Define the q × q matrix Vk such that vk = vec(Vk). Rewriting (3.22) by reshaping

vectors into matrices, we have after some algebra:

σ2
kVk =

p∑
i,j=1

tr(VT
k Ŝn(i, j))Ŝn(i, j)

=

p∑
i=1

tr(VT
k Ŝn(i, i))Ŝn(i, i)︸ ︷︷ ︸

K1

+
∑
i<j

tr(VT
k Ŝn(i, j))(Ŝn(i, j) + Ŝn(j, i))︸ ︷︷ ︸

K2

+
∑
i<j

tr(VT
k (Ŝn(j, i)− Ŝn(i, j)))Ŝn(j, i)︸ ︷︷ ︸

E

(3.23)

Clearly, K1 is symmetric since all submatrices Ŝn(i, i) are symmetric. Since Ŝn(j, i) =

Ŝn(i, j)T , it follows that K2 is also symmetric. To finish the proof, we show E = 0.

Define the set

L =
{

(i, j) : i < j, Ŝn(i, j) 6= 0, Ŝn(i, j) 6= Ŝn(j, i),

Ŝn(i, j) 6= Ŝn(i′, j′)∀i′ 6= i, j′ 6= j
}

The set L is nonempty with probability 1 for any sample size. Let l = card(L).

Then, we can rewrite:

(3.24) E =
∑

(i,j)∈L

tr(VT
k (Ŝn(j, i)− Ŝn(i, j)))Ŝn(j, i)
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Since Ŝn(j, i) 6= 0 with probability 1, E = 0 iff tr(VT
k (Ŝn(j, i) − Ŝn(i, j))) = 0 for

all i < j. Using the properties of the trace operator, rewriting tr(VT
k (Ŝn(j, i) −

Ŝn(i, j))) = tr((VT
k − Vk)Ŝn(j, i)), we conclude from the decomposition σ2

kVk =

K1 + K2 + E that Vk = VT
k if E = 0. To finish the proof, we show that E = 0 with

probability 1. Taking the vec(·) of (3.24), we conclude that E = 0 is equivalent to

(3.25) 0 =
∑

(i,j)∈L

ai,jŜn(j, i)

where ai,j = tr((VT
k − Vk)Ŝn(j, i)). The equation (3.25) can be rewritten as the

linear equations:

(3.26) Da = 0

where a = {ai,j}(i,j)∈L ∈ Rl and the columns of the q2 × l matrix D are given by

di,j = vec(Ŝn(j, i)) ∈ Rq2 . Solutions of (3.26) are given by a ∈ Nul(D). Since the

matrix D is full-rank, a = 0 is the only solution of (3.25). This implies E = 0, and

therefore, Vk = VT
k . Since k is arbitrary, all reshaped right singular vectors of R̂n

are symmetric. A similar argument holds for all reshaped left singular vectors uk.

The proof is complete.

2) Positive Definiteness

The sample covariance matrix Ŝn is positive definite with probability 1 if n ≥ pq.

First, consider the minimum norm problem (3.19). The factors Ak and Bk are

symmetric by part (1). If we show that a solution to (3.19) has p.d. Kronecker

factors, then the weighted sum with positive scalars is also p.d. and as a result, the

PRLS solution given by Σ̂λ
n =

∑r0
k=1

(
σk(R̂n)− λ

2

)
+

Uk⊗Vk is positive definite (see

(3.7)).

Fix l ∈ {1, . . . , r0}. We will show that in (3.19) Ak and Bk can be restricted to
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be p.d. matrices. Define the eigendecompositions of Al and Bl:

Al = ΨlDlΨ
T
l

Bl = ΞlΛlΞ
T
l

where {Ψl}l, {Ξl}l are sets of orthonormal matrices and Dl,Λl are diagonal matrices.

Let Dl = diag(d1
l , . . . , d

p
l ) and Λl = diag(λ1

l , . . . , λ
q
l ). Set Ql = Ψl ⊗ Ξl. Define

Fl = QT
l ŜnQl. The objective function (3.19) can be rewritten as:

‖Ŝn −
r∑

k=1

Ak ⊗Bk‖2
F(3.27)

= ‖QT
l

(
Ŝn −

r∑
k=1

Ak ⊗Bk

)
Ql‖2

F

= ‖Fl −
r∑

k=1

QT
l (Ak ⊗Bk)Ql‖2

F

= ‖Fl −
∑
k 6=l

(ΨT
l AkΨl)⊗ (ΞT

l BkΞl)︸ ︷︷ ︸
Ml

− (ΨT
l AlΨl)⊗ (ΞT

l BlΞl)‖2
F

= ‖Ml −Dl ⊗Λl‖2
F

= ‖Ml‖2
F + ‖Dl ⊗Λl‖2

F − 2tr (Fl(Dl ⊗Λl))

+ 2
∑
k 6=l

tr((ΨT
l AkΨl ⊗ΞT

l BkΞl)(Dl ⊗Λl))

= ‖Ml‖2
F − ‖Fl‖2

F + ‖Fl −Dl ⊗Λl‖2
F

+ 2
∑
k 6=l

tr(BkBl)tr(AkAl)

= ‖Ml‖2
F − ‖Fl‖2

F

+ ‖Fl − diag(Fl) + diag(Fl)−Dl ⊗Λl‖2
F(3.28)
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= ‖Ml‖2
F − ‖Fl‖2

F

+ ‖Fl − diag(Fl)‖2
F + ‖diag(Fl)−Dl ⊗Λl‖2

F

+ 2tr ((Fl − diag(Fl))(diag(Fl)−Dl ⊗Λl))

= ‖Ml‖2
F − ‖Fl‖2

F + ‖Fl − diag(Fl)‖2
F

+ ‖diag(Fl)−Dl ⊗Λl‖2
F(3.29)

where in equality (3.28) we used the orthogonality of Kronecker factors in the SVD. In

equality (3.29), we used the fact that the matrices Fl−diag(Fl) and diag(Fl)−Dl⊗Λl

have disjoint support. We note that the term ‖Ml‖2
F − ‖Fl‖2

F + ‖Fl − diag(Fl)‖2
F

is independent of Dl,Λl. The positive definiteness of Ŝn implies that the diagonal

elements of Fl are all positive. Let diag(Fl) = diag({f(i−1)q+j}i,j) > 0. Simple

algebra yields:

‖diag(Fl)−Dl ⊗Λl‖2
F

=

p∑
i=1

q∑
j=1

(f(i−1)q+j − dilλ
j
l )

2 = al + bl

where

al =

p∑
i=1

q∑
j=1

(f(i−1)q+j − |dil||λ
j
l |)

2

bl = 2

p∑
i=1

q∑
j=1

f(i−1)q+j(|dil||λ
j
l | − d

i
lλ
j
l )

We note that the term al is invariant to any sign changes of the eigenvalues {dil, λ
j
l }i,j

and the term bl is non-negative and equals zero iff dil, λ
j
l have the same sign for all i, j.

By contradiction, it follows that the eigenvalues {dil}
p
i=1 and {λjl }

q
j=1 must all have

the same sign (if not, then the minimum norm is not achieved by (Al,Bl)). Without

loss of generality (since Al ⊗ Bl = (−Al) ⊗ (−Bl), the signs can be assumed to
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be positive. We conclude that there exist p.d. matrices (Al,Bl) that achieve the

minimum norm of (3.27). This holds for any l so the proof is complete.

3.8.2 Proof of Theorem III.2

Proof. The proof generalizes Thm. 1 in [85] to nonsquare matrices. A necessary and

sufficient condition for the minimizer of (3.5) is that there exists a V̂ ∈ ∂‖R̂λ‖∗ such

that:

(3.30)
〈

2(R̂λ − R̂n) + λV̂, R̂λ −R
〉
≤ 0

for all R. From (3.30), we obtain for any V ∈ ∂‖R‖1:

2
〈
R̂λ −R0, R̂

λ −R
〉

+ λ
〈
V̂ −V, R̂λ −R

〉
≤ −λ

〈
V, R̂λ −R

〉
+ 2

〈
R̂n −R0, R̂

λ −R
〉

(3.31)

The monotonicity of subdifferentials of convex functions implies:

(3.32)
〈
V̂ −V, R̂λ −R

〉
≥ 0

From Example 2 in [129], we have the characterization of the subdifferential of a

nuclear norm of a nonsquare matrix:

∂‖R‖∗ =

{
r∑
j=1

uj(R)vj(R)T + P⊥UWP⊥V : ‖W‖2 ≤ 1

}

where r = rank(R), U = span{uj} and V = span{vj}. Thus, for R =
∑r

j=1 σj(R)ujv
T
j ,

r = rank(R), we can write:

(3.33) V =
r∑
j=1

ujv
T
j + P⊥UWP⊥V

where W can be chosen such that ‖W‖2 ≤ 1 and

(3.34)
〈
P⊥UWP⊥V , R̂

λ −R
〉

= ‖P⊥UR̂λP⊥V ‖∗
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Next, note the equality:

‖R̂λ −R0‖2
F + ‖R̂λ −R‖2

F − ‖R−R0‖2
F

= 2
〈
R̂λ −R0, R̂

λ −R
〉

(3.35)

Using (3.32), (3.34) and (3.35) in (3.31), we obtain:

‖R̂λ −R0‖2
F + ‖R̂λ −R‖2

F + λ‖P⊥UR̂λP⊥V ‖∗

≤ ‖R−R0‖2
F + λ

〈
r∑
j=1

ujv
T
j ,−(R̂λ −R)

〉

+ 2
〈
R̂n −R0, R̂

λ −R
〉

(3.36)

From trace duality, we have:

〈 r∑
j=1

ujv
T
j ,−(R̂λ −R)

〉
=

〈
PU

r∑
j=1

ujv
T
j PV ,−(R̂λ −R)

〉

≤ ‖
r∑
j=1

ujv
T
j ‖2‖P

T
U(R̂λ −R)PT

V ‖∗

= ‖PU(R̂λ −R)PV ‖∗

where we used the symmetry of projection matrices. Using this bound in (3.36), we

obtain:

‖R̂λ −R0‖2
F + ‖R̂λ −R‖2

F + λ‖P⊥UR̂λP⊥V ‖∗

≤ ‖R−R0‖2
F + λ‖PU(R̂λ −R)PV ‖∗

+ 2
〈
∆n, R̂

λ −R
〉

(3.37)
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where ∆n = R̂n−R0. Define the orthogonal projection of R onto the outer product

span of U and V as PU,V (R) = R−P⊥URP⊥V . Then, we decompose:〈
∆n, R̂

λ −R
〉

=
〈
∆n,PU,V

(
R̂λ −R

)〉
+
〈
∆n,P

⊥
U(R̂λ −R)P⊥V

〉
By the Cauchy-Schwarz inequality and trace-duality:

‖PU(R̂λ −R)PV ‖∗ ≤
√

rank(R)‖R̂λ −R‖F

|
〈
∆n,PU,V (R̂λ −R)

〉
| ≤ ‖∆n‖2‖PU,V (R̂λ −R)‖∗

≤ ‖∆n‖2

√
2rank(R)‖R̂λ −R‖F

|
〈
∆n,P

⊥
U(R̂λ −R)P⊥V

〉
| ≤ ‖∆n‖2‖P

⊥
UR̂λP⊥V ‖∗

where we used P⊥URP⊥V = 0. Using these bounds in (3.37), we further obtain:

‖R̂λ −R0‖2
F + ‖R̂λ −R‖2

F + (λ− 2‖∆n‖2)‖P⊥UR̂λP⊥V ‖∗

≤ ‖R−R0‖2
F + ((2

√
2‖∆n‖2 + λ)

√
r)(

√
‖R̂λ −R‖2

F )(3.38)

Using the arithmetic-mean geometric-mean inequality in the RHS of (3.38) and the

assumption λ ≥ 2‖∆n‖2, we obtain:

‖R̂λ −R0‖2
F ≤ ‖R−R0‖2

F +
λ2(1 +

√
2)2

4
r

This concludes the proof.

3.8.3 Lemma III.7

Lemma III.7. (Concentration of Measure for Coupled Gaussian Chaos) Let x =

[x1, . . . , xp2 ]
T ∈ Sp2−1 and y = [y1, . . . , yq2 ]

T ∈ Sq2−1. In the SCM (3.2) assume that

{zt} are i.i.d. multivariate normal zt ∼ N(0,Σ0). Recall ∆n in (3.10). For all

τ ≥ 0:

(3.39) P(|xT∆ny| ≥ τ) ≤ 2 exp

(
−nτ 2/2

C1‖Σ0‖2
2 + C2‖Σ0‖2τ

)
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where C1 = 4e√
6π
≈ 2.5044 and C2 = e

√
2 ≈ 3.8442 are absolute constants.

Proof. This proof is based on concentration of measure for Gaussian matrices and

is similar to proof techniques used in compressed sensing (see Appendix A in [98]).

Note that by the definition of the reshaping permutation operator R(·), we have:

∆n =
1

n

n∑
t=1


vec(zt(1)zt(1)T )T − E[vec(zt(1)zt(1)T )T ]

...

vec(zt(p)zt(p)
T )T − E[vec(zt(p)zt(p)

T )T ]


where zt(i) = [zt](i−1)q+1:iq is the ith subvector of the tth observation zt. Thus, we

can write:

xT∆ny =
1

n

n∑
t=1

ψt

where

ψt =

p∑
i,j=1

q∑
k,l=1

Xi,jYk,l

× ([zt](i−1)q+k[zt](j−1)q+l − E[[zt](i−1)q+k[zt](j−1)q+l])(3.40)

and X ∈ Rp×p and Y ∈ Rq×q are reshaped versions of x and y. Defining M = X⊗Y,

we can write (3.40) as:

ψt = zTt Mzt − E[zTt Mzt]

The statistic (3.40) has the form of Gaussian chaos of order 2 [81]. Many of the

random variables involved in the summation (3.40) are correlated, which makes the

analysis difficult. To simplify the concentration of measure derivation, using the

joint Gaussian property of the data, we note that a stochastic equivalent of zTt Mzt is

βTt M̃βt, where M̃ = Σ
1/2
0 MΣ

1/2
0 , and βt ∼ N(0, Ipq) is a random vector with i.i.d.
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standard normal components. With this decoupling, we have:

E|ψt|2 = E
∣∣∣βTt M̃βt − E[βTt M̃βt]

∣∣∣2
= E

∣∣∣∣∣∑
i1 6=i2

[βt]i1 [βt]i2M̃i1,i2 +
d∑

i1=1

([βt]
2
i1
− 1)M̃i1,i1

∣∣∣∣∣
2

=
∑
i1 6=i2

∑
i′1 6=i′2

E[[βt]i1 [βt]i2 [βt]i′1 [βt]i′2 ]M̃i1,i2M̃i′1,i
′
2

+
∑
i1

∑
i′1

E[([βt]
2
i1
− 1)([βt]

2
i′1
− 1)]M̃i1,i1M̃i′1,i

′
1

=
∑
i1 6=i2

M̃2
i1,i2

+ 2
∑
i1

M̃2
i1,i1

= ‖M̃‖2
F + ‖diag(M̃)‖2

F

≤ 2‖M̃‖2
F ≤ 2‖Σ0‖2

2‖M‖
2
F = 2‖Σ0‖2

2

where in the last step we used ‖M‖F = ‖X‖F‖Y‖F = 1.

Using a well known moment bound on Gaussian chaos (see p. 65 in [81]) and

Stirling’s formula, it can be shown (see, for example, Appendix A in [98]) that for

all m ≥ 3:

(3.41) E|ψt|m ≤ m!Wm−2vt/2

where

W = e
√

E|ψt|2 ≤ e
√

2‖Σ0‖2

vt =
2e√
6π

E|ψt|2 ≤
4e√
6π
‖Σ0‖2

2

From Bernstein’s inequality (see Thm. 1.1 in [98]), we obtain:

P

(∣∣∣∣∣ 1n
n∑
t=1

ψt

∣∣∣∣∣ ≥ τ

)
≤ 2 exp

(
−n2τ 2/2

nv1 +Wnτ

)

≤ 2 exp

(
−nτ 2/2

C1‖Σ0‖2
2 + C2‖Σ0‖2τ

)
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This concludes the proof.

3.8.4 Proof of Theorem III.3

Proof. Let N (Sd′−1, ε
′) denote an ε′-net on the d′-dimensional sphere Sd′−1. Let

x1 ∈ Sp2−1 and y1 ∈ Sq2−1 be such that |xT1 ∆ny1| = ‖∆n‖2. By the definition of

ε′-net, there exists x2 ∈ N (Sp2−1, ε
′) and y2 ∈ N (Sq2−1, ε

′) such that ‖x1− x2‖2 ≤ ε′

and ‖y1 − y2‖2 ≤ ε′. Then, by the Cauchy-Schwarz inequality:

|xT1 ∆ny1| − |xT2 ∆ny2| ≤ |xT1 ∆ny1 − xT2 ∆ny2|

= |xT1 ∆n(y1 − y2) > +(x1 − x2)T∆ny2 > |

≤ 2ε′‖∆n‖2

Since ‖∆n‖2 = |xT1 ∆ny1|, this implies:

‖∆n‖2(1− 2ε′)

≤ max
{
|xT2 ∆ny2| : x2 ∈ N (Sp2−1, ε

′),y2 ∈ N (Sq2−1, ε
′),

‖x1 − x2‖2 ≤ ε′, ‖y1 − y2‖2 ≤ ε′
}

≤ max
{
|xT∆ny| : x ∈ N (Sp

2−1, ε′),y ∈ N (Sq
2−1, ε′)

}
As a result,

(3.42) ‖∆n‖2 ≤ (1− 2ε′)−1 max
x∈N (Sp2−1,ε

′),y∈N (Sq2−1,ε
′)
|xT∆ny|

From Lemma 5.2 in [124], we have the bound on the cardinality of the ε′-net:

(3.43) card(N (Sd′−1, ε
′)) ≤

(
1 +

2

ε′

)d′
.
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From (3.42), (3.43) and the union bound:

P(‖∆n‖2 ≥ ε)

≤ P

(
max

x∈N (Sp2−1,ε
′),y∈N (Sq2−1,ε

′)
|xT∆ny| ≥ ε(1− 2ε′)

)

≤ P

 ⋃
x∈N (Sp2−1,ε

′),y∈N (Sq2−1,ε
′)

|xT∆ny| ≥ ε(1− 2ε′)


≤ card(N (Sp2−1, ε

′))card(N (Sq2−1, ε
′))

× max
x∈N (Sp2−1,ε

′),y∈N (Sq2−1,ε
′)
P(|xT∆ny| ≥ ε(1− 2ε′))

≤
(

1 +
2

ε′

)p2+q2

P
(
|xT∆ny| ≥ ε(1− 2ε′)

)
Using Lemma III.7, we further obtain:

P(‖∆n‖2 ≥ ε)

≤ 2

(
1 +

2

ε′

)p2+q2

exp

(
−nε2(1− 2ε′)2/2

C1‖Σ0‖2
2 + C2‖Σ0‖2ε(1− 2ε′)

)
(3.44)

We finish the proof by considering the two separate regimes. First, let us consider

the Gaussian tail regime which occurs when ε ≤ C1‖Σ0‖2
C2(1−2ε′)

. For this regime, the bound

(3.44) can be relaxed to:

P(‖∆n‖2 ≥ ε)

≤ 2

(
1 +

2

ε′

)p2+q2

exp

(
−nε2(1− 2ε′)2/2

2C1‖Σ0‖2
2

)
(3.45)

Let us choose:

ε =
t‖Σ0‖2

1− 2ε′

√
p2 + q2 + logM

n
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Then, from (3.45), we have:

P

(
‖∆n‖2 ≥

t‖Σ0‖2

1− 2ε′

√
p2 + q2 + logM

n

)

≤ 2

(
1 +

2

ε′

)p2+q2

exp

(
−t2(p2 + q2 + logM)

4C1

)
≤ 2

((
1 +

2

ε′

)
e−t

2/(4C1)

)p2+q2

M−t2/(4C1)

≤ 2M−t2/(4C1)

This concludes the bound for the Gaussian tail regime. The exponential tail regime

follows by similar arguments. Assuming ε ≥ C1‖Σ0‖2
C2(1−2ε′)

, and setting ε =
t‖Σ0‖2
1−2ε′

p2+q2+logM
n

,

we obtain from (3.44):

P
(
‖∆n‖2 ≥

t‖Σ0‖2

1− 2ε′
p2 + q2 + logM

n

)
≤ 2

(
1 +

2

ε′

)p2+q2

exp

(
−t(p2 + q2 + logM)

4C2

)
≤ 2

((
1 +

2

ε′

)
e−t/(4C2)

)p2+q2

M−t/(4C2)

≤ 2M−t/(4C2)

where we used the assumption t ≥ 4C2 ln(1 + 2
ε′

). The proof is completed by com-

bining both regimes and letting C0 = ‖Σ0‖2 and noting that t > 1, along with

tC2

C1
> 1.

