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ABSTRACT

PARAMETRIC AND NONPARAMETRIC APPROACHES FOR MULTISENSOR
DATA FUSION

by
Bing Ma

Co-chairs: Alfred O. Hero III and Sridhar Lakshmanan

Multisensor data fusion technology combines data and information from multiple sen-

sors to achieve improved accuracies and better inference about the environment than could

be achieved by the use of a single sensor alone. In this dissertation, we propose parametric

and nonparametric multisensor data fusion algorithms with a broad range of applications.

Image registration is a vital first step in fusing sensor data. Among the wide range

of registration techniques that have been developed for various applications, mutual in-

formation based registration algorithms have been accepted as one of the most accurate

and robust methods. Inspired by the mutual information based approaches, we propose to

use the joint R´enyi entropy as the dissimilarity metric between images. Since the R´enyi

entropy of an image can be estimated with the length of the minimum spanning tree over

the corresponding graph, the proposed information-theoretic registration algorithm can be

implemented by a novel nonparametric graph-representation method. The image matching

is performed by minimizing the length of the minimum spanning tree (MST) which spans

the graph generated from the overlapping images. Our method also takes advantage of



the minimumk-point spanning tree (k-MST) approach to robustify the registration against

outliers in the images. Since this algorithm does not require any parametric model, it can

be directly applied to a variety of image types.

We also propose a parametric sensor fusion algorithm for simultaneous lane and pave-

ment boundary detection in registered optical and radar images. The fusion problem is

formulated in a Bayesian setting where the deformable templates play the role ofa priori

density and the imaging likelihoods play the role of likelihood functions. Under these

formulations, the fusion problem is solved by a joint maximuma posteriori(MAP) es-

timate. We first employ existing prior and likelihood models in the fusion framework

and experimental results have shown that the fusion method outperforms single sensor

based boundary detection algorithms. However, there are some drawbacks in the existing

models. To improve the fusion algorithm, we propose to utilize concentric circular shape

models to represent the boundaries and to employ Gaussian and log-normal densities to

describe the optical and radar imaging processes. This fusion algorithm leads to a well

conditioned parameter estimation problem and the optical and radar observation data are

combined effectively and efficiently.



c

Bing Ma 2001

All Rights Reserved



I dedicate this thesis to my family for their love and support.

ii



ACKNOWLEDGEMENTS

I am very grateful to many individuals that have helped and supported me through my

doctoral study at University of Michigan. First of all, I would like to express my thanks to

my advisors Professor Alfred Hero and Professor Sridhar Lakshmanan for their excellent

guidance and encouragement, their patience in discussing my questions and their original

suggestions for some solutions during my Ph.D. work. Their broad knowledge and deep

insights have been an important resource to my accomplishment.

I would like to express my gratitude to Dr. Karl Kluge at Artificial Intelligence Lab-

oratory for his helpful discussion of the previous work on the boundary detection project

and providing me with the source codes of the LOIS algorithm and the general image dis-

play software package in unix environments. I also thank Professors Kamal Sarabandi and

William Williams for serving in my committee and helping with their ideas.

I owe a lot to my friends Tingfang Ji, Robinson Piramuthu, Hua Xie, and Jia Li for their

warm friendship and help in both professional and personal perspectives. I would like to

thank my colleagues: Mahesh Godavarti, Robby Gupta, John Choi, Hyungsoo Kim, Tara

Javidi, Saowapak Sotthivirat, Vitoria Yee, Olgica Milenkovic, Selin Aviyente, and Naveen

Kashyap. They have made my staying at Michigan an enjoyable experience.

I would like to thank Ms. Susan Yale, Beth Olson, Beth Lawson and Ann Pace for

their kind help in my most needing times.

Finally I would like to express my thank to my mother and father with my whole heart

for their endless love and support. I thank my sister for making me smile all the time and

iii



taking good care of my parents while I am far away from home.

iv



TABLE OF CONTENTS

DEDICATION : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : ii

ACKNOWLEDGEMENTS : : : : : : : : : : : : : : : : : : : : : : : : : : : : iii

LIST OF FIGURES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : viii

LIST OF TABLES : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : xii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Image Registration with Minimum Spanning Tree Method
— A Nonparametric Fusion Approach. . . . . . . . . . . 2

1.2 Simultaneous Detection of Lane and Pavement Boundaries
— A Parametric Fusion Approach . .. . . . . . . . . . . 5

1.3 Outline of The Dissertation . . . . .. . . . . . . . . . . . . . . 8

II. Overview of Multisensor Data Fusion . . . . . . . . . . . . . . . . . . 10

2.1 Motivation for Sensor Fusion . . . .. . . . . . . . . . . . . . . 11
2.2 Classification of Sensor Fusion Techniques .. . . . . . . . . . . 13

2.2.1 Classification by Types of Sensor Data . . . .. . . . 14
2.2.2 Classification by Levels of Representation . . . . . . . 14
2.2.3 Classification by Mathematical Foundation . .. . . . 18

III. Minimum Spanning Tree and R ényi Entropy . . . . . . . . . . . . . . 23

3.1 Minimum Spanning Tree . . . . . . . . . . . . . . . . . . . . . 23
3.2 Limit Theorem and Rate of Convergence for MST Length Func-

tionals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Limit Theorem for MST Length Functionals . . . . . 25
3.2.2 Rate of Convergence for MST Length Functionals on

Uniform Samples . . . . . . . . . . . . . . . . . . . . 25
3.2.3 Rate of Convergence for MST Length Functionals on

Non-uniform Samples . . . . . . . . . . . . . . . . . 27

v
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CHAPTER I

Introduction

The recent development of new sensors has created a need for data processing tech-

niques that can fuse observations from a variety of different sensors.Multisensor data

fusionis an evolving technology concerned with the problem of how to combine data and

information from multiple sensors in order to achieve improved accuracies and better in-

ference about the environment than could be achieved by the use of a single sensor alone.

The concept of multisensor data fusion is hardly new. Humans and animals have

evolved the capability to use multiple senses to improve their ability to survive. The human

or animal brain is a good example of a data fusion system. The brain integrates sensory

information namely sight, sound, smell, taste, and touch data to achieve more accurate

assessment of the surrounding environment and identification of threats, thereby humans

and animals improve their chances of survival.

In recent years, multisensor data fusion has been extensively investigated by researchers

in a variety of science and engineering disciplines, such as automated target recogni-

tion [7, 8], automatic landing guidance [23, 98], remote sensing [32, 35, 78], monitoring

of manufacturing processes [14, 106], robotics [1, 4], and medical applications [36, 37],

to mention but a few.

In this work, we focus on developing parametric and nonparametric multisensor data
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fusion algorithms. A parametric algorithm is based on the assumption of a parametric

model. The algorithm consists of fitting the model to the data, and estimating the param-

eters of the model. In contrast, a nonparametric algorithm is not based on any parametric

model. Thus the nonparametric algorithm is applied when the problem parameterization

is unknown or unavailable.

Our work consists of the following two multisensor fusion objectives:

① Develop a nonparametric approach forimage registrationfrom different sensors.

② Develop a parametric fusion approach fordetection of lane and pavement bound-

ariesfrom optical and radar sensors.

Both of the objectives are in the fields of multisensor data fusion and certainly they

have some common characteristics. They share the basic data processing flow patterns —

first put the measurements from sensors into a common coordinate system, then extract

feature vectors from the measurements and finally combine the feature vectors together to

achieve accurate detection, estimation, and classification. However, since the nonparamet-

ric approach is model independent while the parametric one is based on a model that is

described with parameters, the two objectives are only loosely connected. For convenience

and clarity of further explanation, we will separately pursue the two objectives.

1.1 Image Registration with Minimum Spanning Tree Method
— A Nonparametric Fusion Approach

Image Registration refers to the process of aligning images so that their details overlap

accurately. Images are usually registered for the purpose of combining or comparing them.

Image registration is indispensable for such tasks as data fusion, navigation, clinic stud-

ies, and motion detection. A wide range of registration techniques has been developed for
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many different types of applications and data, such as mean squared alignment [42], corre-

lation registration [43], moment invariant matching [18]. Basically, each method exploits

different image features of the object such as boundaries, moments and texture, which are

extracted from the image, and uses them to solve the matching problem.

In 1995, Viola and Wells [103] and Collignon et al. [17] independently proposed an

information-theoretic approach for matching of images. In their work, mutual information

is introduced as a measure for evaluating the similarity between images and image reg-

istration is achieved by maximizing the mutual information between the to-be-registered

images.

Inspired by the mutual information based matching algorithm, we have developed a

registration algorithm using R´enyi entropy as a dissimilarity metric between two images.

When two images are properly matched, corresponding anatomical areas should over-

lap and the resulting joint probability distribution contains high values for the intensity

values in the anatomical areas, i.e., the joint probability distribution is relatively highly

concentrated. Thus, the R´enyi entropy of the overlapping images should be small. Since

misregistration increases the dispersion of the joint probability distribution, i.e., increases

the Rényi entropy, one should be able to obtain registration by finding the configuration

corresponding to the minimum R´enyi entropy. This algorithm does not require any para-

metric model, so it is a nonparametric approach and can be applied to a broad range of

image types directly.

The minimum spanning tree (MST) is a graph-theoretic technique which determines

the dominant skeletal pattern of a point set by mapping the shortest path of linear, nearest-

neighbor connections. A spanning tree overn vertices is a connected acyclic graph which

passes through all these vertices. The MST is the spanning tree with minimal length.

In [96] the MST length was proved to provide a consistent estimator for R´enyi entropy.
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Thek-point MST denotes the minimum spanning tree over a specifiedk vertices out

of then vertices in the graph. The minimumk-point spanning tree (k-MST) is defined as

thatk-point MST which has minimal length amongk-point MST’s spanning each of the�
n
k

�
possible subsets ofk vertices. For a noise contaminated signal, thek-MST offers

a robust estimate for the entropy of the signal by virtue of its ability to judiciously prune

straggler points [40].

Thanks to the MST’s capability of providing an estimator for the R´enyi entropy, the

proposed minimum R´enyi entropy based image registration algorithm is boiled down to

a novel graph-representation method. The image matching is performed by minimizing

the length of the MST that spans the graph generated from the overlapping images. Our

method also employs thek-MST approach to robustify the registration against outliers in

the images.

As the complexities of the MST algorithm andk-MST greedy approximation algorithm

are polynomial in the number of vertices, it is crucial to efficiently extract feature vectors

from the original images in order to reduce the number of vertices in the graph and hence

reduce the computational complexity of the registration algorithm. The feature vectors

must be able to well represent the original image without losing too much information; on

the other hand, the number of feature vectors have to be small enough so that the MST

andk-MST techniques can handle them. Since these two objectives are in conflict, feature

extraction is a challenging task. We propose a number of feature extraction techniques in

this dissertation and the experimental results are very promising.
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1.2 Simultaneous Detection of Lane and Pavement Boundaries
— A Parametric Fusion Approach

Lane and pavement boundary detection is an enabling or enhancing technology which

will have significant impact on the next generation of automotive systems such as road de-

parture or lane excursion warning, intelligent cruise control, and, ultimately, autonomous

driving.

Lane and pavement boundary detection problem is particularly difficult when no prior

knowledge of the road geometry is available (such as from previous time instants [22, 49,

75]) and when the detection algorithms have to locate the boundaries even in situations

where there may be a great deal of clutter in the images.

Deformable templates have been employed to model the lane and/or pavement bound-

aries. In [56, 68], the authors proposed a global shape model to describe the boundaries

and thus the boundary detection problem becomes a problem of estimating the model pa-

rameters, i.e., a problem of finding the mode of an objective function with respect to the

model parameters. These model-based methods operate well and have the advantage of

having quite small search space for the optimization of the objective function. In [56], a

vision-based algorithm was developed for locating lane boundaries, while in [68] a model-

based method was proposed for detecting pavement boundaries in radar images.

Note that previously lane boundary detection in optical images [53, 54, 55, 56, 83], and

pavement boundary detection in radar images [48, 59, 60, 68] have always been studied

separately. However, a single sensor, either optical or radar sensor, has limited ability to

sense and identify the relevant features in varying environments. For example, the optical

sensor is not able to operate in a poorly illuminated environment, while the radar sensor

can not distinguish the lane markers on the road.

To take advantage of the strengths (and overcome the weaknesses) of both the optical
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and radar sensors, we design parametric fusion algorithms to effectively combine the two

different types of sensory data such that we can obtain a more precise and robust interpreta-

tion of the sensed environment. In the proposed fusion algorithms, the lane and pavement

boundaries are represented by deformable templates and the distribution of the deforma-

tion parameters provides thea priori probability density funtion (pdf). Furthermore, the

optical and radar imaging processes are described by imaging likelihood functions. With

the a priori pdf and imaging likelihood functions, the goal of detecting boundaries via

fusing optical and radar observations can be achieved with maximuma posteriori(MAP)

estimation.

Polynomial shape models have been one of the prevailing deformable templates used

for describing the lane and pavement boundaries in the past years. Specifically, in previous

work that is closely related to our fusion mission [56, 68], parabolic shape models were

employed in separate lane and pavement boundary detection. For the detection algorithms

presented in [56] and [68], the radar imaging process is modeled with a log-normal pdf

and the optical imaging process is described with an empirical matching function. To make

most of existing boundary shape models and imaging likelihood functions, our first effort

in detecting boundaries with fusion techniques is to jointly estimate the shape parameters

with the MAP method where the parabolic shape models play the role of prior information

and the log-normal pdf and the empirical matching function play the role of likelihood

functions. Since this fusion technique combines information from both optical and radar

images, the boundary detection results are shown to be more accurate and more reliable

than single sensor based detection algorithms, especially in an adverse environment.

Although the detection results are promising with the fusion algorithm using exist-

ing prior shape models and likelihood functions, there are some drawbacks that prevent

us from exploring the most of the fusion algorithm. First, since the parameters in the
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parabolic shape model have different units and are of different orders of magnitude, the

MAP estimation is an inherent ill-conditioned problem. To get rid of this inherent pitfall

of the parabolic model, we propose to use concentric circular shape models to describe the

lane and pavement boundaries. Circular shape models lead to a much better conditioned

estimation problem due to the compatibility of their parameters, namely, parameters share

the same units and are of the same order of magnitude.

The optical likelihood function of the previous approach results in complications in the

joint estimation problem. The empirical matching function inherited from single optical

sensor lane detection algorithm is not a valid likelihood function since it is not normalized

to a probability density function. In the radar and optical fusion algorithm, the empir-

ical function has to be carefully weighted so that each sensor makes a fair contribution

to the joint likelihood. In [71] we experimentally selected the weights according to the

minimum mean square criterion which yield reasonably good results, but this empirical

matching function make systematic and theoretically sound weight picking an impossible

task. Inspired by the log-normal radar image likelihood function, we propose to model

the optical imaging process as a Gaussian process which leads to a well defined likelihood

function that can be easily manipulated with the likelihood from the radar sensor.

Then in our second effort in improving the fusion algorithm, we employ concentric

circular shape models to represent the lane and pavement boundaries, and utilize the log-

normal and Gaussian pdf’s to describe the radar and optical imaging processes. This new

fusion algorithm is expected to yield a well conditioned estimation problem and combines

the optical and radar modalities effectively and efficiently.

Although we develop this parametric fusion algorithm with a specific application in

mind, we are aware that this fusion methodology can be applied to other model-based

applications as well.
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1.3 Outline of The Dissertation

In Chapter II, we give a brief historical overview of work related to multisensor data

fusion.

Chapters III and IV deal with the nonparametric image registration methodology via

graph matching. The main idea that separates this work from the large volume of work on

nonparametric image registration algorithms is establishing the connection between mini-

mum Rényi entropy and image registration and proposing the use of graph matching tech-

niques to register a variety of images. In Chapter III, we discuss some critical properties,

such as asymptote and convergence rate, of the MST length functional and its application

in Rényi entropy estimation. In addition,k-MST is also introduced for robustification of

entropy estimators. In Chapter IV, we present the criterion and procedure of image reg-

istration with graph matching techniques. First we describe a general image registration

procedures, and detail the spatial transformation and feature extraction for MST construc-

tion. Then, we present the construction of MST for both noiseless and noisy images for

EO-terrain map registration and MRI image registration.

In chapters V to VIII we present a parametric fusion approach for simultaneous detec-

tion of lane and pavement boundaries. In Chapter V we state the general settings of this

boundary detection problem and pointed out that among the state-of-art techniques, de-

formable templates have been through promising progress in boundary detection society.

We present a model-based fusion algorithm in Chapter VI. The fusion problem is formu-

lated in a Bayesian setting where the deformable templates play the role ofa priori density

and the imaging likelihoods play the role of likelihood functions. In this chapter we make

use of the existing boundary shape models and imaging likelihood functions in the fusion

setting. We describe the joint maximuma posteriori(MAP) estimate for the boundary
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detection and show the experimental results in Section 6.3. And confidence measures for

the lane and pavement boundary parameter estimates are studied in the end of Chapter VI.

Chapter VII presents the boundary detection with the proposed concentric circle model,

which makes the detection problem much better conditioned due to the compatibility of

the model parameters. In this chapter, we also propose a Gaussian pdf to model the optical

imaging process. And we show the advantage of this fusion algorithm over the algorithm

describe in Chapter VI. Finally in Chapter VIII we provide the summary on the boundary

detection algorithms and discuss the future work.

In the appendix, we give a preliminary result for the convergence rate of MST length

of samples drawn from non-uniform densities.



CHAPTER II

Overview of Multisensor Data Fusion

Information acquisition consists of two fundamental processes —sensor measuring

and feature extraction. The sensor measuring process is to obtain certain measurements

of quantities (sensory data), which are dependent on the structures in the environment

and their configuration. The feature extraction process is to derive from the sensory data

specific items of information about meaningful structures in the environment. The sensor

measuring process can be interpreted as a mapping of the state of the world into a set

of images of much lower dimensionality. The usual operations involved in the sensor

measuring process are sampling and projection. Both of the processes result in loss of

information. The feature extraction process can be treated as the process of inverting the

imaging map. However, since the sensor measuring process loses information in general,

the imaging map is non-invertible. Therefore, the feature extraction task is fundamentally

that of solving an ill-posed problem and must be approached with some reliable and robust

mathematical tools.

Multisensor data fusion has emerged as the method of choice for resolving these prob-

lems. Data fusion techniques combine data from multiple sensors, and related information

from associated databases to achieve improved accuracies and more specific inferences

than could be achieved by the use of a single sensor alone. In recent years, multisensor

10
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data fusion has received significant attention among researchers in different disciplines of

science and engineering, such as automated target recognition [7, 8, 10, 11, 24, 34], auto-

matic landing guidance [23, 98], remote sensing [32, 35, 78], monitoring of manufacturing

processes [14, 106], robotics [1, 4], and medical applications [36, 37, 92, 93].

Techniques to combine or fuse data are drawn from diverse set of more traditional

disciplines including: digital signal processing [95, 102], statistical estimation [76, 91],

control theory [25, 94], artificial intelligence [19, 73], and classic numerical methods [33,

105].

2.1 Motivation for Sensor Fusion

Before processing further, a worthwhile discussion would be about the motivation be-

hind sensor fusion research and why the great effort that has been put into finding robust

methods for fusing sensor data is natural.

Although the computer techniques have been developed so rapidly in the last few

decades and people have witnessed an explosion in the use of electronic data processing

with applications becoming ubiquitous, developing several important data processing ap-

plications, such as automatic navigation systems, is more difficult than foreseen. Systems

developed with well-defined data interfaces have access to the information they require.

Automatic navigation systems deal with the real world and unfortunately, the real world

is not well-defined. Thus automation systems need to be able to react to unforeseen sit-

uations. These systems use sensors as their interface to a changing and possibly hostile

environment.

Sensors are not reliable interfaces in their current form. Sensors are devices that collect

data about the world around them. They range from inexpensive cameras to earth obser-

vation satellites costing millions of dollars. In spite of this variety, all sensors have a few
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characteristics in common. Every sensor device has a limited accuracy, which is subject

to the effect of system noise, thermal noise, etc., and will function incorrectly under some

adverse conditions.

The ability of automation systems to interact with their environment has been severely

impeded by the state of current sensor technology. Sensors are currently not accurate nor

reliable enough for effective use in many automation applications.

Sensor fusion seeks to overcome the drawbacks mentioned above by making the most

of existing sensor technology. Using measurements from several independent sensors

makes a system less vulnerable to the failure of a single component. Combining measure-

ments from several different kinds of sensors can give a system more accurate information

than otherwise possible. Combining several measurements from the same sensor makes a

system less sensitive to noise because that in the measurements of the same environment

at different times the signal components are highly correlated while the noise components

are independent.

In addition to the advantages present in combing sensor measurements of the same

type, note that decision making often depends on several different aspects of the same

situation. Animals often rely on several different senses to make decision. Pit vipers locate

their prey by using their eyes and heat sensors located at the sides of their head. Consider

how many senses are used by a human being when eating. For automatic systems to react

reasonably to their environment they will often need to combine input from many separate

sources.

Another problem that sensor fusion attacks is information overload. A correct decision

is almost always a well informed and timely one. The amount of time needed to reach a

decision increases rapidly with the amount of information available. Sensor fusion is nec-

essary to combine information in a way that removes inconsistencies and presents clearly
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the best interpretation of measurements input from many individual sources. Through

sensor fusion, we can combine measurements from several different sensors in order to

combine different aspects of the environment into one coherent structure.

When done properly, sensor fusion combines input from many independent sources of

limited accuracy and reliability to give information of known accuracy and proven relia-

bility. In summary, the advantages of sensor fusion over single sensor processing are due

to the redundancy, diversity and complementarity among multiple sensors.

� Redundancy is caused by the use of multiple sensors to measure the same entity. It

is well known that redundancy reduces uncertainty. This can be appreciated from

the fact that for multiple sensors, the signal related to the measured quantity is often

correlated, whereas the uncertainty associated with each individual sensor tends to

be uncorrelated.

� If multiple sensors are of different nature, they measure the same scene with different

laws of physics, and we obtain physical sensor diversity. Another diversity, spatial

diversity, which offers different viewpoints of the sensed environment simply by

having sensors in different locations, also plays a very important role in multisensor

fusion.

� Multiple sensors observe a subset of the environment space, and the union of these

subsets makes up broader environment observation. In this way, we achieve data

complementarity.

2.2 Classification of Sensor Fusion Techniques

There are several criteria to categorize current sensor fusion techniques. These criteria

include types of sensor data, levels of representation, mathematical fusion algorithms and
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so on.

2.2.1 Classification by Types of Sensor Data

Sensor fusion may be performed on time series, redundant, and/or complementary sen-

sor data. Time series fusion, by far the most common, allows for filtering of noisy sensor

data and is commonly used in target tracking applications [10]. Redundant sensors acquire

data in parallel, and allow comparisons to be made among simultaneous measurements.

An example of this is the use of multiple ultrasonic range finders on a mobile robot for

obstacle detection and avoidance. Complementary sensor fusion incorporates information

about different physical aspects of the environment. Complementary sensor data is of-

ten used in recognition and world modeling tasks. This complementary case is of special

interest to the applications we deal with in this dissertation.

2.2.2 Classification by Levels of Representation

Applications of multisensor fusion may be characterized by the level of representation

given to data during the fusion process. Observational data may be combined, or fused,

at a variety of levels — signal, pixel, feature, and symbol levels. Note that these levels

of fusion are only a rough classification of representation possibilities, and in no way

can capture the subtlety of numerous applications. For instance, pixel-based images such

as those used in medical imaging may be treated as spatially discrete two-dimensional

non-causal signals. Despite the obvious pixel-based representation of these signals, the

mathematical techniques used to process and fuse these data are more closely related to

signal-based techniques [64].
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2.2.2.1 Signal-level fusion

Signal-level fusion refers to the combination of the signals of a group of sensors in

order to provide a signal that is usually of the same form as the original signals but of

greater quality. The signals from sensors can be modeled as random variables corrupted

by uncorrelated noise, and the fusion process can be considered as an estimation proce-

dure. As compared to the other types of fusion, signal-level fusion requires the greatest

degree of registration between the sensory information. The fusion requires both temporal

and spatial registration. The most common techniques for signal-level fusion consist of

weighted averaging and Kalman filtering.

Weighted averaging method takes a weighted average of the composite signals, where

the weights are determined by the estimated variances of the signals [20]. Kalman filter-

ing uses the statistical characteristics of a measurement model to recursively determine

estimates for the fused data [57].

2.2.2.2 Pixel-level fusion

Pixel-level fusion can be used to increase the information content associated with each

pixel in an image formed through a combination of multiple images, thus it may result

in more reliable segmentation and more discriminating features for further processing.

Pixel-level fusion may be performed on time series images obtained from a single sensor

or images obtained from multiple sensors which are measuring the same physical phe-

nomena such as multiple visual image sensors or acoustic sensors. The fused image can

be produced either through pixel-by-pixel fusion or through the fusion of associated local

neighborhood of pixels in each of the component image. Many of the general multisensor

fusion methods can be applied to the pixel-level fusion. Here we particularly point out

three useful method for fusion at the pixel level — logical filters, mathematical morphol-
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ogy, and simulated annealing.

Logical filtering is one of the most intuitive method of fusing the data from two pixels.

The choice of the logical operators is dependent on the fusion applications [3]. Mathe-

matical morphological method [31] in image analysis transforms each pixels of an image

through the use of a set of morphological operators. These operators are derived from

the basis operations of set union, intersection, difference, and their conditional combina-

tions. Lee employed binary morphology to fuse images from a pair of millimeter-wave

radars operating at different frequencies [63]. Simulated annealing is a relaxation-based

optimization technique. In image fusion applications, simulated annealing considers pixel

values and their neighborhood as states of atoms or molecules in a physical system. An

energy function is assigned to the physical system and determines its Gibbs distribution.

General temperature reductions in the energy function are utilized to relax or anneal the

physical system toward a global minimum energy state which corresponds to the maximum

a posterioriestimate of the true image given a corrupted observational image. Landa and

Scheff have applied simulated annealing for the pixel-level fusion of the images from two

cameras in order to estimate depth [61].

2.2.2.3 Feature-level fusion

If the sensors are measuring different physical phenomena, then the sensor data must

be fused at feature/symbol level. Using features to represent the sensory information not

only reduces the complex of the processing procedure but also increases the reliability

of the processing results. Feature-level fusion involves the extraction of representation

features from multiple sensor observations. These features are matched to corresponding

features in a symbolic world model. Typical features extracted from an image and used for

fusion include edges and regions of similar intensity. When multiple sensors have similar
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features at the same location, the likelihood that the features are actually present can be

significantly increased and thus fusion improves the processing accuracy.

