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ABSTRACT

Sparse image reconstruction is of interest in the fields of radioas-
tronomy and molecular imaging. The observation is assumed to be a
linear transformation of the image, and corrupted by additive white
Gaussian noise (AWGN). We propose two methods of sparse im-
age reconstruction which use the following sparse prior: a weighted
average of an atom at zero and a Laplacian probability density func-
tion. The selection of the tuning parameters in the prior is done using
an empirical Bayes approach. The two methods are compared with
sparse Bayesian learning (SBL) and the estimator that maximizes
the penalized likelihood with a l1 penalty on the image values. In
the latter method, we propose using Stein’s unbiased risk estima-
tor (SURE) to select the regularization parameter in a data-driven
fashion. A simulation study was performed. The three sparse recon-
struction methods proposed had better performance than SBL. The
two methods based on the sparse prior previously mentioned had
equal, if not better, performance than the l1 penalty-based estimator
when the image was highly sparse.

1. INTRODUCTION

In most image reconstruction problems, the images are not directly
observable. Instead, one observes a transformed version of the im-
age, possibly corrupted by noise. In the general case, the estimation
of the image can be regarded as a simultaneous deconvolution and
denoising problem. Intuitively, a better reconstruction can be ob-
tained by incorporating knowledge of the image into the reconstruc-
tion algorithm.

In this paper, the images of interest to be reconstructed are as-
sumed to be sparse. Sparse images appear in radioastronomy and
molecular imaging. In the following two scenarios, prior informa-
tion on the sparse image can be used in the estimation of the image:
if one knew the number of non-zero voxels in the image; or, if one
knew that the image was a realization of a sparse probability density
function (p.d.f.). In a less informative scenario, one only knows that
the image is sparse, but not the sparsity level nor the distribution of
the non-zero voxels. We consider the model where the observation is
a linear transformation of the image, and corrupted by AWGN. Note
that the reconstruction methods mentioned here can be used to solve
the sparse denoising problem with coloured Gaussian noise.

There are several existing methods that address the sparse im-
age reconstruction problem. The first is sparse Bayesian learning
(SBL) [1]. The image voxels are assumed to be independent, zero-
mean Gaussian random variables (r.v.s), each with an unknown vari-
ance. The unknown variances in the image prior are learned empiri-
cally. The p.d.f. of the observation conditioned on the prior variances
can be obtained in closed form. Then, marginal maximum likelihood
(MML) is used to learn the prior variances. This empirical Bayes ap-

proach is a data-driven approach. The second existing method is the
estimator formed by maximizing the penalized likelihood criterion
with a l1 penalty on the image values. The aforementioned error
criterion is known to promote sparsity in the estimate [2]. This esti-
mator shall be called the L1 estimator. For the L1 estimator, one has
to choose a suitable regularization parameter.

Three reconstruction methods are proposed. Firstly, we propose
using SURE [3] to select the regularization parameter for the L1 es-
timator in a data-driven fashion. This method will be referred to
as L1-SURE. The derivation of the other two methods relies on the
sparse prior used in the empirical Bayes denoising (EBD) method
of [4], which is a weighted average of an atom at zero and a Lapla-
cian p.d.f. Now, the deconvolution and denoising sub-problems can
be separated using the EM algorithm as mentioned in [5]. EBD can
then be applied to the denoising sub-problem; this method shall be
referred to as E-EBD. E-EBD is not an EM algorithm: we have casu-
ally substituted EBD to solve the denoising subproblem without any
initial cost function in mind. Thirdly, the sparse prior in [4] is used
in the familiar MAP framework to derive the MAP estimator. This
method will be called E-MAP. A simulation study was conducted
comparing SBL, L1-SURE, E-EBD, and E-MAP.

2. PROBLEM FORMULATION

Denote the observation by y, which typically corresponds to a 2-
dimensional or 3-dimensional array. By enumerating the elements of
the array lexicographically, one can equivalently represent the image
by a vector. Without loss of generality, we shall take y ∈ R

N . Let θ
be the parameters of interest (e.g., the original image) that we would
like to estimate from y. Without loss of generality, let θ ∈ R

M .
Consider the conditional p.d.f. of y given θ, i.e., p(y|θ). Suppose

that we would like to estimate θ under the condition that it is sparse,
i.e., most of the values of θi are zero. In this paper, we model y as
the result of a linear transformation of θ with AWGN. Specifically,

y = Hθ + w, w ∼ N (w; 0, σ2
I), (1)

where N (·; µ,Σ) is the Gaussian density with mean µ and covari-
ance matrix Σ; and H ∈ R

N×M . The problem we consider is as
follows: suppose that y, H, σ are known and model (1) is given.
Knowing that θ is sparse, how can θ be optimally estimated?

