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ABSTRACT

PARAMETRIC AND NONPARAMETRIC APPROACHES FOR MULTISENSOR
DATA FUSION

by
Bing Ma

Co-chairs: Alfred O. Hero Ill and Sridhar Lakshmanan

Multisensor data fusion technology combines data and information from multiple sen-
sors to achieve improved accuracies and better inference about the environment than could
be achieved by the use of a single sensor alone. In this dissertation, we propose parametric
and nonparametric multisensor data fusion algorithms with a broad range of applications.

Image registration is a vital first step in fusing sensor data. Among the wide range
of registration techniques that have been developed for various applications, mutual in-
formation based registration algorithms have been accepted as one of the most accurate
and robust methods. Inspired by the mutual information based approaches, we propose to
use the joint Rhyi entropy as the dissimilarity metric between images. Since émgyiR”
entropy of an image can be estimated with the length of the minimum spanning tree over
the corresponding graph, the proposed information-theoretic registration algorithm can be
implemented by a novel nonparametric graph-representation method. The image matching
is performed by minimizing the length of the minimum spanning tree (MST) which spans

the graph generated from the overlapping images. Our method also takes advantage of



the minimumk-point spanning treek¢MST) approach to robustify the registration against
outliers in the images. Since this algorithm does not require any parametric model, it can
be directly applied to a variety of image types.

We also propose a parametric sensor fusion algorithm for simultaneous lane and pave-
ment boundary detection in registered optical and radar images. The fusion problem is
formulated in a Bayesian setting where the deformable templates play the eof&iofi
density and the imaging likelihoods play the role of likelihood functions. Under these
formulations, the fusion problem is solved by a joint maximarposteriori(MAP) es-
timate. We first employ existing prior and likelihood models in the fusion framework
and experimental results have shown that the fusion method outperforms single sensor
based boundary detection algorithms. However, there are some drawbacks in the existing
models. To improve the fusion algorithm, we propose to utilize concentric circular shape
models to represent the boundaries and to employ Gaussian and log-normal densities to
describe the optical and radar imaging processes. This fusion algorithm leads to a well
conditioned parameter estimation problem and the optical and radar observation data are

combined effectively and efficiently.
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CHAPTER |

Introduction

The recent development of new sensors has created a need for data processing tech-
nigues that can fuse observations from a variety of different senddudtisensor data
fusionis an evolving technology concerned with the problem of how to combine data and
information from multiple sensors in order to achieve improved accuracies and better in-
ference about the environment than could be achieved by the use of a single sensor alone.

The concept of multisensor data fusion is hardly new. Humans and animals have
evolved the capability to use multiple senses to improve their ability to survive. The human
or animal brain is a good example of a data fusion system. The brain integrates sensory
information namely sight, sound, smell, taste, and touch data to achieve more accurate
assessment of the surrounding environment and identification of threats, thereby humans
and animals improve their chances of survival.

In recent years, multisensor data fusion has been extensively investigated by researchers
in a variety of science and engineering disciplines, such as automated target recogni-
tion [7, 8], automatic landing guidance [23, 98], remote sensing [32, 35, 78], monitoring
of manufacturing processes [14, 106], robotics [1, 4], and medical applications [36, 37],
to mention but a few.

In this work, we focus on developing parametric and nonparametric multisensor data



fusion algorithms. A parametric algorithm is based on the assumption of a parametric

model. The algorithm consists of fitting the model to the data, and estimating the param-

eters of the model. In contrast, a nonparametric algorithm is not based on any parametric
model. Thus the nonparametric algorithm is applied when the problem parameterization
is unknown or unavailable.

Our work consists of the following two multisensor fusion objectives:
[0 Develop a nonparametric approach iimage registratiorfrom different sensors.

0 Develop a parametric fusion approach ttetection of lane and pavement bound-

ariesfrom optical and radar sensors.

Both of the objectives are in the fields of multisensor data fusion and certainly they
have some common characteristics. They share the basic data processing flow patterns —
first put the measurements from sensors into a common coordinate system, then extract
feature vectors from the measurements and finally combine the feature vectors together to
achieve accurate detection, estimation, and classification. However, since the nonparamet-
ric approach is model independent while the parametric one is based on a model that is
described with parameters, the two objectives are only loosely connected. For convenience

and clarity of further explanation, we will separately pursue the two objectives.

1.1 Image Registration with Minimum Spanning Tree Method
— A Nonparametric Fusion Approach

Image Registration refers to the process of aligning images so that their details overlap
accurately. Images are usually registered for the purpose of combining or comparing them.
Image registration is indispensable for such tasks as data fusion, navigation, clinic stud-

ies, and motion detection. A wide range of registration techniques has been developed for



many different types of applications and data, such as mean squared alignment [42], corre-
lation registration [43], moment invariant matching [18]. Basically, each method exploits
different image features of the object such as boundaries, moments and texture, which are
extracted from the image, and uses them to solve the matching problem.

In 1995, Viola and Wells [103] and Collignon et al. [17] independently proposed an
information-theoretic approach for matching of images. In their work, mutual information
is introduced as a measure for evaluating the similarity between images and image reg-
istration is achieved by maximizing the mutual information between the to-be-registered
images.

Inspired by the mutual information based matching algorithm, we have developed a
registration algorithm using &hyi entropy as a dissimilarity metric between two images.
When two images are properly matched, corresponding anatomical areas should over-
lap and the resulting joint probability distribution contains high values for the intensity
values in the anatomical areas, i.e., the joint probability distribution is relatively highly
concentrated. Thus, theeRyi entropy of the overlapping images should be small. Since
misregistration increases the dispersion of the joint probability distribution, i.e., increases
the REnyi entropy, one should be able to obtain registration by finding the configuration
corresponding to the minimumeRYi entropy. This algorithm does not require any para-
metric model, so it is a nonparametric approach and can be applied to a broad range of
image types directly.

The minimum spanning tree (MST) is a graph-theoretic technique which determines
the dominant skeletal pattern of a point set by mapping the shortest path of linear, nearest-
neighbor connections. A spanning tree oxefertices is a connected acyclic graph which
passes through all these vertices. The MST is the spanning tree with minimal length.

In [96] the MST length was proved to provide a consistent estimator éoryRentropy.



The k-point MST denotes the minimum spanning tree over a spedifieertices out
of then vertices in the graph. The minimumpoint spanning treek¢tMST) is defined as
that k-point MST which has minimal length amorigpoint MST’s spanning each of the
( Z ) possible subsets d@f vertices. For a noise contaminated signal, AHdST offers
a robust estimate for the entropy of the signal by virtue of its ability to judiciously prune
straggler points [40].

Thanks to the MST'’s capability of providing an estimator for trenfd entropy, the
proposed minimum Biyi entropy based image registration algorithm is boiled down to
a novel graph-representation method. The image matching is performed by minimizing
the length of the MST that spans the graph generated from the overlapping images. Our
method also employs theMST approach to robustify the registration against outliers in
the images.

As the complexities of the MST algorithm aheMST greedy approximation algorithm
are polynomial in the number of vertices, it is crucial to efficiently extract feature vectors
from the original images in order to reduce the number of vertices in the graph and hence
reduce the computational complexity of the registration algorithm. The feature vectors
must be able to well represent the original image without losing too much information; on
the other hand, the number of feature vectors have to be small enough so that the MST
andk-MST techniques can handle them. Since these two objectives are in conflict, feature
extraction is a challenging task. We propose a number of feature extraction techniques in

this dissertation and the experimental results are very promising.



1.2 Simultaneous Detection of Lane and Pavement Boundaries
— A Parametric Fusion Approach

Lane and pavement boundary detection is an enabling or enhancing technology which
will have significant impact on the next generation of automotive systems such as road de-
parture or lane excursion warning, intelligent cruise control, and, ultimately, autonomous
driving.

Lane and pavement boundary detection problem is particularly difficult when no prior
knowledge of the road geometry is available (such as from previous time instants [22, 49,
75]) and when the detection algorithms have to locate the boundaries even in situations
where there may be a great deal of clutter in the images.

Deformable templates have been employed to model the lane and/or pavement bound-
aries. In [56, 68], the authors proposed a global shape model to describe the boundaries
and thus the boundary detection problem becomes a problem of estimating the model pa-
rameters, i.e., a problem of finding the mode of an objective function with respect to the
model parameters. These model-based methods operate well and have the advantage of
having quite small search space for the optimization of the objective function. In [56], a
vision-based algorithm was developed for locating lane boundaries, while in [68] a model-
based method was proposed for detecting pavement boundaries in radar images.

Note that previously lane boundary detection in optical images [53, 54, 55, 56, 83], and
pavement boundary detection in radar images [48, 59, 60, 68] have always been studied
separately. However, a single sensor, either optical or radar sensor, has limited ability to
sense and identify the relevant features in varying environments. For example, the optical
sensor is not able to operate in a poorly illuminated environment, while the radar sensor
can not distinguish the lane markers on the road.

To take advantage of the strengths (and overcome the weaknesses) of both the optical



and radar sensors, we design parametric fusion algorithms to effectively combine the two
different types of sensory data such that we can obtain a more precise and robust interpreta-
tion of the sensed environment. In the proposed fusion algorithms, the lane and pavement
boundaries are represented by deformable templates and the distribution of the deforma-
tion parameters provides ttaepriori probability density funtion (pdf). Furthermore, the
optical and radar imaging processes are described by imaging likelihood functions. With
the a priori pdf and imaging likelihood functions, the goal of detecting boundaries via
fusing optical and radar observations can be achieved with maxiayposteriori(MAP)
estimation.

Polynomial shape models have been one of the prevailing deformable templates used
for describing the lane and pavement boundaries in the past years. Specifically, in previous
work that is closely related to our fusion mission [56, 68], parabolic shape models were
employed in separate lane and pavement boundary detection. For the detection algorithms
presented in [56] and [68], the radar imaging process is modeled with a log-normal pdf
and the optical imaging process is described with an empirical matching function. To make
most of existing boundary shape models and imaging likelihood functions, our first effort
in detecting boundaries with fusion techniques is to jointly estimate the shape parameters
with the MAP method where the parabolic shape models play the role of prior information
and the log-normal pdf and the empirical matching function play the role of likelihood
functions. Since this fusion technique combines information from both optical and radar
images, the boundary detection results are shown to be more accurate and more reliable
than single sensor based detection algorithms, especially in an adverse environment.