Feature-level sensor fusion requires less stringent registration than signal- and pixel-

level fusion. Techniques proposed for feature-level fusion consist of tie statistic, and

Gauss-Markov estimation with constraints. When information from multiple sensors is

being used for classification and decision purposes, tie statistic provides a means of mea-

sure so that perceived features of the environment can be compared to known features [28].

The tie statistic allows an unknown sample probability density function to be quickly and

effectively classified. Pollardet al. proposed Gauss-Markov estimation together with ge-

ometric constraints for the feature-level fusion of multiple stereo views of a wireframe

model of an object [82]. A covariance matrix is used to store information concerning the

constraints and is used as a database for elementary geometric reasoning.

2.2.2.4 Symbol-level fusion

Symbol-level fusion can effectively integrated the information from multiple sensors

at the highest level of abstraction. Symbol-level fusion is commonly employed in the

applications where multiple sensors are of different nature or refer to different regions of

the environment. The symbols used for fusion can be derived from the processing of the

individual sensory information, or through symbolic reasoning processes that may make

use of prior knowledge from a world model or sources external to the system. In one of

the applications which will be addressed in the dissertation, the simultaneous detection of

lane and pavement boundaries, the prior knowledge of the lane and pavement boundaries is

that they are parallel concentric arcs under the flat earth assumption, while the likelihoods

indicate the likely presence of certain lane or pavement boundaries in the environment.

The most common type of symbol-level fusion application is pattern recognition. Fea-
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ture information is extracted from sensor data, defining a point in the feature space. This

point may be mapped to a symbolic interpretation of the world based on that symbol’s

neighborhood in the feature space. Such a neighborhood function may be defined by prob-

ability theory [101], Dempster-Shafer’s theory of evidence [88], fuzzy logic [51], neural

networks [108], or other means.

The prevailing techniques for symbol-level fusion include Bayesian (MaximumA Pos-

teriori) estimation, Dempster-Shafer evidential reasoning, and fuzzy set theory. Bayesian

estimation combines sensory information according to the rules of probability theory. This

multisensor fusion approach is the core method used in our work and will be discussed in

details in Chapter IX, I, and XI. Dempster-Shafer reasoning technique for sensor fusion

allows each sensor to contribute information at its own level of detail. Dempster-Shafer

evidential reasoning is an extension of the Bayesian approach. It makes explicit any lack of

information concerning a proposition’s probability by separating firm belief for the propo-

sition from just its plausibility. Valinet al. applied this technique for fusion of imaging

and non-imaging sensor information for airborne surveillance [100]. Fuzzy logic is a type

of multiple-valued logic. It allows the uncertainty in multisensor fusion to be directly rep-

resented in the fusion process by allowing each position, as well as the actual implication

operator, to be assigned a real number from 0.0 to 1.0 to indicate its degree of truth. Fuzzy

logic technique has been used to fuse information for an on-line and real time vehicle

detection system [46].

A comparison of fusion levels is given in Table 1, adapted from [67].

2.2.3 Classification by Mathematical Foundation

Independent of the level of representation used, a variety of popular mathematical

techniques for sensor fusion appear in the literature. These methods generally perform



1
9

Characteristics Signal-level Pixel-level Feature-level Symbol-level

Type of sensory infor-
mation

single or multi-
dimensional signals

multiple images features extracted
from signals/images

symbol representing
decision

Representation level
of information

low low to medium medium high

Model of Sensory In-
formation

random variable cor-
rupted by noise

stochastic process
on image or pixels
with multidimensional
attributes

geometrical form, ori-
entation, position, and
temporal extent of fea-
tures

symbol with associ-
ated uncertainty mea-
sure

Degree of registration
spatial: high high medium low
temporal: high medium medium low
Means of registration
spatial: sensor coalignment sensor coalignment,

shared optics
geometrical transfor-
mations

spatial attributes of
symbol, if necessary

temporal: synchronization or es-
timation

synchronization synchronization temporal attributes of
symbol, if necessary

Fusion method signal detection and
estimation

image estimation or
pixel attribute combi-
nation

geometrical and tem-
poral correspondence,
feature attribute com-
bination

logical and statistical
inference

improvement due to
fusion

reduction in expected
variance,improved de-
tection

increase in perfor-
mance of image
processing tasks

reduced processing,
richer, more accurate
feature data

increase in truth or
probability values

Table 2.1: Comparison of Fusion Levels
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a data-reduction mapping from multiple inputs to a smaller number of outputs. Inputs

may be raw sensor measurements, pixel values, extracted features, or signal estimators;

outputs may be estimated state, recognized objects or events, enhanced features, etc. An

important aspect of each technique is the way in which it models uncertainty in sensor

information. Since it is impossible to introduce all mathematical fusion techniques in this

dissertation, we just present two mathematical techniques that are related to our work —

Bayesian Inference and Dempster-Shafer Theory of Evidence.

2.2.3.1 Probability and Bayesian Inference Techniques

Probability theory, which measures the likelihood of an event, was first developed by

Blaise Pascal in the seventeenth century as a means of solving gambling problems. It

was later advanced by Thomas Bayes in the eighteenth century and by Pierre de Laplace

in the early nineteenth century. Probability-based inference techniques have withstood

mathematical scrutiny for hundreds of years, and are the foundation of most sensor fusion

applications.

The basic assumption of probability-based sensor fusion is that the uncertainly in sen-

sor information may be modeled by uncorrelated random noise. Decision and estimation

rules based on probability include mean-square error and maximuma posteriori(MAP),

which minimizes the probability of error, Bayes risk, which minimizes the probable cost

of error, and maximum likelihood, which estimates a parameter without assuming a prior

probability distribution for values of the parameter.

We will discuss this in Chapters VI and VII.

2.2.3.2 Dempster-Shafer Theory of Evidence

The theory of evidential combination was proposed by Dempster [21] and extended

by Shafer [88]. The theory models uncertainty as belief in one or more propositions or
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ignorance. The set of all possible mutually exclusive hypothesis is called the frame of

discernment,�. Let2� denote the set of all subsets of�. Thebasic probability assignment

(bpa) of a set, A, is a function, usually denoted bym, which assigns an evidential weight

to the set, such that

� m(�) = 0, where� is the empty set.

� PA��m(A) = 1.

Let A � �. A is assigned a bpa representing a proposition’s ignorance of which

hypothesis is correct. This representation of evidential weight is what makes Dempster-

Shafer reasoning different from probability. For instance, letH1; H2; � � � ; Hn ben exclu-

sive hypothesis. In probability theory, the probabilities ofH1; H2; � � � ; Hn sum to one, that

is,
nX
i=1

Pr(Hi) = 1 (2.1)

In the Dempster-Shafer Theory, the bpa belief mass forH1; H2; � � � ; Hn may sum to less

than one:
nX
i=1

m(Hi) � 1 (2.2)

where, instead,
nX
i=1

m(Hi) +m(A) = 1 (2.3)

whereA � �.

SubsetsA � � with m(A) > 0 are called thefocal elements of m. Two bpa’sm1

andm2 can be combined using Dempster’s rule [21] and evidence gathering accumulates

belief in each hypothesis set A is obtained:

m(A) =

P
A1\A2=A

m1(A1)m2(A2)P
A1\A2 6=�

m1(A1)m2(A2)
(2.4)
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The belief of a hypothesis setHk is defined as

bel(Hk) =
X
A�Hk

m(A) (2.5)

The plausibility of the hypothesis setHk is defined as

pls(Hk) = 1� bel(� Hk) (2.6)

where� Hk denotes the complementary hypothesis ofHk.

As evidence is gathered, the rule of combination increases the belief and plausibility of

those hypotheses supported by the evidence, and decreases the bpa of the ignorance factor.

(If no weight is assigned to ignorance, Dempster’s rule of combination reduces to basic

probability theory.) It is intuitively appealing to model ignorance in this way, especially

when evidence is supplied from human experts.

An illustration of the Dempster-Shafer theory applied to target detection is given by

Leeet al. [65]. Murphy discusses Dempster-Shafer theory in terms of its utility for sen-

sor fusion for autonomous mobile robots [77]. In more quantitative applications, Lee and

Leahy [64] compare the use of Dempster-Shafer, MAP, and maximum likelihood algo-

rithms for multi-sensor image segmentation problems, showing a marginal improvement

in the results of the Dempster-Shafer implementations over MAP. (ML ignores the prior

information introduced by a Markov Random Field used in the other methods and, there-

fore, resulted in a much higher misclassification rate.)

However, Cheeseman [12] argues that these features can be provided equally well by

Bayesian techniques. For instance, it is possible to measure the probability of error in

a probability estimation; this value decreases with the addition of evidence just as the

Dempster-Shafer “ignorance” value does. Given the strong mathematical history of prob-

ability theory, Dempster-Shafer reasoning remains controversial, but it has nevertheless

enabled some significant applications of data fusion in uncertainty.



CHAPTER III

Minimum Spanning Tree and Rényi Entropy

3.1 Minimum Spanning Tree

Discrete points distributed in space can be characterized using a representational net-

work called its minimum spanning tree (MST). This MST technique aims to quantify

spatial dot patterns by revealing hidden nearest-neighbor correlations. The MST approach

has recently been applied in several research areas, such as VLSI circuit layout and net-

work provisioning [44, 84], two sample matching [29], pattern recognition [15], cluster-

ing [81, 107], nonparametric regression [5], and testing for randomness [41].

Given a setXn = fX1; X2; : : : ; Xng of n points inIRd, a spanning treeT is a connected

acyclic graph which passes through all coordinates associated with the point setXn (see

Figure 3.1.1 for an illustration of a spanning tree).T is specified by an ordered list of

edgeseij connecting certain pairs(Xi; Xj), i 6= j, along with a list of edge adjacency

relations. The edgeseij connect alln points such that there are no paths in the graph that

lead back to any given point.

For a given edge weight exponent
 2 (0; d), the power weighted lengthLT (Xn) of a

specified treeT is the sum of all edge lengths raised to power
,

LT (Xn) =
X
eij2T

jeijj
 : (3.1)

23
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Figure 3.1.1: An MST example

The minimum spanning treeT � is the spanning tree which minimizes the total edge weight

LT (Xn) of the graph among all possible spanning trees over the given vertices, i.e., the

power weighted lengthL�(Xn) of the minimum spanning treeT � is

L�(Xn) =
X
eij2T �

jeijj
 = min
T

LT (Xn) (3.2)

The tree shown in Figure 3.1.1 is indeed a minimum spanning tree over the given vertices.

It is evident that the MST representation of a point process is naturally translation and

rotation invariant. This invariance is important for image processing applications where

patterns of interest may be articulated at arbitrary orientation and spatial positions, e.g.,

as occurs in automated pattern matching, radar target detection, and industrial inspection.

The MST can be constructed in time polynomial inn, the number of vertices.

For any subsetXn;k of k (0 < k � n) points inXn we define thek-point MST, denoted

asTXn;k , which spansXn;k. For fixedk, the elements of the subsetXn;k are distinct and

there are
�
n
k

�
possiblek-point subsets ofXn. In Figure 3.1.2 we give two examples of

k-point MST’s over different subsets of the original point set. Figure 3.1.2(a) shows thek-

point MST on the subsetXn;k = fX3; X4; X5; X6; X7; X8g, while Figure 3.1.2(b) shows
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the k-point MST on the subsetX 0
n;k = fX1; X2; X4; X5; X6; X7g. These two examples

show that for different subsets, the resultantk-point MST’s have different lengths. The

k-point MST in Figure 3.1.2(a) has the minimal length among all possiblek-point MST’s

and thek-point MST in Figure 3.1.2(b) has the maximal length.

The minimumk-point spanning tree (k-MST ) is defined as thatk-point MST which

has minimal length. Thus thek-MST spans a subsetX �
n;k defined by

L(X �
n;k) = min

Xn;k
L�(Xn;k): (3.3)

Thek-point MST shown in Figure 3.1.2(a) is actually thek-MST for n = 8 andk = 6.

3.2 Limit Theorem and Rate of Convergence for MST Length Func-
tionals

3.2.1 Limit Theorem for MST Length Functionals

Given a setXn = fX1; X2; : : : ; Xng of n points in IRd, Steele has proved that the

length of the MST overXn has the following asymptotic property [96]

lim
n!1

L(Xn)

n
d�

d

= �


Z
(f(x))

d�

d dx (a:s:) (3.4)

where�
 is a constant which only depends on the edge weight exponent
. In particular,

�
 is independent of the distribution of theXi’s.

3.2.2 Rate of Convergence for MST Length Functionals on Uniform Samples

In [86] Redmond and Yukich derived the rate of convergence for MST length function-

alsL for independent identically distributed (i.i.d.) uniform random vectorsU1; : : : ; Un in

[0; 1]d for 
 = 1. Their result for the rate of convergence is given in the following theorem.

Theorem 3.2.1 Given a setUn = fU1; U2; : : : ; Ung of n points in[0; 1]d with the uniform

distribution, the convergence rate for the MST length functionalL is as follows:
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(a) k-point MST spanning over a subsetXn;k =

fX3; X4; X5; X6; X7; X8g
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Figure 3.1.2: Examples fork-point MST’s
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(a) if d � 3, ���E[L(U1; : : : ; Un)]� �1n
d�1
d

��� = O(n
d�2
d ) (3.5)

(b) if d = 2, ���E[L(U1; : : : ; Un)]� �1n
1
2

��� = O(1) (3.6)

3.2.3 Rate of Convergence for MST Length Functionals on Non-uniform Samples

In our work, we have derived a theorem establishing convergence rates for the MST

length functionalL for i.i.d. but non-uniform random vectorsX1; X2; : : : ; Xn in [0; 1]d.

Our derivations closely follow the method that Redmond and Yukich have employed

in [86]. Here we give the description of the results and some remarks. Please see Ap-

pendix for the proof of the following theorem.

Theorem 3.2.2 LetXn = fX1; X2; : : : ; Xng be a set ofn i.i.d. realizations from the pdf

f(x) in [0; 1]d. Assume that for� 2 (0; 1), f � is of bounded variation over[0; 1]d and letv1

be the total variation off
d�1
d andv2 the total variation off

d�2
d over [0; 1]d. Also assume

that
R
fx:f(x)>0g

f�
1
d (x) dx < 1 LetQm = fQigmd

i=1 be a uniform partition of[0; 1]d into

md subcubesQi with edges parallel to the axes and with edge lengthm�1. Then for fixed

resolution factorm, the convergence rate of the MST length functional overXn is

����EL(X1; : : : ; Xn)

n
d�1
d

� �1

Z
f

d�1
d (x)dx

����
� K1n

� 1
dm

Z
f

d�2
d (x)dx +K2n

� d�1
d md�1 +K1n

� 1
dm�d+1

mdX
i=1

v2(Qi)

+�1m
�d

mdX
i=1

v1(Qi) + o
�
n�

d�1
d

�
(3.7)

whereK1; K2; and�1 are constants. Namely,K1 andK2 are dependent on the subaddi-

tivity, superadditivity and continuity constants of the MST length functional (see Appendix
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for the definition of these constants), and�1 is the asymptote of the MST length functional

for i.i.d. uniform random vectorsUn = fU1; U2; : : : ; Ung in [0; 1]d,

lim
n!1

L(Un)
n

d�1
d

= �1 (a:s:) (3.8)

Remarks:

The right hand side (RHS) of (3.9) can be rewritten in terms of the ration
md , equal to

the number of points per cell, and (3.7) becomes

����EL(X1; : : : ; Xn)

n
d�1
d

� �1

Z
f

d�1
d (x)dx

����
� K1

�
1

n=md

� 1
d
Z

f
d�2
d (x)dx +K2

�
1

n=md

� d�1
d

+K1

�
1

n=md

� 1
d

0
@m�d

mdX
i=1

v2(Qi)

1
A+ �1

0
@m�d

mdX
i=1

v1(Qi)

1
A+ o

�
1

n=md

� d�1
d

(3.9)

Thus the approximation error on the left hand side (LHS) of (3.9) converges to zero as

n=md ! 1, andn;m ! 1. For d > 2, the dominant term in the convergence rate is

the first term on RHS of (3.7) which converges to zero at raten�
1
d and with rate constant

equal to the R´enyi entropy of orderd�2
d

of f plus a termK1

�
m�d

Pmd

i=1 v2(Qi)
�

which

decreases inm. Whenm is fixed, there is an irreducible error (last term of RHS of (3.9))

which is proportional to the total variationv1(Qi) of f
d�1
d over the cells of volumem�d.

This error can be interpreted as the bias of the MST R´enyi entropy estimator when a greedy

approximation algorithm is used to construct the MST over each cell and the MST’s are

patched together. Thus the bound (3.9) illustrates the nature of the fundamental bias-

variance tradeoff in the MST entropy estimator: for increasing number of cells the bias

term on RHS in (3.9) decreases but the other terms in this expression increase unlessn is
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also increased. Hence these other terms can be viewed as variance terms. These variance

terms are the factors 1
n=md to various powers multiplied by bounded quantities.

� The convergence rate can be considered for two cases:

① Whend = 2,

����EL(X1; : : : ; Xn)

n
1
2

� �1

Z
f

1
2 (x) dx

���� � (K1 +K2)n
� 1

2m

+�1m
�2

m2X
i=1

v1(Qi) +K1n
� 1

2m�1

m2X
i=1

v2(Qi) + o

�
1p
n

�
(3.10)

② Whend > 2,

����EL(X1; : : : ; Xn)

n
d�1
d

� �1

Z
f

d�1
d (x)dx

����
� K1n

� 1
dm

Z
f

d�2
d (x)dx+K2n

� d�1
d md�1 +K1n

� 1
dm�d+1

mdX
i=1

v2(Qi)

+�1m
�d

mdX
i=1

v1(Qi) + o
�
n�

d�1
d

�
(3.11)

� In both casesd = 2 andd � 2, if m is sufficiently large so that the underlying

densityf is close to piecewise constant, the total variationsv1 andv2 of f
d�1
d and

f
d�2
d will be small compared to the first terms in the right hand side of (3.10) and

(3.11). That is, the error between the expectation of the MST length functional and

its asymptote is reduced at the ratesn�
1
2 for d = 2 andn�

d�1
d for d > 2.

3.3 Rényi Entropy and Rényi Information Divergence

Rényi entropy [87] is a more general entropy than Shannon entropy. The R´enyi entropy

H�(f), also called the�-entropy, for a continuous pdff is defined as

H�(f) =
1

1� �
log

Z
f�(x) dx; (3.12)
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for 0 < � <1; � 6= 1. The parameter� is called information order.

The Shannon entropy function

H(f) = �
Z

f(x) log f(x) dx (3.13)

is the limiting case of R´enyi entropy when the order� approaches 1, namely,

H(f) = lim
�!1

H�(f): (3.14)

If we take the limit of (3.12) as� ! 0, we obtain the logarithm of the volume of the

support set,

H0(f) = log(�fx : f(x) > 0g): (3.15)

Thus the zeroth order R´enyi entropy gives the measure of the support set of the densityf .

Rényi information divergence is a distance measure between densities. Given a test

densityf and a reference densityf0, the order� Rényi information divergence off and

the reference densityf0 is defined as

I�(f; f0) = � 1

1� �
log

Z �
f(x)

f0(x)

��

f0(x)dx (3.16)

For any order�, the information divergence takes on its minimum value (equals zero) if

and only iff = f0 (a.e.).I�(f; f0) reduces to the R´enyi entropyH�(f) whenf0 is equal

to a uniform density over[0; 1]d. There are two special cases of interest for the order�.

For� = 1
2

the Rényi information divergence becomes the log Hellinger distance squared

where the Hellinger distance is defined by

dH(f; f0) =
1

2

Z �p
f(x)�

p
f0(x)

�2
dx (3.17)

For� ! 1, the Rényi information divergence approaches the Kullback-Liebler diver-

gence,

D(fkf0) =
Z

f(x) log
f(x)

f0(x)
dx (3.18)
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Since Rényi introduced this generalized entropy and information divergence in the

early sixties, the R´enyi entropies and information divergences have been successfully used

in the information theory and statistics [6, 58].

There is one critical property for fractional order R´enyi entropies and information di-

vergences. For� 2 (0; 1), the order� Rényi information divergence always exists. This

is a desirable property for a distance measure between two densities. In our image regis-

tration application, we shall take the advantage of R´enyi entropies of fractional orders.

3.4 Estimation of Rényi Entropy with MST

SupposeXn = fX1; X2; : : : ; Xng is a random sample from the continuous densityf ,

andL�(Xn) denotes the power weighted length of the minimum spanning tree overXn

(3.1). Let� = d�

d

. By the asymptotic property of the MST length functional (3.4), we

obtain an estimator of R´enyi entropy from the total edge weight of the MST,

Ĥ�(f) =
1

1� �

�
log

L�(Xn)

n�
� log�


�
(3.19)

It follows directly from the result of [96] that the estimatêH� using MST length is a

strongly consistent estimator ofH�.

Figures 3.4.3 and 3.4.5 are an example which illustrates the use of minimum spanning

trees as entropy discriminant between two different distributions. First let us define a torus

density as

f(x) = c exp

�
�1

2
625 (k x� [0:5 0:5] k �0:25)2

�
(3.20)

wherec is a normalizing constant,kxk =
p
x21 + x22 for x = (x1; x2). The constant

contours of this density are circles for which the maximum contour is a circle of radius

0.25 and center[0:5; 0:5]. The other contours specify an annulus.
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We study two different distributions on the unit square[0; 1]2. The results are shown

in Figure 3.4.3. The left column corresponds to a uniform density while the right column

corresponds to a torus density specified as (3.20). In Figures 3.4.3(a) and (b) we plot single

realizations of 100 random samples from the uniform and torus densities, respectively.

Figures 3.4.3(c) and (d) are the corresponding MST’s for these realizations. Note that

for these realizations the overall length of MST for the uniform sample points is larger

than that of the more concentrated torus sample points. According to our calculation, the

total length of the MST spanning the uniform samples demonstrated in Figure 3.4.3(a)

is 6.61, while the total length of the MST spanning the torus samples demonstrated in

Figure 3.4.3(b) is 3.19.

The mean length of the MST versus the number of sample points for each of the dis-

tributions is shown in Figures 3.4.4(a) and (b), computed on the basis of a large number of

independent simulations of the two densities. The x-axis stands for the number of sample

points generated from the uniform or torus density, and the y-axis stands for the mean

value of the total length of the MST spanning the sample points.

Let n denote the number of sample points generated from a certain density. Note that

for largen the mean length curves appear to increase with sub-linear rates and the rate con-

stants depend on the underlying distribution of the random samples. Figure 3.4.5(a) shows

the direct comparison of these two mean length curves as a function ofn. Figure 3.4.5(b)

shows the length curves normalized by
p
n and transformed by2 log(�). It is observed that

for both the uniform and the torus distributions the normalized and transformed length of

the MST converges to two different constant levels. Furthermore, the asymptote for the

uniform distribution is larger than that for the torus distribution. In fact, as was remarked

in Hero and Michel [39], the difference between the asymptotes is equal to the difference

between the R´enyi entropies of order1=2 of the respective distributions.
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(a) Random sample from uniform density
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(b) Random sample from torus density
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(c) MST over uniform sample
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(d) MST over torus sample

Figure 3.4.3: 2D uniform and torus sample example
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(b) Mean MST length for torus samples

Figure 3.4.4: Mean MST length for uniform and torus samples
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Figure 3.4.5: Comparison of the MST length of uniform and torus samples
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This example illustrates that the MST provides a consistent estimator of R´enyi en-

tropy (3.19).

3.5 Robustification of Ŕenyi Entropy Estimator by k-MST

Now suppose thatXn is a random sample from a contaminated density

f = (1� �)fs + �fn; 0 � � < 1 (3.21)

wherefs is the density of interest (generating the signal) andfn is the noise density (gen-

erating noise or outliers). Letfs be the torus density specified by (3.20). In Figure 3.5.6

we show that the MST is sensitive to outlier contamination. Figure 3.5.6(a) shows 70

samples realized from the signal densityfs. The MST through the 70 samples is plotted

in Figure 3.5.6(c). Figure 3.5.6(b) shows the sum of the 70 signal samples fromfs and

30 uniformly distributed noise samples over[0; 1]2. The MST through this contaminated

signal is plotted in Figure 3.5.6(d). The MST in Figure 3.5.6(c) captures the shape of the

uncontaminated torus density, and thus its length could be used to provide a reliable R´enyi

entropy estimator. But the MST in Figure 3.5.6(d) is severely influenced by the contam-

ination of the noise and the MST length can only give erroneous entropy estimate. Thus

the MST length function is not robust to noise.

A solution to this lack of robustness is to utilize thek-MST technique to eliminate the

outliers and then apply the MST entropy estimator.

For a uniform distributed noise, the noise tends to produce points that are further away

from their “nearest neighbors” than points fromfs. Let k = (1 � �)n. Then thek-MST

will span most signal points and get rid of noise points (Figure 3.5.7). Figure 3.5.7(a)

shows thek-MST over the contaminated samples withk = 30. The points which are not

spanned by thek-MST are considered as outliers, and in this way we have successfully
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(d) MST over contaminated samples

Figure 3.5.6: Signal, contaminated signal, and their corresponding MST’s
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removed the noise points (Figure 3.5.7(b)) and thek-MST achieves robustness to uniform

noise [39, 40].
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(a)k-MST over contaminated signal
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(b) After removing outliers

Figure 3.5.7: Usek-MST to remove outliers

In most cases,� is unknown. If we remove less points than necessary, the outliers

will still affect the construction of MST; however, if we remove too many more points

than necessary, some signal points will be eliminated and thus the resulting MST will

become vulnerable. The key to a practicalk-MST robustification algorithm is to accurately

estimate the appropriate number of points we want to reject.

Consider thek-MST lengthL(X �
n;k) with respect to the number of rejected points

n � k. In Figure 3.5.8 thek-MST length is plotted for realizations of two distributions.