If H had full column rank, (HT
H) would be invertible, and (1)

could be re-written as

y′ = θ + w′, w′ ∼ N (w′; 0, σ2
H

†(H†)T ) (2)

where y′ , H
†y, H† , (HT

H)−1
H

T is the pseudo-inverse of H,
and w′ , H

†n is coloured Gaussian noise. In this case, (1) would
be equivalent to denoising a sparse θ in coloured Gaussian noise.



3. DENOISING AND DECONVOLUTION

Two special cases of (1) have been studied in the past. Firstly, if H =
I, the estimation of θ in (1) would be a sparse denoising problem in
AWGN [4, 6]. Secondly, if σ = 0, the problem reduces to the task of
finding a sparse basis representation of y in terms of the columns of
H [1, 2]. In the general case when H 6= I and σ 6= 0, the estimation
of θ can be regarded as a simultaneous deconvolution and denoising
problem.

The deconvolution and denoising subproblems can be separated
in the context of finding the maximum a posteriori (MAP)/maximum
penalized likelihood (MPL) estimate of θ, which is

θ̂ = argmaxθ(log p(y|θ) − pen(θ)), (3)

where pen(θ) is an arbitrary penalty function imposed on θ. Intro-
duce an intermediate r.v. z so that p(y|z, θ) = p(y|z) and apply the
Expectation-Maximization (EM) algorithm. In EM parlance, z is
called the complete data. The authors in [5] selected z = θ + αw1,
where w1 has the p.d.f. N (w1; 0, I). The quantity α ∈ R must sat-
isfy α2 ≤ σ2/ρ(HH

T ), where ρ(·) is the spectral radius function.
Then, y = Hz + w2, where w2 ∼ N (w2; 0, σ2

I − α2
HH

T ). The
following notation shall be used for the iterative estimates of θ̂: θ̂

(n)

shall denote the estimate at the n-th step, for n ≥ 0. The initial
condition is θ̂

(0)
= θ(0). The resulting EM iterations are

ẑ(n) = θ̂
(n)

+
α2

σ2
H

T (y − Hθ̂
(n)

) (4)

θ̂
(n+1)

= argmaxθ

»

−
1

2α2
‖θ − ẑ(n)‖2

2 − pen(θ)

–

. (5)

Eqn. (4) can be regarded as a deconvolution step and (5) as a denois-
ing step. The iterations can be more succinctly written as

θ̂
(n+1)

= D

„

θ̂
(n)

+
α2

σ2
(y − Hθ̂

(n)
)

«

, (6)

where D(·) is a denoising operation that depends on the form of
pen(·). We note that (6) is a Landweber iteration followed by a de-
noising step.

4. SPARSE PRIORS FOR θ

Several sparse priors have been used to model a sparse θ. In [6], the
prior

θi
i.i.d.
∼ (1 − w)δ(θi) + wN (θi; 0, γ) (7)

was used, where i.i.d. denotes independent and identically distributed,
and δ(·) is the Dirac delta function. More recently, in [4], the prior

θi
i.i.d.
∼ (1 − w)δ(θi) + wγ(θi; a), (8)

where γ(x; a) = 1
2
ae−a|x| is the Laplacian density with shape pa-

rameter a, was employed. In SBL [1],

θi ∼ N (θi; 0, γi). (9)

However, the Gaussian density is not sparse, unless γi = 0. Note
that the θi’s are i.i.d. in (7) and (8). On the other hand, the θi’s are
independent but not identically distributed in (9).

The tuning parameters in the prior density, e.g., a, w in (8), are
not known a priori. Assuming a Bayesian perspective on θ, the prior
densities mentioned above might not be the true density for θ. That

is, a mismatch for p(θ) is possible. The tuning parameters are im-
portant, as they should be selected so that the assumed density on θ
matches the true density as closely as possible.