Although the detection results are promising with the fusion algorithm using exist-
ing prior shape models and likelihood functions, there are some drawbacks that prevent

us from exploring the most of the fusion algorithm. First, since the parameters in the



parabolic shape model have different units and are of different orders of magnitude, the
MAP estimation is an inherent ill-conditioned problem. To get rid of this inherent pitfall

of the parabolic model, we propose to use concentric circular shape models to describe the
lane and pavement boundaries. Circular shape models lead to a much better conditioned
estimation problem due to the compatibility of their parameters, namely, parameters share
the same units and are of the same order of magnitude.

The optical likelihood function of the previous approach results in complications in the
joint estimation problem. The empirical matching function inherited from single optical
sensor lane detection algorithm is not a valid likelihood function since it is not normalized
to a probability density function. In the radar and optical fusion algorithm, the empir-
ical function has to be carefully weighted so that each sensor makes a fair contribution
to the joint likelihood. In [71] we experimentally selected the weights according to the
minimum mean square criterion which yield reasonably good results, but this empirical
matching function make systematic and theoretically sound weight picking an impossible
task. Inspired by the log-normal radar image likelihood function, we propose to model
the optical imaging process as a Gaussian process which leads to a well defined likelihood
function that can be easily manipulated with the likelihood from the radar sensor.

Then in our second effort in improving the fusion algorithm, we employ concentric
circular shape models to represent the lane and pavement boundaries, and utilize the log-
normal and Gaussian pdf’s to describe the radar and optical imaging processes. This new
fusion algorithm is expected to yield a well conditioned estimation problem and combines
the optical and radar modalities effectively and efficiently.

Although we develop this parametric fusion algorithm with a specific application in
mind, we are aware that this fusion methodology can be applied to other model-based

applications as well.



1.3 Outline of The Dissertation

In Chapter Il, we give a brief historical overview of work related to multisensor data
fusion.

Chapters Ill and IV deal with the nonparametric image registration methodology via
graph matching. The main idea that separates this work from the large volume of work on
nonparametric image registration algorithms is establishing the connection between mini-
mum ReEnyi entropy and image registration and proposing the use of graph matching tech-
niques to register a variety of images. In Chapter Ill, we discuss some critical properties,
such as asymptote and convergence rate, of the MST length functional and its application
in Rényi entropy estimation. In additio”R;MST is also introduced for robustification of
entropy estimators. In Chapter IV, we present the criterion and procedure of image reg-
istration with graph matching techniques. First we describe a general image registration
procedures, and detail the spatial transformation and feature extraction for MST construc-
tion. Then, we present the construction of MST for both noiseless and noisy images for
EO-terrain map registration and MRI image registration.

In chapters V to VIl we present a parametric fusion approach for simultaneous detec-
tion of lane and pavement boundaries. In Chapter V we state the general settings of this
boundary detection problem and pointed out that among the state-of-art techniques, de-
formable templates have been through promising progress in boundary detection society.
We present a model-based fusion algorithm in Chapter VI. The fusion problem is formu-
lated in a Bayesian setting where the deformable templates play the eofiofi density
and the imaging likelihoods play the role of likelihood functions. In this chapter we make
use of the existing boundary shape models and imaging likelihood functions in the fusion

setting. We describe the joint maximumposteriori(MAP) estimate for the boundary



detection and show the experimental results in Section 6.3. And confidence measures for
the lane and pavement boundary parameter estimates are studied in the end of Chapter VI.
Chapter VIl presents the boundary detection with the proposed concentric circle model,
which makes the detection problem much better conditioned due to the compatibility of
the model parameters. In this chapter, we also propose a Gaussian pdf to model the optical
imaging process. And we show the advantage of this fusion algorithm over the algorithm
describe in Chapter VI. Finally in Chapter VIl we provide the summary on the boundary
detection algorithms and discuss the future work.

In the appendix, we give a preliminary result for the convergence rate of MST length

of samples drawn from non-uniform densities.



CHAPTER I

Overview of Multisensor Data Fusion

Information acquisition consists of two fundamental processesensor measuring
andfeature extraction The sensor measuring process is to obtain certain measurements
of quantities (sensory data), which are dependent on the structures in the environment
and their configuration. The feature extraction process is to derive from the sensory data
specific items of information about meaningful structures in the environment. The sensor
measuring process can be interpreted as a mapping of the state of the world into a set
of images of much lower dimensionality. The usual operations involved in the sensor
measuring process are sampling and projection. Both of the processes result in loss of
information. The feature extraction process can be treated as the process of inverting the
imaging map. However, since the sensor measuring process loses information in general,
the imaging map is non-invertible. Therefore, the feature extraction task is fundamentally
that of solving an ill-posed problem and must be approached with some reliable and robust
mathematical tools.

Multisensor data fusion has emerged as the method of choice for resolving these prob-
lems. Data fusion techniques combine data from multiple sensors, and related information
from associated databases to achieve improved accuracies and more specific inferences

than could be achieved by the use of a single sensor alone. In recent years, multisensor

10



11

data fusion has received significant attention among researchers in different disciplines of
science and engineering, such as automated target recognition [7, 8, 10, 11, 24, 34], auto-
matic landing guidance [23, 98], remote sensing [32, 35, 78], monitoring of manufacturing
processes [14, 106], robotics [1, 4], and medical applications [36, 37, 92, 93].

Techniques to combine or fuse data are drawn from diverse set of more traditional
disciplines including: digital signal processing [95, 102], statistical estimation [76, 91],
control theory [25, 94], artificial intelligence [19, 73], and classic numerical methods [33,

105].

2.1 Motivation for Sensor Fusion

Before processing further, a worthwhile discussion would be about the motivation be-
hind sensor fusion research and why the great effort that has been put into finding robust
methods for fusing sensor data is natural.

Although the computer techniques have been developed so rapidly in the last few
decades and people have witnessed an explosion in the use of electronic data processing
with applications becoming ubiquitous, developing several important data processing ap-
plications, such as automatic navigation systems, is more difficult than foreseen. Systems
developed with well-defined data interfaces have access to the information they require.
Automatic navigation systems deal with the real world and unfortunately, the real world
is not well-defined. Thus automation systems need to be able to react to unforeseen sit-
uations. These systems use sensors as their interface to a changing and possibly hostile
environment.

Sensors are not reliable interfaces in their current form. Sensors are devices that collect
data about the world around them. They range from inexpensive cameras to earth obser-

vation satellites costing millions of dollars. In spite of this variety, all sensors have a few
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characteristics in common. Every sensor device has a limited accuracy, which is subject
to the effect of system noise, thermal noise, etc., and will function incorrectly under some
adverse conditions.

The ability of automation systems to interact with their environment has been severely
impeded by the state of current sensor technology. Sensors are currently not accurate nor
reliable enough for effective use in many automation applications.

Sensor fusion seeks to overcome the drawbacks mentioned above by making the most
of existing sensor technology. Using measurements from several independent sensors
makes a system less vulnerable to the failure of a single component. Combining measure-
ments from several different kinds of sensors can give a system more accurate information
than otherwise possible. Combining several measurements from the same sensor makes a
system less sensitive to noise because that in the measurements of the same environment
at different times the signal components are highly correlated while the noise components
are independent.

In addition to the advantages present in combing sensor measurements of the same
type, note that decision making often depends on several different aspects of the same
situation. Animals often rely on several different senses to make decision. Pit vipers locate
their prey by using their eyes and heat sensors located at the sides of their head. Consider
how many senses are used by a human being when eating. For automatic systems to react
reasonably to their environment they will often need to combine input from many separate
sources.

Another problem that sensor fusion attacks is information overload. A correct decision
is almost always a well informed and timely one. The amount of time needed to reach a
decision increases rapidly with the amount of information available. Sensor fusion is nec-

essary to combine information in a way that removes inconsistencies and presents clearly
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the best interpretation of measurements input from many individual sources. Through
sensor fusion, we can combine measurements from several different sensors in order to
combine different aspects of the environment into one coherent structure.

When done properly, sensor fusion combines input from many independent sources of
limited accuracy and reliability to give information of known accuracy and proven relia-
bility. In summary, the advantages of sensor fusion over single sensor processing are due

to the redundancy, diversity and complementarity among multiple sensors.

e Redundancy is caused by the use of multiple sensors to measure the same entity. It
is well known that redundancy reduces uncertainty. This can be appreciated from
the fact that for multiple sensors, the signal related to the measured quantity is often
correlated, whereas the uncertainty associated with each individual sensor tends to

be uncorrelated.

¢ If multiple sensors are of different nature, they measure the same scene with different
laws of physics, and we obtain physical sensor diversity. Another diversity, spatial
diversity, which offers different viewpoints of the sensed environment simply by
having sensors in different locations, also plays a very important role in multisensor

fusion.

e Multiple sensors observe a subset of the environment space, and the union of these
subsets makes up broader environment observation. In this way, we achieve data

complementarity.

2.2 Classification of Sensor Fusion Techniques

There are several criteria to categorize current sensor fusion techniques. These criteria

include types of sensor data, levels of representation, mathematical fusion algorithms and
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SO on.

2.2.1 Classification by Types of Sensor Data

Sensor fusion may be performed on time series, redundant, and/or complementary sen-
sor data. Time series fusion, by far the most common, allows for filtering of noisy sensor
data and is commonly used in target tracking applications [10]. Redundant sensors acquire
data in parallel, and allow comparisons to be made among simultaneous measurements.
An example of this is the use of multiple ultrasonic range finders on a mobile robot for
obstacle detection and avoidance. Complementary sensor fusion incorporates information
about different physical aspects of the environment. Complementary sensor data is of-
ten used in recognition and world modeling tasks. This complementary case is of special

interest to the applications we deal with in this dissertation.

2.2.2 Classification by Levels of Representation

Applications of multisensor fusion may be characterized by the level of representation
given to data during the fusion process. Observational data may be combined, or fused,
at a variety of levels — signal, pixel, feature, and symbol levels. Note that these levels
of fusion are only a rough classification of representation possibilities, and in no way
can capture the subtlety of numerous applications. For instance, pixel-based images such
as those used in medical imaging may be treated as spatially discrete two-dimensional
non-causal signals. Despite the obvious pixel-based representation of these signals, the
mathematical techniques used to process and fuse these data are more closely related to

signal-based techniques [64].
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2.2.2.1 Signal-level fusion

Signal-level fusion refers to the combination of the signals of a group of sensors in
order to provide a signal that is usually of the same form as the original signals but of
greater quality. The signals from sensors can be modeled as random variables corrupted
by uncorrelated noise, and the fusion process can be considered as an estimation proce-
dure. As compared to the other types of fusion, signal-level fusion requires the greatest
degree of registration between the sensory information. The fusion requires both temporal
and spatial registration. The most common techniques for signal-level fusion consist of
weighted averaging and Kalman filtering.