Figure 3.5.8(a) corresponds to the uniform distribution over[0; 1]2 and Figure 3.5.8(b)

corresponds to signal samples generated from the torus distribution contaminated by the

uniform noise. It is evident that thek-MST length curve for uniform sample (shown in

Figure 3.5.8(a)) decreases linearly asn � k increases, i.e., ask decreases. It has been

proved that the meank-MST length curve for uniform density is linear with respect to the
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number of rejected pointsn � k [38]. On the other hand, thek-MST length curve for

the contaminated sample from the torus density (Figure 3.5.8(b)) appears to be separated

into two segments such that the left segment is close to be linear. The break point is

approximatelyn� k = 30.
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(a) k-MST length vs. number of rejected points
for uniform samples
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(b) k-MST length vs. number of rejected points
for contaminated samples

Figure 3.5.8:k-MST length vs. number of rejected points

The estimate of the break point can be implemented by approximating thek-MST
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length curve by two piecewise linear curves. The least mean squared error measure is

served as the stopping criterion. The intersection of the two linear curves is the estimate of

the break point. With this method, we are able to identify the best estimate�̂ of �. In this

example,̂� = 0:22. Let k̂ = (1� �̂)n. The correspondinĝk-MST is shown in Figure 3.5.9.

From the figure we notice that the remaining samples can characterize the signal density

fs. Therefore the lengthL(X �
n;k̂

) of the k̂-MST gives a provably robust estimate of the

Rényi entropy offs when used in (3.19) withn replaced bŷk .
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Figure 3.5.9: Usek-MST to remove outliers

Hero and Michel [39] proposed a greedy approximatek-MST construction method and

proved that thek-MST length indeed provides a robust entropy estimator for noisy signals.

We shall describe their greedy algorithms and the limit theorem in the next section.
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3.6 Limit Theorem of k-MST greedy approximation

Since the computation of the exact minimalk-MST has a complexity which is ex-

ponential in the number of pointsn, several researchers have proposed polynomial-time

approximations and have investigated the approximations’ asymptotic properties [85, 39].

Hero and Michel give a generalized approximation algorithm constructing graphs ind di-

mensions,d > 1, in [39]. Suppose that the point samples are drawn from distributions

with support[0; 1]d. Their generalized algorithm is described in the following.

The greedy approximation algorithm is divided into three steps:

① Uniformly partition[0; 1]d intomd cellsQi of resolution1=m. LetQm = fQigmd

i=1.

② Find the smallest subsetBm
k = [iQi of partition elements containing at leastk

points.

③ Select thek pointsXn;k out of the smallest subset such thatL(Xn;k) is minimized.

Step 3 requires finding ak-point minimal graph on a much reduced set of points, which

is typically only slightly larger thank if m is suitably chosen. And hence this greedy

approximation algorithm can be performed in polynomial time.

Define� = k=n. Let �(Qm) be the sigma algebra ofQm. If for any C 2 �(Qm)

satisfyingP (C) � � the setA 2 �(Qm) has the following characteristic

P (C) � P (A) � �; (3.22)

thenA is called aminimal resolution-1=m set of probability at least�. The class of all

such sets is denotedAm
� . Hero and Michel have proved the following theorem in [39].

Theorem 3.6.1 LetXn be an i.i.d. sample from a distribution having densityf(x). Fix

� 2 [0; 1]; 
 2 (0; d). Letf
d�

d be of bounded variation over[0; 1]d and denote byv(A) its
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total variation over a subsetA � [0; 1]d. Then, the total edge weightL(XGm
n;k ) of ak-point

graph constructed by the resolution-1=m greedy algorithm satisfies

lim sup
n!1

�����L(X
Gm
n;k )

n
d�

d

� �


Z
Am
�

f
d�

d (x) dx

����� < Æ; (3.23)

whereAm
� 2 Am

� is any minimal resolution-1=m set of probability at least�,

Æ = 2m�d�


mdX
i=1

v(Qi \ @Am
� ) + C3(pAm

�
� �)

d�

d

= O(m
�d) (3.24)

For any Borel setA in [0; 1]d havingP (A) > 0 define the conditional density

f(xjA) = f(x)

P (A)
IA(x)

whereIA(x) is the indicator function ofA. The Rényi entropy off(xjA) of order� 2

(0; 1) is defined as

H�(f jA) = 1

1� �
log

Z
f�(xjA) dx: (3.25)

This is called the conditional R´enyi entropy givenA. LetA0 be the probability-at-least-�

Borel subset of[0; 1]d which minimizesH�(f jA),

H�(f jA0) = inf
fA2B:P (A)��g

H�(f jA) (3.26)

Define the following function ofL(XGm
n;b�nc)

Ĥ�
4
=

1

1� �

 
log

L(XGm
n;b�nc)

(b�nc)� � log �


!
(3.27)

Then an immediate consequence of Theorem 3.6.1 is the following theorem.

Theorem 3.6.2 Under the assumptions of Theorem 3.6.1Ĥ� is a strongly consistent es-

timator of the minimum conditional Rényi entropyH�(f jA0) of order � 2 (0; 1) as

m;n!1.



CHAPTER IV

Image Registration Via Graph Matching

4.1 Image Registration Concepts and Formulation

Image registration refers to the process of aligning images so that their details over-

lap accurately. The images might be acquired at different times, from different viewing

angles, or with different sensors. An example of multidate image registration is shown in

Figure 4.1.1. Two imagesI1 andI0 (Figures 4.1.1(a) and (b)) are obtained in the Mojave

desert at different times and with different viewing angles. CallI1 as the test image andI0

as the reference image. The registration result is achieved by rotating and translating the

test imageI1 to align with the reference imageI0 (see Figure 4.1.1(c)).

Images are usually registered for the purpose of combining or comparing them. There-

fore image registration is a vital first step in many image sequence analysis applications,

e.g., fusing multiple sensor data. Actually image registration can be regarded as a special

case of image fusion.

The need to register images has arisen in many practical problems in diverse fields:

� integrating information taken from different sensors,

� finding changes in images taken at different times or under different conditions,

� inferring three-dimensional information from images in which either the sensor or

42
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(a) ImageI1 (b) ImageI0

(c) Registration result

Figure 4.1.1: A multidate image registration example
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the objects in the scene have moved, and

� for model-based object recognition.

Registering two images always involves an operation that changes the locations and

intensities of pixels in one image to line up with corresponding pixels in the other image.

Image registration can be defined as a mapping between two images both spatially and

with respect to intensity.

If we consider the images to be registered as two-dimensional arrays denoted byI1 and

I0 where(x; y) are the coordinates of pixels andI1(x; y) andI0(x; y) each map to their

respective intensity (or other measurement) values, then the mapping between images can

be expressed as

I0(x; y) = g(I1(f(x; y))) (4.1)

wheref is a two-dimensional spatial-coordinate transformation, i.e.,f is a transformation

which maps two spatial coordinates,x andy, to new spatial coordinatesx0 andy0,

(x0; y0) = f(x; y) (4.2)

and g is a one-dimensional intensity transformation.

The intensity transformation is not always necessary, and often a simple lookup table

determined by sensor calibration techniques is sufficient. For this reason we will ignore

the intensity transformation in our work. Finding the parameters of the optimal spatial

or geometric transformation is generally the key to any registration problem. The types

of spatial transformation can range from a simple rigid transformation, containing only

translations and rotations, to a fully elastic transformation, which locally deforms one

image to fit the other.

Currently, the most common approach to registration is to extract a few outstanding

characteristics of the data, which are calledcontrol points, tie-points, or reference points.
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The control points in both images are matched in pairs and used to compute the parameters

of a geometric transformation. Most available systems follow this registration approach,

and because automated procedures do not always offer the needed reliability and accuracy,

current systems assume some interactive choice of the control points. But such a point

selection represents a repetitive, labor- and time-intensive task which becomes prohibitive

for large amounts of data. Also, since the interactive choice of control points in some

images, such as satellite images, is quite difficult, too few points, inaccurate points, or ill-

distributed points might be chosen thus leading to large registration errors. And with the

increase in the number of images collected every day from different sensors, automated

registration of images has become a very important issue.

The aim of automatic registration is to estimate the geometric transformation in a

manner robust to the local changes in the scene without human-machine interactive ac-

tivities. In the past years, automatic image registration is broadly studied in computer

vision [16, 79], remote sensing [74, 99], stereo vision [26, 45], and biomedical image

analysis [9, 80].

Image registration methods vary depending on the choice of the following three com-

ponents:

① Feature spaceF

The feature space contains the representation information in the images that will be

used for matching.

② Search spaceT

The search space is the class of transformations that is capable of aligning the im-

ages.

③ Dissimilarity metric d
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The dissimilarity metric describes the relative merit for each test. The minimal

dissimilarity metric gives the optimal registration result.

Given the test imageI1 and the reference imageI0, F1 andF0 are feature vectors

extracted from ImagesI1 and I0, respectively. For certain transformationT 2 T , we

define the dissimilarity metric as the distance between the reference feature vectorsF0 and

the transformed test feature vectorsF1,

dT (I1; I0) = dist(T (F1); F0):

Under this framework, the problem of image registration becomes the problem of

searching the optimal mappingT � such that

T � = argmin
T2T

dT (I1; I0)

Image registration may be broken into 3 distinct steps:

� extraction of alignment match features in both images,

� computation of the dissimilarity metric values between the transformed feature vec-

tors and the reference feature vectors, and

� finding the optimal transformation which corresponds to the minimum dissimilarity

metric value, and applying the mapping to move each image pixel from its current

position to the corrected position.

A wide range of registration techniques has been developed for many different types

of applications and data, such as mean squared alignment [42], Fourier descriptor match-

ing [13], correlation registration [43], moment invariant matching [18], maximizing mu-

tual information [17, 103] and others. Basically, each method exploits different image

features of the object such as boundaries, moments or texture, which are extracted from
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the image, and uses them to solve the matching problem. Among these methods, the mu-

tual information-based registration method has been broadly investigated in recent years

and has yielded excellent experimental results. We will discuss this method in detail in the

next section.

4.2 Image Registration Via Maximizing Mutual Information

In 1995, Viola et al. [103] and Collignon et al. [17] independently proposed to register

images by maximizing the mutual information (MI) between the images. In this approach,

mutual information serves as a similarity metric in the registration process. In order to be

consistent with the registration formulation in the previous section, we define the dissimi-

larity metric to be the negative of the mutual information of the images.

Since 1995, several separate studies have established the effectiveness of mutual infor-

mation based medical image registration [72, 80, 90, 104]. At present, mutual information

is accepted by many as one of the most accurate and robust retrospective registration mea-

sures.

Mutual information is a basic concept from information theory, measuring the statis-

tical dependence between two random variables or the amount of information that one

variable contains about the other.

Given two random variables,X andY , with marginal probability density functions,

fX(x) andfY (y), and joint probability density function,fXY (x; y). Mutual information,

I(X; Y ), measures the degree of dependence ofX andY by measuring the distance be-

tween the joint distributionfXY (x; y) and the distribution associated to the case of com-

plete independencefX(x) � fY (y), by means of the Kullback-Leibler measure, i.e.,

I(X; Y ) =

Z Z
fXY (x; y) log

fXY (x; y)

fX(x)fY (y)
dx dy (4.3)



48

Mutual information is related to entropy by the equations

I(X; Y ) = H(X) +H(Y )�H(X; Y ) (4.4)

= H(X)�H(XjY ) (4.5)

= H(Y )�H(Y jX) (4.6)

with H(X) andH(Y ) being the entropy ofX andY , respectively,H(X; Y ) their joint

entropy, andH(XjY ) andH(Y jX) the conditional entropy ofX givenY and ofY given

X, respectively

H(X) = �
Z Z

fX(x) log fX(x) dx (4.7)

H(X; Y ) = �
Z Z

fXY (x; y) log fXY (x; y) dx dy (4.8)

H(XjY ) = �
Z Z

fXY (x; y) log fXjY (xjy) dx dy: (4.9)

The entropyH(X) is known to be a measure of the amount of uncertainty about ran-

dom variableX, whileH(XjY ) is the amount of uncertainty left inX when knowingY .

Hence, from (4.5),I(X; Y ) is the reduction in the uncertainty of the random variableX by

the knowledge of another random variableY , or, equivalently, the amount of information

thatY contains aboutX.

In order to apply the concept of mutual information to image registration, let us con-

sider the image intensity values,x and y, of a pair of corresponding pixels in the two

image that are to be registered to be random variablesX andY , respectively. Then esti-

mates for the joint and marginal distributionsfXY (x; y); fX(x); andfY (y) can be obtained

by applying any of a number of density estimation algorithms. Collignon et al. employed

histogrammethods to estimate the densities [17], that is, the density estimate is obtained

by normalization of the joint and marginal histograms of the two grey scale images. Viola

et al. appliedParzen windowmethods to estimate the densities from samples. Namely,
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they approximated the underlying density forX by a superposition of Gaussian densities

(called a Gaussian mixture) centered on the elements of a sampleA drawn fromX:

fX(x) � 1

NA

X
xi2A

G�(x� xi); (4.10)

where

G�(x) =
1p
2�

exp

�
� x2

2�2

�
(4.11)

is a Gaussian distribution with variance�2.

After the underlying joint and marginal densities are estimated, the mutual information

between a pair of images can be easily calculated using numerical or analytical integration

techniques. The mutual information registration criterion states that the mutual informa-

tion of the image intensity values of corresponding pixel pairs is maximal if the images

are geometrically aligned. Suppose we want to register two images,I1 andI0. The mu-

tual information based registration algorithm declares that the images are geometrically

aligned by the transformationT � for which I(T �I1; I0) is maximal among all possible

transformations.

Because no limiting constraints are imposed on the nature of the relation between the

intensities in the images to be registered and no assumptions are required regarding im-

age content, e.g., image parameterization, nor the imaging modalities involved, the mutual

information criterion is very general and powerful. It allows for robust and completely au-

tomated registration of multi-modal images without prior segmentation, feature extraction

or other preprocessing steps.

4.3 Minimum Rényi Entropy Criterion

Although the mutual information approach is very powerful, it has a drawback —

in order to calculate the mutual information of the images to be registered, we have to
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estimate the underlying probability density functions of their intensities. As mentioned

above, Viola et al. [103] estimated the underlying joint and marginal densities with the

Parzen window method, while Collignon et al. [17] employed histogram method to ob-

tain the estimated densities. Unfortunately, current probability density function estimation

algorithms, including both Parzen window and histogram methods, are computationally

intensive or unreliable, especially for few data samples. The accumulation of the errors in

the density estimation process might lead to completely wrong registration.

Aware of this fact and motivated by this information-theoretic approach, we propose

a novel image registration method based on the joint R´enyi entropy of the images. If

two images are perfectly aligned, which means that the two images are identical, the joint

Rényi entropy of the overlapping images is the same as the R´enyi entropy of any one of

them. If the two images are not aligned, the union of the two images certainly has a higher

entropy than any one of the two images. Therefore, if the two images are perfectly aligned,

the joint Rényi entropy of the overlapping images is smaller than that of the overlapping

misaligned images, i.e., the overlapping aligned images have the minimum R´enyi entropy.

In the following we give mathematical justification of legitimacy of minimizing the

joint Rényi entropy over transformations of the test images. The first result is concavity.

Theorem 4.3.1 The Ŕenyi entropy of fractional order,

H�(f) =
1

1� �
log

Z
f�(x)dx; � 2 (0; 1); (4.12)

is a concave function, i.e., for any two densitiesf0 andf1, and8 � 2 [0; 1], we have

H�(�f0 + (1� �)f1) � �H�(f0) + (1� �)H�(f1) (4.13)

and equality holds if and only iff0 = f1 a.e..
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Proof: First we show that the functiong(y) = y�; y � 0, is a concave function. Its

second derivative is

d2g

dy2
= �(�� 1)y��2: (4.14)

Since� 2 (0; 1), � � 1 < 0. And y � 0, thus d2g
dy2

� 0. As g(y) for y � 0 is concave, for

two pdf’sf0 andf1 the following inequality holds

[�f0(x) + (1� �)f1(x)]
� � �f�0 (x) + (1� �)f�1 (x): (4.15)

Integrating both sides of (4.15) overx, we have

Z
[�f0(x) + (1� �)f1(x)]

� dx � �

Z
f�0 (x) dx+ (1� �)

Z
f�1 (x) dx: (4.16)

Define functionh(y) = 1
1��

log y; for y > 0. It is a concave function, too. The

concavity is immediately justified with the fact

d2h

dy2
= � 1

1� �

1

y2
< 0:

That is,

1

1� �
log[�y0 + (1� �)y1] � �

1

1� �
log y0 + (1� �)

1

1� �
log y1 (4.17)

Utilizing (4.16) and (4.17), we have

H�(�f0 + (1� �)f1)

=
1

1� �
log

Z
[�f0(x) + (1� �)f1(x)]

� dx

� 1

1� �
log

�
�

Z
f�0 (x) dx+ (1� �)

Z
f�1 (x) dx

�
; by (4.16)

� �
1

1� �
log

Z
f�0 (x) dx + (1� �)

1

1� �
log

Z
f�1 (x) dx; by (4.17)

= �H�(f0) + (1� �)H�(f1) (4.18)

�
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Suppose that two noiseless images to be registered areI0 andI1 and ImageI0 is taken

as the reference image. Feature vectorsF0 andF1 are extracted fromI0 andI1, respec-

tively. Assume that the underlying densities for feature vectorsF0 andF1 aref0 andf1,

respectively, and also assume that the cardinalities ofF0 andF1 satisfy

Card(F0)

Card(F0) + Card(F1)
= �; 0 � � � 1: (4.19)

Then the mixture density for overlapping feature vectors is�f0 + (1 � �)f1. The Rényi

entropies of the individual images,I0 andI1, areH�(f0) andH�(f1), respectively. The

joint Rényi entropy of the overlapping images isH�(�f0 + (1� �)f1).

Define the difference between the joint R´enyi entropy and the linear combination of

the individual entropies as

4H�(�; f0; f1)
4
= H�(�f0 + (1� �)f1)� [�H�(f0) + (1� �)H�(f1)] ; � 2 (0; 1):

(4.20)

This difference is calledJensen differenceand is a measure of dissimilarity between two

densitiesf0 andf1 (often used in biology) [6].

From Theorem 4.3.1, we conclude that4H�(�; f0; f1) = 0 iff f0 = f1 a.e. Therefore,

if two imagesI0 and I1 are perfectly registered, then4H�(�; f0; f1) = 0; in the other

direction, if4H�(�; f0; f1) = 0, then the two imagesI0 andI1 are perfectly registered.

Hence,4H�(�; f0; f1) = 0 can be regarded as a noiseless image registration criterion.

If two noisy images are registered, the term4H�(�; f0; f1) will never be exactly zero.

In this case, it is reasonable to register the images by searching for the minimal value of

H�(�f0 + (1� �)f1) over all affine transformations of the domain off1.

An alternative registration criterion for matching two images is minimization of the

Rényi information divergence between the two images. As before, we assume that the

two images to be registered areI1 andI0, respectively. Their extracted feature vectors
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are represented byF1 andF0, with underlying densitiesf1 andf0, respectively. Then the

Rényi information divergence between the two images is

D�(f0; f1) =
1

�� 1
log

Z
f�1 (x)f

1��
0 (x) dx; � 2 (0; 1): (4.21)

We next compare the discrimination capabilities of the two proposed registration cri-

teria,

� 4H�(�; f0; f1), the Jensen difference between the two images.

� D�(f0; f1), the Rényi information divergence between the two images.

For two densitiesf0 andf1 of a random vectorX, definef0(x) � f1(x) = 4x and4 =

maxx j4xj. The comparison will be carried out by evaluating these two criteria for the

case when4 is very small, i.e., when the two densitiesf0 andf1 are very close.

Theorem 4.3.2 Let f 1
2
= 1

2
(f0 + f1), the following asymptotic representation of the frac-

tional Ŕenyi entropy of a convex combination�f0 + (1� �)f1 holds for� 2 [0; 1]:

H�(�f0 + (1� �)f1)

= H�(f 1
2
) +

�

1� �

�
� � 1

2

� R f�1
2

(x)

�
f0(x)�f1(x)

f 1
2
(x)

�
dxR

f�1
2

(x) dx
+ o(42)

(4.22)

where

42 =

R
f�1
2

(x)

�
f0(x)�f1(x)

f 1
2
(x)

�2

dxR
f�1
2

(x) dx
(4.23)

Proof: Let f1��(x) = �f0(x) + (1� �)f1(x). It can be written as

f1��(x) =
1

2
[f0(x) + (1� �)(f1(x)� f0(x))] +

1

2
[f0(x) + �(f0(x)� f1(x))]
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= f 1
2
(x) +

1

2
(2� � 1)(f0(x)� f1(x))

= f 1
2
(x)

 
1 +

(2� � 1)4x

2f 1
2
(x)

!
(4.24)

A Taylor series expansion off�1��(x) yields

f�1��(x) = f�1
2
(x)

 
1 +

(2� � 1)4x

2f 1
2
(x)

!�

= f�1
2
(x) + �f�1

2
(x)

 
(2� � 1)4x

2f 1
2
(x)

!
+
�(�� 1)

2
f�1
2
(x)

 
(2� � 1)4x

2f 1
2
(x)

!2

+ o(42)

(4.25)

Taking logarithm on both sides of (4.25) and then dividing by1� �, we have

1

1� �
log

Z
f�1��(x)dx

=
1

1� �
log

Z "
f�1
2
(x) + �f�1

2
(x)

 
(2� � 1)4x

2f 1
2
(x)

!

+
�(�� 1)

2
f�1
2
(x)

 
(2� � 1)4x

2f 1
2
(x)

!2

+ o(42)

3
5 dx

=
1

1� �
log

8>><
>>:
Z

f�1
2
(x)dx

2
6641 +

�
R
f�1
2

(x)

�
(2��1)4x

2f 1
2
(x)

�
dxR

f�1
2

(x)dx

+

�(��1)
2

R
f�1
2

(x)

�
(2��1)4x

2f 1
2
(x)

�2

dxR
f�1
2

(x)dx
+ o(42)

3
7775
9>>>=
>>>;

=
1

1� �
log

Z
f�1
2
(x)dx +

1

1� �
log

2
6641 +

�
R
f�1
2

(x)

�
(2��1)4x

2f 1
2
(x)

�
dxR

f�1
2

(x)dx

+

�(��1)
2

R
f�1
2

(x)

�
(2��1)4x

2f 1
2
(x)

�2

dxR
f�1
2

(x)dx
+ o(42)

3
7775

(4.26)
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Sincelog(1 + x) = x� x2

2
+ o(x2), we have

H�(�f0 + (1� �)f1) =
1

1� �
log

Z
f�1��(x)dx

= H�(f 1
2
) +

�

1� �

2� � 1

2

R
4x

f 1
2
(x)
f�1
2

(x)dxR
f�1
2

(x)dx
+
�

2

�
2� � 1

2

�2

R �
4x

f 1
2
(x)

�2

f�1
2

(x)dxR
f�1
2

(x)dx

� �2

2(1� �)

�
2� � 1

2

�2

�R
4x

f 1
2
(x)
f�1
2

(x)dx

�2

�R
f�1
2

(x)dx
�2 + o(43) (4.27)

= H�(f 1
2
) +

�

1� �

�
� � 1

2

� R f�1
2

(x)

�
f0(x)�f1(x)

f 1
2
(x)

�
dxR

f�1
2

(x) dx
+ o(42) (4.28)

�

Theorem 4.3.3 The following asymptotic representation of the fractional Jensen differ-

ence of two densitiesf0 andf1 holds for� 2 [0; 1]:

4H�(�; f0; f1)

=
��(1� �)

2

0
BBB@
R �f0(x)�f1(x)

f 1
2
(x)

�2

f�1
2

(x)dxR
f�1
2

(x)dx
+

�

1� �

0
BB@
R �f0(x)�f1(x)

f 1
2
(x)

�
f�1
2

(x)dxR
f�1
2

(x)dx

1
CCA

2
1
CCCA

+o(43) (4.29)

where

f 1
2
(x) =

1

2
(f0(x) + f1(x))

and

43 =

R
f�1
2

(x)

�
f0(x)�f1(x)

f 1
2
(x)

�3

dxR
f�1
2

(x) dx
(4.30)
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Proof: Letting� = 0 and� = 1 in (4.27), we have

H�(f0) = H�(f 1
2
) +

�

1� �

R 1
2
4x

f 1
2
(x)
f�1
2

(x)dxR
f�1
2

(x)dx
+
�

2

R � 1
2
4x

f 1
2
(x)

�2

f�1
2

(x)dxR
f�1
2

(x)dx

� �2

2(1� �)

�R 1
2
4x

f 1
2
(x)
f�1
2

(x)dx

�2

�R
f�1
2

(x)dx
�2 + o(43)

H�(f1) = H�(f 1
2
)� �

1� �

R 1
2
4x

f 1
2
(x)
f�1
2

(x)dxR
f�1
2

(x)dx
+
�

2

R � 1
2
4x

f 1
2
(x)

�2

f�1
2

(x)dxR
f�1
2

(x)dx

� �2

2(1� �)

�R 1
2
4x

f 1
2
(x)
f�1
2

(x)dx

�2

�R
f�1
2

(x)dx
�2 + o(43)

(4.31)

Substituting (4.27) and (4.31) into (4.20), we obtain the Jensen difference

4H�(�; f0; f1) = H�(�f0 + (1� �)f1)� [�H�(f0) + (1� �)H�(f1)]

=
��(1� �)

2

0
BBB@
R �f0(x)�f1(x)

f 1
2
(x)

�2

f�1
2

(x)dxR
f�1
2

(x)dx
+

�

1� �

0
BB@
R �f0(x)�f1(x)

f 1
2
(x)

�
f�1
2

(x)dxR
f�1
2

(x)dx

1
CCA

2
1
CCCA

+o(43) (4.32)

�

Theorem 4.3.4 The Ŕenyi information divergence of fractional order� 2 (0; 1) between

two densitiesf0 andf1 has the asymptotic representation

D�(f0; f1) =
�

4

Z
f 1
2
(x)

 
f0(x)� f1(x)

f 1
2
(x)

!2

dx+ o(43)

(4.33)

wheref 1
2

and43 are as defined in Theorem 4.3.3.
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Proof: We can rewrite the densityf0 as

f0(x) =
1

2
(f0(x) + f1(x)) +

1

2
(f0(x)� f1(x)) = f 1

2
(x) +

1

2
4x (4.34)

Similarly, we have

f1(x) = f 1
2
(x)� 1

2
4x (4.35)

Using Taylor series expansion, we have

f�1 (x) = f�1
2
(x)� �f��11

2

(x)

�4x

2

�
+
�(�� 1)

2
f��21
2

(x)

�4x

2

�2

+ o(43
x)

f 1��
0 (x) = f 1��

1
2

(x) + (1� �)f��1
2

(x)

�4x

2

�
+
�(1� �)

2
f���11
2

(x)

�4x

2

�2

+ o(43
x)

(4.36)

Then

f�1 (x)f
1��
0 (x) = f 1

2
(x)� (2�� 1)

4x

2
� �(1� �)f�11

2

(x)

�4x

2

�2

+ o(43
x)

(4.37)

The Rényi information divergence becomes

D�(f0; f1) =
1

�� 1
log

Z
f�1 (x)f

1��
0 (x)dx

=
1

�� 1
log

Z  
f 1
2
(x)� (2�� 1)

4x

2
� �(1� �)f�11

2

(x)

�4x

2

�2

+ o(43
x)

!
dx

=
1

�� 1
log

 
1� �(1� �)

Z �1

1
2

(x)

�4x

2

�2

dx

!