3.8.5 Proof of Theorem III.4

Proof. Define the event

Er =

{
‖R̂λ

n −R0‖2
F > inf

R:rank(R)≤r
‖R−R0‖2

F +
(1 +

√
2)2

4
λ2
nr

}

where λn is chosen as in the statement of the theorem.
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Theorem III.2 implies that on the event λn ≥ 2‖∆n‖2, with probability 1, we

have for any 1 ≤ r ≤ r0:

‖R̂λ
n −R0‖2

F ≤ inf
R:rank(R)≤r

‖R−R0‖2
F +

(1 +
√

2)2

4
λ2
nr

Using this and Theorem III.3, we obtain:

P (Er) = P (Er ∩ {λn ≥ 2‖∆n‖2}) + P (Er ∩ {λn < 2‖∆n‖2})

≤
���

��
���

���:
0

P(Er|λn ≥ 2‖∆n‖2)P(λn ≥ 2‖∆n‖2)

+ P (λn < 2‖∆n‖2)

= P
(
‖∆n‖2 >

C0t

1− 2ε′

×max

{
p2 + q2 + logM

n
,

√
p2 + q2 + logM

n

})
≤ 2M−t/4C

This concludes the proof.

3.8.6 Proof of Lemma III.5

Proof. From the min-max theorem of Courant-Fischer-Weyl [64]:

σ2
k+1(R) = λk+1(RRT )

= min
V:dim(V⊥)≤k

max
‖v‖2=1,v∈V

〈
RRTv,v

〉
Define the set

Vk = {v ∈ Rp2 : ‖v‖2 = 1,v ⊥ Col(RPkR
T )} ⊂ Sp

2−1.

Choosing V = Col(RPkR
T )⊥, we have the upper bound:

σ2
k+1(R) ≤ max

v∈Vk

〈
RRTv,v

〉
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Using the definition of Vk and the orthogonality principle, we have:

〈
RRTv,v

〉
=
〈
R(I−Pk)R

Tv,v
〉

=
〈
(I−Pk)R

Tv,RTv
〉

=
〈
(I−Pk)R

Tv, (I−Pk)R
Tv
〉

= ‖(I−Pk)R
Tv‖2

2

Using this equality and the definition of the spectral norm [64]:

σ2
k+1(R) ≤ max

v∈Vk
‖(I−Pk)R

Tv‖2
2

≤ max
v∈Sp2−1

‖(I−Pk)R
Tv‖2

2

= ‖(I−Pk)R
T‖2

2

Equality follows when choosing Pk = VkV
T
k . This is seen by writing I = VVT and

using the definition of the spectral norm and the sorting of the singular values. The

proof is complete.

3.8.7 Proof of Theorem III.6

Proof. Note that (λ,u) is an eigenvalue-eigenvector pair of the square symmetric

matrix RT
0 R0 if:

(3.46)
∑
i,j

vec(Σ0(i, j)) 〈u, vec(Σ0(i, j))〉 = λu

So for λ > 0, the eigenvector u must lie in the span of the vectorized submatri-

ces {vec(Σ0(i, j))}i,j. Motivated by this result, we use the Gram-Schmidt proce-

dure to construct a basis that incrementally spans more and more of the subspace

span({vec(Σ0(i, j))}i,j). For the special case of the block-Toeplitz matrix, we have:

span({vec(Σ0(i, j))}i,j) = span({vec(Σ(τ))}Nτ=−N)
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where the mapping is given by Σ0(i, j) = Σ(j − i). Note that Σ(−τ) = Σ(τ)T .

For simplicity, consider the case k = 2k′ + 1 for some k′ ≥ 0. From Lemma III.5,

we are free to choose an orthonormal basis set {v1, . . . ,vk} and form the projection

matrix Pk = VkV
T
k , where the columns of Vk are the vectors {vj}. We form the

orthonormal basis using the Gram-Schmidt procedure [64]:

ṽ0 = vec(Σ(0)),

v0 =
ṽ0

‖ṽ0‖2

ṽ1 = vec(Σ(1))− 〈vec(Σ(1)), ṽ0〉
‖ṽ0‖2

2

ṽ0,

v1 =
ṽ1

‖ṽ1‖2

ṽ−1 = vec(Σ(−1))− 〈vec(Σ(−1)), ṽ0〉
‖ṽ0‖2

2

ṽ0

− 〈vec(Σ(−1)), ṽ1〉
‖ṽ1‖2

2

ṽ1,

v−1 =
ṽ−1

‖ṽ−1‖2

etc.

With this choice of orthonormal basis, it follows that for every k = 2k′ + 1, we have

the orthogonal projector:

Pk = v0v
T
0 +

k′∑
l=1

(vlv
T
l + v−lv

T
−l)

This corresponds to a variant of a sequence of Householder transformations [64].
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Using Lemma III.5:

σ2
k+1(R0) ≤ ‖R0(I−Pk)‖2

2

≤ ‖R0 −R0Pk‖2
F

≤ p
N∑

l=k′+1

‖Σ(l)‖2
F + ‖Σ(−l)‖2

F(3.47)

≤ 2C ′pq
N∑

l=k′+1

u2l

≤ 2C ′pq
u2k′+2

1− u2

≤ 2C ′pq
uk

1− u2

where we used Lemma III.8 to obtain (3.47). To finish the proof, using the bound

above and (3.13):

inf
R:rank(R)≤r

‖R−R0‖2
F =

r0−1∑
k=r

σ2
k+1(R0)

≤ 2C ′pq

1− u2

r0−1∑
k=r

uk

≤ 2C ′pq
ur

(1− u)2

The proof is complete.

3.8.8 Lemma III.8

Lemma III.8. Consider the notation and setting of proof of Thm. III.6. Then, for

the projection matrix Pk chosen, we have for k = 2k′ + 1, k′ ≥ 1:

σ2
k+1(R0) ≤ ‖R0 −R0Pk‖2

F ≤ p

N∑
l=k′+1

‖Σ(l)‖2
F + ‖Σ(−l)‖2

F

Proof. To illustrate the row-subtraction technique, we consider the simplified scenario

k′ = 1. The proof can be easily generalized to all k′ ≥ 1. Without loss of generality,
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we write the permuted covariance

(3.48) Σ0 =

 Σ(0) Σ(1)

Σ(−1) Σ(0)


as:

R0 = R(Σ0) =



vec(Σ(0))T

vec(Σ(1))T

vec(Σ(−1))T

vec(Σ(0))T


Using the Gram-Schmidt submatrix basis construction of the proof of Thm. III.6,

the sequence of projection matrices can be written as:

P1 = v0v
T
0

P2 = v0v
T
0 + v1v

T
1

P3 = v0v
T
0 + v1v

T
1 + v−1v

T
−1

where vi is the orthonormal basis constructed in the proof of Thm. III.6. The

singular value bound σ2
1(R0) ≤ ‖R0‖2

F = 2‖Σ(0)‖2
F + ‖Σ(1)‖2

F + ‖Σ(−1)‖2
F is trivial

[64].

For the second singular value, we want to prove the bound:

(3.49) σ2
2(R0) ≤ ‖Σ(1)‖2

F + ‖Σ(−1)‖2
F
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To show this, we use the variational bound of Lemma III.5:

σ2
2(R0) ≤ ‖R0 −R0P1‖2

F

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



vec(Σ(0))T − 〈vec(Σ(0)),v0〉vT0

vec(Σ(1))T − 〈vec(Σ(1)),v0〉vT0

vec(Σ(−1))T − 〈vec(Σ(−1)),v0〉vT0

vec(Σ(0))T − 〈vec(Σ(0)),v0〉vT0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

F

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0T

vec(Σ(1))T − 〈vec(Σ(1)),v0〉vT0

vec(Σ(−1))T − 〈vec(Σ(−1)),v0〉vT0

0T



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

F

= ‖vec(Σ(1))− 〈vec(Σ(1)),v0〉v0‖2
2

+ ‖vec(Σ(−1))− 〈vec(Σ(−1)),v0〉v0‖2
2

≤ ‖Σ(1)‖2
F + ‖Σ(−1)‖2

F

where in the last step, we used the Pythagorean principle from least-squares theory

[94]-i.e.‖A− <A,B>

‖B‖2F
B‖2

F ≤ ‖A‖
2
F for any matrices A,B of the same order. Next, we

want to show

(3.50) σ2
3(R0) ≤ ‖Σ(−1)‖2

F

Define γ(j) = vec(Σ(j)) − 〈vec(Σ(j)),v0〉v0. Using similar bounds and the above,
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after some algebra:

σ2
3(R0) ≤ ‖R0 −R0P2‖2

F

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣



0T

γ(1)T − 〈vec(Σ(1)),v1〉vT1

γ(−1)T − 〈vec(Σ(−1)),v1〉vT1

0T



∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2

F

= ‖vec(Σ(−1))T − 〈vec(Σ(−1)),v0〉vT0

− 〈vec(Σ(−1)),v1〉vT1 ‖
2
2

= ‖vec(Σ(−1))T‖2
2 − | 〈vec(Σ(−1)),v0〉 |2

− | 〈vec(Σ(−1)),v1〉 |2

≤ ‖Σ(−1)‖2
F

where we observed that γ(1) = 〈vec(Σ(1)),v1〉v1 and used the Pythagorean principle

again.

Using P3 and similar bounds, it follows that σ2
4(R0) = 0, which makes sense since

the separation rank of (3.48) is at most 3. Generalizing to k′ ≥ 1 and noting that

‖Σ0‖2
F = p‖Σ(0)‖2

F +
∑p−1

l=1 (p−l)‖Σ(l)‖2
F +‖Σ(l)‖2

F ≤ p‖Σ(0)‖2
F +p

∑p−1
l=1 ‖Σ(l)‖2

F +

‖Σ(−l)‖2
F , we conclude the proof.
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Figure 3.8:
Irish wind speed data: Sample covariance matrix (SCM) (top left), PRLS covariance
estimate (top right), temporal Kronecker factor for first KP component (middle left)
and spatial Kronecker factor for first KP component (middle right), temporal Kronecker
factor for second KP component (bottom left) and spatial Kronecker factor for second
KP component (bottom right). Note that the second order factors are not necessarily
positive definite, although the sum of the components (i.e., the PRLS solution) is pos-
itive definite for large enough n. Each KP factor has unit Frobenius norm. Note that
the plotting scales the image data to the full range of the current colormap to increase
visual contrast.
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Figure 3.9:
Irish wind speed data: Kronecker spectrum of SCM (left) and Eigenspectrum of SCM
(right). The first and second KP components contain 94.60% and 1.07% of the spectrum
energy. The first and second eigenvectors contain 36.28% and 28.76% of the spectrum
energy. The KP spectrum is more compact than the eigenspectrum. Here, the eigen-
spectrum is truncated at min(p2, q2) = 82 = 64 to match the Kronecker spectrum. Each
spectrum was normalized such that each component has height equal to the percentage
of energy associated with it.
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Figure 3.10:
Irish wind speed data: RMSE prediction performance across q stations for linear esti-
mators using SCM (blue), PRLS (green), SVT (red) and regularized Tyler (magenta).
PRLS, SVT and regularized Tyler respectively achieve an average reduction in RMSE
of 3.32, 2.50 and 2.79 dB as compared to SCM (averaged across stations).
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Figure 3.11:
Irish wind speed data: Prediction performance for linear estimators using SCM (blue),
SVT (red) and PRLS (green) for a time interval of 150 days. The actual (ground truth)
wind speeds are shown in black. PRLS offers better tracking performance as compared
to SVT and SCM.
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Figure 3.12:
NCEP wind speed data (Continental US): Seasonal effect as a function of day of the
year. A 14th order polynomial is fit by the least squares method to the average of the
square root of the daily mean wind speeds over all stations and over all training years.
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Figure 3.13:
NCEP wind speed data (Continental US): Sample covariance matrix (SCM) (top left),
PRLS covariance estimate (top right), temporal Kronecker factor for first KP compo-
nent (middle left) and spatial Kronecker factor for first KP component (middle right),
temporal Kronecker factor for second KP component (bottom left) and spatial Kro-
necker factor for second KP component (bottom right). Note that the second order
factors are not necessarily positive definite, although the sum of the components (i.e.,
the PRLS solution) is positive definite for large enough n. Each KP factor has unit
Frobenius norm. Note that the plotting scales the image data to the full range of the
current colormap to increase visual contrast.
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Figure 3.14:
NCEP wind speed data (Continental US): Kronecker spectrum of SCM (left) and
Eigenspectrum of SCM (right). The first and second KP components contain 85.88%
and 3.48% of the spectrum energy. The first and second eigenvectors contain 40.93%
and 23.82% of the spectrum energy. The KP spectrum is more compact than the eigen-
spectrum. Here, the eigenspectrum is truncated at min(p2, q2) = 82 = 64 to match
the Kronecker spectrum. Each spectrum was normalized such that each component
has height equal to the percentage of energy associated with it.
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Figure 3.15:
NCEP wind speed data (Continental US): RMSE prediction performance across q sta-
tions for linear estimators using SCM (blue), SVT (red), PRLS (green) and regular-
ized Tyler (magenta). The estimators PRLS, SVT, and regularized Tyler respectively
achieve an average reduction in RMSE of 1.90, 1.59, and 0.66 dB as compared to SCM
(averaged across stations).

50 100 150 200
−0.2

−0.1

0

0.1

0.2

0.3

Time

V
el

oc
ity

 M
ea

su
re

Station 64

 

 
SCM
PRLS
SVT
Actual

Student Version of MATLAB

Figure 3.16:
NCEP wind speed data (Continental US): Prediction performance for linear estimators
using SCM (blue), SVT (red) and PRLS (green) for a time interval of 150 days. The
actual (ground truth) wind speeds are shown in black. PRLS offers better tracking
performance as compared to SCM and SVT.
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Figure 3.17:
NCEP wind speed data (Arctic Ocean): Seasonal effect as a function of day of the
year. A 14th order polynomial is fit by the least squares method to the average of the
square root of the daily mean wind speeds over all stations and over all training years.
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Figure 3.18:
NCEP wind speed data (Arctic Ocean): Sample covariance matrix (SCM) (top left),
PRLS covariance estimate (top right), temporal Kronecker factor for first KP compo-
nent (middle left) and spatial Kronecker factor for first KP component (middle right),
temporal Kronecker factor for second KP component (bottom left) and spatial Kro-
necker factor for second KP component (bottom right). Note that the second order
factors are not necessarily positive definite, although the sum of the components (i.e.,
the PRLS solution) is positive definite for large enough n. Each KP factor has unit
Frobenius norm. Note that the plotting scales the image data to the full range of the
current colormap to increase visual contrast.
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Figure 3.19:
NCEP wind speed data (Arctic Ocean): Kronecker spectrum of SCM (left) and Eigen-
spectrum of SCM (right). The first and second KP components contain 91.12% and
3.28% of the spectrum energy. The first and second eigenvectors contain 47.99% and
19.68% of the spectrum energy. The KP spectrum is more compact than the eigen-
spectrum. Here, the eigenspectrum is truncated at min(p2, q2) = 82 = 64 to match
the Kronecker spectrum. Each spectrum was normalized such that each component
has height equal to the percentage of energy associated with it.
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Figure 3.20:
NCEP wind speed data (Arctic Ocean): RMSE prediction performance across q sta-
tions for linear estimators using SCM (blue) and PRLS (green). The estimators PRLS,
SVT and regularized Tyler respectively achieve an average reduction in RMSE of 4.64,
3.91 and 3.41 dB as compared to SCM (averaged across stations).
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Figure 3.21:
NCEP wind speed data (Arctic Ocean): Prediction performance for linear estimators
using SCM (blue), SVT (red) and PRLS (green) for a time interval of 150 days. The
actual (ground truth) wind speeds are shown in black. PRLS offers better tracking
performance as compared to SCM and SVT.



CHAPTER IV

Centralized Collaborative 20 Questions

We consider the problem of 20 questions with noise for multiple players under the

minimum entropy criterion [73] in the setting of stochastic search, with application

to target localization. Each player yields a noisy response to a binary query governed

by a certain error probability. First, we propose a sequential policy for constructing

questions that queries each player in sequence and refines the posterior of the target

location. Second, we consider a joint policy that asks all players questions in parallel

at each time instant and characterize the structure of the optimal policy for con-

structing the sequence of questions. This generalizes the single player probabilistic

bisection method [73, 30] for stochastic search problems. Third, we prove an equiv-

alence between the two schemes showing that, despite the fact that the sequential

scheme has access to a more refined filtration, the joint scheme performs just as well

on average. Fourth, we establish convergence rates of the mean-square error (MSE)

and derive error exponents. We also prove almost sure convergence of the estimates

to the true target location. Lastly, we obtain an extension to the case of unknown

error probabilities. This framework provides a mathematical model for incorporating

a human in the loop for active machine learning systems.
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4.1 Introduction

What is the intrinsic value of adding a human-in-the-loop to an autonomous learn-

ing machine, e.g., an automated target recognition (ATR) sensor? In the ATR set-

ting the answer to this question could provide insight into human-aided autonomous

sensing for estimating an unknown target location or identifying a target. A sim-

ple model for such a human-in-the-loop system is a collaborative multi-player 20

questions game: the human is repeatedly queried about target location in order to

improve ATR performance. This chapter proposes such a 20 questions framework for

studying the value of including a human-in-the-loop and for optimizing the sequence

of queries.

Motivated by the approach of Jedynak et al [73], which was restricted to the single

player case, we model the human-machine interaction as a noisy collaborative 20

questions game. In this framework a controller sequentially selects a set of questions

about target location and uses the noisy responses of the human and the machine

to formulate the next pair of questions. The query response models for the human

and the machine are different, but complementary. While the machine’s accuracy

is constant over time, the accuracy of the human degrades over time, reflecting the

human’s decreased ability to resolve questions about the target location near the end

of the game.

As in Jamieson et al [72], we use a simple noisy query-response model with dif-

ferent reliability functions for the machine and the human (called derivative-free

optimizers (DFO) in [72]). Under this model we specify the optimal query policy,

establish an equivalence theorem, and obtain MSE bounds and convergence rates.

Our model predicts that the value of including the human-in-the-loop, as measured



143

by the human gain ratio (HGR), defined as a ratio of MSE’s. The HGR initially

increases when localization errors are large, and then slowly decreases over time as

the location errors go below the human’s fine resolution capability.

The paper by Jedynak et al. [73] formulates the single player 20 questions problem

as follows. A controller queries a noisy oracle about whether or not a target X∗ lies

in a set An ⊂ Rd. Starting with a prior distribution on the target’s location p0(·), the

objective in [73] is to minimize the expected entropy of the posterior distribution:

(4.1) inf
π
Eπ [H(pN)]

where π = (π0, π1, . . . ) denotes the controller’s query policy and the entropy is the

standard differential entropy [35]:

H(p) = −
∫
X
p(x) log p(x)dx.

The posterior median of pN is used to estimate the target location after N questions.

Jedynak [73] shows the bisection policy is optimal under the minimum entropy cri-

terion. To be concrete, in Thm. 2 of [73], optimal policies are characterized by:

(4.2) Pn(An) :=

∫
An

pn(x)dx = u∗ ∈ arg max
u∈[0,1]

φ(u)

where

φ(u) = H(f1u+ (1− u)f0)− uH(f1)− (1− u)H(f0)

is nonnegative. The densities f0 and f1 correspond to the noisy channel 1:

P(Yn+1 = y|Zn = z) = f0(y)I(z = 0) + f1(y)I(z = 1)

where Zn = I(X∗ ∈ An) ∈ {0, 1} is the channel input. While the framework applies

to both continuous and discrete random variables y, in [73] the focus was on the

1The function I(A) is the indicator function throughout the chapter-i.e., I(A) = 1 if A is true and zero otherwise.
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binary case-i.e., y ∈ {0, 1}. The noisy channel models the conditional probability

of the response to each question being correct. For the special case of a binary

symmetric channel (BSC), u∗ = 1/2 and the probabilistic bisection policy [73, 30]

becomes an optimal policy.

The 20 questions framework in the single player setting is analogous to computer-

ized adaptive testing (CAT). In CAT, the objective is to identify the unknown testing

ability of the subject by asking a sequence of questions adaptively [127]. To do this,

an iterative algorithm is constructed, where at each step, a question is chosen from

a pool based on the current estimate of the examinee’s ability, the subject responds

to the question correctly or incorrectly, and the ability esitmate is updated based

upon all prior answers. Computer adaptive tests tend to arrive at accurate ability

estimates faster than non-adaptive tests. The ingredients of a CAT include a math-

ematical model for the probability of a subject with proficiency θ ∈ R responding

correctly to an item of difficulty b ∈ R and an adaptive testing algorithm [127]. In

the literature, the modeling part is known as item response theory (IRT) and the

testing algorithm is currently based on sequential scoring or Bayesian methods [127].