Weighted averaging method takes a weighted average of the composite signals, where
the weights are determined by the estimated variances of the signals [20]. Kalman filter-
ing uses the statistical characteristics of a measurement model to recursively determine

estimates for the fused data [57].

2.2.2.2 Pixel-level fusion

Pixel-level fusion can be used to increase the information content associated with each
pixel in an image formed through a combination of multiple images, thus it may result
in more reliable segmentation and more discriminating features for further processing.
Pixel-level fusion may be performed on time series images obtained from a single sensor
or images obtained from multiple sensors which are measuring the same physical phe-
nomena such as multiple visual image sensors or acoustic sensors. The fused image can
be produced either through pixel-by-pixel fusion or through the fusion of associated local
neighborhood of pixels in each of the component image. Many of the general multisensor
fusion methods can be applied to the pixel-level fusion. Here we particularly point out

three useful method for fusion at the pixel level — logical filters, mathematical morphol-
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ogy, and simulated annealing.

Logical filtering is one of the most intuitive method of fusing the data from two pixels.
The choice of the logical operators is dependent on the fusion applications [3]. Mathe-
matical morphological method [31] in image analysis transforms each pixels of an image
through the use of a set of morphological operators. These operators are derived from
the basis operations of set union, intersection, difference, and their conditional combina-
tions. Lee employed binary morphology to fuse images from a pair of millimeter-wave
radars operating at different frequencies [63]. Simulated annealing is a relaxation-based
optimization technique. In image fusion applications, simulated annealing considers pixel
values and their neighborhood as states of atoms or molecules in a physical system. An
energy function is assigned to the physical system and determines its Gibbs distribution.
General temperature reductions in the energy function are utilized to relax or anneal the
physical system toward a global minimum energy state which corresponds to the maximum
a posterioriestimate of the true image given a corrupted observational image. Landa and
Scheff have applied simulated annealing for the pixel-level fusion of the images from two

cameras in order to estimate depth [61].

2.2.2.3 Feature-level fusion

If the sensors are measuring different physical phenomena, then the sensor data must
be fused at feature/symbol level. Using features to represent the sensory information not
only reduces the complex of the processing procedure but also increases the reliability
of the processing results. Feature-level fusion involves the extraction of representation
features from multiple sensor observations. These features are matched to corresponding
features in a symbolic world model. Typical features extracted from an image and used for

fusion include edges and regions of similar intensity. When multiple sensors have similar
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features at the same location, the likelihood that the features are actually present can be
significantly increased and thus fusion improves the processing accuracy.

Feature-level sensor fusion requires less stringent registration than signal- and pixel-
level fusion. Techniques proposed for feature-level fusion consist of tie statistic, and
Gauss-Markov estimation with constraints. When information from multiple sensors is
being used for classification and decision purposes, tie statistic provides a means of mea-
sure so that perceived features of the environment can be compared to known features [28].
The tie statistic allows an unknown sample probability density function to be quickly and
effectively classified. Pollardt al. proposed Gauss-Markov estimation together with ge-
ometric constraints for the feature-level fusion of multiple stereo views of a wireframe
model of an object [82]. A covariance matrix is used to store information concerning the

constraints and is used as a database for elementary geometric reasoning.

2.2.2.4 Symbol-level fusion

Symbol-level fusion can effectively integrated the information from multiple sensors
at the highest level of abstraction. Symbol-level fusion is commonly employed in the
applications where multiple sensors are of different nature or refer to different regions of
the environment. The symbols used for fusion can be derived from the processing of the
individual sensory information, or through symbolic reasoning processes that may make
use of prior knowledge from a world model or sources external to the system. In one of
the applications which will be addressed in the dissertation, the simultaneous detection of
lane and pavement boundaries, the prior knowledge of the lane and pavement boundaries is
that they are parallel concentric arcs under the flat earth assumption, while the likelihoods
indicate the likely presence of certain lane or pavement boundaries in the environment.

The most common type of symbol-level fusion application is pattern recognition. Fea-
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ture information is extracted from sensor data, defining a point in the feature space. This
point may be mapped to a symbolic interpretation of the world based on that symbol’'s
neighborhood in the feature space. Such a neighborhood function may be defined by prob-
ability theory [101], Dempster-Shafer’s theory of evidence [88], fuzzy logic [51], neural
networks [108], or other means.

The prevailing techniques for symbol-level fusion include Bayesian (Maxifuruos-
teriori) estimation, Dempster-Shafer evidential reasoning, and fuzzy set theory. Bayesian
estimation combines sensory information according to the rules of probability theory. This
multisensor fusion approach is the core method used in our work and will be discussed in
details in Chapter IX, I, and XI. Dempster-Shafer reasoning technique for sensor fusion
allows each sensor to contribute information at its own level of detail. Dempster-Shafer
evidential reasoning is an extension of the Bayesian approach. It makes explicit any lack of
information concerning a proposition’s probability by separating firm belief for the propo-
sition from just its plausibility. Valinet al. applied this technique for fusion of imaging
and non-imaging sensor information for airborne surveillance [100]. Fuzzy logic is a type
of multiple-valued logic. It allows the uncertainty in multisensor fusion to be directly rep-
resented in the fusion process by allowing each position, as well as the actual implication
operator, to be assigned a real number from 0.0 to 1.0 to indicate its degree of truth. Fuzzy
logic technique has been used to fuse information for an on-line and real time vehicle
detection system [46].

A comparison of fusion levels is given in Table 1, adapted from [67].

2.2.3 Classification by Mathematical Foundation

Independent of the level of representation used, a variety of popular mathematical

techniques for sensor fusion appear in the literature. These methods generally perform
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a data-reduction mapping from multiple inputs to a smaller number of outputs. Inputs
may be raw sensor measurements, pixel values, extracted features, or signal estimators;
outputs may be estimated state, recognized objects or events, enhanced features, etc. An
important aspect of each technique is the way in which it models uncertainty in sensor
information. Since it is impossible to introduce all mathematical fusion techniques in this
dissertation, we just present two mathematical techniques that are related to our work —

Bayesian Inference and Dempster-Shafer Theory of Evidence.

2.2.3.1 Probability and Bayesian Inference Techniques

Probability theory, which measures the likelihood of an event, was first developed by
Blaise Pascal in the seventeenth century as a means of solving gambling problems. It
was later advanced by Thomas Bayes in the eighteenth century and by Pierre de Laplace
in the early nineteenth century. Probability-based inference techniques have withstood
mathematical scrutiny for hundreds of years, and are the foundation of most sensor fusion
applications.

The basic assumption of probability-based sensor fusion is that the uncertainly in sen-
sor information may be modeled by uncorrelated random noise. Decision and estimation
rules based on probability include mean-square error and maxianposteriori(MAP),
which minimizes the probability of error, Bayes risk, which minimizes the probable cost
of error, and maximum likelihood, which estimates a parameter without assuming a prior
probability distribution for values of the parameter.

We will discuss this in Chapters VI and VII.

2.2.3.2 Dempster-Shafer Theory of Evidence

The theory of evidential combination was proposed by Dempster [21] and extended

by Shafer [88]. The theory models uncertainty as belief in one or more propositions or
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ignorance. The set of all possible mutually exclusive hypothesis is called the frame of

discernment®. Let2® denote the set of all subsets®f Thebasic probability assignment
(bpa) of a set, A, is a function, usually denotedrbywhich assigns an evidential weight

to the set, such that

e m(¢) = 0, whereg is the empty set.

° ZAQ@ m(A) = 1.

Let A C ©. A is assigned a bpa representing a proposition’s ignorance of which

hypothesis is correct. This representation of evidential weight is what makes Dempster-

Shafer reasoning different from probability. For instance HetH., - - -, H,, ben exclu-

sive hypothesis. In probability theory, the probabilitiedht H,, - - -, H,, sum to one, that

is,
> pr(H)=1 (2.1)
=1
In the Dempster-Shafer Theory, the bpa belief masd#farH,, - - -, H, may sum to less
than one:
> om(H;) <1 (2.2)
=1
where, instead,
> m(H;) +m(A) =1 (2.3)

=1

whereA C ©.

Subsetsd C © with m(A) > 0 are called thdocal elements of mTwo bpa’sm;

andms, can be combined using Dempster’s rule [21] and evidence gathering accumulates

belief in each hypothesis set A is obtained:

o ZAmAzzA my (Ar1)ma(Az)

M = (A ma ()

(2.4)
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The belief of a hypothesis séf;, is defined as

bel(Hy) = > m(A) (2.5)

ACH,,

The plausibility of the hypothesis s&f, is defined as
pIs(Hy) =1 — bel(~ Hy,) (2.6)

where~ H,; denotes the complementary hypothesigipf

As evidence is gathered, the rule of combination increases the belief and plausibility of
those hypotheses supported by the evidence, and decreases the bpa of the ignorance factor.
(If no weight is assigned to ignorance, Dempster’s rule of combination reduces to basic
probability theory.) It is intuitively appealing to model ignorance in this way, especially
when evidence is supplied from human experts.

An illustration of the Dempster-Shafer theory applied to target detection is given by
Leeet al.[65]. Murphy discusses Dempster-Shafer theory in terms of its utility for sen-
sor fusion for autonomous mobile robots [77]. In more quantitative applications, Lee and
Leahy [64] compare the use of Dempster-Shafer, MAP, and maximum likelihood algo-
rithms for multi-sensor image segmentation problems, showing a marginal improvement
in the results of the Dempster-Shafer implementations over MAP. (ML ignores the prior
information introduced by a Markov Random Field used in the other methods and, there-
fore, resulted in a much higher misclassification rate.)

However, Cheeseman [12] argues that these features can be provided equally well by
Bayesian techniques. For instance, it is possible to measure the probability of error in
a probability estimation; this value decreases with the addition of evidence just as the
Dempster-Shafer “ignorance” value does. Given the strong mathematical history of prob-
ability theory, Dempster-Shafer reasoning remains controversial, but it has nevertheless

enabled some significant applications of data fusion in uncertainty.



CHAPTER I

Minimum Spanning Tree and Rényi Entropy

3.1 Minimum Spanning Tree

Discrete points distributed in space can be characterized using a representational net-
work called its minimum spanning tree (MST). This MST technique aims to quantify
spatial dot patterns by revealing hidden nearest-neighbor correlations. The MST approach
has recently been applied in several research areas, such as VLSI circuit layout and net-
work provisioning [44, 84], two sample matching [29], pattern recognition [15], cluster-
ing [81, 107], nonparametric regression [5], and testing for randomness [41].