= �

Z
f�11
2

(x)

�4x

2

�2

dx

=
�

4

Z
f 1
2
(x)

 
f0(x)� f1(x)

f 1
2
(x)

!2

dx

(4.38)

�
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If we defineEf [g(x)] =
R
f(x)g(x) dx, for pdf f . Then (4.33) and (4.29) can be

rewritten as

D�(f0; f1) =
�

4
Ef 1

2

"
f0 � f1
f 1
2

#
+ o(43) (4.39)

4H�(�; f0; f1) =
��(1� �)

2

8<
:E ~f�1

2

2
4 f0 � f1

f 1
2

!2
3
5+

�

1� �

 
E ~f�1

2

"
f0 � f1
f 1
2

#!2
9=
;

+o(43) (4.40)

where ~f�1
2

(x)
4
=

f�1
2

(x)
R
f�1
2

(x) dx
is a “tilted” pdf.

There are a number of interesting properties regardingD�(f0; f1) and4H�(�; f0; f1):

� The divergence criterionD�(f0; f1) depends on�, the information order, only through

a scale factor, while the Jensen difference criterion4H�(�; f0; f1) is more strongly

dependent on�.

① When� approaches 0, tail differences between the two densitiesf0 andf1 are

much more influential on4H�(�; f0; f1) than onD�(f0; f1).

② When� approaches 1, central differences between the two densities become

highly pronounced in4H�(�; f0; f1). Therefore, if the images to be registered

have concentrated regions of interest, we should choose� close to 1 to enlarge

the discriminative capabilities of the registration criterion.

� The ratio of the numbers of feature vectors extracted from the two to-be-registered

images,�, does not influenceD�(f0; f1), while this ratio does affect4H�(�; f0; f1).

Furthermore,4H�(�; f0; f1) has the maximal discriminative capability for� =

1
2
, i.e., when two images yield the same number of feature vectors, the criterion

4H�(�; f0; f1) has the best registration capability.

Note that all the three terms,H�(�f0 + (1� �)f1), H�(f0), andH�(f1), in the Jensen

difference4H�(�; f0; f1) can be computed by employing the R´enyi entropy estimator
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using MST techniques (3.19). In this way, this Jensen difference criterion does not require

direction computation of probability density estimates, which is usually computationally

expensive and may be unreliable. Therefore computingH�(�f0+(1��)f1) is simpler and

more accurate than computingD�(f0; f1). In this dissertation we will focus on the Jensen

difference4H�(�; f0; f1) as the dissimilarity metric for image registration. Computing

4H�(�; f0; f1) involves evaluating three terms,H�(�f0+(1��)f1),H�(f0); andH�(f1).

In order to simplify the registration process, we want to have as few as possible terms in

the objective function.

Theorem 4.3.5 For fixed densityf0 and� 2 [0; 1], we have

argf1 f4H�(�; f0; f1) = 0g = argmin
f1

H�(�f0 + (1� �)f1): (4.41)

Proof: It is clear that4H�(�; f0; f1) = 0 impliesf0 = f1 a.e. (by Theorem 4.3.1),

then

H�(�f0 + (1� �)f1) = H�(f0): (4.42)

The Rényi entropy of the mixture density�f0 + (1 � �)f1 is always no less than the

minimum Rényi entropy of any individual density,f0 andf1, i.e.,

H�(�f0 + (1� �)f1) � min(H�(f0); H�(f1)): (4.43)

Therefore from both (4.42) and (4.43) we conclude thatH�(�f0 + (1� �)f1) is mini-

mized whenf0 = f1 a.e., that is,4H�(�; f0; f1) = 0 implies thatH�(�f0 + (1� �)f1) is

minimized.

In the other direction, ifH�(�f0 + (1� �)f1) is minimized, i.e.,f0 = f1 a.e., then we

immediately conclude that4H�(�; f0; f1) = 0. �
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Since the criteriaminH�(�f0 + (1 � �)f1) and4H�(�; f0; f1) = 0 are equivalent,

i.e., both are minimized forf1 = f0, and the former criterion has lower complexity, in the

sequel, we will investigate the minimal joint R´enyi entropy,H�(�f0 + (1 � �)f1), of the

overlapping images as the registration criterion.

Recall that the R´enyi entropy of a densityf(x) can be estimated by the normalized

length of the minimum spanning tree over the corresponding graph connectingn i.i.d.

realizationsfx1; x2; : : : ; xng of f(x). Thus the objective of image registration can be

stated as: find a transformationT on imageI1 which minimizes the length of the minimum

spanning tree connecting the vertices generated from two imagesI0 and I1. With this

property in mind, we successfully avoid the process of estimating underlying probability

distribution and directly match two images based on the image intensities of the pixel

pairs.

To apply the minimum joint R´enyi entropy criterion to the image registration problem,

we can choose to either work on the image intensity values or work on the feature vectors

extracted from the images. It is important to keep in mind that we intend to employ mini-

mum spanning tree methods in the registration process, and the computational complexity

of constructing the minimum spanning tree is polynomial in the number of vertices. Re-

duction of the number of vertices is therefore critical for the algorithmic complexity to be

manageable. Since feature extraction can greatly decrease the number of representation

vectors, we will work on the feature vectors instead of working directly on the intensity

values.

Suppose that we need to register a pair of imagesI1 andI0. Assume that there exists

a mappingT : I1 ! I0 that relates the intensity values of corresponding pixel pairs. Let

TI1 denote the image transformed fromI1 with the transformationT . Let fTXjgnj=1 and

fYkgmk=1 be the point processes inRd representing feature vectors extracted fromTI1 and
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I0, respectively.fTXjgnj=1 are i.i.d. random variables with the underlying unknown den-

sitiesfTX , andfYkgmk=1 are i.i.d. random variables with the underlying unknown densities

fY . Then the joint R´enyi entropy ofTX andY isH�(�fY + (1� �)fTX), � = m
m+n

, and

it satisfies:

H�(�fY + (1� �)fTX) � H�(�fY + (1� �)fT �X) � H�(fY ) (4.44)

whereT � is thebesttransformation function such that the transformed imageI1 aligned

with imageI0. Note that the second inequality may not be a strict equality since when

images are acquired either by the same sensor at different times or by different sensors

at the same or different times, a number of distortions prevent the two images from ever

being “perfectly registered” to each other.

Under such framework, the image registration problem can be stated as a minimization

problem:

T � = argmin
T2T

H�(�fY + (1� �)fTX) (4.45)

i.e., our objective is to find the optimal transformationT � which minimizes the joint R´enyi

entropy. Utilizing (3.19), we turn to the problem of searching for the transformationT �

such that the graph corresponding to the union offTXjgnj=1 andfYkgmk=1 has the shortest

minimum spanning tree length,

T � = argmin
T2T

LMST (TX; Y ) (4.46)

4.4 Image Registration Procedure

Suppose that we are given two imagesI1 andI0. If the two images are obtained from

different sensors, we pre-process one of the two images, sayI1, and convertI1 to the image

plane on whichI0 lies according to the physical characterization of each of the sensors.

Alternatively, we convert both images to a reference image plane. Thus we get two images
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that lie on the same image plane. In order to focus on the registration algorithm of finding

appropriate spatial transformations, from now on, we only consider the registration of two

imagesI1 andI0 on the same image plane. Furthermore, we assumeI0 is the reference

image and will transformI1 to matchI0. We will call imageI1 the test image.

For each candidate spatial transformationT , the image registration process follows

three steps:

① Apply spatial transformationT to I1 and obtain the transformed imageTI1.

② Extract feature vectorsfTXjgnj=1 andfYkgmk=1 from bothTI1 andI0, respectively.

③ Generate a graphG from the mixture of feature vectorsfTXjgnj=1 andfYkgmk=1, then

construct the MST onG and calculate the length of the resulting MST,LMST (TX; Y ).

The above three steps are repeated for all possible transformationsT 2 T . Then we

declare the transformationT � satisfying (4.46) as the optimal transformation and the cor-

responding transformed image is matched to the reference image.

Since we will concentrate on developing the graph matching approach for image regis-

tration, we will not address various spatial-coordinate transformations in this dissertation.

Instead, since the transformations are quite dependent on the application, we will give two

examples to illustrate the different types of transformations.

4.4.1 Geo-registration

The first application is to register two images taken on different sensor planes by po-

tentially different sensor modalities for geo-registration applications. Our objective is to

register two types of images — a set of electro-optical(EO) images and a terrain height

map. For this multisensor image registration problem, there usually exists distortions be-

tween the two types of images. The distortions are due to difference acquisition conditions
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of the images such as shadowing, diffraction, terrain changes over time, clouds blocking

the illumination sources, seasonal variations, etc. Existence of such differences between

the images to be registered requires that the registration algorithms to be robust to noise

and other small perturbations in intensity values.

In our image registration problem, the set of EO images are generated from thea priori

digital elevation model (DEM)1 of a terrain patch (the terrain height map) at different look

angles (determined by the sensor’s location) and with different lighting positions. With

different sensor and light locations, we can simulate the distractions mentioned above. For

example, shadows are generated by taking into account both the sensor location and the

lighting location as follows. The scene is first rendered using the lighting source as the

viewing location. Depth values (distance from the light source) are generated for all pixels

in the scene and stored in a depth buffer. Next, the scene is rendered using the sensor’s

location as the viewpoint. Before drawing each pixel, its depth value as measured from

the sensor is compared to the transformed depth value as measured from the light source.

This comparison determines if a particular pixel is illuminated by the source. Shadows

are placed on those pixels that fail this comparison. The EO image generation flowchart is

shown in Figure 4.4.2.

In this geo-registration problem, since we have two types of images to register, the first

step is to project one type of the images to the other image plane. In our case, we project

the terrain height map to the EO image plane and take the resulting EO projection as the

reference image. Our objective is to find the appropriate EO image which registers with

the reference image, i.e., to find the correct viewing angles such that the corresponding EO

image is the best match to the reference image. In this application, the change of viewing

angles corresponds to the spatial-coordinate transformation. Figure 4.4.3 shows the EO

1DEM stores the terrain height information in a three dimensional array where each element of the array
consists of the locations (x and y coordinates) and the height of the terrain at that location.
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Render with light source as viewpoint 

and store the data in depth buffer

Transform light source data  in depth  

buffer to sensor viewpoint

Compare depth between light view and 

sensor view to determine shadows

EO images

Read DEM data

Figure 4.4.2: EO image generation block diagram
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image with viewing angles (290, -20, 130) and the reference image. Clearly they are not

aligned. Figure 4.4.4(a) shows the EO image with viewing angles (300, 0, 110), which

is much better aligned with the reference image than the EO image with viewing angles

(290, -20, 130).
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Figure 4.4.3: Misaligned EO and reference images

4.4.2 Medical Image Registration

In some clinical applications, the images taken at different times are often utilized to

analyze the health condition of a patient or to evaluate the operation performance. We

will register magnetic resonance imaging (MRI) images via this graph matching method.

Magnetic resonance imaging (MRI) is an imaging technique used primarily in medical

settings to produce high quality images of the inside of the human body. MRI is based on

the principles of nuclear magnetic resonance (NMR), a spectroscopic technique used by

scientists to obtain microscopic chemical and physical information about molecules.

Magnetic resonance started out as a tomographic imaging modality for producing
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Figure 4.4.4: Aligned EO and reference images

NMR images of a slice though the human body. Each slice had a thickness (Thk)( 4.4.5(a)).

This form of imaging is in some respects equivalent to cutting off the anatomy above the

slice and below the slice. The slice is said to be composed of several volume elements

or voxels. The volume of a voxel is approximately3mm3( 4.4.5(b)). The magnetic reso-

nance image is composed of several picture elements called pixels. The intensity of a pixel

is proportional to the NMR signal intensity of the contents of the corresponding volume

element or voxel of the object being imaged.

MRI is based on the measurement of radio frequency electromagnetic waves as a spin-

ning nucleus returns to its equilibrium state [47]. This MR phenomenon is due to the

nuclear spin angular momentum which is possessed by atoms with an odd number of pro-

tons and/or neutrons. The principle of MR is based on these spins in the presence of the

main (static) magnetic fieldB0 (usually applied in thez-direction, which is the longitudi-

nal axis), the radio frequency excitation fieldB1 (usually applied in thexy plane, which is



67
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Figure 4.4.5: MRI image generation process



68

the transverse plane) and the linear gradient fieldsGs (usually applied inx and/ory direc-

tions for two dimensional imaging). When such an atom is placed in the static magnetic

fieldB0, the moment of the nucleus tends to line up with the field and all the spins possess

the same frequency calledLarmor frequency, which is proportional toB0. If the atom is

excited again by another magnetic fieldB1, it emits a radio frequency signal as it returns

to its equilibrium position. In this position, the magnetization vector precesses about the

z-axis. If this excitation field is turned off, then the magnetization vector which was earlier

aligned in the equilibrium position, now returns to its new equilibrium position along the

z-direction producing an electromagnetic wave at Larmor frequency called free induction

decay. This free induction decay signal can be detected using coils around the object, The

time constant characterizing the return of this magnetization vector back to thez-direction

is calledT1, while the time constant characterizing the decay of magnetization along the

xy plane is calledT2. Spatial localization is achieved by applying linear gradient magnetic

fieldsGs in addition to the main fieldB0. This gradient fields give spatial information

through frequency and phase encoding of the received signal. One attractive feature of

MRI is the ability to manipulate soft tissue contrast over a wide range of independent pa-

rameters in MRI. The main drawback of MRI is that MR imaging usually requires long

scan times and expensive hardware. Nonetheless, it is preferred for its high resolution.

Figure 4.4.6 shows two magnetic resonance imaging (MRI) images. Each of the

images are acquired from the same patient, taken from pre-operative and post-operative

scans, respectively. Note that the left image,I1, has an abnormal nodule (white spot) not

present in the post-operation image,I0. In this application, the spatial-coordinate transfor-

mation consists of translation and rotation.
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Figure 4.4.6: Brain images for registration

4.5 Determination of the Ŕenyi Entropy Order

From the definition of R´enyi entropy (3.12), we observe that there is a freedom�,

the information order, that needs to be determined. Recall that we have restricted� to a

fractional order in Section 3.3.

In order to determine the optimal order� in graph matching registration, we study

the Rényi information divergence of the images to be registered when we vary the order

�. In this study, we employ the histogram algorithm to estimate the underlying density

functions of the image observations, and then calculate the information divergence using

its definition (3.16).

For the geo-registration problem (Figure 4.4.3), the information divergence results with

different order� are shown in Figure 4.5.7. In each subplot thex axis stands for the

indexes of test images and they axis stands for the R´enyi information divergence. For

any value of�, the information divergence achieves the minimum for the same image pair.

And the divergence curves have the same envelope profile for all values of�. However, the
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difference between the minimum divergence and the second minimum divergence changes

with the value of�. In order to achieve the maximum discrimination capability, it is better

to have larger divergence difference.
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Figure 4.5.7: R´enyi information divergence with different orders

For an order�, define the resolution of information divergence as the difference be-

tween the minimum value and the second minimum value of the R´enyi information diver-

gence. The resolution versus the order for the above geo-regsitration problem is plotted

in Figure 4.5.8. Note that the difference increases as the order� increases. But at the

same time, the dynamic range of the information divergence increases with the order�,

too (Figure 4.5.7).
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Figure 4.5.8: Resolution of R´enyi information divergence with different orders

We are more interested in the relative resolution of the R´enyi information divergence,

which equals the resolution divided by the dynamic range of the information divergence

(see Figure 4.5.9). The relative resolution for this application is also monotone increas-

ing with the value of the order of R´enyi information divergence. So in this registration

application, the larger�, the better discrimnation capability.

We also investigate the resolution of R´enyi information divergence for another geo-

registration problem. In this application, we are given a series of DEM images taken at

different look angles and are asked to find the look angles of the registered image to the

reference image. Figure 4.5.10 gives a test image and the reference image. The R´enyi

information divergence of the test and reference images with different orders is shown in

Figure 4.5.11. In each subplot thex axis stands for the indexes of test images and they

axis stands for the R´enyi information divergence. Similar to the previous example, for any

values of�, the information divergence achieves the minimum for the same test-reference

image pair. We plot the resolution and relative resolution of the information divergence
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Figure 4.5.9: Relative resolution of R´enyi information divergence with different orders

in Figures 4.5.12 and 4.5.13, respectively. From Figures 4.5.13 we see that the relative

resolution achieves the maximum for� = 0:5, which means the information divergence of

order0:5 has the the best discrimination capability among all possible fractional orders.

(a) Test image (b) Reference image

Figure 4.5.10: Test and reference DEM images

Note that for the two appications, the best values of�, the order of information diver-

gence, are not the same. In the first geo-registration application, the objects of interest are
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Figure 4.5.11: R´enyi information divergence with difference orders

located close to the centers of images and hence the underlying densities of the images

are highly centered. The R´enyi information divergence achieves the maximum when the

order approaches 1. On the contrary, in the second registration application, the objects of

interest are scattered in the images and hence the underlying densities of the images have

heavier tails than those in the first application. So we have to use lower value of� than

unity to emphasize these tails.
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Figure 4.5.12: Resolution of R´enyi information divergence with difference orders
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Figure 4.5.13: Relative resolution of R´enyi information divergence with difference orders
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4.6 Feature Extraction

For the registration problem, we want to register a test imageI1 to the reference image

I0. We first do spatial-coordinate transformation on the imageI1 to get a stack of images

with different transformation parameters. Let us denote the stack of images asfI(n)1 g. For

the purpose of conciseness, we useI1 to denote an image from the image setfI(n)1 g.

A digital image is considered as a two-dimensional array. Each pixel is identified

by its coordinates(x; y) and intensityI(x; y). Alternatively, each pixel can be treated

as a three-dimensional vector,(x; y; I(x; y)), and thus a pixel can be treated as a point

in the three dimensional space. With this point of view, the pixels of the image can be

considered as vertices in the three-dimensional space and then a minimum spanning tree

can be constructed over these vertices.

Consider registering two256�256 images, which are quite small images in real world

applications. Each image contains256 � 256 = 65536 pixels. If we try to find the MST

over all image pixels, the MST should be constructed over as many as65536�2 = 131072

vertices, which is computationally prohibitive since MST algorithm is implemented in

polynomial time.

In order to make constructing MST feasible for the image registration problem, ap-

propriate features must be extracted to compress the original great amount of data. The

features should be able to well represent the original image and the number of feature

vectors should be under the limit that MST is able to handle for computational complexity

concern.

In our work, we investigate three approaches to extract feature vectors from the original

image — uniform spatial sub-sampling, vector quantization, and stratified sampling with

centroid refinements. We will illustrate the feature extraction process using the EO –
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terrain map registration application (Figure 4.4.3).

4.6.1 Feature Extraction Via Uniform Spatial Sub-sampling

Before extracting features, we notice that the background (dark area) of the image

does not contribute much to the registration. The histograms of both images are shown in

Figure 4.6.14. From the histograms we empirically determine the threshold to be 30.
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Figure 4.6.14: Histograms of the EO and reference images

In order to justify that the background (dark area with intensity values less than 30)

of the image does not much affect the registration result, we plot the R´enyi information

divergence for the pixels with intensity values greater (or less) than the threshold in Fig-

ure 4.6.1(a) (or Figure 4.6.1(b)). We can see that the R´enyi information divergence changes

in a small range for pixels with intensity values less than the threshold, but the number of

those pixels are large. Thus removing those pixels can significantly reduce the number of

vertices in the corresponding graph while not losing too much information.

The thresholded images are shown in Figure 4.6.16.

After thresholding the image, we sub-sample the thresholded image with a uniform

grid. The pixels in the sub-sampled image will serve as the feature vectors to generate the
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Figure 4.6.15: R´enyi information divergence with respect to the threshold



78

Thresholded Image (290, −20, 130)
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Figure 4.6.16: Thresholded EO and reference images

graph, i.e., pixelI(x; y) in the sub-sampled image corresponds to the vertex(x; y; I(x; y))

in the generating graph. The sub-sampling rate is selected such that the number of vertices

in the graph is computationally feasible for constructing MST while the remaining pixels

contain enough information of the original image. Figure 4.6.17 shows the sub-sampling

result with a sub-sampling rate of 8.

4.6.2 Feature Extraction Via Vector Quantization

Spatial sub-sampling greatly decreases the number of vertices in the graph. However,

the number of pixels in the image cannot be decreased too much since spatially distinct pat-

terns and texture may be lost. Therefore sub-sampling inevitably removes a great amount

of useful information for registration. Indeed at very low sampling rate, Nyquist tells us

that we will lose so much information that the resulting feature vectors are a very poor

representation of the original image.

Some advanced techniques other than spatial sub-sampling can be applied to the fea-
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Figure 4.6.17: Feature vectors extracted via uniform sampling

ture extraction problems to reduce the number of vertices in the graph without losing

much fidelity. In spatial sub-sampling algorithm, each coordinate of a pixel is uniformly

quantized. Basically, the spatial sub-sampling algorithm partitions the image into uniform

rectangular cells and places the vertices of the desired graph at the centers of each cell.

Instead of sub-sampling the image on each coordinate separately, we propose to group the

row and column coordinates together and quantize them as a single block. This idea is an

extension of vector quantization (VQ) [30] for lossy data compression.

In vector quantization, we takeL samples from the source and treat each sample as a

component of a vector of dimensionL. Both the encoder and decoder have a codebook that

is comprised ofL-dimensional code-vectors, which are selected to be the representation

vectors for the source samples. For an encoder with Voronoi partition, each source sample

vectors is compared to all the code-vectors in the codebook, and the closest code-vector is

chosen to represent the input. The distance between two vectors are defined as

D =
LX
l=1

(Xl � Vl)
2; (4.47)
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whereXl is the value of thelth element of the vector, andVl is the value of thelth element

of the code-vector. This algorithm partitions the sample space into Voronoi cells that cor-

responds to the code-vectors. Optimal codebooks for VQ can be derived mathematically

for i.i.d. sources with certain distributions, such as, uniform, Gaussian, and Laplacian

distributions.

In the case of VQ spatial sub-sampling, we treat the row and column coordinates of

each pixel from the image as a two dimensional data vector. Given a certain number of

verticesN , we design a codebook withN code-vectors, that minimize the average squared

distance�D, which is given by

�D =
1PN

i=1Mi

NX
i=1

MiX
j=1

(r(i;j) � V
(i)
1 )2 + (c(i;j) � V

(i)
2 )2 (4.48)

whereMi is the number of pixels in theith cell, r(i;j) andc(i;j) are the row and column

coordinates of thejth pixel in theith cell, andV (i)
1 andV (i)

2 are the row and column

coordinates of the vertex that represents theith cell.

We propose to employ vector quantization technique to obtain the representation vec-

tors for a given image. These representation vectors will serve as the feature vectors for

constructing the MST. The feature extraction algorithm is as follows:

� Preset the number of representation vectors in each image (length of code book).

� Do vector quantization on the coordinates of the pixels.

� In each Voronoi region, the representation vector is the Voronoi centroid with the

mean intensity of the region as its intensity.

We use the Linde-Buzo-Gray (LBG) algorithm [66] to implement the vector quanti-

zation. LetfXngNn=1 denote the input vector set, namely,Xn is a two dimensional vector

consisting of the coordinates of then-th pixel, i.e.,Xn = (in; jn), wherein andjn are the
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row and column position for then-th pixel . LetfZmgMm=1 be the representation vectors,

whereM is a pre-determined constant. The LBG algorithm proceeds as follows:

① Start with an initial set of representation vectorsfZ(0)
m gMm=1. Setk = 0; �D(0) = 0.

Select threshold�.

② Find quantization regions

V (k)
m = fXnjd(Xn; Zm) < d(Xn; Zl); 8l 6= mg; l = 1; 2; : : : ;M � 1

③ Compute the average distortion�D(k) between the input vectors and the representa-

tion vectors.

④ If
�D(k)� �D(k�1)

�D(k) < �, stop; otherwise, continue.

⑤ k = k + 1. Find new representation vectorsfZ(k)
m gMm=1 that are the average value of

the elements of each of the quantization regionsV
(k�1)
m . Go to Step 2.

In Figure 4.6.18 we show the vector quantization regions for the thresholded images

(shown in Figure 4.6.16). Here we set the number of representation vectors to be 100 in

each image.

Vector quantization technique significantly reduces the number of feature vectors with-

out losing much useful information and thus the MST construction over these feature vec-

tors are much faster. However, in order to have a satisfactory representation of the original

image, the number of iterations in the LBG algorithm has to be sufficiently large. There-

fore the vector quantization algorithm is computationally expensive, too. Thus we need

to achieve a compromise between the computational load for vector quantization and the

load for the MST algorithm.
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Figure 4.6.18: Feature vectors via vector quantization

4.6.3 Feature Extraction Via Stratified Sampling with Centroid Refinements

The computation overhead of the vector quantization based feature extraction method

results from the large number of iterations in the LBG algorithm. The reason for such large

number of iterations is that the underlying distribution of the coordinates of the image pix-

els with intensities higher than a threshold is far from uniform, but the initial representation

vectors of the LBG algorithm are selected to be uniform distributed. The significant differ-

ence between the initial and final representation vectors results in long computational time.

One approach to speed up the LBG algorithm is to obtain a good initialization. However,

a good initialization usually requires a thorough knowledge of the underlying distribution

of the pixel coordinates, which is not easy to obtain.

From Figure 4.6.18, we notice that the representation vectors are concentrated in the

region of interest and in this region the distribution of representation vectors is fairly close

to the uniform distribution. By taking advantage of this fact, we propose a “quick” low
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complexity approximation of the Voronoi cells and centroids in the vector quantization

method. This feature extraction technique is described as follows:

� First divide the image with a uniform grid.

� Throw away the cells whose number of pixels is less than a pre-determined thresh-

old. The remaining cells are regarded as approximations to the Voronoi cells in the

vector quantization method.

� Calculate the coordinate centroid of each remaining cell. Take the centroid as the

representation vector with the mean intensity of the cell as its intensity.