The basic assumption behind IRT is to have all items measure the same quantity

of interest. In CAT, this quantity of interest is a single dimension of knowledge

(e.g. mathematical ability, verbal proficiency) on which all items depend on for their

correct response. Each test item’s difficulty, b, is the position that it occupies on

this dimension, and the subject’s proficiency level, θ, is the position of each subject

on this level. To get concrete, a simple IRT model is a three-parameter model based

on the logistic function used to model the probability of the correct response of a

subject with proficiency θ responding to an item of difficulty b:

(4.3) P(θ; a, b, c) = c+
1− c

1 + exp(−a(θ − b))
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The CAT objective is to estimate the proficiency level θ of a subject. The subject

can answer each question correctly or incorrectly, which is modeled by the response

xj for the jth item. For simplicity, let us assume that the parameters βj = (aj, bj, cj)

of the jth item are known for all j ∈ J .

The item selection used to be done using branching methods, but now have been

superseded by more efficient methods. Given the estimate of θ, say θ̂n, based on the

previous responses, two strategies are most widely used for selecting the next test

item known as maximum information and maximum expected precision [127].

The (unconstrained) maximum information criterion chooses the item that max-

imizes the Fisher information of the item [127]:

(4.4) jn+1 ∈ arg max
j∈J

I(θ̂n; j) =
(∇θP(θ̂n; j))2

P(θ̂n; j)(1− P(θ̂n; j))

where I(θ; j) = E[(∇θ log p(xj|θ))2|θ] is the Fisher information corresponding to the

Bernoulli distribution p(xj|θ; j) = P(θ; j)xj(1−P(θ; j))1−xj . The maximum expected

precision method is based on a similar idea, but working with the posterior distri-

bution p(θ|Bn) = pn(θ) directly. Here, Bn denotes the information available about

the subject after n items, which includes group memberships and previous responses.

The next item is chosen to maximize the expected precision of the posterior distri-

bution [93, 127]:

(4.5) jn+1 ∈ arg max
j∈J

E
[
Var(pn+1(·))−1|jn+1 = j

]
where pn+1(θ) = p(θ|Bn, jn+1, xn+1).

In practice, certain constraints including lack of test item repetitions, balance of

item content and item rate of exposure need to be taken into account when selecting

the next test item from the pool.
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Given the posterior distribution, the proficiency of a subject can be estimated by

calculating the maximum or the conditional mean. Like the maximum expected pre-

cision method of Owen [93], the 20 questions framework is also a sequential Bayesian

approach that iteratively updates the posterior distribution of the target location

given the previous questions and responses. However, the 20 questions framework

adopted in this chapter differs from the CAT setup in several important respects:

• The questions chosen are associated with continuous regions An. In CAT, the

pool of questions is discrete (although it may be uncountable).

• The objective of the 20 questions is to choose the queries sequentially that

minimize the entropy of the posterior distribution after N steps (see (4.1)), while

the objective in adaptive testing is to choose the items (of possibly different

difficulty level) that maximize the expected inverse variance of the posterior

distribution.

We conclude the comparison with CAT with a final remark. If the posterior distribu-

tion is Gaussian, then the maximum expected criterion is equivalent to the minimum

entropy criterion for one-stage. This follows from the fact that the entropy of the

Gaussian distribution N(µ, σ2) is given by 1/2 log(2πσ2). We note however, that

the posterior distribution for the 20 questions game is a piecewise constant function

and thus is never Gaussian. Thus, the two approaches are loosely related but not

equivalent.

In this chapter, we derive optimality conditions for optimal query strategies in the

collaborative multiplayer case. We propose a sequential bisection policy for which

each player responds to a single question about the location of the target, and a

joint policy where all players are asked questions simultaneously. We show that even
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when the collaborative players act independently, jointly optimal policies require

overlapping non-identical queries. We prove that the maximum entropy reduction

for the sequential bisection scheme is the same as that of the jointly optimal scheme,

and is given by the sum of the capacities of all the players’ channels. This is important

since, while the jointly optimal scheme might be hard to implement as the number

of players and dimensions increase, the sequential scheme only requires a sequence

of bisections followed by intermediate posterior updates. Thus, by implementing

the sequential policy, complexity is transferred from the controller to the posterior

updates. Despite the fact that the optimal sequential policy has access to a more

refined filtration, it achieves the same average performance as the optimal joint policy.

We extend this equivalence to the setting where the error channels associated with

the players are unknown. In this case, we show that the entropy loss at each iteration

is no longer constant; it is time-varying and equals the conditional expectation of

the sum of the capacities of the players’ channels with respect to the filtration up

to the current time. In addition, we show that even for one-dimensional targets, the

optimal policy for the unknown channel case is not equivalent to the probabilistic

bisection policy.

The work by Castro and Nowak [30, 31] provides upper bounds on the MSE of

the posterior mean of the target for the single player case. We extend their MSE

bounds to the multiplayer case and provide new lower bounds on MSE by linking the

information theoretic analysis to convergence rates. The combination of the upper

and lower bounds sandwiches the MSE between two exponentially decaying functions

of the number of plays in the 20 questions game.

Our 20 questions framework differs from other binary forced choice problems

that have appeared in the literature. This includes educational testing, e.g., using
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dynamic item response models [128], and active learning, e.g., using paired compar-

isons for ranking two objects [71]. Like the 20 questions framework, in [128, 71], a

sequence of binary questions is formulated by a controller. However, the 20 questions

problem considered in this chapter is quite different. The goals are not the same: in

contrast with sequential testing considered in [128, 71], here as in [73] we consider

sequential estimation of a continuous valued target state. Furthermore, in [128, 71]

the queries are posed to a single player whereas we consider multiple players who

cooperate to achieve the goal.

4.1.1 Outline

The outline of this chapter is as follows. Section 4.2 introduces the notation

and collaborative player setup. This introduces the sequential bisection policy and

the joint policy, and establishes that the respective optimal policies attain identical

performance. Section 4.3 derives upper and lower bounds on the MSE and Section

4.5 develops similar bounds for a human error model. Section 4.6 extends the analysis

to the case that the error probabilities are not known. The theory is illustrated by

simulation in Section 4.7 followed by our conclusions in Section 4.8.

4.2 Noisy 20 Questions with Collaborative Players: Known Error Prob-
ability

Assume that there is a target with unknown state X∗ ∈ X ⊂ Rd. We focus on

the case where the target state is spatial location, i.e., in d = 2 or 3 dimensions.

However, our results are applicable to higher dimensions also, e.g., where X∗ is a

kinematic state or some other multi-dimensional target feature. Starting with a prior

distribution p0(x) on X∗, the aim is to find an optimal policy for querying a machine

(hereafter referred to as player 1) about the target state, with the additional help of
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humans. The policy’s objective is to minimize the expected Shannon entropy of the

posterior density pn(x) of the target location after n questions.

There are M collaborating players that can be asked questions at each time instant

n. The objective of the players is to come up with the correct answer to a kind of 20

questions game. Next, we introduce two types of query design strategies. The first

is a sequential strategy where the controller formulates and asks questions to each

player in sequence. The second is a batch strategy where the questions are formulated

and directed to all players simultaneously. For fixed n both strategies ask the same

number of questions. However, the sequential strategy has the advantage of being

able to use the answer of the previous player to better formulate a question to the

next one. Below we show that, despite this advantage, the average entropy reduction

performances of these two strategies are identical.

4.2.1 Sequential Query Design

The sequential strategy is the following coordinate-by-coordinate design: ask an

optimal query to the first player, then update the posterior density and ask an

optimal query to the second player, and so on (see Fig. 4.1). In [73], the optimal

query policy for the case of a single player (M=1) was shown to be a bisection rule.

For each time epoch, indexed by n and called a cycle, the controller formulates

and asks the M players questions Ant = An,t, t = 0, . . . ,M − 1. We denote by

nt = (n, t) the times at which the queries are asked.

Let the mth player’s query at time nt = nm−1 be “does X∗ lie in the region Ant ⊂

Rd?”. We denote the truth state of the query as the binary variable Znt = I(X∗ ∈

Ant) ∈ {0, 1} and the noisy binary response of the mth player is Ynt+1 ∈ {0, 1}.

The query region Ant chosen at time nt depends on the information available at

that time. More formally, define the multi-index (n, t) where n = 0, 1, . . . indexes
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Figure 4.1: Controllers sequentially ask questions to M collaborative players about the location X∗ of an
unknown target. At time n, the first controller chooses the query I(X∗ ∈ An,0) based on
the posterior pn. Then, player 1 yields the noisy response Yn,1 that is used to update the
posterior, and the second controller chooses the next query I(X∗ ∈ An,1) for player 2 based
on the updated posterior, etc.

over cycles and t = 0, . . . ,M − 1 indexes within cycles. Define the nested sequence

of sigma-algebras Gn,t, Gn,t ⊂ Gn+i,t+j, for all i ≥ 0 and j ∈ {0, . . . ,M − 1 − t},

generated by the sequence of queries and the players’ responses. The filtration Gn,t

carries all the information accumulated by the controller from time (0, 0) to time

(n, t). The queries {An,t} formulated by the controller are measurable with respect

to this filtration.

4.2.2 Joint Query Design

Let the mth player’s query at time n be “does X∗ lie in the region A
(m)
n ⊂ Rd?”.

We denote this query as the binary variable Z
(m)
n = I(X∗ ∈ A

(m)
n ) ∈ {0, 1} to

which the player yields provides a possibly incorrect (i.e., noisy) binary response

Y
(m)
n+1 ∈ {0, 1}. We consider a similar setting as in [73], which applied to the M = 1

player case, but now we have a joint controller that chooses a batch of M queries

{A(m)
n }Mm=1 that are addressed to each of the M players at time n. A block diagram

is shown in Fig. 4.2.

As in the sequential query design, the joint queries are selected based on the

accumulated information available to the controller. However, since the full batch of
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Figure 4.2: A controller asks a batch questions of M collaborative players about the location X∗ of an
unknown target. At time n, the controller chooses the queries I(X∗ ∈ A

(m)
n ) based on the

posterior pn. Then, the M players yield noisy responses Y
(m)
n+1 that are fed into the fusion

center, where the posterior is updated and fed back to the controller at the next time instant
n+ 1.

joint queries are determined at the beginning of the n-th cycle, the joint controller

only has access to a coarser filtration Fn, Fn−1 ⊂ Fn, as compared with the filtration

Gn,t of the sequential controller.

4.2.3 Definitions & Assumptions

Define the M -tuples Yn+1 = (Y
(1)
n+1, . . . , Y

(M)
n+1 ) and An = {A(1)

n , . . . , A
(M)
n }.

Assumption IV.1. (Conditional Independence) We assume that the players’ re-

sponses are conditionally independent. In particular, for the joint controller,

P(Yn+1 = y|An, X
∗ = x,Fn)

=
M∏
m=1

P(Y
(m)
n+1 = y(m)|A(m)

n , X∗ = x,Fn)(4.6)

where

P(Y
(m)
n+1 = y(m)|A(m)

n , X∗ = x,Fn)

=

{
f

(m)
1 (y(m)|A(m)

n ,Fn), x ∈ A(m)
n

f
(m)
0 (y(m)|A(m)

n ,Fn), x /∈ A(m)
n

.(4.7)

Similar relations hold for the sequential controller under the conditional independence
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assumption: in (3) and (4) simply change the subscripts n and n+ 1 to nt and nt+1,

respectively, and replace the filtration Fn by Gnt.

Assumption IV.2. (Memoryless Binary Symmetric Channels) We model the play-

ers’ responses as independent (memoryless) binary symmetric channels (BSC) [35]

with crossover probabilities εm ∈ (0, 1/2). In particular, for the joint query strat-

egy, the conditional probability mass function f
(m)
j = P(Y

(m)
n = j|A(m)

n ,Fn) of the

response of the M-th player is:

f
(m)
j (y(m)|A(m)

n ,Fn) = f
(m)
j (y(m))

=

{
1− εm, y(m) = j

εm, y(m) 6= j

where m = 1, . . . ,M, j = 0, 1. A similar relation holds for the sequential query

strategy: replace n by nt and Fn by Gnt.

Define the set of dyadic partitions of Rd, induced by the queries {A(m)}m:

(4.8) γ(A(1), . . . , A(M)) =

{
M⋂
m=1

(A(m))im : im ∈ {0, 1}

}

where (A)0 := Ac and (A)1 := A. The cardinality of this set of subsets is 2M and

each of these subsets partition Rd. The objective is to localize the target within a

subset A(m).

Define the density parameterized by An, pn, i1, . . . , iM , for the joint query strategy:

gi1:iM (y(1), . . . , y(M)|An,Fn) :=
M∏
m=1

f
(m)
im

(y(m)|A(m)
n ,Fn)

where ij ∈ {0, 1}.

4.2.4 Equivalence Theorems

We first establish the structure of the optimal joint policy.
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Theorem IV.3. (Joint Optimality Conditions, Known Error Probabilities) Under

Assumption IV.1, an optimal joint policy that minimizes the Shannon entropy of the

posterior distribution pn achieves the following entropy loss:

G∗ = sup
A(1),...,A(M)

{
H

(
1∑

i1:iM=0

gi1:iM (·)Pn
( M⋂
m=1

(A(m)
n )im

))

−
1∑

i1:iM=0

H (gi1:iM (·))Pn
( M⋂
m=1

(A(m)
n )im

)}
,(4.9)

where H(f) is the Shannon entropy of the probability mass function f .

Theorem IV.3 generalizes the bisection policy [73, 30] to multiple players. The

fusion rule is a posterior update and by Bayes rule:

(4.10) pn+1(x) ∝ P(Yn+1 = yn+1|An, X
∗ = x,Fn)× pn(x)

where yn+1 ∈ {0, 1}M are the observations at time n. Next we establish that a greedy

sequential query strategy achieves the same average entropy reduction as that of the

optimal joint query strategy.

Figure 4.3: Jointly optimal queries under uniform prior for two dimensional target search. The target
X∗ is indicated by a black square. The one-player bisection rule (left) satisfies the optimality
condition (4.12) with optimal query A(1) = [0, 1√

2
] × [0, 1√

2
]. The two-player bisection rule

(right) satisfies (4.12) with optimal queries A(1) = [0, 3
4
]× [0, 1

2
]∪ [ 1

4
, 3
4
]× [ 1

2
, 3
4
], A(2) = [ 1

4
, 1]×

[ 1
2
, 1] ∪ [ 1

4
, 3
4
] × [ 1

4
, 1
2
]. We note that using the policy on the left, if player 1 responds that

X∗ ∈ [0, 1√
2
]× [0, 1√

2
], with high probability, then the posterior will concentrate on that region.

When using the policy on the right, if player 1 and 2 respond that X∗ ∈ A(1) ∩A(2) with high
probability, then the posterior will concentrate more on the intersection of the queries, thus
better localizing the target as compared with the single player policy.

Theorem IV.4. (Equivalence, Known Error Probabilities) Under Assumptions IV.1

and IV.2:
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1. The expected entropy loss under an optimal joint query design is the same as

the greedy sequential query design. This loss is given by:

(4.11) C =
M∑
m=1

C(εm) =
M∑
m=1

(1− hb(εm))

where hb(εm) = −εm log(εm)−(1−εm) log(1−εm) is the binary entropy function.

2. All jointly optimal control laws equalize the posterior probability over the dyadic

partitions induced by An = {A(1)
n , . . . , A

(M)
n }:

(4.12) Pn(R) =

∫
R

pn(x)dx = 2−M ,∀R ∈ γ(An).

where the set γ(·) was defined in (4.8).

Thm. IV.4 shows that the optimal joint policy can be determined and imple-

mented using the simpler greedy sequential query design. Note that, despite the fact

that all players are conditionally independent, the joint policy does not decouple into

separate single-player optimal policies. This is analogous to the non-separability of

the optimal vector-quantizer in source coding even for independent sources [55]. In

addition, the optimal queries must be overlapping-i.e.,
⋂M
m=1A

(m)
n 6= ∅, but not iden-

tical. Finally, we remark that the optimal query An is not unique, so it is possible

that there exists an even simpler optimal control law than the sequential greedy

policy.

Equivalence: Intuition

A simple intuitive way to see the equivalence property stated in Thm. IV.4 is

through the chain rule of the mutual information. Consider the joint query strategy

and its associated filtration Fn. According to Theorem IV.3, the optimal policy is to

choose the queries such that the conditional mutual information is maximized. The
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chain rule of conditional mutual information [35] implies:

I(X∗; Yn+1|An,Fn) = I(X∗;Y
(1)
n+1|A(1)

n ,Fn)+
M∑
m=2

I(X∗;Y
(m)
n+1 |A(m)

n , {A(k)
n , Y

(k)
n+1}m−1

k=1 ,Fn)

which relates the joint mutual information of the LHS (as in the joint scheme) to

the mutual information of each player conditioned on the responses of the previous

players (as in the sequential scheme). Letting M = 2 for concreteness, we observe:

I(X∗;Y
(1)
n+1, Y

(2)
n+1|A(1)

n , A(2)
n ,Fn)

= I(X∗;Y
(2)
n+1|Y

(1)
n+1, A

(2)
n , A(1)

n ,Fn) + I(X∗;Y
(1)
n+1|A(1)

n ,Fn)

This relation implies that the mutual information between the target X∗ and the

response Y
(2)
n+1 of the second player depends on the response of the first player Y

(1)
n+1.

It follows that the information available for query design A
(2)
n for the second player

is larger than the information available for query design A
(1)
n for the first player.

Equivalence: One-dimensional Example

As a specific example, let us consider the one-dimensional case with M = 2

collaborating players. Consider the query design problem for this case. We assume

that the prior density p0 is uniform over the position of a target in one dimension,

i.e., the target state is in the domain X = [0, 1]. We define the queries as intervals-

i.e., A
(1)
n = [a, b] and A

(2)
n = [c, d]. The optimal policy (4.12) requires the queries to

be overlapping thus we impose the constraints a < c, c < b and b < d. Choosing

a = 1/8, b = 1/2+1/8, c = 1/2−1/8 and d = 1−1/8, we observe that the optimality

conditions in (4.12) are satisfied over the dyadic partition set γ(An) = {A(1)
n ∩ A(2)

n ,

A
(1)
n ∩ A

(2)

n , A
(1)
n ∩ A

(2)

n and A
(1)

n ∩ A
(2)

n }. Thus, this is a jointly optimal law and is

illustrated graphically in Fig. 4.4 (a). We note that the region of uncertainty has

size 1/4 (region not covered by queries).
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Figure 4.4: Illustration of jointly optimal policy (a) and sequential policy (b) for one-dimensional target,
uniformly distributed over [0, 1], and two players. In each case the total length of the intervals
not covered by the queries (uncertainty) is equal to 1/4.

The sequential policy consists of a sequence of bisections. This policy is illustrated

in Fig. 4.4 (b) and the region of uncertainty also has size 1/4.

4.3 Mean-Square Error Performance Bounds

In this section, we provide exponential lower and upper bounds on the MSE of

the sequential Bayesian estimator.

4.3.1 Lower Bounds via Entropy Loss

Thm. IV.4 yields the value of the cooperative game in terms of expected entropy

reduction, which is the sum of the “capacities” 2 of all the players. This value

function is used next to provide a lower bound on the MSE of the sequential Bayesian

estimator.

Theorem IV.5. (Lower Bound on MSE) Let Assumptions IV.1, IV.2 hold. Assume

the entropy H(p0) is finite. Then, the MSE of the joint or sequential query policies

2The “capacity” of each player is the Shannon channel capacity of each BSC [35].
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in Thm. 1 and 2 satisfies:

(4.13)
K

2πe
d exp

(
−2nC

d

)
≤ E[‖ X∗ −Xn ‖2

2]

where K = e2H(p0) and Xn is the posterior mean. The expected entropy loss per

iteration is C =
∑

mC(εm).

Observe that the bound in (4.13) holds for any policy π and for optimal policies

π∗, the bound becomes tighter since Eπ[H(pn)] = H(p0)− nC for this case. We also

note that the bound behaves exponentially as a function of the number of queries n

with rate exponent given by the sum of the capacities C.

4.3.2 Upper Bounds

The performance analysis of the bisection method is difficult primarily due to the

continuous nature of the posterior [30]. A discretized version of the probabilistic

bisection method was proposed in [20], using the Burnashev-Zingagirov (BZ) algo-

rithm, which imposes a piecewise constant structure on the posterior. A description

of the BZ algorithm and its convergence rate is given in [30] (also see App. A in

[29]). For simplicity of discussion, we assume the target location is constrained to

the unit interval X = [0, 1]. The generalization to d > 1 is a difficult open problem.

A step size ∆ > 0 is defined such that ∆−1 ∈ N and the posterior after j iterations

is pj : X → R, given by

pj(x) =
1

∆

∆−1∑
i=1

ai(j)I(x ∈ Ii)

where I1 = [0,∆], Ii = ((i − 1)∆, i∆] for i = 2, . . . ,∆−1. We define the discretized

posterior at time j as the probability vector a(j) = [a1(j), . . . , a∆−1(j)]. The ini-

tial posterior is ai(0) = ∆,∀i. The posterior is characterized completely by the

discretized posterior a(j) which is updated at each iteration via Bayes rule [29].
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Convergence rates were derived for the one-dimensional case in [30] for the bounded

noise case (i.e., constant error probability) and for the unbounded noise case (i.e.,

error probability depends on distance from target X∗ and converges to 1/2 as the

estimate reaches the target) in [31]. A modified version of this algorithm that is

proven to handle unbounded noise was shown in [31]. Thm. IV.7 derives upper

bounds on MSE using ideas from [31].