Givenasett, = { X, X, ..., X, } of n points inR¢, a spanning tre@ is a connected
acyclic graph which passes through all coordinates associated with the paoit (e
Figure 3.1.1 for an illustration of a spanning tred).is specified by an ordered list of
edgese;; connecting certain pairsX;, X;), ¢ # j, along with a list of edge adjacency
relations. The edges; connect all» points such that there are no paths in the graph that
lead back to any given point.

For a given edge weight exponent (0, d), the power weighted length;(X,,) of a
specified tred is the sum of all edge lengths raised to power

LX) = > eyl (3.1)

ei; €T
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Figure 3.1.1: An MST example

The minimum spanning trég* is the spanning tree which minimizes the total edge weight
Ly (X,) of the graph among all possible spanning trees over the given vertices, i.e., the
power weighted lengtih* (X,,) of the minimum spanning treg* is

L*(Xx,) = Z leij| = m}n L(X,) (3.2)

e ;€T

The tree shown in Figure 3.1.1 is indeed a minimum spanning tree over the given vertices.
It is evident that the MST representation of a point process is naturally translation and
rotation invariant. This invariance is important for image processing applications where
patterns of interest may be articulated at arbitrary orientation and spatial positions, e.g.,
as occurs in automated pattern matching, radar target detection, and industrial inspection.
The MST can be constructed in time polynomiahinthe number of vertices.
For any subset;, ,, of £ (0 < k£ < n) points in&X,, we define the:-point MST, denoted
asTx,,, which spansY,, ;.. For fixedk, the elements of the subsg}, ;, are distinct and
there are( Z ) possiblek-point subsets aft,. In Figure 3.1.2 we give two examples of
k-point MST’s over different subsets of the original point set. Figure 3.1.2(a) showks the

point MST on the subset,, , = {X;, X4, X5, X¢, X7, X5}, while Figure 3.1.2(b) shows
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the k-point MST on the subset’,’%k = {X1, Xy, Xy, X5, X, X7}. These two examples
show that for different subsets, the resultantoint MST’s have different lengths. The
k-point MST in Figure 3.1.2(a) has the minimal length among all posé#geint MST’s
and thek-point MST in Figure 3.1.2(b) has the maximal length.

The minimumék-point spanning tree K-MST ) is defined as that-point MST which

has minimal length. Thus theMST spans a subsef; , defined by

L(X; ) = min L™ (X, 1) (3.3)
n,k

The k-point MST shown in Figure 3.1.2(a) is actually theVIST for n = 8 andk = 6.
3.2 Limit Theorem and Rate of Convergence for MST Length Func-
tionals

3.2.1 Limit Theorem for MST Length Functionals

Given a set¥,, = {X;, X,,...,X,} of n points inRR?, Steele has proved that the

length of the MST oveA, has the following asymptotic property [96]

lim L(f_g) = 57/(f(x))dﬁﬂd;c (a.s.) (3.4)

n—>oond

wheref, is a constant which only depends on the edge weight expondntparticular,

3, is independent of the distribution of thg’s.

3.2.2 Rate of Convergence for MST Length Functionals on Uniform Samples

In [86] Redmond and Yukich derived the rate of convergence for MST length function-
als L for independent identically distributed (i.i.d.) uniform random vectors . ., U, in

[0, 1] for v = 1. Their result for the rate of convergence is given in the following theorem.

Theorem 3.2.1Given a sel,, = {U,,U,, ..., U,} of n points in[0, 1]¢ with the uniform

distribution, the convergence rate for the MST length functidnialas follows:
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(a) k-point MST spanning over a subs&}, , =
{X37X4,X57X6,X77X8}
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(b) k-point MST spanning over a subsgf, , =
{Xl,X27X4,X57X6,X7}

Figure 3.1.2: Examples fdr-point MST’s
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(@)ifd > 3,

=0(n <) (3.5)

(b) if d = 2,

= 0(1) (3.6)

3.2.3 Rate of Convergence for MST Length Functionals on Non-uniform Samples

In our work, we have derived a theorem establishing convergence rates for the MST
length functionalL for i.i.d. but non-uniform random vectors,, X,, ..., X,, in [0, 1]¢.
Our derivations closely follow the method that Redmond and Yukich have employed
in [86]. Here we give the description of the results and some remarks. Please see Ap-

pendix for the proof of the following theorem.

Theorem 3.2.2Let X, = {X;, Xs,..., X,,} be a set ofs i.i.d. realizations from the pdf
f(x)in[0,1]¢. Assumethatfar € (0,1), f* is of bounded variation ove, 1]¢ and letv,
be the total variation off = andu, the total variation off ‘@ over|0, 1]?. Also assume
that f{x:f(a:)>0} fra(z)dr < oo Let Q™ = {Q;}™ be a uniform partition of0, 1] into

m? subcubeg); with edges parallel to the axes and with edge lengtht. Then for fixed

resolution factornm, the convergence rate of the MST length functional o¥geis

‘EL(Xlad---aXn) _BI/fd%dl@)dx

—1
n d

mé

< Km_%m/fd%(x)dx + Kon™ T md™ 4 Kyn~am = ZvQ(Qi)
i—1

+Bm ™! fl: v1(Q:) + 0 (n’%> (3.7)

where K, Ky, and3; are constants. Namelyy; and K, are dependent on the subaddi-

tivity, superadditivity and continuity constants of the MST length functional (see Appendix
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for the definition of these constants), amds the asymptote of the MST length functional

for i.i.d. uniform random vector®,, = {Uy, U, ..., U,} in [0,1]¢,
lim L(ZT) =0 (a.s.) (3.8)

n—00 N7

Remarks:

The right hand side (RHS) of (3.9) can be rewritten in terms of the rdticequal to

the number of points per cell, and (3.7) becomes

‘EL(X1;-_--;Xn) _ﬁl/fddl(x)dx

1
n-d

d—1

<K (n 1md>3/fdc12(x)dx+K2 (n/ind>7

+ K, (n/ind)% (mdiyz(@)) + B (mdivl(@)> +o0 (n/ind> o

(3.9)

Thus the approximation error on the left hand side (LHS) of (3.9) converges to zero as
n/m? — oo, andn,m — oo. Ford > 2, the dominant term in the convergence rate is
the first term on RHS of (3.7) which converges to zero at rate and with rate constant
equal to the Rfyi entropy of ordef=2 of f plus a termk; (m*d fol UQ(QZ»)> which
decreases im. Whenm is fixed, there is an irreducible error (last term of RHS of (3.9))
which is proportional to the total variation (Q;) of f% over the cells of volumen 7.

This error can be interpreted as the bias of the M&hyRéntropy estimator when a greedy
approximation algorithm is used to construct the MST over each cell and the MST's are
patched together. Thus the bound (3.9) illustrates the nature of the fundamental bias-
variance tradeoff in the MST entropy estimator: for increasing number of cells the bias

term on RHS in (3.9) decreases but the other terms in this expression increasewuisless
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also increased. Hence these other terms can be viewed as variance terms. These variance
terms are the factor;ba/lm to various powers multiplied by bounded quantities.

e The convergence rate can be considered for two cases:

O Whend = 2,

‘EL(XI,. ﬁl/f

T < (K + Ky)n™>2
n2

m2

1
+Bim~ Zvl )+ Kin"zm IZUZ Qi) + (%> (3.10)
O Whend > 2,

‘EL(XI,._.., _&/f

< Kin~ dm/f x)dr + Kon~ %md71+Klnﬁm*dHZUz(Qi)

=1

d

+Bm ™ i v (Qi) + o (n‘%) (3.11)

e In both casesl = 2 andd > 2, if m is sufficiently large so that the underlying
density f is close to piecewise constant, the total variationandv, of f “Z+ and
f% will be small compared to the first terms in the right hand side of (3.10) and
(3.11). That is, the error between the expectation of the MST length functional and

its asymptote is reduced at the rates for d = 2 andn— "7 ford > 2.
3.3 Reényi Entropy and Rényi Information Divergence

Rényi entropy [87] is a more general entropy than Shannon entropy. &g Bitropy

H,(f), also called thex-entropy, for a continuous pdfis defined as

Ho(f) =

ialog / Fo(x) dx, (3.12)



30

for0 < a < oo, # 1. The parameter is called information order.

The Shannon entropy function

H(f) =~ [ 1a)log (@) do (3.13)
is the limiting case of Bhyi entropy when the orderapproaches 1, namely,

H(f) = lim Ho(f). (3.14)

a—1

If we take the limit of (3.12) asx — 0, we obtain the logarithm of the volume of the
support set,
Hy(f) = log(u{z : f(x) > 0}). (3.15)
Thus the zeroth orderdRyi entropy gives the measure of the support set of the defisity
Rényi information divergence is a distance measure between densities. Given a test
density f and a reference densify, the ordera: Rényi information divergence of and

the reference densitf is defined as

(7, f0) = 1o | ( L ((?)>afo<x>dx (3.16)

For any order, the information divergence takes on its minimum value (equals zero) if

and only if f = f, (a.e.). I.(f, fo) reduces to the &lyi entropyH, (f) when f, is equal
to a uniform density ovej0, 1]%. There are two special cases of interest for the order

Fora = = the Rényi information divergence becomes the log Hellinger distance squared

1
2

where the Hellinger distance is defined by

utf10) =5 [ (Vi@ - Vi) do 317)

Fora — 1, the Reényi information divergence approaches the Kullback-Liebler diver-

gence,

D(f) = [ Floytog £ o (3.18)
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Since Renyi introduced this generalized entropy and information divergence in the
early sixties, the Bnyi entropies and information divergences have been successfully used
in the information theory and statistics [6, 58].

There is one critical property for fractional ordee®/i entropies and information di-
vergences. Fot € (0, 1), the ordera Rényi information divergence always exists. This
is a desirable property for a distance measure between two densities. In our image regis-

tration application, we shall take the advantage ehy’ ‘entropies of fractional orders.

3.4 Estimation of Rényi Entropy with MST

SupposeY,, = {X1, X, ..., X, } is a random sample from the continuous dengity
and L*(X,,) denotes the power weighted length of the minimum spanning tree Xyer
(3.1). Leta = ‘1777 By the asymptotic property of the MST length functional (3.4), we

obtain an estimator of &iyi entropy from the total edge weight of the MST,

H = L logL (X) — log f3, (3.19)
«Q ne

It follows directly from the result of [96] that the estimafé, using MST length is a
strongly consistent estimator &f,.
Figures 3.4.3 and 3.4.5 are an example which illustrates the use of minimum spanning

trees as entropy discriminant between two different distributions. First let us define a torus

density as
1
f(x) = cexp {—5625 (| z—=[0.5 0.5] | —0.25)2} (3.20)
wherec is a normalizing constant|z|| = /2% + z3 for = (x,,7;). The constant

contours of this density are circles for which the maximum contour is a circle of radius

0.25 and centeln.5, 0.5]. The other contours specify an annulus.
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We study two different distributions on the unit squélrel]?. The results are shown
in Figure 3.4.3. The left column corresponds to a uniform density while the right column
corresponds to a torus density specified as (3.20). In Figures 3.4.3(a) and (b) we plot single
realizations of 100 random samples from the uniform and torus densities, respectively.
Figures 3.4.3(c) and (d) are the corresponding MST’s for these realizations. Note that
for these realizations the overall length of MST for the uniform sample points is larger
than that of the more concentrated torus sample points. According to our calculation, the
total length of the MST spanning the uniform samples demonstrated in Figure 3.4.3(a)
is 6.61, while the total length of the MST spanning the torus samples demonstrated in
Figure 3.4.3(b) is 3.19.

