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Abstract Accurate and efficient visualization of this large and

complicated 3D fiber tract data set to gain clinical insight
We propose a manifold learning approach to fiber tract is extremely difficult. Motivated by this shortcoming, this
clustering using a novel similarity measure between fiber paper focuses on the problem of clustering the fiber tracts
tracts constructed from dual-rooted graphs. In particutar into natural anatomical bundles for ease of display and to
generate this similarity measure, the chamfer or Hausdorff facilitate information exchange and interpretation.
distance is initially employed as a local distance metric to
construct minimum spanning trees between pairwise fiber1 1. Previous Works
tracts. These minimum spanning trees are effective in cap-
turing the intrinsic geometry of the fiber tracts. Henceythe ~ OVer the past few years during the time when diffusion
are used to capture the neighborhood structures of the fibert€nsor imaging modality has gained immense popularity,
tract data set. We next assume the high-dimensional inputfiber tract clustering has likewise gained significant atten
fiber tracts to lie on low-dimensional non-linear manifalds tion with the development of various clustering techniques
We apply Locally Linear Embedding, a popular manifold N general, these algorithms all share the common theme
learning technique, to define a low-dimensional embeddingOf first defining a similarity metric between the fiber tracts,
of the fiber tracts that preserves the neighborhood struc- @nd then employing an algorithm for clustering based on
tures of the high-dimensional data structure as captured by the established similarity measure. For example, a clus-
the method of dual-rooted graphs. Clustering is then per- tering algorithm similar td: nearest-neighbors approach is
formed on this low-dimensional data structure using the Proposed in §] with the similarity metric between paired
k-means algorithm. We illustrate our resulting clustering fiber tracts defined in terms of the length ratio and the Eu-
technique on both synthetic data and on real fiber tract data clidean distance between the corresponding segments of the
obtained from diffusion tensor imaging. paired fiber tracts. A fuzzy-means clustering algorithm is
presented in 14] incorporating various distance measures
between fiber tracts including the dot product of the cor-
responding tangents of the tracts and the average distance
between points along the tracts. IhG], an agglomera-
Diffusion tensor imaging is an emerging MRI-based tive hierarchical clustering method is used in conjunction
technology designed to measure the diffusivity of the wa- with a distance metric based on shortest distances between
ter molecules in local tissue beds. Of particular intergst i points on the tracts as defined inf]. In [5], various pair-
the application of this technique to the brain parenchyma.wise distances between tracts (including closest point dis
Specifically, by taking advantage of the property that water tance, symmetric chamfer distance, and symmetric Haus-
molecules diffuse preferentially along the length of the ax dorff distance) and geometric characteristics of fibers (in
onal tracts and less so in the direction perpendicular to thecluding length, center of mass, and second order moment)
tracts, the white matter fiber structures can be charaetkriz are utilized for threshold-based clustering. 1n] B-spline
and their connectivity mapped. This information can then representations of fiber tracts are used for comparison be-
be organized for use in surgical planning and in studying tween those fiber tracts extracted from the subject to those
a variety of disorders including neurodegenerative disgas from an atlas, and then based on the labeled atlas of the fiber
addiction, epilepsy, and mental disorders. A good review of tracts, the subject’s fiber tracts are clustered.
diffusion magnetic resonance imaging can be found.it. [ Of particular interest to this paper is the work described

1. Introduction



in [3] which is the first to utilize manifold learning as an ing of the input fiber tract data.
image processing tool for visualizing fiber tracts. Insgire

by this work, three additional techniques have followed sui 1.3. Paper Organization

[2, 9, 17, and they deserve special mention as they share
strong ties with the algorithm proposed in this paper. These
techniques, very much like ours, employ spectral methods
of various flavors for clustering with each method utiliz-
ing an f’:\ffinity matrix constructeql from a different fiber trac bedding method for manifold clustering. Sectibpresents
similarity measure. In], an Eucl_ldean feature space (‘“?m_' preliminary results of our algorithm using both synthetic
posed O.f the means and covariances (.)f the points bu'ld',ngand actual diffusion tensor imaging data. We offer our con-
up thg fiber tracts) is u;ed asa S|m|Ia_1r|ty measure for palr'cluding remarks and future research directions in Seéion
wise fiber tracts. Radial basis functions are employed to