First, we need a simple lemma.

Lemma IV.6. Let X̂n be an estimator of target X∗ lying in domain [0, 1]. Then,

for all ∆ ∈ [0, 1], we have:

E[(X∗ − X̂n)2] ≤ ∆2 + (1−∆2)P(|X∗ − X̂n| > ∆)

Theorem IV.7. (Upper Bound on MSE) Consider the sequential bisection algorithm

for M players in one-dimension, where each bisection is implemented using the BZ

algorithm. Then, we have:

P(|X∗ − X̂n| > ∆) ≤ (
1

∆
− 1) exp

(
−nC̄

)
E[(X∗ − X̂n)2] ≤ (2−2/3 + 21/3) exp

(
−2

3
nC̄

)
(4.14)

where C̄ =
∑M

m=1 C̄(εm), C̄(ε) = 1/2−
√
ε(1− ε).

The combination of the lower bound (Thm. IV.5) and the upper bound (Thm.

IV.7) imply that the MSE of the BZ algorithm goes to zero at an exponential rate

with rate constant between 2C and 2
3
C̄.

4.4 Strong Convergence

In this section, we prove almost sure convergence of the sequential bisection

schemes in the discretized and the continuous setting.
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Corollary IV.8. (Almost sure convergence for discretized PBA) Consider the se-

quential bisection algorithm for M players in one-dimension (i.e., d = 1), where each

bisection is implemented via the BZ algorithm. Then, we have X̂n
a.s.→ X∗ as n→∞.

Corollary IV.9. (Almost sure convergence for continuous PBA) Consider the se-

quential bisection algorithm for M players in any dimension (i.e., d ≥ 1), where each

bisection is implemented via the standard (continous-space) PBA. Then, we have:

X̂n
a.s.−→ X∗

1

n
log(pn(X∗))

a.s.−→
M∑
i=1

C(εi) = C(ε)

as n → ∞. The function C(εi) denotes the capacity of the ith BSC associated with

the ith player.

Corollary IV.9 also yields a pointwise rate of convergence. Specifically, for large

n, pn(X∗) ∼ 2nC , where C is the sum of capacities. This is intuitive in the sense

that the larger the sum capacity, the faster we expect the distribution on the target

location to concentrate on the true target X∗.

4.5 Human-in-the-loop

In this section, we consider the 2-player case where player 1 (the machine) has a

constant error probability ε1 ∈ (0, 1/2) and player 2 (the human) has error probability

increasing as the target localization error decreases:

(4.15) P(Y
(2)
n+1 6= z|Z(2)

n = z) =
1

2
−min(δ0, µ|X∗ −Xn|κ−1)

where κ > 1, 0 < δ0 < µ < 1/2 is a reliability parameter to parameterize the human

3. Fig. 4.5 illustrates the human error model as a function of |X∗ − Xn|. This

3The parameter κ controls the ”resolution” of the human. It becomes increasingly difficult for the human to
decide between close hypotheses as κ goes to infinity.
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is a popular model used for human-based optimization [72] and active learning of

threshold functions [31]. From the nature of the error probability (4.15) we expect

that the answers provided by the human will be helpful in the beginning iterations

but their value will go to zero as the number of iterations grows to infinity. This

is because the human propensity for error becomes larger as the questions become

more refined and difficult to resolve.
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Figure 4.5: Human error probability as a function of distance from target |X∗−Xn| for δ0 = 0.4, µ = 0.45
and various κ > 1.

Using a similar argument as in the proof of Thm. IV.7, and using the modified

BZ algorithm [31], from Lemma 1 in [31], we have the following. For κ ≥ 2 with

α1 =
√
ε1√

ε1+
√

1−ε1
, α2 = 0.09µ(3∆/4)κ−1:

P(|X∗ − X̂n| > ∆) ≤ ∆−1 exp

(
−n

[
C̄(ε1) +

µ2

50

(
3∆

4

)2κ−2
])

.

Applying Lemma IV.6, this leads to the MSE upper bound dependent on ∆:

(4.16) E[(X∗ − X̂n)2] ≤ ∆2 + ∆−1 exp

(
−n

[
C̄(ε1) +

µ2

50

(
3∆

4

)2κ−2
])
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With the choice ∆ = 2−1/3e−nC̄(ε1)/3,

E[(X∗ − X̂n)2] ≤ exp

(
−2

3
nC̄(ε1)

)
×
[
2−2/3 + 21/3 exp

(
−µ

2

50

(3 · 2−1/3

4

)2κ−2

n exp

(
−nC̄(ε1)

2κ− 2

3

))]
(4.17)

which is no greater than the “player 1” (machine alone) MSE bound (compare (4.17)

with (4.14)). Asymptotically as n → ∞, the two bounds both converge to zero at

the same rate.

We define the human gain ratio (HGR) as the ratio of MSE upper bounds asso-

ciated with “player 1” and “player 1 + human”, respectively.

(4.18) Rn(κ) =
2−2/3 + 21/3

2−2/3 + 21/3 exp
(
−µ2

50
(3·2−1/3

4
)2κ−2n exp

(
−nC̄(ε1)2κ−2

3

))
The HGR is plotted in Fig. 4.6 in root-scale as a function of κ. This analysis quanti-

fies the value of including the human-in-the-loop for a sequential target localization

task. We note that the larger ε1 is, the larger is the HGR. Also, as κ decreases

to 1, the ratio increases, meaning that the human accuracy approaches that of the

machine.

4.6 Noisy 20 Questions with Collaborative Players: Unknown Error
Probability

In this section we consider the setting where the error probabilities of the M

players are unknown. In this case, the Bayes posterior update is not well-defined,

so the probabilistic bisection algorithm cannot be directly used. In the most generic

setting of having unknown εm ∈ (0, 1/2), we propose a joint estimation scheme to

estimate the target X∗ and the error probabilities ε∗ = (ε∗1, . . . , ε
∗
M). The method

propagates the joint posterior distribution of the joint random vector (X∗, ε∗) for-

ward in time given the designed queries and noisy responses. The joint posterior
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Figure 4.6: Human gain ratio
√
Rn(κ) (see Eq. (4.18)) as a function of κ. The human provides

the largest gain in the beginning few iterations and the value of information decreases
as n → ∞. The circles are the predicted curves according to (4.17), while the solid
lines are the optimized versions of the bound (4.16) (as a fuction of ∆) for each n. The
predictions well match the optimized bounds.

distribution is considered here because the error probabilities εm are coupled with

the target x through the Bayesian update (see Eqns. (4.7) and (4.10)).

Define the random vector ε = (ε1, . . . , εM) ∈ [0, 1/2)M and the joint posterior

distribution P(X∗ = x, ε∗ = ε|Fn) = pn(x, ε). We consider the minimum expected

entropy criterion (4.1).

4.6.1 Assumptions

We make an analogous conditional independence assumption to Assumption IV.1

for the unknown channel case.

Assumption IV.10. We assume that the players’ responses are conditionally inde-

pendent:

P(Yn+1 = y|An, X
∗ = x, ε∗ = ε,Fn)

=
M∏
m=1

P(Y
(m)
n+1 = y(m)|A(m)

n , X∗ = x, ε∗m = εm,Fn)
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where

P(Y
(m)
n+1 = y(m)|A(m)

n , X∗ = x, ε∗m = εm,Fn)

=

{
f

(m)
1 (y(m)|εm, A(m)

n ,Fn), x ∈ A(m)
n

f
(m)
0 (y(m)|εm, A(m)

n ,Fn), x /∈ A(m)
n

.

4.6.2 Sequential Query Design

In the sequential setup, we assume that the fusion center designs queries for each

of the M sensors in sequence and refines the posterior belief of the target location

given the response of each player (see Fig. 4.1). Recall the sub-time scale of sub-

instants {nt : t = 0, . . . ,M − 1} for each time instant n and consider the notation

and filtration Gnt defined in Section 4.2.A. Assuming that all sensors are queried in

sequence starting from m = 1 and ending at m = M , the posterior updates (after

querying the (t+ 1)th player) become:

pnt+1(x, ε) = P(Ynt+1 = ynt+1|Ant , X∗ = x, ε∗t+1 = εt+1,Gnt)× pnt(x, ε)

P(Ynt+1 = ynt+1|Ant , X∗ = x, ε∗t+1 = εt+1,Gnt) =

{
f

(t+1)
1 (ynt+1|εt+1), x ∈ Ant

f
(t+1)
0 (ynt+1|εt+1), x /∈ Ant

.

4.6.3 Joint Query Design

In the joint setup, we assume that the fusion center designs queries for the M

sensors at each time instant n and after querying all sensors, the responses are fused

by the controller and the next set of questions is formulated. Recall the notation

and filtration Fn defined in Section 4.2.B.

Define the density parameterized by ε = (ε1, . . . , εM) and i1, . . . , iM ∈ {0, 1}:

gi1:iM (y|ε) =
M∏
m=1

f
(m)
im

(y(m)|εm)
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At the nth time instant, the posterior update becomes:

pn+1(x, ε) = P(Yn+1 = yn+1|An, X
∗ = x, ε∗ = ε,Fn)× pn(x, ε)

P(Yn+1 = yn+1|X∗ = x, ε∗ = ε,Fn) =
M∏
m=1

{
f

(m)
1 (y

(m)
n+1|εm), x ∈ A(m)

n

f
(m)
0 (y

(m)
n+1|εm), x /∈ A(m)

n

.

4.6.4 Equivalence Theorems

Since the error probabilities of sensors are unknown, the joint policy derived in

Theorem IV.3 is no longer applicable or valid. The next theorem derives the jointly

optimal policy for all sensors under the unknown channel case.

Theorem IV.11. (Jointly Optimal Policy, Unknown Error Probabilities) Let As-

sumptions IV.1 and IV.2 hold. Consider the problem (4.1), where the joint policy is

made up of the query regions for the M sensors.

1. Optimal policies An = (A
(1)
n , . . . , A

(M)
n ) at time n satisfy:

G∗n = sup
A(1),...,A(M)

{
H

(
1∑

i1:iM=0

∫ 1/2

ε=0

gi1:iM (·|ε)Pn

(⋂
m

(A(m))im , ε

)
dε

)

−
1∑

i1:iM=0

∫ 1/2

ε=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im , ε

)
dε
}

(4.19)

2. The maximum information gain at time n is:

(4.20) G∗n =
M∑
m=1

E[C(εm)|Fn]

where E[C(εm)|Fn] =
∫ 1/2

εm=0
C(εm)pn(εm)dεm.

Next, we show a version of the equivalence theorem (Theorem IV.4) for the un-

known channel case.

Theorem IV.12. (Equivalence, Unknown Error Probabilities) Let Assumptions IV.10

and IV.2 hold. Consider the sequential and joint schemes described in Section
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4.6.B and Section 4.6.C. 4 Then, it follows that G∗seq,n = E[
∑

mC(εm)|Gn] and

G∗n = E[
∑

mC(εm)|Fn] for all n.

Lower Bound on MSE Performance

The maximum entropy loss derived in Thm. IV.11 is used next to provide a lower

bound on the MSE of the joint sequential estimator.

Theorem IV.13. (Lower bound on Joint MSE) Assume H(p0) is finite. Then, the

joint MSE of the joint query policy in Thm. IV.11 satisfies:

(4.21)
K

2πe
d exp

(
−2nC̄n

d

)
≤ E[‖Xn −X∗‖2

2] + E[‖εn − ε∗‖2
2]

where K = exp(2H(p0)) is a constant and Xn = E[X∗|Fn], εn = E[ε∗|Fn]. The

expected entropy loss per iteration is C̄n = 1
n

∑n−1
k=0 G

∗
k.

The proof follows using the result of part 2) of Theorem IV.11 and similar bound-

ing arguments as Theorem IV.5.

4.6.5 Discussion

The jointly optimal policy derived for the unknown probability case in Thm.

IV.11 is reminiscent of the jointly optimal policy of Thm. IV.3. We remark that

in the unknown probability setting, the maximum entropy loss G∗n given in (4.19) is

not time-invariant, unlike in the case of known probability, in which the maximum

entropy loss was the sum of the capacities of the players’ channels (4.9) and (4.11).

This observation motivates a sensor selection scheme; if we have the hard constraint

that only one sensor may be used at a time, then, unlike in the known probability

case, it may be that at different times, the maximal information gain may be obtained

by different sensors.

4For the one-dimensional case, the sequential scheme implements (4.23) for each sub-instant to design a question
for each player and the posterior is updated in sequence (see Fig. 4.1).
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4.6.6 Sensor Selection Scheme

We assume that at each time instant, only one sensor can be queried. We assume

that the control un = u implies that the uth sensor is to be queried at time n and

A
(u)
n = A is the associated query region. Similarly to (4.10), the joint posterior

update in this case becomes:

pn+1(x, ε) ∝ P(Y
(u)
n+1|un = u,A(u)

n , X∗ = x, ε∗u = εu)pn(x, ε)

P(Y
(u)
n+1 = y(u)|un = u,A(u)

n , X∗ = x, ε∗u = εu) =

 f
(u)
1 (y(u)|εu), x ∈ A(u)

n

f
(u)
0 (y(u)|εu), x /∈ A(u)

n

Theorem IV.14. (Sensor Selection Policy, Unknown Error Probabilities) Consider

the problem (4.1), where the policy consists of which sensor to choose and the asso-

ciated query region. At each time n:

1. All optimal query policies satisfy:

max
u∈{1,...,M}

G∗n(u) = sup
A

{
H

(∫ 1/2

εu=0

f1(·|εu)P(u)
n (A, εu) + f0(·|εu)P(u)

n (Ac, εu)dεu

)

−
∫ 1/2

εu=0

H (f1(·|εu))P(u)
n (A, εu) +H (f0(·|εu))P(u)

n (Ac, εu)dεu

}(4.22)

2. The maximum entropy loss is:

G∗n = max
u

G∗n(u) = max
u

E[C(εu)|Fn]

The optimal policy for the minimum expected entropy criterion (4.1) shown in

Thm. IV.14 is intuitive. The sensor u with the maximum information gain (or

entropy loss) is chosen, where the entropy loss is measured as a function of the uth

sub-marginal distribution p
(u)
n (x, εu). While the form (4.22) bears some similarity

to the form (4.9), the bisection policy is no longer optimal. In addition, in this
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unknown probability setting, it may not always be the case that the sensor with

the largest capacity will be chosen (this would be the case in the known probability

setting). The integral with respect to dε over ε ∈ [0, 1/2) essentially averages out the

contribution of the unknown error probabilities with respect to the observed data up

to the current time n.

One-dimensional Case

The next corollary specifies the form of the optimal policy derived in Thm. IV.14

for one-dimensional targets. For simplicity, consider the unit interval X = [0, 1] as

the target domain.

Corollary IV.15. (Sensor Selection Policy, Unknown Error Probabilities, One-

dimensional Target) Consider the problem (4.1) for the optimal sensor and query

selection policy. Consider the query regions An = [0, xn]. The optimal sensor u and

associated query region A = [0, x] at time n is given by:

(4.23) max
u

{
max
x∈[0,1]

hB(g
(u)
1,n(x))− c(u)

n

}
where hB(·) is the binary entropy function [35] and

c(u)
n =

∫ 1/2

εu=0

hB(εu)p
(u)
n (εu)dεu

g
(u)
1,n(x) =

∫ x

0

µ(u)
n (t)dt+

∫ 1

x

(pn(t)− µ(u)
n (t))dt

µ(u)
n (t) =

∫ 1/2

εu=0

εup
(u)
n (t, εu)dεu

pn(t) =

∫ 1/2

ε1=0

· · ·
∫ 1/2

εM=0

pn(t, ε1, . . . , εM)dε1 · · · dεM

We note that the optimal policy derived for the unknown probability case in (4.23)

is not equivalent to the probabilistic bisection policy-i.e., obtaining P(u)
n ([0, x

(u)
n ]) =

1/2 for each sensor u and then evaluating the information gain and choosing the
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sensor with the maximum information gain. This heuristic scheme would yield a

suboptimal information gain as compared to the maximal information gain given

by (4.23). Thus, in the unknown probability setting, the optimal control law is no

longer equivalent to the known probability setting (after marginalizing out the noise

parameters ε1, . . . , εM). This result shows that the two settings are quite different and

the answers to the unknown channel case are more complex. We empirically observed

that there is a unique query point x = x∗n = x
(u∗)
n that maximizes the function (4.23).

This is similar to the one-dimensional case for the known probability setting when

the query region is of the form A = [0, x]; i.e., the optimal point is the median.

4.7 Simulations

This section contains a few illustrative simulations that validate the methodology

presented throughout the chapter.

4.7.1 Known Error Probability

Figs. 4.7 and 4.8 show the empirical performance of the human-in-the-loop by

comparing the actual MSEs of “player 1” and of “player 1 + human”, for the cases

of uniform and nonuniform prior distributions on the target location. It is observed

that employing a human in the loop reduces the RMSE relative to only having

“player 1” and to having “player 1 + player 2” for a wide range of n. We note

that as n → ∞, the “player 1 + human” curve will cross the “player 1 + player 2”

curve, being consistent with the upper bounds shown in (4.14) and (4.17) since the

human’s contribution is strongest in the first few iterations, while its value decreases

to zero as n → ∞. Also, the human model does not yield a different exponent in

the exponential rate of convergence, while adding a second player does as predicted

in Thms. IV.5 and IV.7.
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Next, we observe the effect of the prior distribution associated with the target

location on the RMSE performance. We observe that the “player 1 + human”

scheme provides a larger gain when the initial distribution is trimodal with larger

variance on the true component centered at X∗ = 0.75 (see Fig. 4.9) as shown in

Fig. 4.8, as compared to the gain from starting from a uniform distribution as shown

in Fig. 4.7. In fact, the human-in-the-loop combined with player 1 outperforms two

players 1 and 2 for a wide range of iterations n.
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Figure 4.7: Monte Carlo simulation for RMSE performance of the sequential estimator as a function
of iteration. 8000 Monte Carlo trials were used. The human parameters were set to
κ = 1.1, µ = 0.42, δ0 = 0.4, the players’ parameters were ε1 = ε2 = 0.4, and the length
of pseudo-posterior was ∆−1 = 1618. The target was set to X∗ = 0.75. The initial
distribution was uniform. The parameters 0 < µ < δ0 < 1/2 were chosen such that the
smallest error probability would be 1/2− δ0 = 0.1 and the resolution parameter κ > 1
was chosen close to 1 in order to show a large enough gain for including the human. As
κ grows, the RMSE gain contributed by the human decreases.

Figures 4.10 and 4.11 show the empirical RMSE as a function of ε1 ∈ (0, 1/2) for

κ = 2.0 and κ = 1.5, respectively. As expected, larger MSE gains are obtained for

κ = 1.5. For fixed κ, we observe from both figures that the MSE associated with

just “player 1” increases as ε1 increases, and in addition, the RMSE associated with
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Figure 4.8: Monte Carlo simulation for RMSE performance of the sequential estimator as a function
of iteration. 8000 Monte Carlo trials were used. The human parameters were set to
κ = 1.1, µ = 0.42, δ0 = 0.4, the players’ parameters were ε1 = ε2 = 0.4, and the length
of pseudo-posterior was ∆−1 = 1618. The target was set to X∗ = 0.75. The initial
distribution was a mixture of three Gaussian distributions as shown in Fig. 4.9. The
parameters 0 < µ < δ0 < 1/2 were chosen such that the smallest error probability
would be 1/2 − δ0 = 0.1 and the resolution parameter κ > 1 was chosen close to 1 in
order to show a large enough gain for including the human. As κ grows, the RMSE
gain contributed by the human decreases.

“player 1 + human” yields a larger improvement over just using player 1 for larger ε1.

In other words, the worse player 1 is, the larger the value of the human in reducing

the MSE.

4.7.2 Unknown Error Probability

Fig. 4.12 numerically evaluates the MSE performance for M = 1 sensor with un-

known error probability. This simulation implies that the binary responses obtained

from one player carry enough information to both estimate the target accurately and

its error probability.
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Figure 4.9: Initial distribution for BZ algorithm. The distribution is a mixture of three Gaussians
with means 0.25, 0.5 and 0.75, and variances 0.02, 0.05 and 0.08, respectively. The
target was set to be the center of the mode at X∗ = 0.75 with the largest variance. The
resulting MSE performance of the sequential estimator is shown in Fig. 4.8.

4.8 Conclusion

We studied the problem of collaborative 20 questions with noise for the multiplayer

case. We derived an equivalence theorem that shows the joint query design has

the same performance on average as the sequential bisection query design, despite

the fact that the sequential bisection query design has access to a more refined

filtration. In addition, the sequential bisection query design is easily implemented

due to the low complexity of the controllers (unlike the jointly optimal design). Using

this framework, we obtained mean-square-error bounds for the performance of the

sequential estimator. The methodology was applied to human-in-the-loop target

localization systems.