The mean length of the MST versus the number of sample points for each of the dis-
tributions is shown in Figures 3.4.4(a) and (b), computed on the basis of a large number of
independent simulations of the two densities. The x-axis stands for the number of sample
points generated from the uniform or torus density, and the y-axis stands for the mean
value of the total length of the MST spanning the sample points.

Let n denote the number of sample points generated from a certain density. Note that
for largen the mean length curves appear to increase with sub-linear rates and the rate con-
stants depend on the underlying distribution of the random samples. Figure 3.4.5(a) shows
the direct comparison of these two mean length curves as a functianFagure 3.4.5(b)
shows the length curves normalized yy. and transformed b log(-). Itis observed that
for both the uniform and the torus distributions the normalized and transformed length of
the MST converges to two different constant levels. Furthermore, the asymptote for the
uniform distribution is larger than that for the torus distribution. In fact, as was remarked
in Hero and Michel [39], the difference between the asymptotes is equal to the difference

between the Bryi entropies of ordet/2 of the respective distributions.
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Figure 3.4.3: 2D uniform and torus sample example
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Figure 3.4.5: Comparison of the MST length of uniform and torus samples



35

This example illustrates that the MST provides a consistent estimatoeyifen-

tropy (3.19).
3.5 Robustification of Renyi Entropy Estimator by k-MST
Now suppose that,, is a random sample from a contaminated density
f=0-efs+efn, 0<e<] (3.21)

wheref; is the density of interest (generating the signal) #nd the noise density (gen-
erating noise or outliers). Lef, be the torus density specified by (3.20). In Figure 3.5.6
we show that the MST is sensitive to outlier contamination. Figure 3.5.6(a) shows 70
samples realized from the signal densfty The MST through the 70 samples is plotted
in Figure 3.5.6(c). Figure 3.5.6(b) shows the sum of the 70 signal samplesffrand
30 uniformly distributed noise samples oyer1]>. The MST through this contaminated
signal is plotted in Figure 3.5.6(d). The MST in Figure 3.5.6(c) captures the shape of the
uncontaminated torus density, and thus its length could be used to provide a regalgle R’
entropy estimator. But the MST in Figure 3.5.6(d) is severely influenced by the contam-
ination of the noise and the MST length can only give erroneous entropy estimate. Thus
the MST length function is not robust to noise.

A solution to this lack of robustness is to utilize theVIST technique to eliminate the
outliers and then apply the MST entropy estimator.

For a uniform distributed noise, the noise tends to produce points that are further away
from their “nearest neighbors” than points frofn Letk = (1 — €)n. Then thek-MST
will span most signal points and get rid of noise points (Figure 3.5.7). Figure 3.5.7(a)
shows thet-MST over the contaminated samples witk= 30. The points which are not

spanned by thé-MST are considered as outliers, and in this way we have successfully
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removed the noise points (Figure 3.5.7(b)) andithdST achieves robustness to uniform

noise [39, 40].
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(a) k-MST over contaminated signal (b) After removing outliers

Figure 3.5.7: Us&-MST to remove outliers

In most casesc is unknown. If we remove less points than necessary, the outliers
will still affect the construction of MST; however, if we remove too many more points
than necessary, some signal points will be eliminated and thus the resulting MST will
become vulnerable. The key to a practicalST robustification algorithm is to accurately
estimate the appropriate number of points we want to reject.

Consider thek-MST length L(X;,) with respect to the number of rejected points
n — k. In Figure 3.5.8 th&-MST length is plotted for realizations of two distributions.
Figure 3.5.8(a) corresponds to the uniform distribution doet]?> and Figure 3.5.8(b)
corresponds to signal samples generated from the torus distribution contaminated by the
uniform noise. It is evident that thie-MST length curve for uniform sample (shown in
Figure 3.5.8(a)) decreases linearlyras- k increases, i.e., as decreases. It has been

proved that the meak*MST length curve for uniform density is linear with respect to the
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number of rejected points — £ [38]. On the other hand, the-MST length curve for
the contaminated sample from the torus density (Figure 3.5.8(b)) appears to be separated
into two segments such that the left segment is close to be linear. The break point is

approximatelyn — k£ = 30.

0 20 40 60 80 100
n-k

(a) k-MST length vs. number of rejected points
for uniform samples

[9)]

w Nk N

0 20 40 60 80 100
n-k

(b) kE-MST length vs. number of rejected points
for contaminated samples

Figure 3.5.8%-MST length vs. number of rejected points

The estimate of the break point can be implemented by approximating-sh8T
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length curve by two piecewise linear curves. The least mean squared error measure is
served as the stopping criterion. The intersection of the two linear curves is the estimate of
the break point. With this method, we are able to identify the best estiradte In this
example¢ = 0.22. Letk = (1 — é)n. The corresponding-MST is shown in Figure 3.5.9.

From the figure we notice that the remaining samples can characterize the signal density
fs. Therefore the IengtliL(X:’k) of the k-MST gives a provably robust estimate of the

Rényi entropy off, when used in (3.19) with replaced by .

1

o
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Figure 3.5.9: Usé&-MST to remove outliers

Hero and Michel [39] proposed a greedy approximaMST construction method and
proved that thé&-MST length indeed provides a robust entropy estimator for noisy signals.

We shall describe their greedy algorithms and the limit theorem in the next section.



40
3.6 Limit Theorem of £-MST greedy approximation

Since the computation of the exact mininkaMST has a complexity which is ex-
ponential in the number of poinig several researchers have proposed polynomial-time
approximations and have investigated the approximations’ asymptotic properties [85, 39].
Hero and Michel give a generalized approximation algorithm constructing graphgi-in
mensionsd > 1, in [39]. Suppose that the point samples are drawn from distributions
with support0, 1]%. Their generalized algorithm is described in the following.

The greedy approximation algorithm is divided into three steps:
O Uniformly partition[0, 1] into m¢ cellsQ; of resolutionl /m. Let Q™ = {Q;}™,.

O Find the smallest subsét” = U;Q; of partition elements containing at least

points.
O Select thet pointsX,, ;, out of the smallest subset such tH&tY,, ;) is minimized.

Step 3 requires finding/apoint minimal graph on a much reduced set of points, which
is typically only slightly larger thark if m is suitably chosen. And hence this greedy
approximation algorithm can be performed in polynomial time.

Define{ = k/n. Leto(Q™) be the sigma algebra @™. If for any C' € o(Q™)

satisfyingP (C) > ¢ the setd € o(Q™) has the following characteristic

P(C) > P(A) > €, (3.22)

then A is called aminimal resolutiont /m set of probability at leasf. The class of all

such sets is denoted;". Hero and Michel have proved the following theorem in [39].

Theorem 3.6.1Let X, be an i.i.d. sample from a distribution having densfty:). Fix

€€ 10,1],v € (0,d). Let £“" be of bounded variation oved, 1]¢ and denote by(A) its
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total variation over a subset C [0, 1]%. Then, the total edge weigh{ X\;") of ak-point
graph constructed by the resolutidrisn greedy algorithm satisfies

L(X5)

n d

_ﬂv deT’Y(x) dx

Ag

lim sup
n—o00

<, (3.23)

whereA?* € A7 is any minimal resolution;/m set of probability at least,

ma

5 = 2m8, 3 0(QiNAT) + Calpap — )T

=1

= O(m" (3.24)

For any Borel seti in [0, 1]¢ havingP(A) > 0 define the conditional density

Fald) = 5 14

wherel,(x) is the indicator function ofA. The Rényi entropy off(z|A) of ordera €

(0,1) is defined as

Ho(f|A) = log/fa z|A) d (3.25)

This is called the conditional@iyi entropy givem. Let A, be the probability-at-least-

Borel subset 0f0, 1]¢ which minimizesH, (f|A),

_ : 2
HolflAo) = inf  Ha(f]A) (3.26)
Define the following function oL(XnG[’gnJ)
PN 1 L(XGEM)
a. e log —~—mslen]) 3.27
—1_a( Een)e 7 %

Then an immediate consequence of Theorem 3.6.1 is the following theorem.

Theorem 3.6.2 Under the assumptions of Theorem 3.6] is a strongly consistent es-
timator of the minimum conditional &yi entropyH,(f|A,) of ordera € (0,1) as

m,n — 00.



CHAPTER IV

Image Registration Via Graph Matching

4.1 Image Registration Concepts and Formulation

Image registration refers to the process of aligning images so that their details over-
lap accurately. The images might be acquired at different times, from different viewing
angles, or with different sensors. An example of multidate image registration is shown in
Figure 4.1.1. Two imagek andI, (Figures 4.1.1(a) and (b)) are obtained in the Mojave
desert at different times and with different viewing angles. Cadis the test image anfg
as the reference image. The registration result is achieved by rotating and translating the
test imagd/; to align with the reference imadg (see Figure 4.1.1(c)).

Images are usually registered for the purpose of combining or comparing them. There-
fore image registration is a vital first step in many image sequence analysis applications,
e.g., fusing multiple sensor data. Actually image registration can be regarded as a special
case of image fusion.

The need to register images has arisen in many practical problems in diverse fields:
¢ integrating information taken from different sensors,

¢ finding changes in images taken at different times or under different conditions,

¢ inferring three-dimensional information from images in which either the sensor or

42
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(a) Imagel, (b) Imagel,

(c) Registration result

Figure 4.1.1: A multidate image registration example
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the objects in the scene have moved, and

¢ for model-based object recognition.

Registering two images always involves an operation that changes the locations and
intensities of pixels in one image to line up with corresponding pixels in the other image.
Image registration can be defined as a mapping between two images both spatially and
with respect to intensity.