Figure 4.6.19 illustrates the result of applying this feature extraction technique to the

thresholded images (shown in Figure 4.6.16).
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Figure 4.6.19: Feature vectors via stratified sampling with centroid refinements
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4.7 MST Construction

The feature vectors(x; y; F (x; y)) extracted from the original image are used to gen-

erate a graph in a three-dimensional space and each feature stands for a vertex described

by a vector of length three,(x; y; F (x; y)). For image registration, we generate two graphs

G1 andG0 from the image to be registeredI1 and the reference imageI0, respectively. To

register the two imagesI1 andI0, first we overlap the two graphsG1 andG0 together and

get a mixture graphG, and then we construct the MST over the graphG.

In order to clearly render the overlapping graphs and the corresponding MST, when

we plot the figures, we use many fewer points than those actually required by image regis-

tration. Figure 4.7.20 demonstrates the MST over misaligned images, while Figure 4.7.21

shows the MST over aligned images. In both Figures 4.7.20(a) and 4.7.21(a), circle

points denote the pixels from ImageI1 and cross points denote the pixels from ImageI0.

From Figures 4.7.20(a) and 4.7.21(a) we see that for misaligned images, the representation

points have larger distances than those for aligned images. Therefore the corresponding

MST for the misaligned images has a longer length than that for the aligned images (Fig-

ures 4.7.20(b) and 4.7.21(b)).

We repeat the MST construction process over all the images in the image setfI(n)1 g.

The MST length is plotted in Figure 4.7.22. The x-axis stands for the image index, which

corresponding to the viewing angles from the aircraft. The minimum of MST length in-

dicates the best matching of the EO image and the reference image, which are shown in

Figure 4.7.23.

4.8 Noise Removal withk-MST Technique

So far we have not considered the noisy image registration yet. The existence of noise

in the image will influence the construction of MST and hence affect the MST length.
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Figure 4.7.20: MST demonstration for misaligned images
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Figure 4.7.21: MST demonstration for aligned images
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Figure 4.7.22: MST length for different test-reference image pairs
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Figure 4.7.23: Result for EO-terrain map registration
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In order to robustly register two noisy images, the first and crucial step is to remove the

noise from the images. As we described in the Section 3.5,k-MST is a good candidate

for noise removal. Sincek-MST is time consuming, it is impractical to find the optimal

sub-tree spanning a large number of nodes. Thus, noise removal will be implemented after

the feature extraction. After applyingk-MST algorithm on each feature image to remove

outliers, we can employ the registration algorithm discussed in the preceding sections to

register the noise-removed images.

To illustrate the registration of two noisy images, let us consider the registration of the

images shown in Figure 4.4.6. The noise in the images is salt-and-pepper noise.

The feature vectors extracted via uniform sub-sampling method are shown in Fig-

ure 4.8.24.
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Figure 4.8.24: Sub-sampled brain images for registration

An illustration of thek-MST over the graph generated from pre-operation brain image

I1 is shown in Figure 4.8.25. Those unconnected vertices are further away from the center

of the tree, which corresponds to the signal part of the mixture, and they are very unlikely

observations from the underlying signal density. Thek-MST total length as a function of
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n� k, the number of pruned points, is plotted in Figure 4.8.26, from which we can easily

determine the optimal knee, i.e., the number of pruned points, which isn� k̂ = 23 in this

case. The pruned images are shown in Figure 4.8.27.
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Figure 4.8.25: Illustration of k-MST for pre-operation brain image over the 3-dimensional
domain of pixel position and grey scale

After pruning noisy points an initial alignment was performed by translating pre-

operation brain imageI1 to make the centroids ofI1 and I0 coincide. Then we rotate

ImageI1, merge the two images and construct the MST on the resulting bitmaps. The

MST length as a function of the rotation angle is plotted in Figure 4.8.28. The minimal

MST length occurs at the rotation angle214Æ. The final result is shown in Figure 4.8.29.

Figure 4.8.29(a) shows the matching result ofI1, while Figure 4.8.29(b) demonstrates the

registration error defined as the difference between the matched imageI1 and the image

I0.
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Figure 4.8.26: kMST length as a function of pruned number
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Figure 4.8.27: Sub-sampled images after outlier removal
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Figure 4.8.28: MST length as a function of rotation angle for brain image registration

100 200 300 400

50

100

150

200

250

300

350

400

(a) Registered pre-operation brain image

100 200 300 400

50

100

150

200

250

300

350

400

(b) Registration error

Figure 4.8.29: Registration result for brain images
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4.9 Sliding Sampling Grid Approach

In order to improve the accuracy and robustness of the registration via MST matching,

we proposed the following sliding sampling grid method:

① Coarsely sample the original images with high sampling rate to extract the feature

vectors.

② Construct the MST over the graph generated from overlapped feature vectors.

③ Shift the sampling grid in a neighborhood and repeat Steps 1 and 2 for each shifting.

④ The summation of all MST lengths gives a dissimilarity metric between images.

We apply this registration technique to the geo-registration application. The sampling

grid is shifted in a neighborhood of3 � 3. The results are shown in Figures 4.9.30 and

4.9.31. Figure 4.9.30 shows the MST length functions for various shifted sampling grids

where the numbers above each subplot are the shift positions in the row and column direc-

tions, respectively (We assume the first subplot is corresponding to the original sampling

grid, which has (0,0) above the subplot)). Figure 4.9.31 shows the total MST length by

adding the MST length over all subgraphs.

From the results, we observe that although in certain subgraphs, the minimum of the

MST length does not occur for the registered image pair, the total MST length achieves

its minimum for the registered image pair. The accuracy and robustness of the sliding

sampling grid method are due to the fact that the individual MST length is correlated for

the registered image pair, but not correlated for the misregistered image pair.
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Figure 4.9.30: MST length over subgraphs
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4.10 Conclusions and Future Work

Registration is a fundamental task in image processing and quite a few registration

techniques have been developed in various fields. In this chapter, we have proposed a

graph-theoretic technique for image registration. The registration process is carried out on

the feature vectors extracted from the original images. This registration algorithm uses the

joint Rényi entropy of overlapping feature vectors as a dissimilarity metric between the

two images. From the classical work of Steele [96], the R´enyi entropy of feature vectors

can be estimated with the power weighted length of the minimum spanning tree over the

corresponding vertices in the generated graph. Thus we are able to make use of an equiv-

alent dissimilarity metric, the MST length over the overlapping graphs generated from

the original images, to align two images. Our method also takes advantage of the min-

imum k-point spanning tree approach to robustify the registration against outliers in the

images. Since thek-MST length provides a robust and reliable distance measure between

the images to be registered, this graph matching registration algorithm yields accurate

registration results and is not sensitive to noise and small difference between images.

Comparison of Feature Extraction Strategies

Since the computational complexities of MST construction and approximatek-MST

construction are both in polynomials of the number of vertices in the graph and the corre-

sponding image size is usually large for practical use, feature extraction is a critical step

for registering images with graph matching algorithms. In our work, we have proposed

three strategies to extract feature vectors from the original to-be-registered images:

① extracting feature vectors with uniform spatial sub-sampling approach,

② extracting feature vectors with vector quantization algorithm, and
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③ extracting feature vectors with stratified sampling with centroid refinements.

Extracting feature vectors with uniform spatial sub-sampling approach is straightfor-

ward and there is almost no additional computational load for the feature extraction pro-

cess. The drawback of this approach is that the sub-sampling rate cannot be too high in

order to keep enough information for registration process, and the number of vertices in

the generated graph is still too large for effectively constructing the MST and approximate

k-MST. Therefore, the feature vectors generated with the uniform sub-sampling approach

are not satisfactorily effective. For the geo-registration application, the running time of the

whole image registration process is about 24 minutes for satisfactory registration results.

(All running times in this section are counted with Matlab codes.)

Vector quantization is a generalization of spatial sub-sampling. Since vector quantiza-

tion takes into account the underlying densities of the feature vectors, it yields the most

effective features among the three proposed strategies. Unfortunately, since a good initial-

ization of representation vectors are not available in most applications, the LBG algorithm

is time consuming. Thus the computational overhead caused by vector quantization pro-

cedure is not negligible compared to the complexity of constructing MST’s andk-MST’s.

The image registration algorithm with this vector quantization approach consumes less

time than the registration method with the uniform sub-sampling approach. For the geo-

registration application, the running time of the whole image registration process is about

19 minutes for satisfactory registration results.

Extracting feature vectors with stratified sampling with centroid refinements is a low

complexity approximation to the vector quantization based feature extraction approach.

It takes advantage of the fact that most to-be-registered images have high information

concentrated in the region of interest. Thus this method provides quite effective feature

vectors and the registration process with this feature extraction method is much faster than
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the previous two approaches. For similar registration results, the registration process with

stratified sampling with centroid refinements is implemented in about 11 minutes.

Future Work

We have seen that feature vectors extracted from the original images play a very impor-

tant role in the graph matching image registration algorithm, both in registration accuracy

and computational complexity. If the feature vectors well represents the information in the

original images and their cardinality is not an obstacle for constructing MST andk-MST

in a noisy environment, the graph matching registration method will achieve satisfactory

results. Since “good” features are application dependent, it is difficult to find universally

perfect features. However, it is known that some features are of great interest in image

registration field. For example, boundaries of the objects, pixels with very high intensity,

and rapidly changing regions. All these features contains great amount of information

and should be helpful in registration process. In the future, we shall investigate the effec-

tiveness and efficiency of more features and try to find a set of “good” features for some

typical registration applications.

We should point out that for a given application, the extracted feature vectors used for

matching images are not restricted to a single type. Then another direction of improving

the image registration algorithms via graph matching is to employ multiple types of fea-

tures. This multiple-type-feature registration method can be divided into two steps: first, a

minimum spanning tree is constructed for each type of feature vectors; then a combining

technique needs to be designed to appropriately incorporate the lengths of the MST’s over

different features. The challenge of this method lies in the design of effective combining

technique. It should take into account the dimensions and cardinalities of different types

of feature vectors, and it should put more weights on the lengths of those MST’s that cor-
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respond to the more discriminative features. When we take advantage of more than one

discriminative features in a single registration application, the number of the feature vec-

tors in each type is usually small and it is easy and fast to construct the MST over those

feature vectors. Thus, we can improve the accuracy of the graph-representation registra-

tion algorithm and reduce the computational complexity as well.



CHAPTER V

Sensor Systems for Road Boundary Detection

5.1 Road Boundary Detection Problem

Lane and pavement boundary detection is an enabling or enhancing technology which

will have significant impact on the next generation of automotive systems such as road

departure or lane excursion warning, intelligent cruise control, and ultimately autonomous

driving. All of these applications have potential use in both military and civilian contexts.

We shall give two examples to show the critical role of lane and pavement boundary detec-

tion. In the application of drowsy driver warning, knowledge of the pavement boundaries

relative to the vehicle enables a driver assistance system to determine if the driver is run-

ning off the road. In the application of forward collision warning, pavement boundaries

help disambiguate potential collision threats in terms of their relevance to the vehicle’s

intended path.

Lane and pavement boundary detection problem is particularly difficult when no prior

knowledge of the road geometry is available (such as from previous time instants – see

[22, 49, 75]) and when the detection algorithms have to locate the boundaries even in

situations where there may be a great deal of clutter in the images.

Many gradient-based detection algorithms, which are applicable for structured edges

including lane and pavement boundaries, apply a threshold to the image gradient mag-

98
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nitude to detect edges – see [50, 53, 54, 55] and the references therein. When a visual

image has clearly visible lanes, and when the radar image has uniform regions with good

separation between the regions, good performance can be obtained with these algorithms.

However, real road scenes seldom give rise to such clean images –

① Clutter

Images may have structured noise, perhaps due to the presence of complex shadows

(Figure 5.1.1).

Figure 5.1.1: Clutter due to presence of complex shadows

② Missing data

Valuable data might be missing, perhaps due to other vehicles occluding the bound-

aries of interest (Figure 5.1.2).

③ Low SNR

The signal-to-noise ratio might be inherently very poor perhaps due to the limita-

tion of the (radar) imaging process (Figure 5.1.3). Figure 5.1.3(a) is the original

raw radar data, while Figure 5.1.3(b) is the enhanced radar image obtained by nor-
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Figure 5.1.2: Missing data due to other vehicles occluding the boundaries of interest

malizing the power values with respect to the maximum, taking one-fourth root of

the pixel intensities in the raw radar image, and scaling the resultant values to a

maximum of 255. Henceforth, all the radar images shown are enhanced versions

of the corresponding raw radar images. However, all the processing is done on the

raw(non-enhanced) radar images.

(a) Raw radar data (b) Enhanced radar data

Figure 5.1.3: Low signal-to-noise ratio radar data
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④ Spurious boundaries

Spatially significant non-lane or -pavement boundaries might be present, perhaps

due to entry/exit ramps (Figure 5.1.4).

Figure 5.1.4: Non-lane or -pavement boundaries due to entry/exit ramps

Needless to say, it is difficult to select thresholds which eliminate noise edges without

also eliminating many of the edge points of interest, and so the conventional edge detec-

tion algorithms described in [50, 53, 54, 55] are not suitable for our boundary detection

problem under the above mitigating conditions.

A class of successful methods that overcome the thresholding problem are studied

in [55, 56, 59, 68, 83]. These methods work directly with the image intensity array, as

opposed to separately detected edge points, and use a global model of lane and pavement

boundary shape. Two examples from this class are particularly relevant to our work:

① In Reference [56] the authors present a vision-based real-time algorithm called LOIS

for locating lane and pavement boundaries using a deformable template global shape

model. The global shape model adaptively adjusts and aligns a template so that it

best matches the underlying features of the lane and pavement-boundary over the
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entire image. At the heart of LOIS is a matching function that encodes the knowl-

edge that the edges of the lane should be near intensity gradients whose orientation

are perpendicular to the lane edge. This allows strong magnitude gradients to be dis-

counted if they are improperly oriented and weak magnitude gradients to be boosted

if they are properly oriented. LOIS is shown to work well under a wide variety of

conditions, including cases with strong mottled shadows and broken or interrupted

lane markings, which pose a challenge for gradient-based lane detection schemes.

② In Reference [68] we present a method for detecting pavement boundaries in radar

images. Like in LOIS, here too a deformable template model is used. The biggest

difference though is in the matching function: [68] uses the log-normal probability

model of the radar imaging process, which was proposed in [59]. This function

encodes the knowledge that boundaries of the pavement should divide the image

into three “relatively” homogeneous regions.

In both references [56] and [68] the boundary detection problem on hand is reformulated

as a Bayesian estimation problem, where the deformable template model plays the role of

a prior pdf and the matching function plays the role of a likelihood pdf, respectively.

Note that previously lane boundary detection in optical images [53, 54, 55, 56, 83], and

pavement boundary detection in radar images [59, 48, 60, 68] have always been studied

separately. However, a single sensor, either optical or radar sensor, limits itself in the

ability to sense and identify the relevant features in varying environments. For example,

the optical sensor is not able to operate in a poorly illuminated environment, while the

radar sensor can not distinguish the lane markers on the road. To take advantage of the

strengths (and overcome the weaknesses) of both the optical and radar sensors, it is natural

to think of combining the two different types of sensed data together since multiple sensors
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will provide more information and hence a better and more precise interpretation of the

sensed environment.

5.2 Sensor Systems

The radar data and visual images used in this work are all obtained from an imaging

platform mounted on top of WOLVERINE I (Wheeled Onroad Lab Vehicle Enabling Re-

search Into New Environments), a self-contained test-bed vehicle shown in Figure 5.2.5.

The imaging sensors consist of a millimeter-wave radar sensor and a bore-sighted opti-

cal/vision sensor. The radar sensor is a 77GHz frequency modulated continuous wave

(FMCW) radar sensor, with a maximum range of 128 meters (resolution 0.5 meters) and

angular field of view of64Æ (resolution1Æ). The radar sensor setup is shown in Fig-

ure 5.2.6. The radar and optical sensors observe the same road scenario simultaneously

in order to acquire a pair of co-registered images of that scene (Figures 5.2.7 and 5.2.8).

The problem of interest is simultaneous detection of lane and pavement boundaries using

observations from both the modalities. Consideration of both the modalities is meaningful

because lane and pavement boundaries for the same road scene are highly correlated.

The information contained in the optical image depends on the reflectivity of the road

illuminated by natural visible light. The lane boundaries, i.e., the white or yellow lane

markers, constitute one of the two boundaries of interest to us and are clearly visible in

the optical image if the image is obtained in a well-illuminated environment (see Fig-

ure 5.2.7(a)). The radar image is obtained by illuminating the road scene with electro-

magnetic radiation in the millimeter-wave spectrum – see [48] and [59] for a detailed

discussion of this image acquisition process. The relatively smooth road surface forward

scatters much of this incident electro-magnetic power and hence returns very little power

back to the radar; the side of the road, because it is made up of a coarser structure than the
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(a) WOLVERINE I

(b) imaging platform

Figure 5.2.5: WOLVERINE I
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Figure 5.2.6: Radar sensor setup
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Figure 5.2.8: A typical road scenario in foggy/low-light weather
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road, returns a slightly higher amount of power. Thus, in the radar image, the road region

is a little darker than the road sides, and the boundaries of the road delineate these three

regions of different contrast (Figure 5.2.7(b)).

Evidently, either optical or radar sensor used alone has limited capabilities for resolv-

ing ambiguities and providing consistent descriptions of the road scenario due to the op-

erating range and limitation which characterize the sensor. The optical sensor can pro-

vide high signal-to-noise ratio images in a well-illuminated environment such as a sunny

day (Figure 5.2.7(a)). Such images, which clearly reflect the lane information, are suf-

ficient for the lane boundary detection task. However, since it is a passive sensor and

works at visible light wavelengths, in an ill-illuminated environment, e.g., at night or in

foggy weather, the optical sensor will fail to provide sufficient information about the lane

boundary (Figure 5.2.8(a). The radar sensor, on the contrary, being an active sensor and

operating at millimeter wavelengths, has the ability to penetrate through rain, snow, fog,

darkness, etc., i.e., it can operate under all weather conditions and provides an “alternate”

image of the scenario in front of the vehicle (Figures 5.2.7(b) and 5.2.8(b)). Thus the

radar image, regardless of the illumination situations, can give us the pavement boundary

information, and the precise geometry of the pavement boundaries can be subsequently

used in a number of driver warning and vehicle control tasks. The downside of the radar

image though is its notoriously poor signal-to-noise ratio and low spatial resolution when

compared to a visual image of the same road scene.

Since the optical and radar sensors provide different but complementary information

about the road scene ahead of the vehicle, if the two types of information are combined

appropriately and efficiently, the accuracy of the detected lane and pavement boundaries

can be improved. The optical and radar fusion system shown in Figure 5.2.9 exploits this

redundancy, diversity and complementarity between the two modalities.
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Figure 5.2.9: Diagram of the optical and radar multisensor fusion

Since two sensors, radar and optical sensors, are used to measure the same entity, the

observational data are redundant. The redundancy of the data results from the fact that the

lane and pavement boundaries in the visual and radar images, respectively, are highly cor-

related. Both lane and pavement boundaries are concentric arcs on the ground-plane and

the lane boundaries are inside the road region, while the degradations of this boundary in-

formation introduced by the visual and radar imaging processes have completely different

characteristics.

Since the radar and optical sensors measure the same scene with different laws of

physics, we obtain physical sensor diversity. Since both sensors are placed at almost the

same location, spatial diversity is not an issue in our work. However, it is because of the

absence of spatial diversity that we can greatly simplify the registration process.

The optical sensor offers information about the lane boundaries, while the radar sensor

provides information about the pavement boundaries. Thus each of them observes a subset

of the environment space, and the union of these subsets makes up the whole road scenario.

In this way, we achieve data complementarity.



CHAPTER VI

Fusion Algorithm for Lane and Pavement Boundary
Detection with Existing Prior and Likelihood Models

We have seen that in previous work [56, 68], the authors studied separate lane or pave-

ment boundary detection algorithms using only optical or radar images. In their boundary

detection efforts, the lane and pavement boundaries are represented by parabolic curves,

the radar imaging process is modeled with a log-normal pdf, and the optical imaging pro-

cess is described with an empirical matching function. In this chapter, we propose a fusion

algorithm for detecting lane and pavement boundaries using existing prior shape models

and imaging likelihood functions.

6.1 Parabolic Models of Lane and Pavement Boundaries

In most cases, we can assume thata priori knowledge regarding the shape of the lane

and pavement boundaries in the optical and radar images is available. A commonly used

shape model for lane and pavement boundaries assumes that they can be approximated by

concentric circular arcs on a flat ground plane. Such arcs, at least within a reasonable field

of view, for small-to-moderate curvatures, are well approximated by parabolic curves on

the ground plane,

x =
1

2
ky2 +my + b (6.1)
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where the parameterk is the curvature of the arc,m is the tangential orientation, andb is

the offset. While the radius of curvature and tangential orientation of left and right lane and

pavement boundaries will differ slightly, constraining the left and right lane and pavement

boundaries to have the same parametersk andm closely approximates the actual edge

shapes for all but very small radii of curvature. So, it is assumed that concentric lane and

pavement boundaries share the same parametersk andm. Then the only parameter that

distinguishes the boundaries is the offset parameterb, that is, the left and right lane and

pavement boundaries are characterized by different values ofb.

The radar image is composed of reflections from the ground, and its domain is in-

deed the ground plane. So, (6.1) can be directly applied to model the shape of pavement

boundaries in the radar image. The domain of the optical image, however, is a perspec-

tive projection of the ground plane, and therefore (6.1) needs to be rewritten in order to

model the shape of lane boundaries in the image plane. Assuming a tilted pinhole camera

perspective projection model, parabolic curves in the ground plane (6.1) transform into

hyperbolic curves in the image plane:1

c =
k0

r � hz
+ b0(r � hz) + vp0 (6.2)

where

k0 = �k k;

vp0 = �m m+ �m;k k + �; and

b0 = �b b+ �b;m m+ �b;k k: (6.3)

In other words, thek0 parameter is linearly proportional to the curvature of the arc on the

ground plane. Thevp parameter is a function of the tangential orientation of the arc on

the ground plane, with some coupling to the arc curvature as well. Theb0 parameter is

1See [54] for a derivation
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a function of the offset of the arc from the camera on the ground plane, with couplings

to arc curvature and tangential orientation. The constants�k; �m; �m;k; �; �b; �b;m; and�b;k

depend on the camera geometry (resolution, focal length, height of the camera from the

ground plane, and camera tilt).

Let �o = fk0; vp0; b0L; b0Rg and�r = fk;m; bL; bRg denote the unknown lane and pave-

ment boundaries’ parameters, respectively. (InbL; bR; b
0
L; b

0
R the subscriptsL andR indi-

cates the offsets corresponding to the left and right boundaries.) Let� = f�r; �og denote

their adjoinment. By changing the values of�, various lane and pavement boundary shapes

can be realized – see Figure 6.1.1. The templates of the upper row in Figure 6.1.1 illus-

trate a straight road scenario with the deformation parametersk0 = 0; vp0 = 256; b0L =

�0:6; b0R = 0:7; hz = �30; bL = �12:0; bR = 2:4. The templates of the lower

row demonstrate a curved road scene withk0 = 600; vp0 = 340; b0L = �3:2; b0R =

�1:0; hz = 200; bL = �14:2; bR = 0:4.

The problem of simultaneous detection of the lane and pavement boundaries is now

equivalent to the problem of estimating�. The elements of� have to satisfy some con-

straints, and for some elements of� the range of physically meaningful values they can

possibly assume is knowna priori. Given a hypothetical�, its fidelity to the observed

optical and radar images can also be assessed. In this report, we choose a probabilistic

Bayesian framework to express the constraints, thea priori beliefs, and the assessment of

fidelity to data.

We present the so-called prior pdf here (the likelihood pdf’s are in the next chapter):

p(�) = p(�o; �r)

= Ib0L>bL(b
0
L; bL) � Ib0R<bR(b

0
R; bR)� Æ(k0 � �k k)

� Æ(vp0 � [�mm+ �m;k k + �])
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Figure 6.1.1: Boundary templates for the optical and radar images
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� 2

�
atan[�o;1 � (b0R � b0L)] �

2

�
atan

�
�o;2

b0R � b0L

�

� 2

�
atan[�r;1 � (bR � bL)] � 2

�
atan

�
�r;2

bR � bL

�
(6.4)

whereIA(x; y) is an indicator function,

IA(x; y) =

8><
>:

1; if (x; y) satisfies relationA

0; otherwise
(6.5)

andÆ(x) is the Kronecker delta function,

Æ(x) =

8><
>:

1; if x = 0

0; otherwise
(6.6)

The terms on the first two lines of (6.4)’s RHS, correspond to the constraints that the

elements of� have to satisfy. The first two terms impose the constraint that the lane

markers be contained within the pavement region, the last two terms impose the constraint

that the lane boundaries’ curvature and orientation be precisely related to the pavement

boundaries’ curvature and offset via (6.3). The terms on the last two lines of (6.4)’s RHS

expresses thea priori beliefs that lanes and pavements can be neither be too narrow nor

too wide.

6.2 Imaging Likelihoods

6.2.1 Radar Imaging Likelihood

The true boundaries of the pavement separate the observed radar image into three ho-

mogeneous regions associated with the road surface, the left side of the road, and the right

side of the road. So, given a parameter set�r, its fidelity to the observed radar image is

assessed by how homogeneous the corresponding three (road, left, and right) regions are.

A log normal probability law [2] is used to derive the homogeneity criteria.
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We caution the reader that the radar returns over the the left, right and road regions

are not truly homogeneous. Sources for non-homogeneity including point-like scatterers

(cars, sign posts, retro-reflectors, etc.), changes in the off-road surface (grass, gravel, etc.)

and presence of periodic off-road structures (bridges, fences, trees, etc.). Modeling all

such variability is impossible. The log-normal pdf is meant to be a reasonable but low-

complexity (two parameters per region) approximation to the actual variations in the data.

The rationale for using the log-normal law, as opposed to normal, exponential, or

Rayleigh laws, is due to previous studies [27, 89, 62]. To appreciate the appropriateness

of the log-normal pdf to describe radar returns, we refer the reader to Fig. 6.2.2, which

demonstrates that log-normal is an excellent approximation to the radar return.