The framework was generalized to the case of unknown error probabilities asso-

ciated with noisy players. For this case, it was shown that the maximum entropy

loss per iteration is time-varying (unlike in the known probability case) and the op-
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Figure 4.10: Monte Carlo simulation for RMSE performance of the sequential estimator as a func-
tion of iteration and ε1 ∈ (0, 1/2). 2000 Monte Carlo trials were used. The human
parameters were set to κ = 2.0, µ = 0.42, δ0 = 0.4, the length of pseudo-posterior was
∆−1 = 1618. The target was set to X∗ = 0.75. The initial distribution was a mixture
of three Gaussians as shown in Fig. 4.9. The parameters 0 < µ < δ0 < 1/2 were
chosen such that the smallest error probability would be 1/2− δ0 = 0.1.

timal policy that achieves this gain is not equivalent to the probabilistic bisection

policy. Simulations were provided to numerically evaluate the performance of the

proposed sequential estimator. Worthwhile future work could include the following

extensions: 1) query design for target detection and classification; 2) more sophis-

ticated human/machine response models that account for state-dependent response

(channel) errors.
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Figure 4.11: Monte Carlo simulation for RMSE performance of the sequential estimator as a func-
tion of iteration and ε1 ∈ (0, 1/2). 2000 Monte Carlo trials were used. The human
parameters were set to κ = 1.5, µ = 0.42, δ0 = 0.4, the length of pseudo-posterior was
∆−1 = 1618. The target was set to X∗ = 0.75. The initial distribution was a mixture
of three Gaussians as shown in Fig. 4.9.

4.9 Appendix

4.9.1 Proof of Theorem IV.3

Proof. Using (4.6) and (4.7), we have:

P(Yn+1 = y|An, X
∗ = x,Fn)

=
M∏
m=1

{
f

(m)
1 (y(m)|A(m)

n ,Fn)I(x ∈ A(m)
n )

+ f
(m)
0 (y(m)|A(m)

n ,Fn)I(x /∈ A(m)
n )

}
=

1∑
i1:iM=0

gi1:iM (y|An,Fn)I

(
x ∈

M⋂
m=1

(A(m)
n )im

)
.(4.24)

By integrating over x ∈ X , we have:

P(Yn+1 = y|An,Fn) = E[P(Yn+1 = y|An, X
∗,Fn)]

=
1∑

i1:iM=0

gi1:iM (y|An,Fn)Pn

(
M⋂
m=1

(A(m)
n )im

)
.(4.25)
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Figure 4.12: Monte Carlo simulation for MSE performance of the joint sequential estimator (of the
target X∗ and the error probability ε∗). The MSE for X is shown on the left and MSE
for ε on the right, as a function of iteration. 100 Monte Carlo trials were used. The
true error probability was set to ε∗ = 0.3 and the true target location was X∗ = 0.75.
The target was set to X∗ = 0.75. The initial distribution was a joint uniform density
p0(x, ε).

Similarly to the proof of Thm. 1 in [73], we have:

H(pn)− E[H(pn+1)|An,Fn] = I(X∗; Yn+1|An,Fn)

= H(Yn+1|An,Fn)− E[H(Yn+1)|X∗,An,Fn].

From (4.25), we have:

H(Yn+1|An,Fn) = H

(
1∑

i1:iM=0

gi1:iM (·)Pn

(
M⋂
m=1

(A(m)
n )im

))

and using (4.24):

E[H(Yn+1)|X∗,An,Fn]

=

∫
X
pn(x)H(Yn+1|X∗ = x,An,Fn)dx

=
1∑

i1:iM=0

H (gi1:iM )Pn

(
M⋂
m=1

(A(m)
n )im

)
.

Putting this together, and using a dynamic programming argument similar to Thm.

2 in [73], it follows that the optimal query satisfies (4.9).



175

4.9.2 Proof of Theorem IV.4

Proof. Let Gseq denote the maximum expected entropy loss after querying M play-

ers sequentially. The bisection policy yields an expected entropy loss of C(εm) =

1 − hb(εm) 5 after querying the mth player [73]. Thus, Gseq =
∑M

m=1 C(εm). The

expected entropy loss at sub-time instant nt is H(pnt) − E[H(pnt+1)|Ant ,Gnt ] =

I(X∗;Ynt+1|Ant ,Gnt). To show this rigorously, observe:

Gseq = sup
{Ant}

M−1
t=0

E[H(pn)−H(pn+1)|Gn]

= sup
{Ant}

M−1
t=0

E

[
M−1∑
t=0

H(pnt)−H(pnt+1)

∣∣∣∣∣Gn
]

= sup
{Ant}

M−1
t=0

M−1∑
t=0

E

[
E

[
H(pnt)−H(pnt+1)

∣∣∣∣∣Ant ,Gnt
] ∣∣∣∣∣Gn

]

= sup
{Ant}

M−1
t=0

E

[
M−1∑
t=0

I(X∗;Ynt+1|Ant ,Gnt)

∣∣∣∣∣Gn
]

= E

[
M−1∑
t=0

sup
Ant

I(X∗;Ynt+1|Ant ,Gnt)

∣∣∣∣∣Gn
]

= E

[
M−1∑
t=0

C(εt+1)

∣∣∣∣∣Gn
]

=
M∑
m=1

C(εm).

To finish the proof, we show Gseq = G∗. The consequence Gseq = G∗ follows from

the chain rule of conditional mutual information, but we show an argument based

on convex optimization that characterizes the jointly optimal policy as well. From

5This is the capacity of the mth BSC [73, 35].
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Thm. IV.3,

G∗ = sup
A(1),...,A(M)

{
H

(
1∑

i1:iM=0

gi1:iM (·)Pn
( M⋂
m=1

(A(m)
n )im

))

−
1∑

i1:iM=0

H (gi1:iM (·))Pn
( M⋂
m=1

(A(m)
n )im

)}
= sup

p

{
H

(
1∑

i1:iM=0

gi1:iM (·)pi1,...,iM

)

−
1∑

i1:iM=0

H(gi1:iM (·))pi1,...,iM : p � 0, 1Tp = 1
}

= sup
p
{H(pTg)− pTH(g) : p � 0, 1Tp = 1}(4.26)

= Gseq

where the last equality follows by the symmetry of the BSC. The supremum in

the strictly concave problem (4.26) is achieved by the uniform distribution. This is

justified by noting that the second term is independent of p since for 1Tp = 1:

pTH(g) =
1∑

i1:iM=0

H

(
M∏
m=1

f
(m)
im

(·)

)
pi1,...,iM

=
1∑

i1:iM=0

M∑
m=1

H
(
f

(m)
im

(·)
)
pi1,...,iM

=
M∑
m=1

hB(εm) ·
1∑

i1=0

· · ·
1∑

iM=0

pi1,...,iM

=
M∑
m=1

hB(εm).

Thus, the supremum of (4.26) can be restricted to the first term which is achieved

by p∗i1,...,iM = 2−M since:

H

(
1∑

i1:iM=0

gi1:iM (y)p∗i1,...,iM

)
= H

(
2−M

1∑
i1=0

· · ·
1∑

iM=0

M∏
m=1

(1− εm)I(y
(m)=im)ε1−I(y

(m)=im)
m

)

= H(u(·)) = log2(2M) = M

where u(·) is the uniform distribution over {0, 1}M .
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4.9.3 Proof of Lemma IV.6

Proof. From the definition of the expectation of a bounded random variable En =

(X∗ − X̂n)2:

E[(X∗ − X̂n)2] =

∫ 1

0

P((X∗ − X̂n)2 > t)dt

=

∫ ∆2

0

P((X∗ − X̂n)2 > t)dt+

∫ 1

∆2

P((X∗ − X̂n)2 > t)dt

≤ ∆2 + (1−∆2)P(|X∗ − X̂n| > ∆).

4.9.4 Proof of Theorem IV.5

Proof. We note from the proof of Thm. IV.3 or Thm. IV.4, for any policy π, we

have Eπ[H(pn)] ≥ H(p0)− nC 6. Let Kn denote the conditional error covariance of

the random vector en = X∗ − E[X∗|Yn]-i.e., Kn = Cov(en|Yn). From Thm. 17.2.3

in [35] and Jensen’s inequality, we have:

Eπ[H(pn)] ≤ Eπ
[

1

2
log((2πe)d det(Kn))

]
≤ 1

2
log((2πe)d) +

1

2
log(det(Eπ[Kn]))

=
1

2
log((2πe)d det(Eπ[Kn]))

Rewriting this:

Ke−2nC

(2πe)d
≤ e2Eπ [H(pn)]

(2πe)d
≤ det(Eπ[Kn]) ≤

(
Eπ[tr(Kn)]

d

)d
where we also used the inequality of arithmetic and geometric means in the last step.

Using the fact that the conditional mean minimizes the mean-square error yields the

final result.
6For optimal policies π, this becomes an equality.
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4.9.5 Proof of Theorem IV.7

Proof. Assume the pseudo-posterior after the mth player’s response is a(M−m)(j+1),

with the notation a(0)(j + 1) = a(j + 1). Let k∗ denote the index of the bin that

contains X∗-i.e., X∗ ∈ Ik∗ . Define M(j)(m) = 1

a
(M−m)
k∗ (j)

− 1, with the notation

M (0)(j) = M(j). Define the ratio N(j + 1) = M(j+1)
M(j)

. Let {αm}m denote the

parameters associated with each player’s pseudo-posterior update. Similarly as in

the proof of Thm. 1 in [30]:

P(|X∗ −Xn| > ∆) ≤ P(ak∗(n) < 1/2)

= P(M(n) > 1) ≤ E[M(n)]

≤M(0)

(
max

0≤j≤n−1
max
a(j)

E[N(j + 1)|a(j)]

)n
.



179

Using the bounds in the proof of Thm. 1 in [30] and the tower property of conditional

expectations repeatedly:

E[N(j + 1)|a(j)] = E

[
M (M−1)(j + 1)

M (0)(j)
×

M−1∏
k=1

M (k−1)(j + 1)

M (k)(j + 1)

∣∣∣a(0)(j)

]

= E

[
E

[
M (M−1)(j + 1)

M (0)(j)
×

M−1∏
k=1

M (k−1)(j + 1)

M (k)(j + 1)

∣∣∣a(M−1)(j + 1), . . . , a(1)(j + 1), a(0)(j)

] ∣∣∣a(0)(j)

]

= E

[
M (M−1)(j + 1)

M (0)(j)
E

[
M−1∏
k=1

M (k−1)(j + 1)

M (k)(j + 1)

∣∣∣a(M−1)(j + 1), . . . , a(1)(j + 1)

] ∣∣∣a(0)(j)

]

= E

[
M (M−1)(j + 1)

M (0)(j)
E

[
M−1∏
k=2

M (k−1)(j + 1)

M (k)(j + 1)
E

[
M (0)(j + 1)

M (1)(j + 1)

∣∣∣a(1)(j + 1)

]
∣∣∣a(M−1)(j + 1), . . . , a(2)(j + 1)

]∣∣∣a(0)(j)

]

≤
(

1− εM
2(1− αM)

+
εM

2αM

)
E

[
M (M−1)(j + 1)

M (0)(j)
E

[
M−1∏
k=2

M (k−1)(j + 1)

M (k)(j + 1)∣∣∣a(M−1)(j + 1), . . . , a(2)(j + 1)

]∣∣∣a(0)(j)

]

≤ . . .

≤
M∏
m=1

(
1− εm

2(1− αm)
+

εm
2αm

)
.

To optimize the bound, we choose αi =
√
εi√

εi+
√

1−εi
, i = 1, 2 to obtain:

P(|X∗ −Xn| > ∆) ≤ (
1

∆
− 1)

(
M∏
m=1

(
1− C̄(εm)

))n

≤ (
1

∆
− 1) exp

(
−n

M∑
m=1

C̄(εn)

)
.

This concludes the first part. The second part follows by applying Lemma IV.6:

E[(X∗ − X̂n)2] ≤ ∆2 + ∆−1e−nC̄ .

Optimizing the bound, we choose ∆ = ∆n = 2−1/3e−nC̄/3, from which we conclude

the second part.
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4.9.6 Proof of Corollary IV.8

Proof. Let ∆ ∈ [0, 1] be arbitrary. The Borel-Cantelli lemma implies that if
∑∞

n=1 P(|X̂n−

X∗| > ∆) <∞, then P(|X̂n −X∗| > ∆ for infinitely many n ≥ 1) = 0. This implies

X̂n
a.s.→ X∗. From Theorem IV.7, we obtain:

∞∑
n=1

P(|X̂n −X∗| > ∆) ≤
∞∑
n=1

(
1

∆
− 1) exp

(
−nC̄

)
= (

1

∆
− 1)

exp
(
−C̄
)

1− exp
(
−C̄
) <∞

The claim follows by the argument presented above.

4.9.7 Proof of Corollary IV.9

Proof. At each iteration n of the algorithm, M posterior updates are made. The

density evolution from time n to time n+ 1 can be expressed as:

(4.27) pn+1(x) = pn(x)
M∏
i=1

li(Yi,n+1|x,An,i)
Zi,n(Yi,n+1)

where An,i denote the query region of the ith player and li(Yi,n+1|x,An,i) is the

ith player’s observation density dependent on the query region. Let pi,n(x) =

pn(x)
∏i−1

i′=1

li′ (Yi′,n+1|x,An,i′ )
Zi′,n(Yi′,n+1)

, i = 1, . . . ,M + 1 denote the posterior density after the

(i − 1)th player update 7. Note that the normalizing factor Zi,n(Yi,n+1) is equal to

1/2 irrespective of Yi,n+1 since:

Zi,n(y) =

∫
X
li(y|x,Ai,n)pi,n(x)dx

=

∫
X

(
f

(i)
1 (y)I(x ∈ Ai,n) + f

(i)
0 (y)I(x /∈ Ai,n)

)
pi,n(x)dx

= f
(i)
1 (y)Pi,n(Ai,n) + f

(i)
0 (y)Pi,n(Aci,n)

=
1

2

(
f

(i)
1 (y) + f

(i)
0 (y)

)
=

1

2
7Here, the initial condition is p1,n(x) = pn(x) and the terminal condition is pM+1,n(x) = pn+1(x).
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where we used the continuous PBA bisection rule Pi,n(Ai,n) = 1/2 and the channel

symmetry. Taking the logarithm in (4.27) and using the memoryless nature of the

channels:

log pn+1(X∗) = log pn(X∗) +
M∑
i=1

log(2li(Yi,n+1|X∗, Ai,n))

= log pn(X∗) +
M∑
i=1

log(2Pi(Yi,n+1|Zi,n))

where Zi,n = I(X∗ ∈ Ai,n) is the input to the ith channel. Unwrapping this recursion

and using the strong law of large numbers (LLN), we further obtain:

1

n
log pn(X∗) =

1

n
log p0(X∗) +

1

n

n−1∑
k=0

M∑
i=1

log(2Pi(Yi,k+1|Zi,k))

a.s.−→ E

[
M∑
i=1

log2(2Pi(Yi|Zi))

]

To finish the proof, note:

E[log(2Pi(Yi|Zi))] =
1∑
z=0

1∑
y=0

Pi(y, z) log2 (2Pi(Yi|Zi))

=
∑
z

Pi(z)
∑
y

Pi(y|z) log(2Pi(y|z))

=
∑
z

Pi(z) ((1− εi) log(2(1− εi)) + εi log(2εi))

= 1− hB(εi) = C(εi)

where hB(εi) = (1− εi) log2( 1
1−εi ) + εi log2( 1

εi
) is the binary entropy function.

4.9.8 Proof of Theorem IV.11

Proof. 1) Optimality conditions

The solution of (4.1) yields the Bellman recursion:

Vn(pn) = inf
A

E [Vn+1(pn+1)|An = A,Fn]



182

Using a similar argument as in Thm. 2 in [73], the optimal solution at time n is

given by maximizing the entropy loss at time n:

G∗n = sup
A
I((X∗, ε∗); Yn+1|An = A,Fn) = sup

A
{H(pn)− E [H(pn+1)|An = A,Fn]}

and the value function is given by Vn(pn) = H(pn) −
∑N−1

k=n G
∗
k for n < N and

VN(pN) = H(pN). We can expand the mutual information:

(4.28) I((X∗, ε∗); Yn+1|An,Fn) = H(Yn+1|An,Fn)− E [H(Yn+1)|X∗, ε∗,An,Fn]

The conditional probability of Yn+1 given the query An = A can be written as:

P(Yn+1|An = A,Fn) = E[P(Yn+1|An = A, X∗, ε∗,Fn)]

=

∫ 1/2

ε=0

∫
x∈X

P(Yn+1|An = A, X∗ = x, ε∗ = ε)pn(x, ε)dxdε

=

∫ 1/2

ε=0

∫
x∈X

(
M∏
m=1

f1(Y
(m)
n+1 |εm)I(x ∈ A(m)) + f0(Y

(m)
n+1 |εm)I(x /∈ A(m))

)
pn(x, ε)dxdε

=

∫ 1/2

ε=0

1∑
i1:iM=0

gi1:iM (y|ε)

{∫
x∈X

I

(⋂
m

(A(m))im

)
pn(x, ε)dx

}
dε

=
1∑

i1:iM=0

∫ 1/2

ε=0

gi1:iM (y|ε)Pn

(⋂
m

(A(m))im , ε

)
dε

where pn(x, ε) = pn(x, ε1, . . . , εM). This gives the first term in (4.19). To obtain the

second term, notice:

E[H(Yn+1)|X∗, ε∗,An = A,Fn]

=

∫
ε

∫
x∈X

pn(x, ε)H(Yn+1|X∗ = x, ε∗ = ε,An = A,Fn)dxdε

=

∫
ε

{
1∑

i1:iM=0

∫
x∈

⋂
m(A(m))im

pn(x, ε)H(gi1:iM (·|ε))dx

}
dε

=
1∑

i1:iM=0

∫ 1/2

ε=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im , ε

)
dε

The proof is complete.
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2) Bounds on Maximum entropy loss

First, we prove the upper bound. Note that the second term in (4.19) is independent

of the queries, so the supremum can be restricted to only the first term without loss

of generality. This is justified by using the additivity of the entropy of a product

density:

H(gi1:iM (·|ε)) = H

(
M∏
m=1

f
(m)
im

(·|εm)

)

=
M∑
m=1

H(f
(m)
im

(·|εm)) =
M∑
m=1

hb(εm)

From part 1), the maximum entropy loss can be bounded from above as:

G∗n = sup
A(1),...,A(M)

H

(
1∑

i1:iM=0

∫ 1/2

ε=0

gi1:iM (·|ε)Pn

(⋂
m

(A(m))im , ε

)
dε

)

−
1∑

i1:iM=0

∫ 1/2

ε=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im , ε

)
dε
}

≤ log2(card(Y))−
∫ 1/2

ε=0

{∑
m

hB(εm)

}{
1∑

i1:iM=0

Pn

(⋂
m

(A(m))im , ε

)}
dε(4.29)

= M −
∑
m

{∫ 1/2

εm=0

hb(εm)pn(εm)dε

}

=
∑
m

(1− E[hb(εm)|Fn])

= E

[∑
m

C(εm)
∣∣∣Fn]

where we used the fact that the capacity of a BSC is C(εm) = 1− hb(εm). In (4.29),

we also used the fact that the uniform distribution maximizes the entropy (see Ch.2

in [35]).
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Second, we prove the lower bound. By the concavity of H(·), we obtain:

G∗n = sup
A(1),...,A(M)

{
H

(
1∑

i1:iM=0

∫ 1/2

ε=0

gi1:iM (·|ε)Pn

(⋂
m

(A(m))im , ε

)
dε

)

−
1∑

i1:iM=0

∫ 1/2

ε=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im , ε

)
dε
}

≥ sup
A(1),...,A(M)

{∫ 1/2

ε=0

H

(
1∑

i1:iM=0

gi1:iM (·|ε)Pn

(⋂
m

(A(m))im
∣∣∣ε)) pn(ε)dε

−
∫ 1/2

ε=0

1∑
i1:iM=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im
∣∣∣ε) pn(ε)dε

}
= sup

A(1),...,A(M)

E
[
H

(
1∑

i1:iM=0

gi1:iM (·|ε)Pn

(⋂
m

(A(m))im
∣∣∣ε))

−
1∑

i1:iM=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im
∣∣∣ε)∣∣∣Fn]

= sup
p:p≥0,1Tp=1

E
[
H

(
1∑

i1:iM=0

gi1:iM (·|ε)pi1,...,iM

)
(4.30)

−
1∑

i1:iM=0

H(gi1:iM (·|ε))Pn

(⋂
m

(A(m))im
∣∣∣ε)∣∣∣Fn]

= E
[

sup
p:p≥0,1Tp=1

H

(
1∑

i1:iM=0

gi1:iM (·|ε)pi1,...,iM

)

−
1∑

i1:iM=0

H(gi1:iM (·|ε))pi1,...,iM

∣∣∣Fn]
= E

[
M∑
m=1

C(εm)
∣∣∣Fn](4.31)

where we used the consistent reparameterization Pn
(⋂

m(A(m))im
∣∣∣ε) = pi1,...,iM in

(4.30) and Thm. IV.4 in (4.31).
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4.9.9 Proof of Theorem IV.12

Proof. After querying all M players in sequence, the entropy loss is:

G∗seq,n = sup
{Ant}

M−1
t=0

E[H(pn)−H(pn+1)|Gn]

= sup
{Ant}

M−1
t=0

E

[
M−1∑
t=0

H(pnt)−H(pnt+1)

∣∣∣∣∣Gn
]

(4.32)

= sup
{Ant}

M−1
t=0

M−1∑
t=0

E

[
E

[
H(pnt)−H(pnt+1)

∣∣∣∣∣Ant ,Gnt
] ∣∣∣∣∣Gn

]
(4.33)

= sup
{Ant}

M−1
t=0

E

[
M−1∑
t=0

I((X∗, ε∗);Ynt+1|Ant ,Gnt)

∣∣∣∣∣Gn
]

(4.34)

= E

[
M−1∑
t=0

sup
Ant

I((X∗, ε∗);Ynt+1 |Ant ,Gnt)

∣∣∣∣∣Gn
]

= E

[
M−1∑
t=0

C(εt+1)

∣∣∣∣∣Gn
]

= E

[
M∑
m=1

C(εm)

∣∣∣∣∣Gn
]

where we used a telescoping sum in (4.32) and the tower property of expectation with

Gnt ⊇ Gn in (4.33). In (4.34), we used the optimality condition of maximum entropy

loss by applying Thm. IV.11 with M=1 for each sub-instant nt with m = t+ 1:

sup
Ant

{
H(pnt)− E[H(pnt+1)|Ant ,Gnt ]

}
= sup

Ant

I((X∗, ε∗);Ynt+1 |Ant ,Gnt) = E[C(εt+1)|Gnt ]

The second part follows from Thm. IV.11 part 2).

