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CHAPTER I

Introduction

1.1 Overview

In 1991, magnetic resonance force microscopy (MRFM) was conceived as a non-

destructive method through which three dimensional images could be obtained with

atomic (angstrom scale) resolution [59, 61]. The capability to directly look at in-

dividual atoms of a molecule is alluded to in Richard Feynman’s classic 1959 talk,

“There’s Plenty of Room at the Bottom”.

We have friends in other fields—in biology, for instance. We physicists

often look at them and say, “You know the reason you fellows are making

so little progress?” (Actually I don’t know any field where they are making

more rapid progress than they are in biology today.) “You should use more

mathematics, like we do.” They could answer us—but they’re polite, so

I’ll answer for them: “What you should do in order for us to make more

rapid progress is to make the electron microscope 100 times better.”

The lecture is a common reference mentioned to nanotechnology newcomers; not

only does it mention the ability to look at very small objects, but it also mentions

the miniaturization of machines and computers. It should be noted that the latter

goal, i.e., the miniaturization of computers, has been achieved: computers in the

1
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1950s were considerably larger.

If it were to be built, a MRFM microscope with angstrom scale resolution would

represent an improvement over the scanning tunnelling microscope (STM), which,

with a resolution of approximately 2 Å (1Å = 10−10 m), is the most powerful micro-

scope currently available. There is, however, a significant advantage that a MRFM

microscope would have over the latter. The STM is limited to imaging only the sur-

face atoms of the sample. In contrast, a MRFM microscope would have the ability

to look beneath the surface of the sample.

MRFM can be applied in various areas. The exploration of “chemical space” [11]

will be greatly facilitated with the ability to obtain three dimensional images of bio-

logical molecules. A way to visualize the complicated interactions of these molecules

in cells would aid the drug discovery process. Single spin MRFM can be applied

to the creation of a high density storage device. Storage in a nutshell is the ability

to write, retain, and read state information. In [5], the statistical fluctuation of an

ensemble of electron spins was guided so that the aggregate polarity was positive.

Although the creation of a MRFM storage device is still unrealizable, one can look

to the IBM “millipede” project for inspiration [71]. The millipede project is an at-

tempt to create a high density storage system based on principles of atomic force

microscopy (AFM). AFM is a technology that pre-dates MRFM and from which

MRFM borrows the idea of force sensing. Lastly, single nuclear spin MRFM can be

applied to quantum computing [3].

Signal processing plays an essential role in the roadmap towards the realization of

MRFM as an enabling technology for all of the applications previously mentioned.

The first part of this thesis makes contributions to the areas of estimation and detec-

tion. A heuristic 0th order Extended Kalman Filter (EKF) for soft nonlinear systems
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that has less computational complexity than the standard EKF was developed. It

showed better performance than EKF when applied to simulations of the classical

model of the cantilever-electron spin interaction. This 0th order EKF can be applied

to the estimation of other soft nonlinear systems.

The experiment in which the single electron spin was successfully detected was

conducted under a SNR of −6.7 dB [54]. The detection of the single electron spin

can be formulated as a binary detection test for a Markov signal in additive white

Gaussian noise (AWGN). The optimal test for the aforementioned binary detection

problem according to the Neyman-Pearson criterion was studied. Under low signal

to noise ratio (SNR), an insightful interpretation was derived: the optimal test is

approximately the matched filter statistic but with the one-step minimum mean-

squared error (MMSE) predictor substituted for the known signal values. Approxi-

mations to the optimal test under the conditions of low SNR and long observation

time were derived when the Markov signal was a random telegraph process and when

it belonged to a certain class of random walk processes. These theoretical results

confirm the optimality of the detection test used in [54]. The detection results have

wide applicability to other fields where the detection of weak signals occurs, such as

in landmine detection [20], in the study of particle tunnelling [7] and of fluctuations

of the sun’s magnetic field [74].

Medical imaging has revolutionized the field of medical diagnostics. The feat

would not have been possible without the use of sophisticated imaging algorithms

that were adapted to the imaging acquisition method and to the images of interest.

If MRFM is to achieve its potential of being a looking glass through which one

can study nanoscale structures, a similar development of imaging algorithms has to

occur. The latter part of this thesis is a step in that direction. The salient feature
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of an atomic-level image is its sparsity. Most of the image would be empty space,

and only a few spatial locations would be occupied by atoms. The premise taken

by this work is that an image reconstruction algorithm that modelled the sparsity

of the image can perform better. The other feature of an atomic-level image is its

size. As the image is sparse, many voxels would be needed in order to obtain a good

quality image. A useful image reconstruction method has to scale well.

This thesis proposes several sparse reconstruction methods that select the tuning

parameters in a data-driven fashion. To address sparsity, the use of sparse priors

and sparsifying penalty functions was employed. An example of the former is the

weighted average of a Laplacian density with an atom at zero (LAZE); an example

of the latter is the l1 norm. The principle of selecting the tuning parameters in an

empirical fashion is adhered to by employing marginal maximum likelihood (MML),

maximum a posteriori (MAP), or Stein’s unbiased risk estimate (SURE) [64]. Two

of the proposed sparse reconstruction methods are extensions of existing sparse es-

timators. The first, known as EBD-LAZE, is an extension of the empirical Bayes

denoising (EBD) method of [33]. Another is the L1 estimator with its regularization

parameter selected via SURE. The proposed methods are more scalable and have

lower computational complexity than sparse Bayesian learning (SBL), an existing

method for solving sparse inverse problems. In a simulation study, L1-SURE and

the MAP solution when used with the LAZE prior showed performance benefits over

SBL. The proposed sparse reconstruction methods can potentially be used in other

domains, like radioastronomy or sparse estimation of mixture models.
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1.2 A short history of magnetic resonance force microscopy

The first MRFM experiment demonstrating the MRFM principle was reported

in [55], and involved the detection of electronic spin resonance (ESR) in diphenylpicryl-

hydrazil (DPPH). Shortly thereafter, two DPPH particles were successfully imaged

in [85]. The next step involved transferring the expertise gained in the ESR ex-

periments to the detection of nuclear magnetic spins. As the “magnetic moment of

common nuclei are at least 650 times smaller than the moment of the electron” [56],

the detection of nuclear spins is, in general, more difficult. Nonetheless, detection of

nuclear magnetic resonance (NMR) via the MRFM principle was successfully per-

formed [56]. Paralleling the development of the ESR experiments, imaging of nuclear

spins was later carried out [84]. Obtained in a span of several years in the early 1990s,

these results were all positive and reinforced the feasibility of single spin detection.

However, the experiments up to this point had been performed with many millions

of electron or nuclear spins. The estimated minimum number of protons required

for detection in the experiment of [56] was 1013, a number that is many orders

of magnitude away from 1. In order to achieve single spin detection, the focus

returned to electron spins. An improvement in the detectability of several orders

of magnitude required countless improvements, among which was the fabrication of

better cantilevers [66], a better understanding of the inversion and nutation of the

electron spins [73], and spin relaxation effects [65].

In 2003, with the help of the “interrupted OSCAR” protocol, the detection thresh-

old for ESR was lowered to about six electron spins [43]. This represented a tremen-

dous improvement over previous experiments, and was arguably the turning point

in the quest for the single spin. Although further improvements had to be made
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in going from six spins to the single spin, the big hurdle was going from millions

of spins to six, and that was successfully cleared. The culmination of these efforts

was the successful experiment at IBM in which individual electron spins associated

with sub-surface atomic defects in silicon dioxide were detected [54]. This single spin

detection milestone represented a factor of 107 improvement over conventional ESR

detection techniques and was achieved using energy detection methods similar to

those described in this thesis in Chapter IV. Other recent MRFM experiments have

demonstrated the ability to detect and manipulate naturally occurring statistical

fluctuations in small electron spin ensembles [5].

After having reached the single spin milestone, the current interest is to resolve

multiple electron spins in a sample. Imaging can be performed with ESR detection:

“it is standard laboratory practice to spin label proteins and DNA by attaching

tempol and other compounds with unpaired electrons” [60]. However, the imaging of

individual electron spins has not occurred. One would also like the single electron spin

success to be replicated with nuclear spins. In this thesis, however, we consider only

electron spin experiments, and so any reference to the word “spin” would implicitly

mean an electron spin.

1.3 Outline of thesis

Chapter II reviews the basic principles of MRFM. The four single electron spin-

cantilever models are introduced, and the single spin detection problem is formulated

for each of the four models. The cantilever tip point spread function for a vertical

cantilever is given.

Chapter III concerns the detection of the single spin for the continuous-time

models. A heuristic argument led to the development of a 0th order Extended
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Kalman Filter for the estimation of soft nonlinear systems, called the piecewise lin-

ear Kalman Filter (PLKF). It has a lower per iteration runtime than EKF. The idea

that enabled its formulation was to treat the nonlinear system as a linear system in

each sampling time interval.

The same principle was applied in adapting the KF detector to the detection

of a soft nonlinear system vs. a linear system. The system governing the cantilever

motion is linear in the case of the no spin (H0) hypothesis. In contrast, under the spin

(H1) hypothesis, the system governing the cantilever motion is softly nonlinear. The

KF detector is an optimal test if the two systems are linear and if the observations

are zero mean. This last condition is approximately true under both the H0 and

H1 hypotheses. Another issue that had to be dealt with was the lack of knowledge

regarding the initial spin state. The Generalized Likelihood principle was applied,

and the net result was called the KF/GLR innovations detector. It consists of one

KF that is matched to the H0 hypothesis, and several PLKF filters matched to the

H1 hypothesis. Simulations indicate that the PLKF outperformed the EKF, and

that the KF/GLR innovations detector has good performance.

Chapter IV looks at the detection of the single spin for the discrete-time models.

Three important results are contained here. Firstly, when used to detect the DT ran-

dom telegraph in AWGN, the filtered energy (FE) detector is approximately optimal

under the following four conditions: symmetric transition probabilities, low SNR,

long observation time, and a small probability of transition between two consecutive

instances. The FE detector is no longer approximately optimal when the transition

probabilities are asymmetric. We extend the FE detector to a hybrid second-order

detector that combines the filtered energy, amplitude, and energy statistics. It is

shown that the hybrid detector is approximately optimal for the DT random tele-
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graph model under only the last three conditions.

The second result of this chapter is a new interpretation of the optimal likelihood

ratio test (LRT) for a DT finite state Markov signal under low SNR conditions. It is

shown that, under low SNR, the LRT reduces to the matched filter statistic with the

one-step MMSE predictor used in place of the known signal values. Single spin ex-

periments operate under conditions of very low SNR; consequently, we are interested

in the performance of detectors in the regime of low SNR and long observation time.

Thirdly, necessary conditions are derived for the LRT of a certain class of random

walks to be approximated by a bank of FE statistic generators, and by a single FE

statistic.

Chapter V contains results regarding the reconstruction of sparse images. The

problem involves simultaneous deconvolution and denoising. We propose several

sparse reconstruction methods that select the tuning parameters in a data-driven

fashion, i.e., without manual tuning. This empirical philosophy manifests itself in

two ways. The first is to select a sparsifying prior, viz., a weighted average of

a Laplacian density and an atom at zero, and estimate its unknown parameters

empirically, e.g., using marginal maximum likelihood. This gave rise to three different

sparse estimators: EBD-LAZE, MAP1, and MAP2. Note that MAP2 is unlike the

others: it has a parameter that requires manual tuning. The second way the empirical

philosophy is adhered to is by selecting a sparsifying penalty, e.g., the l1 norm, and

estimating the regularization parameter via Stein’s unbiased risk estimator (SURE).

This produced the L1-SURE and HHS-SURE estimators.

The scalability and computational complexity of the proposed sparse reconstruc-

tion methods was examined and compared with SBL. The computational complexity

of the estimators can grouped in decreasing order as: SBL; EBD-LAZE and HHS-
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SURE; L1-SURE, MAP1, and MAP2. The scalability of the methods in each group

is roughly comparable.

A simulation study was conducted to compare: the proposed reconstruction meth-

ods; SBL; the standard and projected Landweber iteration (where the projection is

on to the positive orthant). SBL had a lower l1 and l2 reconstruction error under

high SNR when tested with an image that had both positive and negative pixel

values. In the other scenarios, SBL had worse performance. It was observed that

SBL did not produce a sparse estimate. The Landweber iteration, which produces

the least-squares solution, was not competitive. Among the proposed reconstruc-

tion methods, L1-SURE had consistently good performance under the various error

criteria considered. HHS-SURE, which can be regarded as a generalization of L1-

SURE, achieved approximately similar l1 and l2 reconstruction errors but with a

sparser estimate. MAP1 and MAP2 had good performance under low SNR, but

their performance worsened under higher SNR. EBD-LAZE had performance that

was generally worse than L1-SURE’s, except for the detection error criterion. Fi-

nally, the projected Landweber method had good results for high SNR when the

image was non-negative.

Note that the meaning of variables and the notation used are unique to each

chapter. An appendix adheres to the conventions of the chapter to which it is

attached.

1.4 List of publications

The publications that resulted from the work contained in this thesis are as follows:

• M. Ting and A. O. Hero. Detection of an electron spin in a MRFM cantilever

experiment. In Proc. of the IEEE Workshop on Stat. Sig. Proc., 2003.
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• A. O. Hero, M. Ting, and J. A. Fessler. Two state Markov modelling and detec-

tion of single electron spin signals. In Proc. of the XII European Sig. Proc. Conf.,

2004.

• M. Ting, A. O. Hero, D. Rugar, C.-Y. Yip, and J. A. Fessler. Near optimal

signal detection for finite state Markov signals with application to magnetic

resonance force microscopy. IEEE Trans. Sig. Proc., to appear in June 2006

issue.

• M. Ting and A. O. Hero. Detection of a random walk signal in the regime of

low signal to noise ratio and long observation time. To appear in Proc. of the

IEEE Intl. Conf. on Acoustics, Speech, and Sig. Proc., 2006.

• M. Ting, R. Raich, and A. O. Hero. Sparse image reconstruction using sparse

priors. To appear in Proc. of the IEEE Intl. Conf. on Image Proc., 2006.



CHAPTER II

Magnetic resonance force microscopy

Magnetic resonance force microscopy (MRFM) was conceived as a non-destructive

method through which 3-d images with atomic (angstrom scale) resolution could be

obtained. In this chapter, we shall provide a description of the MRFM setup used in

the IBM experiment [54]. This is followed by a discussion of the various signal models

used to model the single electron spin-cantilever interaction. Finally, we provide the

point spread function of a vertical cantilever tip.

A general overview of MRFM can be obtained in [60, 24].

2.1 Description of the MRFM experiment

MRFM experiments, in general, involve the measurement of magnetic force be-

tween a submicron-size magnetic tip and spins in a sample. The details of spin manip-

ulation and signal detection depend on the exact MRFM protocol used. One partic-

ularly successful protocol is called OSCAR, which stands for OScillating Cantilever-

driven Adiabatic Reversal [65, 43]. A variation of this protocol, known as “inter-

rupted OSCAR” (iOSCAR), was an important idea that enabled the detection of

small spin ensembles [43] and was used in the single spin experiments [54].

A schematic diagram of an OSCAR-type MRFM experiment is shown in Fig. 2.1.

As shown in the figure, a submicron ferromagnet is placed on the tip of a cantilever

11
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and positioned close to an unpaired electron spin contained within the sample. An

applied radio-frequency (rf) field serves to induce magnetic resonance of the spin

when the rf field frequency matches the Larmor frequency. Because the magnetic

field emanating from the tip is highly inhomogeneous, magnetic resonance is spatially

confined to a thin bowl-shaped region called the “resonant slice”.

Figure 2.1: Schematic of an OSCAR-type MRFM experiment

If the cantilever is forced into mechanical oscillation by positive feedback, the

tip motion will cause the position of the resonant slice to oscillate. As the slice

passes back and forth through an electron spin in the sample, the spin direction

will be cyclically inverted due to an effect called adiabatic rapid passage [73]. The

cyclic inversion is synchronous with the cantilever motion and affects the cantilever

dynamics by changing the effective stiffness of the cantilever. Therefore, the spin-

cantilever interaction can be detected by measuring small shifts in the period of the

cantilever oscillation. This methodology has been successfully used to detect small

ensembles of electron spins [43, 65], and even a single spin [54].

We briefly review the single spin-cantilever interaction framework proposed by

Rugar et al. [53] and Berman et al. [4]. Consider an electron spin in a coordinate

frame that rotates at the frequency of the applied rf magnetic field B1(t); see Fig. 2.2.
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The effective magnetic field Beff(t) in this rotating frame is given by

(2.1) Beff(t) = B1(t)i+ ∆B0(t)k,

where i and k are the unit vectors in the x′ and z directions of the rotating frame,

B1(t) is the amplitude of the rf magnetic field, B0(t) is the amplitude of the tip

magnetic field at the spin location, and ∆B0(t) = B0(t) − ωrf/γ is the off-resonance

field amplitude. The constant γ = 5.6π× 1010 s−1T−1 is the gyromagnetic ratio, and

ωrf is the frequency of the applied rf. In Fig. 2.2 below, B0 = B0k, i.e., it is aligned

in the z direction, and ∆B0(t) = ∆B0(t)k.

Figure 2.2: In the coordinate system rotating at ωrf, the off-resonance field ∆B0(t), and there-
fore the effective field B eff(t), oscillate synchronously with the cantilever. Under the
spin-lock assumption, the electron spin aligns with B eff(t); under the anti-spin-lock
assumption, the electron spin aligns with −B eff(t)

The spins for which ωrf approximately equals the Larmor frequency ωL = γB0(t)

are said to be in magnetic resonance. This condition defines a paraboloid-shaped

slice under the cantilever in which the spins are in resonance. As the cantilever
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moves, so does this resonant slice. If ∆B0(t) varies sufficiently slowly such that the

adiabatic criterion

(2.2)
d∆B0(t)

dt
� γB2

1(t)

is satisfied, the spin can be assumed to remain aligned with either Beff(t) or −Beff(t).

These are the spin-lock and anti-spin-lock conditions, respectively. Define µ(t) ,

[µx(t), µy(t), µz(t)]
T to be the electron spin moment, where the superscript (·)T de-

notes the transpose operation. It is known that µ , ‖µ‖ = 9.28 × 10−24J/T. Under

the assumption that the spin is aligned with Beff, the z component of the field is

given by [53]:

(2.3) µz(t) = µ
∆B0(t)

[(∆B0(t))2 +B2
1 ]

1/2
.

Supposing that the motion of the cantilever is approximately sinusoidal, the off-

resonance field amplitude can be written as ∆B0(t) = Bmod sin(ωmodt). If ∆B0(t) �

B1, (2.3) results in µz(t) ≈ µ · sgn(B0(t)), where sgn(·) is the sign function, i.e.,

sgn(x) = 1, x > 0; sgn(x) = −1, x < 0; and zero otherwise.

Under the iOSCAR protocol, the rf signal B1(t) is turned off after every Nskip

cantilever cycles over a half-cycle duration to induce periodic transitions between the

spin-lock and anti-spin-lock states. Let ωskip , ωrf/Nskip be the frequency of the “off”

pulses. Under the anti-spin-lock state and ∆B0(t) � B1, µz(t) ≈ −µ · sgn(B0(t)).

In either spin-lock or anti-spin-lock state, the spin is said to be in cyclic adiabatic

inversion (CAI). Under CAI, a rf signal that turns off with frequency ωskip results in

a µz(t) that is a square wave with frequency ≈ 2ωskip.

2.2 MRFM single spin-cantilever signal models

Four single spin-cantilever signal models will be discussed in this section, and the

detection problem formulated for each. Note that the notation used for the CT and
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DT models are different. This difference in nomenclature will also manifest itself in

the successive chapters to follow.

2.2.1 Continuous-time classical model (CTC)

The equations of the classical dynamics of a MRFM cantilever interacting with a

single electron spin moment are described in [53]. Considering only the fundamental

mode and ignoring the positive feedback term, the interaction is described by:

Σ1 : µ̇x = γµy(Gz + δB0)

µ̇y = γµzB1(t) − γµx(Gz + δB0)

µ̇z = −γµyB1(t)

mz̈ + Γż + kz = Gµz + Fn(t)(2.4)

where z(t) is the position of the cantilever (z = 0 is taken to be the equilibrium

position); m is the cantilever’s effective mass; k is the cantilever spring constant; Γ is

a friction coefficient that is related to the cantilever quality factor; G is the magnetic

field gradient; and δB0 is whatever offset field that may be present. An overhead

dot represents differentiation with respect to time. Recall from before that B1(t) is

the rf signal, and Fn(t) is AWGN which arises due to various noise sources in the

experiment, e.g., background thermal noise.

The above equations omit the effect of the higher-order modes of the cantilever.

This effect can be accommodated by adding more second order equations similar to

the last equation in (2.4), and with zi, i = 2, 3, . . . used in the i-th additional equation

in place of z. Each additional 2nd order equation would have a different noise term

Fni(t), and the z appearing in the first three equations of (2.4) will be replaced by

z + z2 + . . . + zn, where n is the number of cantilever modes considered. Note that

G 6= 0, so that when a spin is present, Gµz affects the dynamics of z(t), and (2.4) is
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a system of nonlinear differential equations.

On the other hand, when a spin is not present, the Gµz term vanishes, and we

are left with the standard equation of motion for a cantilever, which is:

(2.5) Σ0 : mz̈ + Γż + kz = Fn(t)

The observable output of the system are samples of the cantilever position z(t)

corrupted by observation noise, which is assumed to be AWGN. Define ti , iTs to be

the time instants at which z(t) is sampled, where Ts is the sampling interval. Model

the observation noise as wi, where wi is a sequence of independent and identically

distributed (i.i.d.) Gaussian random variables (r.v.s) with zero mean and variance

σ2. Denote the observation sample at time ti by yi. Then yi = z(ti) + wi. The

detection problem for this signal model is as follows. Given the noisy observations

y = [y0, . . . , yN−1]
T , classify the system that generated y as either:

H0 (spin absent) : y generated by Σ0

H1 (spin present) : y generated by Σ1(2.6)

2.2.2 Continuous-time random telegraph model (CTRT)

In [4], the classical CT model is used to obtain a simpler set of equations to

describe the spin-cantilever interaction assuming that the CAI condition (2.2) holds.

A perturbation analysis shows that the cantilever position can be described by:

(2.7) mz̈(t) + Γż(t) + (k + ∆k)z(t) = Fn(t)

Here, ∆k = −µG2/|B1|. Note that the cantilever’s natural mechanical resonance

frequency is ω0 =
√
k/m. The shift in the spring constant results in a corresponding

shift in ω0 that is approximately given by

(2.8) ω0,s = 2µ
ω0G

πkzpk

cos θ
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where we define ω0,s to be the shift in ω0, and zpk is the peak amplitude of the

cantilever vibration. The factor cos θ represents the normalized projection of the

spin in the direction of the effective field.

Under the iOSCAR protocol, ω0 alternates between the two values ω0 ±ω0,s with

frequency 2ωskip [43]. Defining ∆ω0(t) , ω0(t) − ω0, we can equivalently say that

∆ω0(t) alternates between ±ω0,s. By setting Fn(t) = 0 and ignoring the amplitude

decay of z, the solution to (2.7) can be approximated as a frequency-modulated

signal:

(2.9) z(t) = Z0 cos

[
ω0t+

∫ t

0

s(ξ)dξ + θ

]

where Z0 is the cantilever oscillation magnitude, θ is a random phase, and s(t) is a

square wave that is periodic with non-zero amplitude ω0,s if a spin is present and zero

amplitude otherwise. Thus, spin coupling, i.e., the presence of a spin, can be detected

by frequency demodulating z(t) to baseband and correlating the baseband signal with

a known square wave signal derived from B1(t). Alternatively, we could frequency

demodulate z(t) to baseband and apply an energy test. Under the spin present (H1)

hypothesis, there exists a periodic square wave s(t) whereas under the spin absent

(H0) hypothesis, one gets a zero signal. Consequently, the energy statistic in the

presence of a spin should be higher. An additional improvement can be made: as the

frequency of s(t) is known to be 2ωskip, one could filter the frequency demodulated

z(t) before applying the energy test. Since s(t) is a lowpass signal, a natural filter

to use would be a lowpass filter (LPF) with a −3 dB frequency of 2ωskip.

Unfortunately, the effects of random thermal noise and spin relaxation decorrelate

s(t) and the square wave signal reference. The latter signal refers to the expected

behaviour of s(t) under the H1 hypothesis. One model for this decoherence phe-

nomenon is suggested by the Stern-Gerlach experiment [9]: the spins maintain either
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the spin-lock or anti-spin-lock states, but randomly change polarity during the course

of the measurement. This leads to random transitions of ∆ω0(t) between ±ω0,s; the

transition times are assumed to be distributed according to a Poisson process with a

rate of λ spin reversals/sec. Correlating the frequency demodulator output with the

known square wave signal, as was described in the previous paragraph, has the effect

of cancelling out the deterministic transitions in ω0. What remains after correlation

are the random transitions, and as the random transition times are generated by a

Poisson process, the resultant signal takes the form of a so-called random telegraph

process [63]. See Fig. 2.3.
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Figure 2.3: Top: Sample of an ideal cantilever position signal. Frequency shifts are not detectable
by the eye. Middle: Amplitude of sample rf magnetic field, B1(t). It has synchronous
half-cycle skips at 1 ms, 2 ms, and 3 ms for the creation of spin state transitions. Bottom:
Ideal and noisy outputs of frequency demodulator under the spin present hypothesis.
It has both deterministic transitions due to the rf skips at 1 ms, 2 ms and 3 ms, and
random ones due to spin relaxation. The random transitions, τi, occur as a Poisson
process. The initial polarity of the random telegraph is +1 for this example.

Let the baseband output of the frequency demodulator and correlator be denoted

by y(t). Let [0, T ] be the total measurement time period over which the correlator

integrates the measurements, and let τ = [τ1, . . . , τN ]T , be the time instants within

this period at which random spin reversals occur. As τ are the arrival times of
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a Poisson process with intensity λ, N is a Poisson random variable with rate λT .

Thus, the CT random telegraph model is: y(t) = s(t) + w(t) where w(t) is AWGN

with variance σ2, and s(t) is a random telegraph signal containing only the random

transitions. That is,

(2.10) s(t) = φ|w0,s|
N∑

i=0

(−1)ig

(
t− τi
τi+1 − τi

)

where φ is a random variable that equals ±1 with equal probability (it represents

the initial polarity of the spin), τ0 = 0, τN+1 = T , and g(·) is the unit rectangular

function, i.e., g(t) = 1, t ∈ [0, 1] and 0 otherwise [82].

The detection problem for the CT random telegraph model is to design a test

between the two hypotheses:

H0 (spin absent) : y(t) = w(t)

H1 (spin present) : y(t) = s(t) + w(t)(2.11)

for t ∈ [0, T ].

2.2.3 Discrete-time random telegraph model (DTRT)

In the quantum measurement model, the frequency shift is characterized by ran-

dom jumps between two discrete levels. The jumps are taken to be Poisson dis-

tributed. Suppose that the CTRT is sampled at times ti = iTs, where Ts is the

sampling time interval. The result is a DT random telegraph signal, which we shall

denote by Xi. In this paper, a Markovian process with a finite number of states will

have a state space denoted by Ψ = {ψ1, . . . , ψr}, where r is the number of states.

Let the state space of the DT random telegraph be Ψrt; it has r = 2 states and we

shall take ψ1 = −A, ψ2 = A, where A is the amplitude of the random telegraph (A

corresponds to ω0,s for the case of a MRFM signal). As an initial condition, X0 is
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equally likely to be either ±A. A probability transition matrix Prt can be associ-

ated with Xi such that the (j, k)-th value of Prt equals P (Xi = ψk|Xi−1 = ψj) for

1 ≤ j, k ≤ 2 and i ≥ 1. Assume that Prt has the form:

(2.12) Prt =




q 1 − q

1 − p p


 ,

where 0 < p, q < 1. If p = q, we say that the transition probabilities are symmetric,

whereas if p 6= q, we shall say that they are asymmetric. Define the signal vector

x = [x0, . . . , xN−1]
T , the noise vector w = [w0, . . . , wN−1]

T , and the observation

vector z = [z0, . . . , zN−1]
T . The wi values are modelled as i.i.d. Gaussian r.v.s with

zero mean and variance σ2. The detection problem is then to decide between:

H0 (spin absent) : z = w

H1 (spin present) : z = x+ w(2.13)

Examples of noiseless and noisy random telegraph signals are given in Fig. 2.4.

For the random telegraph signal, the SNR is defined to be SNR , A2/σ2. The SNR

in dB is defined in the usual way as SNRdB , 10 log10 SNR.

2.2.4 Discrete-time random walk model (DTRW)

In the classical spin detection model, the frequency shift signal is well approxi-

mated by a one dimensional random walk confined to the interval I = [−A,A], where

A = ω0,s for the case of a MRFM signal. We discretize I into (2M + 1) states using

a step size of s, where M ∈ Z and M, s > 0 and define Xi to be the random walk

restricted to the discretized I. This model will be referred to as the DT random

walk model. The state space Ψrw of the DT random walk will then have r = 2M +1

states, where ψj = (j −M − 1)s for j = 1, . . . , (2M + 1). Associate with Xi the

probability transition matrix Prw, so that, as before, the (j, k)-th element of Prw is
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Figure 2.4: a: Noiseless random telegraph signal with symmetric transition probabilities p = q =
0.98; b: Noisy version of (a) at SNR = −3 dB; c: Noiseless random telegraph signal
with asymmetric transition probabilities p = 0.98, q = 0.6; d: Noisy version of (c) at
SNR = −3 dB.

P (Xi = ψk|Xi−1 = ψj) for 1 ≤ j, k ≤ (2M + 1) and i ≥ 1. Prw is defined such

that, at each time step, Xi changes by either ±s. We assume reflecting boundary

conditions, and X0 is equally likely to be either ±s. These conditions imply that

Prw is a tridiagonal matrix.

The detection problem is now to test (2.13) when x is modelled by a random walk.

The DT random walk process is not a multi-state generalization of the DT random

telegraph process. In the former, Xi cannot stay in the same state for two consecutive

time instants. As well, the random walk has reflecting boundary conditions, which

the random telegraph does not have. In the limit as s → 0,M → ∞, the random

walk converges to Brownian Motion over the interval I [63].

Examples of noiseless and noisy random walk signals are given in Figs. 2.5 and 2.6,

where, at each state, a change of ±s is equally likely. Define the SNR for a random

walk process Xi as SNR , (limi→∞E[X2
i ])/σ

2. In other words, the SNR is the ratio

of the steady-state expected energy of Xi to the noise variance. This definition is
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consistent with that provided for the random telegraph signal. If Xi represented

the DT random telegraph signal, then X2
i = A2 at all time instances, leading to

SNR = A2/σ2.
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Figure 2.5: a: Noiseless random walk signal with 5 levels; b: Noisy version of (a) at SNR = −7.3
dB.
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Figure 2.6: a: Noiseless random walk signal with 21 levels; b: Noisy version of (a) at SNR = −7.8
dB.
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2.3 MRFM tip point spread function

In [44], the point spread function (psf) of a MRFM tip is derived under the

following assumptions.

1. The tip can be modelled as a point dipole.

2. The spins are undergoing CAI.

3. There is no spin-spin coupling.

4. Energy-based measurements are taken.

Although Fig. 2.2 shows a horizontal cantilever which vibrates in the z direction,

current experiments use a vertical cantilever vibrating in the x direction. A horizontal

cantilever cannot vibrate too close to the sample surface; otherwise, van der Waals

and electrostatic forces will draw the tip onto the surface and break the cantilever [66].

The psf for a vertical tip is given by

(2.14) H(x, y, z) =





(
G(x,y,z)
G0

)2
(

1 −
[
s(x,y,z)
xpk

]2)
|s(x, y, z)| ≤ xpk

0 |s(x, y, z)| > xpk

where xpk is the peak amplitude of the cantilever in the x direction and G0 is a

normalizing constant [44]. Let r =
√
x2 + y2 + z2; then

(2.15) s(x, y, z) =
Bres −Bmag(x, y, z)

G(x, y, z)
,

(2.16) Bmag(x, y, z) =

√(
3xzm

r5

)2

+

(
3yzm

r5

)2

+

(
m(2z2 − x2 − y2)

r5
+Bext

)2

,

and G = ∂
∂x
Bmag, which is

(2.17) G(x, y, z) =
1

2Bmag(x, y, z)

(
− 90m2x3z2

r12
− 90m2xy2z2

r12
+

18m2xz2

r10

+ 2

[
−2mx

r5
− 5mx(−x2 − y2 + 2z2)

r7

] [
Bext +

m(−x2 − y2 + 2z2)

r5

])
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We shall use the parameter set listed in Table 2.1 to illustrate the MRFM psf.

The plot of the resonant slice, defined by Bmag(x, y, z) = Bres for z ≥ R0, is given

Table 2.1: Parameters used to illustrate the MRFM psf.

Parameter Value

Description Name

Amplitude of external magnetic field Bext 2 × 104 G

Value of Bmag in the resonant slice Bres 2.25 × 104 G

Radius of tip when modelled as a sphere R0 2 nm

Distance from tip to sample d 2 nm

Cantilever tip moment† m 5.70 × 104 emu

Peak cantilever swing xpk 0.033 nm

Maximum magnetic field gradient‡ Gmax 610 G/nm

† Assuming a spherical tip.
‡ Assuming optimal sample position.

in Fig. 2.7. The resonant slice is a bowl-shaped surface of non-zero thickness. Here,

it is shown upside-down: a positive z value indicates a position below the cantilever

tip.
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Figure 2.7: Plot of surface Bmag(x, y, z) = Bres.

A 3-d contour plot of the normalized MRFM psf H(x, y, z) is illustrated in Fig. 2.8

for the parameters listed in Table 2.1. The important thing to notice is that there

is a slice of the yz plane where the response of the psf is zero. This is because the
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x component of the gradient vector ∇Bmag is zero due to the symmetry of Bmag. A
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Figure 2.8: Three dimensional contour plot of MRFM psf.

transverse xy slice of the MRFM psf is illustrated in Fig. 2.9. The gradient G is

highest in a xz plane that slices through the middle of the bowl shaped Bmag. This

is indeed the case in Fig. 2.9.
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Figure 2.9: Transverse xy slice of the MRFM psf.

2.4 Conclusion

A description of the MRFM experiment was given, as well as an introduction to the

single spin-cantilever interaction. Next, four models of the single spin-cantilever were
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described. The first two are continuous-time models, while the last two are discrete-

time. The success of the single electron spin experiment lends strong support to the

random telegraph model, as the detection algorithm used therein was based on the

DT random telegraph process. We also give equations for the vertical cantilever tip

psf.



CHAPTER III

Detection of the single spin in the continuous-time models

Detection of the single spin for the two continuous-time (CT) single spin-cantilever

models are examined in this chapter. The main focus shall be on the CT classical

(CTC) model. Results regarding the CT random telegraph (CTRT) model will be

briefly mentioned.

3.1 Spin detection for the continuous-time random telegraph model

The development of the CTRT model in Chapter II suggests that almost all of

the information pertaining to the presence or absence of a spin is contained in the

frequency content of the cantilever position signal z(t). Indeed, in the presence

of a spin, we saw that z(t), after being frequency demodulated and translated to

baseband, consists of a deterministic, periodic square wave and a random signal

component. In the absence of any randomness, optimal detection can be performed

using a matched filter detector. When a random signal component is present, the

deterministic part can be cancelled out and we are left with the detection of a random

signal in AWGN. Detection methods based on the CTRT model assume that the

approximation analysis used to show (2.7) holds.

27
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3.1.1 Background

The form of the likelihood ratio (LR) for the detection of a CT random process in

AWGN is established in [34, 35]. Its implementation requires the conditional mean

estimate (CME) ŝ(t) = E1[s(t)|{y(ξ) : ξ < t}], where the subscript “1” denotes

the expectation under the spin present (H1) hypothesis. In particular, given the

framework of (2.11), the LR is

(3.1) LR = exp

(
1

σ2

∫

I

ŝ(t)y(t) dt− 1

2σ2

∫

I

ŝ2(t) dt

)

where ŝ(t) was previous defined, I , [0, T ], and the first integral is an Itô stochastic

integral [34].

In [78], the filtering equations for obtaining ŝ(t) for the CTRT are given. There-

fore, it is possible to implement the optimal solution, as the likelihood ratio test

(LRT) is optimal in the Neyman-Pearson sense. That is, the LR maximizes the

probability of detection (PD) subject to a constraint on the probability of false alarm

(PF ) [70]. The solution is not finite-dimensional however; it has high computational

complexity. The estimation of a CT random telegraph in AWGN was addressed

in [80]: the performance of optimal filtering vs. smoothing was studied. An inter-

esting result is that as the SNR approaches 0, linear estimates are asymptotically as

efficient as the nonlinear estimates [80].