The empirical Bayes approach, which we shall adopt in this pa-
per, dictates that the tuning parameters be learned from the obser-
vation. The tuning parameters of the prior on θ shall be called the
hyperparameters. Let φ be the vector of hyperparameters. Mod-
elling θ by a sparse prior with hyperparameters φ introduces a hi-
erarchical structure to the estimation problem. In [1, 4], the hyper-
parameters are learned via MML. In MML, one computes p(y|φ) =
R

p(y|θ)p(θ|φ)dθ, and φ̂ = argmaxφp(y|φ). In both EBD and SBL,
MML is used to compute φ̂. Conveniently, the marginal likelihood
can be computed in closed form for the priors (8) and (9). MML is
not the only way that φ can be learned: another alternative is to learn
θ, φ jointly in the MAP framework.

Once φ is learned, it can be used to compute an estimate of θ. In
the EBD method of [4], the posterior median is used to compute an
estimate of θ. Recall that H = I in the denoising subproblem. As
the prior on θ and the noise w is i.i.d., denoising of the M elements
of θ can be done on an element-by-element basis. The posterior
median when p(θi) has the form (8) is a thresholding rule [4]. Let
T1(·; φ, σ) : R → R denote the posterior median (thresholding rule)
of EBD. A thresholding rule T (·; φ, σ) is said to have threshold t
if T (x; φ, σ) = 0 iff |x| ≤ t. In the non-trivial case, the posterior
median will have threshold t > 0. The sparsifying effect is clear:
any values of the observation with magnitude less than t will be set
to zero. In SBL, the posterior mean is used. Unlike EBD, SBL can
be used when H 6= I: it is a method that performs simultaneous de-
convolution and denoising. We shall compare our proposed methods
to SBL.

5. PROPOSED RECONSTRUCTION METHODS

Three methods for sparse image reconstruction are presented in this
section. The first will use the EBD method of [4] as the denoising
operation D(·) in (6). This will be referred to as E-EBD. Note that
E-EBD is not an EM implementation. Instead, it is an ad-hoc for-
mulation that uses EBD as a sparse denoising operator. The iteration
for E-EBD at the n-th step involves:

1. Compute ẑ(n) according to (4)

2. Find φ̂
(n)

= argmaxφp(ẑ(n)|φ), where p(θ|φ) is given in (8)

3. Set θ̂
(n+1)

i = T1(z
(n)
i ; φ̂

(n)
, α), for i = 1, . . . , M

The second method will use the discrete-continuous version of
the sparse prior (8), as the delta function is hard to work with in
the MAP setting. Define the random variables θ̃i and Ii such that
θi = Iiθ̃i, 1 ≤ i ≤ M . The r.v.s θ̃i and Ii are assumed to have the
density

θ̃i
i.i.d.
∼ γ(θ̃i; a), (10)

Ii =



0 with probability (1 − w)
1 with probability w

(11)

and θ̃i, Ii are independent. The estimation of φ and θ occurs jointly
in the MAP framework. This method will be called E-MAP. The
optimality criterion is

ˆ̃
θ, Î, φ̂ = argmax

θ̃,I,φ

log p(y, θ̃, I|φ). (12)



The optimization of (12) is done using coordinate-wise maxi-
mization [7]. The maximizing ξ is obtained by alternately (i) maxi-
mizing φ while holding (θ̃, I) fixed, and (ii) maximizing (θ̃, I) while
holding φ fixed. The maximization in step (i) is solvable in closed
form as â = ‖θ̂‖0/‖θ̂‖1 and ŵ = ‖θ̂‖0/M , where ‖x‖0 , #{i :
xi = 0}. The l0 measure is not a norm; rather, it is a counting
measure. Next, the maximization in step (ii) can be obtained by ap-
plying the EM algorithm with the complete data z = θ + αw1. The
resulting iterations are as follows:

1. Compute ẑ(n) according to (4)

2. Set θ̂
(n+1)

i = T2(z
(n)
i ; φ̂, α), for i = 1, . . . , M

where the thresholding rule T2(·; φ, σ) : R → R is

T2(x; φ, σ) ,



(x − sgn(x)aσ2)I(|x| ≥ tm
1 ) 0 ≤ w < 1

2

(x − sgn(x)aσ2)I(|x| ≥ tm
2 ) 1

2
≤ w ≤ 1

(13)

and: tm
1 = aσ2 +

r

2σ2 log
1 − w

w
, tm

2 = aσ2. (14)

For 1/2 ≤ w ≤ 1, T2 is the soft-thresholding function. We note that
there might be other methods to maximize the criterion in (12).