Let L = f(r; �), 1 � r � rmax, �min � � � �maxg denote the range and azimuth

coordinates of the pixels in the millimeter-wave radar imageZr. Given the parameters

�r for pavement boundaries, the conditional probability ofZr taking on a realizationzr

(corresponding to a single observation) is given by

p(zr j �r) =
Y

(r;�)2L

1

zrr�

q
2��2

r�(�
r)

exp

(
� 1

2�2
r�(�

r)

�
log zrr� � �r�(�

r)
�2)

(6.7)

where�r�(�
r); �2

r�(�
r) denote the mean and variance of the region to which the pixel

(r; �) belongs. In (6.7)�r is explicitly referred to emphasize the dependencies of means

�r� and variances�2
r� on the unknown parameters�r. However, henceforth, in order to

make the representations concise, we will omit the explicit references to�r.

In its present form, (6.7) is not very useful for assessing the data fidelity of�r, due

to the presence of nuisance parameters�r� and�2
r�. In the sequel, (6.7) is rewritten as a

function of these nuisance parameters, and it reveals an intuitively appealing homogeneity

criterion. Some additional notations are necessary for further derivation:

� LetN denote the number of pixels inL.
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(a) Radar image

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
Log−normal
Rayleigh  
Gaussian  
Histogram 

(b) Road region

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25
Log−normal
Rayleigh  
Gaussian  
Histogram 

(c) Left-side region

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25
Log−normal
Rayleigh  
Gaussian  
Histogram 

(d) Right-side region

Figure 6.2.2: Rationale for using log-normal pdf. (a) shows a radar image overlayed with
the correct positions for the left and right pavement boundaries. (b), (c), and
(d) show histograms of the actual radar returns for the three regions – the
road, the left-side and right-side of the road. Also shown in (b), (c), and (d)
are the maximum likelihood fits of the log-normal, Rayleigh, and Gaussian
pdf’s to the radar return histograms.
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� Also let Lrd, Llt, Lrt denote the Cartesian coordinates of the pixels in the road,

left-side and right-side regions, respectively, and(�rd; [�rd]2; N rd), (�lt; [�lt]2; N lt)

and(�rt; [�rt]2; N rt) denote the means, variances and the numbers of pixels of the

corresponding regions.

� Define

� =
�
�rd �lt �rt

�T
;

�2 =
�
[�rd]2 [�lt]2 [�rt]2

�T
;

logZr =
�
log zr1�min

; � � � ; log zr1�max
; log zr2�min

; � � � ;

log zr2�max
; � � � ; log zrN�min

; � � � ; log zrN�max

�T
;

and

�Zr =
Y

(r;�)2L

zrr�

� Finally, letI denote an indicator matrix defined as follows

I =

2
666666664

I(1; 1) I(1; 2) I(1; 3)

I(2; 1) I(2; 2) I(2; 3)
...

I(N; 1) I(N; 2) I(N; 3)

3
777777775

where for everyp such that1 � p � N , if p belongs toj-th region,

I(p; k) =

8><
>:

1; if k = j; k 2 f1; 2; 3g

0; if k 6= j; k 2 f1; 2; 3g

Now (6.7) can be expressed in terms of the above notations:

p(zr j �r) =

2
4 Y
(r;�)2L

1

zrr�

3
5 Y

(r;�)2L

1q
2��2r�

exp

(
�

1

2�2r�
[log zrr� � �r�]

2

)
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=
1
�Zr

Y
(r;�)2Lrd

1p
2�[�rd]2

exp

�
�

1

2[�rd]2
[log zrr� � �rd]2

�

�
Y

(r;�)2Llt

1p
2�[�lt]2

exp

�
�

1

2[�lt]2
[log zrr� � �lt]2

�

�
Y

(r;�)2Lrt

1p
2�[�rt]2

exp

�
�

1

2[�rt]2
[log zrr� � �rt]2

�

=
1
�Zr

1

(2�)N=2kdiag[I �2]k1=2

� exp

�
�
1

2

�
logZr � I �

�T �
diag(I �2)

��1 �
logZr � I �

� �
(6.8)

Given a hypothetical shape of the pavement boundaries,�r, the nuisance parameters�

and�2, corresponding to the means and variances of the three regions, can be empirically

estimated from the observed radar imagezr by a maximum likelihood method. Note

that the likelihood is in a normal form, and so the maximum likelihood and least squares

estimate of the nuisance parameters are equivalent,

�̂ =
�ITI��1 IT logZr

�̂2 =
�ITI��1 IT �logZr � I �̂�T �logZr � I �̂� (6.9)

Substituting these estimates of� and �2 back into (6.8), and taking the logarithm

results in

log p(zrj�r) = �N rd log �̂rd �N lt log �̂lt

�N rt log �̂rt � log �Zr � 1

2
N(1 + log 2�) (6.10)

This result leads to the following interpretation:

Given a hypothetical pavement boundary shape�r, the fidelity of this shape

to the observed radar imagezr is assessed by the sum of the logarithm of the

variances of the observed image over the corresponding three (road, left-side,
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and right-side) regions. The smaller the sum of these variances, the better the

fidelity.

Weighted Log-normal Likelihood

It is indicated in (6.10) that part of the objective is trying to maximizelog p(zrj�r), i.e.,

to minimizeN rd log �̂rd + N lt log �̂lt + N rt log �̂rt, i.e., trying to minimize the standard

deviations, and hence, variances of the three regions. However, in the radar image, it

is clear that the backscatter distribution of the pavement is virtually homogeneous while

the backscatter distributions of the roadsides are much more complicated. Therefore, we

might prefer having an even smaller variance in the road region at the price of having

slightly larger variances in the roadside regions.

In the above method, the variances are weighted proportionately to the number of

pixels in their respective regions. In order for the standard deviation of the road,�̂rd, to

weigh more heavily, in terms of its contribution to the likelihood,N rd would have to be

proportionately large. The same is true for the other two regions as well.

In order to re-enforce oura priori belief that road pixels tend to be homogeneous (at

least compared to the pixels belonging to either side of the road), and to overcome the

undue influence of bright point scatterers in the roadside regions, we propose a new radar

imaging likelihood function that gives the region of the road a different weightwrd from

those given to the roadside regions.

log p(zrj�r) = �wrdN rd log �̂rd �N lt log �̂lt

�N rt log �̂rt � log �Zr � 1

2
N(1 + log 2�) (6.11)

In this report, we will utilize (6.11) as the log-likelihood of radar imaging process in a

Bayesian estimation scheme. To make the representation of radar imaging log-likelihood



119

function concise, we rewrite (6.11) as

log p(zrj�r) = Lr(zr; �r)� cr (6.12)

where

Lr(zr; �r) = � �wrdN rd log �̂rd +N lt log �̂lt +N rt log �̂rt
�

(6.13)

cr = log �Zr +
1

2
N(1 + log 2�) (6.14)

Lr(zr; �r) is the effective matching part of the log-likelihood function whilecr is a constant

for a specified image and thus can be neglected in the estimation process. From now on,

we callLr(zr; �r) as radar matching function.

6.2.2 Optical Imaging Likelihood

In [56] the authors give a fairly robust optical imaging likelihood function. In our work

we make a little modification of their proposed likelihood and describe the imaging like-

lihood based on an energy function, which directly interprets the observed optical image

without regard to how it is formed. The energy function, and hence the likelihood, encodes

the knowledge that the edges of the lane should be near intensity gradients whose orien-

tation should be perpendicular to the lane edge. More specifically, given a hypothetical

parameter set of underlying edges�o = fk0; vp0; b0L; b0Rg, we assume that the likelihood of

observing the optical imageZo is given by

p(zoj�o) = 
(�o) e�E
o(zo;�o) (6.15)

whereEo(zo; �o) denotes an energy function and
(�o) is a normalizing constant for a

given optical deformation parameter set�o,


(�o) =
1R

e�Eo(zo;�o)dzo
(6.16)

The energy functionEo(zo; �o) can be described in the following steps:
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� Define the Cauchy density function

f(�; x)
4
=
�

�

1

1 + �2x2
(6.17)

� Let gm(r; c) be the gradient magnitude at pixel(r; c), with gd(r; c) being the cor-

responding gradient direction. Instead of the observed optical image, the gradient

features are used in the representation of the energy function.

� Define the edges of the lane in the image by the curves:

SL(r; c; �
o)

4
=

k0

r � hz
+ b0L(r � hz) + vp0

SR(r; c; �
o)

4
=

k0

r � hz
+ b0R(r � hz) + vp0 (6.18)

Given these definitions, the energy function of observing an image gradient field given

a set of lane shape parameters�o is

Eo(zo; �o) = Eo(gm; gd; �
o) (6.19)

= �
X
(r;c)

gm(r; c)� f(�m; c� SL(r; c; �
o))

�f(�d; cos(gd(r; c)� atan(
d

dr
SL(r; c; �

o))))

�
X
(r;c)

gm(r; c)� f(�m; c� SR(r; c; �
o))

�f(�d; cos(gd(r; c)� atan(
d

dr
SR(r; c; �

o)))) (6.20)

In other words, the contribution made by a pixel to the energy is the gradient magnitude

at that pixel, multiplied by a function whose value decreases as the pixel column gets

further from the lane edge and a function whose value decreases as the gradient direction

at the pixel becomes less perpendicular to the tangent to the lane edge.

The logarithm of the optical imaging likelihood is

log p(zoj�o) = �Eo(zo; �o) + log 
(�o) (6.21)
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Define the optical matching functionLo(zo; �o) as the negative of the energy function

Eo(zo; �o),

Lo(zo; �o) = �Eo(zo; �o) (6.22)

6.3 Joint MAP Estimate for Lane and Pavement Boundaries

Since the prior distribution of the deformation parameters and the imaging likelihood

functions are available, we shall pose the lane and pavement edge detection problem in

a Bayesian framework. Letzr be a realization of the radar random fieldZr andzo be a

realization of the optical random fieldZo. The optical and radar fusion detection problem

can be solved by the joint MAP estimate

�̂ = f�̂r; �̂og = argmax
�

p (�jzr; zo)

= arg max
f�r;�og

p (�r; �ojzr; zo) (6.23)

According to the Bayes’ rule, we have

�̂ = arg max
f�r;�og

p(zr; zo; �r; �o)

p(zr; zo)
(6.24)

Since the denominatorp(zr; zo) is fixed by the observation, the above formula can be

rewritten as

�̂ = arg max
f�r;�og

p(zr; zo; �r; �o) (6.25)

By the chain rule of conditional probability, we have

p(zr; zo; �r; �o) = p(�r)p(zrj�r)p(�oj�r; zr)p(zoj�o; zr; �r) (6.26)

Given the road shape parameter�r, the lane shape parameter�o is independent of the

radar observationzr, i.e.,

p(�oj�r; zr) = p(�oj�r); (6.27)
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and also given the lane shape parameter�o, the optical observationzo is independent of

the radar observationzr and road shape parameter�r, i.e.,

p(zoj�o; zr; �r) = p(zoj�o) (6.28)

Substituting (6.27) and (6.28) into (6.26), and then substituting (6.26) into (6.25), we

have

�̂ = arg max
f�r;�og

p(�r) p(zrj�r) p(�oj�r) p(zoj�o)

= arg max
f�r;�og

p(�r; �o) p(zrj�r) p(zoj�o) (6.29)

Making use of the logarithm of the density functions, the joint MAP estimate turns to

�̂ = argmax
�

log p(zr; zo; �)

= arg max
f�r;�og

flog p(�r; �o) + log p(zrj�r) + log p(zoj�o)g

= arg max
f�r;�og

flog p(�r; �o) + Lr(zr; �r) + Lo(zo; �o) + 
(�o)g (6.30)

Calculating
(�o) is intractable, as it involves an integration over all the realizations of

Zo (see (6.16)). We will use a relative weighting to compensate for neglecting
(�o).

6.3.1 Empirical MAP

Since
(�o) in (6.30) is intractable, it is impossible to obtain a theoretical estimate for

deformation parameters� based on (6.30). The primary difficulty we met in this edge

detection problem is that for the two imaging likelihood functions, the radar imaging like-

lihood is normalized, while the optical imaging likelihood is not. Instead of computing the

normalizing factor
(�o), we turn to the empirical MAP estimate,

�̂ = arg max
f�r;�og

flog p(�r; �o) + Lr(zr; �r) + � � Lo(zo; �o)g (6.31)

We expect the weighting factor� to play the same role as the normalizing constant
(�o).
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The matching functionsLr(zr; �r) andLo(zo; �o) are relative rather than absolute mea-

sure. This is the root cause of the problem — the matching functions are of different

dynamic ranges within the parameter space of interest. Figure 6.3.4 shows the different

dynamic ranges of the matching functions for an optical and radar image pair shown in

Figure 6.3.3. The dynamic range of the radar matching function is1:4 � 103, while the

dynamic range of the optical matching function is4:5�104. If the two matching functions

are combined without weighting, i.e., let� = 1, then the instant result of the difference in

dynamic ranges is that in most cases, the optical image dominates the joint estimate. Fig-

ure 6.3.5 gives an example of such dominance. Figure 6.3.5(a) shows the lane boundary

detection result when only the optical observation data are used. The erroneously detected

lane boundaries curve too much to the right because the optical data at the far range are not

able to provide sufficient information for the curving of the road. The pavement boundary

detection result shown in Figure 6.3.5(b) is quite correct. However, when we jointly detect

the boundaries with no-weighting fusion algorithm, since the dynamic range of the optical

matching function is much larger than the dynamic range of the radar matching function,

the optical observation data dominate the joint estimate. Even though the the radar data

yield correct curve direction by itself, it cannot correct the wrong curve direction with the

fusion approach (see Figures 6.3.5(c) and (d)).

In order to overcome this inherent deficiency, we scale (using the weight�) one of

the matching functions so that the ranges of variation for the weighted matching functions

are approximately the same. This fixed weight� is empirically derived by examining the

individual matching functions for a (training) set of optical and radar image pairs. Our

extensive experiments seem to indicate that� = 0:01 gives good performance for most

image pairs (Figure6.3.6).
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(a) Optical image (b) Radar image

Figure 6.3.3: A pair of optical and radar images
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Figure 6.3.4: Different dynamic range of the matching functions for optical and radar im-
ages
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method while
� = 1

(d) Pavement edge detection with fusion
method while� = 1

Figure 6.3.5: Wrong edge detection results with fusion method and no-weight scheme
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(a) Lane edge detection (b) Pavement edge detection

Figure 6.3.6: Edge detection by fixed weight scheme

6.3.2 Computation of Empirical MAP Estimate

The problem is one of obtaining the maximum in (6.31). This problem is equivalent

to finding the mode of a six-dimensional density surface. The surface is non-concave with

many local maxima, hence we can not just apply the greedy search algorithms such as

conjugate gradient methods. In our work, we suggest two techniques to find the global

maximum.

6.3.2.1 Multi-resolution Pseudo-Exhaustive Search

Exhaustive search can find the optimal solutions at the cost of unacceptable computa-

tion resources in some optimization problems. For the problem we are considering, ex-

haustive search is not feasible due to the large searching space. Instead, a multi-resolution

pseudo-exhaustive search method is studied, aiming for an acceleration of the matching

process while maintaining the accuracy and robustness of the method. First, we constrain

the parameters in appropriate ranges. Then we select a set of coarse step sizes (coarse grid)
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for the parameters and do the pseudo-exhaustive search to find the maximum of the joint

MAP objective function (6.31). Once this coarse maximum is found, the corresponding

estimated parameters are taken as the center of a finer search procedure with finer step

sizes (finer grid) and smaller ranges of the parameters. Repeat the above step until the

desired parameter grid size is reached.

6.3.2.2 Metropolis Algorithm with Geometric Annealing

Although the multi-resolution pseudo-exhaustive search gives us relatively accurate

solutions, since we have six parameters to estimate, the search procedure is very time con-

suming. To accelerate the maximization procedure, we employ a sub-optimal approach,

the Metropolis algorithm [56] with a geometric annealing schedule [97], to perform this

maximization,

① Seti = 0, and initialize�(0).

② CalculatelogP (zr; zo; �(i)).

③ Pick ~� at random among all the possible parameter values in the neighborhood of

�(i).

④ CalculatelogP (zr; zo; ~�).

⑤ Calculate�(i) = exp
�
logP (zr;zo;~�)�log P (zr;zo;�(i))

T (i)

�
, whereT (i) = Tinit

�
Tfinal
Tinit

� i+1
max iter

.

⑥ Update the curve deformation parameters

�(i+1) =

8>>>>><
>>>>>:

~� if �(i) � 1

~� w.p. �(i) if �(i) < 1

�(i) otherwise

⑦ Set i = i+1 and go to step 2.



128

6.3.3 Performance Comparison

We have applied the proposed multisensor fusion method to jointly detect the lane and

pavement boundaries in registered radar and optical images. We have implemented the

scheme described in previous sections on a data set containing 25 optical and radar image

pairs. These image pairs were acquired under a variety of imaging (light, weather, etc.)

conditions.

Since multiple (optical and radar) sensors provide more information and hence a more

precise interpretation of the sensed environment, the performance of lane and pavement

boundary detection is robust and accurate. To illustrate the advantage of the fusion de-

tection algorithm over the single sensor based algorithm, we also implemented the MAP

estimator described in [68] to detect the pavement boundaries in radar images alone and

applied the LOIS algorithm presented in [56] to locate the lane boundaries using only op-

tical images, and we plot the detection results with both single sensor based and fusion

algorithms together in Figures 6.3.7, 6.3.8, and 6.3.9. In all the plots and for represen-

tative road scenes, the results obtained via independent optical and radar edge detection

algorithms are illustrated in the upper rows, while the results using the fusion method are

shown in the lower rows.

For the optical image shown in Figure 6.3.7(a), the snow line in the right side of the

road dominates the lane boundary detection and thus the single optical image processing

yields erroneous lane boundary detection result. However, the independent radar image

processing succeeds in detecting the pavement boundaries (Figure 6.3.7(b)). In the fusion

framework, since the prior constraints set on the shape parameters require that the lane

boundaries be inside the pavement boundaries, the fusion algorithm corrects the estima-

tion of the lane boundary offset parameters, and thus provides us the accurate lane and

pavement boundary detection (Figures 6.3.7(c) and (d)). In this example, we have shown
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that the radar image improves the lane detection in the optical image.

For the radar image shown in Figure 6.3.8(b), the left side region to the road is also

very homogeneous and serves as a spurious road leading to the wrong pavement detection

using the radar information alone. We declare the pavement detection wrong by looking

at the corresponding optical image — the road should curve to the right instead of curving

to the left. However, the corresponding optical image provides enough information to

yield correct lane detection (Figure 6.3.8(a)). The fusion algorithm, by combining both

radar and optical sensory data, gives satisfactory lane and pavement boundary detection

results (Figures 6.3.8(c) and (d)). This example has demonstrated that the information in

the optical image improves the pavement edge detection in the radar image.

Both examples (Figures 6.3.7 and 6.3.8) indicate that the fusion method outperforms

single sensor based method. We also noticed that fusion does not degrade the performance

of the individual detection results when they are good by themselves (see Figure 6.3.9).

To compare the advantage of the fusion method over the single sensor detection meth-

ods and to appreciate the role of likelihood weighting, we undertake a large experiment.

For the database of 25 optical and radar image pairs referred to earlier, we hand-picked

ground truth and plot the detection errors compared to ground truth in Figures 6.3.10 and

6.3.11. Figure 6.3.10 shows the reduction in detection errors when the two data modalities

are fused, compared to processing them individually. Figure 6.3.11 shows the reduction in

detection errors when the likelihoods are relatively weighted using� = 0:01, compared to

when no weighting is used.



130

(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 6.3.7: Performance comparison of the fusion and single sensor based methods
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 6.3.8: Performance comparison of the fusion and single sensor based methods
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 6.3.9: Performance comparison of the fusion and single sensor based methods
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Figure 6.3.10: Advantage of the fusion method over single sensor based method
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Figure 6.3.11: Advantage of the fixed weighting scheme over no weight scheme
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6.4 Confidence Measure for Parameter Estimate

6.4.1 Objective Confidence Measure

Over the years, lane and pavement detection systems have enjoyed systematic improve-

ments to their performance, including the techniques we just addressed in Chapters V and

VI. There are currently studies underway to compare the performance of several systems

side-by-side, and commercial availability of several such systems is imminent. While this

is indeed a positive development, and a feather in the cap for the intelligent vehicles com-

munity, systematic assessment of the system’s performance is sadly lacking. Compared to

the volume of papers on various systems of lane and pavement detection and tracking the

number of papers that provide frameworks for assessing their performance is miniscule.

In the preceding sections, we solve the simultaneous detection of lane and pavement

boundaries with multisensor fusion approach. Central to the fusion methodology is an

assessment of accuracy (i.e., confidence) of the lane and pavement boundary estimates.

To be specific, let us consider the performance of single sensor based boundary detection

approaches. For some pair of radar and optical images, let�̂
r

be the pavement bound-

ary parameters estimated from the radar image only, and�̂
o

the lane boundary parameters

estimated from the optical image only.�̂
r

and �̂
o

have different degrees of accuracy due

to the different qualities of the original radar and optical images. In order to reflect the

confidence difference between the lane and pavement boundary parameter estimates, dif-

ferent weights (the role� plays in (6.31)) should be imposed on the matching functions,

Lr(zr; �r) andLo(zr; �o), when they are combined in the joint MAP estimate.

SinceLr(zr; �r) andLo(zr; �o) have different dynamic ranges when we vary the shape

parameters�r and�o, it is unfair to compare them directly. To remedy this dilemma, we
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introduce the normalized matching functions

Lrn(z
r; �r) =

Lr(zr; �r)�min�r L
r(zr; �r)

max�r Lr(zr; �r)�min�r Lr(zr; �
r)

(6.32)

Lon(z
o; �o) =

Lo(zo; �o)�min�o Lo(zo; �o)

max�o Lo(zo; �o)�min�o Lo(zo; �o)
(6.33)

For a given radar image, both the subtracting term in the numerator,min�r L
r(zr; �r),

and the constant, and the denominator,max�r L
r(zr; �r)�min�o L

o(zo; �o), are constants.

So for certain parameters�r, the normalized matching functionLrn(z
r; �r) is a monotone

function of the original matching functionLr(zr; �r), i.e.,Lrn(z
r; �r) provides similar fi-

delity of the parameters to the image observation asLr(zr; �r) does, only different in

scales. Same with the optical case. In addition, the normalized matching functions have

identical dynamic range, which is[0; 1]. For these two comparable normalized matching

functions, more weight need to be imposed on the function whose parameter estimates are

more reliable.

In this section, we will address an objective accuracy assessing technique for the pa-

rameter estimates of the lane and pavement boundaries. The idea is to assess the sensitivity

of the normalized matching functions with respect to their shape parameters. To evaluate

the sensitivity of a normalized matching function with respect to a parameter, a common

used methodology would be using the curvature (second derivative) of the normalized

matching function with respect to that parameter. The larger the curvature, the more confi-

dence in that parameter estimate. Then we define the confidence metric for the normalized

matching function as the average curvature among all the shape parameters.

Unfortunately, we do not have the exact likelihood function for the optical imaging

process, instead, what we have is a empirical matching function. For the radar imaging

process, we do have the exact likelihood function. However, since both radar imaging

likelihood function and optical matching function are not explicit in the shape parameters,
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it is impossible to analytically calculate the derivatives. Therefore, we will be satisfied if

we can approximate the curvatures.

6.4.2 Curvature Estimation

Let us utilize an example to illustrate the variation of the normalized matching function

values with respect to each shape parameter. We applied the MAP estimate algorithm

proposed in [68] to the radar image shown in Figure 6.3.9 (a) and obtained the shape

parameter estimateŝ� = fk̂; m̂; b̂L; b̂Rg. In Figure 6.4.12, we plot the cross sections of the

normalized radar matching function surface (Lrn(z
r; �r)) along one of the shape parameters

while setting all other parameters as their best estimates. For example, Figure 6.4.12(a)

shows the normalized matching function values as a function of the parametersk when

setting the other parametersm = m̂; bL = b̂L; bR = b̂R.

Let L(x) denote the normalized matching values as a function of the parameterx

while setting all other parameters to their optimal estimates. Letx̂ denote the optimal

estimate ofx. Suppose4 is the step size ofx when we calculate the normalized matching

function valuesL. Assume that there are2M + 1 normalized matching function values,

Lx̂ = fL(x̂ + i4); i = �M; : : : ;�2;�1; 0; 1; 2; : : : ;Mg, available for the purpose of

calculating the curvature. Then assessing the reliability ofx̂ is to estimate the second

derivative of the normalized matching functionL(x) at the point̂x given the discrete data

setLx̂.

One frequently used numerical approach to estimating the derivatives is using the dif-

ference between adjacent function values to approximate the derivatives. LetL0(x) and

L00(x) denote the first and second derivatives, respectively.

L0(x̂) =
L(x̂ +4)� L(x̂)

4
L0(x̂ +4) =

L(x̂ + 24)� L(x̂ +4)

4
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Figure 6.4.12: Cross sections of the radar normalized matching function with respect to
their pavement shape parameters
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Then

L00(x̂) =
L0(x̂+4)� L0(x̂)

4
=

L(x̂ + 24)� 2L(x̂ +4) + L(x̂)

42
(6.34)

This estimate is quite straightforward and easy to implement, however, since it just

uses three function values to make the estimation, the performance of this estimator is

very sensitive to noise and the choice of the step size4.

We propose using a quadratic curve to approximate the normalized matching func-

tion around the parameter estimate and then we use the curvature of the quadratic curve

as the curvature of the likelihood function. Letfa1;a2(x) = a1(x � x̂)2 + a2 represent

a quadratic curve. And for certain choicesa1 and a2, we calculate the data sequence

fa1;a2;x̂ = ffa1;a2(x̂ + i4); i = �M; : : : ;�2;�1; 0; 1; 2; : : : ;Mg. In order to approxi-

mateL with fa1;a2, we need to minimize the total squared error between sequencesLx̂ and

fa1;a2;x̂ with respect toa1 anda2, while keepingfa1;a2(x) less thanL(x) for anyx,

min
a1;a2

MX
i=�M

[fa1;a2(x̂ + i4)� L(x̂ + i4)]2

s:t: fa1;a2(x) � L(x);

8x 2 fx̂+ i4; i = �M; : : : ;�2;�1; 0; 1; 2; : : : ;Mg (6.35)

The constraints are meant to guaranteea1 < 0.

Solving this constrained optimization problem we get the optimal quadratic curve ap-

proximation with parameterŝa1 and â2. Then�2â2 is taken as the estimated curvature.