If only samples of the observation y(t) are available, as in (2.6), then the LRT

given in (3.1) is not directly applicable. However, it might be possible to approxi-

mate the integrals with sums. This would necessitate finding the CME E1[s(t)|{y(ti) :

i s.t. yi < t}]. The exact solution is known [29, 16]; it too has high computational

complexity. An approximation can be made if the stochastic differential equation is

assumed to be time-invariant [42]. Unfortunately, system Σ1 given in (2.4) is time-
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varying due to the presence of the rf field B1(t). One can approximately solve the

partial differential equations governing the evolution of the posterior density using

Galerkin’s approximation when the state vector is one-dimensional [23]. The tech-

nique requires the usage of basis functions that can well approximate the posterior

density. In the one-dimensional case, the class of complex exponentials was used,

leading to an efficient implementation that used the Fast Fourier Transform (FFT).

It is not clear what a suitable basis function set would be in higher dimensions. This

would be needed to solve for Σ1, as its state vector is in R
5.

The drawback of the optimal solutions mentioned above is that they are not

finite dimensional. This leads to a search for a suboptimal detector with a lower

computational complexity.

3.1.2 Hybrid Bayes/Generalized likelihood Ratio detector

A hybrid Bayes/Generalized likelihood ratio (GLR) detector was developed in [81,

82]. The detector is essentially the LRT, but with the unknown phase of the random

telegraph averaged out and the maximum likelihood (ML) estimates of N and τ

used. The detector is given by

(3.2) max
N,τ

{
log cosh

[
1

σ2

∫ T

0

y(t)s+(t;N, τ) dt

]} H1

≷

H0

ξ

where s+(t;N, τ) is the telegraph wave (2.10) generated by the parameters N, τ , and

initial polarity φ = 1.

One drawback to this method is that the parameter space of {N, τ} is infinite di-

mensional: any maximization method will have to make some simplifying approxima-

tions. In [81, 82], a Gibbs sampler was used to efficiently search the parameter space.
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In comparison to the optimal LRT discussed previously, the hybrid Bayes/GLR de-

tector is suboptimal.

3.2 Spin detection for the continuous-time classical model

Detection schemes based on the CTRT model rely on the approximate analysis

that single spin detection is equivalent to detection of a CT random telegraph in

AWGN. In addition, implementation of a detector based on the CTRT model will

require the frequency demodulation of the cantilever position signal z(t). The per-

formance of any frequency demodulation scheme (e.g., using a PLL) will degrade as

the SNR decreases. In low SNR, the frequency demodulation of z(t) will introduce

inaccuracies that will degrade the performance of the hybrid Bayes/GLR detector.

In this section, we propose a more direct detection scheme that uses samples

of the cantilever’s position, and is based on the well-known Kalman Filter (KF)

algorithm [45]. It is hoped that better detection performance can be achieved by

using z(t) directly without any additional assumptions.

We shall benchmark the KF based detection method against the energy based

detection method mentioned in the development of the CTRT model. Let s(t) be

the signal z(t) after it has been frequency demodulated and translated to baseband.

We shall use a simple first-order, single-pole filter given by

(3.3) HLP(z) =
1 − α

2

1 + z−1

1 − αz−1

as the LPF to use in filtering s[i] , s(ti). The time constant α is chosen based on

the bandwidth of the signal; if ωc is the desired −3 dB bandwidth of the filter, one

should set α = (1 − sinωc)/ cosωc. Here, we shall use ωc = 2ωskip, where ωskip is the

frequency of the rf “off” pulses mentioned in Chapter II. Let hLP[i] be the impulse
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response of (3.3). The test statistic that will be used is

(3.4)
n∑

i=1

(s ∗ hLP)2
i

H1

≷

H0

ξ

where the “∗” represents the convolution operator. The detector given by (3.4) will

be called the post frequency demodulated filtered energy statistic (FDFE).

3.2.1 Analysis of the nonlinear system Σ1

The system Σ1 given by (2.4) is a nonlinear system. It is reproduced here for the

convenience of the reader:

Σ1 : µ̇x = γµy(Gz + δB0)

µ̇y = γµzB1(t) − γµx(Gz + δB0)

µ̇z = −γµyB1(t)

mz̈ + Γż + kz = Gµz + Fn(t)

Recall from before that the electron spin moment µ has a constant l2 norm. The

invariance of ‖µ‖ can be verified by considering V (µx, µy, µz) = µ2
x + µ2

y + µ2
z =⇒

V̇ = 0 by using the expressions for µ̇x, µ̇y, and µ̇z in (2.4). Setting B1(t) ≡ 0

in the equations for Σ1 enables us to solve for µx(t) and µy(t). We obtain the

solution µx, µy ≈ C · cos
[
−γG

∫ t
0
z(τ)dτ + θ

]
, C and θ being some constants which

are different for µx and µy. Since |γGzampl| is a large quantity (let zampl be the

amplitude of z(t)), the x and y components of µ are oscillating very rapidly. With

a non-zero B1(t), the same holds true for the simulated system. As a result, a small

integration time step is required, on the order of 10−10 to 10−12 seconds.

Nonlinear systems analysis methods can be applied to analyze the reachability

and observability properties of Σ1 [72, 28]. Σ1 can be written in state-space form by
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defining the state vector

(3.5) v(t) , [µx(t), µy(t), µz(t), z(t), ż(t)]
T

The nonlinear system Σ1 can be re-written as:

v̇(t) = f(v, t) +Bw(t)(3.6)

f(v, t) ,




γ(Gv4 + δB0)v2

−γ(Gv4 + δB0)v1 + γB1(t)v3

−γB1(t)v2

v4

G
m
v3 − ω2

0v4 − ω0

Q
v5




, B , [0, 0, 0, 0, 1/m]T(3.7)

where w(t) = Fn(t) is white noise. The time dependency in f(v, t) arises from B1(t),

the rf signal. If we treat u(t) = [B1(t), Fn(t)] as the control inputs, Σ1 assumes the

form of a linear-analytic system. That is, we can write v̇ = p(v) + g(v)u for suitable

functions p(·) and g(·). In this formulation, Σ1 is locally observable everywhere

except for the set of points Ω1, where Ω1 = {v : Gv4 + δB0 = 0}. Σ1 is not locally

reachable. Instead, it is locally reachable on a sub-manifold of dimension 4 at almost

all points except for those which are in either Ω1 or Ω2 = {v : v3 = 0}. Note, however,

that the solution manifold of Σ1 is of dimension 4, as [v1, v2, v3] is constrained to lie

on the unit sphere (where without loss of generality, we consider their appropriately

scaled versions). Hence, Σ1 is locally reachable in its solution manifold at almost all

points contained within.

As Σ1 is not locally reachable, it is not in minimal form. There is an obvious

transformation that will bring it to minimal form. Namely, as [v1, v2, v3] lies on the

unit sphere, one can take v3 = ±
√

1 − v2
1 − v2

2 and substitute it into the right-hand

side of (2.4). The equation for µ̇z will no longer be needed, and the number of
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equations will decrease from 5 to 4. It is not clear, however, what advantage this

reduction in dimensionality brings about.

Going back to the original formulation of Σ1, although it is nonlinear, the non-

linearity is “soft”. The f(v, t) term can be written as f(v, t) = F(z(t), t)v(t), where

F(z, t) is given by

(3.8) F(z, t) =




0 γ(Gz + δB0) 0 0 0

−γ(Gz + δB0) 0 γB1(t) 0 0

0 −γB1(t) 0 0 0

0 0 0 0 1

0 0 G/m −ω2
0 −ω0/Q




This is a reformulation that conveniently ignores the fact that z is in the state

vector v(t). However, z is a quantity that is readily available to us, as it is the

observed quantity. There are, however, non-ideal factors that are present. Firstly,

we do not observe z continuously, but only a sampled version. Secondly, the samples

are corrupted by noise. If the sampling frequency fs is sufficiently high relative to

the bandwidth of z, z(t) will be a slowly-changing signal in each sampling interval

[ti, ti+1), and can be approximated by a constant. Moreover, an estimator ẑ can

be employed instead of the noisy samples x[i]. This provides a “cleaner” version of

z(ti). If the SNR is sufficiently high, we should have ẑ(ti) ≈ z(ti). This suggests

that, in each sampling interval, the nonlinear system Σ1 can be approximated by a

linear system. We shall review some results on the estimation and detection of linear

systems that will be used later on.

Henceforth in this chapter, we shall omit the vector notation in order to reduce

clutter, and will only use it to emphasize that a particular variable is to be treated

as a vector.
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3.2.2 Estimation and detection of linear systems

Consider a CT linear system

(3.9) dv(t) = F(t)v(t)dt+ G(t)dβ(t)

where v(t) is a random state vector in R
m, β(t) is a s-dimensional Brownian motion

process, F(t) is a time-varying R
m×m matrix, and G(t) is a time-varying R

m×s matrix.

Assume that the statistics of β(t) are given by

E[β(t)] = 0

E[(β(t) − E[β(t)])(β(t′) − E[β(t′)])T ] =

∫ t

t′
Q(τ)dτ.(3.10)

Observations of v(t) are made at the time instances t1, t2, . . . , tn according to

(3.11) y[i] = H(ti)v(ti) + w(ti)

where y[i] , y(ti) is the p dimensional observation vector, H(ti) is a R
p×m matrix,

and w[i] , w(ti) is a p-dimensional Gaussian random vector with the property that

E[w(ti)] = 0 for all i = 1, . . . , n

E[w(ti)w(tj)
T ] =





R(ti) i = j

0 i 6= j

.(3.12)

The stochastic differential equation (SDE) describing the evolution of v(t) requires

an initial state v(t0). Assume that the following knowledge of v(t0) is available:

E[v(t0)] = v̂(t0)

E[(v(t0) − E[v(t0)])(v(t0) − E[v(t0)])
T ] = P0(3.13)

If v(t0) is a Gaussian r.v. or a deterministic constant, v(t) will be a Gaussian

random process [45]. Consequently, each of the samples v(ti) is a Gaussian r.v., and

is completely characterized by its first and second order moments.
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Given the observations O = (y[1], y[2], . . . , y[n]) and knowledge of the model as

given by (3.9)–(3.13), what is the optimal estimate of v(ti) for i = 1, . . . , n? In

order to consider optimality, it is necessary to define the cost function that is applied

to the estimates of v(ti). Let us use the mean squared error; in other words, i.e.,

we are interested in an estimator v̂(ti) that minimizes E [(v(ti) − v̂(ti))
2] for each

i = 1, . . . , n. In general, v̂(ti) will be a function of the observations O. Thus far, the

values of the tis have not been specified. Although they are likely to be regularly

spaced time points, they do not have to be so. Henceforth, however, assume that

the observation times are given by ti = iTs, where Ts is the sampling interval. Let

fs = 1/Ts be the sampling frequency.

The other question that we would like to address is the following: given two known

linear systems Π0 and Π1 of the form (3.9)–(3.13) and the observations O, deduce the

system that produced the observation data in an optimal fashion. The dimensions of

the state vectors need not be the same in both linear systems, and the same goes for

the matrices F(t), G(t), Q(t). One can see that this question is a binary hypothesis

testing problem, where hypothesis Hi corresponds to the observations originating

from system Πi, for i = 0, 1.

Kalman Filter

The expectation of the state vector v(ti) conditioned on the past observations

Y [i] , (y[1], . . . , y[i])T results in the minimum mean squared error (MMSE) estimate

of v(ti). That is,

(3.14) v̂(ti) = E[v(ti)|Y [i]] for i = 1, . . . , n

The Kalman Filter (KF) efficiently computes the conditional expectation E[v(ti)|Y [i]]

in a recursive fashion. We will proceed to discuss the KF filtering equations. The
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notation used here is consistent with [45]: t−i denotes the time right before the i-th

observation is available, and so v̂(t−i ), the estimator of v(ti), does not incorporate

information from y(i). Similarly, t+i is the time right after the i-th observation, and

v̂(t+i ) has information from y(i) incorporated into it.

The KF has a predictor-corrector structure. In the interval [t+i−1, t
−
i ], the predicted

value of v(ti) will be computed based on the state equation (3.9) and the estimate

v̂(t+i−1). As the ith observation has not been used, this estimate of v(ti) will be

denoted by v̂(t−i ). At t = t+i , we know the value of y(i); this will be used to correct

the prediction v̂(t−i ) via knowledge of the observation equation (3.11). The corrected

estimate is denoted by v̂(t+i ). The same type of behaviour occurs with the conditional

covariance matrices

P(t−i ) , E[(v(ti) − v̂(t−i ))(v(ti) − v̂(t−i ))T |Y [i− 1] = Yi−1]

P(t+i ) , E[(v(ti) − v̂(t+i ))(v(ti) − v̂(t+i ))T |Y [i] = Yi](3.15)

These are also called error covariance matrices, as they give a measure of the errors

in v̂(t−i ) and v̂(t+i ).

The equations for the prediction or propagation step are

Algorithm 3.1 (Propagation equations for the KF).

v̂(t−i ) = Φ(ti, ti−1)v̂(t
+
i−1)

(3.16)

P(t−i ) = Φ(ti, ti−1)P(t+i−1)Φ
T (ti, ti−1) +

∫ ti

ti−1

Φ(ti, τ)G(τ)Q(τ)GT (τ)ΦT (ti, τ)dτ

(3.17)

where Φ(·, ·) is the m-by-m state transition matrix for the system given by

(3.9) [45]. The state transition matrix Φ(·, ·) satisfies the following differential equa-
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tion

d

dt
Φ(t, t0) = F(t)Φ(t, t0)

Φ(t0, t0) = I(3.18)

If F(t) = F, a constant matrix, then Φ(t, t0) = exp[F(t− t0)].

The propagation step can also be implemented as the solution to two differential

equations [45]. Define v̂i(t) for t ∈ [ti, ti+1) as the estimate of v(t) conditioned on all

the observations up until y[i]. Similarly, let Pi(t), t ∈ [ti, ti+1) to be the conditional

covariance conditioned on all observations up until y[i].

Algorithm 3.2 (Differential equations for the Propagation step in the KF).

˙̂vi(t) = F(t)v̂i(t), v̂i(ti) = v̂(t+i )(3.19)

Ṗi(t) = F(t)Pi(t) + Pi(t)F
T (t) + G(t)Q(t)GT (t), Pi(ti) = P(t+i )(3.20)

with v̂(t−i+1) = v̂i(ti+1) and P(t−i+1) = Pi(ti+1).

The equations for the correction or measurement update step are

Algorithm 3.3 (Measurement update equations for the KF).

K(ti) = P(t−i )HT (ti)
[
H(ti)P(t−i )HT (ti) + R(ti)

]−1
(3.21)

v̂(t+i ) = v̂(t−i ) + K(ti)(y[i] − H(ti)v̂(t
−
i ))(3.22)

P(t+i ) = (I − K(ti)H(ti))P(t−i )(3.23)

Them×pmatrix K(ti) is known as the Kalman gain. Its usage in (3.22) illustrates

why such a nomenclature is appropriate. The quantity

(3.24) η[i] = y[i] − H(ti)v̂(t
−
i ) = y[i] − ẑ(t−i )
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is the prediction error, also known as the innovations. From (3.22), one sees that

the estimate v̂(t+i ) is formed by adding the predicted value to the innovations scaled

by the Kalman gain. A large Kalman gain is an indication that we are not confident

in the predicted value v̂(t−i ), and so the observation y[i] plays a major role in the

estimation of v(ti). On the other hand, a small Kalman gain downplays the effect of

the innovations. It signifies that we believe that the predicted value v̂(t−i ) is a good

estimate of v(ti).

From (3.17), (3.21), and (3.23), one realizes that computing P(t−i ) and P(t+i )

does not require the observations y(ti). It follows that their calculation can be done

offline.

Kalman Filter detection

Let Π0 and Π1 denote two systems of the form (3.9)–(3.13), and suppose that

p = 1, so that the observations are scalars. Assume that the observations produced

by both systems are zero mean. Having observed the sequence (y[1], y[2], . . . , y[n]),

we would like to determine which system most likely produced these values. We are

faced with the hypothesis testing problem

H0 : y[i] = s0(ti) + w[i]

H1 : y[i] = s1(ti) + w[i](3.25)

where s0(ti) and s1(ti) are zero mean Gaussian signals with covariances R0 and R1

respectively.

The LRT is shown in [25, 70] to be

(3.26) yT (R−1
0 −R−1

1 )y

H1

≷

H0

ξ
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where y , (y[1], . . . , y[n])T . It can be equivalently written in terms of the innovations

produced by a KF matched to Π0 and another matched to Π1. Let ηk[i] denote the

innovations produced by the KF matched to Πk for k = 0, 1. Note that ηk[i] , ηk(ti).

Then, the LRT can also be expressed as

(3.27)
n∑

i=1

η2
0[i]

var(η0[i])
−

n∑

i=1

η2
1[i]

var(η1[i])

H1

≷

H0

ξ

where the threshold ξ is time-varying, i.e. a function of n [25]. The detector can be

implemented with a dual KF setup: see Figure 3.1 below.

Figure 3.1: Dual Kalman Filter detector

The variances of the innovations η0[i] and η1[i] appear in the decision rule (3.27).

They are the variance of η0[i] assuming the H0 hypothesis and the variance of η1[i]

assuming the H1 hypothesis respectively. As these values do not depend on the

observations, they can be computed offline.

3.2.3 Estimation of nonlinear systems

Linear systems are tractable to work with. Indeed, the previous section charac-

terized the estimation of a linear system with discrete-time sampled observations.

Furthermore, the detection of linear systems with scalar observations was addressed.

Unfortunately, nonlinear systems are less tractable. There are two places where the
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nonlinearity could potentially appear: either in the state equation or in the observa-

tion equation. For the CTC model, the nonlinearity appears in the former. Suppose

we extend the linear system described by (3.9) and (3.11) to the following nonlinear

system:

dv(t) = f(v(t), t) + G(t)dβ(t)

y[i] = H(ti)v(ti) + w[i](3.28)

and pose the question: what form does the MMSE estimator of v(ti) take? The

answer to this question can be applied to finding the optimal MMSE state estimator

of Σ1, the CTC model under the spin present hypothesis.

The optimal mean squared estimate of nonlinear systems with CT state equations

and DT observations is known; however, the computational complexity can be pro-

hibitive [29, 16, 42]. In [42], an approximation to the optimal filtering equations are

given for the following system

dv(t) = b(v(t))dt+ σ(v(t))dβ(t)(3.29)

y[i] = h(v(ti)) + w[i](3.30)

where v(t), β(t), y[i], w[i] retain their meaning from the discussion on the KF. The

state equation in (3.29) is time invariant; however, the state equation in the non-

linear system (3.28) is not. For this reason, the approximation in [42] cannot be

directly used without some modification. Another attempt at approximating the

optimal filtering equations was done in [23]. Galerkin’s method was used here to

approximately solve the partial differential equation (PDE) that the posterior den-

sity p(vt|{y(ti) : ti < t}) satisfied. A choice of suitable basis functions with which to

approximate the posterior density has to be made: in [23], only v(t) ∈ R was con-

sidered, and the complex exponentials were chosen as basis functions. This choice
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conveniently led to the usage of the Fast Fourier Transform (FFT) and inverse FFT

in computing approximations to the posterior density. For a general multidimen-

sional random process v(t), however, it is not clear what would be a good choice of

basis functions.

Extended Kalman Filter

The KF can be extended in a heuristic way to address the estimation of a non-

linear system. The extended version is aptly called the Extended Kalman Filter

(EKF) [46]. The principle behind the EKF is to linearize any nonlinearities that

appear in the state or observation equation around the previous best state estimate.

The measurement update equations are the same as those of the KF; however, the

propagation equations are different. The propagation equations for the EKF are

Algorithm 3.4 (Propagation equations for the EKF).

˙̂vi(t) = f(v̂i(t), t), v̂i(ti) = v̂(t+i )(3.31)

Ṗi(t) = J(v̂i(t), t)Pi(t) + Pi(t)J
T (v̂i(t), t) + Q(t), Pi(ti) = P(t+i )(3.32)

with v̂(t−i+1) = v̂i(ti+1) and P(t−i+1) = Pi(ti+1). The matrix J(v, t) is the Jacobian of

f(v, t).

Note that (3.31) and (3.32) are coupled differential equations, and so must be

solved simultaneously. It is interesting to compare them with their KF counterparts

in (3.19) and (3.20) respectively. As noted in [46], the coupling in the EKF propa-

gation equations may produce numerical difficulties. Another undesirable side effect

of the coupling is that the computation of the error covariance matrix cannot be

done offline, as it depends on the observations through the state estimate. A way

of decoupling the two differential equations is to use the approximation v̂(t) ≈ v̂(t+i )

for t ∈ [ti, ti+1).
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3.2.4 Piecewise linear Kalman Filter

We shall consider the case when the nonlinearity in the state equation is soft. Sup-

pose that f(·, ·) in (3.28) could be written as f(v(t), t) = F(vk1(t), . . . , vkd
(t), t)v(t),

where the ki’s are distinct, 1 ≤ ki ≤ n for each i, and 1 ≤ d < n. Moreover,

assume that the collection of state components Vs , {vk1(t), . . . , vkd
(t)} are all

slowly varying relative to the sampling frequency fs of the observations. Define

vs(t) , [vk1(t), . . . , vkd
(t)]T . Then, in the sampling interval [ti, ti+1), one could make

the approximation

(3.33) f(v(t), t) = F(vs(t), t)v(t) ≈ F(v̂s(t
+
i ), t)v(t).

This has the effect of linearizing the nonlinear system (3.28) in each sampling

interval. It is then possible to apply the KF to the linearized system. A modification

can be made to propagate the state estimate v̂(t) through the original nonlinear

system, as in (3.32). The estimator for nonlinear systems with the specified softness

will be called the piecewise linear Kalman Filter (PLKF).

One way to ensure that each vki
(t) is sufficiently slowly varying is to stipulate

that each vki
(t) ∈ Vs have a bandlimited spectrum, say [−Bi, Bi], and that fs � Bi.

Clearly, a larger fs is desirable. Another necessary condition for the approximation

(3.33) is that the state estimates v̂k1(t
+
i ) ≈ vk1(ti), . . . , v̂kd

(t+i ) ≈ vkd
(ti). Thus, a

sufficiently high SNR is desirable.

The measurement update equations for the PLKF are the same as for the KF.

The propagation equations are given in differential form by

Algorithm 3.5 (Propagation equations for the PLKF).

˙̂vi(t) = f(v̂i(t), t), v̂i(ti) = v̂(t+i )(3.34)

Ṗi(t) = F(v̂s(t
+
i ), t)Pi(t) + Pi(t)F

T (v̂s(t
+
i ), t) + Q(t), Pi(ti) = P(t+i )(3.35)
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with v̂(t−i+1) = v̂i(ti+1) and P(t−i+1) = Pi(ti+1).

Comparing (3.34), (3.35) with the filtering equations for EKF, we see that the

difference lies in the propagation of the error covariance matrix in time. Rather than

using the Jacobian J(v, t), the PLKF uses F(vs(t), t). Therefore, the PLKF can be

viewed as a 0th order EKF method, whereas the EKF is of 1st order.

3.2.5 Detection with piecewise linear Kalman Filtering

Let Π0 and Π1 denote two continuous-discrete systems that are either linear or

softly nonlinear (in the sense that the assumptions underlying the application of the

PLKF apply) and with zero mean observations. Let Fi denote the KF or PLKF

matched to model Πi for i = 0, 1. If one (or both) of the systems is (are) softly non-

linear, the decision rule (3.27) is no longer applicable. Nevertheless, we shall invoke

the piecewise linear assumption and apply the rule to the innovations generated by

F0 and F1.

3.2.6 Application to spin detection for the continuous-time classical model

At this point, it becomes a matter of assembling the methods that have been

discussed in order to construct a single spin detector. We shall take Π0 to be Σ0,

which is described by (2.5). The system can be rewritten in state-space form as:

Σ0 : dv(t) = A0v(t) + B0dβ(t)

y[i] = H0v(ti) + w[i](3.36)

where

A0 =




0 1

−ω2
0 −ω0/Q


 , B0 =




0

1/m


 ,H0 = [1, 0],

and recall that y[i] = y(ti), w[i] = w(ti). Note that in (3.36) above, the state vector

v(t) = [z(t), ż(t)]T ∈ R
2.
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Π1 will be taken to be Σ1, the CTC model of the cantilever-spin dynamics. As

noted in 3.2.1, Σ1 is softly linear. If fs is sufficiently high compared to the band-

width of the observation y(t), we can apply the piecewise linear (indeed, constant)

approximation (3.33) and make use of the PLKF. The two systems Π0 and Π1 have

observations that are approximately zero mean. From the last subsection, the dual

KF structure can be used to obtain an approximate detector of the signal model.

It is instructive to compare F(z, t) with J(v, t), the Jacobian of f(v, t). As was

previously mentioned, the only difference between EKF and PLKF is in the propa-

gation of the error covariance matrix. The propagation equations for both filters are

of the same form: the dissimilarity arises from the usage of F(z, t) vs. J(v, t). Now,

F(z, t) has already been given in (3.8); in contrast, the Jacobian J(v, t) is

(3.37) J(v, t) =




0 γ(Gz + δB0) 0 γGµy 0

−γ(Gz + δB0) 0 γB1(t) −γGµx 0

0 −γB1(t) 0 0 0

0 0 0 0 1

0 0 G/m −ω2
0 −ω0/Q




Comparing (3.8) and (3.37), we see there are two additional terms in the Jacobian

as compared to F(z, t).

Although implementation of the dual KF structure for detection is straightfor-

ward, there are some ways in which the implementation can be simplified. Since

Σ1 is not linear, the computation of var(η1[i]) under the H1 hypothesis is diffi-

cult. As a simplification, it can be obtained either empirically or assuming that

var(η1[i]) ≈ var(η0[i]) for i = 1, . . . , n.

A further simplification to (3.27) can be made by assuming that var(η0[i]) and

var(η1[i]) are approximately constant and that the two constants are equal to each
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other. Then, one obtains an innovations energy test

(3.38)
n∑

i=1

η2
0[i] −

n∑

i=1

η2
1[i]

H1

≷

H0

ξ

An issue that must be examined more closely is the initial values used in the KF

for Σ0 and the PLKF for Σ1. We assume that z(0) and ż(0) are approximately known.

This would be the case if σ2 is small and z(t) is an approximately sinusoidal signal.

For x(t) = C sin(ω0t), ẋ = ω0C cos(ω0t) = ±ω0

√
1 − x2. The initial spin moment

µ(0) is not known, however. Since the PLKF is sensitive to µ(0), an attempt is made

to guess µ(0). We shall apply the GLR principle, which entails replacing µ(0) with

its ML estimate. The lower KF1 branch in the electron spin detector of Fig. 3.1 is

replaced by a filter bank of p PLKF1s, each initialized with a different µ(0). Denote

by µ
k
(0) the value of µ(0) with which the kth PLKF1 is initialized. The minimum

output value of all p PLKF1s will be selected and compared with the output of KF0.

By doing this, (3.27) is modified to be

(3.39)
n∑

i=1

η2
0[i]

var(η0[i])
− min1≤k≤p

(
n∑

i=1

η2
1,k[i]

var(η1[i])

) H1

≷

H0

ξ

and the innovations energy test (3.38) becomes

(3.40)
n∑

i=1

η2
0[i] − min1≤k≤p

(
n∑

i=1

η2
1,k[i]

) H1

≷

H0

ξ

where η1,k[i], i = 1, . . . , n is the innovations sequence produced by the kth PLKF1,

for k = 1, . . . , p. We shall use these hybrid KF/GLR detectors (3.39) or (3.40) in

the simulations.
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3.2.7 Simulations

In this section, the CTC model was simulated with only the fundamental mode,

and the performance of the PLKF vs. EKF was examined. The simulation parameters

used are given in Table 3.1.

Table 3.1: Simulation parameters used in the CTC model in the comparison of the PLKF vs. EKF
filters

Parameter Value

Description Name

Sampling frequency fs 250 kHz

Cantilever oscillation frequency ω0 10 kHz

Cantilever rms amplitude zrms 1 nm

Noise temperature† Tf 1 K

Skip period of rf field Tskip 5 cycles‡

Amplitude of rf field B1ampl 4 G

Q of cantilever Q 105

Variance of observation noise σ2 10−20

Magnetic field gradient G 10 G/Å

Cantilever spring constant k 10−4 N/m

Length of each simulation Tsim 5 ms

Integration time step Tint 10−9 s

† Of fundamental mode of cantilever.
‡ Each cycle refers to a period of the cantilever oscillation.

One hundred simulations of the CTC model under the H1 spin hypothesis were

generated with the parameters of Table 3.1. Before proceeding to discuss the results,

a discussion of the simulation of the H0 and H1 systems is in order. The 4th or-

der Runge-Kutta algorithm (RK4) is a common algorithm used to solve first-order

differential equations. The systems H0 and H1 are stochastic. However, RK4 was

developed to solve deterministic differential equations. It is not at all clear that using

RK4 will produce a realization that is representative of the statistics of the random

process.

The first issue that must be resolved is an error criterion for a stochastic simu-



47

lation. One such criterion is given in [37], and is referred to as weak or wide-sense

simulation, where the first and second properties of the processes are matched. This

was used in deriving the coefficients of a 4th-order RK algorithm for linear stochastic

systems [38]. The covariance matrix of the stochastic process is matched to that of

the RK solution at multiples of the integration step size Tint. For nonlinear stochastic

systems, however, only a 2nd-order RK algorithm has been solved [36].

The simulation of Π0 makes use of the coefficients derived in [38] for a linear,

time-varying stochastic differential equation. The simulation of Π1 uses RK4 in the

“classical” method as it is called in [38], [36]. For a small integration step size Tint,

this zero-order reduction of the Brownian motion term w(t) will result in a small

error for Π1.

The initial values of z(t0) and ż(t0) were the same for all one hundred simulations

(NB. t0 = 0). Specifically, z(t0) = 0 and ż(t0) =
√

2zrmsω0. Let µ# = µ/‖µ‖, so that

µ# is a vector on the 3-d unit sphere (in the simulations, we work with µ# as opposed

to µ). The initial spin moment µ#(t0) was assumed to be uniformly distributed over

the unit sphere. The EKF filter was applied to the first 50 realizations, while the

PLKF filter was applied to all 100 realizations. Both filters were initialized with the

true value of v(t0), and the empirical covariance matrix over the 100 realizations was

used to initialize P0.

The MSE for the estimators of µ#
x (t−i ), µ#

y (t−i ), µ#
z (t−i ), and a normalized version

of z(t−i ) are plotted as functions of the discrete time index i. Let z#(t) = z(t)/zrms

denote the normalized version of z(t). MSEs were obtained by averaging the squared

error over all of the different realizations: 50 for EKF and 100 for PLKF. Note

that EKF takes significantly longer than PLKF to run. The difference is due to the

propagation of the error covariance matrix. While EKF has to solve (3.32), there
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exists a closed form solution for the corresponding PLKF equation (3.35). The MSE

for EKF is given in Fig. 3.2, while the MSE for PLKF is given in Fig. 3.3.
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Figure 3.2: MSE of the EKF estimator when applied to the CTC model. The average of the squared
error over 50 realizations is displayed.

In µ̂#
x , µ̂#

z , and ẑ#, the PLKF filter is doing better than the EKF filter. On

average, the MSE of µ̂#
z for the PLKF is half that of EKF. Both filters track µ#

y

equally well. The EKF’s MSE of ẑ# appears to be increasing. In contrast, the

MSE for PLKF appears to be oscillating around a steady state value. One can see

the effect of a smaller number of realizations (50 for EKF vs. 100 for PLKF) has
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Figure 3.3: MSE of the PLKF estimator when applied to the CTC model. The average of the
squared error over 100 realizations is displayed.

on EKF’s MSE of ẑ#, as it has a higher variance than the PLKF’s MSE. It is not

surprising that the MSE for µ̂#
z has the same general trend as that of ẑ#. Referring

back to (2.4), the z component of the spin is an input to the second-order equation

for z(t). Consequently, the estimation error in µ#
z will propagate to the estimation

of z#.

Since y(ti) − ẑ(t−i ) = η(ti) = η[i] (see (3.24)), the innovations η[i] = (z(ti) −

ẑ(t−i )) + w[i]. Consequently, the MSE of ẑ(t−i ) is equal to (E[η2[i]] − σ2). It follows
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from Figs. 3.2 and 3.3 that, for the parameters given in Table 3.1, the PLKF produces

innovations that are lower in mean-squared value. Under the spin present hypothesis,

one would like
∑

i η
2
1[i]/var(η1[i]) to be smaller than

∑
i η

2
0[i]/var(η0[i]); refer back

to (3.27) for the dual KF test statistic. Therefore, innovations that are smaller in

mean-squared value are desirable under the spin present hypothesis. The simulations

presented suggest that PLKF is a better candidate than EKF to use in the hybrid

KF/GLR detectors.

Secondly, the performance of the KF/GLR detector was compared with the FDFE

detector, which is given by (3.4). In the latter, demodulation is performed on samples

of the cantilever signal via a zero crossings method. The −3 dB bandwidth ωc of the

LPF filter (3.3) was set to 2ωskip, where ωskip = 2π/Tskip.

The PLKF filter was used in KF1 branch(es) of the hybrid KF/GLR detectors.

Two scenarios with different values of k (cantilever spring constant) were considered.

The first case was k = 10−3 N/m, while the second case was k = 10−4 N/m. The

other simulation parameters that are shared by both cases are given in Table 3.2.

For each of the two cases, 40 realizations were generated: 20 under the spin

present (H1) hypothesis and 20 under the no-spin (H0) hypothesis. In the spin

present realizations, µ#(t0) was assumed to be uniformly distributed over the unit

sphere. The same initial conditions as mentioned above for z(t0) and ż(t0) were used

for both H0 and H1 realizations.

We applied the hybrid KF/GLR detectors given by (3.39) and (3.40) to each of the

40 realizations; p set to 2. The initial spin moment vectors were µ#
1

= (
√

3/2, 0, 1/2)T

and µ#
2

= (
√

3/2, 0,−1/2)T . The true values of z(t0) and ż(t0) were used to initial-

ized the PLKF and KF. The initial covariance matrix P0 used for the PLKF was

P0 = diag(0.3, 0.3, 0.3, sz, sż), where sz, sż are the empirical variances of z and ż
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Table 3.2: Simulation parameters used in the CTC model in the comparison of the dual KF detector
vs. the post frequency demodulated filtered energy statistic.

Parameter Value

Description Name

Sampling frequency fs 250 kHz

Cantilever oscillation frequency ω0 10 kHz

Cantilever rms amplitude zrms 1 nm

Noise temperature† Tf 0.6 K

Skip period of rf field Tskip 10 cycles‡

Amplitude of rf field B1ampl 4 G

Q of cantilever Q 105

Variance of observation noise σ2 10−22

Magnetic field gradient G 10 G/Å

Length of each simulation Tsim 15 ms

Integration time step Tint 10−11 s

† Of fundamental mode of cantilever.
‡ Each cycle refers to a period of the cantilever oscillation.

respectively under the H1 hypothesis. The empirical covariance matrix under the

H0 hypothesis was used to initialize P0 for KF0. The empirical variance of the

innovations under H1 was used in the hybrid KF/GLR detectors.

In Fig. 3.4, the receiver operating characteristic (ROC) curve for the KF/GLR

innovations energy detector vs. the FDFE detector are presented for k = 10−3 N/m,

and in Fig. 3.5, the plots of their test statistics under H0 and H1. The ROC

curve is a plot of the probability of detection (PD) vs. the probability of false alarm

(PF ). For values of PF < 0.35, the KF/GLR innovations energy detector has better

performance. However, for PF > 0.35, the FDFE detector has better performance.

The ROC curve for the KF/GLR innovations detector is presented in Fig. 3.6b.

The test accurately distinguishes the spin and no-spin realizations. A glance at

the test statistic values of the KF/GLR innovations detector under H0 and H1 in

Fig. 3.6a reveals the reason: there is a wide separation in the values between these

two hypotheses. Overall, the KF/GLR innovations detector has the best performance
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Figure 3.4: ROC curve of the KF/GLR innovations energy detector vs. the FDFE detector for
k = 10−3 N/m. The KF/GLR innovations energy detector has better performance for
PF < 0.35.
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Figure 3.5: Test statistics of the KF/GLR innovations energy detector vs. the FDFE detector for
k = 10−3 N/m.

for this case.

The second case considered is k = 10−4 N/m. Paralleling the presentation for

the previous case, Fig. 3.7 illustrates the ROC curve for the KF/GLR innovations

energy detector vs. the FDFE detector. Again, there seems to be a point where the

two ROC curves intersect. For PF < 0.25, the KF/GLR innovations energy detector

has better performance, while for PF > 0.25, the FDFE detector is superior. The

test statistics of the two detectors are given in Fig. 3.8. They look similar. The
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Figure 3.6: Comparison of the KF/GLR innovations detector vs. the FDFE detector for k = 10−3

N/m. The KF/GLR innovations detector accurately distinguishes the spin present
vs. the spin absent realizations.
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Figure 3.7: ROC curve of the KF/GLR innovations energy detector vs. the FDFE detector for
k = 10−4 N/m. The KF/GLR innovations energy detector has better performance for
PF < 0.25.

H0 statistics for the KF/GLR innovations energy test have smaller variance, which

explains why it is doing better for small PF values.