map this feature space to weights of an undirected graph . T
WhiF()Zh are then partFi)tioned into ?:oherent sets using thg n(?r-z' Fiber Tract Similarity Measure

malized cut criterion for clustering. 1], a co-occurrence In this section, we introduce two well studied distance
matrix containing the number of times two fibers share the measures for 3D space curves, the chamigrahd the
same voxel is used as the affinity matrix, and eigenvalue de-Hausdorff [j] distances. Both of these distance measures
composition is performed on this affinity matrix to obtain a provide some form of local similarity measure between
set of eigenvectors for clustering bykameans algorithm.  fiber tracts. As a more effective means of capturing the
In [17], a k-way normalized cut procedure is proposed for |gcal and global relationships between the fiber tracts, we
clustering with an affinity matrix composed of symmetrized describe how either one of these distance measures can be

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the similarity measure between pair-
wise fiber tracts that we use in our technique. SecHon
describes how we utilize a variant of the Locally Linear Em-

Hausdorff distances between pairwise tracts. incorporated into a framework of dual rooted graph diffu-
o sion to obtain a novel fiber tract similarity metric which is
1.2. Contributions of Our Work capable of capturing the intrinsic geometry of the data set.

In the literature, therg appears to be dlsproporuonatelyz.l' Chamfer and Hausdorff Distances
more effort and emphasis placed on the development of a

better clustering algorithm and less so onthe designofabet  LetXjy, = {x, ..., xar} be the set of\/ fiber tracts in a
ter similarity measure between the fiber tracts, even thoughhigh dimensional vector spa&¢. A reasonable and popu-
the latter is more important in determining the success of alar distance measure between fiber teact= {x;, }5:1 and

fiber tract clustering algorithm. The challenge in the clus- fiper tractx; = {Ijq}qul is the chamfer distance which is

tering arenais to find the most appropriate distance measurgjiven by the average of the distances between each point
that will farthest separate the fiber tracts belonging te dif ;. ¢ x; and its closest point iR
P P

ferent clusters while keeping fiber tracts of the same dluste

close by. Popular distance measures including the chamfer 1 .

and the Hausdorff distances have been proposed that ade- cham fer (Xi, X;) = n Z = s, = 5,1

quately capture the local relationship of the fiber tracts bu Tip €

tend to lack the ability to capture the global structure of where|| - || denotes the Euclidean norm. A different but
the input data set. In this paper, we propose a similarity g4 51ly popular distance measure between fiber #raand
measure based on dual rooted diffusichwhich provides — giner tractx; is the Hausdorff distanc&[which is given by

a more geometrically descriptive measure of the similarity e maximun of the distances between each paint € x;
. N T
between fiber tracts. Importantly, it captures both thelloca 4.4 its closest point in - i
’

and the global intrinsic geometry of the data set in a princi-
pled and effective manner. d (%5, %) = max { min ||z;, — ”}

Similar to the approaches taken by othersd, 17], our Hausdorf[IRZ0 )= 06 Lagpex, | el [
proposed distance measure is then incorporated into a man- ) )
ifold clustering algorithm, which in our case is Locally kin ~ BOth of these distance measures can easily be made
ear Embedding, for data partitioning. Manifold learning ap Symmetric by taking the average betweéfx;,x;) and
proaches seek to define a low-dimensional embedding of?(X;; Xi) SO as to obey the metric properties. To a certain
the input data points that preserves the neighborhood-strucdegree, both these measures are effective in capturing the
ture of the high dimensional point set. We believe that this /0cal neighborhood structures of the input fiber tract data s
methodology will be an effective mechanism to reveal the but inadequate in capturing distant relationships. Of note
underlying meaningfullow dimensional information hidden ~ 1otners have also proposed the use of the median distaneadnet
within high dimensional observations for successful @ust the average (chamfer) or the maximum (Hausdorff) distance.




an inherent problem with Hausdorff distance is that a point a variant of the Locally Linear Embedding (LLE) as de-

in x; that is farthest from any point ir; dominates and
may inappropriately skew this distance measure.

2.2. Dual Rooted-Graphs

Motivated by the notion of a diffusion distance built upon
random walks on graphg], a novel and more robust simi-
larity criterion between high dimensional data points (suc
as fiber tracts) is introduced if][ This measure is suited
for clustering on smooth manifolds, and is effective in cap-
turing the intrinsic geometry of the input data.