An example of this curve approximation is shown in Figure 6.4.13 where the solid curve

is the true normalized matching function while the dashed curve is the quadratic curve

approximation.
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Figure 6.4.13: A cross section of the normalized matching function and its quadratic ap-
proximation

6.4.3 Ill-conditioned Parameter Estimation Problem

We have applied the proposed method to calculate the curvature of the normalized

matching function with respect to each shape parameter. In Tables 6.1 and 6.2, we give

the curvature results for some radar and optical images, respectively. With respective to a

shape parameter, the curvature estimates are in the same order of magnitude for different

images acquired under similar conditions, however, for different shape parameters, even

in the same image, the curvature estimates vary dramatically. For example, in the radar

image “anhinesb”, the curvature estimates with respect tok andbL are1:63�107 and1:11,

respectively. The curvatures’ dramatic difference in the order of magnitudes makes it very

difficult to assess the confidence metric for the normalized matching function because

the largest curvature completely dominates the average of the curvatures. Furthermore, it

also implies that the surface of the objective function varies dramatically in one parameter

while negligible in another parameter, which means that this estimation problem is very

ill-conditioned.
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Image name Curv(k̂) Curv(m̂) Curv(b̂L) Curv(b̂R)

anhinesb 1:63� 107 2555:71 1:11 3:99

anhinesc 1:11� 107 2358:94 5:48 15:32

anhinesg 1:99� 107 2391:72 1:76 9:10

evhines 1:30� 107 2418:19 3:34 3:06

hinesbev 1:48� 107 1950:46 8:82 11:61

Table 6.1: Curvature results for some radar images

Image name Curv(k̂0) Curv(v̂p0) Curv(b̂0L) Curv(b̂0R)

anhinesb 1:07� 10�5 0:02 39:17 642:00

anhinesc 0:71� 10�5 0:02 30:78 455:71

anhinesg 0:58� 10�5 0:01 36:00 497:98

evhines 1:02� 10�5 0:01 9:78 398:15

hinesbev 0:86� 10�5 0:02 38:82 511:61

Table 6.2: Curvature results for some optical images

This ill-conditionedness is due to the inherent shortcomings of this parameterization

scheme. Let us take the model parameters,�r = fk;m; bL; bRg, for the pavement bound-

aries as an example to illustrate why.

� Model parameters are of different units — the curvature parameterk is in units

of inverse length, the orientation parameterm is dimensionless, and the offset pa-

rametersbL andbR are in units of length.

� Model parameters are of different order of magnitudes —the curvature param-

eterk is in the order of10�3, the orientation parameterm is in the order of10�2,

and the offset parametersbL andbR are in the order of101.

� Variations in model parameters result non-uniform shape change —a substan-

tial change in the curvature parameter results in the pavement boundary shape chang-

ing only at distances far away from the host vehicle, while a small change in the

offset parameter leads to a completely different scenario.

The lane boundary parameters,�o = fk0; vp0; b0L; b0Rg, have similar curvature perfor-
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mance as the pavement boundary parameters,�r, and�o have similar pitfalls: first of all,

the model parameters are of different units; and secondly, the model parameters are of

different order of magnitudes; and lastly, variations in the model parameters result non-

uniform shape change.

However, we do notice that the curvature results for lane (pavement) boundary offset

parametersb0L andb0R (bL andbR) are actually comparable (See Tables 6.2) becauseb0L and

b0R have the same physical meaning — offsets, and they are of the same units and of the

same order of magnitudes. The compatibility between the parameters enables us to utilize

curvatures to evaluate the reliability of these parameter estimates. In most optical images

(Figures 6.3.7(a), 6.3.8(a), and 6.3.9(a)), right lane boundaries are much clearer than their

left counterparts. I.e., image observations provide more information on right boundaries

than on the left boundaries. Therefore, the confidence of the matching function,Lon, in

b̂0R, the right lane boundary offset, should be better than the confidence inb̂0L, the left lane

boundary offset. In Table 6.2 we observe that the curvatures of right lane boundary offsets,

Curv(b̂0R), are usually larger than those of right lane boundary offsets, Curv(b̂0L).

The above observation has demonstrated that the proposed confidence measure indeed

assesses the reliability of the parameter’s estimate. Then in order to get rid of the inher-

ent ill conditionedness in parameter estimation for lane and pavement boundary detection

problem, we have to find other shape models whose parameters are compatible. In the next

chapter, we will propose a concentric circular shape model that can overcome the inherent

shortcomings of the parabolic model.



CHAPTER VII

Fusion Algorithm for Lane and Pavement boundary
Detection with Concentric Circular Models

Automated detection of lane and pavement boundaries has been broadly studied by re-

searchers in intelligent transportation. Many state of art systems for detecting and tracking

pavement boundaries usea priori shape models to mathematically describe the appear-

ance of these boundaries. The use of prior shape models allows these systems to reject

false boundaries (such as entry/exit ramps) and also overcome image clutter (shadows)

and occlusion.

Several types of shape models have been employed, and the choice of model is usually

made from the standpoint of accommodating all possible variations (in width, orientation,

curvature, tilt, etc.) of the lane and pavement boundaries relative to the host vehicle. Poly-

nomial (quadratic or cubic) shape models are the ones of choice. Polynomial shape mod-

els have improved the performance of lane and pavement boundary detection and tracking

systems with higher accuracy and better reliability [22, 52, 69, 71] than the conventional

gradient based methods. For example, we utilized quadratic shape models in our joint

lane and pavement boundary detection application and we illustrated promising boundary

detection results in Chapter VI. Unfortunately, as we have shown in the last chapter for a

special case, parabolic shape models, polynomial shape models have inherent pitfalls for

143
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their parameters’ estimation. Due to the parameters’ different units and different dynamic

ranges, the relating estimation problem is usually very ill conditioned.

It is common knowledge that in the United States public highway system lane and

pavement boundaries are laid as concentric circles, at least over small segments. In this

chapter we propose to directly use a circular model to describe the boundaries. Indeed the

polynomial shape models are intended as an approximation to the circular model, but to

our knowledge the circular model itself has never been used before.

7.1 Concentric Circular Models

The field-of-view of a radar image on the ground plane is a cone shaped region with

the apex at the position where the host vehicle stands. For an optical image, its field-

of-view on the ground plane is also cone shaped, but perhaps with a different radius and

azimuth from that of a radar image. Therefore, in our application domain, a typical road

(or lane) scenario can be modeled by an intersection of a cone with two concentric circles

(see Figures 7.1.1 and 7.1.2 for an illustration of road scenes). The cone represents the

field-of-view of the radar (or optical) sensor, and the two circles represent the left and

right pavement (or lane) boundaries.

Let us consider the representation of the pavement boundaries first. Assuming that the

apex of the cone is at the origin(0; 0), we represent the coordinates(x; y) of the pavement

boundaries by circles centered at(xc; yc) with radii a1 anda2, respectively

(x� xc)
2 + (y � yc)

2 = a21;2 ; (7.1)

wherea1 < a2. That is,a1 is always the radius of the smaller circle on which either

the left or right boundary is laid. So in this parameterization, the two boundaries are

not distinguished as left and right. However, given the parametersxc; yc; a1; anda2, it is

easy to tell which radius corresponds to the left boundary — ifxc > 0, then the larger
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Figure 7.1.1: A typical road scenario in a radar image
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Figure 7.1.2: A typical road scenario in a radar image
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radius,a2, corresponds to the left boundary (Figure 7.1.1); otherwise, the smaller radius,

a1, corresponds to the left boundary (Figure 7.1.2). The reason for this parameterization is

the ease of description of the constraints on the parameters. (This issue will be addressed

in later this section.) The parameters�rc = fxc; yc; a1; a2g are capable of representing the

pavement boundaries.

Figure 7.1.1(b) shows the complete plot of the cone and concentric circles, and Fig-

ure 7.1.1(a) gives the segment of the model shown in Figure 7.1.1(b) that corresponds to

the field-of-view of the radar sensor. Similar with Figure 7.1.2.

Similarly, the lane boundaries on the ground plane can be represented as

(x� xc)
2 + (y � yc)

2 = (a01;2)
2 (7.2)

wherea01 anda02 are the radii of the circles that corresponds to the lane boundaries. Then

�oc = fxc; yc; a01; a02g are the shape parameters for lane boundaries on the ground plane.

Note that the lane and pavement boundaries share the same parameters(xc; yc) since they

are concentric circles.

The domain of the radar image is actually the ground plane and (7.1) can be directly

applied to model the shape of pavement boundaries in the radar image.

The domain of the optical image, however, is a perspective projection of the road

scenario on the ground plane, and therefore we need to transform the optical image data

and the lane boundary model onto the same image plane.

There are two possible approaches to accomplish this goal. One is similar to that

technique for the parabolic shape model — apply the perspective projection operator to

the circular shape model (7.2) on the ground plane to obtain a lane boundary shape model

on the image plane. An alternative method is to use (7.2) to describe the lane boundaries

on the ground plane and project the optical image data onto the ground plane with the
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inverse perspective projection. For each pixel with row and column(r; c) in the optical

image plane, its corresponding Cartesian coordinates(x; y) on the ground plane can be

calculated by

y =
h [1� r2f(r � cr)(cr � hz)]

rf(r � hz)

x = cf(c� cc)

s
y2 + h2

1 + r2f(r � cr)2
(7.3)

wherehz is the horizon row,h is the height of the focal point above the ground plane,rf

is the height of a pixel on the image plane divided by the focal length,cf is the width of

a pixel on the image plane divided by the focal length, andcc andcr are one half of the

numbers of columns and rows, respectively.

Note that in the second approach mentioned above, the parameters of the lane bound-

aries,fxc; yc; a01; a02g, have the same physical units (namely, units of length) and properties

as the parameters of the pavement boundaries,fxc; yc; a1; a2g. This is a desirable charac-

teristic to ensure unit compatibility in the fusion algorithm. Therefore, we will take the

second approach, i.e., we project the optical image onto the ground plane and employ (7.2)

as the lane boundary representation. For the purpose of conciseness, during further algo-

rithm derivation for lane boundary detection, the optical image is referred to the projected

optical image on the ground plane.

We have shape parameters�rc = fxc; yc; a1; a2g for the pavement boundaries and

�oc = fxc; yc; a01; a02g for the lane boundaries. Let�c = f�rc; �ocg = fxc; yc; a1; a2; a01; a02g

denote the complete parameter set for the circular shape models. Also for further study

and comparison, let�rq = fk;m; b1; b2g and�oq = fk0; vp0; b01; b02g denote the parameters

for the parabolic models addressed in Chapter VI. Similarly, define�q = f�rq; �oqg =

fk;m; b1; b2; b01; b02g. Note that we exclude the parametersk0 andvp0 in this parameter set

because they can be calculated from the parametersk andm (6.3).
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There are a number of advantages of the new parameterization over the previous

one. First of all, the new model better reflects the road shape of the real world. Cir-

cular shape models exactly describe the road boundaries, while parabolic shape models

only approximate the road boundaries. For the circular shape model, the six parameters

xc; yc; a1; a2; a
0
1anda02 have the same units – that of length. In addition, the ranges of feasi-

ble values for them have the same order of magnitude. On the contrary, as we mentioned at

the end of the previous chapter, the parametersk;m; bL; bR; b
0
L; andb0R have different units

and different dynamic ranges. We also observe that for both shape models, the number of

parameters are the same, or in other words neither model is more complex to describe than

the other.

What sets the models apart are the constraints on�cand�q which are imposed to satisfy

in order to result in a “feasible” pair of left and right lane and pavement boundaries. In the

quadratic case, the feasibility region is a hypercube with respect to the model parameters

fk;m; bL; bR; b0L; b0Rg. In the circular model, the feasibility region is not so simple. The

feasibility region has the following restrictions:

① The two circles corresponding to the pavement boundaries must intersect the cone.

That is, the cone cannot be totally inside the inner circle, neither can it be outside

the outer circle (see Figure 7.1.31). The constraint on the model parameters is

a1 � p1 � x2c + y2c � a2 + p2 (7.4)

wherep1 andp2 are two appropriately selected positive numbers that will allow the

corresponding pavement boundaries to both be offset to either the left or the right of

the origin for extreme cases. Of course, the left boundary can be offset to the left of

the origin, and the right boundary to its right.
1The plots in Figures 7.1.3 and 7.1.4 only demonstrate the relationship between the circles and the cone.

In order to make the plots easily readable, we enlarged the size of the cone and the width of the road, while
decreased the size of the circles.
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Figure 7.1.3: Cases where circles do not intersect the cone

② The image data are acquired under the assumption that the host vehicle is still within

the road (or at least the shoulder). As such, the cases shown in Figure 7.1.4 are not

realistic as they correspond to scenarios when the host vehicle is entirely off the

road. The corresponding constraint on the model parameters is

�min � atan

�
yc
xc

�
� �max (7.5)

③ The lane should be positioned inside the road region, i.e., the two circles on which

the lane boundaries are laid are between the two circles on which the pavement

boundaries are laid.

a1 < a01 < a02 < a2; (7.6)

④ Finally, the road width has to be within minimum and maximum limits,

Wmin � a2 � a1 � Wmax (7.7)

Similarly, there are upper and lower limits for the lane width,

W 0
min � a02 � a01 � W 0

max (7.8)
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Figure 7.1.4: Cases where circles intersect the cone in an infeasible way

The shape model (7.1) and the constraints (7.4), (7.5), (7.6) (7.7), and (7.8) constitute

the prior knowledge regarding pavement boundaries. This results in a so-called prior pdf:

P (�c) =
1


c
� I[a1�p1;a2+p2](x2c + y2c ) � I[�min;�max]

�
atan

�
yc
xc

��

� I[Wmin;Wmax](a2 � a1) � I[W 0

min;W
0

max](a
0
2 � a01)

� I[a1;a02](a01) � I[a01;a2](a02) (7.9)

where
c is a normalizing constant andIA(x) is an indicator function,

IA(x) =

8><
>:

1; if x 2 A

0; otherwise

This prior pdf is empirically derived, and it is simply a uniform distribution over the space

of feasible model parameters, and zero elsewhere.

7.2 Decoupling of The Parameterization

It is obvious that the road width has both upper and lower bounds (see constraint (7.5))

and the lane should be located between the pavement boundaries(see constraint (7.6)).
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Therefore, the four radius parameters,a1; a2; a
0
1 anda02, are highly correlated. The apex

of the cone, where the host vehicle is located, is inside the road, at least on the shoulder.

Therefore,xc andyc are constrained by the parametersa1 anda2 (see constraint (7.4)). The

dependence among the parameters makes the parameter constraints very complicated, as

we have seen in (7.9). And more critically, the dependence among the parameters makes

the estimation problem more difficult.

As a remedy to the difficulty caused by the parameterization, we propose an alternative

parameter set to describe the boundaries. The objective of this new parameterization is to

remove the high correlation among the shape parameters.

We remove the dependence among the pavement boundary parameters first. Instead

of using correlated parametersa1 anda2, we propose to use parametersa1 andw2, the

distance between the left and right pavement boundaries. And to eliminate the dependence

betweena1 andxc, we replacexc with x0c, the horizontal coordinate of the intersection

point of the circle with radiusa1 and the line segment passing the circle center and parallel

to thex axis. Figure 7.2.5 illustrates the new parameter set with right curved pavement

boundaries. In this case, the center is to the right of the circles. The right pavement

boundary corresponds to the circle with radiusa1. C is the center of the circles.CA is a

line segment parallel to thex axis and passing through the pointC. A is the intersection

of the line segmentCA and the circle with radiusa1. Then the Cartesian coordinates ofA

are(x0c; yc), and

xc = x0c + a1: (7.10)

The radius of the left boundary,a2, can be represented by the sum of the radius of the

right boundary,a1, and the distance between the two boundaries,w2.

a2 = a1 + w2 (7.11)
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Figure 7.2.5: Reparameterization for the case where the center is to the left of the road

Figure 7.2.6 shows left curved boundaries. In this case, the center is to the left of the

circles and the left pavement boundary corresponds to the circle with radiusa1. Let CA

still be the line segment parallel to thex axis connecting two points,C andA. Then (7.11)

holds for this case, too. AndA’s coordinates(x0c; yc) satisfies

xc = x0c � a1 (7.12)

In order to unify (7.10) and (7.12) we define a new parametera as

a =

8><
>:

a1; if the center is to the right of the boundaries,

�a1; otherwise:
(7.13)

In other words, the magnitude ofa is the radius value of the smaller circle, and the sign of

a depends on the relative position of the center and the boundaries. Then it is immediate

to geta1 givena,

a1 = jaj (7.14)
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Figure 7.2.6: Reparameterization for the case where the center is to the right of the road
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With this new parametera, rewriting (7.10) and (7.12) in a united form,

xc = x0c + a: (7.15)

And with (7.13), (7.11) is rewritten as

a2 = w2 + jaj (7.16)

Define the new pavement shape parameters as�rc = fa; w2; x
0
c; ycg, the previous pa-

rametersfa1; a2; xc; ycg can be easily calculated with the relationships (7.14), (7.16), and

(7.15). That is,fa; w2; x
0
c; ycg are capable of representing the pavement boundaries and

they are independent of each other.

To eliminate the dependence among the lane shape parametersfa01; a02; xc; ycg, a simi-

lar decoupling technique is applied. The new lane shape parameters�oc = fa0; w0
2; x

0
c; ycg

satisfying

a0 =

8><
>:

a01; if the center is to the right of the boundaries,

�a01; otherwise:
(7.17)

w0
2 = a02 � ja0j (7.18)

x0c = xc � a0 (7.19)

In the fusion framework, we could easily define the joint shape parameters�c =

f�rc; �ocg = fa; w2; a
0; w0

2; x
0
c; ycg. But in this parameterization, the lane and pavement

boundariesa anda0 are coupled, which is not a desirable property. To remove this remain-

ing dependence, we propose a unified parameter set for both lane and pavement bound-

aries.

In Figure 7.2.7, we illustrate the unified shape parametersfa; w2; w
0
1; w

0
2; x

0
c; ycg for

both lane and pavement boundaries. In this plot, the solid curves represent the pavement



155

boundaries and the dashed curves represent the lane boundaries. For this parameter set,a

is defined by (7.13). The distance parametersw2; w
0
1; andw0

2 satisfying

a2 = w2 + jaj (7.20)

a01 = w0
1 + jaj (7.21)

a02 = w0
2 + jaj (7.22)

And thex coordinate of the circle center is determined by (7.15).

y

xO

a

A : (x0c; yc)
C : (xc; yc)w2

w0
1

w0
2

Figure 7.2.7: Unified parameterization for both lane and pavement boundaries

The parametersfa; w2; w
0
1; w

0
2; x

0
c; ycg are able to represent the lane and pavement

boundaries and they are independent from each other. In our fusion algorithm, we pro-

pose to use this parameterization to describe the prior information on the boundaries. Let

us define�c = fa; w2; w
0
1; w

0
2; x

0
c; ycg. The constraints on�c can be easily derived from the
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previous constraints onfa1; a2; a01; a02; xc; ycg as follows

P (�c) =
1


c
� I[jaj�p1;jaj+w2+p2]((a + x0c)

2 + y2c ) � I[�min;�max]

�
atan

�
yc

a+ x0c

��

� I[Wmin;Wmax](w2) � I[W 0

min;W
0

max](w
0
2 � w0

1) � I[0;w0

2]
(w0

1) � I[w0

1;w2](w
0
2)

(7.23)

where
c is a normalizing constant.

7.3 Imaging Likelihoods

We have seen that in the fusion algorithm presented in Chapter VI, the joint MAP es-

timation is approximated by an ad hoc empirical parameter estimation. The root cause for

this approximation is that the optical and radar matching functions are not compatible and

different weights have to be imposed on them when they are combined in the fusion frame-

work. Although the radar imaging process is represented with a log-normal density, the

optical imaging process is described with an empirical likelihood function, which makes

it impossible to theoretically derive the weights.

To avoid the ad hoc approximation of the joint MAP estimation, we propose to use real

probability densities to represent both the radar and optical imaging processes in this chap-

ter, and hence no weighting scheme is needed in this newly proposed fusion algorithm.

7.3.1 Radar Imaging Likelihood

In Chapter VI we presented a log-normal pdf as a model for the radar imaging process.

With the circular shape parameters, we will evaluate (6.7) as the radar likelihood function

and (6.13) as the radar matching function. In order to be consistent with other symbols in

this chapter, we rewrite the likelihood and matching functions as

p(zr j �rc) =
Y

(r;�)2L

1

zrr�

q
2��2

r�(�
r
c)

exp

(
� 1

2�2
r�(�

r
c)

�
log zrr� � �r�(�

r
c)
�2)

(7.24)
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and

Lrc(z
r; �rc) = � �wrdN rd log �̂rd +N lt log �̂lt +N rt log �̂rt

�
(7.25)

7.3.2 Optical Imaging Likelihood

In Section 6.2.2 we utilized an empirical likelihood function (6.15) to describe the opti-

cal imaging process. Since this likelihood function involves a computationally intractable

normalizing constant,
(�oq), it becomes a major obstacle in the fusion procedure (6.30).

The value of
(�oq) effectively determined different weightings of the two matching func-

tions,Lo(zo; �oq) andLr(zr; �rq). (In (6.31),� introduces a different weight on the optical

matching function.) Since there is no analytical approach to derive the weight�, we ex-

perimentally determine the value of� by trying different weights on a training set of a

large number of radar and optical image pairs. This trial-and-error approach of choosing

the weight value is not only inaccurate but also time consuming. Since the root cause of

the weighting scheme is that the optical imaging likelihood function is not normalized,

to avoid this dilemma we propose propose a normalized Gaussian density to describe the

optical imaging process.

Given boundary shape parameters�oc, we assume that the optical image gradient magni-

tudeGm is the ideal gradient magnitudeS(�oc) contaminated with additive white Gaussian

noiseW o,

Gm = S(�oc) +W o; (7.26)

whereW o are i.i.d. Gaussian random variables with mean0 and unknown variance�2,

and whereS(�oc) is a tapered/spike function image with unknown height. Thus the optical

imaging process can be modeled by the conditional probability of the optical random field
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Zo taking a realizationzo, which is a Gaussian pdf,

p(zoj�oc) =
Y
(x;y)

1p
2��2

exp

�
� 1

2�2
[gm(x; y)� s(�oc; x; y)]

2

�
(7.27)

To better explain the tapered image, let us define a spike function

f(�; d)
4
=

1

1 + �d2
; (7.28)

where� is a smoothing constant which controls the effective width of the spike function.

Then the intensity value of the tapered imageS(�oc) at the pixel(x; y), s(�oc; x; y), can be

written as

s(�oc; x; y) = A f(�; d1(x; y)) + A f(�; d2(x; y)) (7.29)

whereA is the unknown height andd1 andd2 are the distances from the pixel(x; y) to the

left and right lane boundaries, respectively.

Substituting (7.29) back to (7.27), we have the optical imaging likelihood function

p(zoj�oc) =
Y
(x;y)

1p
2��2

exp

�
� 1

2�2
[gm(x; y)� Af(�; d1(x; y))� Af(�; d2(x; y))]

2

�

=
1

(
p
2��2)N

exp

8<
:� 1

2�2

X
(x;y)

[gm(x; y)� Af(�; d1(x; y))� Af(�; d2(x; y))]
2

9=
;

(7.30)

One thing worth mentioning is how to computed1(x; y) andd2(x; y) for a given pixel

(x; y). In Figure 7.3.8,C is the center of the concentric circles, andP is a point with

Cartesian coordinates(x; y) in the field-of-view of the optical image.CP is a line segment

connecting PointsC andP . PointA is the intersection of the right lane and the extension

of CP . SinceCA is the radius of the circle corresponding to the right lane boundary,CA

is perpendicular to the tangent of the lane boundary. Thus, the length ofPA is the distance
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from the pointP to the right lane boundary, i.e.,

d1(x; y) = kPAk = jkCAk � kPAkj = ja01 � d0j

= ja01 �
p

(x� xc)2 + (y � yc)2j

= jja0j+ w0
1 �

p
(x� x0c � a)2 + (y � yc)2j

(7.31)

y

x

C : (xc; yc)

d0

d1(x; y)
P : (x; y)A

O

Figure 7.3.8: An ideal lane scenario on the ground plane

In (7.30), the nuisance parametersA and�2, corresponding to the maximum value of

the gradient magnitude of the ideal lane boundaries and variance of the additive Gaussian

noise, can be empirically estimated from the observed optical imagezo by maximum like-

lihood. Since the likelihood function is a normal distribution, the maximum likelihood and

least squares estimate of the nuisance parameters are equivalent,

Â =

P
(x;y) gm(x; y)[f(�; d1(x; y)) + f(�; d2(x; y))]P

(x;y)[f(�; d1(x; y)) + f(�; d2(x; y)]2
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�̂2 =
1

N

X
(x;y)

[gm(x; y)� Âf(�; d1(x; y))� Âf(�; d2(x; y))]
2 (7.32)

Substituting these estimates ofA and�2 back into (7.30), and taking the logarithm

results in

log p(zoj�oc) = �N
2
log(2�)� N

2
log �̂2 +

N

2
logN � N

2
; (7.33)

whereN is the number of pixels in the optical image, and hence is a constant regardless of

different lane boundary parameters. Therefore, the important term in this log-likelihood

function is�N
2
log �̂2, i.e., given a hypothetical lane boundary parameters�oc, the fidelity of

the hypothesized boundary to the observed optical imagezo is evaluated by the logarithm

of the error residual between the model and the observed image. A smaller residual gives

better fidelity in the sense of better (higher) likelihood of the model. Define the optical

matching function as

Loc(z
o; �oc) = �N

2
log �̂2: (7.34)

7.4 Joint MAP Estimate for Lane and Pavement Boundaries

Since the prior distribution of the deformation parameters and the imaging likelihood

functions are available, we shall pose the lane and pavement edge detection problem in a

Bayesian framework. Givenzr as a realization of the radar random fieldZr andzo as a

realization of the optical random fieldZo, the lane and pavement boundary detection with

fusion technique can be solved by the joint MAP estimate

�̂c = f�̂c
r
; �̂

o

cg = argmax
�c

p (�cjzr; zo)

= arg max
f�rc ;�

o
cg
p (�rc; �

o
cjzr; zo)

= arg max
f�rc ;�

o
cg
p(�rc; �

o
c) p(z

rj�rc) p(zoj�oc) (7.35)

The derivation of (7.35) follows exactly the same steps as the derivation of (6.29).
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Taking logarithm of the objective function, the joint MAP estimate turns to

�̂c = arg max
f�rc ;�

o
cg
flog p(�rc; �oc) + log p(zrj�rc) + log p(zoj�oc)g

= arg max
f�rc ;�

o
cg
flog p(�rc; �oc) + Lrc(z

r; �rc) + Loc(z
o; �oc)g (7.36)

We have seen that the main obstacle in the fusion algorithm proposed in Chapter VI

is how to weighting the radar and optical matching functions. The root cause for this

weighting scheme is due to the dramatically different dynamic ranges of two different

matching functions. In Chapter VI, we only got an empirical solution by experimentally

choosing the weighting constant� in (6.31).