These two detectors have better performance than for the case of k = 10−3 N/m.

In the development of the CTRT model in Chapter 2.2.2, the shift in the cantilever

frequency is inversely proportional to k; refer to (2.8). Therefore, a smaller k re-

sults in a bigger frequency shift, which would make the observations under the H1
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Figure 3.8: Test statistics of the KF/GLR innovations energy detector vs. the FDFE detector for
k = 10−4 N/m.

hypothesis more dissimilar than under the H0 hypothesis.

The ROC curve for the KF/GLR innovations detector is plotted in Fig. 3.9b. As

in the case of k = 10−3 N/m, the test accurately distinguishes between the spin and

no-spin realizations. The test statistic values of the KF/GLR innovations detector

is illustrated in Fig. 3.9a. There is a wide separation in the values between the

two hypotheses. The KF/GLR innovations detector again has the best performance

for this case. We see that knowledge of the variance of the innovations η1[i] under

the H1 hypothesis is critical in the performance of the KF/GLR detector. Once

that information is discarded, we are left with the innovations energy detector. The

simulations have demonstrated that it is comparable to the FDFE detector for the

parameters of Table 3.2 and k = 10−3, 10−4 N/m. As the FDFE detector is more

computationally inexpensive, it would be preferred over the KF/GLR innovations

energy detector.
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Figure 3.9: Comparison of the KF/GLR innovations detector vs. FDFE detector for k = 10−4 N/m.
The KF/GLR innovations detector accurately distinguishes between the spin present
and spin absent realizations.

3.3 Conclusion

The optimal detection test for the two CT models if their observations were con-

tinuously available is given by (3.1). The optimal solution, however, is not finite

dimensional, and its exact implementation is computationally prohibitive. In the

continuous-time classical model, which is the main focus of this chapter, the obser-

vations are sampled. Consequently, the LRT in (3.1) cannot be used.

A filter is heuristically derived for a class of “soft” nonlinear systems, of which the

nonlinear CTC model is one of them. The result, called the piecewise linear Kalman

filter, is a filter whose state propagation step is similar to EKF, but whose error

covariance propagation step is similar to the KF. It can be regarded as a 0th order

EKF. For the CTC model, the PLKF’s error covariance propagation step was solvable

in closed form. In contrast, EKF had to solve equations for the propagation of its

error covariance matrix. Consequently, PLKF’s per iteration runtime was shorter

than EKF’s.
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With a filter for the nonlinear CTC model, we applied the piecewise linear idea and

used the KF detector, which optimally distinguishes between two linear models with

zero mean observations. The PLKF was substituted for KF1, while an ordinary KF

was substituted for KF0; see Fig. 3.1. It should be noted that the model describing

the no-spin hypothesis is linear. Unfortunately, the PLKF requires initial conditions

for the spin, which are not available. One observes noisy versions of z(t) and ż(t),

and so can form rough estimates. The Generalized Likelihood principle was applied

to the KF detector; the result was a KF/GLR innovations detector with several

PLKF branches matched to the spin present model. Each PLKF is initialized with

a different initial spin value; in essence, we are attempting to “guess” the initial spin

value.

The KF/GLR innovations detector requires knowledge of the variance of two inno-

vations: the innovations produced by KF0 under H0, and the innovations produced

by the PLKF under H1. The variance of the first innovations sequence is straight-

forward to compute. However, while the variance of the second innovations sequence

is computable in theory, it is difficult in practice. As an approximation, one could

obtain it empirically or assume that the variance is equal to the variance of the first

innovations sequence. A simpler KF/GLR detector was formulated that assumed

that the variance of both innovations were approximately constant and equal to each

other. This resulted in a test that just involved the sum of squares of the innovations

produced by KF0 and the other PLKFs. To differentiate both versions, the original

detector was called the KF/GLR innovations detector, while the simpler detector

was called the KF/GLR innovations energy detector.

Simulations were presented comparing PLKF vs. EKF. For the parameter set

given in Table 3.1, the PLKF has lower MSE than the EKF in three out of the
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four state variables considered. In particular, it has innovations that are smaller in

mean-squared value. This indicates that the filter is better at tracking the nonlinear

CTC model, which is essential if the innovations KF/GLR detector is to work.

In the next set of simulations, the following three detectors were compared: the

FDFE statistic, the KF/GLR innovations detector, and the KF/GLR innovations

energy detector. The parameter set given in Table 3.2 was used, and two different

values of k were considered. In both cases, the KF/GLR innovations detector had

the best performance, and was able to accurately differentiate the H0 and H1 models.

The KF/GLR innovations energy detector was comparable to the FDFE detector; as

the latter is simpler to implement, it would be preferable. The simulations indicate

that knowledge of the variance of the innovations is crucial to the performance of

the KF/GLR detector.



CHAPTER IV

Detection of the single spin in the discrete-time models

The detectors considered here can be placed into three categories: versions of

existing detectors that are currently in use for MRFM; LRTs; and approximations

to the LRT for the DT random telegraph (DTRT) and DT random walk (DTRW)

model.

The LRT is a most powerful test that satisfies the Neyman-Pearson criterion: it

maximizes the probability of detection (PD) subject to a constraint on the probability

of false alarm (PF ) [70], which is set by the user. Consequently, it can be used as a

benchmark with which to compare the other detectors.

Firstly, a recursive form of the LRT for a general DT Markov process whose

observations are perturbed by AWGN is presented. The derivation comes from [57].

We then extend it to derive a closed form of the LRT and also show that, under the

regime of low SNR, the LRT is approximately the matched filter statistic with the

one-step MMSE estimator used in place of the known signal values.

Next, we discuss the detectors that are currently used in MRFM experiments.

Approximations to the LRT for the DTRT model are then introduced: these will be

of the form of a filtered energy statistic. Lastly, we ascertain sufficient conditions

under which a certain class of DTRW models admits a filtered energy (FE) statistic

58
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approximation.

4.1 Likelihood ratio test for a Markov process in AWGN

4.1.1 Description

In this section, we shall consider a general Markov process and derive its LRT.

The formulas that provide an initial starting point are given in [57]. We shall use

the notation in [57]: while it is slightly different, the differences are superficial.

The hypothesis test is between H0 : zk = wk and H1 : zk = xk + wk, where

the observations are (zk)
N−1
k=0 . (Xk)

N−1
k=0 is a Markov sequence; let its state space be

denoted by Ψ = {ψ1, . . . , ψr}, where r is the number of possible values that Xk can

assume. Let P(k) be the probability transition matrix associated with the process

Xk at the k-th time step, so that P
(k)
ij = P (Xk = ψj|Xk−1 = ψi). Let f0(·) and f1(·)

be pdfs induced under hypothesis H0 and H1 respectively. Similarly, let Ei[·] denote

the expectation under hypothesis Hi for i = 0, 1. The noise is denoted by wk: for

the moment, we shall not specify its p.d.f.

4.1.2 Derivation of the LRT

Define pk, qk, rk ∈ R
r and Ω(k) ∈ R

r×r in the following way:

pk , [P (Xk = ψ1), . . . , P (Xk = ψr)]
T

qk , [P (Xk = ψ1|zk−1), . . . , P (Xk = ψr|zk−1)]T

rk , [P (Xk = ψ1|zk), . . . , P (Xk = ψr|zk)]T

Ω(k) , diag

[
f1(zk|Xk = ψ1, z

k−1)

f1(zk|zk−1)
, . . . ,

f1(zk|Xk = ψr, z
k−1)

f1(zk|zk−1)

]
(4.1)

where the vector notation is dropped for the sake of brevity. The variable pk is the

probability of states at the kth time; qk is the one-step prediction probabilities for

time k; rk consists of the filtered state probabilities at time k.
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Proposition 4.1. pTk = pTk−1P
(k)

Examine the j-th element of pk:

P (Xk = ψj) =
r∑

i=1

P (Xk = ψj|Xk−1 = ψi)P (Xk−1 = ψi)

= pTk−1

(
j-th column of P(k)

)
�

Proposition 4.2. qTk = rTk−1P
(k)

Examine the j-th element of qk. By the Markov assumption,

P (Xk = ψj|zk−1) =
r∑

i=1

P (Xk = ψj|Xk−1 = ψi, z
k−1)P (Xk−1 = ψi|zk−1)

= rTk−1




P (Xk = ψj|Xk−1 = ψ1)

...

P (Xk = ψj|Xk−1 = ψr)




= rTk−1

(
j-th column of P(k)

)
�

Proposition 4.3. rTk = qTk Ω(k)

Under H1 [57] (39):

P (Xk = ψj|zk) =
f1(zk|Xk = ψj, z

k−1)P (Xk = ψj|zk−1)

f1(zk|zk−1)
�

Define the likelihood ratio statistic LN−1(z
N−1) and the transition likelihood ratio

l(zk|zk−1) as:

LN−1(z
N−1) =

f1(z
N−1)

f0(zN−1)
=

N−1∏

k=1

l(zk|zk−1) · L0(z
0)where

l(zk|zk−1) =
f1(zk|zk−1)

f0(zk|zk−1)
(4.2)
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We shall now specialize to the case where the noise wk are independent Gaussian

r.v.s with variance Rk. Then,

f1(zk|Xk = ψj, z
k−1) ∼ ϕ(zk;ψj, Rk)

f0(zk|zk−1) ∼ ϕ(zk; 0, Rk)

where ϕ(x;µ, σ2) , exp[−(x− µ)2/2σ2]/
√

2πσ.

Let πj = P (X0 = ψj) for j = 1, . . . , r. Define nk, π ∈ R
r and H(k) ∈ R

r×r as:

nk , [ϕ(zk;ψ1, Rk), . . . , ϕ(zk;ψr, Rk)]
T

π , [π0, . . . , πr]
T

H(k) , diag(nk)/ϕ(zk; 0, Rk)

= diag

[
ϕ(zk;ψ1, Rk)

ϕ(zk; 0, Rk)
, . . . ,

ϕ(zk;ψr, Rk)

ϕ(zk; 0, Rk)

]
(4.3)

From Props. 4.2 and 4.3,

(4.4) qTk = rTk−1P
(k) = qTk−1Ω

(k−1)P(k).

But

Ω(k−1) =
f0(zk−1|zk−2)

f1(zk−1|zk−2)

diag(nk−1)

f0(zk−1|zk−2)

=
1

l(zk−1|zk−2)
H(k−1)

=⇒ l(zk|zk−1) =
qTk nk

ϕ(zk; 0, Rk)

=
qTk−1H

(k−1)P(k)nk

ϕ(zk; 0, Rk)
· 1

l(zk−1|zk−2)
(4.5)

We notice that the (k−1)-th transition likelihood ratio appears in the denominator

of the RHS expression of (4.5). This suggests a cancellation effect when forming

LN−1(z
N−1); see (4.2). Indeed, that is the case. One obtains:

(4.6) LN−1(z
N−1) = πTH(0)P(1)H(1) . . .H(N−1)1
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This is a nice, compact expression for the LRT of a general DT Markov process.

A recursive form of the LRT can be written based on the previous results. Let q0 =

p0, as the definition of qk only makes sense for k ≥ 1. Then, L0(z
0) = f1(z0)/f0(z0) =

qT0 n0/ϕ(z0; 0, R0), which is the same form that l(zk|zk−1) assumes in (4.5). The log

LRT is

(4.7) logLN−1(z
N−1) =

N−1∑

k=0

log
qTk nk

ϕ(zk; 0, Rk)

The qk’s can be computed recursively by using (4.4) and noticing that Ω(k) =

diag(nk)/(q
T
k nk). It follows that

(4.8) qTk = qTk−1

diag(nk−1)

qTk−1nk−1

P(k)

4.1.3 The LRT under low SNR

Let us consider the log LRT: from (4.2) and (4.5),

logLN−1(z
N−1) =

N−1∑

k=1

log l(zk|zk−1) + log

(
f1(z0)

f0(z0)

)

Each transition likelihood ratio can be simplified as follows:

l(zk|zk−1) =
r∑

i=1

P (Xk = ψi|zk−1) exp

[
− 1

2Rk

(−2zkψi + ψ2
i )

]

≈
r∑

i=1

P (Xk = ψi|zk−1)

(
1 +

1

Rk

zkψi −
1

2Rk

ψ2
i

)

= 1 +
1

Rk

zkE1[Xk|zk−1] − 1

2Rk

E1[X
2
k |zk−1](4.9)

where the approximation eδ ≈ 1+δ for small δ. Next, we shall use the approximation

log(1 + δ) ≈ δ for small δ. This is justified if the SNR is low so that |ψi/
√
Rk| � 1

for all i = 1, . . . , r. So

(4.10) log l(zk|zk−1) ≈ 1

Rk

zkE1[Xk|zk−1] − 1

2Rk

E1[X
2
k |zk−1], k ≥ 1
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As well, the same approximation can be applied to logL0(z
0), so that

(4.11) logL0(z0) ≈
1

R0

z0E[X0] −
1

2R0

E[X2
0 ].

Define the MMSE estimator of Xk as follows: x̂k = E1[Xk|zk−1] for k ≥ 1 and

x̂0 = E[X0]. Use a similar notation for X2
k , so that x̂2

0 = E[X2
0 ] and x̂2

k = E1[X
2
k |zk−1]

for k ≥ 1. Using (4.10) and (4.11), the log LRT can be approximately written under

low SNR as

(4.12) logLN−1(z
N−1) ≈

N−1∑

k=0

1

Rk

zkx̂k −
1

2

N−1∑

k=0

1

Rk

x̂2
k

The right hand side of (4.12) is similar to the matched filter statistic, but with the

MMSE estimates of Xk and X2
k used instead. The CT analog was discussed in the

previous chapter—see (3.1). There is a noteworthy difference: in the second term,

the expected value of X2
k conditioned on the past observations is used vs. the square

of the expected value of Xk conditioned on the past observations. In general, for

k ≥ 1, E1[X
2
k |zk−1] 6= (E1[Xk|zk−1])2. Indeed, for a r.v. X,

(4.13) E[X2] = (E[X])2 iff var(X) = 0,

By the Chebyshev inequality, for δ > 0, P [|X − E[X]| ≥ δ] ≤ var(X)/δ2 = 0.

So (4.13) holds iff X is some value c ∈ R w.p. 1. As a result E1[X
2
k |zk−1] =

(E1[Xk|zk−1])2 iff Xk is a function of zk−1 w.p. 1.

The result (3.1) in CT is exact, while in the DT case, we have only shown that

(4.12) approximately holds under low SNR.

In [58], it is shown that in detecting a finite state Markov process, the LR is

in general not expressible as the known form LR with an estimator of xk, i.e., the

RHS of (4.12). For the detection of Gauss-Markov processes, [58] derives a “locally

stable estimator” of xk such that the LR can be expressed as a known form LR. A
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r-dimensional Gauss-Markov process Xk is one that is generated by the following

equation

(4.14) Xk = AXk−1 +Wk, k ≥ 1

where A ∈ R
r×r, Wk ∼ ϕ(wk; 0,Qk) are independent Gaussian random vectors, and

X0 ∼ ϕ(x0; 0,P0) for some positive definite matrix P0.

4.2 Detectors currently used in MRFM experiments: the amplitude,
energy, and filtered energy detectors

The DT amplitude detector is

(4.15)

∣∣∣∣∣
1

N

N−1∑

i=0

zi

∣∣∣∣∣

H1

≷

H0

η

where η is set to satisfy the constraint on PF . This is the optimal test under the

assumption that zi is the sum of an unknown constant and AWGN. This assump-

tion would be true if there were no random spin flips. In this case, the amplitude

detector is simply a MF detector. However, as the number of random transitions

in zi increases, the performance of the amplitude detector degrades. An alternative

test statistic is the DT signal energy, i.e., the sum of the squares of the zi instead

of the magnitude of the sum in (4.15). As the signal and noise are assumed to be

independent, under hypothesis H1, one would expect z = [z0, . . . , zN−1]
T to have a

higher energy on average than under hypothesis H0. This can be reliably detected

under a sufficiently high SNR. A natural improvement to the energy detector is to

reject out-of-band noise by prefiltering z over the signal passband. As the signal Xi

is baseband, a LPF is appropriate. In particular, one might use a simple first-order,
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single-pole filter given by

(4.16) HLP(z) =
1 − α

2

1 + z−1

1 − αz−1

where we require |α| < 1 for stability [47]. The time constant α should be chosen

based on the bandwidth of the signal; if ωc is the desired −3 dB bandwidth of the

filter, one should set α = (1 − sinωc)/ cosωc. The −3 dB bandwidth depends on

the mean number of transitions, i.e., (1− p)/Ts for the DT random telegraph model.

Note that this LPF is the same that was used to benchmark the KF/GLR detector

for the CTC model, cf. (3.3). When the transition probabilities are symmetric,

(1 − p)/Ts corresponds to the mean number of transitions per second λ of the CT

random telegraph model. Given a value p = q = p0, one can equate the expected

number of transitions in both DT and CT models to obtain λ = (1 − p0)/Ts. In

practice, since the mean number of transitions is only approximately known to the

experimenter, a bank of LPFs with different α’s are used to perform detection [54].

The energy and filtered energy detector can then be expressed as

(4.17)
N−1∑

i=0

(z ∗ h)2
i

H1

≷

H0

η

where “∗” represents the convolution operator. For the energy detector, hi is taken

to be the unit impulse function δ[i], while for the filtered energy detector, hi = hLP[i],

the impulse response of HLP(z) in (4.16).

Note that the computational complexity for the amplitude, filtered energy, and

energy detectors is O(N).
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4.3 LRT for the Discrete-time random telegraph model

4.3.1 The LRT

One can use the formulas (4.7) and (4.8) and specialize to the DTRT model. For

ψ ∈ Ψ, let qk(ψ) = P (Xk = ψ|zk−1) for k ≥ 1 and q0(ψ) = P (X0 = ψ). Applying

the aforementioned equations results in the LRT being

(4.18) Λrt =
N−1∏

i=0

[
qi(A)e

A

σ2 zi + qi(−A)e−
A

σ2 zi

]
H1

≷

H0

η

where q0(A) = q0(−A) = 1/2 and qi(A) and qi(−A) can be computed for i ≥ 1 by

using



qi(−A)

qi(A)


 = PT

rt




1 − #

#


 where

# =
e

A

σ2 zi−1qi−1(A)

e
A

σ2 zi−1qi−1(A) + e−
A

σ2 zi−1qi−1(−A)
(4.19)

Note that q0(A) = q0(−A) = 1/2 arises from the fact that we assume the initial spin

state is equally likely to be either ±A. From (4.18) and (4.19), the running time of

the LRT for the DTRT is O(N).

Under low SNR conditions (|A/σ| � 1), the log LRT becomes

log Λrt ≈
N−1∑

i=0

log

[
qi(A)(1 +

A

σ2
zi) + qi(−A)(1 − A

σ2
zi)

]

=
N−1∑

i=0

log

[
1 +

1

σ2
zi(Aqi(A) − Aqi(−A))

]

where we use the approximation eδ ≈ 1 + δ for small δ. Now, Aq0(A) − Aq0(−A) =

E1[X0] = x̂0 and Aqi(A)−Aqi(−A) = E1[Xi|zi−1] = x̂i for i ≥ 1, i.e., it is the MMSE

predictor of Xi given the past observations.

∴ log Λrt ≈
N−1∑

i=0

log

(
1 +

1

σ2
zix̂i

)
≈ 1

σ2

N−1∑

i=0

zix̂i(4.20)
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where the approximation log(1 + δ) ≈ δ for small δ was used. Under low SNR, the

LRT is effectively correlating the observations zi with the MMSE predictor of Xi.

This is the matched filter statistic with the MMSE predictor substituted in place

of the “known” values of Xi, and is known as the estimator-correlator detector. In

particular, the estimator-correlator structure is known to be optimal for Gaussian

signals in AWGN [58].

This result is consistent with the approximation (4.12) that was earlier derived

for a general Markov process in AWGN. Since |ψ1| = |ψ2| = A, x̂2
i = A2 ∀ i. So the

second term in (4.12) will become a constant independent of the observations and

can be omitted.

4.3.2 Approximate second order expansion of the LRT

Under the regime of low SNR, long observation time (N � 1), and the probability

of transition between consecutive samples is small (p + q ≈ 2), the second order

expansion of log Λrt is approximately equal to the hybrid detector with test statistic

(4.21)
∑

i

(zi ∗ hLP[i])2 +Ka

∑

i

zi +Ke

∑

i

z2
i

where Ka = Ka(p, q, A, σ) and Kb = Ke(p, q) are constants independent of the data.

Therefore, in the aforementioned regime, one expects the hybrid detector to have

performance similar to the optimal LRT. When p = q, the second order expansion of

the LRT is approximately equal to the filtered energy detector considered in (4.17).

See Appendix A for more details. In light of the computation complexities for the

filtered energy, energy, and amplitude statistics, the complexity of the hybrid detector

is also O(N).
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4.4 LRT for the Discrete-time random walk model

Consider a random walk process with r states ψ1, . . . , ψr. Let P be its probability

transition matrix. Let the set of all such random walks (equivalently the set of all

such matrices P) be denoted by Rr. In this section, we shall only consider random

walks in a subset Rr
0 ⊆ Rr that have the following properties:

1. it has no self-loops, i.e., it is not possible to remain in the same state for two

consecutive times ⇐⇒ pii = 0 for all 1 ≤ i ≤ r

2. when in state ψk, 1 < k < r, it is possible to reach either ψk−1 or ψk+1 with

non-zero probability ⇐⇒ pi,i−1 > 0 and pi,i+1 > 0 for all 1 < i < r

3. when in state ψ1 (ψr), the random walk must proceed to ψ2 (ψr−1), i.e., “re-

flecting” boundary conditions ⇐⇒ p1,2 = 1 and pr,r−1 = 1

4. there exists a stationary probability distribution pss ∈ R
r such that (s.t.) lim pj =

pss

As with the DTRT model, the LRT for the DTRW model can be written by

applying the formulas (4.7) and (4.8). Let Λrw denote the LRT for the DTRW

model.

We will obtain an approximate form for the LRT of random walks in R0 =
⋃∞
r=2 Rr

0

under the same two conditions considered for the random telegraph, i.e., the regime

of low SNR and long observation time. The notation from the previous section will

be retained. The matrix results used in this section are covered in Appendix B.



69

4.4.1 First and second-order moments

First moment

Let us compute the first moment of the observations Zj under the H1 hypothesis.

Now, E1[Zj] = E[Xj + Wj] = E[Xj] since the noise process is zero-mean. But

E[Xj] =
∑r

n=1 P (Xj = ψn)ψn = pTj Mψ1, where Mψ , diag(ψ1, . . . , ψr). Also,

pTj = πTPj for j ≥ 0. Putting it together:

(4.22) E1[Zj] = πTPjMψ1 for j ≥ 0

Note that the first moment, in general, depends on the time index j. Consequently,

it is not stationary. By assumption, however, lim pj = pss. So limE1[Zj] = pTssMψ1.

In other words, the first moment is approximately stationary if we wait for a while

after the start of the process. In addition, limE1[Zj] = 0 ⇐⇒ pTssMψ1 = 0.

Second moment

Here, evaluate E[ZjZk]. Consider two cases.

Case 1: j = k. Then, E1[Z
2
j ] = E[(Xj +Wj)

2] = E[X2
j ] + E[W 2

j ] since the noise

process is independent of the random walk and is zero-mean. Assume that Rj = σ2

for all j. Then, E1[Z
2
j ] = E[X2

j ]+σ
2. Now, E[X2

j ] =
∑r

n=1 P (Xj = ψn)ψ2
n = pTj M

2
ψ1,

which results in:

E1[Z
2
j ] = pTj M

2
ψ1 + σ2 = πTPjM2

ψ1 + σ2

Case 2: j 6= k. Suppose for now that j < k. Then, E1[ZjZk] = E[XjXk],

since the noise process is independent and identically distributed (i.i.d.). Using

conditional expectation, one can show that when j < k, E[XjXk] = pTj MψP
k−jMψ1.

So E1[ZjZk] = πTPjMψP
k−jMψ1. In general then,

E1[ZjZk] = πTPmin(j,k)MψP
|j−k|Mψ1
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Combining the results of both cases:

(4.23) E1[ZjZk] =





πTPjM2
ψ1 + σ2 j = k

πTPmin(j,k)MψP
|j−k|Mψ1 j 6= k

We see that the second moment of the observations is not stationary either. However,

using lim pj = pss, we obtain:

(4.24) lim
min(j,k)→∞

E1[ZjZk] =





pTssM
2
ψ1 + σ2 j = k

pTssMψP
|j−k|Mψ1 j 6= k

As with the first moment, the second moment is approximately stationary if we wait

for a while after the process starts.

4.4.2 Approximate second order expansion of the LRT

Start with (4.6) from the previous section, which is:

LN−1(z
N−1) = πTH(0)P(1)H(1) . . .P(N−1)H(N−1)1

Since we are considering the random walk whose transition matrix does not change

over time: P(1) = . . . = P(N−1) = P. Assume that Rk = σ2 for 0 ≤ k ≤ N − 1.

Then,

H(k) = diag

[N (zk;ψ1, Rk)

N (zk; 0, Rk)
, . . . ,

N (zk;ψr, Rk)

N (zk; 0, Rk)

]

= diag

[
exp

(
2zkψ1 − ψ2

1

2σ2

)
, . . . , exp

(
2zkψr − ψ2

r

2σ2

)]

≈ diag
[
e−ψ

2
1/2σ

2
(
1 + ψ1

zk
σ2

)
, . . . , e−ψ

2
r/2σ

2
(
1 + ψr

zk
σ2

)]
(4.25)

where the last statement is justified by using the low SNR assumption so that |ψj

σ
| �

1 for 1 ≤ j ≤ r and applying the approximation eδ ≈ 1 + δ for small δ. Define the

matrices

Mψ1 , diag(e−ψ
2
1/2σ

2

, . . . , e−ψ
2
r/2σ

2

)

Mψ2 ,
1

σ
Mψ = diag(

ψ1

σ
, . . . ,

ψr
σ

)



71

Using (4.25), H(k) ≈ Mψ1(I + zk

σ
Mψ2). If we define

Q , PMψ1 ≈ P

(
I − 1

2σ2
M2

ψ

)
(4.26)

R , PMψ1Mψ2 = QMψ2(4.27)

then PH(k) ≈ Q + zk

σ
R.

Some comments are in order regarding the matrices P and Q before proceeding.

We shall see in the following equations that both these matrices play a crucial role in

the approximate form of the LRT. The reason why we have restricted the analysis to

a certain subset of probability transition matrices P is that its eigendecomposition

is well characterized. Because Q assumes the same structure as P, it too is nicely

characterized. Two of its properties are briefly mentioned: first, if the additional

assumption that ψ2, ψr−1 6= 0, then by Prop. B.13, the eigenvalues of Q are strictly

less than 1 in absolute value. Second, by Prop. B.14, the eigenvalues of Q can be

made arbitrarily close to P by decreasing the SNR. This is not a surprising result,

as Mψ1 → I as the SNR decreases to zero.

For N ≥ 3,

LN−1(z
N−1) ≈ πTH(0)

N−1∏

j=1

(
Q +

zj
σ

R
)

1

(4.28)

≈ πTH(0)

{
QN−1 +

1

σ

∑

j

zjQ
j−1RQN−1−j

+
1

σ2

∑

j<k

zjzkQ
j−1RQk−1−jRQN−1−k

}
1

= πTH(0)QN−11 +
1

σ

N−1∑

j=1

zjπ
TH(0)Qj−1RQN−1−j1

+
1

σ2

∑

1≤j<k≤N−1

zjzkπ
TH(0)Qj−1RQk−1−jRQN−1−k1 + h.o.t.
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Using the approximation for H(0) in (4.28) and re-grouping:

LN−1(z
N−1) ≈ πTMψ1Q

N−11 +
z0

σ
πTMψ2Q

N−11 +
N−1∑

j=1

zj
σ
πTMψ1Q

j−1RQN−1−j1

(4.29)

+
N−1∑

j=1

z0zj
σ2

πTMψ2Q
j−1RQN−1−j1+

+
∑

1≤j<k≤N−1

zjzk
σ2

πTMψ1Q
j−1RQk−1−jRQN−1−k1 + h.o.t.

The first term in (4.29) is a constant and plays no role in the test statistic.

Consequently, we can ignore it. From here onwards, only the terms of second-order

or less are retained.

One crucial tool that will be used here is the eigendecomposition of Q. Under the

small SNR assumption, |ψj

σ
| � 1 ⇒ ψ2

j/2σ
2 < 1 for all 1 ≤ j ≤ r. Apply Prop. B.6

to Q with Dδ = 1
2σ2M

2
ψ. Then, Q has eigenvalues κ1, . . . , κr which satisfies the first

two statements of Prop. B.5. As a result, Q is diagonalizable. Consequently, we can

write Q = UQΛQU−1
Q , where UQ is a matrix which contains the eigenvectors of Q

and ΛQ = diag(κ1, . . . , κr), where κ1 > . . . > κr. Let κ′n , κn/κ1. We can do this

since κ1 6= 0 by the second statement of Prop. B.5.

The key result is as follows. Suppose limE[Xj] = 0, and cjk = πTαΥ[j, k]d is

approximately a function of (k−j), where Υ[j, k] is defined in (C.6). Then, the LRT

is approximately

(4.30) LN−1(z
N−1) ≈

r∑

n=1

∑

j<k

Bn(κ
′
n)
k−jzjzk

for some constants Bn, n = 1, . . . , r. The filters for n = 2, . . . , (r − 1) can be ap-

proximated by the FE statistic given by (4.17), while the filters for n = 1, r can be

generated as second order polynomials in zi. For n ∈ {1, r}, |κ′n| = 1. The reader is

referred to Appendix C for more details.
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4.4.3 Discussion and comparison to the filtered energy detector

The conditions under which the random walk LRT can be realized by FE statistics

are discussed here. From (C.2) and (C.3), the first order terms of the random walk

LRT are unaccounted for in the filtered energy statistic. For it to “disappear”, we

require that limE1[Zj] = 0 ⇐⇒ limE[Xj] = 0, i.e., in steady-state, the expected

value of the random walk is zero. In Appendix C, we derived conditions for the

second order terms of the LRT to be approximated by a bank of filtered energy

statistics as well as by a single filtered energy statistic.

Necessary conditions for the FE statistic to approximate the LRT for a random

walk in R0 in the regime of low SNR and large N are:

1. limE1[Xj] = 0; if the states are symmetric about zero, then limE1[Xj] = 0 iff

the steady-state probability distribution is symmetric about zero

2. the coefficient cjk must be well approximated by an exponential function of the

form Cαk−j for some C, α ∈ R

Define

(4.31) M(u) ,
r∑

i=1

uλi
1 − uλi

wi,

where λis are the eigenvalues of P defined according to Prop. B.5, and wi is given

in (C.12). Suppose the necessary two conditions above exist. If the α in the second

condition satisfies

(4.32) M(α) � α

1 + α
limE[X2

j ]

then we have sufficient conditions for a single FE statistic to approximate the LRT.

It is perhaps surprising that the filtered energy statistic can, under certain condi-

tions, approximate the LRT of a certain class of random walks. However, in [80], it
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has been observed that as the SNR approaches 0, linear estimators of the CT (sym-

metric) random telegraph process in noise have performances that are comparable to

non-linear estimators. As estimation is intimately linked with detection—see [34, 35]

for CT and under low SNR, (4.12) for DT—this result suggests that simpler detec-

tors can be formulated that are approximately optimal. Indeed, the results that we

have presented so far lend strong evidence to this notion.

4.5 Simulations

The objective in this section is to compare the detection methods discussed in the

previous section. The class of LRT detectors is optimal for their respective signal

models, and provides a good benchmark for comparison. Comparison of the various

detectors is done using: (1) ROC curves, each of which is a plot of probability of

detection (PD) vs. probability of false alarm (PF ), and (2) power curves, each of

which is a plot of PD vs. SNR at a fixed PF . Some of the parameters used in the

simulation of the DT random telegraph and random walk models are as follows:

k = 10−3 Nm−1, ω0 = 2π ·104 rads−1, B1 = 0.2 mT, G = 2 ·106 Tm−1. The sampling

period was Ts = 1 ms, and signal durations of T = 60 s and T = 150 s were used.

The performance of the detectors varies as a function of T ; in general, a larger T

results in better performance. Values of T used in iOSCAR MRFM experiments are

on the order of tens of hours [54]. Nevertheless, the comparative results obtained

from using the two values of T above are representative of larger values. Indeed, our

approximations to the optimal detectors improve with increased T .

4.5.1 Discrete-time random telegraph model

First, consider the DT random telegraph. Figure 4.1 depicts the simulated ROC

curves at SNR = −35 dB, λ = 0.5 s−1, and with symmetric transition probabilities
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(p = q). With Ts = 1 ms, this results in p = q = 0.9995. We examine the matched

filter, DT random telegraph LRT (RT-LRT), filtered energy, hybrid, amplitude, and

unfiltered energy detectors. The RT-LRT, filtered energy, and hybrid detector curves

are virtually identical, which is consistent with our analysis. The unfiltered energy

and amplitude detectors have performance that is poorer than the RT-LRT, as it

should be since the RT-LRT is the optimal detector. The unfiltered energy detector

has the worst performance out of the five detector methods considered. Lastly, the

omniscient MF detector has the best performance.

A power curve was generated over a range of SNRs under the same conditions

as before with a fixed PF = 0.1; it is illustrated in Fig. 4.2. For spin detection,

an acceptable range for PF is on the order of 0.05 to 0.1. The RT-LRT, filtered

energy, and hybrid detector have similar performance from −30 dB to −45 dB. With

this particular value of PF and λ, the RT-LRT, filtered energy, and hybrid detector

perform from 5 dB to 10 dB worse than the MF detector. Although the amplitude

detector has worse performance than the RT-LRT and filtered energy detector, all

three have comparable performance at −45 dB.

Figure 4.3 shows the power curves generated using the bigger value of T = 150 s.

Again, the RT-LRT, filtered energy, and hybrid detectors have the same performance

from −30 dB to −45 dB. Note that the values of PD have increased as compared to

Fig. 4.2.

The ROC and power curve simulations were repeated with different values of λ,

and the same relative performance was observed. In the interest of space, however,

they will not be shown. Note that performance degrades as λ increases while Ts is

held constant.

In the second set of simulations, we investigate the case in which the transition
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Figure 4.1: Simulated ROC curves for the DT random telegraph model with symmetric transition
probabilities at SNR = −35 dB, T = 60 s, and λ = 0.5 s−1 for the omniscient matched
filter, DT random telegraph LRT (RT-LRT), filtered energy, hybrid, amplitude, and
unfiltered energy detectors. The RT-LRT is theoretically optimal.
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Figure 4.2: Simulated power curves (PD vs. SNR) for the DT random telegraph model with PF

fixed at 0.1 and λ = 0.5 s−1, T = 60 s. The RT-LRT is theoretically optimal.

probabilities are asymmetric, i.e., p 6= q. Consider the scenario where p = 0.9998,

q = 0.9992, and all of the other parameters values are unchanged. The ROC curves

for these parameter values are presented in Fig. 4.4. There is a noticeable differ-

ence between the curves of the RT-LRT and filtered energy detectors. The hybrid

detector’s curve is slightly below that of the LRT, and it is better than that of the

filtered energy detector. In fact, the filtered energy detector has worse performance
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Figure 4.3: Simulated power curves (PD vs. SNR) for the DT random telegraph model with PF

fixed at 0.1 and λ = 0.5 s−1, T = 150 s. The RT-LRT is theoretically optimal.

than the amplitude detector. An asymmetry in p, q leads to a non-zero mean signal,

which is why the amplitude detector’s performance improves. Indeed, for the DT

random telegraph model, limi→∞E[Xi] = A p−q
2−p−q = 0.6A for the values of p and q

used here. Asymmetric transition probabilities can arise in some situations, e.g., the

feedback-cooling-of-spins MRFM protocol proposed by Budakian [5].
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Figure 4.4: Simulated ROC curves for the DT random telegraph model with asymmetric transition
probabilities (p = 0.9998, q = 0.9992) at SNR = −45 dB, T = 150 s. The RT-LRT is
theoretically optimal.

Power curves from SNR = −55 dB to −35 dB were generated for the asymmetric
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case in Fig. 4.5. A larger value of T is required when p 6= q for the hybrid detector

to be a good approximation to the optimal LRT; hence, T = 150 s was used for sim-

ulations of the asymmetric random telegraph model. The hybrid detector has better

performance than the amplitude and filtered energy detectors. It has performance

that is comparable to the RT-LRT for lower SNR values.
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Figure 4.5: Simulated power curves (PD vs. SNR) for the DT random telegraph model with PF

fixed at 0.1, p = 0.9998, q = 0.9992, and T = 150 s. The RT-LRT is theoretically
optimal.