4.9.10 Proof of Theorem IV.14

Proof. The solution of (4.1) yields the Bellman recursion:

Vn(pn) = inf
u,A

E [Vn+1(pn+1)|un = u,An = A,Fn]

Using a similar argument as in Thm. 2 in [73], the optimal solution at time n is

given by maximizing the entropy loss at time n:

Gn = max
u

sup
A
I((X∗, ε∗);Y

(u)
n+1|un = u,A(u)

n = A,Fn) = H(pn)−E
[
H(pn+1)|un = u,A(u)

n = A,Fn
]
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and the value function is given by Vn(pn) = H(pn) −
∑N−1

k=n Gk for n < N and

VN(pN) = H(pN). We can expand the mutual information:

(4.35)

I((X∗, ε∗);Y
(u)
n+1|un, A(u)

n ,Fn) = H(Y
(u)
n+1|un, A(u)

n ,Fn)−E
[
H(Y

(u)
n+1)|X∗, ε∗, un, A(u)

n ,Fn
]

The conditional probability of Y
(u)
n+1 given the selection un = u and the query A

(u)
n =

A:

P(Y
(u)
n+1|un = u,A(u)

n = A,Fn) = E[P(Y
(u)
n+1|un = u,A(u)

n = A,X∗, ε∗,Fn)]

=

∫
ε

∫
x∈X

(
f1(Y

(u)
n+1|εu)I(x ∈ A) + f0(Y

(u)
n+1|εu)I(x /∈ A)

)
pn(x, ε)dxdε

=

∫ 1/2

εu=0

∫
x∈X

(
f1(Y

(u)
n+1|εu)I(x ∈ A) + f0(Y

(u)
n+1|εu)I(x /∈ A)

)
p(u)
n (x, εu)dxdεu

=

∫ 1/2

εu=0

f1(Y
(u)
n+1|εu)P(u)

n (A, εu) + f0(Y
(u)
n+1|εu)P(u)

n (Ac, εu)dεu

where p
(u)
n (x, εu) =

∫
{εm∈[0,1/2):m6=u} pn(x, ε)d{εm : m 6= u} denotes the uth sub-

marginal. This gives the first term in (4.22). To obtain the second term, notice:

E[H(Y
(u)
n+1)|X∗, ε∗, un = u,A(u)

n = A,Fn]

=

∫
ε

∫
x∈X

pn(x, ε)H(Y
(u)
n+1|X∗ = x, ε∗ = ε, un = u,Aun = A,Fn)dxdε

=

∫
ε

{∫
x∈A

pn(x, ε)H(f1(Y
(u)
n+1|εu))dx+

∫
x/∈A

pn(x, ε)H(f0(Y
(u)
n+1|εu))dx

}
dε

=

∫ 1/2

εu=0

H(f1(·|εu))P(u)
n (A, εu) +H(f0(·|εu))P(u)

n (Ac, εu)dεu

The proof of the first part is complete. The second part follows from part (2) of

Theorem IV.11.

4.9.11 Proof of Corollary IV.15

Proof. From Thm. IV.14, we have the optimality condition shown in (4.22). Under

Assumption IV.2, we have H(f0(·|εu) = H(f1(·|εu)) = hB(εu). Using this in the
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second term in the supremum of (4.22):∫ 1/2

εu=0

H (f1(·|εu))P(u)
n (A, εu) +H (f0(·|εu))P(u)

n (Ac, εu)dεu

=

∫ 1/2

εu=0

hB(εu)
(
P(u)
n (A, εu) + P(u)

n (Ac, εu)
)
dεu

=

∫ 1/2

εu=0

hB(εu)p
(u)
n (εu)dεu = c(u)

n(4.36)

Thus, we conclude that the second term in (4.22) is independent of the query region

A, but still depends on the sensor u.

Rewriting the first term in the supremum of (4.22), we have for A = [0, x]:

H

(∫ 1/2

εu=0

f1(·|εu)P(u)
n (A, εu) + f0(·|εu)P(u)

n (Ac, εu)dεu

)

= H

(∫ 1/2

εu=0

f1(·|εu)
{∫ x

0

p(u)
n (t, εu)dt

}
+ f0(·|εu)

{∫ 1

x

p(u)
n (t, εu)dt

}
dεu

)

= H

(∫ x

0

{∫ 1/2

εu=0

f1(·|εu)p(u)
n (t, εu)dεu

}
dt+

∫ 1

x

{∫ 1/2

εu=0

f0(·|εu)p(u)
n (t, εu)dεu

}
dt

)

= hB(g
(u)
1,n(x))

(4.37)

where g
(u)
1,n(x) is defined in the statement of the theorem.



CHAPTER V

Decentralized Collaborative 20 Questions

We consider the problem of decentralized 20 questions with noise for multiple

players/agents under the minimum entropy criterion [73] in the setting of stochastic

search, with application to target localization. We propose decentralized extensions

of the active query-based search strategy that combines elements from the 20 ques-

tions approach of [118] and the social learning algorithm of [70]. Although agents do

not have knowledge of their neighbors’ statistics, using martingale theory, we prove

asymptotic convergence (to the true target location) of the semi-Bayesian estimation

strategy. This framework provides a flexible and tractable mathematical model for

active decentralized target estimation systems. We illustrate the effectiveness and

robustness of the proposed decentralized collaborative 20 questions model for several

different network topologies.

5.1 Introduction

Consider a set of agents in a graph that try to localize a target collectively. In this

chapter, we address the question: What is the value of collaboration when there is

no central authority? In the decentralized framework, there is no fusion center that

can perform centralized inference to come up with a sequential Bayesian estimate of

the target location, e.g., as studied in [118]. A simple model for such a decentralized

188
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estimation problem is that agents are connected according to some network topology

and that they can perform local updating and information sharing. In [118], a

framework was proposed in which each agent plays a cooperative 20 questions game:

each agent is repeatedly queried about a target state and communicates its binary

response to a centralized controller that determines the next set of queries. While

the centralized controller requires global knowledge of the agents’ error probabilities,

this chapter proposes an extension of [118] to the decentralized framework where

agents share their information with neighbors and only need to know their own error

probability.

There exist many methods for decentralized information sharing in multi-agent

systems that include consensus, gossip algorithms and distributed averaging. In

each of these approaches, messages are distributed around the network through local

processing and local communication. Consensus has broad applications including

distributed optimization [121, 122], load-balancing [37], and distributed detection

[106]. For example, the early seminal work of Tsitsiklis [121] studied averaging in

the context of distributed estimation and detection.

Gossip algorithms have gained interest lately primarily due to their robustness

and flexibility, and are directly related to consensus. The randomized gossip formu-

lation proposed by Boyd et al. [17] adopted a randomized gossip model. It was shown

that the convergence rate is controlled by the second largest eigenvalue of a doubly

stochastic matrix defining the algorithm, making evident a natural relation between

mixing times of random walks on the graph defined by a matrix of transition proba-

bilities and averaging time of a gossip algorithm. However, the slow convergence of

randomized gossip on random graphs sparked further research, including geographic

gossip [46], where nodes pair up with geographically distant nodes and exhange infor-
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maiton via multihop routing methods, yielding faster convergence. Further refining

of these methods included randomized path averaging [8], where routing nodes con-

tributed their own estimates along the way, requiring only a number of transmissions

on ther order of the number of nodes in the network.

The survey paper by Dimakis et al. [45] reviews gossip algorithms for sensor

networks in the context of estimation, source localization and compression. A large

body of literature exists on gossip algorithms. In [3], randomized gossip broadcast al-

gorithms for consensus were proposed and conditions for reaching consensus towards

the average value of the initial node measurements were presented. The mean-square

error of the randomized averaging procedure was also studied and shown to decay

monotonically to a steady-state value. In [77], gossip for linear parameter estimation

was studied and it was shown that, under appropriate conditions on the network

structure and observation models, the distributed estimator achieves the same per-

formance as the best centralized linear estimator (in terms of asymptotic variance).

In [91], consensus aspects are studied specifically for the wireless medium and a

new consensus algorithm called hierarchical averaging is proposed to improve trade-

offs between resource consumption and quantization error. Our work differs from

these approaches since our observations obey noisy query-response models where the

queries are functions of agents’ local information and successive queries are deter-

mined by a feedback control policy.

Motivated by the approach of Jedynak et al. [73], which was restricted to the

single agent, centralized collaborative multi-agent estimation of a target state was

studied in [118] in the context of a noisy collaborative 20 questions game. In this

framework a controller sequentially selects a set of questions about the target state

and uses the noisy responses of the sensors to formulate the next set of questions. The
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query response model for each agent are different to account for heterogeneity, e.g., a

mixture of human and cyber agents. Under certain assumptions on the observation

processes, it was shown that the optimal, entropy-minimizing joint query policy is

equivalent to a sequential query policy.

In another body of work focused on social learning by Jadbabaie et al. [70],

a dynamic model of opinion formation is studied. It is shown that when agents

use a simple updating rule that linearly combines their personal belief with the

neighbors’ beliefs, as long as the agents’ private signal are incorporated in a Bayesian

manner, repeated interactions lead to successful learning of the true state of the

world, which is assumed to be discrete-valued. The non-Bayesian learning model

used in this work dates back to the models for opinion formation of DeGroot [43],

under which each individual agent initially receives one signal about the state of

the world and then shares its belief of the state with its neighbors. The key result

is specification of conditions that guarantee asymptotic agreement among agents in

connected components of the social network.

In this work, we study an alternative non-Bayesian estimation framework, as

contrasted to the Bayesian framework proposed in [118], that consists of an updating

stage and local belief sharing as proposed in [70]. Our work differs from the work of

Jadbabaie et al [70] in several important respects:

• We consider continuous-valued target space as contrasted with the discrete case

studied in [70].

• We consider controlled observations that violates the independent identically

distributed assumptions in [70].

Our work also differs from the works on 20 questions/active stochastic search of Je-
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dynak et al [73], Castro & Nowak [30], Waeber et al [126], and Tsiligkaridis et al [118]

because we consider intermediate local belief sharing between agents after each local

bisection and update. In addition, our work differs since each agent incorporates the

beliefs of its neighbors in a way that is agnostic of its neighbors’ error probabilities.

We finally remark that convergence of the proposed algorithm is non-trivial since

the entropy of the belief for each agent in the network is no longer guaranteed to be

monotonically decreasing as a function of iteration.

The main convergence result is built on lemmas and Fig. 5.1 serves as a guide for

the flow of the analysis presented in this paper.

Lemma 1 Lemma 2

Lemma 3Lemma 4

Lemma 5Theorem 1
(Asymptotic Agreement)

Theorem 2
(Consistency)

Figure 5.1: The flow of the convergence analysis.

5.1.1 Outline

The outline of this paper is as follows. Section 5.2 introduces the notation. Section

5.3 briefly reviews some related prior work. Section 5.4 introduces the decentralized

estimation algorithm and its convergence properties are studied in Section 5.5. Sev-

eral simulations are presented in Section 5.6 followed by our conclusions in Section

5.7.
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5.2 Notation

We define X∗ the true target location and its domain as the unit hypercube

X = [0, 1]d. Let B(X ) be the set of all Borel-measurable subsets B ⊆ X . Let

N = {1, . . . ,M} denote the agent set of the network. The agents of the network are

indexed by a vertex set V and the directed edges joining agents are captured by E.

The directed graph G = (N , E) captures the possible interactions between agents.

Define the neighborhood of agent i as Ni = {j ∈ N : (j, i) ∈ E}.

Define the belief of the ith agent at time t on X as the density pi,t(x). Define

the M × 1 vector pt(x) = [p1,t(x), . . . , pM,t(x)]T for each x ∈ X . For any B ∈ B(X ),

define Pt(B) as the vector with ith element equal to
∫
B
pi,t(x)dx. The interaction

matrix A = {ai,j} (as in [70]) is defined to be any matrix A consisting of nonnegative

entries where each row sums to 1. We define the query point/target estimate of the

ith agent as X̂i,t. In the one-dimensional case d = 1, the query point is the right

boundary of the region Ai,t = [0, X̂i,t]. Let Fi,t(a) = Pi,t([0, a]) =
∫ a

0
pi,t(x)dx denote

the CDF operator associated with the density pi,t(·).

We assume that each agent i constructs a query at time t of the form “does X∗

lie in the region Ai,t ⊂ X ?”. We denote this query with the binary variable Zi,t =

I(X∗ ∈ Ai,t) to which each agent i responds with a binary response Yi,t+1, which is

correct with probability 1− εi, and by assumption εi < 1/2. This model for the error

channel is equivalent a binary symmetric channel (BSC) with crossover probability εi.

The query region Ai,t at time t depends on the accumulated information up to time

t at agent i. Define a probability space (Ω,F ,P), where Ω is the space containing

sequences of realizations of the observations {yi,t : 1 ≤ i ≤ M}t≥0, and P(·) is the

probability measure associated with the sample paths in Ω. The expectation operator
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E[·] is taken with respect to the probability measure P(·). Define the nested sequence

of σ-algebras Ft, Ft−1 ⊂ Ft, for all t ≥ 0, generates by the sequence of queries and

responses. The queries {Ai,t : 1 ≤ i ≤ M}t≥0 are measurable with respect to this

filtration.

5.3 Prior Work

5.3.1 20 Questions & Stochastic search

The paper by Jedynak et al. [73] formulates the single player 20 questions problem

as follows. A controller queries a noisy oracle about whether or not a target X∗ lies

in a set An ⊂ Rd. Starting with a prior distribution on the target’s location p0(·), the

objective in [73] is to minimize the expected entropy of the posterior distribution:

(5.1) inf
π
Eπ [H(pN)]

where π = (π0, π1, . . . ) denotes the controller’s query policy and the entropy is the

standard differential entropy [35]:

H(p) = −
∫
X
p(x) log p(x)dx.

The posterior median of pN is used to estimate the target location after N questions.

Jedynak [73] shows the bisection policy is optimal under the minimum entropy cri-

terion. To be concrete, in Thm. 2 of [73], optimal policies are characterized by:

(5.2) Pn(An) :=

∫
An

pn(x)dx = u∗ ∈ arg max
u∈[0,1]

φ(u)

where

φ(u) = H(f1u+ (1− u)f0)− uH(f1)− (1− u)H(f0)
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is nonnegative. The densities f0 and f1 correspond to the noisy channel 1:

P(Yn+1 = y|Zn = z) =

 f1(y), z = 1

f0(y), z = 0

where Zn = I(X∗ ∈ An) ∈ {0, 1} is the channel input. The noisy channel models

the conditional probability of the response to each question being correct. For the

special case of a binary symmetric channel (BSC), u∗ = 1/2 and the probabilistic

bisection policy [73, 30] becomes an optimal policy.

In [118], optimality conditions are derived for optimal query strategies in the col-

laborative multiplayer case where observations are communicated to a fusion center

(or centralized controller) and were shown to generalize the probabilistic bisection

policy. Two policies were studied; a sequential bisection policy for which each player

responds to a single question about the location of the target, and a joint policy

where all players are asked questions simultaneously. It was proven that the max-

imum entropy reduction for the sequential bisection scheme is the same as that of

the jointly optimal scheme, and is given by the sum of the capacities of all the

players’ channels. Thus, the centralized controller is equivalent to a cascade of low-

complexity controllers. Despite the fact that the optimal sequential policy has access

to a more refined filtration, it achieves the same average performance as the opti-

mal joint policy. This equivalence was also extended to the setting where the error

channels associated with the players are unknown.

5.3.2 Non-Bayesian Social Learning

In the work by Jadbabaie et al [70], it is assumed that Θ denotes a finite set of

possible states of the world and the objective is to study conditions for asymptotic

agreement on the true state of the world. A set N = {1, . . . ,M} of agents interacting

1The function I(A) is the indicator function throughout the paper-i.e., I(A) = 1 if A is true and zero otherwise.
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over a social network (directed graph) G = (N , E) is considered, where E encodes

the edges between agents. An edge connecting agent i and agent j is denotes as the

ordered pair (i, j) ∈ E, denoting that agent j has access to the belief of agent i. The

interactions are captured by an interaction matrix A, where ai,j denotes the strength

associated the communication of agent j’s belief to agent i.

The beliefs of agent i at time t ≥ 0, defined on Θ, is denoted by pi,t(θ). Con-

ditioned on the state of the world θ, at each time t ≥ 1, an observation set yt =

(y1,t, . . . , yM,t) is generated by the likelihood function l(·|θ). The signal yi,t ∈ Y is

a private signal observed by agent j at time t and Y is a finite set. Independence

across time is also assumed.

The notion of observational equivalence is key to the results derived in [70], which

are related to identifiability. Two states are observationally equivalent from the point

of view of an agent if the conditional distributions of its signals under the two states

coincide. More specifically, elements of the set Θθ
i = {θ̃ ∈ Θ : li(y|θ̃) = li(y|θ)∀y ∈ Y}

are observationally equivalent to state θ from the point of view of agent i.

The belief update of each agent i is given by:

(5.3) pi,t+1(θ) = ai,ipi,t(θ)
li(yi,t+1|θ)
Zi,t(yi,t+1)

+
∑
j∈Ni

ai,jpj,t(θ)

where Ni = {j ∈ N : (j, i) ∈ E} is the neighborhood set of agent i. The denominator

Zi,t(yi,t+1) is the normalizing factor of the Bayesian update given by Zi,t(yi,t+1) =∑
θ∈Θ pi,t(θ)li(yi,t+1|θ). The parameters ai,i are called the self-reliances. As noted

in [70], we note that although the private signals are incorporated in a Bayesian

manner, the belief update is non-Bayesian: agents treat the beliefs generated through

linear combinations with their neighbors as Bayesian priors when incorporating their

private signals.

In Proposition 3 of [70], it is shown that assuming:
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• strong network connectivity (i.e., there exists a directed path from every agent

to any other agent)

• ai,i > 0,∀i.

• ∃i such that pi,0(θ∗) > 0.

• @θ 6= θ∗ that is observationally equivalent to θ∗ from the point of view of all

agents in the network.

it follows that all agents in the network learn the true state of the world (assuming

the true state of the world generates the observations) almost surely-i.e., pi,t(θ
∗)→ 1

with probability 1 for all i ∈ N as t→∞.

This result is important because in spite of the non-Bayesian nature of the belief

updates (significantly less computationally demanding than its Bayesian updating

counterpart) and constant weights ai,j, every agent in the social network will even-

tually learn the true state of the world. This holds even though the truth may not

be recognizable to any individual.

In the controlled sensing problem studied in this paper, the true target location

can be perfectly learned by any agent as the number of iterations grow (without any

averaging required). It is shown numerically that estimation performance can be

improved on average through decentralized averaging in addition to local repeated

querying. In other words, decentralized averaging improves the uniformity over all

sensors.