In the fusion algorithm presented above in Equation (7.36), the radar imaging like-

lihood is modeled as a log-normal pdf and optical imaging likelihood is described by

a Gaussian density. Since both likelihood functions are normalized probability density

functions, they are compatible. Then the effective parts of the logarithm of the imaging

likelihood functions, i.e., the radar and optical matching functions should have well be-

haved dynamic ranges. For the optical and radar image pair shown in Figure 6.3.3, the

dynamic ranges of the optical and radar matching functions are1:38� 104 and3:20� 103,

respectively. Since the optical image has higher resolution than the radar image, the op-

tical imaging log-likelihood tends to be more discriminative than the radar imaging log-

likelihood in a well illuminated environment. Therefore, the two dynamic ranges are ac-

tually compatible. And hence in this fusion algorithm we do not have to worry about the

different weightings on the matching functions,Lrc(z
r; �rc) andLoc(z

o; �oc).

In Figure 7.4.9, we show the lane and pavement boundary detection results with single

sensor based detection algorithms and the proposed joint MAP estimate method (7.36).

We observe that the lane boundary detection result shown in Figure 7.4.9(a) is not right

but the pavement boundary detection result shown in Figure 7.4.9(b) is correct, and that
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the fusion algorithm yield the correct joint boundary detection (Figures 7.4.9(c) and (d)).

That is, the optical image does not dominate the parameter estimation in fusion process. In

the parabolic shape model case, the optical image does dominate the parameter estimation

in fusion process (see Figure 6.3.5).

(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection (d) Pavement edge detection

Figure 7.4.9: Boundary detection results with fusion method
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7.5 Experimental Results

We have implemented the proposed joint boundary detection algorithm to locate lane

and pavement boundaries in registered optical and radar images. In the implementation,

the boundary appearance is described by concentric circular shape models. We have car-

ried out three categories of experiments in our boundary detection effort.

① Detect lane boundaries using the optical image alone. MAP estimation algorithm is

employed to detect the lane boundaries in the optical image where the circular shape

template with its parameters’ distribution plays the role of thea priori information

and the optical imaging process (7.30) plays the role of the likelihood function.

② Detect pavement boundaries using the radar image alone. MAP estimation algo-

rithm [70] is employed to detect the pavement boundaries in the radar image. In the

MAP estimator, the circular shape template and its parameters’ distribution serve as

thea priori information and the radar imaging process (7.24) serves as the likelihood

function.

③ Jointly detect lane and pavement boundaries with fusion approach (7.36) using infor-

mation from both optical and radar images. In this fusion approach, circular shape

models are utilized to describe the lane and pavement boundaries, and the Gaussian

and log-normal densities are employed to represent the optical and radar imaging

likelihood functions.

In Figure 7.5.10 we show the detection results obtained with the above three methods

for a pair of optical and radar images, both of good quality. Figure 7.5.10(a) shows the

detected lane boundaries in the optical image and Figure 7.5.10(b) shows the detected

pavement boundaries in the radar image. Both of them are quite satisfactory. This is due
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to the fact that both the optical and radar images are of high quality and each of them

provides enough information for the boundary detection. Figures 7.5.10(c) and (d) show

the boundary detection results using the proposed fusion approach. And we observe that

the fusion algorithm does not degrade the boundary detection performance compared to

that of single sensor based algorithms when both the optical and radar images are of good

quality.

In Figure 7.5.11 we show the detection results for a pair of optical and radar images

of different qualities. The optical image is degraded by the presence of snow. Wrong

lane boundary detection result is obtained when only the optical image is used (Fig-

ure 7.5.11(a)). However, the radar image still offers sufficient information to correctly

detect the pavement boundaries (Figure 7.5.11(b)). In the fusion approach, since we

make use of information from both optical and radar sensors to jointly detect the lane and

pavement boundaries, the radar image helps the lane detection in the optical images (Fig-

ures 7.5.11(c) and (d)).

In Figure 7.5.12 we show the detection results for a pair of fair-quality optical and

bad-quality radar images. The single sensor based algorithms do not operate well in either

lane or pavement boundary detection. Figure 7.5.12(a) gives the lane detection result in

the optical image. The traffic sign to the right of the road misleads the detected bound-

aries curving to the left. In Figure 7.5.12(b), a homogeneous region to the left of the road

results in wrong pavement boundary detection. Information from both optical and radar

images is explored in the fusion approach and the redundancy, diversity and complemen-

tarity between the optical and radar sensors significantly improve the boundary detection

performance. In Figures 7.5.12(c) and (d), we show that satisfactory results have been

achieved with the joint boundary detection algorithm.



165

(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 7.5.10: Performance comparison of the fusion and single sensor based methods
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 7.5.11: Performance comparison of the fusion and single sensor based methods
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 7.5.12: Performance comparison of the fusion and single sensor based methods
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All the examples have demonstrated that circular shape models and the newly formu-

lated radar and optical likelihoods are indeed successful in detecting lane and pavement

boundaries. And the proposed fusion algorithm improves the boundary detection perfor-

mance when either the optical or the radar image is unable to provide sufficient information

by itself. We note that the proposed fusion algorithm does not degrade the performance of

the individual detection results when they are good by themselves.

In chapter VI, the fusion algorithm suffers from the non-compatibility of optical and

radar matching functions, whose main cause is that the optical imaging process is modeled

by a non-normalized pdf. To compensate the different dynamic ranges of the two matching

functions, an empirically selected weight (� in (6.31)) is imposed on the optical matching

function when it combines with the radar matching function in the fusion process. Since

the weight is not analytically derived, it is not a perfect number that completely reflects

the difference between the two matching functions.

On the contrary, the joint MAP estimator proposed in this chapter overcomes this dif-

ficulty by modeling optical imaging process with a Gaussian pdf. Then in the fusion

setting we have two normalized pdf’s and the sum of their logarithms is naturally derived

from the basic MAP formulation. Therefore, no more fancy weighting scheme needs to

be introduced into this fusion work. And most importantly, since no empirical numbers

are involved in the parameters’ estimation, this algorithm yields more accurate boundary

detection.

Another merit of the fusion algorithm proposed in this chapter is that it adopts circular

shape models instead of parabolic shape models to better reflect the road scenes in the real

world.

To compare the improvement of the fusion algorithm proposed in this chapter over the

fusion algorithm described in chapter VI, we applied both algorithms to the database of 25
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optical and radar image pairs referred earlier. The detection errors are plot in Figure 7.5.13.

The fusion algorithm proposed in this chapter is labeled as “Circular model” and the fu-

sion algorithm described in chapter VI is label as “Parabolic model” in this plot. Both Fig-

ures 7.5.13(a) and (b) demonstrate that the circular model fusion algorithm outperforms

the parabolic model fusion algorithm in detecting the lane and pavement boundaries.

As we have stated at the beginning of this chapter, the circular shape parameters,

fa1; a2; xc; ycg for pavement boundaries andfa01; a02; xc; ycg for lane boundaries, possess

a number of advantages over the parabolic shape parameters. The circular shape parame-

ters are of the same units and the same order of magnitude for the dynamic ranges. And

the variation of any parameter uniformly affects the boundary appearance. An immedi-

ate implication from these merits is that the confidence measures defined in Chapter 6.4

shall have a desired property for parameter estimation — different parameters’ confidence

measure should be compatible.

We take the pavement boundary model as an example to illustrate the compatible con-

fidence measures. We know that the two parameter setsfa; w2; x
0
c; ycg andfa1; a2; xc; ycg

are equivalent in representing the boundaries, and the former parameter set is a decoupled

version of the latter one. So the sensitivity of the matching function with respect to the

decoupled parameters is more of our concern in the context of parameter estimation. In

Tables 7.1 and 7.2 we gave the curvature results for some radar and optical images, re-

spectively. From Table 7.1 we observe that the curvatures for different shape parameters

are in the same order of magnitude, which leads the parameter estimation a much bet-

ter conditioned problem than the parameter estimation problem for the parabolic shape

models.

In each radar or optical image, the curvature ofyc, the circle center’s vertical coordi-

nate, is smaller than all other curvatures, which means that the radar or optical matching
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Figure 7.5.13: Performance comparison of fusion algorithms
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Image name Curv(â) Curv(ŵ2) Curv(x̂0c) Curv(ŷc)

anhinesb 9:49� 10�3 9:43� 10�3 1:35� 10�3 0:44� 10�3

anhinesc 9:12� 10�3 8:53� 10�3 1:42� 10�3 0:56� 10�3

anhinesg 8:77� 10�3 7:71� 10�3 0:75� 10�3 0:55� 10�3

evhines 8:09� 10�3 7:35� 10�3 1:38� 10�3 0:47� 10�3

hinesbev 8:11� 10�3 8:14� 10�3 1:06� 10�3 0:47� 10�3

Table 7.1: Curvature results for some radar images with circular shape models

Image name Curv(â0) Curv(ŵ0
2) Curv(x̂0c) Curv(ŷc)

anhinesb 4:17� 10�2 1:34� 10�2 2:96� 10�2 0:03� 10�2

anhinesc 4:18� 10�2 1:16� 10�2 2:30� 10�2 0:01� 10�2

anhinesg 1:46� 10�2 11:46�10�2 3:93� 10�2 0:34� 10�2

evhines 1:89� 10�2 3:73� 10�2 2:38� 10�2 0:04� 10�2

hinesbev 4:61� 10�2 1:40� 10�2 3:78� 10�2 0:01� 10�2

Table 7.2: Curvature results for some optical images with circular shape models

function is not so sensitive with the parameteryc as with other parameters. This coincides

with our knowledge that changingyc a little bit will not change the whole road scenario in

our field of view.

In most radar images, observation data near the left pavement boundary behave simi-

larly as those near the right boundary. Thus the sensitivities of the matching function to

both left and right pavement boundaries are very close. That is, the confidence measure

values for parametersa andw2 shall be very close. In Table 7.1, the curvature results for

a andw2 have successfully justified that this is the case.

On the contrary, in optical images, the left and right lane boundaries are of different

qualities due to their different distances from the camera. In Figure 7.5.14 we show two

different optical images with their boundary detection results. The two images are called

“anhinesb”(Figure 7.5.14(a)) and “anhinesg”(Figure 7.5.14(b)), respectively. In both im-

ages, the right lane boundaries are closer to the camera and hence they have higher res-

olution than the left ones. In Image “anhinesb” the right lane is laid on the circle with

the smaller radius, and thus the parametera corresponds to the right boundary and the
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parameterw2 corresponds to the left boundary. Therefore, the confidence measure fora

is considerably larger than that forw2 (the first row in Table 7.2). In Image “anhinesg”

the left lane is laid on the circle with the smaller radius. Thusa corresponds to the left

boundary andw2 corresponds to the right boundary. So the confidence measure fora is

considerably smaller than that forw2 (the third row in Table 7.2).

(a) anhinesb (b) anhinesg

Figure 7.5.14: Examples to show what confidence measure indicates

With experiments on real data we have shown the advantages of circular shape models

over parabolic models. In circular shape models, the parameters are compatible with each

other and their confidence measures indeed indicate the confidence of the parameters’

estimates.

7.6 Conclusions

In this chapter we have proposed a new type of deformable templates to describe the

lane and pavement boundaries — concentric circular shape model. Since the US high-

way systems actually laid the lane and pavement boundaries on concentric circles, circular

shape models are better choices than their polynomial approximations. With experiments
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we have shown the advantages of this new parameterization over polynomial models. Pos-

sessing the same unit, the same order of magnitude, similar confidence measures of their

estimates, the circular shape parameters result in a much better conditioned parameter

estimation problem.

In this new fusion algorithm we also have adopted a Gaussian pdf to model the optical

imaging process. Since only normalized pdf’s are involved in the joint MAP estimator, no

weighting scheme is necessary to compensate the difference between matching functions

as occurred in the boundary detection algorithm presented in Chapter VI. Without any

experimentally selected weight, our experiments have shown that this fusion algorithm

yields more accurate and robust lane and pavement boundary detection results than the

algorithm which uses the empirical imaging likelihood function (Chapter VI).



CHAPTER VIII

Summary and Future Work for Boundary Detection

8.1 Summary

Part of this dissertation work concentrates on simultaneous lane and pavement bound-

ary detection using optical and radar sensors mounted on the host vehicle. In our work,

the lane and pavement boundaries are represented by deformable templates and thus the

boundary detection becomes a problem of estimating the shape parameters. We model

the optical and radar imaging processes with likelihood functions. Then the boundary de-

tection problem is set in a Bayesian framework and joint maximuma posteriorimethod

is employed to estimate the shape parameters for both lane and pavement boundaries.

Since the fusion method makes most of the information from both optical and radar im-

ages, it yields more accurate and reliable boundary detection results than the separate

lane/pavement boundary detection algorithms.

We investigated two boundary shape models — parabolic and circular shape mod-

els. Parabolic shape models have been used in previous separate lane/pavement bound-

ary detection algorithms and they can capture the basic characteristic of the boundary

shapes within the field-of-view of the sensors. However, due to the incompatibility of

the parabolic shape parameters, the boundary parameters’ estimation is inevitably an ill

conditioned problem. on the contrary, circular shape models better represent the lane and

174
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pavement boundaries in the US highway system since the highways are constructed based

on the concentric circular models. We have proposed this never used circular shape mod-

els for our boundary detection algorithm and obtained much better conditioned estimation

problems than parabolic shape models due to the same unit and same order of magnitude

of the circular shape parameters.

In our previous work on pavement boundary detection algorithm using radar images

alone, we proposed to employ a log-normal pdf to describe the radar imaging likelihood

function [68]. In their work on lane boundary detection using optical images alone, Kluge

and Lakshmanan presented an empirical matching function to describe the fidelity of the

observation data to certain shape parameters. To take advantage of the previous work,

we employ the log-normal pdf and the empirical matching function to describe the radar

and optical imaging likelihood functions in our first effort in fusing information from both

radar and optical images to simultaneously detect the lane and pavement boundaries. But

since the optical imaging matching function is not a normalized pdf, the radar and optical

likelihood functions are of different dynamic ranges and different weights must be applied

to them. We experimentally choose the weights and in most cases the fusion algorithm

yields satisfactory detection results.

Since experimentally choosing the weights on two imaging likelihoods is not only

inaccurate but also time consuming, we have proposed a Gaussian pdf to describe the

optical imaging process. With the log-normal pdf describing the radar imaging process, we

have two normalized pdf’s for the imaging likelihood functions and no different weights

are necessary in the process of fusion. We have proposed an alternative fusion algorithm

where circular shape models play the role ofa priori information on the lane and pavement

boundaries and the Gaussian and log-normal pdf’s play the role of imaging likelihood

functions. Joint MAP method is also applied to estimate the shape parameters and better
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detection results are achieved than the first fusion algorithm.

8.2 Future Work

Although circular shape models better describe the boundaries and give more accurate

detection results, it has problems in representing straight lane and pavement boundaries.

The radii of the concentric circles are infinity for straight boundaries and theoretically, our

detection algorithms are unable to handle such situations. In our implementation of the

proposed detection algorithms, we use very large radii to approximate the infinite radii and

the results are quite satisfactory in our experiments. To improve the detection results for

straight boundaries, we can adopt a detection algorithm using two shape models to describe

the boundaries. The two shape models are linear and circular models. The boundary

detection algorithm operates as follows: First, detect the lane and pavement boundaries

with the linear model; Second, with the estimated parameters of the linear model as the

initialization, detect the boundaries with the circular shape model. Finally, compare the

residual errors of the detection results with linear and circular models, the detection result

with the smaller residual error is the optimal detection results that we are looking for.

Another direction for this boundary detection problem is to take into account the dif-

ferent resolutions of the pixels in the optical (radar) image at near and far ranges. It is

obvious that the observation data at the near range have higher resolutions than the ob-

servation data at the far range. If we apply different and appropriate weights on the data

at different distances from the host vehicle so that it can take advantage of the resolution

difference, then the detection results should not be misled by some noise points at the far

range and yield erroneous detection results.
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APPENDIX

Proof of Convergence Rates of MST Length Functionals
for Non-uniform Samples

Before we start deriving the rate of convergence of MST length functionalsL of i.i.d. non-

uniform random vectorsX1; X2; : : : ; Xn in [0; 1]d, we shall give some properties that are

critical in the derivation. LetF be a finite subset of[0; 1]d; d � 2, i.e.,F is a set of points.

And letW be a real-valued function defined onF .

� Null condition: W (�) = 0, where� is the null set.

� Subadditivity: There exists a constantC1 with the following property: IfQm =

fQigmd

i=1 is a uniform partition of[0; 1]d into md subcubesQi with edge parallel to

the axes and with edge lengthm�1 and volumem�d and if fqigmd

i=1 is the set of

points in [0; 1]d that translate eachQi back to the origin such thatQi � qi has the

formm�1[0; 1]d, then for every finite subsetF of [0; 1]d,

W (F ) � m�1
mdX
i=1

W (m[F \Qi � qi]) + C1m
d�1 (A.1)

� Superadditivity: For the same conditions as above onQi, m, andqi, there exists a

constantC2 with the following property:

W (F ) � m�1
mdX
i=1

W (m[F \Qi � qi])� C2m
d�1 (A.2)
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� Continuity: There exists a constantC3 such that for all finite subsetsF andG of

[0; 1]d,

jW (F [G)�W (F )j � C3(card(G))(d�1)=d (A.3)

where card(G) is the cardinality of the subsetG.

The functionalW is said to be acontinuous subadditive functionalif it satisfies the

null condition, sudadditivity and continuity.W is said to be acontinuous superadditive

functional if it satisfies the null condition, superadditivity and continuity.

Many continuous subadditive functionalsW on [0; 1]d are naturally related to adual

superadditive functionalW �, whereW (F ) + 1 � W �(F ) for every finite subsetF and

where for i.i.d. uniform random vectorsU1; : : : ; Un in [0; 1]d,

j E[W (U1; : : : ; Un)]� E[W �(U1; : : : ; Un)] j � C4n
(d�2)=d (A.4)

with C4 a constant. We point out that the dualW � is not uniquely defined and is any

superadditive Euclidean functional satisfying (A.4). It has been shown that the boundary-

rooted version ofW , namely, one where points may be connected to the boundary of the

unit cube, usually has the requisite property (A.4) of the dual.

A continuous subadditive functionalW (and its dualW �) is said to be aquasi-additive

continuous functionalif W andW � satisfy the approximation property (A.4)

Redmond and Yukich have proved that MST length functionals are quasi-additive [86].

We shall derive the rate of convergence of the MST length functionals on non-uniform

samples with two steps — first consider blockwise constant distributions, then proceed to

arbitrary distributions.
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A.1 Convergence Rates of MST Length Functionals for Blockwise
Constant Distributed Samples

Assume that the underlying density of the sample pointsX1; : : : ; Xn is blockwise con-

stant

f(x) =
mdX
i=1

�i1Qi
(x) (A.5)

wherefQigmd

i=1 is a uniform partition of the unit cube[0; 1]d with edge lengthm�1. Fur-

thermore, assume that�i > 0 for all i.

Since the MST length functionals enjoy the property of subadditivity, we have

L(X1; : : : ; Xn) � m�1

mdX
i=1

L (m[fX1; : : : ; Xng \Qi � qi]) + C1m
d�1

= m�1

mdX
i=1

L(U1; : : : ; Uni) + C1m
d�1 (A.6)

because in eachQi the samples are drawn from a uniform distribution. Note thatni is a

random variable with the Binomial distributionB(n; �im
�d).

Taking expectations on both sides of above inequality,

EL(X1; : : : ; Xn) � m�1

mdX
i=1

EL(U1; : : : ; Uni) + C1m
d�1

= m�1

mdX
i=1

Eni [EL(U1; : : : ; Unijni)] + C1m
d�1

(A.7)

For uniform samplesU1; : : : ; Un in [0; 1]d, Redmond and Yukich proved the following

rates of convergence for MST length functionals L,

jEL(U1; : : : ; Un)� �1n
d�1
d j � K1n

d�2
d (A.8)

whereK1 = C3 + C1

�
n
md

�� d�1
2d .
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Using the result (A.8) and continuity of the MST length functionals, we have

EL(X1; : : : ; Xn)

� m�1

mdX
i=1

Eni

h
�1n

d�1
d

i +K1n
d�2
d

i

i
+ C1m

d�1

= m�1

mdX
i=1

h
�1E

�
n

d�1
d

i

�
+K1E

�
n

d�2
d

i

�i
+ C1m

d�1

= m�1�1n
d�1
d

mdX
i=1

E

��ni
n

� d�1
d

�
+ m�1K1n

d�2
d

mdX
i=1

E

��ni
n

� d�2
d

�
+ C1m

d�1

(A.9)

For the Binomial distributed random variableni, we employ the Taylor’s series expan-

sion and obtain

�ni
n

� d�1
d

=
h
�im

�d +
�ni
n
� �im

�d
�i d�1

d

=
�
�im

�d
�d�1

d +
d� 1

d

�
�im

�d
�� 1

d

�ni
n
� �im

�d
�

+
1

2

d� 1

d

�
�1

d

��
�im

�d
�� d+1

d

�ni
n
� �im

�d
�2

+ o
�ni
n
� �im

�d
�2

(A.10)

and

�ni
n

� d�2
d

=
h
�im

�d +
�ni
n
� �im

�d
�i d�2

d

=
�
�im

�d
�d�2

d +
d� 2

d

�
�im

�d
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d

�ni
n
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+
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d� 2

d
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��
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�d
�� d+2

d

�ni
n
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�ni
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� �im

�d
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(A.11)

Taking the expectations on both sides of the above two inequalities, we have

E

��ni
n

� d�1
d

�
=

�
�im

�d
� d�1

d � d� 1

2d2
�
�im

�d
�� d+1

d E

��ni
n
� �im

�d
�2�

+ o
�
n�2
�

=
�
�im

�d
� d�1

d � d� 1

2nd2
�
�im

�d
�� d+1

d (�im
�d)(1� �im

�d) + o
�
n�2
�

(A.12)
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and

E

��ni
n

� d�2
d

�
=

�
�im

�d
� d�2

d � d� 2

d2
�
�im

�d
�� d+2

d E

��ni
n
� �im

�d
�2�

+ o
�
n�2
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� d�2
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nd2
�
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�� d+2
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n�2
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(A.13)

Then substituting (A.12) and (A.13) back into (A.9), we have

EL(X1; : : : ; Xn)

� m�1�1n
d�1
d

mdX
i=1

E

��ni
n

� d�1
d

�
+m�1K1n

d�2
d
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E
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d�1 (A.14)

Changingn ! nmd and dividing both sides of (A.14) with(nmd)
d�1
d , we rewrite

(A.14) as

EL(X1; : : : ; Xnmd)

(nmd)
d�1
d

� �1

Z
�

d�1
d dx� �1n

�1d� 1

2d2

Z
��

1
ddx+ �1n

�1m�dd� 1

2d2

Z
�

d�1
d dx

+K1n
� 1

d

Z
�

d�2
d dx�K1n

� d+1
d m�2d� 2

d

Z
��

2
ddx

�K1n
� d+1

d m�dd� 2

d

Z
�

d�2
d dx+m�1�1o

�
n�2m�2d

�
+ C1n

� d�1
d (A.15)
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Whenm is sufficiently large,

EL(X1; : : : ; Xnmd)

(nmd)
d�1
d

� �1

Z
�

d�1
d dx� �1n

�1d� 1

2d2
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1
ddx+K1n

� 1
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d dx+ C1n

� d�1
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(A.16)

For fixedm and changing backnmd ! n,

EL(X1; : : : ; Xn)

n
d�1
d

� �1

Z
�

d�1
d dx� �1n

�1mdd� 1

2d2

Z
��

1
ddx +K1n

� 1
dm

Z
�

d�2
d dx+ C1n

� d�1
d md�1

(A.17)

Similarly we have the inequality for the dual functionalL�,

EL�(X1; : : : ; Xn)

n
d�1
d

� �1

Z
�

d�1
d dx� �1n

�1mdd� 1

2d2

Z
��

1
ddx +K1n

� 1
dm

Z
�

d�2
d dx+ C2n

� d�1
d md�1

(A.18)

By the inequality between the MST length functional and its dual,

L(X1; : : : ; Xn) + 1 � L�(X1; : : : ; Xn); (A.19)

we have

EL(X1; : : : ; Xn)

n
d�1
d

� EL�(X1; : : : ; Xn)

n
d�1
d

� n�
d�1
d (A.20)

Therefore, with (A.18) and (A.20) we can obtain

EL(X1; : : : ; Xn)

n
d�1
d

� �1

Z
�

d�1
d dx� �1n

�1mdd� 1

2d2

Z
��

1
ddx

+K1n
� 1

dm

Z
�

d�2
d dx + C2n

� d�1
d md�1 � n�

d�1
d (A.21)
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For fixedm, we can defineC 0
2 = C2 �m�d�1 and (A.21) becomes

EL(X1; : : : ; Xn)
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� d�1

d md�1 (A.22)

DefineK2 = max(C1; C
0
2) and from (A.17) and (A.22), we have
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DefineK3 = ��1 d�12d2
and we have
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(A.24) can be rewritten as a function of the number of pixels in each cell,
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A.2 Convergence Rates of MST Length Functionals for Arbitrary
Continuous Distributed Samples

Hero and Michel have proved the following lemma in [39]. This lemma gives the upper

and lower bounds on the difference of the integrals of two density functions.

Lemma 1: For � 2 [0; 1] let f � be of bounded variation over[0; 1]d and denote by

v its total variation over[0; 1]d. Define the resolution1=m block density approximation
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�(x) =
Pmd

i=1 �i 1Qi
(x) where�i = md

R
Qi
f(x)dx. Then

0 �
Z
A

j��(x)� f �(x)jdx � m�d
mdX
i=1

v(Qi): (A.26)

For � = d�1
d

let us denote the corresponding total variation asv1 and for� = d�2
d

let

us denote the corresponding total variation asv2. Also denote byv0 the total variation of

f�
1
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�

In the above expression,K1 is related to subadditivity and continuity of the MST length
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functional,K2 is related to subadditivity of the MST length functional and superadditivity

of the dual of the MST length functional, andK3 is related to the asymptotic constant of

the MST length functional.
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