4.5.2 Discrete-time random walk model

Recall that for the DT random walk model, Prw is tridiagonal. For the simu-

lations, a particular subset of tridiagonal matrices was studied. Suppose for the

moment that M is even. Recall that the random walk Xi is confined to the in-

terval [−Ms,Ms]. Define the lower-quartile transition probabilities as pl,1, pl,2 and

the upper-quartile transition probabilities as pu,1, pu,2. Let P
(j,k)
rw be the (j, k)-th el-

ement of Prw. Here, we examine the performance of the detectors assuming the

following reflecting boundary conditions: P
(1,2)
rw = 1,P

(1,i)
rw = 0 for i 6= 2 and
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P
(2M+1,2M)
rw = 1,P

(2M+1,i)
rw = 0 for i 6= 2M . The rest of Prw is

(4.33) P(j,k)
rw =





pl,1 2 ≤ j < M/2 + 1, k = j − 1

pl,2 2 ≤ j < M/2 + 1, k = j + 1

0.5 M/2 + 1 ≤ j ≤ 3M/2 + 1, k = j ± 1

pu,1 3M/2 + 1 < j ≤ 2M,k = j − 1

pu,2 3M/2 + 1 < j ≤ 2M,k = j + 1

Let An(p1, p2) be a n× (n+ 2) matrix that looks like:

An(p1, p2) =




p1 0 p2

p1 0 p2

. . . . . . . . .

p1 0 p2




where the unspecified parts of the matrix are taken to be all zeros. In this section,

the following subset of transition matrices for the DT random walk was studied:

Prw =




0 1

AM
2
−1(pl,1, pl,2)

F

AM
2
−1(pu,1, pu,2)

1 0




,

where F = AM+1(0.5, 0.5). Note that since each row of a probability transition

matrix must sum to 1, one has pl,1 + pl,2 = 1 and pu,1 + pu,2 = 1.

In the case of M odd, the ranges for the indices j, k would change in an obvious

way. When pl,1 = pu,2 ⇐⇒ pl,2 = pu,1, we say that the transition probabilities are

symmetric, and if not, that they are asymmetric. The matched filter, DT random

walk LRT (RW-LRT), DT random telegraph LRT (RT-LRT), filtered energy, am-

plitude, and unfiltered energy detectors are compared. In order to run the RT-LRT
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in the case of the symmetric DT random walk, an average autocorrelation function

of the random walk was empirically generated; then p was selected (and one used

q = p) so that the autocorrelation function of the symmetric DT random telegraph

matched the empirical result. From this, the optimal α for the LPF of the filtered

energy detector was also obtained.

The ROC curves for two symmetric cases are illustrated in Figs. 4.6 and 4.7.

In the former, pl,1 = pl,2 = pu,1 = pu,2 = 0.5, while in the latter, pl,1 = pu,2 =

0.52 and pl,2 = pu,1 = 0.48. In both cases, the performance of the RW-LRT, RT-

LRT, and filtered energy detector are all approximately the same, i.e., the latter two

detectors are nearly optimal. When the transition probabilities of the DT random

walk are asymmetric, however, as in the case of Fig. 4.8, the DT random walk LRT

is noticeably better than the filtered energy detector.
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Figure 4.6: Simulated ROC curves for the DT symmetric random walk pl,1 = pl,2 = pu,1 = pu,2 =
0.5 at SNR = −39.9 dB, T = 60 s for the matched filter, RW-LRT, RT-LRT, filtered
energy, amplitude, and unfiltered energy detector. The RW-LRT is theoretically opti-
mal.

Let us consider why the RW-LRT in the two DT symmetric random walks are

well approximated by a filtered energy detector, whereas the DT asymmetric random

walk is not. The two symmetric walks satisfy the condition that limE[Xj] = 0,
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Figure 4.7: Simulated ROC curves for the DT symmetric random walk pl,1 = pu,2 = 0.52, pl,2 =
pu,1 = 0.48 at SNR = −37.4 dB, T = 60 s. The RW-LRT is theoretically optimal.
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Figure 4.8: Simulated ROC curves for the DT asymmetric random walk pl,1 = pu,1 = 0.45, pl,2 =
pu,2 = 0.55 at SNR = −41.0 dB, T = 60 s. The RW-LRT is theoretically optimal.

while the asymmetric walk does not. The steady state probability distribution of the

asymmetric walk is plotted in Fig. 4.9 below. We would not expect the LRT for the

asymmetric DTRW to be well approximated by a single FE statistic. Let us proceed

to check the second condition for the three DTRWs.

Plots of (ρTr∗ � ρ∗1), (ρT1∗ � ρ∗r), (ρT1∗ � ρ∗1), and (ρTr∗ � ρ∗r) were generated for

the three DT random walks. The case for the symmetric random walk with pl,1 =

pu,1 = 0.5 is illustrated in Fig. 4.10 below. We see that the largest element of the
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Figure 4.9: Steady state probability distribution of the DT asymmetric random walk pl,1 = pu,1 =
0.45 and pl,2 = pu,2 = 0.55.
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Figure 4.10: Plots of a: (ρT
1∗�ρ∗1), b: (ρT

r∗�ρ∗r), c: (ρT
r∗�ρ∗1), d: (ρT

1∗�ρ∗r) for the DT symmetric
random walk with pl,1 = pu,1 = 0.5.

vectors (ρT1∗ � ρ∗1) and (ρTr∗ � ρ∗r) are approximately four orders of magnitude larger

than the largest element of the vectors (ρTr∗ � ρ∗1) and (ρT1∗ � ρ∗r). Condition (C.19)

is therefore satisfied; we obtained i = 2 and κ′
2 = 0.999601. The plot of M(α) is

depicted in Fig. 4.11, and at α = 0.999601, M(α) is well above the steady state

expected energy of the DTRW. So (C.15) is also satisfied. Since limE[Xj] = 0,
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sufficient conditions for the LRT of the DTRW in consideration to be approximated

by a single FE statistic do indeed hold.
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Figure 4.11: Plot of M(α) for the DT symmetric random walk with pl,1 = pu,1 = 0.5

Next, we examine the same four plots for the symmetric random walk with pl,1 =

0.52, pu,1 = 0.48. They are given in Fig. 4.12. Like the previous case, the plots show
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Figure 4.12: Plots of a: (ρT
1∗�ρ∗1), b: (ρT

r∗�ρ∗r), c: (ρT
r∗�ρ∗1), d: (ρT

1∗�ρ∗r) for the DT symmetric
random walk with pl,1 = 0.52, pu,1 = 0.48.

that (ρT1∗�ρ∗1) and (ρTr∗�ρ∗r) are more “dominant” than (ρT1∗�ρ∗r) and (ρTr∗�ρ∗1).

The value of i = 2 was obtained, which corresponded to κ′
2 = 0.999866. The plot
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of M(α) is given in Fig. 4.13, and at α = 0.999866, the plot is several orders of

magnitude larger than the steady state expected energy. So both (C.19) and (C.15)

are satisfied for this case, and we expect a single FE statistic to approximate the

RW-LRT quite well. Figure 4.7 is in agreement with this expectation.
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Figure 4.13: Plot of M(α) for the DT symmetric random walk with pl,1 = 0.52, pu,1 = 0.48

Lastly, the plots for the asymmetric random walk with pl,1 = pu,1 = 0.45 are given

in Fig. 4.14. While the condition that the two “symmetric” vectors (ρT1∗ � ρ∗1) and
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Figure 4.14: Plots of a: (ρT
1∗ � ρ∗1), b: (ρT

r∗ � ρ∗r), c: (ρT
r∗ � ρ∗1), d: (ρT

1∗ � ρ∗r) for the DT
asymmetric random walk with pl,1 = pu,1 = 0.45.



85

(ρTr∗ � ρ∗r) are dominant is satisfied, condition (C.19) is not. As was pointed out

before, because limE[Xj] 6= 0, one would not expect a single FE statistic to well

approximate the RW-LRT. In Fig. 4.8, we see that this is indeed the case. It is

interesting that the amplitude statistic has good performance—indeed, better than

the filtered energy statistic. This might indicate that the violation limE[Xj] 6= 0 is

more pertinent than (C.19) in this case.

4.6 Conclusion

In this chapter, we studied the detection of a DT finite state Markov process in

AWGN. From the work of [57], which contained recursive equations of the optimal

LRT, we derived a closed form expression for the LRT. Under low SNR, we showed

that the LR takes the form of the matched filter statistic, but with the one-step

MMSE predictor used instead of the known signal value. This parallels the result

in CT, which is given by (3.1). There are two differences: (1) E1[X
2
k |zk−1] is used

vs. (E1[Xk|zk−1])2; (2) the DT result is an approximation, whereas the CT result is

exact.

A second order approximation to the LRT for the DT random telegraph model

was obtained under the conditions of low SNR, long observation time, and small

probability of transition between two consecutive time instances. The approximation

is a hybrid statistic that combines the FE, amplitude, and energy statistics. When

the transition probabilities are symmetric, the LRT is approximately equal to the

FE statistic. This is an intuitively pleasing result; in the presence of the DT random

telegraph signal, one would expect a higher energy statistic. It is also natural to filter

the observation with an appropriate filter before computing the energy statistic; as

the DT random telegraph is a lowpass signal, a LPF is desirable. The approximation
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tells us that a first-order LPF is adequate, which is surprising, as one would expect

“sharper” LPFs to work better.

Next, the detection of a certain class of DT random walks was considered. A

second order approximation to the LRT was derived, and conditions obtained for the

LRT to be approximated by a bank of filtered energy statistics as well as by a single

filtered energy statistic.

Lastly, simulations were performed. They are in excellent agreement with the

analysis.



CHAPTER V

Sparse image reconstruction

5.1 Introduction

In most image reconstruction problems, the images of interest are not directly

observable. Instead, one observes a transformed version of the image, possibly cor-

rupted by noise. In the general case, the estimation of the so-called original image

from the noisy, blurred image can be regarded as a simultaneous deconvolution and

denoising problem. Intuitively, a better reconstruction can be obtained by incor-

porating knowledge of the original image into the reconstruction algorithm. The

MRFM image reconstruction problem is different from most other types of imaging

problems. The difference lies in the sparsity of the image of interest. As we are

interested in imaging molecules, most of the image values will be zero, indicating

empty space. Only a few elements will be non-zero, indicating the presence of spin

centres. Sparse images also appear naturally in radioastronomy.

In this chapter, the images of interest to be reconstructed are assumed to be

sparse and positive valued. No other prior knowledge will be assumed. We consider

the model where the observation is a linear transformation of the original image, and

corrupted by additive white Gaussian noise (AWGN). Note that the reconstruction

methods mentioned here can also be used to solve the sparse denoising problem with

87
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coloured Gaussian noise. We consider two issues. Firstly, what is a good sparse

prior or penalty, and is there a way to design this? Secondly, given a prior or

penalty parameterized by tuning parameters, which shall be called hyperparameters,

how does one choose or learn them? The chapter proposes several sparse image

reconstruction in attempting to answer these two questions.

There are several existing methods that address the sparse image reconstruction

problem. The first is sparse Bayesian learning (SBL) [76]. The voxels to be estimated

are modelled as independent, zero-mean Gaussian random variables (r.v.s), each

with an unknown variance. The unknown variances in the image prior are learned

empirically. The p.d.f. of the observation conditioned on the prior variances can

be obtained in closed form. Then, marginal maximum likelihood (MML) is used

to learn the prior variances. This empirical Bayes approach does not require any

manual tuning. The second existing method is the estimator formed by maximizing

the penalized likelihood criterion with a l1 penalty on the original image values [1, 68].

The aforementioned error criterion is known to promote sparsity in the estimate [13,

22]. This estimator shall be called the L1 estimator; it is also known as the LASSO

estimator. For the L1 estimator, one must choose a suitable regularization parameter.

We primarily consider the l1 norm penalty and the sparse prior used in the em-

pirical Bayes denoising (EBD) method of [33]. For a fixed thresholding rule that

satisfies certain conditions, it can be shown that the iterative thresholding frame-

work proposed in [19, 10] minimizes a convex cost function in a monotone fashion.

This permits the design of a sparse prior/penalty via selection of a good threshold-

ing function. Three methods of estimating the hyperparameters are investigated:

marginal MML, maximum a posterior (MAP), and Stein’s unbiased risk estimate

(SURE). Several reconstruction methods are proposed based on these three meth-
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ods.

In EBD, the sparse prior which consists of a weighted average of a Laplacian

p.d.f. and an atom at zero (LAZE) was used. The hyperparameters of the LAZE prior

are estimated via MML. SBL also estimates its hyperparameters using MML. In this

chapter, EBD, which only performs denoising, is extended to perform simultaneous

deconvolution and denoising by using a plug-in estimator. This method will be

referred to as EBD-LAZE. The LAZE prior is also used to produce a MAP estimator.

The next two estimators are maximum penalized likelihood (MPL) estimators

with penalty functions that encourage sparsity, e.g., the l1 norm penalty. The tuning

parameters in the MPL estimators are estimated by minimizing SURE of the l2

risk between the transformed image (i.e., the linear transformation applied to the

original image) and the estimated transformed image. The method when applied

to the L1 estimator is called L1-SURE. The hybrid hard-soft (HHS) thresholding

function that appeared in the MAP solution obtained with the LAZE prior is used

to derive a penalty term. The tuning parameters of the penalty term can also be

estimated via SURE, which results in an estimator that will be called HHS-SURE.

A simulation study was conducted comparing: SBL; the standard and projected

Landweber iteration; and the proposed reconstruction methods.

5.2 Problem formulation

In image reconstruction problems, the image is typically a 2-dimensional or 3-

dimensional array. By enumerating the elements of the array in a fashion, one

can equivalently represent the image by a vector. Without loss of generality, then,

we shall take the observation y ∈ R
N . Let θ be the image that we would like to

reconstruct. Similarly, without loss of generality, let θ ∈ R
M .
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Consider the conditional probability density of y given θ, i.e., p(y|θ), or equiva-

lently the density of y parameterized by θ, i.e., p(y; θ). Suppose that we would like

to estimate θ under the condition that it is sparse, i.e., most of the values of θi are

zero. This chapter examines the case when p(yi; θ), 1 ≤ i ≤ N represents a sequence

of independent Gaussian r.v.’s. Let

(5.1) yi ∼ N (hTi θ, σ
2)

where N (µ,Σ) is the Gaussian distribution with mean µ and covariance matrix Σ.

The model can be more familiarly written as

(5.2) y = Hθ + w, where w ∼ N (0, σ2I),

with H , (h1|h2| . . . |hN)T . Note that w represents AWGN, and H ∈ R
N×M .

If H had full column rank, (HTH) would be invertible, and (5.2) could be re-

written as

(5.3) ỹ = θ + w̃, where w̃ ∼ N (0, σ2H†(H†)T )

where ỹ , H†y; H† , (HTH)−1HT is the pseudo-inverse of H; and w̃ , H†w is

coloured Gaussian noise. In this case, (5.2) would be equivalent to denoising θ in

coloured Gaussian noise. If H were orthonormal, the estimation of θ in (5.2) would

be a denoising problem in i.i.d. Gaussian noise.

It should be noted that, while the sparsity considered here is in the natural (am-

plitude) domain of the image θ, the results here are applicable where sparsity is

present in some other domain, e.g., in an appropriate wavelet basis [12].

5.3 Discussion of model

We shall discuss the validity of the linear model (5.2) in this section. This chap-

ter assumes that the four conditions under which the MRFM vertical tip psf was
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derived in section 2.3 hold. Then, in the noiseless scenario, the observation is given

by y = Hθ. The matrix H implements convolution with the cantilever tip psf

H(x, y, z), e.g., for the vertical tip, H(x, y, z) is given by (2.14).

Later on, in the derivation of the SURE expressions for the L1 estimator and

the MPLE based on the cost function derived from the HHS thresholding function,

the assumption of linear independence of the columns of H is made. This is an

observability assumption, in that knowing y is sufficient information to uniquely

solve for θ. If the noiseless system were not observable, then multiple θ have the

ability to produce the observation y. Ideally, one would like to have many more rows

of H than columns, i.e., N �M . That is, a desirable situation is for the dimension

of the projection of the observations to be greater than the number of observations.

When N � M , the linear independence condition is not that restrictive. The other

proposed methods in this chapter do not use the linear independence assumption.

Consider the i.i.d. Gaussian noise model used in (5.2). One of the assumptions

used in deriving the MRFM vertical tip psf in section 2.3 was that energy-based

measurements are used. In the previous chapter, we showed the optimality, under

certain conditions, of the filtered energy statistic in detecting a DT random tele-

graph signal in AWGN. There is therefore strong justification for using energy-based

measurements. In the experiment that uses the iOSCAR detection protocol, the

measurements yi are taken according to the schematic illustrated in Fig. 5.1 below.

The clock signal used in the generation of the in-phase and quadrature-phase signals

sI(t) and sQ(t) respectively come from the pulses of the rf field B1(t).

Among the sources of noise are: noise due to the phase-lock loop (PLL), noise

from the interferometer measurements, and system thermal noise. The major noise

contributor is the PLL, and its phase noise can be characterized as approximately
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Figure 5.1: Schematic of energy-based measurements for image reconstruction under iOSCAR.

narrowband Gaussian around the bandwidth of interest. Note that there are addi-

tional filters not shown in the schematic.

Let us compute the output yi in the absence of the MRFM psf. For simplicity,

make the following assumptions:

1. The noise variance in the samples of the in-phase and quadrature-phase signals

sI(t) and sQ(t) is unity.

2. There are no random spin flips.

3. Ignore the effect of the LPF, which will introduce correlation across the samples.

Let Gi, 1 ≤ i ≤ M denote i.i.d. Gaussian r.v.s Gi ∼ N (0, 1). Under the above

assumptions, the output of the lower branch of Fig. 5.1 after M samples is
∑M

i=1G
2
i .

We recognize this quantity as a central chi-squared r.v., i.e.,

(5.4)
M∑

i=1

G2
i = χ2

M .

Under the same assumption, the upper branch of Fig. 5.1 is
∑M

i=1(Gi+δi)
2, where the

δis denote the telegraph signal induced by the iOSCAR protocol. This is a noncentral
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chi-squared r.v. with noncentrality parameter λ =
∑M

i=1 δ
2
i .

(5.5)
M∑

i=1

(Gi + δi)
2 = χ2

M(λ)

The difference between the upper and lower branch statistics is the observed quantity

yi, so

(5.6) yi ≈
M∑

i=1

(Gi + δi)
2 −

M∑

i=1

G2
i = λ+ 2

M∑

i=1

δiGi ∼ N (λ, 4λ).

One sees that yi has a Gaussian density where the mean and variance are related.

The latter fact is not used in the formulation of the linear model (5.2). Assuming

that the PLL phase noise is stationary in time leads to the wis in the linear model

being i.i.d. Gaussian.

For large M , an asymptotic approximation exists for the central chi-squared r.v.:

χ2
M → N (M, 2M) as M → ∞ [30]. However, no such comparable result exists for

the noncentral chi-squared r.v. χ2
M(λ) [31].

5.4 A general separation principle

The separation of the deconvolution and denoising sub-problems can be achieved

through the use of the Expectation-Maximization (EM) algorithm. This was noted

in [19] in the case of Gaussian statistics, i.e., under the model given by (5.2). A

general form is presented here that includes the case of Poisson statistics. From the

system

(5.7) θ −→ y,

suppose that there exists an intermediate random variable z such that, conditioned

on z, y is independent of θ, i.e., p(y|z; θ) = p(y|z). We now have

(5.8) θ −→ z −→ y.
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In EM terminology, z plays the role of the complete data [17]. As z is an admissible

complete data for p(y; θ), p(y, z; θ) = p(y|z)p(z; θ), and so log p(y, z; θ) = log p(y|z)+

log p(z; θ). Consider applying the EM algorithm to obtain the MAP/MPLE estimate

of θ, which is

(5.9) θ̂ = argmaxθ(log p(y|θ) − pen(θ))

where pen(θ) is a penalty function imposed on θ. Let θ̂
(n)

denote the estimate of θ

at the nth iteration. At this point, the Q function of the EM algorithm is

(5.10) Q(θ, θ̂
(n)

) = Ez[log p(z; θ)|y, θ̂
(n)

] − pen(θ) +K

where K is a constant independent of θ.

Suppose a judicious choice of z can be made such that the RHS of (5.10) assumes

the form f(θ, ẑ(n)), for some suitable function f(·, ·) and ẑ(n) is an estimator of z

at the nth iteration. Then, a two-step estimation procedure occurs in each EM

iteration. In the nth iteration, the estimate ẑ(n) is first formed; then, the estimate

θ̂
(n)

is formed from

(5.11) θ̂
(n)

= argmaxθ f(θ, ẑ(n))

Note that the separation principle does not enforce any sparsity in θ̂
(n)

. Sparsity

is encouraged by appropriate selection of the penalty function, pen(θ). As well,

while the EM algorithm ensures a monotonic increase in the objective function, it

does not guarantee convergence to a maximizer in general [17, 19]. However, if the

likelihood function is unimodal and certain differentiability criteria are met, then the

EM algorithm will converge to the unique maximum [79].
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5.4.1 Gaussian statistics

Consider the model given by (5.2). In [19], the separation principle was obtained

by selecting z = θ + αw1, where w1 ∼ N (w1; 0, α
2I). Then, y and z are related as

follows

(5.12) y = Hz + w2

The noise w2 ∼ N (w2; 0, σ
2I−α2HHT ). Note that w1 is AWGN, but w2 is coloured

Gaussian noise. The decomposition only works if (α/σ)2 ≤ ρ(HHT )−1, where ρ(A)

is the spectral radius of the square matrix A. The spectral radius ρ(A) , maxi |λi|,

where λi are the eigenvalues of A. The decomposition is visualized in Fig. 5.2.

denoise deconvolve

w1

H y

w2

zθ

Figure 5.2: Decomposition of the deconvolution and denoising steps for Gaussian statistics.

With z = θ + αw1, the Q function assumes the form of

(5.13) Q(θ, θ̂
(n)

) = f(θ, ẑ(n))

with

(5.14) ẑ(n) = E[z|y, θ̂(n)
] = θ̂

(n)
+
(α
σ

)2

HT (y − Hθ̂
(n)

),

and f(θ, ·) is a quadratic function. One realizes that (5.14) is a Landweber iteration:

consequently, it can be viewed as the deconvolution step. The maximization of
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Q(θ, θ̂
(n)

) can be regarded as a denoising step. The two-step estimation procedure

that occurs in each EM iteration can be interpreted as a separation of the denoising

and deconvolution subproblems.

Solving for the maximum of Q(θ, θ̂
(n)

),

(5.15) θ̂
(n+1)

= argmaxθ

[
− 1

2α2
‖θ − ẑ(n)‖2 − pen(θ)

]

In this chapter, the norm ‖ · ‖ without a subscript indicates the l2 norm. Equations

(5.14) and (5.15) can be written more succinctly as

(5.16) θ̂
(n+1)

= D
(
θ̂

(n)
+ cHT (y − Hθ̂

(n)
)
)

where D(·) is a denoising operation that depends on the form of pen(·), and c =

(α/σ)2.

Remark 1 If H implements convolution with a psf H and M = N , the computation

of ρ(HHT ) can be done using the Discrete Fourier Transform (DFT). In such

a scenario, there exists a unitary matrix Q ∈ C
N×N such that H = QΓQH ,

where (·)H denotes the complex conjugate transpose [17, p. 10]. The diagonal

matrix Γ = diag(γ1, . . . , γN) ∈ C
N×N contains the DFT coefficients of the psf

H arranged in a lexicographic order. Then,

(5.17) HHT = QΓΓHQH

which results in

(5.18) ρ(HHT ) = max
1≤i≤N

|γi|2.

Remark 2 Under the assumption that H implements the convolution operation

with a psf H and M = N , the induced l2 norm of H can also be efficiently
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computed using the DFT.

(5.19) ‖H‖2 =
√

max
1≤i≤N

ρ(HTH) =
√

max
i

|γi|2 = max
i

|γi|

5.4.2 Poisson statistics

Consider the case when p(yi; θ), 1 ≤ i ≤ N represents a sequence of independent

Poisson random variables (r.v.). In particular, suppose that each yi is an observation

from a Poisson r.v., so that

(5.20) yi ∼ P0(yi; a
T
i θ)

where P0(n;λ) = e−λλn/n!, n ∈ N is the Poisson probability mass function. This

model appears in emission tomography reconstruction problems [39], where yi rep-

resents the number of photons/positrons counted at the ith detector, θi represents

the emission density of the ith voxel, and aij is the conditional probability that a

photon/positron emitted from the jth voxel is detected by the ith detector. As a

result, p(y; θ) =
∏

i P0(yi; a
T
i θ), and the log likelihood is

(5.21) log p(y; θ) = −
∑

i

aTi θ +
∑

i

yi log(aTi θ)

An admissible complete data is {zij}, 1 ≤ i ≤ N, 1 ≤ j ≤ M , where zij is the

number of photons/positrons emitted from the jth voxel and recorded at the ith

detector [39]. Note that yi =
∑

j zij, and zij ∼ P0(zij; θjaij). Then, in computing

the Q function of the EM algorithm at the nth iteration, n ≥ 1, one gets

Q(θ, θ̂
(n)

) =
∑

j

−
(
∑

i

aij

)
θj + log θj

∑

i

ẑ
(n)
ij − pen(θ) +K(5.22)

where: ẑ
(n)
ij =

yiaij θ̂
(n−1)
j∑

k aikθ̂
(n−1)
k

(5.23)



98

and K is independent of θ. If pen(θ) ≡ 0, a closed form solution for the maximization

of Q(θ, θ̂(n)) is available:

(5.24) θ̂
(n)
j = θ̂

(n−1)
j

∑
i yi · (aij/

∑
k aikθ̂

(n−1)
k )∑

i aij

The above application of the EM algorithm results in the same separation principle

as previously discussed. Each iteration of the EM algorithm results in the estimation

of the intermediate variable z, followed by the estimation of θ. As yi =
∑

j zij, the

estimation of z can be regarded as a deconvolution step.

For the rest of the chapter, we shall focus on the sparse image reconstruction

problem in the setting of Gaussian statistics, i.e., (5.2).

5.5 Literature review

5.5.1 Sparse denoising

When H is orthonormal, (5.2) reduces to denoising a sparse θ from the observation

y. The latter would be the sum of θ and i.i.d. Gaussian noise. This problem appears

in the context of wavelet regression, where one would like to estimate an unknown

function in noise [32, 8]. Here, it is assumed that the unknown function has only

several non-zero wavelet coefficients in a suitable wavelet transform. One way of

encouraging sparsity in θ is to model θ with a sparse distribution. As we would

like the distribution to adapt to the sparsity of θ, the use of tuning parameters

is necessary. The question that naturally follows is how to best select the tuning

parameters of the sparse distribution so that they are a good fit to the true θ. As

θ is the unknown quantity that we would like to estimate, however, a method that

does not rely on knowing θ must be used.

Bayesian methods have been successfully applied in model selection [6, 2]. The

ability of Bayesian methods to learn the statistical properties of data naturally led
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to its use in the estimation of the tuning parameters, which we shall call the hy-

perparameter. An empirical Bayes (EB) approach was adopted in [32, 8], where the

hyperparameter was estimated either through maximum likelihood (ML) or method

of moments (MOM). The estimated hyperparameters are then used as if they were

known a priori, and a suitable thresholding rule applied. The following sparse prior

was used in [32]:

(5.25) θi|ν2, w
i.i.d.∼ (1 − w)δ(θi) + wN (θi; 0, ν

2)

with the hyperparameter φ = (ν2, w). In general, the thresholding rule will be a

function of the hyperparameter φ.

This naturally leads to the question of how accurate the hyperparameter estimate

is. In [18], this question was avoided by using a Jeffreys’ prior for θi. The resulting

MAP estimate of θi was independent of any tuning parameter, and consequently can

be regarded as being data-independent. However, there is still the outstanding issue

of which prior is best suited for the θis. What types of images or coefficients are well

modelled by a Jeffreys’ prior?

Recent work with the prior

(5.26) θi|a, w i.i.d.∼ (1 − w)δ(θi) + wγ(θi; a),

where γ(x; a) = (1/2)ae−a|x| is the Laplacian p.d.f. with shape parameter a resulted in

an estimator with performance that is within a constant of the asymptotic minimax

error under certain conditions [33]. Moreover, the error is bounded. We shall call this

denoising method empirical Bayes denoising (EBD). Recall that (5.26) is referred to

as the LAZE density.

The primary result of [33] will be mentioned here. The performance of EBD is



100

measured by the following risk function

(5.27) Rq(θ, θ̂) , M−1

M∑

i=1

EY |θ̂i(y) − θi|q

for 0 < q ≤ 2, where recall that H is orthonormal in the context of the problem

statement (5.2). The notation E(·) is used to denote the expectation with respect to

the subscripted random variable. EBD is compared to the asymptotic minimax risk

for θ belonging to the lp norm ball of radius η for 0 ≤ p ≤ 2, defined as

lp[η] ,

{
θ : M−1

∑

i

|θi|p ≤ ηp

}
, p > 0(5.28)

and l0[η] ,

{
θ : M−1

∑

i

I(θi 6= 0) ≤ η

}
(5.29)

Let rp,q(η) be the asymptotic minimax risk. Then, under the conditions of [33,

Thm. 1], there exists Ci(p, q, γ) for i = 1, 2 such that for η ≤ η0(p, q, γ) and n ≥

n0(p, q, γ), EBD’s risk function satisfies

(5.30) sup
θ∈lp[η]

Rq(θ, θ̂) ≤ C1rp,q(η) + C2M
−1(logM)2+(q−p)/2

This result holds only when y ∼ N (θ, σ2I), i.e., the noise w is i.i.d.

The hyperparameter φ = (a, w) has an intuitive interpretation: w represents the

fraction of non-zero values in θ, and a represents the variability of non-zero θi’s. The

hyperparameter is first estimated using marginal ML. Namely, the ML estimate of

φ using the marginalized density p(y|φ) is taken, i.e., φ̂ = argmaxφ log p(y|φ). In the

next step, θ̂ is formed by applying a thresholding rule T (·;φ) (e.g., posterior median)

to each yi, i.e., θ̂i = T (yi; φ̂). This is illustrated in Fig. 5.3 below. An example of the

posterior median thresholding rule when the LAZE prior is used to model θ is given

in Fig. 5.4.

The asymptotic results are not limited to using the Laplacian p.d.f. for γ. A

permissible γ has the following properties: (1) it is heavy-tailed, (2) its support is
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compute MML estimate

T (yi; φ̂)

φ̂

yi θ̂i
y

Figure 5.3: Block diagram of EBD.
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Figure 5.4: Posterior median with LAZE prior with a = 0.3, w = 0.1, σ = 1.

unimodal and symmetric, and (3) it satisfies some regularity conditions. As well,

the posterior median is but one thresholding rule that can be used. Others are also

permissible. For further details, refer to [33]. For the rest of this chapter, we shall

assume that γ is the Laplacian p.d.f. unless otherwise mentioned.

5.5.2 Sparse basis representation

When no noise is present, (5.2) reduces to finding the sparsest representation of

y in terms of the column vectors of H. In other words, the objective is to solve

(5.31) P0: minimize ‖θ‖0 such that y = Hθ

where the l0 counting measure is defined as ‖x‖0 , #{i : xi 6= 0}. Typically in

the sparse basis representation problem, M > N , i.e., the columns of H are an
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overcomplete basis.

Under certain conditions [13, 22], (5.31) is equivalent to the problem

(5.32) P1: minimize ‖θ‖1 such that y = Hθ

More generally, solving P1 is a suboptimal way of finding the solution of P0. The

l1 norm is defined as ‖x‖1 ,
∑

i |xi|. The advantage of (5.32) is that it is a convex

optimization problem [13], and can be solved via linear programming techniques.

On the other hand, the general solution of (5.31) requires an enumerative approach,

resulting in a search that is exponential in M [13].

Sparse Bayesian learning (SBL) is an alternative method to find a sparse basis

representation [75, 76, 77]. A MAP framework was used to find θ, with θ modelled

as independent but not identical r.v.s

(5.33) θi|ζi ∼ N (0, ζi)

An empirical Bayes approach was employed to find an estimate of the hyperparam-

eter φ = (ζ1, . . . , ζM). The details are as follows: a closed-form expression of the

marginalized likelihood was derived, and the hyperparameter φ estimated via MML

through the use of the EM algorithm. Then, the posterior mean of θ was used as θ̂.

One would not normally think of the Gaussian distribution as a sparse density. How-

ever, the following sparsifying effect occurs: if a particular ζ̂i = 0, the corresponding

θ̂i will also be driven to 0.

5.5.3 Sparse deconvolution and denoising

The relationship between P0 and P1 in (5.31) and (5.32) respectively motivates

the following sparse estimator: the MAP/MPLE estimator with a l1 norm penalty.

Specifically, the estimate of θ is obtained by using pen(θ) = β ′∑
i |θi| in (5.9), for
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some regularization parameter β ′. Define the MAP/MPLE estimate of θ with a l1

penalty to be

(5.34) θ̂l1(y; β) , argminθ
{
‖Hθ − y‖2 + β‖θ‖1

}
,

where the noise variance σ2 has been absorbed in the regularization parameter β. The

parameter β is restricted to non-negative values. We shall call θ̂l1 the L1 estimator,

and omit y from its argument list for the sake of brevity at times. Note that the

objective function is convex. The estimator θ̂l1 can also be viewed as the MAP

estimator of θ when a Laplacian prior is imposed on θ [27, 21]. The l1 penalty seems

to have been first suggested in [1], and was further developed in [68].

Define a denoising operator that operates on each individual element of x ∈ R
M

as

(5.35) DT (x) ,
∑

i

T (xi)ei

where the eis are the standard unit norm basis vectors in R
M .

If ‖H‖ < 1, the optimization of the objective function in (5.34) can be achieved

in the framework of (5.16) by setting c = 1 and D(·) = DTs
(·), where

(5.36) DTs
(x) =

∑

i

Ts(xi; β/2)ei,

where Ts(x; t) , (x − sgn(x)t)I(|x| > t) is the soft-thresholding rule [10]. In the

special case that H implements convolution with a psf and M = N , the condition

‖H‖ < 1 can be efficiently checked via the DFT: see (5.19). If H has a trivial

nullspace, the iterations will converge to the unique minimizer; otherwise, the mini-

mizer is not necessarily unique [10].

More generally, the iterative thresholding algorithm in [10] seeks to minimize the
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cost function

Ψ(θ) = ‖Hθ − y‖2 + ‖θ‖pw,p(5.37)

where: ‖θ‖w,p ,

(
∑

i

wi|θi|p
)1/p

, 1 ≤ p ≤ 2,(5.38)

and the wis are uniformly bounded away from 0, i.e., ∃ c > 0 such that all wi ≥ c.

The algorithm is of the form (5.16), where D depends on w and p.

In order to solve for the L1 estimator for arbitrary ‖H‖ < C, one can re-

parameterize the L1 cost function with the variables

(5.39) H̃ , C−1H and θ̃ , Cθ

to get the L1 estimator cost function

Ψl1(θ) = ‖Hθ − y‖2 + β‖θ‖1 = ‖H̃θ̃ − y‖2 + βC−1‖θ̃‖1.

The iterative minimization can then be applied to H̃ and θ̃. The denoising operator

DTs
will use the soft-thresholding function with a new threshold of t = βC−1/2.

Least angle regression (LARS) is an efficient method that solves for the L1 estima-

tor [15]. NB. the more accurate term is LARS-LASSO; however, we shall henceforth

omit the LASSO suffix for the sake of brevity. Although iterative in nature, the num-

ber of iterations required is approximately equal to the desired number of non-zero

values of the L1 solution, i.e., ‖θ̂l1‖0. If the desired θ̂l1 is highly sparse, only a small

number of iterations is required. In contrast, the number of iterations needed in

the iterative thresholding framework of (5.16) depends on its rate of convergence. In

practice, we have observed that LARS is a faster implementation than the framework

of (5.16). Another benefit of LARS is that it solves for the exact L1 estimator. On

the other hand, if one stopped the iterations (5.16) prematurely, the output would

not be close to the L1 solution. The disadvantage of LARS, however, is that it
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requires the columns of H to be linearly independent. The iterative thresholding

framework does not have this requirement.

There are various ways of choosing the regularization parameter β [67]. In the

next section, we propose using Stein’s unbiased risk estimator (SURE) to select

β [64, 62]. In [51], it was reported that using SURE in an optical flow estimation

problem produced better results than generalized cross-validation (GCV). The SURE

criterion has also been successfully used in SureShrink, which is a sparse denoising

method for wavelet coefficients [14].

5.5.4 Commentary

In the context of MAP/MPLE estimators, each estimate satisfies an optimality

criteria. However, there are many such criteria to choose from, and it is not certain

which is the best for an sparse, arbitrary θ. Out of the estimators previously men-

tioned, EBD is the only method that has minimax properties in terms of an error

bound between the true value of θ and its estimate.

In empirical Bayes, a hierarchical effect occurs in that variables that were ini-

tially deterministic are substituted by r.v.s with the a desirable p.d.f., e.g., a sparse

distribution. In the EB methods previously discussed, there are two levels in the

hierarchy: refer to Fig. 5.5. The hyperparameter φ are the parameters of a model

M that describe θ. In turn, y is the result of a linear mapping H applied to θ in the

absence of noise. It is possible to go one step further and impose a hyperprior on

the hyperparameter [48, 49].