If we consider the images to be registered as two-dimensional arrays dendieahily
I, where(z, y) are the coordinates of pixels addz, y) and I(z, y) each map to their
respective intensity (or other measurement) values, then the mapping between images can
be expressed as

ly(z,y) = g(Li(f(2,9))) (4.1)

wheref is a two-dimensional spatial-coordinate transformation, f.és,a transformation

which maps two spatial coordinatesandy, to new spatial coordinates andy/’,

(=",9) = f(z,9) (4.2)

and g is a one-dimensional intensity transformation.

The intensity transformation is not always necessary, and often a simple lookup table
determined by sensor calibration techniques is sufficient. For this reason we will ignore
the intensity transformation in our work. Finding the parameters of the optimal spatial
or geometric transformation is generally the key to any registration problem. The types
of spatial transformation can range from a simple rigid transformation, containing only
translations and rotations, to a fully elastic transformation, which locally deforms one
image to fit the other.

Currently, the most common approach to registration is to extract a few outstanding

characteristics of the data, which are calteahtrol points, tie-pointsor reference points
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The control points in both images are matched in pairs and used to compute the parameters
of a geometric transformation. Most available systems follow this registration approach,
and because automated procedures do not always offer the needed reliability and accuracy,
current systems assume some interactive choice of the control points. But such a point
selection represents a repetitive, labor- and time-intensive task which becomes prohibitive
for large amounts of data. Also, since the interactive choice of control points in some
images, such as satellite images, is quite difficult, too few points, inaccurate points, or ill-
distributed points might be chosen thus leading to large registration errors. And with the
increase in the number of images collected every day from different sensors, automated
registration of images has become a very important issue.

The aim of automatic registration is to estimate the geometric transformation in a
manner robust to the local changes in the scene without human-machine interactive ac-
tivities. In the past years, automatic image registration is broadly studied in computer
vision [16, 79], remote sensing [74, 99], stereo vision [26, 45], and biomedical image
analysis [9, 80].

Image registration methods vary depending on the choice of the following three com-

ponents:

0 Feature spaceF
The feature space contains the representation information in the images that will be

used for matching.

0 Search space]
The search space is the class of transformations that is capable of aligning the im-

ages.

00 Dissimilarity metric d
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The dissimilarity metric describes the relative merit for each test. The minimal

dissimilarity metric gives the optimal registration result.

Given the test imagé; and the reference imagl, F; and F; are feature vectors
extracted from Image$, and I,, respectively. For certain transformati@h € 7, we
define the dissimilarity metric as the distance between the reference feature Y@@k

the transformed test feature vectaéts
dT(Il, ]0) = dlSt(T(Fl), Fo)

Under this framework, the problem of image registration becomes the problem of

searching the optimal mappifig such that
T = indp (I, I,
arg 1721612 (11, I)
Image registration may be broken into 3 distinct steps:
e extraction of alignment match features in both images,

e computation of the dissimilarity metric values between the transformed feature vec-

tors and the reference feature vectors, and

¢ finding the optimal transformation which corresponds to the minimum dissimilarity
metric value, and applying the mapping to move each image pixel from its current

position to the corrected position.

A wide range of registration techniques has been developed for many different types
of applications and data, such as mean squared alignment [42], Fourier descriptor match-
ing [13], correlation registration [43], moment invariant matching [18], maximizing mu-
tual information [17, 103] and others. Basically, each method exploits different image

features of the object such as boundaries, moments or texture, which are extracted from
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the image, and uses them to solve the matching problem. Among these methods, the mu-
tual information-based registration method has been broadly investigated in recent years
and has yielded excellent experimental results. We will discuss this method in detail in the

next section.

4.2 Image Registration Via Maximizing Mutual Information

In 1995, Viola et al. [103] and Collignon et al. [17] independently proposed to register
images by maximizing the mutual information (MI) between the images. In this approach,
mutual information serves as a similarity metric in the registration process. In order to be
consistent with the registration formulation in the previous section, we define the dissimi-
larity metric to be the negative of the mutual information of the images.

Since 1995, several separate studies have established the effectiveness of mutual infor-
mation based medical image registration [72, 80, 90, 104]. At present, mutual information
is accepted by many as one of the most accurate and robust retrospective registration mea-
sures.

Mutual information is a basic concept from information theory, measuring the statis-
tical dependence between two random variables or the amount of information that one
variable contains about the other.

Given two random variablesy andY’, with marginal probability density functions,
fx(z) and fy (y), and joint probability density functiory,xy (z,y). Mutual information,
I(X,Y), measures the degree of dependenc& @ndY by measuring the distance be-
tween the joint distributiorfxy (z, y) and the distribution associated to the case of com-

plete independencgy (z) - fy (y), by means of the Kullback-Leibler measure, i.e.,

_ ) log L2V @Y
106) = [ [ revteton 2 e dy @3)
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Mutual information is related to entropy by the equations

I[(X,Y) = HX)+H(Y)—-H(X,Y) (4.4)
= H(X)- H(X|Y) (4.5)
= H(Y)-HY|X) (4.6)

with H(X) and H(Y") being the entropy ofX andY’, respectivelyH (X, Y) their joint
entropy, andd (X Y') andH (Y| X) the conditional entropy ok givenY and ofY” given

X, respectively

HX) = - / / fx (@) log fx (x) de @.7)
HEXY) = - / / Fav (2, y) log fxy (2, ) da dy (4.8)
HXY) = = [ [ forle.n)tog fuy(aly) do dy. (4.9)

The entropyH (XX) is known to be a measure of the amount of uncertainty about ran-
dom variableX', while H(X|Y") is the amount of uncertainty left iX when knowing}".
Hence, from (4.5)] (X, Y") is the reduction in the uncertainty of the random variablby
the knowledge of another random variableor, equivalently, the amount of information
thatY” contains abouk'.

In order to apply the concept of mutual information to image registration, let us con-
sider the image intensity values,andy, of a pair of corresponding pixels in the two
image that are to be registered to be random variaklesdY’, respectively. Then esti-
mates for the joint and marginal distributiofisy (z, v), fx(z), and fy (y) can be obtained
by applying any of a number of density estimation algorithms. Collignon et al. employed
histogrammethods to estimate the densities [17], that is, the density estimate is obtained

by normalization of the joint and marginal histograms of the two grey scale images. Viola

et al. appliedParzen windowmethods to estimate the densities from samples. Namely,
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they approximated the underlying density f6rby a superposition of Gaussian densities

(called a Gaussian mixture) centered on the elements of a sahgylvn from.X:

fx(z) = NLA > Golw — ), (4.10)
;€A
where
1 x?

is a Gaussian distribution with varianeé.

After the underlying joint and marginal densities are estimated, the mutual information
between a pair of images can be easily calculated using numerical or analytical integration
techniques. The mutual information registration criterion states that the mutual informa-
tion of the image intensity values of corresponding pixel pairs is maximal if the images
are geometrically aligned. Suppose we want to register two imdgesd /,. The mu-
tual information based registration algorithm declares that the images are geometrically
aligned by the transformatioh* for which I(7T*1;, Iy) is maximal among all possible
transformations.

Because no limiting constraints are imposed on the nature of the relation between the
intensities in the images to be registered and no assumptions are required regarding im-
age content, e.g., image parameterization, nor the imaging modalities involved, the mutual
information criterion is very general and powerful. It allows for robust and completely au-
tomated registration of multi-modal images without prior segmentation, feature extraction

or other preprocessing steps.

4.3 Minimum Rényi Entropy Criterion

Although the mutual information approach is very powerful, it has a drawback —

in order to calculate the mutual information of the images to be registered, we have to
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estimate the underlying probability density functions of their intensities. As mentioned
above, Viola et al. [103] estimated the underlying joint and marginal densities with the
Parzen window method, while Collignon et al. [17] employed histogram method to ob-
tain the estimated densities. Unfortunately, current probability density function estimation
algorithms, including both Parzen window and histogram methods, are computationally
intensive or unreliable, especially for few data samples. The accumulation of the errors in
the density estimation process might lead to completely wrong registration.

Aware of this fact and motivated by this information-theoretic approach, we propose
a novel image registration method based on the joiemyR entropy of the images. If
two images are perfectly aligned, which means that the two images are identical, the joint
Rényi entropy of the overlapping images is the same as #mwyiREntropy of any one of
them. If the two images are not aligned, the union of the two images certainly has a higher
entropy than any one of the two images. Therefore, if the two images are perfectly aligned,
the joint REnyi entropy of the overlapping images is smaller than that of the overlapping
misaligned images, i.e., the overlapping aligned images have the minireagi &itropy.

In the following we give mathematical justification of legitimacy of minimizing the

joint Rényi entropy over transformations of the test images. The first result is concavity.

Theorem 4.3.1 The Renyi entropy of fractional order,

1
11—«

Ha(f) =

log/fa(aj)dx, a € (0,1), (4.12)

is a concave function, i.e., for any two densitfesnd f;, andV ;5 € [0, 1], we have

H,(Bfo+ (1= 8)f1) > BH.(fo) + (1 = B)Ho(f1) (4.13)

and equality holds if and only if, = f; a.e..
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Proof: First we show that the functiog(y) = y*, y > 0, is a concave function. Its
second derivative is

d29 2

d—y2 =a(a—1)y*~ (4.14)

Sincea € (0,1),a—1 < 0. Andy > 0, thus g <0. Asg(y) for y > 0is concave, for

two pdf’s f, and f; the following inequality holds

[Bfo(z) + (1 = B) fr(2)]* = Bf5(x) + (1 = B) [T (). (4.15)

Integrating both sides of (4.15) oveywe have

/ Bfo(x) + (1 - B)fi ()] da > B / fo() de + (1 - ) / fo(r) dr. (4.16)

Define functionh(y) = ﬁlogy,for y > 0. Itis a concave function, too. The

concavity is immediately justified with the fact

Ph_ 11,
dy2 1 —ay? '

That is,

L loglfyo + (1~ B)ui] 2 frt—logyo + (1~ f);——logy  (417)

1
Utilizing (4.16) and (4.17), we have

H,(Bfo+ (1 - 8)f1)

_ 1 1og/mfo(> (1= B)fi(2)]"

1
> log{ /fo )dx+ (18 /f1 dx], by (4.16)
> 61 — 1og/fg(x) dr+ (1= f)7—— log/ff‘(x) dz, by (4.17)
= BHa(fo) + (1 = B)Ha(f1) (4.18)
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Suppose that two noiseless images to be registerefi ared/; and Image/,, is taken
as the reference image. Feature vectdyand F; are extracted froni, and I, respec-
tively. Assume that the underlying densities for feature vectqgrand F; are f, and f,
respectively, and also assume that the cardinalitigs @ind F; satisfy

Card Fp)
Card Fy) + Card Fy)

=8, 0<pB<1. (4.19)

Then the mixture density for overlapping feature vectorsfis+ (1 — ) f;. The Rényi
entropies of the individual image% and/;, are H,(f,) and H,(f1), respectively. The
joint Rényi entropy of the overlapping imagesHs, (5 fy + (1 — ) f1).