The specifics of this algorithm based on dual rooted
graphs is described here. For each fiber traet X, re-
cursively grow a minimum spanning tree (MST) rooted in
x in the following manner. Start at the root node of the
treex at timek = 0 with the setM STy(x, Xs) = x. Let
M STy (x,X ) denote the set of fiber tracts in the tree at
time k rooted atx. With each successive discrete time point
k, add a fiber tract closest to the root nadéhat is inX s
but not already inVM STj,_1)(x, Xas). Chamfer or Haus-

scribed in [L3]. The goal of LLE is to map high dimensional
inputsX, to low dimensional outpuf¥ ,,; using local lin-
ear reconstruction weighf®&v. To accomplish that, LLE
first attempts to represent the input data manifold locafly b
reconstructing each data poixt as weighted combination
of its neighbors through the weigh¥/. Specifically, we
seekW as below:

M
W:argmwi/nz IIx; — Z Wix;||* s.t. Vi ZWijzl .

i=1 JEN (i) J

However, instead of calculating the reconstruction

weights based on the above equation using fiber tract data
x;, We opt to use the method described ir][and calcu-
late them based on thmmirwise distancesf the fiber tracts.
In particular, given the distance matfix computed as de-
scribed in SectioR, the nearesk neighborsV (i) of fiber
tractx; is identified by parsing to find the K smallest
non-zero elements corresponding to each fiber tract. Know-
ing the neighborhood structure of each fiber tract, the local

dorff distance is used here to measure the distance betweepgyariance matrixC;; of fiber tractx; and its K’ neighbor-

two fiber tracts inR%.2 At the end of timek = M — 1, all
the fiber tracts inX,, will be included inM STy (x, Xr)

ing fiber tractsx; with j € Nk (i) can be derived by com-
puting the following:

arranged in an ascending order of distance to the root node

x. Time stamps of when each fiber tract is added to the

tree is also recorded. This process is repedtetimes to
produceM fully grown trees with each fiber tragte X,
serving as a root node in this setf MSTSs.

Next, define the hitting time (x,, x;) between the fiber
tractsx, andx, in X, as the timek when the two MSTs
rooted inx, andx; intersect, i.e.

T(Xa,Xp)=min{k: M STy (xq,Xp ) NM STy (x5, X pr)#0}.

From an implementational stand point, the hit time
7(Xa,Xp) is determined by parsing/ ST (x., X»/) and

M STy (xp, Xpr) sequentially until a common point is
found between the two MSTs. Oneeis found, the total
path length betweex, andx; is calculated by summing up
the pairwise distances between sequential fiber tract&with
each of the two MSTs up to the hittime A M x M sym-
metric square matrixZ- containing the distances between
every pairwise fiber tracts iX,, can be generated in this

fashion. We believe that this proposed methodology cap-
tures the local structure of the input data via the chamfer or

the Hausdorf distance while the global structure is capture

1
Cij = §(Dz + Dj — D;j — Do),
whereD;; is the square of the distance betweenitheand
the jth neighbors as provided by, D; = . D;., and
Dy = Zij D;; [19]. In terms ofC};, the optimal recon-
struction Weight§fV to best reconstruct each fiber tragt
from its neighbors are given by:

2 Cir
U)j = = -1
Zlm Clm
The optimal weightdV is anM x M sparse matrix cal-
culated to capture the neighborhood structure of the fiber
tracts. Based on these weights, the next step is to map
the high dimensional observation dXa, to a low dimen-

sional vectorsY j; by minimizing an embedding quadratic
cost functional:

0
I~

N Y1
- Z WinjHQ S.t. YY'

M
Y:argn%}n Z Ily:
i=1 JEN(3)

Importantly, only the geometric information encoded by the

through the complexity of the paths taken between any pairweightsW is used to construct the embedding and not the

of fiber tracts in the data set via the MSTs.

3. Manifold Clustering With LLE

Various methods can be employed to analyze matrices
of pairwise distances for spectral clustering, and we chose

2|n fact, any reasonable distance metric between curveseasddl.

input dataX,,. Since this embedding cost functional is
guadratic inY, it can be estimated by solving a sparse
M x M eigenvector problem. The eigenvectors associated
with the smallestd positive eigenvalues define the best
dimensional fit. Finally, as is common practices-aneans
method is applied to partition the resultidgeigenvectors
for clustering.
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Figure 1. Trivial synthetic fiber tract clustering examp{a) Input data consisting of 121 synthetic fiber tracts eagtdbed by 50 data
points. (b) Correct partitioning of fiber tracts into 11 blewiwith K = 4 andd = 10.