θ y
HM

φ

Figure 5.5: Hierarchy of parameters in empirical Bayes.
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5.6 Proposed sparse reconstruction methods

We propose four image reconstruction methods. The first method uses EBD as

D(·) in (5.16); in general, this will be labelled EBD-X, where “X” refers to the prior

distribution assumed on the image θ. In this chapter, we shall use the LAZE prior

(5.26), and so the method will be called EBD-LAZE. The second method is the

penalized L1 estimator with the regularization parameter selected via SURE. The

third method involves using the prior (5.26) in a MAP framework. Lastly, the fourth

method involves using the hybrid hard-soft thresholding function that appears in the

MAP solution and selecting the tuning parameters via SURE.

5.6.1 Shrinkage and thresholding rule

We shall review the definition of a shrinkage and thresholding rule, as given in [33].

The function T (·) is a shrinkage rule iff T (·) is anti-symmetric and increasing on

(−∞,∞). A shrinkage rule that satisfies the property that T (x) = 0 iff |x| < t will

be called a thresholding rule with threshold t.

Henceforth, we only consider rules with the property that T (·) is strictly increasing

outside of (−t, t). Consequently, T (·) is a bijection on R \ (−t, t). With abuse of

notation, let T−1(·) denote the “inverse” of T (·), which will be discontinuous at 0.

5.6.2 EBD based methods

There are several interesting facts about EBD based methods.

Proposition 5.1. An EBD-based reconstruction method can be regarded as an EM-

like iteration, but where the prior on θ is designed in each iteration.

The results of [27] can be used to create a prior for θ such that the estimate θ̂

formed via EBD can be regarded as a MAP estimate. Let p̃(θi;φ) be the prior on θi
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induced by the thresholding rule T (·;φ). Then,

(5.40) p̃(θi;φ) ∝ exp

(
− 1

α2

∫
[T−1(θi;φ) − θi] dθi

)
.

Let M(x) ,
∫

[T−1(x;φ)− x]dx. For the prior p̃(·;φ) to exist, exp(−M(x)/α2) must

be integrable over R, as p̃(x;φ) = exp(−M(x)/α2)/
∫∞
−∞ exp(−M(x)/α2)dx. Since

the θi’s are i.i.d. in EBD,

(5.41) p̃(θ;φ) =
M∏

i=1

p̃(θi;φ)

Note that p̃(θi;φ) might not bear any resemblance to the prior on θ used in EBD,

e.g., (5.26).

The second step is to fit EBD in the EM framework. Previously, the EBD estima-

tor was interpreted as a MAP estimator. This makes it compatible with the MAP

based optimality criterion of (5.9). Let z be the complete data, as before. The Q

function is

(5.42) Q(θ, θ̂
(n)

) = − 1

2α2
‖θ − ẑ(n)‖2 − pen(θ)

By setting pen(θ) = − log p̃(θ; φ̂), where φ̂ is the nth estimate of the hyperparameter

obtained via EBD,

(5.43) Q(θ, θ̂
(n)

) = − 1

2α2
‖θ − ẑ(n)‖2 + log p̃(θ; φ̂)

Therefore, EBD iterations can be considered to be an EM-like iteration, but where

the prior on θ is re-designed at each iteration. �

Remark Convergence of the EBD iterations has yet to be established.

Proposition 5.2. If the hyperparameter φ is fixed, an EBD-based method can be

regarded as an EM iteration that maximizes [log p(y|θ)−pen(θ)] for a suitably defined

penalty function pen(θ).
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This follows from (5.43). If the hyperparameter φ is fixed, then EBD iterations

are EM iterations with regard to the objective function [log p(y|θ) + log p̃(θ;φ)]. �

Proposition 5.3. Suppose that ‖H‖ < 1, and that the hyperparameter φ is fixed to

φ0, i.e., a fixed thresholding rule T (·) = T (·;φ0) is used. Assume that the thresholding

rule T (·) satisfies the properties mentioned in section 5.6.1. The iterations (5.16)

with c = 1 decrease the convex cost function Ψ(θ) in a monotonic fashion, where

Ψ(θ) is given by

Ψ(θ) = ‖Hθ − y‖2 + J(θ)

where: J(θ) ,
M∑

i=1

J1(θi), and J1(x) , 2T−1(x)x− x2 − 2

∫
T (ξ)dξ

∣∣∣∣
ξ=T−1(x)

(5.44)

Notice that J ′
1(x) = 2(T−1(x) − x). A thresholding rule T (x) is anti-symmetric

and satisfies 0 ≤ T (x) ≤ x for all x ≥ 0. Therefore, J ′
1(x) ≥ 0 for x > 0 and

J ′
1(x) ≤ 0 for x < 0. So J(θ) is convex, and since ‖Hθ − y‖2 is also convex, that

makes Ψ(θ) convex as well.

The concept of surrogate functions was used to reverse engineer the function Ψ(θ).

Its usage here is inspired by [10]. For details of the derivation, refer to Appendix D.1.

An intuitive understanding can be gained by computing the gradient of Ψ:

(5.45) ∇Ψ(θ) = 2HTHθ − 2HTy + 2(T−1(θ1) − θ1, . . . , T
−1(θM) − θM)T

and so

∇Ψ(θ) = 0 ⇐⇒ HTHθ − HTy + (T−1(θ1), . . . , T
−1(θM))T − θ = 0

⇐⇒ T−1(θi) = θi + (HT (y − Hθ))i, 1 ≤ i ≤M

⇐⇒ θi = T
(
θi + (HT (y − Hθ))i

)
, 1 ≤ i ≤M(5.46)
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We see that a stationary point of Ψ(θ) is a fixed point of the function

(5.47) m(θ) ,
M∑

i=1

T
[
(θ + HT (y − Hθ))i

]
ei

The function m above corresponds to one step of the iteration (5.16), i.e., the itera-

tions are θ̂
(n+1)

= m(θ̂
(n)

). Consequently, the stationary points of Ψ(θ) are the fixed

points of the iteration (5.16). �

Remark 1 The following are true: (i) the iteration mapm is continuous with Ψ(θ) ≥

Ψ(m(θ)), where equality holds iff θ is a fixed point of m and (ii) the stationary

points of Ψ(θ) are fixed points of the iteration θ(n+1) = m(θ(n)). Therefore, any

limit point of the sequence generated by θ(n+1) = m(θ(n)) is a stationary point

of Ψ(θ) [41].

Remark 2 If the columns of H are linearly independent, then ‖Hθ− y‖2 is strictly

convex, which makes the cost function Ψ(θ) strictly convex as well. In this case,

the minimizer of Ψ(θ) is unique. It was noted in the previous remark that the

sequence θ(n) generated by m converged to a minimizer of Ψ(θ). There, however,

we did not have uniqueness. Under the condition of linear independence of the

columns of H, the minimizer is unique.

Remark 3 Proposition 5.3 enables us to design a sparse prior or penalty by first

specifying a good thresholding rule. Then, the iterative optimization of al-

ternating Landweber and thresholding steps minimizes the cost function Ψ(θ)

given by (5.44). This is illustrated in Fig. 5.6. Once Ψ(θ) is available, any other

optimization method can be used to find a minimizer. In particular, if there is

a more efficient optimization method, or if there is a closed-form solution, that

should be used.



110

prior/penalty

optimization routine

de
sig

n cost function Ψ(θ)

Figure 5.6: Design of a sparse prior/penalty

In addition to the interpretation of the EBD-based methods given by Prop. 5.1-

5.3, there is another interpretation that is specific to EBD methods that use a γ

which satisfies [33, Thm. 1]. If the complete data z were observable, EBD could

be applied with the accompanying optimality result (5.30). However, since z is not

directly observable, the EBD-based methods are using the estimate of z given by

(5.14). This is the best estimate of z given θ̂
(n)

and y in terms of mean-squared error

(MSE). The proposed EBD-based method can therefore be regarded as applying

EBD on a sequence of minimum MSE estimates of z.

5.6.3 L1-SURE

The L1 estimator, i.e., (5.34), depends on the regularization parameter β. Dif-

ferent values of β will result in different sparsity levels of the reconstruction. We

propose using the SURE criterion to select β. The quality of β will be quantified by

the following risk function:

(5.48) R(θ, β) , EY ‖Hθ̂l1(y; β) − Hθ‖2

One cannot compute R(θ, β), as that would require knowledge of θ. Instead, SURE

permits the construction of an unbiased estimator of R(θ, β), which is denoted by

R̂(β). Select β ≥ 0 that minimizes R̂(β). Under the assumption that the columns

of H are linearly independent, the expression for R̂(β) is given by

(5.49) R̂(β) = Nσ2 + ‖y − Hθ̂l1(β)‖2 + 2σ2‖θ̂l1(β)‖0.
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See Appendix D.2 for the derivation. To find the optimum β, it is necessary to com-

pute θ̂l1(β) for different β ≥ 0, evaluate the R̂(β)s, and select the β that minimizes

R̂(β).

The expression for SURE of the soft-thresholding estimator used in SureShrink,

i.e., [14, (11)], can be obtained from (5.49) by setting H = I. A SURE expression

similar to (5.49) was derived in the case of a diagonal H and where the l1 penalty

was imposed on the coefficients of a 2-d wavelet transform of θ [50, (10)–(11)].

Remark 1 The risk function of R(θ, β) = EY ‖θ̂l1(y; β) − θ‖2 would be more ideal,

as it measures the mismatch between θ̂l1 and θ. However, one could not apply

Stein’s results to form an unbiased risk estimate. Let µ , Hθ and µ̂ , Hθ̂.

If the columns of H were invertible, the pseudoinverse H† would exist, and we

would get that

(5.50) ‖θ̂ − θ‖ ≤ ‖H†‖ · ‖µ̂− µ‖.

Thus, minimizing the risk E‖µ̂ − µ‖2, e.g., (5.48), minimizes the upper bound

on E‖θ̂ − θ‖2.

Remark 2 Least angle regression (LARS), an efficient method for computing the L1

estimator, can be employed to determine the optimal β ≥ 0 [15]. The columns

of H must be linearly independent in order for LARS to be applied. This is the

same condition used in deriving the expression (5.49).

5.6.4 MAP based methods

Instead of computing θ̂ = argmaxθ[log p(y|θ) − pen(θ)], simultaneously estimate

θ and φ:

(5.51) θ̂, φ̂ = argmax
θ,φ

[log p(y, θ|φ) − pen(θ, φ)]]
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For the rest of the section, we shall not use pen(θ, φ), i.e., set it to zero. Define

ρ , (θ, φ). Using the decomposition (5.12) and applying the EM algorithm, the

resulting Q function is

(5.52) Q(ρ, ρ̂(n)) = − 1

2α2
‖θ − ẑ(n)‖2 + p(θ|φ).

The optimization argmaxρQ(ρ, ρ̂(n)) is equivalent to the denoising of ẑ(n) under a

MAP criterion. We would like to use the LAZE p.d.f. for p(θ|φ). However, the delta

function in (5.26) is difficult to work with, so define the random variables θ̃i and Ii

such that θi = Iiθ̃i, 1 ≤ i ≤M . The r.v.s θ̃i, Ii have the following density:

Ii =





0 with probability (1 − w)

1 with probability w

(5.53)

p(θ̃i|Ii) =





g(θ̃i) Ii = 0

γ(θ̃i; a) Ii = 1

,(5.54)

where g(·) is some p.d.f. that will be specified later on. It is assumed that (θ̃i, Ii) are

i.i.d. This is the discrete-continuous version of the prior (5.26) with one exception:

the introduction of g.

Redefine the optimality criterion as

(5.55) ˆ̃θ, Î, φ̂ = argmax
θ̃,I,φ

log p(θ̃, I|y, φ) = argmax
θ̃,I,φ

log p(θ̃, I, y|φ).

Let ρ = (θ̃, I, φ). Define I1 , {i : Ii = 1} and I0 , I1. The maximization of (5.55)

is equivalent to the maximization of

(5.56)

− 1

2σ2
‖Hθ−y‖2+‖I‖0 logw+(M−‖I‖0) log(1−w)+

∑

i∈I1

log

(
1

2
ae−a|θ̃i|

)
+
∑

i∈I0

log g(θ̃i)

We propose to perform the maximization of (5.56) in a block coordinate-wise

fashion [17]. The maximizing ρ is obtained by alternately (i) maximizing the hy-

perparameter φ while holding (θ̃, I) fixed, and (ii) maximizing (θ̃, I) while holding
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φ fixed. Consider two cases: firstly, let g(x) = γ(x; a). This will give rise to the

algorithm MAP1. Secondly, let g(x) be an arbitrary p.d.f. such that: (1) |g(x)| <∞

for all x ∈ R; (2) sup g(x) is attained for some x ∈ R; and (3) g(x) is independent of

a, w. This will give rise to the algorithm MAP2.

MAP1

Since g(x) = γ(x; a), the criterion that is maximized is

(5.57)

Ψ1(θ̃, I, φ) , − 1

2σ2
‖Hθ−y‖2 +‖I‖0 logw+(M −‖I‖0) log(1−w)+M log

a

2
−a‖θ̃‖1

The Hessian of Ψ1 with respect to (w.r.t.) φ is

(5.58) ∇φ∇T
φΨ1 =




−M
a2 0

0 −‖I‖0

w2 − M−‖I‖0

(1−w)2




which is clearly negative definite for all a > 0 and 0 < w < 1. The solution to

∇φΨ1 = 0 maximizes Ψ1, which results in step (i) being

(5.59) â =
M

‖ˆ̃θ‖1

and ŵ =
‖Î‖0

M
.

Now, given n samples x1, . . . , xn drawn from a Laplacian p.d.f. γ(·; a), the ML es-

timate of a is âML = n(
∑n

i=1 |xi|)−1. The estimate â in (5.59) is therefore the ML

estimate of a given that all of the ˆ̃θis are used.

Next, the maximization in step (ii) can be obtained by applying the EM algorithm

with the complete data z = θ + αw1. In this step, φ is held fixed. The E-step is

given in (5.14). For the M-step, the Q function at the (n+ 1)th iteration is

(5.60)

Q(θ̃, I; ˆ̃θ(n), Î
(n)

) = − 1

2α2
‖θ−ẑ(n)‖2+‖I‖0 logw+(M−‖I‖0) log(1−w)+M log

a

2
−a‖θ̃‖1.

Since (−Q) is convex in θ̃, the maximizing θ̃ can be obtained by solving ∇θ̃Q = 0.

Because Q is the sum of identical expressions of θ̃i, each θ̃i can be solved separately.



114

Let I(·) be the indicator function. One obtains

(5.61) θ̃i =





Ts(ẑ
(n)
i ; aα2) Ii = 1

0 Ii = 0

.

By using (5.61) and comparing ∆Q = Q|Ii=1 −Q|Ii=0 to zero, the maximizing Ii can

be found as

(5.62) Ii =





I(|ẑ(n)
i | > aα2 +

√
2α2 log(1−w

w
)) 0 < w ≤ 1

2

1 1
2
< w ≤ 1

.

Now, the so-called hard-thresholding rule is given by Th(x; t) , xI(|x| > t). Define

a hybrid hard-soft thresholding rule as Ths(x; t1, t2) , (x − sgn(x)t2)I(|x| > t1). See

Fig. 5.7. We restrict t1 ≥ 0 and 0 ≤ t2 ≤ t1. The soft and hard-thresholding rule

can be expressed as Ths(x; t, t) and Ths(x; t, 0) respectively.

hybrid threshold

soft threshold

t1

t2

x

y

y
=
x

Figure 5.7: Hybrid hard-soft thresholding rule.
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Equations (5.61) and (5.62) can be combined to yield

(5.63) θi = θ̃iIi =





Ths(ẑ
(n)
i ; aα2 +

√
2α2 log(1−w

w
), aα2) 0 < w ≤ 1

2

Ts(ẑ
(n)
i ; aα2) 1

2
< w ≤ 1

If w > 1/2, the soft-thresholding rule is applied in the Q-step of the EM itera-

tions of MAP1. From earlier discussion, these iterations produce the L1 estimate

(5.34) with regularization parameter β = 2aα2. However, if 0 < w ≤ 1/2, a larger

thresholding value is used that increases the smaller w becomes. This is intuitively

pleasing, as it is what we would expect.

MAP2

Since θ̃i 6= 0 w.p. 1, the set

(5.64) I1 = {i : Ii = 1} = {i : θi 6= 0} w.p. 1.

This implies ‖I‖0 = ‖θ‖0 w.p. 1. Applying (5.64) to the criterion to maximize, i.e.,

(5.56),

(5.65) Ψ2(θ̃, I, φ) , − 1

2σ2
‖Hθ − y‖2 + ‖I‖0 logw + (M − ‖I‖0) log(1 − w)

+ ‖θ‖0 log
a

2
− a‖θ‖1 +

∑

{i:Ii=0}
log g(θ̃i)

The Hessian ∇φ∇T
φΨ2 is the same as (5.58) except that the (1, 1) entry is −‖θ‖0/a

2;

clearly, it is also negative definite for all a > 0 and 0 < w < 1. The maximization in

step (i) is obtained by solving for ∇φΨ2 = 0, which produces

(5.66) â =
‖θ̂‖0

‖θ̂‖1

and ŵ =
‖θ̂‖0

M
.

It is instructive to compare the equations for the hyperparameter estimates of MAP1

vs. MAP2. The main difference lies in the estimation of a. Assuming that the

estimates Î and θ̂ obey (5.64), one can re-write â = |I1|/
∑

i∈I1
| ˆ̃θi|. The MAP2
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estimate of a can then be interpreted as the ML estimate using only the ˆ̃θi for i ∈ I1.

This is a consequence of g being independent of a, w.

On the other hand, the MAP1 estimate of a can be written as

(5.67) â =
|I1| + |I0|

∑
i∈I1

| ˆ̃θi| +
∑

i∈I0
| ˆ̃θi|

.

As was previously noted, all of the ˆ̃θi are used, even those i ∈ I0. This is contrary

to the intent of a, which is to model the variance of the non-zero values of θ. The

estimate ˆ̃θi for i ∈ I0 should not affect â. We will see later on that there is a price

to be paid for the condition on g assumed by MAP2.

As with MAP1, the maximization in step (ii) can be obtained by applying the

EM algorithm with the complete data z = θ + αw1. The E-step is given in (5.14),

and the Q function at the (n+ 1)th step is

(5.68) Q(θ̃, I; ˆ̃θ(n), Î
(n)

) = − 1

2α2
‖θ − ẑ(n)‖2 + ‖I‖0 logw + (M − ‖I‖0) log(1 − w)

+
∑

i∈I1

log(
1

2
ae−a|θ̃i|) +

∑

i∈I0

log g(θ̃i).

Define

(5.69) g∗ , sup
x
g(x), r ,

g∗

a/2

1 − w

w
, and G(y) , {x : g(x) = y}.

The maximization of Q in the nth iteration results in

(5.70) θ̃i =





Ts(ẑ
(n)
i ; aα2) Ii = 1

any element of G(g∗) Ii = 0

,

(5.71) and: Ii =





I(|ẑ(n)
i | > aα2 +

√
2α2 log r) r ≥ 1

1 0 ≤ r < 1

.
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The resulting θ is given by the following thresholding rule

(5.72) θi =





Ths(ẑ
(n)
i ; aα2 +

√
2α2 log r, aα2) r ≥ 1

Ts(ẑ
(n)
i ; aα2) 0 ≤ r < 1

which is similar to the MAP1 solution in (5.63). Indeed, the MAP1 solution can be

obtained by setting g∗ = a/2. In this case, r = (1−w)/w, and r ≥ 1 ⇐⇒ w ≤ 1/2.

The tuning parameter g∗ is an extra degree of freedom that arises due to g being

independent of a, w. This makes the MAP2 solution a function of g∗, and it is

incumbent on the practitioner to select a suitable g∗. In contrast, MAP1 has no free

tuning parameters: they are all automatically estimated.

Just like in MAP1, the EM iterations of MAP2 produce a larger threshold the

sparser the hyperparameter w is. As well, if a is smaller, r increases. Since the

variance of the Laplacian γ(·; a) is 2/a2, a smaller a implies a larger variance of the

Laplacian. It makes sense that a larger threshold is used. It is not clear how to select

g∗. One could suppose that g were a uniform distribution with finite support. As the

prior p(θ̃i|Ii = 0) = g(θ̃i) becomes more uninformative, g∗ → 0. The thresholding

rule for r ≥ 1 then becomes the same as for 0 < r < 1, and the EM iterations will

produce a L1 estimate. The MAP2 estimator when g∗ = 0 will not be the L1-SURE

estimator: in the former, the regularization parameter is chosen via MAP, while in

the latter, it is chosen via minimizing the SURE criterion. It is interesting to note

that the point(s) at which g attains g∗ do not play a role in the estimate of θ in step

(ii).

5.6.5 Hybrid hard-soft thresholding function and SURE

The appearance of the hybrid hard-soft thresholding function in the MAP-based

solution poses the question of whether or not it is a “better” thresholding function

than the soft-threshold. Certainly, the collection of soft-thresholding functions is
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but a subset of all the possible HHS thresholding functions. Recall that the HHS

thresholding function came from the MAP solution when a weighted average of a

Dirac delta at zero and the Laplacian p.d.f. was used as the prior on θ. In this

light, one would expect the HHS thresholding function to be a generalization of the

soft-thresholding function. The collection of hard-thresholding functions is also a

subset of all possible HHS thresholding functions. It has been noted in [26] that the

hard-thresholding rule used in the framework of (5.16) can exactly recover a sparse

representation under certain conditions.

Just like the SURE criterion was used to select the regularization parameter β for

the L1 estimator, we propose to use SURE to select the parameters t1 and t2 of the

hybrid thresholding function.

Proposition 5.4. When ‖H‖ < 1, the iterations (5.16) with c = 1 and D(·) taken

to be the hybrid thresholding function minimizes the cost function

Ψhs(θ) = ‖Hθ − y‖2 +
∑

i

J1(θi)

where: J1(x) = I(|x| < t1 − t2)[−(x− sgn(x)t1)
2 + 2t1t2] + I(|x| ≥ t1 − t2)(2t2|x| + t22)

(5.73)

See Appendix D.3 for the derivation. This result was obtained by applying

Prop. 5.3. We shall call this estimator the hybrid hard-soft estimator. This is an

example of where Prop. 5.3 is used to design a sparse penalty from a thresholding

rule. �

As a check, it was previously noted that the soft-thresholding function Ts(·; t) =

Ths(·; t, t). When t1 = t2 = t, (5.73) produces

(5.74) J s
1(x) = 2t|x| + t2
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which gives rise to the L1 estimator, as expected. The difference between the J s
1 of

the L1 estimator and the J1 of the hybrid thresholding function is that, with the

latter, there is a region {x : |x| < t1 − t2} where the cost is quadratic as opposed to

linear.

The concave-shaped quadratic cost can be used to encourage a higher level of

sparsity. Since J1 is symmetric, suppose without any loss of generality that x > 0.

The quadratic part has derivative −2(x− t1). For x ∈ [0, t1 − t2) =⇒ 2t1 ≥ −2(x−

t1) > 2t2. Consider the case when the L1 estimator is computed with t1 = t2 = t.

If we were to hold t2 fixed but increase t1, the slope of J1 in x ∈ [0, t1 − t2) would

become larger than 2t = 2t2. In this manner, the hybrid thresholding function has

the ability to produce a sparser solution. The penalty function J1(x) is plotted in

Fig. 5.8 for t1 = 1 and various t2 ∈ [0, 1]. When t1 = t2, J1(x) = |x| + const, which

−2 −1 0 1 2
−1

0

1

2

3

4

5
t2=0
t2=0.25
t2=0.5
t2=0.75
t2=1

Figure 5.8: Penalty function J1(x) derived from the HHS thresholding rule for t1 = 1 and various
t2 ∈ [0, 1].

is consistent with our expectations. When t2 = 0, the HHS thresholding rule is the

hard threshold. The corresponding J1(x) is like a 0-1 penalty term.

For an arbitrary ‖H‖ < C, the normalization (5.39) is first carried out before the

iterative framework of (5.16) is applied. For the remainder of section 5.6.5, we shall
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assume that ‖H‖ < 1 without loss of generality.

Let t = (t1, t2). SURE can be used to construct an unbiased estimate of the risk

(5.75) R(θ, t) , EY ‖Hθ̂hs(y; t) − Hθ‖2

where θ̂hs(y; t) minimizes the cost Ψhs(θ). The expression for SURE of the HHS

estimator is not as tractable as SURE of the L1 estimator. In the derivation of

SURE of the HHS estimator, assume that the columns of H are linearly independent

and that the Gram matrix G(H) , HTH does not have an eigenvalue of 1/2. The

latter condition is equivalent to H not having any singular values of 1/
√

2.

Several definitions are in order before giving the SURE result. Suppose that θ̂

has r zero values and (M − r) non-zero values. Define the permutation matrices

P,Q ∈ RM×M such that Pdiag(θ̂)Q = diag(0, . . . , 0, x1, . . . , xM−r), where xi 6= 0. In

other words, P and Q re-arrange diag(θ̂) so that all of the zero-valued θ̂is are in the

front. Let the subscript (·)22 denote the lower (M − r) × (M − r) submatrix of the

argument. Define

(5.76) U(θ) , diag

(
rect

(
θ1

2(t1 − t2)

)
, . . . , rect

(
θM

2(t1 − t2)

))
.

when t2 < t1 and 0 when t2 = t1. Let K = (PHTHQ)22 and J = −(1/2)(PU(θ̂hs)Q)22.

SURE of the HHS estimator is

(5.77) R̂(t) = Nσ2 + ‖y − Hθ̂hs(t)‖2 + 2σ2tr(K[K + J]−1)

To evaluate (5.77), one would have to build the matrices P,Q, and invert a

(M − r)× (M − r) matrix. If θ̂hs is sparse, (M − r) will be small, and the inversion

would not be that computationally demanding. It was previously noted that when

t1 = t2, the HHS estimator reduces to the L1 estimator. We expect SURE of the

HHS estimator, i.e., (5.77), to reduce to SURE of the L1 estimator when t1 = t2.
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That is indeed the case: when t1 = t2, J = 0 and the last term of (5.77) equals

2σ2(M − r) = 2σ2‖θ̂‖0. R̂(t) can be approximated as

(5.78) R̂(t) ≈ Nσ2 + ‖y − Hθ̂hs(t)‖2 + 2σ2‖DTs
(θ̂hs(t); t1 − t2)‖0,

We expect the approximation to be relatively good if t1 ≈ t2. See App. D.4 for

details.

The optimum t corresponds to the t ∈ T , {(t1, t2) : t1 ≥ 0, 0 ≤ t2 ≤ t1} that

minimizes R̂(t). The corresponding θ̂hs(t) would be the output. We shall call this

method HHS-SURE.

Rather than do a two dimensional search for the minimum of SURE of the HHS es-

timator, we suggest a suboptimal search for the minimum that consists of a sequence

of line searches. Notice that L1-SURE finds the optimal parameters t when t1 = t2

according to the HHS SURE criterion. This is equivalent to a line optimization of

HHS-SURE in the direction of (1, 1). Another line optimization can be performed

from the L1-SURE solution, say in the direction of (1, 0). Here, t2 is kept fixed while

the minimum of the HHS SURE criterion is sought for larger t1. From previous

discussion, this is expected to produce a sparser solution. We need not restrict the

second line optimization to (1, 0), but can also consider (0,−1), etc. The advantage

of leveraging the L1-SURE solution is that it can be efficiently computed via the

LARS algorithm (under the assumption that the columns of H are linearly inde-

pendent). So the first line optimization will be fairly inexpensive, computationally

speaking. Subsequent line optimizations have to be done in the iterative framework

of (5.16), and will be more computationally expensive.
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5.6.6 Computational aspects of proposed methods and SBL

The memory requirements of the proposed algorithms is dominated in the gen-

eral case by the storage of H, which is of O(MN). Manipulations of vectors with

dimensions of y and θ involve memory of O(max(M,N)). If H is sparse or imple-

ments the convolution operator with a point spread function (psf), and the support

of the psf is smaller than O(max(M,N)), then the overall memory requirement is

O(max(M,N)).

We shall discuss the computational complexity of the proposed algorithms in the

remainder of the section.

EBD and SBL

An optimization is performed in each iteration of the EBD-based methods. Specif-

ically, the optimization is to find the MML estimate of the hyperparameter given an

estimate of the complete data z. Fortunately, in the case of EBD-LAZE, the hyper-

parameter φ is two-dimensional, and an increase in the image size M will not affect

the dimension of the search space. It is possible to decrease the computational cost

of finding the MML estimate of the hyperparameter in each iteration by updating it

only every nth iteration, for n > 1. If the hyperparameter estimate changes slowly,

such a modification should not overly affect the performance.

It would be desirable to obtain a single estimate of the hyperparameter, and

to use it for all of the iterations. In the EBD-based framework, this would ensure

convergence, according to Prop. 5.2. As well, it obviates the need to perform a search

for the MML estimate of the hyperparameter in each iteration. SBL is an example

where this was successfully done. The approach adopted there would work only if

one had a computationally efficient way of computing the marginalized likelihood
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p(y|φ). In the case of SBL, a closed-form expression of p(y|φ) was obtained. We

were not able to obtain a closed-form expression of p(y|φ) for the LAZE sparse prior.

Obtaining an exact MML estimate of the hyperparameter φ from the joint density

p(y, z|φ) is more often intractable than tractable [83].

The disadvantage of SBL is that the dimension of the hyperparameter search

space is M ; contrast that with a fixed number of two for EBD-LAZE. Moreover, each

iteration of SBL requires the inversion of a P × P matrix, where P = min(M,N).

As M and N increase, SBL becomes more computationally expensive. Additionally,

the inversion of a large matrix is, in general, numerically unstable. This would affect

the optimization of the hyperparameter.

MAP1 and MAP2

MAP1 and MAP2 are computationally thrifty algorithms. The EM iterations are

in closed form, as are the optimal hyperparameter estimates. For MAP2, however,

there is a regularization parameter that needs to be tuned. An automatic tuning

method will naturally increase the computational complexity of MAP2.

L1-SURE and HHS-SURE

The LARS algorithm can be used to implement L1-SURE efficiently. As was

previously mentioned in the literature review, LARS solves for the L1 estimator in

an iterative fashion. The number of iterations is approximately on the order of M .

In the version that is considered, the iterations essentially sweeps the regularization

parameter β from a large number (thus producing a solution of all zeros) to zero

(thus producing the least-squares solution). The version of LARS-LASSO that we

use starts with the zero vector, and adds a coefficient to θ̂ at each step in most

cases, although it might zero out a location in θ̂ once in a while. See [15] for the
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details. Let a be the number of non-zero elements of θ̂ in the current LARS step.

Then, the inversion of a matrix of size a × a is required in order to proceed to the

next step. In practice, one would not need to run LARS all the way to the least-

squares solution, as perhaps an upper bound on ‖θ‖0 is available. One would stop

the LARS iterations once ‖θ̂‖0 achieved this upper bound. If the expected θ is highly

sparse, then the inversion will only be applied to matrices of small sizes. L1-SURE

can also be implemented as a parallel operation of several sub-tasks. Each sub-task

would compute the estimator θ̂l1(t) for different values of t, and evaluate the SURE

criterion. At the end, the different criterion values are compared; the sub-task with

the lowest value would have its estimator selected as the L1-SURE estimator.

The HHS-SURE algorithm in its general form requires the minimization of the

HHS SURE criterion. One implementation would be to lay out a grid of points

covering the area {(t1, t2) : 0 < t1 < tmax, 0 ≤ t2 ≤ t1} for some tmax > 0, and

compute θ̂hs(t) for each t using the iterative thresholding framework. This will be

computationally expensive. The run time of the implementation can be decreased via

parallel processing. In a cluster of computers, each node can be assigned to compute

θ̂hs(t) for one or two t values. The HHS-SURE algorithm that suboptimally finds the

minimum of the HHS SURE criterion via a sequence of line searches decreases the

computational complexity at the expense of accuracy. If the L1-SURE solution is

used as the first line optimization step, the computational complexity can be reduced

by an additional amount. The overall complexity reduction might be minor if many

line optimizations are performed. If only several are performed, the reduction will

be more significant.
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5.7 Simulations

The performance of the following methods will be compared over a range of SNRs:

(i) the proposed sparse reconstruction methods; (ii) SBL; (iii) the standard and pro-

jected Landweber iteration. The projected Landweber iteration will use a projection

on to the positive orthant so that the estimate θ̂ is positive-valued. It implements

a constrained optimization, as the iterations converge to a minimizer of ‖Hθ − y‖2

subject to θ � 0, i.e., each θi ≥ 0. The pseudocode for the various methods is given

in App. E.

Two sparse images are investigated: a sparse binary-valued image, and an image

that is based on the realization of the prior (5.26). The latter will be called the

LAZE image. The image θ studied was of size 32 × 32, and the noisy observation y

was also of the same size. So M = N = 1024.

The binary-valued image has 12 pixels set to one, for a sparsity level of 1.2%. For

the LAZE image, only the inner 26 × 26 pixels were drawn from the LAZE prior

with parameters a = 1 and w = 0.04. This left a space of 3 pixels on each side

of the image, so that convolution with the psf would not cause any wrap-around

effects. This second image can be regarded as being approximately a realization of

the LAZE prior with a = 1 and w = 0.026. The matrix H represented convolution

with a Gaussian blur psf; its columns were linearly independent and its Gram matrix

did not have an eigenvalue of 1/2. The Gaussian blur is illustrated in Fig. 5.9 below;

its exact specification is given in App. F.

Define the SNR as SNR , (N−1‖Hθ‖2)/σ2, and the SNR in dB as SNRdB ,

10 log10 SNR. The following error criteria will be used to assess the performance of

the reconstruction methods:
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Figure 5.9: Gaussian blur used in the sparse image reconstruction simulations.

• The l0, l1, and l2 measures of the reconstruction error, which is defined by

e = θ − θ̂.

• A detection error criterion defined by

(5.79) Ed(θ, θ̂; δ) ,
M∑

i=1

|I(θi = 0) − I(|θ̂i| < δ)|

The threshold δ is used to select the value at which θ̂i is assumed to be zero. This

is used to handle the round-off effects etc. in computers. As well, it addresses

the fact that, to the human observer, small non-zero values are not discernible

from zero values. We took δ = 10−2‖θ‖∞. The error criterion (5.79) measures

the ability of the reconstruction technique to discriminate between the zero

and non-zero values of θ. Accurately determining the support of a sparse θ

is more critical than the actual values [26, 69]. If the support is accurately

determined, the non-zero coefficients can be optimized with respect to a fit with

the observations, e.g., ‖y − Hθ̂‖2.

• Although not strictly an error criterion, the number of non-zero values of θ̂, i.e.,

‖θ̂‖0, will be considered. We are interested in sparse solutions, and so would

like a small number here.

The proposed algorithms were implemented as outlined in the previous section.
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In the case of MAP2, where the tuning parameter g∗ needs to be specified, several

different values were used. The HHS-SURE implementation that was used consisted

of two line searches. First, the L1-SURE solution was computed. Then, a line search

in the direction (1, 0) was performed, i.e., t2 was kept constant and t1 was increased.

This section is divided into four parts. In the first, SBL will be compared to

the following methods: the standard and projected Landweber iterations; and the

proposed methods: EBD-LAZE, MAP1, MAP2, L1-SURE, and HHS-SURE. Because

SBL is computationally intensive and takes a long time to run, only two different

SNRs were investigated, viz. , SNR = 1.76 dB and 20 dB. The exact expression

for SURE of the HHS estimator was used, i.e., (5.77). In the second part, the five

proposed methods and the two Landweber iterations will be compared to each other

in terms of performance vs. SNR for SNR values ranging from 1.76 dB to 20 dB.

The noise variances corresponding to these SNR values are given in App. F. The

exact SURE expression for the HHS estimator was used. It was observed that the

SURE approximation (5.78) matched the exact expression for the range of SNRs

considered. In the third part, the quality of the hyperparameter estimates of EBD-

LAZE, MAP1, and MAP2 will be investigated. Finally, reconstruction examples

involving the MRFM psf are provided.

5.7.1 Performance of the reconstruction methods under low and high SNR

The performance of the estimators is given in the Table 5.1 for the binary-valued

θ with the SNR equal to 1.76 dB (low SNR) and 20 dB (high SNR). The number

reported in Table 5.1 is the mean over the simulation runs. The best mean number

for each criterion is underlined. In terms of the error criteria, this is the lowest

number. However, in terms of ‖θ̂‖0, it would be the number closest to ‖θtrue‖0. The

binary-valued θ is displayed in Fig. 5.10a, and a realization of the noisy observation
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under an SNR of 1.76 dB is displayed in Fig. 5.10b. The number of simulation runs
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Figure 5.10: Binary-valued θ and a realization of y under an SNR of 1.76 dB.

executed for each row of the table is given in Table 5.2.

Table 5.1: Performance of the reconstruction methods for the binary-valued θ.