5.4 Decentralized Estimation Algorithm

Starting with a prior distribution pi,0(x) on X∗, the aim is to reach consensus

across the network through repeated querying and information sharing. Motivated
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by the optimality of the bisection rule for symmetric channels proved by Jedynak

et al [73], the first stage of the decentralized estimation algorithm is to bisect the

posterior of each agent i ∈ N at X̂i,t and refine its belief through Bayes’ rule. The

second stage consists of each agent averaging its neighbor’s beliefs and its own. This

is repeated until convergence. The matrix A contains the weights for collaboration

between agents and are allowed to be zero; if ai,j = 0, then agent i cannot observe

information from agent j at any time. The exact details are summarized in Algorithm

3.

Algorithm 3 Decentralized Estimation Algorithm

1: Input: G = (N , E), A = {ai,j : (i, j) ∈ N ×N}, {εi : i ∈ N}
2: Output: {X̂i,t, X̌i,t : i ∈ N}
3: Initialize pi,0(·) to be positive everywhere.
4: repeat
5: For each agent i ∈ N :
6: Bisect posterior density: Pi,t(Ai,t) = 1/2.
7: Obtain (noisy) binary response yi,t+1 ∈ {0, 1}.
8: Belief update:

(5.4) pi,t+1(x) = ai,ipi,t(x)
li(yi,t+1|x,Ai,t)
Zi,t(yi,t+1)

+
∑
j∈Ni

ai,jpj,t(x), x ∈ X

where the observation probability mass function (p.m.f.) is:

li(y|x,Ai,t) = f
(i)
1 (y)I(x ∈ Ai,t) + f

(i)
0 (y)I(x /∈ Ai,t), y ∈ Y

and f
(i)
1 (y) = (1− εi)I(y=1)ε

I(y=0)
i , f

(i)
0 (y) = 1− f (i)

1 (y).
9: Calculate target estimate: X̌i,t =

∫
X xpi,t(x)dx.

10: until convergence

We note that the normalizing factor Zi,t(y) is given by
∫
X pi,t(x)li(y|x, X̂i,t)dx

and can be shown to be equal to 1/2 (see proof of Lemma V.6). In one dimension,

d = 1, the query points are the medians X̂i,t = F−1
i,t (1/2) and the observation p.m.f.

becomes:

li(y|x, X̂i,t) = f
(i)
1 (y)I(x ≤ X̂i,t) + f

(i)
0 (y)I(x > X̂i,t).

We note two important differences between our density update (5.4) and the
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update (5.3). The density li(y|x, X̂i,t) depends on the query point X̂i,t, which is

time-varying and as a result, the density li(y|x, X̂i,t) is time-varying, unlike the time-

invariant case in (5.3). Thus, the identifiability assumptions made in [70] do not

make sense for our problem. In addition the update (5.4) holds pointwise for every

x ∈ X and may not be bounded, unlike the discrete case in (5.3).

5.5 Convergence Analysis

5.5.1 Assumptions

To simplify the analysis of the algorithm, we make the following mild assumptions.

Assumption V.1. (Conditional Independence) We assume that the players’ re-

sponses are conditionally independent. In particular,

(5.5) P(Yt+1 = y|Ft) =
M∏
i=1

P(Yi,t+1 = yi|Ft)

and each players response is governed by the observation density:

(5.6) li(yi|x,Ai,t) := P(Yi,t+1 = yi|Ai,t, X∗ = x) =

 f
(i)
1 (yi), x ∈ Ai,t

f
(i)
0 (yi), x /∈ Ai,t

Assumption V.2. (Memoryless Binary Symmetric Channels) We model the play-

ers’ responses as independent (memoryless) binary symmetric channels (BSC) [35]

with crossover probabilities εi ∈ (0, 1/2). The probability mass function f
(i)
z (Yi,t+1) =

P(Yi,t+1|Zi,t = z) is:

f (i)
z (yi) =

{
1− εi, yi = z

εi, yi 6= z

for i = 1, . . . ,M, z = 0, 1. The assumption εi < 1/2 implies that the response of each

agent i is probably correct.

Assumption V.3. (Strong Connectivity & Positive Self-reliances) As in [70], we

also assume that the network is strongly connected and all self-reliances ai,i are strictly
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positive. The strong connectivity assumption implies that the interaction matrix A

is irreducible. An example of a strongly connected network is shown in Fig. 5.5.1.

1

2 3

4
5

A =



a1,1 0 0 a1,4 0

a2,1 a2,2 0 a2,4 0

0 a3,2 a3,3 a3,4 0

0 0 0 a4,4 a4,5

0 0 a5,3 0 a5,5


5.5.2 Analysis

The density evolution (5.4) can be concisely written in matrix form as:

(5.7) pt+1(x) = (A+Dt(x))pt(x), x ∈ X

where A is the time-invariant interaction matrix and Dt(x) is a diagonal time-varying

matrix dependent on the responses yt+1 = (y1,t+1, . . . , yM,t+1), the query regions

Ai,t ⊂ X 2 and the state x ∈ X . The ith diagonal entry of Dt(x) is given by:

[Dt(x)]i,i = ai,i

(
li(yi,t+1|x,Ai,t)
Zi,t(yi,t+1)

− 1

)
We remark that the results of Jadbabaie et al [70] are not applicable here since the

distributions li(·|x,Ai,t) are time-varying because the query regions Ai,t are time-

varying.

To begin the analysis, we prove certain technical lemmas.

The next proposition provides bounds on the dynamic range of Ax, where x is

any arbitrary vector.

Recall the coefficient of ergodicity of the interaction matrix A [107, 68]:

(5.8) τ1(A) =
1

2
max
i 6=j
‖AT (ei − ej)‖1 =

1

2
max
i 6=j

M∑
l=1

|ai,l − aj,l|

2In one-dimension d = 1, the query regions take the form Ai,t = [0, X̂i,t].
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The “more ergodic” the matrix A is, the closer τ1(A) is to zero. One extreme is

the identity matrix A = IM , for which τ1(A) = 1. This makes intuitive sense

since the identity matrix allow no information sharing. A matrix with fixed self-

reliances α ∈ (0, 1) and uniform off-diagonal weights-i.e., 1−α
M−1

, it is easy to check

that τ1(A) = |α− 1−α
M−1
|.

Proposition V.4. (Contraction Property of A) Assume A = {ai,j} is a M × M

stochastic matrix. Let x be an arbitrary non-negative vector. Then, we have for all

pairs (i, j):

[Ax]i − [Ax]j ≤ τ1(A)
(

max
i
xi −min

i
xi

)
For a proof, see Theorem 3.1 in [107].

While the positivity assumption of Proposition V.4 might be restrictive for our

problem, irreducibility of the matrix A implies that there exists r such that Ar is a

stochastic matrix with positive entries [107]. This fact will be used in the analysis

to follow.

Next, we recall a tight smooth approximation to the non-smooth maximum and

minima operators. Similar results have appeared in Prop. 1 in [32] and p. 72 in [18].

Proposition V.5. (Tight Smooth Approximation to Maximum/Minimum Operator)

Let a ∈ RM be an arbitrary vector. Then, we have for all k > 0:

(5.9) max
i
ai ≤

1

k
log

(
M∑
i=1

exp(kai)

)
≤ max

i
ai +

logM

k

and

(5.10) min
i
ai ≥ −

1

k
log

(
M∑
i=1

exp(−kai)

)
≥ min

i
ai −

logM

k

Lemma V.6. Consider Algorithm 3. Let B ∈ B(X ). Then, we have:

E

[∫
B

Dt(x)pt(x)dx

∣∣∣∣∣Ft
]

= 0.
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Proof. See Appendix A.

Lemma V.7. Consider Algorithm 3. Let B ∈ B(X ). Then, we have E[vTPt+1(B)|Ft] =

vTPt(B) for some positive vector v � 0, and limt→∞ v
TPt(B) exists almost surely.

Proof. See Appendix B.

The results to follow assume that the target lies in a bounded set X = [0, 1] for

simplicity. While Lemmas V.6, V.7 and V.9 hold for any dimension d ≥ 1, we remark

that while the one-dimensional restriction of the target space X = [0, 1] might seem

restrictive at first, the extensions of the proof techniques to higher dimensional spaces

is a non-trivial problem. Similar problems are stated by Waeber et al. [126] in the

context of extending the convergence theory of the probabilistic bisection algorithm

(PBA) to higher dimensions that remain open to the best of our knowledge.

Lemma V.8. Consider Algorithm 3. Let B = [0, b] ∈ B(X ). Then, there exists

vi > 0 such that:

(5.11)
M∏
i=1

cosh (viai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)}) a.s.−→ 1

as t→∞.

Proof. See Appendix C.

Define the dynamic range (with respect to all agents in the network) of the pos-

terior distribution integrated over the set B as:

(5.12) Vt(B) = max
i

Pi,t(B)−min
i

Pi,t(B)

Also, define the innovation term:

di,t+1(B) =

[∫
B

Dt(x)pt(x)dx

]
i

=

∫
B

[Dt(x)]i,ipi,t(x)dx
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We next prove a lemma that shows that the dynamic range Vt(B) follows an expo-

nential decay law up to a perturbation given by the dynamic range of the innovation

terms.

Lemma V.9. Consider Algorithm 3. Let B = [0, b] ∈ B([0, 1]). Then, for all r ∈ N:

(5.13) Vt+r(B) ≤ τ1(Ar)Vt(B) +
r−1∑
k=0

(
max
i
di,t+r−k(B)−min

i
di,t+r−k(B)

)
In addition, there exists a finite r ∈ N such that τ1(Ar) < 1.

Proof. See Appendix D.

Theorem V.10. (Asymptotic Agreement/Consensus) Consider Algorithm 3. Let

B = [0, b] ∈ B([0, 1]). Then, consensus of the agents’ beliefs is asymptotically

achieved across the network:

Vt(B) = max
i

Pi,t(B)−min
i

Pi,t(B)
p.−→ 0

as t→∞.

Proof. See Appendix E.

To proceed, we need another lemma.

Lemma V.11. Consider Algorithm 3. Let v be the left eigenvector of A corre-

sponding to the unit eigenvalue. Assume that for all agents i, pi,0(X∗) > 0. Then,

the posteriors evaluated at the true target location X∗ have the following asymptotic

behavior:

lim
t→∞

1

t

M∑
i=1

vi log(pi,t(X
∗)) ≥

M∑
i=1

viai,iC(εi) = K(ε)

where C(ε) is the capacity of the BSC.

Proof. See Appendix F.
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Now, we are ready to prove the main consistency result of the asymptotic beliefs.

Theorem V.12. (Convergence of Beliefs to a Deterministic Limit & Consistency)

Consider Algorithm 3. Let B = [0, b] ∈ B([0, 1]). Then, we have for each i ∈ N :

Fi,t(b) = Pi,t(B)
p.−→ F∞(b) =

 0, b < X∗

1, b > X∗

as t→∞. In addition, for all i ∈ N :

X̌i,t :=

∫ 1

x=0

xpi,t(x)dx
p.−→ X∗

Proof. See Appendix G.

The next Corollary generalizes the result of Theorem V.12.

Corollary V.13. Consider Algorithm 3. Let B = ∪Kk=1Ik ∈ B([0, 1]) be a finite

union of disjoint intervals Ik = [ak, bk). Then, for each i ∈ N :

Pi,t(B)
p.−→

 0, X∗ /∈ B

1, X∗ ∈ B

as t→∞.

Borel sets in one-dimension can be represented as countable union of disjoint

intervals, so Cor. V.13 almost holds for all Borel sets.

5.6 Simulations

This section contains a few simulations that validate the methodology presented

throughout the paper and illustrate the benefits of belief sharing.

Three graph topologies were considered in this paper to test the robustness of the

methodology and are shown in Fig. 5.2. We consider M = 20 agents implementing

Algorithm 3 for 1000 iterations. The mean-squared error (MSE) was chosen as a
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performance metric. For convergence X̂i,t → X∗, we expect the MSE to converge to

zero.

a) Fully connected graph b) Cyclic graph
c) Star graph

Figure 5.2: Graph topologies considered in this paper.

The instantaneous MSE for agent i was calculated using MSEi,t = (X̂i,t −X∗)2.

The min, max and avg RMSE metrics were calculated as:

RMSEmin =

√√√√ 1

T

T∑
t=1

min
i
MSEi,t

RMSEmax =

√√√√ 1

T

T∑
t=1

max
i
MSEi,t

RMSEavg =

√√√√ 1

T

T∑
t=1

1

M

M∑
i=1

MSEi,t

The min and max metrics represent the worst and best performance over all the

agents. In the plots, the legends I:min, I:max and I:avg denote the min, max and

avg performance for the special case of A = I (i.e., no information sharing), while

the legends A:min, A:max and A:avg denote the min, max and avg performance for

the case of A 6= I (i.e., decentralized averaging).

5.6.1 Uniformly bad sensors

In this setup, all agents in the network have the same error probability ε = εi =

0.4. The self-reliance parameters of each agent were set to 0.95 and the rest of the
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parameters were made equal such that each row of A sums to unity. Across all graph
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Figure 5.3: RMSE performance of the estimator for the fully connected network (top), cyclic net-
work (middle) and star network (bottom). The average and worst-case MSE across the
network is lower for the case of averaging vs. the case of no information sharing. The
target location was set to X∗ = 0.8. The curves plotted are results of averaging error
performance over 500 Monte Carlo runs.

topologies, the major trends are the same. Fig. 5.3 shows that the average and best

case performance of the network in terms of RMSE is improved by averaging beliefs

in the network. Of course, this occurs at a slight reduction in performance for the

best case performance. In terms of average RMSE performance, the decentralized

averaging seems to be linear in a logarithmic scale, which implies exponential decay

in the MSE as a function of iterations. In addition, the decentralized averaging

algorithm seems to have a different slope than the corresponding algorithm with no
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averaging, which implies a better rate exponent. The posterior entropy criterion

is interesting since we observe a phase transition-i.e., after enough iterations, the

decentralized estimation algorithm (with averaging) begins to outperform the case

of no information sharing. In terms of MSE, the decentralized estimation algorithm

with averaging uniformly outperforms the estimation algorithm with no information

sharing for all iterations.

We empirically observed that larger gains were obtained in the low SNR regime

(i.e. larger error probabilities). In the high SNR regime, averaging tends to appear

like noise and thus may hurt performance instead of helping. Interesting phenomena

occur when the network operates in a middle regime, where some sensors have high

SNR and some have low SNR.

5.6.2 A good sensor injected in a set of bad sensors

In this setup, one agent has an error probability ε = 0.05 (good agent) and the

rest of the agents in the network have an error probability ε = εi = 0.45 (bad agents).

The self-reliance parameters of all agents were set to 0.95. The rest of the parameters

were made equal such that each row of A sums to unity.

The centralized fully Bayesian estimation algorithm, which knows the error prob-

abilities of all agents and has access to all of the agents’ observations and queries,

is also implemented. Due to the intractability of the jointly optimal query design,

we make use of the basic equivalence principle derived in [118], and implement the

centralized method using a series of bisections (one per agent). The equivalence prin-

ciple shows that this sequential bisection algorithm achieves the same performance as

the jointly optimal algorithm on average. The RMSE performance is plotted in Fig.

5.4 for the three different topologies of Fig. 5.2. It is observed that the decentralized

performance mimics the centralized performance quite well, and the performance of
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Figure 5.4: RMSE performance of the estimator for the fully connected network (top), cyclic net-
work (middle) and star network (bottom). The MSE across the network is lower for the
case of averaging vs. the case of no information sharing. Decentralized averaging tends
to match the centralized performance, while the algorithm with no averaging lags quite
a bit behind. The target location was set to X∗ = 0.8. The curves plotted are results
of averaging error performance over 500 Monte Carlo runs.

the algorithm with no averaging lags quite a bit behind the decentralized averaging

and centralized algorithms. Thus, we conclude that the one good sensor tends to

have a significant influence on the beliefs of the the bad agents in the network, almost

matching the performance of the centralized estimator. In addition, we note that the

best MSE performance of the algorithm with no averaging (I:min) corresponds to

the performance of the good sensor in the network and is fairly close to the average

performance of the decentralized averaging algorithm (A:avg), thus improving the
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uniformity of the bad sensors. This significant result on robustness is due to the

fact that the decentralized algorithm is implemented in parallel and each agent is

completely agnostic of the error probabilities of all the other agents in the network.

Out of the three topologies, we empirically observe that the cyclic network has the

largest performance gap with respect to the centralized algorithm.

5.6.3 Random Error Probabilities

In this setup, the error probabilities of all agents are chosen i.i.d. uniformly from

the feasible set (0, 1/2). For the simulation shown here, the smallest error probability

was 0.0197 and the largest error probability was 0.4909, thus the network contains

at least one good agent and one bad agent. The self-reliance parameters of all agents

were set to 0.95. The rest of the parameters were made equal such that each row

of A sums to unity. The RMSE performance is plotted in Fig. 5.5 for the three

different topologies of Fig. 5.2. It is observed that the decentralized performance is

not too far behind the centralized performance, and the performance of the algorithm

with no averaging lags quite a bit behind the decentralized averaging and centralized

algorithms. Thus, although the off-diagonal weights for each row of the interaction

matrixA are uniformly spread and the self-reliances are identical (i.e. the diagonals of

A), the decentralized estimation algorithm is robust to the fluctuations of the error

probabilities. Out of the three topologies, we empirically observe that the cyclic

network has the largest performance gap with respect to the centralized algorithm.

5.7 Conclusion

We introduced the problem of decentralized 20 questions with noise and illustrated

several benefits over the case of no information sharing through analysis and simu-

lations. At each iteration of our proposed decentralized algorithm, agents query and
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Figure 5.5: RMSE performance of the estimator for the fully connected network (top), cyclic net-
work (middle) and star network (bottom). The MSE across the network is lower for the
case of averaging vs. the case of no information sharing. Decentralized averaging tends
to match the centralized performance, while the algorithm with no averaging lags quite
a bit behind. The target location was set to X∗ = 0.8. The curves plotted are results
of averaging error performance over 500 Monte Carlo runs.

respond based on their local beliefs and average information through their neighbors.

Asymptotic convergence properties of the agents’ beliefs were derived, showing that

they reach consensus to the true belief. Simulations were presented to validate the

convergence properties of the algorithm and test the robustness of the methodology.
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5.8 Appendix

5.8.1 Proof of Lemma V.6

Proof. Without loss of generality, fix i ∈ N . From direct substitution and integra-

tion, we have:∫
B

[Dt(x)]i,ipi,t(x)dx = ai,i

(∫
B
li(yi,t+1|x,Ai,t)pi,t(x)dx

Zi,t(yi,t+1)
−
∫
B

pi,t(x)dx

)
= ai,i

(
2

∫
B

li(yi,t+1|x,Ai,t)pi,t(x)dx− Pi,t(B)

)

where we used the fact that Zi,t(y) = 1/2 for all y ∈ Y . This follows from the

probabilistic bisection property:

Zi,t(y) =

∫
X
pi,t(x)

(
f

(i)
1 (y)I(x ∈ Ai,t) + f

(i)
0 (y)I(x /∈ Ai,t)

)
dx

= f
(i)
1 (y)Pi,t(Ai,t) + f

(i)
0 (y)Pi,t(Aci,t)

= f
(i)
1 (y)(1/2) + f

(i)
0 (y)(1/2)

= 1/2

where we used the fact f
(i)
1 (y) + f

(i)
0 (y) = 1. From the definition of li(y|x,Ai,t), it

follows that:∫
B

[Dt(x)]i,ipi,t(x)dx = ai,i

(
2
(
f

(i)
1 (yi,t+1)Pi,t(B ∩ Ai,t) + f

(i)
0 (yi,t+1)Pi,t(B ∩ Aci,t)

)
− Pi,t(B)

)
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Taking the conditional expectation of both sides, we obtain:

E

[∫
B

[Dt(x)]i,ipi,t(x)dx

∣∣∣∣∣Ft
]

= ai,i

(
2E
[
f

(i)
1 (Yi,t+1)Pi,t(B ∩ Ai,t) + f

(i)
0 (Yi,t+1)Pi,t(B ∩ Aci,t)|Ft

]
− Pi,t(B)

)
= ai,i

(
2

1∑
y=0

(
f

(i)
1 (y)Pi,t(B ∩ Ai,t) + f

(i)
0 (y)Pi,t(B ∩ Aci,t)

)
P(Yi,t+1 = y|Ft)− Pi,t(B)

)

= ai,i

(
1∑
y=0

(
f

(i)
1 (y)Pi,t(B ∩ Ai,t) + f

(i)
0 (y)Pi,t(B ∩ Aci,t)

)
− Pi,t(B)

)

= ai,i
((
Pi,t(B ∩ At,i) + Pi,t(B ∩ Aci,t)

)
− Pi,t(B)

)
= ai,i (Pi,t(B)− Pi,t(B)) = 0

where we used the fact that under the probabilistic bisection, P(Yi,t+1 = y|Ft) = 1/2

for all y. This follows from:

P(Yi,t+1 = y|Ft)

=
1∑
z=0

P(Yi,t+1 = y|Zi,t = z,Ft)P(Zi,t = z|Ft)

= P(Yi,t+1 = y|Zi,t = 0)P(Zi,t = 0|Ft) + P(Yi,t+1 = y|Zi,t = 1)P(Zi,t = 1|Ft)

= f0(y)P(X∗ /∈ Ai,t|Ft) + f1(y)P(X∗ ∈ Ai,t|Ft)

= f0(y)Pi,t(Aci,t) + f1(y)Pi,t(Ai,t)

= 1/2

Since i was arbitrarily chosen, the proof is complete.