4. Preliminary Results The intent of the third synthetic example shown in Fig-
_ : ure 3 is to explicitly demonstrate the added capabilities of

Results based on both synthetic and real fiber tract data,,; hroposed distance measure over the more conventional
are presented in this section to illustrate the performafce .omfer and Hausdorff distance measures. The input data
our clustering a!gorithm. All algori_thms are implementadi shown in Figure3(a) contains two interlacing “U” shaped
Matlab. In sectiord.1, we show simulation results specif- 515 sets. Specifically, the data sets are facing each other
ically designed to illustrate some of the features and capa-jth each data set consisting of 3D parallel fiber tracts. By
bilities of our algorithm as described earlier in the paper. design, a tail of each data set is sandwiched between the
Section4.2 demonstrates the performance of our approach,yings of the other data set. As a result, the parallel fiber
by applying it to the clustering of a real fiber tract data set 5cts near these tail regions are in close proximity to the

obtained from diffusion tensor imaging. parallel fiber tracts from the other data set. When only the
] Hausdorff (Figure3(b)) or the chamfer (Figur&(c)) dis-
4.1. Synthetic Dataset tance is used as the similarity measure within a LLE man-

The purpose of the first synthetic example as shown in Hold clustering algorithm, erroneous clustering resuits
Figure L is to demonstrate some of the basic features of CUl- However, our proposed similarity measure succegsfull

our manifold clustering algorithm, specifically, its abjlto cluster_ed the input data as shown in FigG(d). This ex-
cluster a 3D data set (121 fiber tracts each consisting of 50amp|e |IIu_strates the effectiveness of our proposed distan
data points) into multiple bundles (11) accurately and in an measure in capturing not only the local but also the global
efficient manner (28 seconds on a 3.1GHz Intel Xeon pro- structure of the data set.

pe_ssor). The second synthetic example shown in F@urc_e 4.2 Fiber Traces from DT-MRI

is intended to demonstrate the robustness of our clustering

algorithm in a more hostile environment-one corrupted by  The corpus callosum is a white matter structure located
additive noise, with complicated fiber structures, andmgvi  just ventral to the cortex that connects the left and right
varying fiber tract lengths. The original synthetic datahwit cerebral hemispheres to allow communication between the
complicated fiber tract structures is displayed in Figi{es. two halves of the brain. Subdividing the corpus callosum
Segments of varying size fiber tracts are removed to arriveinto anatomically defined portions is not well defined but
at the data set shown in Figukéb). Gaussian noise with  of much importance, especially in study normal develop-
zero mean and standard deviation of 1 is added to generatenent and in understanding mental and neurodegenerative
the input noisy test data set shown in Figd(e). Based on  disorders. We apply our method in partitioning the fiber
this test data set, our algorithm generated the color ldbele tracts of the corpus callosum into anatomical bundles. Fig-
clusters as shown in Figuggd). ure 4 demonstrates the results of our fiber tract clustering
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Figure 2. Synthetic fiber tract clustering example in a hesthvironment. (a) Original data consisting of 126 syrith&ber tracts each
described by 50 data points. (b) Random removal of varying ségments to generate a data set with fiber tracts lengtfinydetween
4-50 data points. (c) Corruption of the data by additive Giumnsnoise f = 0 ando = 1) to generate the input data set. (d) Correct
partitioning of fiber tracts into 6 bundles witki = 8 andd = 5 in less than 23 seconds on a 3.1 GHz Intel Xenon processor.
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Figure 3. Synthetic example consisting of two interweavidjshaped data sets. (a) Input data consisting of 246 pfiler tracts. (b)
Clustering result based on the Hausdorff distance. (c)t&ling result based on the chamfer distance. (d) Clustedsglt based on the

proposed distance measur& & 4 andd = 1 for all these simulations.)
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Figure 4. Clustering of 1665 corpus callosum fiber tractsioled from diffusion tensor imaging witR® = 20 andd = 14. (a) Sagittal
view. (b) Coronal view.
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