Method ‖e‖0 ‖e‖1 ‖e‖2 Ed(θ, θ̂) ‖θ̂‖0

SNR = 1.76 dB

Landweber 1024 578.5 22.6 1000 1024

Proj. Landweber 88.9 10.3 1.66 68.5 88.8

SBL 1024 13.8 2.35 58.7 1024

EBD-LAZE 27.3 7.55 1.69 15.6 26.9

MAP1 12 12 3.46 12 0

MAP2, g∗ = (
√

2)−1 15.49 2.72 0.912 3.68 15.3

L1-SURE 60 7.83 1.51 44.2 60.6

HHS-SURE 39.3 7.25 1.51 27.0 39.3

SNR = 20 dB

Landweber 1024 86.1 3.67 929.3 1024

Proj. Landweber 84.9 1.20 0.20 27.0 84.9

SBL 1024 1.19 0.184 32.2 1024

EBD-LAZE 41.8 1.93 0.337 29.7 41.8

MAP1 43.9 1.07 0.209 22.9 43.9

MAP2, g∗ = (
√

2)−1 229.5 3.82 0.380 114.4 229.5

L1-SURE 61.2 0.923 0.176 15.7 61.8

HHS-SURE 22.0 0.584 0.152 7.5 22.0

Some observations can be made regarding SBL. Firstly, SBL does not produce a

strictly sparse solution for the two SNR conditions considered. In both, ‖θ̂‖0 = 1024,
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Table 5.2: Number of simulation runs for the comparison of the binary-valued θ and the LAZE
distributed θ.

Method # runs for binary θ # runs for LAZE θ

SNR = 1.76dB SNR = 20dB SNR = 1.76dB SNR = 20dB

SBL 30 30 22 22

EBD-LAZE 30 50 30 30

MAP1 30 30 30 30

MAP2, g∗ = (
√

2)−1 100 50 30 30

L1-SURE 30 30 30 30

HHS-SURE 30 30 30 30

Landweber 30 30 30 30

Proj. Landweber 30 30 30 30

which is the length of θ. Secondly, it does not have better performance than the

proposed reconstruction methods. The same observations apply to the Landweber

iterations. Under the low SNR value, Landweber has the worst performance, followed

by SBL. SBL is more competitive under the high SNR value: its ‖e‖2 = 0.184 is

close to the lowest value of 0.163. Nonetheless, even here, its ‖e‖0 = 1024 and its

‖θ̂‖0 = 1024. SBL is not producing a sparse estimator even under the higher SNR

number. On the other hand, the proposed methods produce sparse estimates under

both the low and high SNR values. The Landweber iteration has lower numbers

for ‖e‖1 and ‖e‖2 under the high SNR value, but is still not competitive with the

proposed reconstruction methods.

The projected Landweber method, interestingly enough, sparsifies the estimate θ̂

even though it does not enforce sparsity. Rather, it enforces non-negativity of θ̂. In

the low SNR case, there is a significant improvement over the standard Landweber

method. It has a low ‖e‖2 error; however, the other error metrics are far from the

best values. Despite this, the error numbers are better than SBL’s. In the high SNR

case, the projected Landweber estimate is not competitive in so far as the ‖e‖0, Ed,

and ‖θ̂‖0 criteria are concerned. However, it exhibits good ‖e‖2 error, and its ‖e‖1
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error puts it in the middle of the pack. In the high SNR case, SBL and the projected

Landweber method have comparable performance in terms of ‖e‖1. However, the

latter produces a sparser result than SBL, as is evidenced by the ‖θ̂‖0 values.

We shall now comment on the performance of the proposed reconstruction meth-

ods. In the low SNR case, MAP1 is consistently producing an output of all zeros.

Effectively, MAP1 takes the conservative approach that θ is 0. This results in MAP1’s

‖e‖1 = ‖θ‖1 and ‖e‖2 = ‖θ‖2. MAP1 has the lowest ‖e‖0 of all the estimators consid-

ered. However, the ‖e‖0 criterion is not always very meaningful. It measures the 0−1

risk between θ and θ̂, which is a stringent error criterion. MAP2 with g∗ = (
√

2)−1

has the lowest numbers for ‖e‖1, ‖e‖2, and Ed(θ, θ̂), even though there is a mismatch

between θ and the prior that MAP2 uses (the discrete-continuous form of the LAZE

prior). In the low SNR case, MAP2 has the best performance.

In the high SNR case, the HHS-SURE estimator has the best performance. The

mean values of all the error criteria decrease as compared to L1-SURE. The greatest

decreases are in ‖e‖0, Ed, and ‖θ̂‖0. They indicate that the HHS-SURE estimator

is properly zeroing out spurious non-zero values and producing a sparser estimate

than L1-SURE. Recall that the HHS thresholding function originated from the MAP

solution when using the LAZE prior for θ. The incorporation of the Dirac delta at

zero in the prior of θ does indeed permit a sparser estimate.

The number ‖θ̂‖0 does not necessarily give an accurate assessment of the perceived

sparsity of the reconstruction. Consider the SBL reconstruction and the MAP2

reconstruction under the SNR of 1.76 dB in Figs. 5.11a and 5.11b respectively. The

SBL reconstruction looks sparse despite having ‖θ̂‖0 = 1024. This is because many of

the non-zero pixel values have a small magnitude, and are visually indistinguishable

from zero. We note that the MAP2 reconstruction closely resembles the original
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θ, although there is some blurring around several non-zero pixel locations. On the

other hand, the SBL reconstruction has many spurious non-zero pixels, in addition

to blurring around several non-zero pixel locations. The SBL estimate contains

negative values. This is not surprising, as positivity of θ is not taken into account.

Recall that SBL models the θi as a Gaussian r.v. Positivity is not taken into account

in MAP2 either; however, as can be seen, the reconstruction is non-negative. We

note that both methods reconstruct the amplitude of the positive non-zero pixels

accurately. One possible remedy for SBL is to threshold θ̂ at some pre-determined
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Figure 5.11: Reconstructed images for the binary-valued θ under an SNR of 1.76 dB for SBL and
MAP2.

level. The ensuing image when the threshold t = 10−2‖θ‖∞ = 10−2 is used is shown

in Fig. 5.12a. Compared to the MAP2 estimator in Fig. 5.11b, the thresholded SBL

estimator has more spurious positive values. When a threshold of t = 0.5 is chosen,

the resulting image, given in Fig. 5.12b, resembles the MAP2 reconstruction. The

challenge for a thresholded SBL estimator is to select the appropriate level of the

threshold to use. This would require some prior knowledge of θ.

The reconstruction for SBL and HHS-SURE at SNR = 20 dB is given in Figs. 5.13a

and 5.13b respectively. The reconstructions are better in the high SNR case than

in the lower SNR case, which is to be expected. The performance of SBL improves,

and there are less spurious non-zero pixels. However, the HHS-SURE reconstruction
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Figure 5.12: Thresholded θ̂ of SBL with two different threshold values.

more closely resembles θ. Both methods accurately reconstruct the non-zero pixel

values as 1. From Table 5.1, HHS-SURE has better performance than SBL in the
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Figure 5.13: Reconstructed images for the binary-valued θ under an SNR of 20 dB for SBL and
HHS-SURE.

low SNR case as well as the high SNR case. The same cannot be said of MAP2.

While it has better performance than SBL under the low SNR case, its performance

deteriorates in the high SNR case.

The Landweber reconstructions for the low and high SNR cases are given in

Figs. 5.14a and 5.14b respectively. Under the low SNR case, there are many negative

valued θ̂. If one were to focus on just the positive-valued pixels, there are a number

of spurious pixels incorrectly reconstructed around 1, the non-zero pixel value in θ.

Under the high SNR case, we see that the higher SNR results in a smaller number of

negative-valued pixels. Some of the non-zero pixel locations can be roughly discerned;
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however, they have quite a bit of blurring. In both low and high SNR cases, the

amplitudes of the non-zero pixels are not correctly reconstructed. Consider the
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Figure 5.14: Reconstructed Landweber estimates for the binary-valued θ under SNRs of 1.76 dB
and 20 dB.

projected Landweber reconstructions for the same observation y. They are illustrated

in Fig. 5.15a and 5.15b for the low and high SNR case respectively. In the low SNR
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Figure 5.15: Reconstructed projected Landweber estimates for the binary-valued θ under SNRs of
1.76 dB and 20 dB.

case, the estimate θ̂ has blurring around the non-zero pixel values and many spurious

non-zero values. However, in the high SNR case, the reconstruction closely resembles

the true θ. Despite the fact that the projected Landweber’s error metrics are worse

than HHS-SURE’s, Fig. 5.15b is an acceptable reconstruction.

We shall move on to examine the performance of the reconstruction methods

under the LAZE image. We expect that EBD-LAZE, MAP1, and MAP2 would have

better performance here than the other methods, as the image θ was generated using
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the LAZE prior. The LAZE θ is displayed in Fig. 5.16a, and a noisy realization

under an SNR of 20 dB is displayed in Fig. 5.16b.
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Figure 5.16: LAZE distributed θ and a realization of y under an SNR of 20 dB.

The numbers for the error criteria are given in Table 5.3. Again, the reconstruction

method with the best number for each criterion is underlined. For the LAZE θ,

‖θtrue‖0 = 27. As in the case of the binary-valued θ, the Landweber iteration, which

solves for the least-squares estimator, is not competitive in either the low or high

SNR case. In the low SNR case, no one estimator dominates in terms of performance.

However, it can be said that SBL does not have better performance than the proposed

estimators. The estimators that use the LAZE prior for θ appear to be competitive

in terms of performance; more will be said on this later. We see that, under low

SNR, MAP1 produces the conservative estimate of all zeros, just as with the case of

the binary-valued θ.

The reconstructions of SBL, EBD-LAZE, MAP2, and HHS-SURE under the SNR

of 1.76 dB are given in Fig. 5.17a-d. The numbers for ‖θ̂‖0 EBD-LAZE and MAP2

in Table 5.3 indicate that these two methods are producing estimates that are too

sparse. There are in fact 27 non-zero values in θ; yet, the mean values of θ̂0 for EBD-

LAZE and MAP2 are 13.6 and 9.77 respectively. That is reflected in Figs. 5.17b,c.

Both appear to be similar, and do not correctly reconstruct several negative-valued
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Table 5.3: Performance of the reconstruction methods for the LAZE θ.

Method ‖e‖0 ‖e‖1 ‖e‖2 Ed(θ, θ̂) ‖θ̂‖0

SNR = 1.76 dB

Landweber 1024 807.1 31.6 977.2 1024

Proj. Landweber 80.9 22.8 4.14 63.5 61.7

SBL 1024 28.1 3.99 72.6 1024

EBD-LAZE 33.7 17.4 3.69 26.8 13.6

MAP1 27 21.2 5.21 27 0

MAP2, g∗ = (
√

2)−1 30.9 17.5 3.98 25.1 9.77

L1-SURE 92.6 20.3 3.15 69.3 81.9

HHS-SURE 67.2 19.1 3.14 51.1 54.7

SNR = 20 dB

Landweber 1024 122.2 5.34 855.5 1024

Proj. Landweber 69.6 17.3 3.85 37.5 52.3

SBL 1024 4.32 0.814 33.7 1024

EBD-LAZE 62.4 8.56 1.62 41.4 54.3

MAP1 69.7 6.53 1.34 31.9 63.8

MAP2, g∗ = (
√

2)−1 216.3 10.8 1.44 86.6 211.5

L1-SURE 118.5 6.63 1.32 31.1 115.8

HHS-SURE 84.4 6.73 1.35 33.0 78.7

pixels. As well, there are some spurious non-zero values. The SBL estimate overes-

timates the number of non-zero pixels. Although most of the negative values of θ

are reconstructed, other spurious negative values are also present. The reconstruc-

tion of HHS-SURE is better in the sense that it has less artifacts, although several

pixels are blurred. These reconstructions provide an idea of why no one estimator is

dominating in performance.

The reconstructions for SBL, EBD-LAZE, L1-SURE, and HHS-SURE under the

SNR of 20 dB are illustrated in Figs. 5.18a-d. The amplitude of one of the negative-

valued pixels is not properly reconstructed in L1-SURE, and there are spurious non-

zero pixels. HHS-SURE reduces the number of non-zero pixels; however, it is not able

to correctly reconstruct the amplitude of the negative-valued pixel in the lower-left
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Figure 5.17: Reconstructed images for the LAZE θ under an SNR of 1.76 dB for SBL, EBD-LAZE,
MAP2 with g∗ = (

√
2)−1, and HHS-SURE.

corner. Rather, the pixel is blurred. The reconstruction for SBL and EBD-LAZE are

similar except in two respects. While the EBD-LAZE reconstruction looks sparser,

there is blurring around some of the non-zero pixel locations. In contract, SBL

produces an image that has more spurious artifacts, but it correctly reconstructs the

amplitude of the non-zero pixels, and does not have any blurring. It is likely that,

for this reason, SBL has the lowest ‖e‖1 and ‖e‖2 numbers in the high SNR case.

Extrapolating from the simulation results, it appears that SBL has better per-

formance in cases when the non-zero pixels of θ assume both positive and negative

values, and when under high SNR. When the non-zero pixels of θ assume only pos-

itive or negative values (but not both cases), or when the SNR is low, SBL has

poorer performance. The other aspect that makes SBL unappealing is its heavy

computational complexity.

Based on the values of the error criteria, the Landweber iteration is not a compet-
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Figure 5.18: Reconstructed images for the LAZE θ under an SNR of 20 dB for SBL, EBD-LAZE,
and HHS-SURE.

itive method over the range of SNRs considered. The projected Landweber iteration

produces estimates with better error numbers than the standard Landweber iteration

under both low and high SNR. The improvement in going from low to high SNR is

not as marked as some of the other reconstruction methods. This is undoubtedly

due to the model mismatch in the true θ and the projection operator used by the

projected Landweber method. The LAZE θ has negative pixel values, whereas the

projection used projects the iterative estimates on to the positive orthant.

The fact that EBD-LAZE, MAP1, and MAP2 did not produce superior perfor-

mance over the other methods in the case of the LAZE image is unintuitive. One

would think that, if the prior assumed is the same as the prior that is used, then

the reconstruction technique has an advantage. The question to consider is if the

estimate of the hyperparameters is accurate. The hyperparameter estimates for the

three methods is shown in Table 5.4 below. The number reported is the mean over
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the simulations along with one standard deviation. Clearly, the hyperparameter esti-

mates are biased. EBD-LAZE’s hyperparameter estimate is less biased than MAP1’s

and MAP2’s. The bias of the hyperparameter estimate is perhaps why these three

methods do not perform as well as one would have expected.

Table 5.4: Hyperparameter estimates of EBD-LAZE, MAP1, and MAP2 with g∗ = (
√

2)−1.

Method â ŵ

SNR = 1.76 dB

EBD-LAZE 1.72± 0.310 (18.8± 2.24) × 10−3

MAP1 276.3± 38.9 (7.78± 1.48) × 10−3

MAP2, g∗ = (
√

2)−1 0.752± 0.0743 (9.54± 1.44) × 10−3

SNR = 20 dB

EBD-LAZE 3.65± 0.686 (6.34± 1.28) × 10−2

MAP1 52.1± 0.329 (6.23± 0.446) × 10−2

MAP2, g∗ = (
√

2)−1 9.04± 2.29 0.207± 0.0582

This ends the simulation study of SBL vs. the other reconstruction methods.

From this point onwards, only the proposed reconstruction methods and the two

Landweber iterations will be studied.

5.7.2 Performance vs. SNR of the proposed reconstruction methods

The performance of the proposed reconstruction methods when applied to the

binary-valued θ is examined with respect to SNR. We shall include the standard and

projected Landweber method in this section. L1-SURE will be used to benchmark

the other estimators. Even though the SURE criterion has not been previously

applied to selecting the regularization parameter for the L1 estimator, the l1 penalty

is known to encourage sparsity. Because there are several methods to consider,

the presentation will be divided into three sets. The first set contains EBD-LAZE,

MAP1, L1-SURE, and HHS-SURE; the second contains MAP2 with the values of

g∗ = 10−4, (
√

2)−1, 103, and L1-SURE; the third set contains L1-SURE, Landweber,
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and the projected Landweber iteration. The number of simulation runs for each

estimator is given in Table 5.2. For each estimator, the mean is plotted along with

error bars of one standard deviation.

The plots of error criteria for the first set is given in Fig. 5.19. First, consider the

‖e‖0, ‖e‖1, and ‖e‖2 error criteria. L1-SURE has the highest ‖e‖0 over the range of

SNR considered. However, in terms of ‖e‖1 and ‖e‖2, it is a competitive estimator.

In contrast, MAP1 is unable to distinguish the location of the non-zero pixels in

low SNR. Under high SNR conditions, it has performance that is comparable to

L1-SURE and HHS-SURE in terms of the ‖e‖1 and ‖e‖2 errors. The error curve

for EBD-LAZE is always higher than L1-SURE’s, except in the case of ‖e‖0. The

value of ‖e‖0 increases with respect to increasing SNR for MAP1 and EBD-LAZE.

Taken together with the ‖e‖1 and ‖e‖2 curves, the trend is indicative of small non-

zero coefficients appearing in θ̂ that are spurious. L1-SURE and HHS-SURE do not

exhibit the same behaviour. HHS-SURE’s error curve is lower than L1-SURE’s for

‖e‖0 and ‖e‖1, and it is almost identical for ‖e‖2.

Next, consider the Ed and ‖θ̂‖0 error criterion. L1-SURE’s curve for ‖θ̂‖0 is

relatively flat, and its Ed curve decreases for high SNR. This indicates that, while

the number of non-zero coefficients in θ̂ remains the same, the amplitude at the

spurious locations are decreasing. With MAP1 and EBD-LAZE, the opposite trend

is true. For low SNR, the number of non-zero coefficients in θ̂ is small, but increases

with higher SNR. A similar increase can be seen in the Ed curves. One can conclude

that the number of spurious non-zero locations is increasing, which is unexpected.

This phenomenon is likely due to the bias of the hyperparameter estimates. With

HHS-SURE, both the Ed and ‖θ̂‖0 curves decrease slightly as the SNR increases.

This behaviour is intuitive, as higher SNR should result in better performance. The
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Figure 5.19: Performance vs. SNR for EBD-LAZE, MAP1, L1-SURE, and HHS-SURE when applied
to the binary-valued θ.
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plots Fig. 5.19b,c,d indicate that HHS-SURE produces a sparser estimate that has

approximately the same (or slightly lower) ‖e‖1 and ‖e‖2.

The plots of error criteria for the second set of estimators is given in Fig. 5.20. As

with the previous set of estimators, focus first on the error plots of ‖e‖0, ‖e‖1, and

‖e‖2. It is clear that the selection of g∗ is vital to the performance of MAP2. The

choice g∗ = 10−4 is bad: its ‖e‖0, ‖e‖1, and ‖e‖2 error curves all lie above L1-SURE’s.

The error curves for g∗ = (
√

2)−1 and g∗ = 103 have better performance than L1-

SURE for low SNR, but worse performance at high SNR. For g∗ = (
√

2)−1, ‖e‖0

quickly increases as the SNR increases. This indicates that many spurious non-zero

components are being added for higher SNR values. We note that all MAP2 versions

perform worse than L1-SURE under the ‖e‖1 and ‖e‖2 criteria at high SNR.

It remains to consider the Ed and ‖θ̂‖0 plots. The MAP2 curves for both criteria

generally increases with higher SNR values. The notion of bias does not exactly apply

in this scenario, as the binary-valued θ is not from the LAZE prior. Nevertheless,

the increasing trend is likely symptomatic of the bias effect of the hyperparameter

estimate. As the SNR increases, an unbiased estimator φ̂ would, in general, become

more accurate. That should result in better performance.

The last group of estimators to consider is L1-SURE, Landweber, and the pro-

jected Landweber iteration. In the plots of ‖e‖1 and ‖e‖2, only the error curves

for L1-SURE and the projected Landweber iteration are plotted, as inclusion of the

Landweber error curve (it is a lot higher) will obscure the difference between the

former two curves. It is interesting that the error curves for ‖e‖0 and ‖θ̂‖0 are flat

from an SNR of 1.76 dB to 20 dB. The Landweber error curve is also flat for the Ed

criterion, whereas L1-SURE’s and the projected Landweber’s curves decrease with

higher SNR. We see from Fig. 5.21a-e that L1-SURE has better performance over
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Figure 5.20: Performance vs. SNR for MAP2 with g∗ = 10−4, (
√

2)−1, 103, and L1-SURE when
applied to the binary-valued θ.
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Figure 5.21: Performance vs. SNR for L1-SURE, Landweber, and projected Landweber iteration
when applied to the binary-valued θ.
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the range of SNRs considered for the different error criteria.

5.7.3 Hyperparameter estimates of EBD-LAZE, MAP1, and MAP2

The quality of the hyperparameter estimates of EBD-LAZE, MAP1, and MAP2

will be examined when applied to the LAZE image. The mean hyperparameter

estimate φ̂ = (â, ŵ) is plotted vs. SNR in Figs. 5.22a-b. MAP1’s â appears to
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Figure 5.22: Hyperparameter estimate vs. SNR for EBD-LAZE, MAP1, and MAP2 with g∗ =
(
√

2)−1, 103.

converge as the SNR increases, whereas the other estimates slowly increase with

higher SNR. However, MAP1’s estimate is far from the true value of 1, whereas the

other methods’ estimates are closer. The estimators of EBD-LAZE and MAP2 are

close to 1 when the SNR is in the range of 2–8 dB. The estimator ŵ increases with

higher SNR for all of the methods considered here. When the SNR is in the range

of 2–8 dB, the estimates are close to 0.026.

The Ed error curves of the reconstruction methods that use the LAZE prior is

illustrated in Fig. 5.23. In addition, the L1-SURE error curve is displayed as a

basis of comparison. When the hyperparameter estimate is relatively unbiased, we

expect the MAP methods to perform well under the Ed criterion. This is because

MAP minimizes the error probability Pe(θ̂) = P (‖θ − θ̂‖ > ε), and the Ed(θ, θ̂)
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Figure 5.23: Ed error curves for EBD-LAZE, MAP1, MAP2, and L1-SURE with the LAZE image.

criterion can be regarded as the error probability on the support of θ. When the

SNR is in the range of 2–8 dB, which is where the hyperparameter estimates are

relatively unbiased, the MAP methods and EBD-LAZE have lower error curves than

L1-SURE. The increase of MAP2’s error curve when g∗ = (
√

2)−1 closely parallels

the increase of its ŵ. Interestingly enough, the bias of â of MAP1 does not result in

poor performance in terms of Ed. Since MAP1’s ŵ ≤ 1/2, the hybrid thresholding

function is used in (5.63). In the simulation, α < 1, and because ŵ is small over

the range of SNRs considered, the expression for t1 = âα2 +
√

2α2 log((1 − ŵ)/ŵ) is

dominated by the second term.

5.7.4 MRFM reconstruction examples

Benzene example

A two dimensional reconstruction was carried out using the six hydrogen atoms

of the benzene molecule as θ. Each hydrogen atom location was set to one, and the

rest of the image set to zero. The two dimensional image was 128 × 128, and a 2-d

slice of the MRFM psf was used for the linear transformation H. The parameters of

the psf used are the same as in Table 2.1.
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The image θ and the noisy observation y are shown in Figs. 5.24a and 5.24b

respectively. The SNR was −5 dB, which corresponded to a noise standard deviation

of σ = 0.372. MAP2 with g∗ = (
√

2)−1 and the Landweber iteration were applied,
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(a) Hydrogen atom locations of benzene
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Figure 5.24: Hydrogen atom locations of benzene and noisy observation after convolution with a
2-d slice of the MRFM psf. The hydrogen atoms trace out a hexagon in the plane.

each with 2 × 104 iterations. The respectively reconstruction results are depicted in

Figs. 5.25a and 5.25b respectively. The hexagonal pattern of the hydrogen atoms
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Figure 5.25: MAP2 and Landweber reconstruction of benzene’s hydrogen atoms under an SNR of
−5 dB.

is clear in the MAP2 reconstruction. No spurious non-zero pixels are visible. In

contrast, the Landweber reconstruction contains background noise, and one of the

hydrogen locations appears to be “missing”. The error criteria for these two methods
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are given in Table 5.5 below. The value of δ = 10−2‖θ‖∞ = 10−2 was used for

the Ed(θ, θ̂) error criterion. The numbers confirm that MAP2 produces a sparser

estimate.

Table 5.5: Error criteria for the benzene reconstruction with an SNR of −5 dB.

Method ‖e‖0 ‖e‖1 ‖e‖2 Ed(θ, θ̂) ‖θ̂‖0

MAP2, g∗ = (
√

2)−1 458 24.5 1.25 447 458

Landweber 16384 3.27 × 103 32.1 1.58 × 104 16384

An interesting point is that the reconstructions of these two algorithms are rel-

atively good under a SNR of -5 dB. Even the Landweber iteration, which does not

encourage sparsity in its estimate, produces a reconstruction where the hexagonal

pattern is mostly visible. Define the coherence of H as µ(H) , maxi6=j | < hi, hj > |.

The coherence plays a strong role in the amenability of the sparse representation

problem y = Hθ [22, 69, 13]: a smaller µ(H) is more desirable. As a result, we

expect a smaller µ(H) to have better sparsity performance in the inverse problem

y = Hθ + w.

The 2-d MRFM psf has a support that is almost one dimensional. It is not

quite one dimensional because each of the two elliptical curves that make up the

2-d MRFM psf has a non-zero thickness. When the MRFM psf is moved in some

direction, there will be very little overlap between the support of the new location and

the old location. Consequently, H will have columns that have very low correlation

with each other. The 2-d MRFM psf is a good psf for sparse image reconstruction.

In contrast, a psf that has a large area or volume will result in the columns of the

corresponding H being more strongly correlated with each other.
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103D molecule (DNA) example

A three dimensional reconstruction was carried out using the 272 hydrogen atoms

of the 103D molecule (DNA) as θ. As with the benzene example previously, each

hydrogen location was set to one, and the rest of the image set to zero. The image

size used was 128× 128× 32 ≈ 5.24× 105 voxels. The hydrogen atom structure was

aligned so that its longer dimension resided in the x-y plane, so as to take advantage

of the greater number of grid points in the x and y dimensions. The matrix H

represented convolution with the 3-d MRFM psf. The parameters of the psf are

given in Table 5.6 below.

Table 5.6: Psf parameters used for the 3-d MRFM reconstruction example.

Parameter Value

Description Name

Amplitude of external magnetic field Bext 2.8835 × 104 G

Value of Bmag in the resonant slice Bres 3 × 104 G

Radius of tip when modelled as a sphere R0 3 nm

Distance from tip to sample d 3 nm

Cantilever tip moment† m 1.9227 × 105 emu

Peak cantilever swing xpk 0.049 nm

Maximum magnetic field gradient‡ Gmax 407 G/nm

† Assuming a spherical tip.
‡ Assuming optimal sample position.

The SNR used was 6.02 dB, which corresponded to a noise σ = 0.380. The non-

zero portion of θ is shown in Fig. 5.26a-b. The noisy observation y is shown in

Fig. 5.26c. The first four slices of the noisy observation y are depicted in Fig. 5.27.

MAP2 with g∗ = (
√

2)−1 was used with 5 × 104 iterations. Several different volume

rendering views are illustrated in Fig. 5.28a-d. In Figs. 5.28a-b, the helical structure

of θ̂ is apparent. There are spurious non-zero voxels present in the reconstruction.

In particular, two extraneous Xs are traced out in Fig. 5.28c. The flatness of 103D
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Figure 5.26: Hydrogen atom locations of 103D and noisy observation after convolution with the
MRFM psf. Note the helical structure traced out by the hydrogen atoms.

can be seen in Fig. 5.28d, where the hydrogen atoms are concentrated in a v-shaped

slice.

Landweber iterations were carried out on the same noisy observation using 5×104

iterations. The result is rendered at different viewing angles in Fig. 5.29a-d. The

helical structure of the hydrogen atoms is also visible. As compared to the MAP2,

however, there is more background noise and spurious non-zero voxels. The two
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Figure 5.27: First four slices of noisy observation y resulting from convolving the MRFM 3-d psf
with the H atom locations of 103D.

extraneous Xs are more apparent in Fig. 5.29c. Note that Figs. 5.28 and 5.29 use

the same colour map, but not the same colour scale. The error criteria for the two

methods are given in Table 5.7. The numbers confirm that the MAP2 reconstruction

Table 5.7: Error criteria for the reconstruction of 103D’s hydrogen atoms under an SNR of 6.02 dB.

Method ‖e‖0 ‖e‖1 ‖e‖2 Ed(θ, θ̂) ‖θ̂‖0

MAP2, g∗ = (
√

2)−1 4.605 × 105 6.336 × 104 122.7 4.602 × 105 4.605 × 105

Landweber 5.243 × 105 1.056 × 105 185.0 5.240 × 105 5.243 × 105

is sparser. This is also evident from the histogram of θ̂ values given in Fig. 5.30.

There is a multiplicative reduction in spurious θ̂i values that are less than one in

magnitude. The reduction of the error criteria for MAP2 vs. Landweber is not as

dramatic as for the benzene example. It is likely because of the higher SNR of 6.02

dB used here. In a lower SNR environment, we expect the MAP2 estimator to have

a bigger reduction in the error criteria.
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Figure 5.28: Three dimensional visualization of the MAP2 reconstruction of 103D’s hydrogen atoms
with g∗ = (

√
2)−1 at an SNR of 6.02 dB. Different viewing angles are shown. The

helical structure of 103D is apparent.

5.8 Conclusion

This chapter proposed methods of performing simultaneous deconvolution and

denoising of sparse images. We wanted methods that estimated the tuning pa-

rameters in a data-driven fashion and which were scalable. Two approaches were

taken. The first was to impose a sparsifying prior on the image θ that contained

unspecified parameters, e.g., the LAZE p.d.f. The unknown parameters of the prior,
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Figure 5.29: Three dimensional visualization of the Landweber reconstruction of 103D’s hydrogen
atoms at an SNR of 6.02 dB. Different viewing angles are shown. The helical pattern
is also visible, but there is more background noise and spurious non-zero voxels.

which were called the hyperparameter, were estimated in an empirical fashion, ei-

ther through marginal ML or MAP. This first approach gave rise to EBD-LAZE,

MAP1, and MAP2. MAP2 requires the specification of a tuning parameter. The

second approach taken was to use a MPLE with a penalty that encouraged spar-

sity. The penalty function contained unspecified parameters which were estimated

by minimizing SURE of the l2 risk between Hθ and Hθ̂. The methods L1-SURE and
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Figure 5.30: Histogram of θ̂ for the Landweber iteration and MAP2 when applied to reconstruction
of 103D’s hydrogen atoms.

HHS-SURE were the result of this approach.

In the simulation study performed, SBL had poor performance with the binary-

valued image, but better performance under high SNR with an image that contained

positive and negative values (the LAZE image). A possible remedy is to threshold

the SBL estimator; however, this requires prior knowledge of θ. In addition, SBL

is computationally intensive and requires the inversion of a matrix that is of size

P × P , where P = min(M,N). Recall that N is the length of the observation y and

M is the length of θ. The inversion of large matrices is numerically unstable, which

affects the scalability of SBL.

Overall, the L1-SURE estimator is a consistent performer under the error criteria

examined. The MAP2 estimator has good performance under low SNR, but not

high. Under high SNR, L1-SURE and MAP1 have comparable performance in terms

of the l1 and l2 norm of the reconstruction error. EBD-LAZE has performance that

is worse than L1-SURE’s for the previous two criteria, although its error detection
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performance is good over the SNR range of 2 dB to 15 dB. Under higher SNR,

the hyperparameter estimate of EBD-LAZE, MAP1 and MAP2 become increasingly

biased, which explains why their performance worsens under higher SNR. HHS-SURE

achieves a comparable ‖e‖1 and ‖e‖2 as L1-SURE, but with a sparser estimate. While

the Landweber iteration, which solves for the least-squares solution, produces noisy

reconstructions, the projected Landweber has good performance for the non-negative

binary-valued image under high SNR.

The MAP1 and MAP2 estimators scale well with the size of the problem. They

have low computational complexity: no matrix inversion is required, and the hy-

perparameter optimizations are computed in closed form. EBD-LAZE, however,

requires a 2-d search in order to optimize its hyperparameters. Fortunately, the

search remains in two dimensions regardless of the values of M and N . To decrease

computational complexity, the hyperparameter search can be performed every nth

iteration instead of every iteration. L1-SURE can be efficiently implemented for θ

that are highly sparse using the LARS algorithm. A matrix inversion is needed in

each step of LARS. The number of LARS steps is approximately proportional to the

number of non-zero voxels in θ. If this number is fixed, M , the length of θ, can vary

arbitrarily without affecting the computational complexity of LARS. HHS-SURE’s

scalability is dependent on the scalability of L1-SURE and of subsequent optimiza-

tions for t = (t1, t2). The subsequent optimizations can be efficiently implemented

via parallel processing. As a second option, both L1-SURE and HHS-SURE can be

implemented in their entirety as a parallel operation.



CHAPTER VI

Future directions

In this chapter, we will discuss the open issues in Chapters III, IV, and V. A

question that concerns all of the work done in this thesis is the noise model that is

used. We have assumed throughout the thesis that the noise is AWGN; however, it

might not always be appropriate. In the future, we might want to consider coloured

Gaussian noise, for example, or a Poisson noise model.

6.1 Detection of the CTC model

While the PLKF was formulated for the detection of the soft nonlinear system

given by the CTC model, no convergence or error bound properties were shown for the

estimator. As such, while the simulations for a certain parameter set demonstrated

that the PLKF outperformed the EKF, it might not be true for other parameter

values. The PLKF has not been applied to other softly nonlinear models, and so one

does not how it compares against the EKF in general.

The same can be said of the KF/GLR innovations and innovations energy detector.

Its formulation was based on heuristic principles, and while the simulations showed

that the KF/GLR innovations detector worked well for two parameter sets, one

cannot guarantee this in general for all parameter values. It would be desirable to

obtain bounds on the false alarm (PF ) and detection (PD) probabilities.
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While the KF/GLR innovations detector had good performance in the simulations,

one needed to know the parameter values of the model, e.g., G, k, etc. Some of these

values are not precisely known in the experiment, which leads to two questions:

how sensitive is the detector to changes in the parameter values, and how can the

detector be made more robust to uncertainties in the parameter values? These are

both questions that have not been looked into.

Would it be possible to design the rf waveform based on a detectability criterion?

This is a question that extends to the detection of the DT single spin-cantilever

models as well.

6.2 Detection of the discrete-time models

Applying the FE statistic requires knowledge of α used in the LPF. In practice,

a bank of LPFs with different αs are used to perform detection, which amounts to

the application of the GLR principle. Nonetheless, one wonders if there is a better

way to estimate α. In the general case of the DTRT when the probabilities are

not symmetric, i.e., p 6= q, the hybrid detector approximation to the LRT given in

(4.21) requires knowledge of p, q, A, σ. If these are not available, how are these to be

estimated? A sensitivity analysis of these parameters should also be carried out.

It would be interesting to extend the approximation of the LRT for a certain class

of DTRWs to a broader category of DT finite-state processes. This will depend on

the tractability of the eigendecomposition of the probability transition matrix P and

the matrix Q, among other things.

6.3 Sparse image reconstruction

Even though the MAP1 and MAP2 reconstruction methods monotonically in-

crease their respective objective function, we have not shown that the iterations will
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converge. In addition, the uniqueness of the maximizer has not been investigated.

It would be interesting to see if L1-SURE has optimality properties along the lines

of SureShrink.

The proposed reconstruction methods addressed the issue of sparsity, but did

not address the issue of non-negativity of θ. We did, however, investigate the per-

formance of a method that enforced non-negativity in the estimate: the projected

Landweber iteration. In the simulation study, it was noted that positivity seemed to

produce a sparsifying effect when the true θ is non-negative. This bears further study.

The iterative thresholding framework suggests a possible solution to enforcing non-

negativity: apply a thresholding function T (x) such that T (x) = 0 for x < 0. Indeed,

the projected Landweber has this characteristic: it fits the thresholding framework

with the following thresholding function T+(x) = max(0, x).

What if one knew that the non-zero θis assumed values in a finite set? This is a

discrete constraint on the non-zero θis that could be exploited.

The priors of θ that were considered have all been independent, i.e., θi and θj

are independent for i 6= j. However, as molecules generally have structure, the in-

dependence assumption is not accurate. Modelling the structural dependence might

produce better reconstructions. This thesis assumed that there was no spin coupling

present; that might not be true when the distance between spins is small. Can the

prior or penalty used by a reconstruction method be adapted to model spin coupling

effects?

Design of the MRFM point spread function for sparse image reconstruction is

another fertile area to be explored. As was noted, a matrix H that has columns with

low correlation is desirable. By optimizing the parameters of the experiment so as

to produce this effect, a performance gain can be realized.
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APPENDIX A

Second order approximation of the LRT for the DTRT
model

Let f(y0, . . . , yN−1) denote the log LRT function of the DT random telegraph; this

is obtained by taking the log of the left-hand side of (4.18). Let g(y0, . . . , yN−1) be the

filtered energy detector function in (4.17). We want to analyze the two functions f

and g under the regime of low SNR (|A/σ| � 1) and long observation time (N � 1).