Define the difference between the joineiR/i entropy and the linear combination of

the individual entropies as

AHo(B, fo, 1) = Ha(Bfo + (1= B)f1) — [BHa(fo) + (1 = H)Ha(f1)], a € (0,1).

(4.20)

This difference is calledensen differencand is a measure of dissimilarity between two
densitiesf, and f; (often used in biology) [6].

From Theorem 4.3.1, we conclude thafi,, (5, fo, f1) = 0iff fo = f1 a.e. Therefore,
if two images/, and I, are perfectly registered, thehH, (53, fo, f1) = 0; in the other
direction, if AH, (3, fo, f1) = 0, then the two image#, andI; are perfectly registered.
Hence,AH, (5, fo, f1) = 0 can be regarded as a noiseless image registration criterion.
If two noisy images are registered, the terhf,, (53, fo, f1) Will never be exactly zero.
In this case, it is reasonable to register the images by searching for the minimal value of
H,(Bfo + (1 — ) f1) over all affine transformations of the domain fof

An alternative registration criterion for matching two images is minimization of the
Rényi information divergence between the two images. As before, we assume that the

two images to be registered afg and I, respectively. Their extracted feature vectors
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are represented by, and Fy, with underlying densitieg; and f,, respectively. Then the

Rényi information divergence between the two images is

1
a—1

Dalfo. f1) = log / o) () de, o€ (0,1). (4.21)

We next compare the discrimination capabilities of the two proposed registration cri-

teria,
e ANH, (5, fo, f1), the Jensen difference between the two images.
e D.(fo, f1), the Rényi information divergence between the two images.

For two densitiesy, and f; of a random vectoX, definef,(z) — fi(z) = A, andA =
max, |A;|. The comparison will be carried out by evaluating these two criteria for the

case whem\ is very small, i.e., when the two densitiésand f; are very close.

Theorem 4.3.2Let f, = %(fo + f1), the following asymptotic representation of the frac-

tional Renyi entropy of a convex combinatioify + (1 — ) f; holds forg € [0, 1]:

H,(Bfo+ (1 - 8)f1)

(4.22)

where

Ay : (4.23)

Proof: Let fi_g(x) = Bfo(x) + (1 — B) f1(z). It can be written as

fiop(z) = %[fo(x) + (1= B)(fi(x) = folx))] + %[fo(ﬂc) + B(fo(x) = f1(2))]
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= £+ @8- () - H@)

o (28— 1A,
= /() <1+ A ) (4.24)

A Taylor series expansion ¢f* ;(z) yields

o N e 28-1)0, )
fl—ﬂ(x)_f%( ) <1+ 2fl(l’) )
= () +aff(a) (W (”)A> + 202D gy (%) +o(n?)

(4.25)

Taking logarithm on both sides of (4.25) and then dividinglby o, we have

_ ! log/[f( ) +affla )(L (”)A>
olo=1) . (@B-DAY
st f%m( 0 ) o(12)

()

™

dx

1
= ——log /ff(x)dx 14

L f 1§ ()
2
e () e
+ ff‘g(a:)da: + o(A?)

1 . 1
= l_alog/f;(x)dx—i-l_

2
oo (e
+o0
J 1§ (x)da

+

(4.26)
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Sincelog(1 + ) = 2 — £ 4 o(x?), we have

HolBho+ (1= 0)f1) = 1= log [ 12 j(@)da

_ 5 o 21 7@ g 2f<f§(fv) fy(z)dz
B e e TR +§( 2 ) o

Theorem 4.3.3 The following asymptotic representation of the fractional Jensen differ-

ence of two densitie and f; holds forg € [0, 1]:

AH(B, fo, J1)

2 2
_ aB(l—8) I<M2$@)f?@m . I<M%£@>@wmx
- 2 ff‘f(x)dx " -« [ f&(x)dx

+o(A\3) (4.29)

where

and

Ny = 2 (4.30)
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Proof: Letting = 0 andg = 1in (4.27), we have

Ha(fo) = Ha(f

(4.31)

Substituting (4.27) and (4.31) into (4.20), we obtain the Jensen difference

AHy(B, fo, f1) = Ha(Bfo + (1 = B) f1) — [BHa(fo) + (1 = B)Ho(f1)]
af(1 - pB) J (fO(fl ) fa( )d N 1l (%) f‘g(x)dx

T2 [ 77 TToa [ Fyoyds

+0(A3) (4.32)

Theorem 4.3.4 The Renyi information divergence of fractional ordere (0, 1) between

two densities;, and f; has the asymptotic representation

o(fo, J1) = /f ( z) ()> dz + o(A3)

l
2

(4.33)

Wheref% and A3 are as defined in Theorem 4.3.3.
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Proof: We can rewrite the densitf as

fole) = S0+ Fi@) +5(0@) ~ @) = [(0) + 30, (439)

2

Similarly, we have

L@ = @) -30 (4.35)

N

Using Taylor series expansion, we have

@ = 176w (5) + 0 (5) o)
AV

0 ‘@) = fi%@)+ (1= a)f, () (7) +

a(l — )
2

e (52 ot

Da(an fl)

o [ ) s

o —

= 1 . log/ (f; (x) — (2 — 1)% —a(l - Oz)f;(a:) (%)2 + 0(Ai’)) dx

o —

(4.38)
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If we defineE¢[g(x)] = [ f(z)g(x) dz, for pdf f. Then (4.33) and (4.29) can be

rewritten as

Dalfacf) = S | Bt 4 ots) (4.39
2 2
AHL(B, fo, /i) = W{Eﬁy |:<f0flf1> ] +1iéa (Eﬁ’ fof—lfll) }
N O _
wherefg(a:) = m is a “tilted” pdf.

There are a number of interesting properties regardingfo, f1) andAH, (3, fo, f1):

e The divergence criterioP,( fy, f1) depends on, the information order, only through
a scale factor, while the Jensen difference critertof,, (3, fo, f1) is more strongly

dependent on..

0O Whena approaches 0, tail differences between the two densjitiasd f; are

much more influential od\ H,, (5, fo, f1) than onD,( fo, f1).

0O Whena approaches 1, central differences between the two densities become
highly pronounced il\H,,((3, fo, f1). Therefore, if the images to be registered
have concentrated regions of interest, we should chea$ese to 1 to enlarge

the discriminative capabilities of the registration criterion.

e The ratio of the numbers of feature vectors extracted from the two to-be-registered
images /3, does notinfluenc®,,( fo, f1), while this ratio does affech H,, (3, fo, f1)-
Furthermore, AH, (53, fo, f1) has the maximal discriminative capability for =
1, i.e., when two images yield the same number of feature vectors, the criterion

AH,(B, fo, f1) has the best registration capability.

Note that all the three term&,, (5 fo + (1 — ) f1), Ha(fo), andH,(f1), in the Jensen

difference AH, (S, fo, f1) can be computed by employing thesf®/i entropy estimator
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using MST techniques (3.19). In this way, this Jensen difference criterion does not require
direction computation of probability density estimates, which is usually computationally
expensive and may be unreliable. Therefore computin@? fo+(1—3) f1) is simpler and

more accurate than computitg, (fo, f1). In this dissertation we will focus on the Jensen
difference AH, (3, fo, f1) as the dissimilarity metric for image registration. Computing
AH, (B, fo, f1) involves evaluating three term&8,, (5 fo+(1—15) f1), Ha(fo), andH,(f1).

In order to simplify the registration process, we want to have as few as possible terms in

the objective function.
Theorem 4.3.5 For fixed densityf, and s € [0, 1], we have

argr, {AHW (B, fo, f1) =0} = argn}}n Ho(Bfo+ (1= 6)f1). (4.41)

Proof: Itis clear thatAH, (3, fo, f1) = 0 implies f, = f; a.e. (by Theorem 4.3.1),

then
H,(Bfo+ (1= B)f1) = Halfo)- (4.42)

The REnyi entropy of the mixture densityf, + (1 — 3)f, is always no less than the

minimum REnyi entropy of any individual density, and f,, i.e.,

Ho(Bfo+ (1= B8)f1) = min(Ha(fo), Ha(f1))- (4.43)

Therefore from both (4.42) and (4.43) we conclude #ats fo + (1 — ) f1) is mini-
mized whenf, = f, a.e., thatisAH, (8, fo, f1) = 0 implies thatH,(3f, + (1 — () f1) is
minimized.

In the other direction, i, (3 f, + (1 — ) f1) is minimized, i.e.f, = f; a.e., then we

immediately conclude that H,, (3, fo, f1) = 0. [ |
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Since the criterianin H,,(3f, + (1 — 8)f1) andAH, (3, fo, f1) = 0 are equivalent,

i.e., both are minimized fof; = f,, and the former criterion has lower complexity, in the
sequel, we will investigate the minimal joineRyi entropy,H,(5f, + (1 — 3) f1), of the
overlapping images as the registration criterion.

Recall that the Bnyi entropy of a density(x) can be estimated by the normalized
length of the minimum spanning tree over the corresponding graph connectingd.
realizations{xy, z5,...,x,} of f(z). Thus the objective of image registration can be
stated as: find a transformati@hon imagel/; which minimizes the length of the minimum
spanning tree connecting the vertices generated from two imigasd /;. With this
property in mind, we successfully avoid the process of estimating underlying probability
distribution and directly match two images based on the image intensities of the pixel
pairs.

To apply the minimum joint BAyi entropy criterion to the image registration problem,
we can choose to either work on the image intensity values or work on the feature vectors
extracted from the images. It is important to keep in mind that we intend to employ mini-
mum spanning tree methods in the registration process, and the computational complexity
of constructing the minimum spanning tree is polynomial in the number of vertices. Re-
duction of the number of vertices is therefore critical for the algorithmic complexity to be
manageable. Since feature extraction can greatly decrease the number of representation
vectors, we will work on the feature vectors instead of working directly on the intensity
values.

Suppose that we need to register a pair of imagesdl,. Assume that there exists
a mappingl : I; — I, that relates the intensity values of corresponding pixel pairs. Let
T'1, denote the image transformed framwith the transformatiofl”. Let {7'X;}7_, and

{Y:.}7, be the point processes R representing feature vectors extracted ffbim and
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Iy, respectively{7T'X;}"_, are i.i.d. random variables with the underlying unknown den-
sities frx, and{Y, } 7", are i.i.d. random variables with the underlying unknown densities

fy- Then the joint Rhyi entropy off X andY is H,(3fy + (1 — 3) frx), f = -2, and

m—+n’

it satisfies:

Ho(Bfy +(1 = B)frx) 2 Ho(Bfy + (1 = B) fr-x) > Ha(fy) (4.44)

whereT™ is thebesttransformation function such that the transformed imagaligned
with imagel,. Note that the second inequality may not be a strict equality since when
images are acquired either by the same sensor at different times or by different sensors
at the same or different times, a number of distortions prevent the two images from ever
being “perfectly registered” to each other.