The third method is the MPL estimate with the l1 penalty on θ,
i.e., (3) with pen(θ) = β‖θ‖1. The regularization parameter β is
chosen using SURE [3]. This method will be called L1-SURE.

Of the three methods proposed in this section, the computational
complexity can be ordered from highest to lowest as: E-EBD, L1-
SURE, E-MAP. E-EBD requires a 2-dimensional search for φ̂

(n) in
each iteration. In L1-SURE, a search in β is performed to minimize
the SURE criterion. The SURE criterion also depends on θ̂(β). Fi-
nally, with E-MAP, the iterations are given above in closed form,
and no miscellaneous search is needed. The memory requirement
of the proposed algorithms is dominated in the general case by the
storage of H, which is of O(MN). Manipulations of vectors with
dimensions of y and θ involve memory of size O(max(M, N)). If
H implements the convolution operator with a point spread function
(psf), and the support of the psf is smaller than O(max(M, N)),
then the overall memory requirement is O(max(M, N)). For more
details, refer to [8].

6. SIMULATION RESULTS

The following four methods are compared in this section: E-EBD,
E-MAP, SBL, and L1-SURE. The parameter θ was set to a 32 × 32
binary image, i.e., the pixel values were either 0 or 1. H was taken
to be a square matrix, i.e., M = N . It follows that y has the same
length as θ. In particular, H implemented a Gaussian psf. The four
reconstruction methods were tested under four different signal-to-
noise ratio (SNR) values and two different sparsity levels. In this
paper, the SNR is defined as SNR , (M−1‖Hθ‖2

2)σ
−2. The four

SNR values examined were: 1.5, 2, 2.5, 3. The two different sparsity
levels examined were: (1) 12 non-zero values, and (2) 36 non-zero
values. These correspond to a non-zero percentage of approximately
1.2% and 3.5% respectively. The image θ under the first sparsity
level is depicted in Fig. 1(a), and the resulting y under SNR = 3 is
depicted in Fig. 1(b).

Define the reconstruction error δθ , θ̂ − θ. The performance
of the reconstruction methods is evaluated by considering (i) ‖δθ‖2,
and (ii)

P

i
|I(|θ̂i| < δ) − I(θi = 0)|. The latter criterion will be

referred to as the “xor error criterion”. It measures the ability of the
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Fig. 1. Image θ with 1.2% non-zero values and the resulting noisy
observation y under SNR = 3.

estimator to distinguish between the zero and non-zero values of θ.
The value of δ in the xor error criterion will be set to 10−2‖θ‖∞ =
10−2.

Consider first the binary image with a non-zero percentage of
1.2%. The plot of the l2 error for the four reconstruction methods
is given in Fig. 2(a), and the xor error criterion in Fig. 2(b). Each
point in the plots is the result of running a particular method on one
realization of the noise w. This might explain why some curves are
not monotone decreasing as the SNR increases, as one would in-
tuitively expect. Despite the drawback of not having several noise
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Fig. 2. Performance of reconstruction methods for the binary image
with 1.2% non-zero values.

realizations for each data point, which would reduce the variance,
one can make some preliminary observations. There seems to be
an ordering in the performance of the reconstruction methods that
is maintained across the SNR values considered. Specifically, the
performance of the methods in terms of the l2 error can be ordered
from best to worst as: E-MAP, L1-SURE, E-EBD, SBL. In terms of
the xor error criterion, E-MAP has the best performance and SBL
the worst. L1-SURE and E-EBD are comparable for the middle two
SNR values, but the E-EBD is better for SNR = 1.5 and 3. The
reconstructed images for SNR = 3 are given in Figs. 3(a)-(d). The
best reconstruction is that of E-MAP, while the worst is that of SBL.
In the latter, there are some negative voxels in θ̂; as well, there are
spurious non-zero voxels far away from the non-zero voxel locations
of θ. E-EBD and L1-SURE have more blurring around the original
non-zero voxel locations. The number of non-zero values in θ̂ is
plotted in Fig. 4 for the four reconstruction methods. The estimates
θ̂ that SBL produced in the simulations are not strictly sparse. Un-
der the SNR values considered, SBL produced estimates θ̂ such that
‖θ̂‖0 = 1024. In contrast, the other three methods produced esti-
mates that are sparser by at least an order of magnitude. It would
be tempting to conjecture that this is due to the non-sparse Gaussian
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Fig. 3. Reconstructed images for the binary image with 1.2% non-
zero values and SNR = 3.
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Fig. 4. Number of non-zero values in θ̂ for the binary image with
1.2% non-zero values.

prior that SBL uses. However, the L1 estimator can be regarded as
the MAP estimator when a Laplacian prior is placed on θ. Although
the Laplacian prior is not sparse, the L1-SURE estimate is sparse.
Note that if γi = 0 in (9), the corresponding SBL estimate θ̂i = 0
w.p. 1 [1].