The strategy used is to obtain the approximate Taylor series expansion of f about

y = 0 and compare that with g. Define:

θi ,
qi(A)e

A

σ2 yi

qi(A)e
A

σ2 yi + qi(−A)e−
A

σ2 yi

for i ≥ 0. From (4.19), a recursive equation for θi can be derived. Its approximate

solution is

θi ≈ βi +
qA

σ2

i∑

j=0

ξijyj, i ≥ 0 where:

βi =
1 − q

1 − r
+

(
1

2
− 1 − q

1 − r

)
ri, i ≥ 0

ξij =
2(1 − q)ri−j + (2q − r − 1)ri

1 − r
, 0 ≤ j ≤ i− 1

ξii =
2(1 − q)

1 − r
+
ri(2q − r − 1)

1 − r
= 2βi, i ≥ 0(A.1)

and r = p+ q − 1. Note that p, q ∈ (0, 1) ⇒ |r| < 1. Define si , A
σ2yi. Then,

(A.2) f ≈
∑

i

{[
si(2qi(A) − 1) +

1

2
s2
i

]
− 1

2

[
si(2qi(A) − 1) +

1

2
s2
i

]2
}
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By solving for qi(A) in terms of θi and using (A.1), one obtains the approximate

Taylor series expansion of f as

f ≈ L1 + L2a + L2b + h.o.t., with(A.3)

L1 =
A

σ2
Cm
∑

i

(1 − ri)yi(A.4)

L2a = 2q

(
A

σ2

)2∑

i

i−1∑

j=0

[
2(1 − q)

1 − r
ri−j − riCm

]
yiyj(A.5)

L2b =

(
A

σ2

)2∑

i

{
4r

(
1 − q

1 − r

)2

+ 2
(q − r)(1 − q)

(1 − r)2
− Cm(2q + Cm)ri +

1

2
C2
mr

2i

}
y2
i

(A.6)

and Cm , p−q
2−p−q . In (A.3), “h.o.t.” denotes the higher-order terms; specifically,

terms of degree three or higher. Cm is a parameter that indicates the mismatch

between the transition probabilities p and q. In the symmetric case, p = q ⇒ Cm =

0, and one obtains a simpler expression for f . Let fsym be the function f under

symmetric transition probabilities, i.e., p = q. Then,

(A.7) fsym ≈ 2p

(
A

σ2

)2{N−1∑

i=1

i−1∑

j=0

(2p− 1)i−jyiyj +
N−1∑

i=0

(
1 − 1

4p

)
y2
i

}

For sufficiently large N , it can be shown that

(A.8) g ≈ D

{
N−1∑

i=1

i−1∑

j=0

αi−jyiyj +
α

1 + α

N−1∑

i=0

y2
i

}

where D = 1−α2

2α
is a constant; note that D plays no role in the performance of the

test statistic. Let f̃sym , (2p)−1(A/σ2)−2fsym and g̃ , D−1g. Comparing (A.7) and

(A.8), we see that they are nearly identical in form if α = 2p − 1. If α = 2p − 1 ⇒

|f̃sym− g̃| ≈ 1
4p

∑
i y

2
i . Now, E1[

∑N−1
i=0 y2

i ]−E0[
∑N−1

i=0 y2
i ] = A2N . On the other hand,

for large N ,

(A.9) E1

[N−1∑

i=1

i−1∑

j=0

αi−jyiyj

]
− E0

[N−1∑

i=1

i−1∑

j=0

αi−jyiyj

]
≈ GA2N
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where G = α(2p−1)
1−α(2p−1)

. When α = 2p−1, G = (2p−1)2

1−(2p−1)2
= 1

4(1−p) +
1
4p
−1. For p close to

1, G� 1
4p

, and GA2N � 1
4p
A2N . So to the first moment, the difference of 1

4p

∑
i y

2
i

between f̃sym and g̃ does not represent a significant difference when p ≈ 1. Under

these conditions, we expect that the performance of the filtered energy detector and

the DT random telegraph LRT to be similar.

It is possible to obtain an approximation to the DT random telegraph LRT that

holds when we make no assumption about p being equal to q. When p 6= q, Cm 6= 0,

and there are terms of the form riCm and r2iC2
m in (A.4)-(A.6). Since |r| < 1, ri → 0

in the limit as i→ ∞. So drop these terms to get:

(A.10) f ≈ C

{
(p− q)σ2

4q(1 − r)A

∑

i

yi +
∑

i

∑

j<i

ri−jyiyj +

[
1

2
+

r(1 − q)

2q(1 − r)

]∑

i

y2
i

}

where C = 4q 1−q
1−r
(
A
σ2

)2
is a constant. Define Ca , (p−q)σ2

4q(1−r)A and Ce , r(1−q)
2q(1−r) . In

order to equate the coefficients of the cross-terms yiyj between (A.10) and g in

(A.8), we require α = r = p + q − 1. In g, the ratio of the energy terms to the

cross-terms is α
1+α

. For r = α ≈ 1 ⇒ α
1+α

≈ 1/2. The idea is to add the energy

and amplitude statistics to g so that all three statistics are in the same ratio as

in (A.10). Let ghyb be the “extended” version of g, which we shall call the hybrid

filtered energy/amplitude/energy detector:

ghyb , g +
1 − α2

2α

[
Ca
∑

i

yi + Ce
∑

i

y2
i

]

= g +
1 − α2

2α
Ca
∑

i

yi +
1 − α2

2α
Ce
∑

i

y2
i(A.11)

We expect ghyb to have performance that is similar to f under the conditions of large

N , low SNR, and r ≈ 1.

The constants in (A.11) can be further simplified. Let Ka = Ca(1 − α2)/2α and

Ke = Ce(1 − α2)/2α. As it is required that α = p + q − 1, after some algebra, one
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obtains

(A.12) Ka =
p2 − q2

8q(p+ q − 1)

(
A

σ2

)−1

and Ke =
(p+ q)(1 − q)

4q

It is interesting that the constants Ka and Ke are not symmetric in p, q.



163

APPENDIX B

Matrix results

Proposition B.1. A real tridiagonal matrix A = (aij) of order n has only real

simple eigenvalues if aijaji > 0 for j = i+ 1.

See [52].

Proposition B.2. Suppose A is an n × n matrix and that it has distinct eigen-

values λ1, . . . , λk. Then, the corresponding eigenvectors x1, . . . , xk form a linearly

independent set.

This is a well-known result of matrix theory. An immediate corollary is that if A

has n distinct eigenvalues, then A has a basis of eigenvectors for C
n (or R

n). We

can apply this corollary to real tridiagonal matrices with aijaji > 0 for j = i + 1.

By Prop. B.1, such matrices have real simple eigenvalues. Therefore, all of the

eigenvalues of such matrices are distinct, and by the corollary, there exists a basis

of eigenvectors. Note that the eigenvalues are real, and so the eigenvectors can be

chosen to be real-valued as well. The eigenvectors form a basis for R
n over the reals.

Proposition B.3. Suppose A is a real tridiagonal matrix. If aii = 0 for i = 1, . . . , n,

then whenever λ ∈ R is an eigenvalue of A =⇒ −λ is also an eigenvalue of A.

Proof: Note that by Prop. B.1, A has only real eigenvalues. Let pn(λ) be the
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characteristic polynomial of A when it is of order n. We claim that:

pn(λ) =





poly in λ2 n even

λ(poly in λ2) n odd

From this, whenever λ satisfies pn(λ) = 0, then pn(−λ) = 0 also, i.e. whenever λ is

an eigenvalue, so is (−λ). We shall prove the claim by applying strong induction on

the order of A.

Base cases n = 1, 2: For n = 1, the only valid A = (0), and p1(λ) = −λ. For

n = 2, p2(λ) = λ2 − a12a21. So the claim holds for n = 1, 2.

Inductive step: Assume the claim is true for n = 1, . . . , k, where k ≥ 2. Consider

then n = k + 1. Now, p(λ) = det(A − λIk+1). Expand the determinant by the last

column:

p(λ) = (−1)k+(k+1)ak,k+1 det




−λ a12

a21 −λ a23

. . . . . . . . .

ak−1,k−2 −λ ak−1,k

ak+1,k




+ (−1)k+k(−λ) det




−λ a12

a21 −λ a23

. . . . . . . . .

ak−1,k−2 −λ ak−1,k

ak,k−1 −λ




The second determinant is the characteristic polynomial of a real k × k matrix with

zeros down the diagonal. As such, it falls under the inductive hypothesis. Let us
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rename it as q2(λ). Expand the first determinant by the last row:

p(λ) = ak,k+1ak+1,k det




−λ a12

a21 −λ a23

. . . . . . . . .

ak−2,k−3 −λ ak−2,k−1

ak−1,k−2 −λ




− λ q2(λ)

The determinant in the expression above is the characteristic polynomial of a

real (k − 1) × (k − 1) matrix with zeros down the diagonal. It falls under the

inductive hypothesis as well—let us rename it as q1(λ). The net result then is that

p(λ) = ak,k+1ak+1,k q1(λ) − λ q2(λ). Consider two cases:

Case 1: (k + 1) is even. Then, k is odd and (k − 1) is even:

∴ p(λ) = ak,k+1ak+1,k(poly in λ2) − λ · λ · (poly in λ2)

= poly in λ2

Case 2: (k + 1) is odd. Then, k is even and (k − 1) is odd:

∴ p(λ) = ak,k+1ak+1,k λ(poly in λ2) − λ(poly in λ2)

= λ(poly in λ2)

Either way, p(λ) satisfies the claim, i.e. the claim is true for n = k+ 1. By strong

induction, the claim is true for all n ≥ 1. �

Proposition B.4. Let A be a real matrix, and suppose that all of its rows sum to a

constant value c. Then, A has eigenvalue c.

Let x = (1, . . . , 1)T . Then, one can verify that Ax = cx. In particular, if P is

a probability transition matrix, each of its rows sums up to 1. So P has 1 as an

eigenvalue.
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Proposition B.5. Consider a random walk in Rr
0 that has r states ψ1, . . . , ψr. Let

P be its probability transition matrix. Then:

1. the eigenvalues of P can be ordered as λ1 > λ2 > . . . > λr−1 > λr, with λk ∈ R

for k = 1, . . . , r

2. λk + λr+1−k = 0 for k = 1, . . . , r.

3. λ1 = 1

Proof: P for a random walk is tridiagonal. Since the random walk is in Rr
0,

pijpji > 0 for j = i+1. So Prop. B.1 applies, and P has real simple eigenvalues; this

accounts for the first statement. Because the random walk has no self-loops, pii = 0

for 1 ≤ i ≤ r, and Prop. B.3 can be used. This justifies the second statement. Lastly,

we consider the third statement. By Prop. B.4, 1 is an eigenvalue of P. We would

like to show that it is in fact the largest positive eigenvalue. Let λ be an eigenvalue

of P. By Gerschgorin’s theorem [40], there exists some 1 ≤ j ≤ r s.t.

|λ− pjj| ≤
∑

k 6=j
|pjk|

Since all of the elements of P are real and non-negative,
∑

k 6=j |pjk| =
∑

k 6=j pjk = 1.

Moreover, pjj = 0 for all j. Hence, |λ| ≤ 1. �

Note: There is another way of showing that |λ| ≤ 1. The spectral radius of

a matrix A is defined as ρ(A) , maxi |λi|, λi = λi(A). We would like to show

that ρ(P) ≤ 1. However, one knows that norms dominate the spectral radius, i.e.,

ρ(P) ≤ ‖P‖. In particular, consider the l∞-norm which induces the norm ‖A‖∞ =

maxi
∑n

j=1 |aij|, i.e., it is equal to the max absolute value row sum. In particular,

‖P‖∞ = 1 =⇒ ρ(P) ≤ 1.
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Proposition B.6. Let Dδ = diag(δ1, . . . , δr) be a diagonal matrix with δj < 1 for

all 1 ≤ j ≤ r. Let P be the probability transition matrix of the random walk that we

consider. Then, P̃ = (I − Dδ)P satisfies the first two statements of Prop. B.5

Proof: Suppose A ∈ R
n×n. Then,

Adiag(γ1, . . . , γn) = (γ1a∗1, . . . , γna∗n) and

diag(γ1, . . . , γn)A =




γ1a1∗

...

γnan∗



,

where A = (aij), and a∗k refers to the k-th column of A, whereas ak∗ refers to the

k-th row of A. Let P = (pij) and P̃ = (p̃ij). Note that

(I − Dδ)P =




a1p1∗

...

arpr∗



,

and so p̃ij p̃ji = (1−δi)(1−δj)pijpji. If δj < 1 for all j, then p̃ij p̃ji > 0 ⇐⇒ pijpji > 0.

So whenever Prop. B.1 applies to P, it also applies to P̃. The second statement

follows because p̃ii = 0 for all 1 ≤ i ≤ r. �

Proposition B.7. Let A be an n× n matrix that is diagonalizable, i.e. there exists

U invertible, Λ diagonal s.t. A = UΛU−1. If either (i): λ1 > λ2 ≥ . . . ≥ λn ≥ 0 or

(ii): λ1 < λ2 ≤ . . . ≤ λn ≤ 0, then Am ≈ λm1 UM11U
−1 for large m, where Mij is

an n× n matrix with zeros everywhere except for a 1 in the (i, j)-th position.

Proof: Now,

Am = UΛmU−1 = U diag(λm1 , . . . , λ
m
n )U−1 = λm1 UM11U

−1 + . . .+ λmn UMnnU
−1

= λm1

[
UM11U

−1 + . . .+

(
λn
λ1

)m
UMnnU

−1

]
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If either (i) or (ii) applies, then for j 6= 1, 0 ≤ |λj/λ1| < 1. So limm→∞ |λj/λ1|m = 0

for j 6= 1, and

lim
m→∞

[
UM11U

−1 + . . .+

(
λn
λ1

)m
UMnnU

−1

]
= UM11U

−1

We have limm→∞ Am = lim (λm1 UM11U
−1). So for large m, Am ≈ λm1 UM11U

−1. �

Proposition B.8. Let A = (aij) be a tridiagonal n × n matrix with the following

properties: (i) aijaji > 0 for j = i+ 1 and (ii) aii = 0 for 1 ≤ i ≤ n. Then, for large

m, Am ≈ λm1 [UM11U
−1 + (−1)mUMnnU

−1], where A can be eigendecomposed as

A = U diag(λ1, . . . , λn)U
−1 with λ1 > . . . > λr.

Proof: Since A satisfies properties (i) and (ii), Props. B.1, B.2, and B.3 ap-

ply. The eigenvalues of A can be written as λ1, . . . , λn where λ1 > λ2 > . . . >

λn and λj + λn+1−j = 0 for j = 1, . . . , n. Moreover, A can be diagonalized as

A = UΛU−1, where Λ = diag(λ1, . . . , λn). Suppose n = 2p + 1, p > 0, i.e.,

n is odd. Then, λp+1 = 0. Define A1 , U diag(λ1, . . . , λp, 0, . . . , 0)U
−1 and

A2 , U diag(0, . . . , 0, λp+2, . . . , λ2p+1)U
−1. So A1 contains the positive eigenval-

ues of A and A2 contains the negative eigenvalues of A. Now,

Am = U diag(λm1 , . . . , λ
m
p , 0, . . . , 0)U

−1 + U diag(0, . . . , 0, λmp+2, . . . , λ
m
2p+1)U

−1

= Am
1 + Am

2

The eigenvalues of A1 are λ1, . . . , λp and (n−p) zeros s.t. λ1 > λ2 > . . . > λp > 0.

Those of A2 are λp+2, . . . , λ2p+1 and (n − p) zeros s.t. 0 > λp+2 > . . . > λ2p+1.

Therefore, apply Prop. B.7 to A1 and A2. For large m,

Am ≈ λm1 UM11U
−1 + λm2p+1UM2p+1,2p+1U

−1

≈ λm1
[
UM11U

−1 + (−1)mUM2p+1,2p+1U
−1
]

since λ2p+1 = −λ1. The case when n is even can be similarly treated. �
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Proposition B.9. Let P be a square r × r matrix and N ≥ 3. Then,

∑

1≤j<k≤N−1

(−1)kPk−j =
(−1)N−1

2

N−2∑

n=1

Pn − 1

2

N−2∑

n=1

(−P)n

∑

1≤j<k≤N−1

(−1)jPk−j =
(−1)N−1

2

N−2∑

n=1

(−P)n − 1

2

N−2∑

n=1

Pn

∑

1≤j<k≤N−1

Pk−j =
N−2∑

n=1

(N − 1 − n)Pn

These identities can be verified by rearranging the sum on the LHS.

Proposition B.10. Let P be the probability transition matrix associated with a

random walk in Rr
0. Define the functions w1,m(P) =

∑m
n=1 Pn and w2,m(P) =

∑m
n=1 nP

n. Let δ ∈ R.

w1,m(δP) =
r∑

i=1

P?
i

(
m∑

n=1

(δλi)
n

)

w2,m(δP) =
r∑

i=1

P?
i

(
m∑

n=1

n(δλi)
n

)

where P can be eigendecomposed as P = UΛU−1 and P?
j , UMjjU

−1.

The result follows from applying the definition.

Proposition B.11. This is a continuation of the previous proposition. Here, we

restrict our attention to |δ| ≤ 1. Using the big-O notation, w1,m(±P) ∼ O(m) and

w2,m(±P) ∼ O(m2). When |δ| < 1, w1,m(δP) and w2,m(δP) are both O(1).

Proof: The following identities are useful:

(B.1)
m∑

n=1

δn =





δ(1−δm)
1−δ δ 6= 1

m δ = 1

and

(B.2)
m∑

n=1

nδn =





δ(1−δm)
(1−δ)2 − mδm+1

1−δ δ 6= 1

1
2
m(m+ 1) δ = 1
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First consider |δ| = 1. Using (B.1), one can evaluate w1,m(±P) for large m:

w1,m(P) ≈ mP?
1

w1,m(−P) ≈ mP?
r,

and using (B.2), one can evaluate w2,m(±P) for large m:

w2,m(P) ≈ 1

2
m(m+ 1)P?

1

w2,m(−P) ≈ 1

2
m(m+ 1)P?

r

From these, we see that w1,m(±P) ∼ O(m) and w2,m(±P) ∼ O(m2).

Next consider the case when |δ| < 1. As |λi| ≤ 1, we have |δλi| < 1 for i = 1, . . . , r.

So as m → ∞, the terms that depend on m go to zero, as can be seen from (B.1)

and (B.2). Hence both are O(1). �

Proposition B.12. For p, q ∈ R and N ≥ 3,

∑

1≤j<k≤N−1

pjqk =





(N 2 − 3N + 2)/2 p = q = 1

q(1−qN−1)
(1−q)2 − (N−2)qN+q

1−q p = 1, q 6= 1

(N − 2) p
1−p −

p2(1−pN−2)
(1−p)2 p 6= 1, q = 1

pq2(1−qN−2)
(1−p)(1−q) − (pq)2(1−(pq)N−2)

(1−p)(1−pq) p 6= 1, q 6= 1, pq 6= 1

q(1−qN−2)
2−p−q − (N − 2) 1

1−p p 6= 1, q 6= 1, pq = 1

This can be showed by going through each of the cases and applying the summa-

tion for a geometric series where appropriate.

Proposition B.13. With Q defined as in (4.26), let κ1, . . . , κr be its eigenvalues.

Then, if ψ2, ψr−1 6= 0, |κi| < 1 for all 1 ≤ i ≤ r.

Proof: Apply Gerschgorin’s theorem as in Prop. B.4. Let λ be an eigenvalue of

Q. Then, |λ| ≤ maxj
∑

k 6=j |qjk|, where Q = (qjk). From (4.26), Q = PMψ1, where
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Mψ1 = diag(e−ψ
2
1/2σ

2

, . . . , e−ψ
2
r/2σ

2

). So Q = (e−ψ
2
1/2σ

2

p∗1, . . . , e
−ψ2

r/2σ
2

p∗r), where

P = (p∗1, . . . , p∗r). Therefore,

|λ| ≤ max
j

∑

k 6=j
e−ψ

2
k
/2σ2 |pjk|

Now,
∑

k 6=j |pjk| = 1, and e−ψ
2
j /2σ

2 ≤ 1 for all j. So if e−ψ
2
k
/2σ2

< 1 for some k where

pjk 6= 0, the RHS of the expression above will be strictly less than one. If this is true

for all 1 ≤ j ≤ r, then |λ| < 1. We are assured of this when ψ2, ψr−1 6= 0. �

Proposition B.14. The eigenvalues of Q can be made arbitrarily close to those of

P by decreasing the SNR.

Proof: Under the low SNR assumption, Q ≈ P− 1
2σ2PM2

ψ. Let E , − 1
2σ2PM2

ψ =

− 1
2σ2 (ψ

2
1p∗1, . . . , ψ

2
rp∗r). The problem comes down to characterizing the eigenvalues

of Q, which is a perturbed version of P. By Prop. B.5 and Prop. B.2, P has a basis

of eigenvectors, so that we can write P = UΛU−1, where Λ = diag(λ1, . . . , λr).

Apply the Bauer-Fike theorem to Q = P + E. Let λ be an eigenvalue of Q: then

min1≤i≤r |λ−λi| ≤ ‖U‖·‖U−1‖·‖E‖ = κ(U)‖E‖, where κ(·) is the condition number

of the matrix argument.

Let us evaluate ‖E‖: using the infinity-norm, ‖E‖∞ = ‖ 1
2σ2 (ψ

2
1p∗1, . . . , ψ

2
rp∗r)‖∞ ≤

1
2σ2 maxk ψ

2
k ⇒ min1≤i≤r |λ − λi| ≤ κ(U) 1

2σ2 maxk ψ
2
k. Since κ(U) is a bounded

constant, we can make the RHS arbitrarily small by decreasing the SNR. �

Proposition B.15. Let P be a matrix associated with a random walk in Rr
0. Re-

call the definition of Mψ: Mψ = diag(ψ1, . . . , ψr). The quantity pTssMψP
?
1Mψ1 =

(limE[Xj])
2, where limE[Xj] is the steady state expected value of the random walk

Xj, and pss is the steady state probability distribution of Xj. The matrix P?
1 is defined

in Prop. B.10.
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Proof: Recall the definition of P?
1, which is P?

1 = UM11U
−1, where U is the

matrix s.t. P = UΛU−1. The diagonal matrix of eigenvalues Λ = diag(λ1, . . . , λr),

where by Prop. B.5, we can order 1 = λ1 > λ2 > . . . > λr = −1.

So let U = (uij) and U−1 = (tij). First, note that since

(B.3) U−1U = I =⇒
∑

i

t1iui1 = 1

Denote by an asterisk the rest of the valid indices, e.g., u∗1 is the first column of U,

t1∗ is the first row of U−1, etc. Since we have PU = UΛ, u∗1 is a right eigenvector

of P with eigenvalue 1. By Prop. B.4, we can write

(B.4) u∗1 = c1(1, . . . , 1)
T

for some constant c1 ∈ R. Similarly, since U−1P = ΛU−1, t1∗ is a left eigenvector

of P with eigenvalue 1. Therefore, it must be a multiple of pss, the steady state

probability distribution, i.e.,

(B.5) t1∗ = c2p
T
ss

for some constant c2 ∈ R.

Substituting (B.4) and (B.5) into (B.3) results in c1c2 = 1. Now,

(B.6) pTssMψP
?
1Mψ1 =

∑

i,j

pss,iψiP
?
1[i, j]ψj,

where pss,i denotes the ith value of pss, and P?
1[i, j] denotes the (i, j)th value of P?

1.

By going through the definition of P?
1, one obtains P?

1[i, j] = ui1t1j. Substituting the

former relation into (B.6), and applying (B.4) along with (B.5),

pTssMψP
?
1Mψ1 =

∑

i,j

pss,iψi ui1t1j ψj

=
∑

i,j

pss,iψi c1c2pss,j ψj

=
∑

i,j

(pss,iψi)(pss,jψj)(B.7)
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where the fact that c1c2 = 1 was used in the last step.

However, the last expression in (B.7) is just (
∑

i pss,iψi)
2 = (limE[Xj])

2 ≥ 0. �
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APPENDIX C

Second order approximation of the LRT for the DTRW
model

We shall start with (4.29) and continue with the second order approximation for

the LRT of the DTRW model. Now, κ1 ≤ 1 (and note that κ1 > 0). Divide (4.29)

by κN−1
1 . Since this term is independent of the observations, it does not affect the

performance of the test statistic. Let

z̃j ,
zj
σ
, Λ̃Q ,

1

κ1

ΛQ = diag(κ′1, . . . , κ
′
r), R̃ , U−1

Q RUQ,

so that κ′1 = 1 and κ′r = −1. One can write:

LN−1(z̃
N−1) ≈ z̃0π

TMψ2UQΛ̃N−1
Q U−1

Q 1 +
1

κ1

N−1∑

j=1

z̃jπ
TMψ1UQΛ̃j−1

Q R̃Λ̃N−1−j
Q U−1

Q 1

+
1

κ1

N−1∑

j=1

z̃0z̃jπ
TMψ2UQΛ̃j−1

Q R̃Λ̃N−1−j
Q U−1

Q 1

+
1

κ2
1

∑

1≤j<k≤N−1

z̃j z̃kπ
TMψ1UQΛ̃j−1

Q R̃Λ̃k−1−j
Q R̃Λ̃N−1−k

Q U−1
Q 1,(C.1)

ignoring constants and terms of higher order. In order to focus on the important

properties of (C.1), define πTα , πTMψ1UQ, πTβ , πTMψ2UQ, and d , U−1
Q 1. Then,
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the RHS is:

LN−1(z̃
N−1) ≈ z̃0π

T
β Λ̃N−1

Q d+
1

κ1

N−1∑

j=1

z̃jπ
T
α Λ̃j−1

Q R̃Λ̃N−1−j
Q d

+
1

κ1

N−1∑

j=1

z̃0z̃jπ
T
β Λ̃j−1

Q R̃Λ̃N−1−j
Q d

+
1

κ2
1

∑

1≤j<k≤N−1

z̃j z̃kπ
T
α Λ̃j−1

Q R̃Λ̃k−1−j
Q R̃Λ̃N−1−k

Q d(C.2)

We shall analyze (C.2) in parts. Separate the first-order and second-order terms of

(C.2) as follows:

LN−1,1(z̃
N−1) , z̃0π

T
β Λ̃N−1

Q d+
1

κ1

N−1∑

j=1

z̃jπ
T
α Λ̃j−1

Q R̃Λ̃N−1−j
Q d(C.3)

LN−1,2a(z̃
N−1) ,

1

κ1

N−1∑

j=1

z̃0z̃jπ
T
β Λ̃j−1

Q R̃Λ̃N−1−j
Q d(C.4)

LN−1,2b(z̃
N−1) ,

1

κ2
1

∑

1≤j<k≤N−1

z̃j z̃kπ
T
α Λ̃j−1

Q R̃Λ̃k−1−j
Q R̃Λ̃N−1−k

Q d(C.5)

and LN−1,2(z̃
N−1) = LN−1,2a(z̃

N−1) + LN−1,2b(z̃
N−1).

The term LN−1,2a(z̃
N−1) is the effect of z0 on the LR. When N is large, we expect

that the effect is negligible compared to LN−1,2b(z̃
N−1). Define cjk to be the coefficient

of (1/κ2
1)z̃j z̃k in (C.5) above. Let

(C.6) Υ[j, k] , Λ̃j−1
Q R̃Λ̃k−1−j

Q R̃Λ̃N−1−k
Q

so that cjk = πTαΥ[j, k]d. Recall that Λ̃Q = diag(κ′1, . . . , κ
′
r), where 1 = κ′1 > κ′2 >

. . . > κ′r = −1.

For N large, most of the cjk’s will have j and (N − k) sufficiently large that

Λ̃j−1
Q ≈ diag(1, 0, . . . , 0, (−1)j−1) and Λ̃N−1−k

Q ≈ diag(1, 0, . . . , 0, (−1)N−1−k)
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Defining Mij to be a r×r matrix with all zeros except for a 1 in the (i, j)-th position,

Υ[j, k] ≈ [M11 + (−1)j−1Mrr]R̃Λ̃k−1−j
Q R̃[M11 + (−1)N−1−kMrr]

= M11R̃Λ̃k−1−j
Q R̃M11 + (−1)N−k+jMrrR̃Λ̃k−1−j

Q R̃Mrr+

(−1)j−1MrrR̃Λ̃k−1−j
Q R̃M11 + (−1)N−1−kM11R̃Λ̃k−1−j

Q R̃Mrr(C.7)

for j and (N − k) sufficiently large.

The first two terms of (C.7) are functions of (k − j), while the last two are not.

One of the defining characteristics of the filtered energy statistic in (A.8) is that the

coefficient of zjzk is αk−j. NB. the observations in Appendix A are denoted by yi as

compared to zi in this appendix. In the event that the first two terms of (C.7) are

dominant, cjk will consist of a weighted sum of these exponential terms. Indeed, we

can see that the exponential terms in cjk will have the form (κ′i)
k−j. Consequently,

(C.8) LN−1,2b(z̃
N−1) ≈

r∑

n=1

∑

j<k

An(κ
′
n)
k−j z̃j z̃k

for some constants An, n = 1, . . . , r. The filters for n = 2, . . . , (r − 1) can be

approximated by the FE statistic given by (4.17), while the filters for n = 1, r can

be generated as second order polynomials in z̃i. Recall that |κ′1| = |κ′r| = 1, and so

the FE statistic cannot be used for n = 1, r.

If cjk ≈ Cαk−j for some appropriate C, α ∈ R, LN−1,2b(z̃
N−1) can be realized by

a single filtered energy statistic, assuming that α 6= ±1.

The FE statistic in (A.8) contains terms in the form of z2
i . A way of ensuring

that (C.8) is properly implemented is to subtract out the energy terms from the FE

statistic. We shall digress for a moment to investigate the relative importance of the

energy terms vs. the cross terms in the FE statistic, just as in the DTRT model.
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Now,

(C.9) E1

[
α

1 + α

∑

i

z2
i

]
− E0

[
α

1 + α

∑

i

z2
i

]
≈ N

α

1 + α
pTssM

2
ψ1,

where we assume that the DTRW is approximately stationary, so that (4.24) applies.

Next, as E0[
∑

j<k α
k−jzjzk] = 0, it remains to compute

E1

[
∑

j<k

αk−jzjzk

]
≈ pTssMψ

[
∑

j<k

(αP)k−j

]
Mψ1

= pTssMψ[Nw1,N (αP) − w2,N (αP)]Mψ1(C.10)

where w1,N (·) and w2,N (·) are defined in Prop. B.10 in Appendix B, and Prop. B.9

was applied in going to the second step. Note that we require |α| < 1 for stability

of the LPF in (4.16). By Prop. B.11, both w1,N (αP) and w2,N (αP) are O(1) in the

limit as N → ∞, since |α| < 1. Therefore, the Nw1,N(αP) term is dominant, and

applying Prop. B.10

E1

[
∑

j<k

αk−jzjzk

]
≈ NpTssMψ

{
r∑

i=1

P?
i

[
m∑

n=1

(αλi)
n

]}
Mψ1

≈ N

r∑

i=1

αλi
1 − αλi

pTssMψP
?
iMψ1(C.11)

as N → ∞, where the λis are the eigenvalues of P defined according to Prop. B.5.

It is not clear if (C.11) is bigger than (C.9). Let

(C.12) wi , pTssMψP
?
iMψ1

In Prop. B.15, we show that w1 = (limE[Xj])
2 ≥ 0; however, it might be the case

that limE[Xj] = 0. Define

(C.13) M(u) ,
r∑

i=1

uλi
1 − uλi

wi

For the FE statistic to be used in (C.8), we require

(C.14) M(u) � κ′n
1 + κ′n

pTssM
2
ψ1 for all u ∈ {κ′n}n/∈{1,r}
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If (C.14) is not true for a certain value of n = N , the energy terms will for the LPF

with α = κ′N will have to be subtracted out. Note that pTssM
2
ψ1 = limE[X2

j ], i.e., it

is the steady state expected energy of the DTRW. For values of 0 ≤ κ′
n ≤ 1, it is

sufficient to show that

(C.15) M(κ′n) � pTssM
2
ψ1 = limE[X2

j ]

as
∣∣∣ κ′n
1+κ′n

∣∣∣ ≤ 1
2
.

Ending the digression and returning to (C.8), let us now investigate conditions

under which cjk is approximately a function of (k − j). Let R̃ = (ρij). An asterisk

in either the row or column index shall denote all valid values. For example, the

notation ρ1∗ refers to the first row of R̃, ρ∗r refers to the last column of R̃ etc.

For x, y ∈ R
r, define the operator x � y , (x1y1, . . . , xryr)

T . Define S : R
r → R by

S(x) =
∑r

i=1 xi. NB. S(x) would equal the l1 norm of x if all of the xis were positive.

Let κ′ , [κ′1, . . . , κ
′
r]
T and use the notation that for x ∈ R

r, x<i> = [xi1, . . . , x
i
r].

Rewrite Υ[j, k] using the newly defined notation as

(C.16)

Υ[j, k] = S((κ′)<k−1−j>�ρT1∗�ρ∗1)M11+(−1)N−k+jS((κ′)<k−1−j>�ρTr∗�ρ∗r)Mrr+

(−1)j−1S((κ′)<k−1−j> � ρTr∗ � ρ∗1)Mr1 + (−1)N−1−kS((κ′)<k−1−j> � ρT1∗ � ρ∗r)M1r

so that the dependence on j, k, and N is clear.

We shall say that cjk is approximately a function of (k − j) if the terms of the

vector (ρTr∗�ρ∗1) and (ρT1∗�ρ∗r) are negligible compared to (ρT1∗�ρ∗1) and (ρTr∗�ρ∗r).

For example, the l∞ norm could be used, so that cjk is approximately a function of

(k − j) if

(C.17) ‖ρT1∗ � ρ∗1‖∞, ‖ρTr∗ � ρ∗r‖∞ � ‖ρTr∗ � ρ∗1‖∞, ‖ρT1∗ � ρ∗r‖∞
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If, in addition, there exists C, α ∈ R for which

(C.18) S((κ′)<k−1−j> � ρT1∗ � ρ∗1)π
T
αM11d +

(−1)N−k+jS((κ′)<k−1−j> � ρTr∗ � ρ∗r)π
T
αMrrd ≈ Cαk−j,

then cjk ≈ Cαk−j.

In particular, suppose that for some 1 < i < b r
2
c, we have

(C.19) ρT1∗ � ρ∗1 ≈ C1ei and ρTr∗ � ρ∗r ≈ C2er+1−i

for some C1, C2 ∈ R and where the eis are the standard unit vectors in R
r. We rule

out the case of i = 1; since κ′1 = 1, the FE statistic cannot be used. Then, the LHS

of (C.18) reduces to

[C1π
T
αM11d+ (−1)N−1C2π

T
αMrrd](κ

′
i)
k−j−1

since κ′r+1−i = −κ′i. Therefore,

C = [C1π
T
αM11d+ (−1)N−1C2π

T
αMrrd](κ

′
i)
−1

α = κ′i(C.20)

If limE[Xj] = 0 and (C.15) is satisfied for κ′
n = κ′i, we have sufficient conditions for

a FE statistic to approximate the LRT for the class of random walks considered.
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APPENDIX D

Sparse image reconstruction results

D.1 Derivation of Proposition 5.3

Use the following definitions, which appear in [10]:

Ξ(θ; a) , C‖θ − a‖2 − ‖Hθ − Ha‖2(D.1)

ΦSUR(θ; a) , Φ(θ) + Ξ(θ; a),(D.2)

where C is chosen to ensure that Ξ(θ; a) is strictly convex in θ for any choice of a [10].

By assumption, ‖H‖ < 1, and so we can select C = 1. The function ΦSUR(θ; a) is the

surrogate function that is minimized in place of Φ(θ). Consider the minimization of

ΦSUR(θ; a), which can be simplified as

(D.3) ΦSUR(θ; a) = ‖θ‖2 − 2(a+ HT (y − Ha))T θ + J(θ) + ‖y‖2 + ‖a‖2 − ‖Ha‖2

Since J(θ) =
∑

i J1(θi), we see that the minimization of ΦSUR(θ; a) can be decom-

posed into M subproblems, where each θi is separately minimized. Indeed, each θi

should minimize

(D.4) ϕ(θi) , θ2
i − 2siθi + J1(θi),

where s , a + HT (y − Ha). Since (D.4) is convex, the minimizing θi can be found

by solving for ϕ′(θi) = 0. This results in θi = T (si).
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Let θ̂
(t)

denote the sequence generated by the following:

(D.5) θ̂
(t+1)

= argminθ ΦSUR(θ; θ̂
(t)

)

where θ̂
(0)

is the initial estimate of θ. Then, the sequence θ̂
(t)

monotonically decreases

the cost function Φ(θ).