5.8.2 Proof of Lemma V.7

Proof. From strong connectivity (i.e., Assumption 3), it follows that A is an irre-

ducible stochastic matrix. Thus, there exists a left eigenvector v ∈ RM with strictly

positive entries corresponding to a unit eigenvalue-i.e., vT = vTA [9].
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Integrating (5.7) and left-multiplying by vT :

vT
∫
B

pt+1(x)dx = vTA

∫
B

pt(x)dx+ vT
∫
B

Dt(x)pt(x)dx

⇔ vTPt+1(B) = vTPt(B) +
M∑
i=1

vi

∫
B

[Dt(x)]i,ipi,t(x)dx(5.14)

Taking the conditional expectation of both sides and using Lemma V.6, we obtain

E[vTPt+1(B)|Ft] = vTPt(B). Thus, the process {vTPt(B) : t ≥ 0} is a martingale

with respect to the filtration Ft. We note that it is bounded below by zero and above

by ‖v‖1 almost surely. From the martingale convergence theorem, it follows that it

converges almost surely.

5.8.3 Proof of Lemma V.8

Proof. Define the tilted measure variable ζt(B) = exp(vTPt(B)). From Lemma V.7

and Jensen’s inequality, it follows that

E[ζt+1(B)|Ft] ≥ ζt(B)

so the process {ζt(B) : t ≥ 0} is a submartingale with respect to the filtration

Ft. From the proof of Lemma V.7, it follows that ζt(B) is bounded a.s., so by

the martingale convergence theorem, it follows that limt→∞ ζt(B) exists and is finite

almost surely. As a result, we have from (5.14):

lim
t→∞

ζt+1(B)

ζt(B)
a.s.
= 1

a.s.
= lim

t→∞
exp

(
vT
∫
B

Dt(x)pt(x)dx

)
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Since the variables in the limit on the RHS are bounded a.s.-i.e.,∣∣∣∣vT ∫
B

Dt(x)pt(x)dx

∣∣∣∣
≤ ‖v‖1 max

i

∣∣∣∣∫
B

[Dt(x)]i,ipi,t(x)dx

∣∣∣∣
= ‖v‖1 max

i
(2(f

(i)
1 (Yi,t+1)Pi,t(B ∩ Ai,t) + f

(i)
0 (Yi,t+1)Pi,t(B ∩ Aci,t))− Pi,t(B))

≤ ‖v‖1 max
i

(2(1− εi)Pi,t(B)− Pi,t(B))

≤ ‖v‖1(1− 2 min
i
εi) ≤ ‖v‖1 <∞

the dominated convergence theorem for conditional expectations [48] implies:

(5.15) E

[
exp

(
vT
∫
B

Dt(x)pt(x)dx

) ∣∣∣∣∣Ft
]

a.s.−→ 1

as t→∞. Substituting the definition of Dt(x) into (5.15) and using Assumption 1,

it follows after some algebra that (5.15) is equivalent to:

(5.16)
M∏
i=1

E

[
exp

(
viai,i

∫
B

2li(Yi,t+1|x,Ai,t)pi,t(x)dx
) ∣∣∣∣∣Ft

]
exp(viai,iPi,t(B))

a.s.−→ 1

Next, we analyze the ratio of exponentials for two separate cases. First, consider

the case Pi,t([0, b]) =
∫ b

0
pi,t(x)dx ≤ 1/2. Using the definition of X̂i,t, it follows that

b ≤ X̂i,t. This implies that li(y|x,Ai,t) = f
(i)
1 (y) for all x ≤ b. Using this fact and

P(Yi,t+1 = y|Ft) = 1/2:

E

[
exp

(
viai,i

∫
B

2li(Yi,t+1|x,Ai,t)pi,t(x)dx
) ∣∣∣∣∣Ft

]
exp(viai,iPi,t(B))

=
1

2

exp(viai,i2(1− εi)Pi,t(B)) + exp(viai,i2εiPi,t(B))

exp(viai,iPi,t(B))

=
1

2
(exp(viai,i(1− 2εi)Pi,t(B)) + exp(−viai,i(1− 2εi)Pi,t(B)))

= cosh(viai,i(1− 2εi)Pi,t(B))(5.17)
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where we used the fact that (ea + e−a)/2 = cosh(a). Second, consider the comple-

mentary case Pi,t([0, b]) > 1/2. In this case, we have b > X̂i,t and as a result:∫ b

0

2li(Yi,t+1|x,At,i)pi,t(x)dx =

∫ X̂i,t

0

2f
(i)
1 (Yi,t+1)pi,t(x)dx+

∫ b

X̂i,t

2f
(i)
0 (Yi,t+1)pi,t(x)dx

= 2f
(i)
1 (Yi,t+1)Pi,t(Ai,t) + 2f

(i)
0 (Yi,t+1)(Pi,t(B)− Pi,t(Ai,t))

= f
(i)
1 (Yi,t+1) + f

(i)
0 (Yi,t+1)(2Pi,t(B)− 1)

=

 (1− 2εi) + 2εiPi,t(B), Yi,t+1 = 1

2(1− εi)Pi,t(B) + (2εi − 1), Yi,t+1 = 0

Using this result and P(Yi,t+1 = y|Ft) = 1/2:

E

[
exp

(
viai,i

∫
B

2li(Yi,t+1|x,Ai,t)pi,t(x)dx
) ∣∣∣∣∣Ft

]
exp(viai,iPi,t(B))

=
1

2

exp(viai,i((1− 2εi) + 2εiPi,t(B))) + exp(viai,i(2(1− εi)Pi,t(B) + (2εi − 1)))

exp(viai,iPi,t(B))

=
1

2
(exp(viai,i(1− 2εi)(1− Pi,t(B))) + exp(−viai,i(1− 2εi)(1− Pi,t(B))))

= cosh(viai,i(1− 2εi)Pi,t(Bc))

(5.18)

Combining the two cases (5.17) and (5.18) by noting that

min {Pi,t(B), 1− Pi,t(B)} =

 Pi,t(B), Pi,t(B) ≤ 1/2

1− Pi,t(B), Pi,t(B) > 1/2

,

we have:

E

[
exp

(
viai,i

∫
B

2li(Yi,t+1|x,Ai,t)pi,t(x)dx
) ∣∣∣∣∣Ft

]
exp(viai,iPi,t(B))

= cosh (viai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)})

The proof is completed by substituting this expression into (5.16).
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5.8.4 Proof of Lemma V.9

Proof. Integrating both sides of the recursion (5.7):

(5.19) Pt+1(B) = APt(B) + dt+1(B)

Unrolling (5.19) over r steps:

(5.20) Pt+r(B) = ArPt(B) +
r−1∑
k=0

Akdt+r−k(B)

Since A is a stochastic matrix, Proposition V.4 implies:

Vt+r(B) = max
i

Pi,t+r(B)−min
i

Pi,t+r(B)

≤ τ1(Ar)Vt(B) + max
i,j

r−1∑
k=0

(
[Akdt+r−k(B)]i − [Akdt+r−k(B)]j

)
≤ τ1(Ar)Vt(B) +

r−1∑
k=0

(
max
i

[Akdt+r−k(B)]i −min
i

[Akdt+r−k(B)]i

)
≤ τ1(Ar)Vt(B) +

r−1∑
k=0

(
max
i
di,t+r−k(B)−min

i
di,t+r−k(B)

)
It is known that τ1(Ar) ∈ [0, 1] for any r ∈ N [68, 107]. The irreducibility of the

matrix A implies the existence of a positive r such that τ1(Ar) < 1 [107].

5.8.5 Proof of Theorem V.10

Proof. To show convergence of the integrated beliefs of all agents in the network to

a common limiting belief, it suffices to show Vt(B)
p.→ 0. While this method of proof

does not allow identification of the limiting belief, it shows a global equilibrium exists

and yields insight into the rate of convergence through the ergodicity properties of

A. The structure of the limiting belief is studied in Theorem V.12.

Without loss of generality, we consider the case r = 1 in Lemma V.9. The case

r > 1 follows similarly. From Lemma V.9, we obtain:

(5.21) E[Vt+1(B)|Ft] ≤ τ1(A)Vt(B) + E

[
max
i
di,t+1(B)−min

i
di,t+1(B)

∣∣∣∣∣Ft
]
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where τ1(A) < 1. To continue, we need to show that the remainder is asymptotically

negligible-i.e.,

E

[
max
i
di,t+1(B)−min

i
di,t+1(B)

∣∣∣∣∣Ft
]
→ 0.

Using Proposition V.5, we obtain for any k > 0:

E

[
max
i
di,t+1(B)−min

i
di,t+1(B)

∣∣∣∣∣Ft
]

≤ 1

k
E

[
log

(
M∑
i=1

exp(kdi,t+1(B))

)
+ log

(
M∑
i=1

exp(−kdi,t+1(B))

)∣∣∣∣∣Ft
]

≤ 1

k

[
log

(
M∑
i=1

E[exp(kdi,t+1(B))|Ft]

)
+ log

(
M∑
i=1

E[exp(−kdi,t+1(B))|Ft]

)](5.22)

where we used Jensen’s inequality and the linearity of expectation.

Using similar analysis as in the proof of Lemma V.8, the (conditional) moment

generating functions of the innovation terms can be written as hyperbolic cosines:

E[ekdi,t+1(B)|Ft] = cosh (kai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)})

E[e−kdi,t+1(B)|Ft] = cosh (−kai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)})

Using the even symmetry of the cosh(·) function, substituting these expressions into

(5.22) and using Proposition V.5 again, we obtain:

E

[
max
i
di,t+1(B)−min

i
di,t+1(B)

∣∣∣∣∣Ft
]

≤ 2

k
log

(
M∑
i=1

cosh (kai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)})

)

≤ 2

k
log

(
M∑
i=1

exp (kai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)})

)

≤ 2

(
max
i

{
ai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)}

}
+

logM

k

)
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Taking the limit k →∞ to tighten the bound and using (5.21):

(5.23)

E[Vt+1(B)|Ft] ≤ τ1(A)Vt(B) + 2 max
i

{
ai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)}

}

Lemma V.8 implies that cosh (viai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)})→ 1 for all

i ∈ N . Since 1 = cosh(0) ≤ cosh(x) for all x ∈ R, it follows that min{Pi,t(B), 1 −

Pi,t(B)} → 0 almost surely. Note that here we used the positivity of the vi and

the self-reliances ai,i (i.e., Assumption 3) along with the fact that εi < 1/2. Define

the non-negative sequence δt := 2 maxi {ai,i(1− 2εi) min {Pi,t(B), 1− Pi,t(B)}}. The

above implies δt
a.s.→ 0 as t→∞.

Taking the unconditional expectation of both sides in (5.23):

(5.24) E[Vt+1(B)] ≤ τ1(A)E[Vt(B)] + E[δt]

where E[δt]→ 0 by the dominated convergence theorem. Using induction on (5.24),

we obtain for all t ≥ 0:

(5.25) E[Vt(B)] ≤ τ1(A)tE[V0(B)] +
t−1∑
l=0

τ1(A)lE[δt−1−l]

Taking the limits of both sides of (5.25) and using the fact that τ1(A) < 1 and

E[V0(B)] <∞:

(5.26) lim
t→∞

E[Vt(B)] ≤ lim
t→∞

τ1(A)tE[V0(B)] + lim
t→∞

t−1∑
l=0

τ1(A)lE[δt−1−l] = 0

It follows that E[Vt(B)] → 0 since Vt(B) ≥ 0. Markov’s inequality further implies

Vt(B)
p.→ 0. The proof is complete.
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5.8.6 Proof of Lemma V.11

Proof. From (5.4), we evaluate at x = X∗ and obtain:

pi,t+1(X∗) = ai,ipi,t(X
∗)

(
li(Yi,t+1|X∗, Ai,t)
Zi,t(Yi,t+1)

)
+
∑
j 6=i

ai,jpj,t(X
∗)

= ai,ipi,t(X
∗) (2P(Yi,t+1|Zi,t)) +

∑
j 6=i

ai,jpj,t(X
∗)

where Zi,t = I(X∗ ∈ Ai,t) is the query input to the noisy channel and P(Yi,t+1|Zi,t)

models the binary symmetric channel for the ith agent. Taking the logarithm of both

sides and using Jensen’s inequality, we obtain for each agent i:

log pi,t+1(X∗) ≥
M∑
j=1

ai,j log pj,t(X
∗) + ai,i log (2P(Yi,t+1|Zi,t))

Writing this in vector form with the understanding that the logarithm of a vector is

taken component-wise:

(5.27) log pt+1(X∗) � A log pt(X
∗) + diag(A) logUt+1

where the vector Ut+1 is given component-wise by [Ut+1]i = 2P(Yi,t+1|Zi,t). Left-

multiplying (5.27) by vT and using the eigenrelation vT = vTA, we obtain:

(5.28) vT log(pt+1(X∗)) ≥ vT log(pt(X
∗)) + vTdiag(A) logUt+1

Using induction on (5.28), we obtain:

vT log(pt(X
∗)) ≥ vT log(p0(X∗)) +

t−1∑
k=0

vTdiag(A) log(Uk+1)
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This implies by the strong law of large numbers (LLN):

lim
t→∞

1

t
vT log(pt(X

∗)) ≥ lim
t→∞

1

t
vT log(p0(X∗)) + lim

t→∞

1

t

t−1∑
k=0

vTdiag(A) log(Uk+1)

= E

[
M∑
i=1

viai,i log(2P(Yi|Zi))

]

=
∑
i

viai,iE [log(2P(Yi|Zi))]

To finish the proof, note:

E [log2(2P(Yi|Zi))] =
∑
Zi

P(Zi)
∑
Yi

P(Yi|Zi) log2(2P(Yi|Zi))

=
∑
Zi

P(Zi) ((1− εi) log2(2(1− εi)) + εi log2(2εi))

= 1− hB(εi) = C(εi)

5.8.7 Proof of Theorem V.12

Proof. From Theorem V.10 we obtain for each agent i,

(5.29) Pi,t([0, b])
p.−→ P∞(B).

as t→∞, where P∞(B) is a common limiting random variable. To finish the proof,

we show that P∞(B) is the constant I(b > X∗). Lemma V.11 implies that for t large

(as t→∞): ∑
i

viai,i log(pi,t(X
∗)) & tK(ε)

which implies
∑

i viai,i log(pi,t(X
∗))

a.s.−→ +∞. This further implies that there ex-

ists an agent ĩ such that pĩ,t(X
∗) → ∞ almost surely. For that agent, it fol-

lows that Pĩ,t([0, b]) → I(b > X∗) almost surely. From (5.29), it follows that

Fi,t(b) = Pi,t([0, b])
p.→ F∞(b) = I(b > X∗) for all i ∈ N .
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To conclude the proof, we show the conditional mean estimators X̌i,t converge to

the correct target location X∗ in probability (i.e., consistency). From the definition

of the conditional expectation, we obtain:

X̌i,t =

∫ 1

u=0

Pi,t((u, 1])du

= 1−
∫ 1

u=0

Fi,t(u)du

where the random variables Fi,t(u) are uniformly bounded in [0, 1]. To finish the

proof it suffices to show ∫ 1

u=0

Fi,t(u)du
p.−→
∫ 1

u=0

F∞(u)du

since
∫ 1

u=0
F∞(u)du = 1 − X∗. This is accomplished by a variant of the dominated

convergence theorem, where the limits are taken in probability. We prove this here

for completeness. The first part of the theorem implies

(5.30) lim sup
t→∞

|Fi,t(u)− F∞(u)| p.= 0

for each u ∈ [0, 1]\X∗. Also, we have with probability 1:

(5.31) |Fi,t(u)− F∞(u)| ≤ 2

for all u ∈ [0, 1]\X∗ and all t. The reverse Fatou lemma along with (5.31) and (5.30)

imply:

lim sup
t→∞

∫ 1

0

|Fi,t(u)− F∞(u)| du ≤
∫ 1

0

lim sup
t→∞

|Fi,t(u)− F∞(u)| du p.
= 0

Thus, we conclude that:

lim
t→∞

∫ 1

0

|Fi,t(u)− F∞(u)| du p.
= 0

This concludes the proof.



CHAPTER VI

Conclusion and Future Work

Many modern systems involving inference and/or control have a high dimensional

character that makes optimization of such systems challenging. For example, in

spatio-temporal data sets with many sensors and/or time points, estimation of the

data covariance matrix over the joint space is intractable in sample-starved settings.

In multisensor controlled sensing systems with target localization as a task, although

in principle large gains can be obtained by asking multiple queries at each time in-

stant, the implementation of optimal query policies becomes highly nontrivial as the

number of sensors or dimensionality of target space gets large. In such systems, the

target estimate is refined by updating the posterior distribution of the target using

the sensors’ noisy responses to sequentially designed questions involving the region

where the target may lie. In practical settings, due to limited resources and time-

varying phenomena, the sensor classifier will make an error with a certain probability.

To improve covariance-based classifier performance, covariance estimation accuracy

becomes a fundamental issue.

In Chapter II, under the standard i.i.d. Gaussian sample assumption, we derive

high dimensional MSE convergence rates for covariance estimation under Kronecker

product (KP) covariance model. The novelty is that through a greedy method for

222
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optimizing the nonconvex maximum likelihood problem that arises, the high dimen-

sional convergence rates improve upon the SCM rate and even faster rates can be

obtained for sparse Kronecker product factors using `1 penalization methods. The

methodology heavily relies on factorization properties of the Kronecker product under

smooth functionals, which makes such a nonconvex optimization approach difficult

to generalize to more complex models consisting of sums of KP’s.

Chapter III extends the single term KP model to a series of KP terms, which also

paves the way to approximating general covariance matrices of low separation rank.

In constrast to Chapter II, the methodology here relies on a convex optimization

approach and high dimensional MSE convergence rates are obtained. The key to en-

forcing structure in the solution is a permutation operator (related to the Kronecker

factor dimensions) and a nuclear norm penalty. It is shown that for models with low

separation rank, the proposed estimator, PRLS, outperforms the standard SCM in

high dimensions.

Chapter IV studies the problem of joint controller design for target localization

with multiple sensors. This problem arises in centralized collaborative stochastic

search. In this setup, the controller (i.e., a fusion center) asks questions on the pres-

ence of the target in a given region to each sensor and each sensor/classifier provides a

noisy response on the presence of the target. Using tools from stochastic control, the

structure of jointly optimal policies is derived, which shows the design of such poli-

cies is highly nontrivial and can be expensive for many sensors or high dimensional

targets, even if the sensors are conditionally independent. Thus, a sequential bisec-

tion policy that is easy to implement is proposed and is shown to obtain the same

average performance gain as the jointly optimal scheme. From another point of view,

despite the fact that the sequential scheme has access to a more refined filtration,
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the joint scheme performs just as well on average. MSE rates are derived that show

fast convergence to the target and the theory is extended to the case of unknown

error probabilities associated with the sensors. Suprisingly, it is shown that even in

the one-dimensional case and one player, under the setup of unknown probabilities,

the optimal policy is not the probabilistic bisection policy (after marginalizing out

the noise).

Chapter V extends the collaborative stochastic search ideas to scenarios where a

central authority is not present. In this context, a set of low complexity controllers

asks questions on the presence of the target in a given region to the sensors, and the

sensors provides noisy responses to the queries. Unlike in the centralized setting, each

query is solely a function of the local belief. Using each response, the local belief of

each agent is updated via Bayes’ rule and then linearly combined with its neighbors’

beliefs from the previous time instant, giving rise to a semi-Bayesian sequential

estimation scheme. A question of primary importance is global convergence of the

sensors’ beliefs under this scheme. It is proven that as the number of iterations

grow to infinity, the sequence of beliefs across all sensors in the network converge to

a common Dirac measure centered at the true target location, i.e., a consensus of

beliefs is achieved and the limit is correct.

Future work on this thesis, related to Kronecker product covariance estimation,

may include estimation of a sum of Kronecker product model in the inverse covariance

domain, proving positive definiteness of the PRLS estimator for the case n < pq (as

this is observed to be true empirically), and studying sums of sparse Kronecker

product decompositions for the covariance to further reduce the dimensionality of

the covariance.

Future work related to the decentralized collaborative stochastic search may in-
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clude rate-of-convergence analysis. This would yield the value of information of

collaboration and new information. In addition, it may allow the practitioner to

design the network such that the convergence rate is fastest by optimizing over the

parameters of the interaction matrix. The characterization of the spread of the error

distribution would also yield insight into the rate of convergence. Another related

open problem is the almost sure convergence of the target estimates to the true tar-

get location. Further extensions may include convergence for vector-valued targets,

and convergence for unbounded noise models (e.g., human error models).
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