Next, consider the binary image with a non-zero percentage of
3.5%. The plot of the l2 error and the xor error criterion is given in
Fig. 5(a) and 5(b) respectively. Let us first focus on the l2 reconstruc-
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Fig. 5. Performance of reconstruction methods for the binary image
with 3.5% non-zero values.

tion error. At this sparsity level, the performance of the proposed
reconstruction methods is not well ordered. However, they produced

estimates with lower l2 error than SBL. L1-SURE seems to perform
better at low SNR than E-EBD and E-MAP. At higher SNR, L1-
SURE, E-EBD, and E-MAP have comparable performance. From
Fig. 5(b), one see that E-EBD and E-MAP possess a better ability
to distinguish between the zero and non-zero locations of θ as com-
pared to SBL and L1-SURE.

7. CONCLUSION

This paper proposed two methods, E-EBD and E-MAP, of applying
the sparse prior that appeared in [4], i.e. (8), to the sparse image
reconstruction problem. The selection of the tuning parameters in
the sparse prior was done using an empirical Bayes, i.e., data-driven,
approach. The standard L1 estimator was extended to L1-SURE,
where the regularization parameter was selected using SURE. L1-
SURE is similar to E-EBD and E-MAP in that the regularization
parameter, the frequentist analogy of the hyperparameter, is selected
in a data-driven fashion.

These three methods, along with SBL, were investigated in a
simulation study conducted on binary-valued θ. At the higher spar-
sity level, corresponding to a non-zero percentage of 1.2%, the per-
formance of the four methods in terms of l2 reconstruction error can
be ordered from best to worst as: E-MAP, L1-SURE, E-EBD, and
SBL. At the lower sparsity level, corresponding to a non-zero per-
centage of 3.5%, L1-SURE had a lower l2 error than E-EBD and
E-MAP for lower SNR. At the higher SNR values considered, L1-
SURE, E-EBD, and E-MAP had comparable performance. In both
sparsity levels, SBL had l2 errors higher than the other three meth-
ods. In the simulation study, we noticed that the SBL estimate θ̂ was
never strictly sparse. In contrast, L1-SURE, E-EBD, and E-MAP
produced estimates that were sparser. E-EBD and E-MAP were bet-
ter able to distinguish between the zero and non-zero locations of the
image than SBL and L1-SURE.

8. REFERENCES

[1] D. P. Wipf and B. D. Rao, “Sparse Bayesian learning for basis
selection,” IEEE Trans. Signal Processing, vol. 52, no. 8, pp.
2153–2164, 2004.

[2] D. L. Donoho and M. Elad, “Optimally sparse representation
in general (nonorthogonal) dictionaries via l1 minimization,”
Proceedings of the National Academy of Sciences of the United
States of America, vol. 100, no. 5, pp. 2197–2202, 2003.

[3] V. Solo, “A sure-fired way to choose smoothing parameters
in ill-conditioned inverse problems,” in Proceedings of the 3rd
IEEE Intl. Conf. on Image Processing, 1996, vol. 3, pp. 89–92.

[4] I. M. Johnstone and B. W. Silverman, “Needles and straw in
haystacks: Empirical Bayes estimates of possibly sparse se-
quences,” The Annals of Statistics, vol. 32, no. 4, pp. 1594–
1649, 2004.

[5] M. A. T. Figueiredo and R. D. Nowak, “An EM Algorithm for
Wavelet-Based Image Restoration,” IEEE Trans. Image Pro-
cessing, vol. 12, no. 8, pp. 906–916, 2003.

[6] I. M. Johnstone and B. W. Silverman, “Empirical Bayes ap-
proaches to mixture problems and wavelet regression,” Tech.
Rep., Stanford University, 1998.

[7] J. A. Fessler, “Image Reconstruction: Algorithms and Analy-
sis,” Draft of book.

[8] M. Ting, R. Raich, and A. O. Hero, “A Bayesian approach to
sparse image reconstruction,” Draft of paper in preparation.