D.2 Derivation of Stein’s unbiased risk estimator for the L1 estimator

Let

(D.6) Ψβ(y, θ) , ‖y − Hθ‖2 + β‖θ‖1,

which is the cost function that the L1 estimator minimizes. In this derivation, let

θ̂(β) denote the L1 estimator with regularization parameter β. Assume that the

columns of H are linearly independent.

The starting point that we use is [62, (2)], which is

(D.7) R̂(β) = Nσ2 + ‖e‖2 − 2σ2tr(H · (DθθΨβ)
−1 · DθyΨβ)

∣∣∣∣
θ=θ̂(β)

,

where e , y−Hθ̂(β) and Du,v(·) , ∂2(·)/∂u∂vT . Define Z(θ) , diag(δ(θ1), . . . , δ(θM)),

where δ(·) is the Dirac delta. One can compute that

(D.8) DθθΨβ = 2HTH + Z(θ), and DθyΨβ = −2HT .

This leads to

(D.9) R̂(β) = Nσ2 + ‖y − Hθ̂(β)‖2 + 2σ2tr(HTH[HTH +
1

2
Z(θ̂(β))]−1)

We would like to evaluate the last term of (D.9). Henceforth, omit the β in θ̂(β)

for the sake of brevity. Define ZA(θ) , diag(A · I(θ1 = 0), . . . , A · I(θM = 0)), a

well-behaved version of Z(θ). Note that Z(θ) = limA→∞ ZA(θ).
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Suppose that 0 ≤ r ≤ M elements of θ̂ are zero, and the remaining elements are

non-zero. Let P,Q ∈ R
M×M be permutation matrices such that PZA(θ̂)Q looks like

diag(A, . . . , A, 0, . . . , 0), i.e., a matrix whose diagonal contains r values of A followed

by (M − r) values of 0. In particular, we shall select P and Q in the way described

in the next paragraph.

Denote the zero-valued indices of θ̂ by n1, . . . , nr, i.e., θ̂ni
= 0 for 1 ≤ i ≤ r. The

permutation matrices

(D.10) P = Pr · · ·P1 and Q = Q1 · · ·Qr,

where the effect of Pidiag(d1, . . . , dM)Qi is to exchange the places of di and dni
. So

(D.11) Pi = I

∣∣∣∣
eT
i ↔eT

ni

and Qi = I

∣∣∣∣
ei↔eni

,

and therefore Pi = QT
i for each i. So QT = P. Since each Pi and Qi are orthogonal

matrices, so is P and Q. With the P and Q defined as in (D.10) and (D.11), it is

clear that PZA(θ̂)Q equals diag(A, . . . , A, 0, . . . , 0).

Let K , HTH, a square matrix. Then, as matrix multiplication is commutative

under the trace operator,

(D.12) tr(K[K +
1

2
ZA(θ̂)]−1) = tr(PKQ[PKQ +

1

2
PZA(θ̂)Q]−1)

Without loss of generality then, suppose that ZA(θ̂) has all of its non-zero diagonal

entries in the front, followed by zeros. Consider the expression

(D.13) [K +
1

2
ZA(θ̂)]−1 =




1
2
diag(A, . . . , A) + K11 K12

K21 K22




−1

Inverting the right hand side of (D.13) in parts,

(D.14) [K +
1

2
ZA(θ̂)]−1 =




F−1
11 −K̃−1

11 K12F
−1
22

−F−1
22 K21K̃

−1
11 F−1

22
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where:

K̃11 ,
1

2
diag(A, . . . , A) + K11(D.15)

F11 , K̃11 − K12K
−1
22 K21(D.16)

F22 , K22 − K21K̃
−1
11 K12(D.17)

The equations (D.14)-(D.17) assume that K̃11 and K22 are invertible. For suffi-

ciently large A, K̃11 will indeed be invertible. The invertibility of K22 is addressed in

the following proposition. The subscript (·)22 denotes the lower right (M−r)×(M−r)

submatrix of its argument.

Proposition D.1. For the permutation matrices P,Q ∈ R
M×M defined above, and

for H with linearly independent columns, det((PHTHQ)22) 6= 0.

By assumption, exactly r elements of θ̂ are zero. Now, P and Q are given in

(D.10) and (D.11). It is known that P = QT , so

(D.18) PHTHQ = QTHTHQ = (HQ)T (HQ)

Let H̃ , HQ: it is H with its columns permuted. By assumption, the columns of

H are linearly independent; then, so are the columns of H̃. For a square matrix X,

let gram(X) , det(XTX) to be the Grammian of X, which is the determinant of

the Gram matrix of X. Denote the Gram matrix of X by G(X) , XTX. Since the

columns of H̃ are linearly independent, gram(H̃) > 0.

We argue by contradiction. Suppose that

0 = det((PHTHQ)22) = det((H̃T H̃)22) = det(G(H̃)22)

Since det(G(H̃)22) is a principal minor of G(H̃), we get that gram(H̃) = 0. This is

a contradiction. It must be the case that det((PHTHQ)22) 6= 0. �
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As A→ ∞, K̃−1
11 → 0, F−1

11 → 0, and F22 → K22. Therefore,

(D.19) [K +
1

2
Z(θ̂)]−1 = lim

A→∞
[K +

1

2
ZA(θ̂)]−1 =




0 0

0 K−1
22


 ,

and so as A→ ∞,

(D.20) K[K +
1

2
ZA(θ̂)]−1 →




0 K12K
−1
22

0 I22


 .

Therefore, tr(K[K + 1
2
ZA(θ̂)]−1) → #{i : θ̂i 6= 0} = ‖θ̂‖0 as A→ ∞. Substitution of

this result into (D.9) leads to

(D.21) R̂(β) = Nσ2 + ‖y − Hθ̂(β)‖2 + 2σ2‖θ̂(β)‖0

D.3 Derivation of cost function for hybrid thresholding function

Let t , (t1, t2), and T (·) denote the hybrid hard-soft thresholding function. As-

sume that ‖H‖ < 1, so that the results of Prop. 5.3 are applicable. Then,

Ψt(y, θ) = ‖Hθ − y‖2 +
∑

i

J1(θi)

where: J1(x) = 2T−1(x)x− x2 − 2

∫
T (ξ)dξ

∣∣∣∣
ξ=T−1(x)

(D.22)

Now,

(D.23)

∫
T (ξ)dξ =





(1/2)ξ2 − |ξ|t2 + c1 |ξ| > t1

c2 o.w.

where we shall set the constants c1 = c2 = 0, as their values do not affect the

minimization of Ψt. Then

(D.24)

∫
T (ξ)dξ = I(|ξ| > t1)((1/2)ξ

2 − |ξ|t2).

Next,

(D.25) T−1(x) = I(|x| < t1 − t2)sgn(x)t1 + I(|x| ≥ t1 − t2)(x+ sgn(x)t2)
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which leads to

(T−1(x))2 = I(|x| < t1 − t2)t
2
1 + I(|x| ≥ t1 − t2)(x

2 + t22 + 2t2|x|), and(D.26)

|T−1(x)| = I(|x| < t1 − t2)t1 + I(|x| ≥ t1 − t2)(|x| + t2).(D.27)

Using (D.24)-(D.27) in (D.22), we obtain after some simplification

(D.28) J1(x) = I(|x| < t1−t2)[−(x−sgn(x)t1)
2+2t1t2]+I(|x| ≥ t1−t2)(2t2|x|+t22)

Since

lim
x↑0

[−(x− sgn(x)t1)
2 + 2t1t2] = 2t1t2 − t21 = lim

x↓0
[−(x− sgn(x)t1)

2 + 2t1t2]

and

lim
x↑(t1−t2)

J1(x) = 2t1t2 − t22 = lim
x↓(t1−t2)

J1(x),

J1(x) is a continuous function.

D.4 Derivation of Stein’s unbiased risk estimator for the HHS estimator

D.4.1 Preliminaries

Assume that the columns of H are linearly independent, and that the Gram matrix

G(H) does not have an eigenvalue of 1/2.

We shall use [62, (2)], just as in the case of the L1 estimator, to derive an unbiased

risk estimator. That is,

(D.29) R̂(t) = Nσ2 + ‖e‖2 − 2σ2tr(H · (DθθΨt)
−1 · DθyΨt)

∣∣∣∣
θ=θ̂(t)

,

where the quantities e = y−Hθ̂(t) and Du,v retain their original meaning in App. D.2.

The cost function Ψt is given in (D.22). Now DθyΨt = −2HT , just as for the L1

estimator. However, to evaluate DθθΨt, we have to compute J ′
1(x) and J ′′

1 (x) for the

J1(x) given in (D.22).
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Let rect(x) , 1, |x| ≤ 1/2 and 0 otherwise. It is known that J ′
1(x) = 2(T−1(x) −

x), which leads to

(D.30) J ′′
1 (x) = δ(x) − rect

(
x

2(t1 − t2)

)
.

Define

(D.31) U(θ) , diag

(
rect

(
θ1

2(t1 − t2)

)
, . . . , rect

(
θM

2(t1 − t2)

))
,

for t2 < t1, and 0 when t2 = t1. The Hessian of Ψt w.r.t. θ is

(D.32) DθθΨt = 2HTH + Z(θ) − U(θ)

We retain the meanings of Z(θ) and ZA(θ) that were defined in App. D.2. Substi-

tuting the results into (D.29),

(D.33) R̂(t) = Nσ2 + ‖e‖2 + 2σ2tr

(
HTH

[
HTH − 1

2
U(θ̂(t)) +

1

2
Z(θ̂(t))

]−1
)
.

For the rest of this section, assume that t2 < t1, so that U(θ̂) 6= 0. If t2 = t1, then

R̂(t) will equal SURE of the L1 estimator, which has already been derived. Emulating

the development of SURE for the L1 estimator, suppose that 0 ≤ r ≤M elements of θ̂

are zero, and the remaining elements are non-zero. Let P,Q ∈ R
M×M be permutation

matrices defined by (D.10)-(D.11) such that PZA(θ̂)Q = diag(A, . . . , A, 0, . . . , 0),

where there are r values of A followed by (M − r) values of 0. Recall that the

subscript (·)22 denote the lower right (M − r)× (M − r) submatrix of the argument,

e.g., (D.13).

Proposition D.2. Suppose H has linearly independent columns. If det[G(H) −
1
2
U(θ̂)] = 0, then G(H) has an eigenvalue of 1

2
.

If det[G(H) − 1
2
U(θ̂)] = 0, then the nullspace of G(H) − 1

2
U(θ̂) is non-trivial.

There exists x ∈ R
M , x 6= 0 such that

(D.34) G(H)x =
1

2
U(θ̂)x.
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Suppose that the diagonal of U(θ̂) has p ones that are indexed by k1, . . . , kp where

1 ≤ p ≤ M . Define K , {k1, . . . , kp}. If p = 0, then G(H)x = 0. But that is

impossible since, by assumption, the columns of H are linearly independent, so G(H)

is strictly positive definite. Denote the columns of H by hi, i.e., H = (h1| . . . |hM ).

With regard to (D.34),

RHS =
1

2

p∑

j=1

xkj
ekj
, and the(D.35)

LHS =




< h1, h1 > x1+ < h1, h2 > x2 + . . .+ < h1, hM > xM

...

< hM , h1 > x1 + . . .+ < hM , hM > xM




=




< h1,
∑

j hjxj >

...

< hM ,
∑

j hjxj >




(D.36)

Equating both sides, we have

(D.37) < hi,
∑

j

hjxj >=





1
2
xkm

i = km for some 1 ≤ m ≤ p

0 o.w.

If xj = 0 for all j ∈ K, then (D.37) implies that
∑

j hjxj ⊥ span(h1, . . . , hM ). The

only way that can happen is if
∑

j hjxj = 0, which means that the hjs are linearly

dependent since x 6= 0, a contradiction. So not all of the xkj
s can be zero.

Define the subspaces H1 , span({hj : j ∈ K}) and H2 , span({hj : j /∈ K}).

As {h1, . . . , hM} is linearly independent by assumption, H1 ⊥ H2. Let c ,
∑

j hjxj.
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From (D.37), c ⊥ H2. Therefore, xj = 0 for j /∈ K. The LHS of (D.34) is

(D.38)


< h1,
∑

j hkj
xkj

>

...

< hM ,
∑

j hkj
xkj

>




=




∑
j < h1, hkj

> xkj

...

∑
j < hM , hkj

> xkj




= G(H)

(
p∑

j=1

xkj
ekj

)

Since not all of the xkj
s can be zero,

∑
j xkj

ekj
6= 0. From (D.35) and (D.38), this

means that 1/2 is an eigenvalue of G(H). �

Proposition D.3. Suppose that H has linearly independent columns. If det[(G(H)−
1
2
U(θ̂))22] = 0, then G(H) has an eigenvalue of 1

2
.

If det[(G(H) − 1
2
U(θ̂))22] = 0, the nullspace of G(H)22 − 1

2
U(θ̂)22 is non-trivial.

So there exists v ∈ R
M−r, v 6= 0 such that

(D.39) G(H)22v =
1

2
U(θ̂)22v

Now, G(H)22 is the Gram matrix of the columns hr+1, . . . , hM and looks like

(D.40) G(H)22 =




< hr+1, hr+1 > . . . < hr+1, hM >

...
...

...

< hM , hr+1 > . . . < hM , hM >




The results of the previous proposition can be applied, with M substituted with

M − r. Retain the notation used therein, so that the diagonal of U(θ̂) has exactly p

ones indexed by k1, . . . , kp where 1 ≤ p ≤ M − r. Then, G(H)22 has eigenvalue 1/2

with eigenvector
∑

j vkj
ekj

∈ R
M−r, i.e.,

(D.41) G(H)22v =




< hr+1,
∑

j hr+kj
vkj

>

...

< hM ,
∑

j hr+kj
vkj

>




=
1

2

∑

j

vkj
ekj



189

Let ṽ =
∑p

j=1 vkj
er+kj

∈ R
M . Consider

(D.42) G(H)ṽ =




< h1,
∑

j vkj
hr+kj

>

...

< hM ,
∑

j vkj
hr+kj

>




As in Prop. D.2, let K = {k1, . . . , kp}. Define the subspaces H1 , span({hj :

j ∈ r + K}) and H2 , span({hj : j /∈ r + K}). The set {h1, . . . , hM} is linearly

independent; therefore, H1 ⊥ H2. Let c =
∑

j vkj
hr+kj

. Since c ∈ H1 =⇒ c ⊥ H2.

Combining this with (D.41),

(D.43) < hi,
∑

j

vkj
hr+kj

>=





1
2
vkm

i = r + km for some 1 ≤ m ≤ p

0 o.w.

Using (D.43) in (D.42),

(D.44) G(H)ṽ =
1

2

∑

j

vkj
er+kj

=
1

2
ṽ

Since
∑

j vkj
ekj

is an eigenvector of G(H)22, not all of the vkj
s are zero. This implies

that ṽ 6= 0. Therefore, from (D.44), we get that 1/2 is an eigenvalue of G(H), as

required. �

Proposition D.4. Let P and Q be the permutation matrices defined by (D.10)-

(D.11), and suppose that the columns of H are linearly independent. If

det[(P(G(H) − 1
2
U(θ̂))Q)22] = 0, then G(H) has an eigenvalue of 1

2
.

Using P = QT ,

P(G(H) − 1

2
U(θ̂))Q = QTHTHQ − 1

2
QTU(θ̂)Q

= G(H̃) − 1

2
U(θ∗)(D.45)

where H̃ , HQ, i.e., H with its columns permuted, and θ∗ is a permutation of

θ̂ so that U(θ∗) = QTU(θ̂)Q. Since the columns of H̃ are linearly independent,
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we can apply Prop. D.3 to get that G(H̃) has an eigenvalue of 1/2. But since

QTG(H)Q = G(H̃) and Q is orthonormal, G(H) is similar to G(H̃). So G(H) has

an eigenvalue of 1/2. �

D.4.2 Derivation of SURE

By substituting ZA(θ̂) in place of Z(θ̂) and taking the limit as A→ ∞, the trace

expression in (D.33) can be shown to equal

(D.46) tr

(
(PHTHQ)22

[
(PHTHQ)22 −

1

2
(PU(θ̂)Q)22

]−1
)

The steps used to obtain (D.46) are similar to those used to derive SURE for the

L1 estimator, and will be omitted. We are assured that the inverse in the trace

expression exists because of Prop. D.4.

Let K = (PHTHQ)22 and J = −(1/2)(PU(θ̂)Q)22. Stein’s URE for the risk of

the HHS estimator is given by

(D.47) R̂(t) = Nσ2 + ‖e‖2 + 2σ2tr(K[K + J]−1).

The computation of (D.47) requires the inversion of a (M − r) × (M − r) matrix.

When t2 = t1 =⇒ J = 0, and (D.47) reduces to (D.21), SURE of the L1 estimator.

D.4.3 Approximation

Let us try to find another expression for (D.47). Define 0 ≤ s ≤M − r to be the

number of elements of in the diagonal of J that equals zero. Let P̃, Q̃ ∈ R
(M−r)×(M−r)

be permutation matrices defined along the lines of (D.10)-(D.11) that re-arrange J

in the following order:

(D.48) P̃JQ̃ = diag

(
0, . . . , 0,−1

2
, . . . ,−1

2

)



191

Denote K̃ , P̃KQ̃ and J̃ , P̃JQ̃. Then,

(D.49) tr(K[K + J]−1) = tr(P̃KQ̃[P̃KQ̃ + P̃JQ̃]−1) = tr(K̃[K̃ + J̃]−1)

If s = M − r, then J̃ = 0, and tr(K[K + J]−1) = M − r. Suppose that s < M − r.

By the matrix inversion lemma,

(K̃ + J̃)−1 = K̃−1 − K̃−1(J̃−1 + K̃−1)K̃−1(D.50)

=⇒ K̃(K̃ + J̃)−1 = IM−r − (J̃−1 + K̃−1)−1K̃−1(D.51)

Since J̃ is not invertible, a limiting argument along the lines of (D.19) has to be

made in order to compute (J̃−1 + K̃−1)−1. We note that K̃ is invertible, as is show

in the following proposition.

Proposition D.5. The matrix K̃ is invertible.

Since P̃ = Q̃T and Q̃ is orthogonal,

(D.52) det K̃ 6= 0 ⇐⇒ detK 6= 0 ⇐⇒ det((PHTHQ)22) 6= 0.

Since the columns of H are linearly independent, we can apply Prop. D.2. �

The end result is that

(D.53) (J̃−1 + K̃−1)−1 =




0 0

0 (K̃−1
2′2′ − 2I)−1




where the subscript (·)2′2′ denotes the lower right (M−r−s)×(M−r−s) submatrix

of the argument. NB. K̃−1
2′2′ is the lower right (M − r − s) × (M − r − s) submatrix

of K̃−1. Substituting (D.53) into (D.51) and evaluating the trace produces

(D.54) tr(K̃[K̃ + J̃]−1) = s− tr
(
IM−r−s − (K̃−1

2′2′ − 2IM−r−s)
−1K̃−1

2′2′

)

The previous result works for s = M − r if the convention that I0 = 0 is used.

Recognize that s = #{i : θ̂i 6= 0 ∧ |θ̂i| > t1 − t2}. So s = ‖DTs
(θ̂; t1 − t2)‖0.
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Recall that DTs
(x; t) =

∑
i Ts(xi; t)ei, where Ts(·; t) is the soft-thresholding rule with

threshold t > 0. Applying this to (D.54), SURE for the HHS estimator can be

written as

(D.55)

R̂(t) = Nσ2+‖e‖2+2σ2‖DTs
(θ̂; t1−t2)‖0−2σ2tr

(
IM−r−s − (K̃−1

2′2′ − 2IM−r−s)
−1K̃−1

2′2′

)
.

The computation of (D.55) requires the inversion of a (M − r) × (M − r) matrix,

just like (D.47). Thus, it does not seem like anything has been gained.

Consider the approximation to R̂(t) made by dropping the last term of (D.55), so

that

(D.56) R̂(t) ≈ Nσ2 + ‖e‖2 + 2σ2‖DTs
(θ̂; t1 − t2)‖0,

This is easier to compute. When t1 = t2, (D.56) is equal to SURE of the L1 estimator,

i.e., (D.21). But when t1 = t2, the HHS estimator is the L1 estimator. This shows

that, when t1 = t2, the last term in (D.55) equals 0. For values of (t1, t2) such that

t1 ≈ t2, we expect the approximation (D.56) to be relatively accurate.
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APPENDIX E

Pseudocode for the image reconstruction methods

E.1 Standard and Projected Landweber iteration

The pseudocode for the Landweber iteration is given below.

Require: H, y, θ̂
(0)
, ε > 0, τ ∈

(
0, 2

ρ(HT H)

)

1: θprev := θ̂
(0)

2: repeat

3: θnext := θprev + τHT (y − Hθprev)

4: d := ‖θnext − θprev‖

5: θprev := θnext { Update the “prev” variable }

6: until d < ε

7: θ̂ := θnext

8: return θ̂

The projected Landweber iteration incorporates a projection to the positive or-

thant after each normal Landweber step. The positive orthant is a closed, convex

set. The pseudocode for the projected Landweber iteration is as follows.

Require: H, y, θ̂
(0)
, ε > 0, τ ∈

(
0, 2

ρ(HT H)

)

1: θprev := θ̂
(0)

2: repeat
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3: θtmp := θprev + τHT (y − Hθprev)

4: for i = 1 to M do { Project on to positive orthant }

5: θnext,i := max(0, θtmp,i)

6: end for

7: d := ‖θnext − θprev‖

8: θprev := θnext { Update the “prev” variable }

9: until d < ε

10: θ̂ := θnext

11: return θ̂

The only difference between the standard and projected Landweber iteration is the

additional lines 4–6 in the latter.

E.2 EBD

Recall that EBD is a sparse denoising method; without loss of generality, take

H = I, and so M = N . The hyperparameter for the LAZE prior is φ = (a, w). The

marginalized p.d.f. p(y|φ) is

p(y|φ) =

∫
p(y|θ)p(θ|φ) dθ

=

∫
(2π)−N/2σ−Ne−‖y−θ‖2/2σ2

N∏

i=1

[
(1 − w)δ(θi) + w

1

2
ae−a|θi|

]
dθ

=
N∏

i=1

∫
1√
2πσ

e−(yi−θi)
2/2σ2

[
(1 − w)δ(θi) + w

1

2
ae−a|θi|

]
dθi.(E.1)

The marginalized density of y is equal to the product of the marginalized densities

of each yi. This is to be expected, as both the noise and prior p.d.f.s are i.i.d. Now,

the integral of the first product is just (1 − w) · N (yi; 0, σ
2). It remains to compute

the integral of the second product, which is w times the convolution of a Gaussian
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and Laplacian p.d.f. The convolution can be shown to equal

g(x; a, σ) ,
1√
2πσ

e−x
2/2σ2 ∗ 1

2
ae−a|x|

=
1

4
ae(aσ)2/2

{
eax + e−ax + e−axerf

(
x− aσ2

√
2σ

)
− eaxerf

(
x+ aσ2

√
2σ

)}
(E.2)

where erf(x) , 2√
π

∫ x
0
e−s

2

ds. The marginalized density of each observation p(y|φ) is

given by

(E.3) pY |Φ(y|φ) = (1 − w)N (y; 0, σ2) + wg(y; a, σ)

and so p(y|φ) =
∏N

i=1 pY |Φ(yi|φ).

Given an observation y, let us derive the posterior median u. Using the notation

that F (θ|y) =
∫ θ
−∞ p(θ|y) dθ is the posterior c.d.f., u is the solution to the equation

F (θ|y) = 1/2. This can be solved in closed form to give u = Tlaze,pmed(y;φ, σ). The

details are as follows. The posterior median is a thresholding function [33] with

threshold t ≥ 0 that is the solution to

(E.4) 1 − erf

(−t+ aσ2

√
2σ

)
= 2pY |Φ(−t|φ)

[
aw · exp

(
−at+

1

2
(aσ)2

)]−1

Then,

(E.5) Tlaze,pmed(y;φ, σ) =





y + aσ2 −
√

2σerf−1
(
1 − 2pY |Φ(y;φ)

aw·exp(ay+ 1
2
(aσ)2)

)
y < −t

0 |y| ≤ t

y − aσ2 +
√

2σerf−1
(
1 − 2pY |Φ(−y;φ)

aw·exp(−ay+ 1
2
(aσ)2)

)
y > t

The pseudocode for EBD is as follows.

Require: y, σ { Recall that H = I }

1: φ̂ := argmaxφ log p(y|φ) { Recall that φ = (a, w) }

2: for i = 1 to N do

3: θ̂i := Tlaze,pmed(yi; φ̂, σ)
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4: end for

5: return θ̂

In the pseudocode above, the noise variance σ2 is assumed to be known. However,

it can also be estimated along with φ in the MML framework.

E.3 SBL

SBL relies on MML to estimate its hyperparameters. As was noted in section 5.5.2,

φ = (ζ1, . . . , ζM ), where ζi is the prior variance of θi, i.e., θi ∼ N (0, ζi). Here, we

assume that σ2 is given; however, its estimation can also be incorporated in the

estimation of φ. See [76] for more details. Fortuitously, the marginalized likelihood

can be computed in closed-form. Let Z , diag(ζ1, . . . , ζM) ∈ R
M×M . Then

p(y|φ) = (2π)−N/2(detΣy)
−1/2 exp

(
−1

2
yTΣ−1

y y

)
(E.6)

where: Σy , σ2I + HZHT(E.7)

This leads to

(E.8) φ̂ = argmax
φ

log p(y|φ) = argmin
φ

[log(detΣy) + yTΣ−1
y y]

Before addressing the estimation of φ̂, the posterior p.d.f. p(θ|y, φ) will be men-

tioned.

p(θ|y, φ) ∼ N (µ,Σθ)

where: µ , σ−2ΣθH
Ty and Σθ , (σ−2HTH + Z−1)−1(E.9)

Note that a M ×M matrix inversion required to compute Σθ. If M > N , which

occurs when the columns of H are an overcomplete basis, the complexity of the

inversion can be reduced by applying the matrix inversion lemma to get [76, (17)]

(E.10) Σθ = Z − ZHTΣ−1
y HZ
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A matrix inversion is still required, i.e., Σ−1
y . However, Σy is a N ×N matrix, and

so its inversion is less computationally complex.

The EM algorithm can be applied to find φ̂ using θ as the complete data. In the

E-step, the Q function can be computed as follows

Q(φ;φ(n)) = EΘ|Y ,Φ[log p(θ|φ)|y, φ(n)]

= −M
2

log 2π − 1

2

M∑

i=1

(
log ζi +

E[θ2
i |y, φ(n)]

ζi

)
(E.11)

where: EΘ|Y ,Φ[θ2
i |y, φ(n)] = (Σθ)i,i(φ

(n)) + µ2
i (φ

(n))(E.12)

The maximization of ζ = (ζ1, . . . , ζM) in the M-step can be done on a coordinate-wise

basis, as we notice that the Q function in (E.11) can be written as a sum of identical

functions in ζi. So

(E.13) ζ
(n+1)
i = argmax

ζi≥0
= E[θ2

i |y, φ(n)]

Once the hyperparameter estimate φ̂ is obtained, the posterior mean µ given

in (E.9) is used as θ̂ with φ = φ̂
final

. In the pseudocode given below, ζ will be

used instead of φ for the sake of clarity. In any case, they are interchangeable, as

φ = (ζ1, . . . , ζM) = ζ. We shall employ (E.10) in the pseudocode.

Require: H, ζ(0), σ, ε > 0

1: ζ
prev

:= ζ(0)

2: repeat { Compute estimate of hyperparameter }

3: Z := diag(ζ
prev

)

4: Σy := σ2I + HZHT { Compute covariance of marginalized distribution }

5: Σθ := Z − ZHTΣ−1
y HZ { Compute covariance of posterior distribution }

6: θprev := σ−2ΣθH
Ty

7: for i = 1 to M do
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8: ζnext,i := (Σw)i,i + µ2
prev,i { Compute ζ

next
}

9: end for

10: d := ‖ζ
next

− ζ
prev

‖

11: ζ
prev

:= ζ
next

{ Update the “prev” variable }

12: until d < ε

13: Z := diag(ζ
next

) { Compute θ̂ using ζ
next

}

14: Σy := σ2I + HZHT

15: Σθ := Z − ZHTΣ−1
y HZ

16: θ̂ := σ−2ΣθH
Ty

17: return θ̂

E.4 EBD-LAZE

The algorithm for EBD-LAZE makes use of the EBD denoising method. Denote

the latter by θ̂ := EBD(y, σ).

Require: H, y, θ̂
(0)
, σ, c ∈ (0, 1), ε > 0

1: α := c · σ
√
ρ(HHT )−1

2: θprev := θ̂
(0)

3: repeat

4: z := θprev +
(
α
σ

)2
HT (y − Hθprev)

5: θnext := EBD(z, α)

6: d := ‖θnext − θprev‖

7: θprev := θnext { Update the “prev” variable }

8: until d < ε

9: θ̂ := θnext

10: return θ̂



199

The pseudocode above performs a search for the hyperparameter φ = (a, w) in each

iteration of the repeat–until loop. The computational complexity can be decreased

by modifying the EBD procedure so that the search is performed only every nth

iteration. In between searches, the most recent φ̂ is used.

E.5 MAP1 and MAP2

Only the pseudocode for MAP1 will be given here, as the MAP2 reconstruction

methods is similar. They have the same input parameters with the exception of an ex-

tra tuning parameter that must be supplied for MAP2.

Require: H, ˆ̃θ(0), Î
(0)
, φ̂

(0)
, σ, c ∈ (0, 1)

Require: ε1 > 0 { ε1 dictates when convergence is achieved for the optimization in

step (ii) }

Require: ε2 > 0 { ε2 dictates when convergence is achieved for the overall method

}

1: α := c · σ
√
ρ(HHT )−1

2: θ̃prev := ˆ̃θ(0)

3: Iprev := Î
(0)

4: φ
prev

:= φ̂
(0) { Recall that φ = (a, w) }

5: repeat

6: ξ̃
prev

:= θ̃prev { ξ̃ is a temporary variable corresponding to θ̃ to be used in the

inner loop }

7: Jprev := Iprev { Similarly, J is a temporary variable corresponding to I }

8: (a, w) := φ
prev

9: repeat { In this loop, perform step (ii), i.e., hold φ fixed and find the maxi-

mizing θ̃ and I }
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10: z := ξ
prev

+
(
α
σ

)2
HT (y − Hξ

prev
) { Using ξprev,i = ξ̃prev,iJprev,i }

11: if 0 < w ≤ 1/2 then { Set Jnext according to (5.62) }

12: for i = 1 to M do

13: Jnext,i := I
(
|zi| > aα2 +

√
2α2 log(1−w

w
)
)

14: end for

15: else { 1/2 < w ≤ 1 }

16: for i = 1 to M do

17: Jnext,i := 1

18: end for

19: end if

20: for i = 1 to M do { Set ξ̃
next

according to (5.61) }

21: if Jnext,i = 0 then

22: ξ̃next,i := 0

23: else { Jnext,i = 1 }

24: ξ̃next,i := Ts(zi; aα
2)

25: end if

26: end for

27: d1 := ‖ξ
next

− ξ
prev

‖ { ξ
next

is obtained from ξ̃
next

and Jnext; same goes for

ξ
prev

}

28: ξ̃
prev

:= ξ̃
next

{ Update the “prev” variables }

29: Jprev := Jnext

30: until d1 < ε1 { Check for convergence of ξ sequence }

31: θ̃next := ξ̃
next

32: Inext := Jnext

33: anew := M/‖θ̃next‖1 { Do step (i) here }
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34: wnew := ‖Inext‖0/M

35: φ
next

:= (anew, wnew)

36: d2 := ‖θnext − θprev‖

37: θ̃prev := θ̃next { Update the “prev” variables }

38: Iprev := Inext

39: φ
prev

:= φ
next

40: until d2 < ε2 { Check for convergence of θ sequence }

41: for i = 1 to M do { Form the estimate θ̂ }

42: θ̂i := θ̃next,i · Inext,i

43: end for

44: return θ̂

E.6 L1-SURE and HHS-SURE

The pseudocode for L1-SURE is given here without explicitly specifying the

method of solving for the L1 estimator. Assume that we are given a list of different βs

to evaluate. Recall that β is the regularization parameter of the L1 estimator. The

L1 estimator can be solved via the iterative thresholding framework for a general H

or via the LARS algorithm if the columns of H are linearly independent. Note that by

using the SURE expression (5.49) in the pseudocode below, we are already assuming

that the columns of H are linearly independent.

Require: H, y, σ

Require: β { List of different β values to consider; assume there are p of them }

1: θ̂best := 0

2: Cbest := ∞

3: N := length(y)



202

4: for i = 1 to p do

5: θ̂ := argminθ (‖Hθ − y‖2 + βi‖θ‖1)

6: C := Nσ2 + ‖Hθ̂ − y‖2 + 2σ2‖θ̂‖0

7: if C < Cbest then { We have a better candidate }

8: θ̂best := θ̂

9: Cbest := C

10: end if

11: end for

12: return θ̂best

The pseudocode for HHS-SURE is similar and will be omitted.
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APPENDIX F

Miscellaneous details on sparse image reconstruction
simulations

F.1 Specification of Gaussian blur psf

The Matlab code used to generate the Gaussian blur psf used in the simulations

is given below.

propPsf = struct( ’fwhm’, 3, ’nk_half’, 5 );

psf = gaussian_kernel( propPsf.fwhm, propPsf.nk_half );

psf = psf * psf’;

The Matlab code for gaussian_kernel.m is included here for the sake of complete-

ness.

function kern = gaussian_kernel(fwhm, nk_half)

%function kern = gaussian_kernel(fwhm, nk_half)

% samples of a gaussian kernel at [-nk_half:nk_half]

% with given FWHM in pixels

% uses integral over each sample bin so that sum is

% very close to unity

% Copyright 2001-9-18, Jeff Fessler, The University of Michigan

if nargin < 1, help(mfilename), return, end
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if nargin < 2, nk_half = 2 * ceil(fwhm); end

if fwhm == 0

kern = zeros(nk_half*2+1, 1);

kern(nk_half+1) = 1;

else

sig = fwhm / sqrt(log(256));

x = [-nk_half:nk_half]’;

kern = normcdf(x+1/2, 0, sig) - normcdf(x-1/2, 0, sig);

end

F.2 Noise values used in the simulations

Table F.1: Table of noise standard deviation used in the simulations.

SNR σ SNR σ SNR σ

Binary-valued image

1.76 dB 1.99 × 10−2 3.01 dB 1.72 × 10−2 3.98 dB 1.54 × 10−2

4.77 dB 1.41 × 10−2 7 dB 1.09 × 10−2 10 dB 7.70 × 10−3

13 dB 5.45 × 10−3 16 dB 3.86 × 10−3 20 dB 2.43 × 10−3

LAZE image

1.76 dB 2.90 × 10−2 3.01 dB 2.51 × 10−2 3.98 dB 2.25 × 10−2

4.77 dB 2.05 × 10−2 7 dB 1.59 × 10−2 10 dB 1.12 × 10−2

13 dB 7.96 × 10−3 16 dB 5.63 × 10−3 20 dB 3.55 × 10−3
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ABSTRACT

Signal processing for magnetic resonance force microscopy

by

Michael Y. J. Ting

Chair: Alfred O. Hero III

Magnetic resonance force microscopy (MRFM) is an emergent technology that has

the potential for three-dimensional, non-destructive, and in-situ imaging of biological

molecules with atomic resolution. Experiments at IBM have shown that MRFM is

capable of detecting and localizing individual electron spins associated with sub-

surface atomic defects in silicon dioxide. In principle, detection of single nuclear

spins is possible as well. MRFM detects the spins by measuring the small spin-

induced forces on a micromachined cantilever.

Detection of a single electron spin was studied in additive white Gaussian noise

(AWGN). Four models of the single spin-cantilever interaction were proposed. We

investigated three of these models. A heuristic argument was used to formulate a

detector for the continuous-time classical model. Approximate forms of the optimal

likelihood ratio test (LRT) for the discrete-time (DT) random telegraph and DT

random walk models were derived which hold under certain conditions. It was shown



that, under low signal to noise ratio (SNR), the LRT for a DT finite state Markov

process in AWGN reduces to the matched filter statistic with the one-step minimum

mean-squared error predictor used in place of the known signal values.

The next challenge for MRFM is to demonstrate the technology’s applicability as

an imaging modality with advantages over those already in existence. We therefore

considered the problem of image reconstruction in the MRFM setting, which is recon-

structing sparse images from noisy projections. The goal here is to perform sparse

reconstruction with the tuning parameters selected in a data-driven fashion. The

empirical Bayes framework was investigated, and several sparse image reconstruc-

tion methods were proposed that are more scalable and have lower computational

complexity than sparse Bayesian learning (SBL). In a simulation study, the proposed

methods demonstrate benefits over SBL, Landweber, and the projected Landweber

method. Under low SNR, a MAP-based solution produced low l1 and l2 reconstruc-

tion error. We found that the maximum penalized likelihood estimator using a l1

norm penalty and with its regularization parameter estimated by minimizing Stein’s

unbiased risk estimate produced consistently good results across a wide range of

SNRs.