Under such framework, the image registration problem can be stated as a minimization

problem:
T* = arg ¥161¥ H,(Bfy + (1= 0)frx) (4.45)

i.e., our objective is to find the optimal transformatibhwhich minimizes the joint Bnyi
entropy. Ultilizing (3.19), we turn to the problem of searching for the transformdtion
such that the graph corresponding to the uniofioX’; }7_, and{Y}};", has the shortest

minimum spanning tree length,
T = in L TX,Y 4.46
arg¥1€1¥ msT(TX,Y) ( )
4.4 Image Registration Procedure

Suppose that we are given two imadesndI,. If the two images are obtained from
different sensors, we pre-process one of the two imageg; sagd converf; to the image
plane on whichl, lies according to the physical characterization of each of the sensors.

Alternatively, we convert both images to a reference image plane. Thus we get two images
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that lie on the same image plane. In order to focus on the registration algorithm of finding
appropriate spatial transformations, from now on, we only consider the registration of two
images/; andI, on the same image plane. Furthermore, we assiyneethe reference
image and will transfornd; to match/,. We will call image/; the test image.

For each candidate spatial transformatibnthe image registration process follows

three steps:
O Apply spatial transformatiofd’ to 7; and obtain the transformed imagé; .
0 Extract feature vector§I'X; }7_, and{Y}};*, from bothT'I, and,, respectively.

0 Generate a graphl from the mixture of feature vectofd"X; }7_, and{Y} };*,, then

construct the MST o and calculate the length of the resulting M&T; s (T X, Y).

The above three steps are repeated for all possible transformdtians/. Then we
declare the transformatiahi* satisfying (4.46) as the optimal transformation and the cor-
responding transformed image is matched to the reference image.

Since we will concentrate on developing the graph matching approach for image regis-
tration, we will not address various spatial-coordinate transformations in this dissertation.
Instead, since the transformations are quite dependent on the application, we will give two

examples to illustrate the different types of transformations.

4.4.1 Geo-registration

The first application is to register two images taken on different sensor planes by po-
tentially different sensor modalities for geo-registration applications. Our objective is to
register two types of images — a set of electro-optical(EO) images and a terrain height
map. For this multisensor image registration problem, there usually exists distortions be-

tween the two types of images. The distortions are due to difference acquisition conditions
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of the images such as shadowing, diffraction, terrain changes over time, clouds blocking
the illumination sources, seasonal variations, etc. Existence of such differences between
the images to be registered requires that the registration algorithms to be robust to noise
and other small perturbations in intensity values.

In our image registration problem, the set of EO images are generated franptioei
digital elevation model (DEM)of a terrain patch (the terrain height map) at different look
angles (determined by the sensor’s location) and with different lighting positions. With
different sensor and light locations, we can simulate the distractions mentioned above. For
example, shadows are generated by taking into account both the sensor location and the
lighting location as follows. The scene is first rendered using the lighting source as the
viewing location. Depth values (distance from the light source) are generated for all pixels
in the scene and stored in a depth buffer. Next, the scene is rendered using the sensor’s
location as the viewpoint. Before drawing each pixel, its depth value as measured from
the sensor is compared to the transformed depth value as measured from the light source.
This comparison determines if a particular pixel is illuminated by the source. Shadows
are placed on those pixels that fail this comparison. The EO image generation flowchart is
shown in Figure 4.4.2.

In this geo-registration problem, since we have two types of images to register, the first
step is to project one type of the images to the other image plane. In our case, we project
the terrain height map to the EO image plane and take the resulting EO projection as the
reference image. Our objective is to find the appropriate EO image which registers with
the reference image, i.e., to find the correct viewing angles such that the corresponding EO
image is the best match to the reference image. In this application, the change of viewing

angles corresponds to the spatial-coordinate transformation. Figure 4.4.3 shows the EO

1DEM stores the terrain height information in a three dimensional array where each element of the array
consists of the locations (x and y coordinates) and the height of the terrain at that location.
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Y

Read DEM data

Render with light source as viewpoint
and store the data in depth buffer

Transform light source data in depth

buffer to sensor viewpoint

Compare depth between light view and

sensor view to determine shadows

EO images

Figure 4.4.2: EO image generation block diagram
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image with viewing angles (290, -20, 130) and the reference image. Clearly they are not
aligned. Figure 4.4.4(a) shows the EO image with viewing angles (300, 0, 110), which
is much better aligned with the reference image than the EO image with viewing angles

(290, -20, 130).

Image at 290,-20,130 rotation Reference image

50 100 150 200 250 300 50 100 150 200 250 300

(@) (b)

Figure 4.4.3: Misaligned EO and reference images

4.4.2 Medical Image Registration

In some clinical applications, the images taken at different times are often utilized to
analyze the health condition of a patient or to evaluate the operation performance. We
will register magnetic resonance imaging (MRI) images via this graph matching method.
Magnetic resonance imaging (MRI) is an imaging technique used primarily in medical
settings to produce high quality images of the inside of the human body. MRI is based on
the principles of nuclear magnetic resonance (NMR), a spectroscopic technique used by
scientists to obtain microscopic chemical and physical information about molecules.

Magnetic resonance started out as a tomographic imaging modality for producing
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Image at 300,0,110 rotation Reference image

50 100 150 200 250 300 50 100 150 200 250 300

(a) (b)

Figure 4.4.4: Aligned EO and reference images

NMR images of a slice though the human body. Each slice had a thickness (Thk)(4.4.5(a)).
This form of imaging is in some respects equivalent to cutting off the anatomy above the
slice and below the slice. The slice is said to be composed of several volume elements
or voxels. The volume of a voxel is approximatéiym?( 4.4.5(b)). The magnetic reso-
nance image is composed of several picture elements called pixels. The intensity of a pixel
is proportional to the NMR signal intensity of the contents of the corresponding volume
element or voxel of the object being imaged.

MRI is based on the measurement of radio frequency electromagnetic waves as a spin-
ning nucleus returns to its equilibrium state [47]. This MR phenomenon is due to the
nuclear spin angular momentum which is possessed by atoms with an odd number of pro-
tons and/or neutrons. The principle of MR is based on these spins in the presence of the
main (static) magnetic fiel@, (usually applied in the-direction, which is the longitudi-

nal axis), the radio frequency excitation fighkd (usually applied in they plane, which is
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()

Figure 4.4.5: MRI image generation process
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the transverse plane) and the linear gradient fieldéusually applied inc and/ory direc-
tions for two dimensional imaging). When such an atom is placed in the static magnetic
field By, the moment of the nucleus tends to line up with the field and all the spins possess
the same frequency callééirmor frequencywhich is proportional ta3,. If the atom is
excited again by another magnetic fighd, it emits a radio frequency signal as it returns
to its equilibrium position. In this position, the magnetization vector precesses about the
z-axis. If this excitation field is turned off, then the magnetization vector which was earlier
aligned in the equilibrium position, now returns to its new equilibrium position along the
z-direction producing an electromagnetic wave at Larmor frequency called free induction
decay. This free induction decay signal can be detected using coils around the object, The
time constant characterizing the return of this magnetization vector back tedinection
is calledT’, while the time constant characterizing the decay of magnetization along the
xy plane is called. Spatial localization is achieved by applying linear gradient magnetic
fields G in addition to the main field3,. This gradient fields give spatial information
through frequency and phase encoding of the received signal. One attractive feature of
MRI is the ability to manipulate soft tissue contrast over a wide range of independent pa-
rameters in MRI. The main drawback of MRI is that MR imaging usually requires long
scan times and expensive hardware. Nonetheless, it is preferred for its high resolution.
Figure 4.4.6 shows two magnetic resonance imaging (MRI) images. Each of the
images are acquired from the same patient, taken from pre-operative and post-operative
scans, respectively. Note that the left ima@e,has an abnormal nodule (white spot) not
present in the post-operation imadg, In this application, the spatial-coordinate transfor-

mation consists of translation and rotation.
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100 200 300 400 100 200 300 400

(a) Pre-operative scan (b) Post-operative scan

Figure 4.4.6: Brain images for registration

4.5 Determination of the Renyi Entropy Order

From the definition of Rnhyi entropy (3.12), we observe that there is a freedgm
the information order, that needs to be determined. Recall that we have restritiesl
fractional order in Section 3.3.

In order to determine the optimal orderin graph matching registration, we study
the Rényi information divergence of the images to be registered when we vary the order
a. In this study, we employ the histogram algorithm to estimate the underlying density
functions of the image observations, and then calculate the information divergence using
its definition (3.16).

For the geo-registration problem (Figure 4.4.3), the information divergence results with
different ordera are shown in Figure 4.5.7. In each subplot thexis stands for the
indexes of test images and theaxis stands for the &iyi information divergence. For
any value oty, the information divergence achieves the minimum for the same image pair.

And the divergence curves have the same envelope profile for all values$iafvever, the
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difference between the minimum divergence and the second minimum divergence changes
with the value ofx. In order to achieve the maximum discrimination capability, it is better

to have larger divergence difference.

a=0.1 a=0.2 a=0.3
0.3
0.2 0.3
0.15 02 0.2
0.1
0.1 01
0.05
0 0 0
0 50 100 0 50 100 0 50 100
a=0.4 a=0.5 a=0.6
0.4 0.6
0.4
0.3
0.3 0.4
0.2 0.2
0.2
01 0.1
0 0 0
0 50 100 0 50 100 0 50 100
a=0.7 oa=0.8 0=009
1
1.5
06 0.8
0.4 0.6 1
0.4
0.5
0.2 0.2
0 50 100 0 50 100 0 50 100

Figure 4.5.7: Rhyi information divergence with different orders

For an order, define the resolution of information divergence as the difference be-
tween the minimum value and the second minimum value of #eyRnhformation diver-
gence. The resolution versus the order for the above geo-regsitration problem is plotted
in Figure 4.5.8. Note that the difference increases as the erdecreases. But at the
same time, the dynamic range of the information divergence increases with thexprder

too (Figure 4.5.7).



71

0.045

0.04

0.035

o
© o ©°
o N O
N O ®

Resolution of divergence
o
o
H
()]

Figure 4.5.8: Resolution of &yi information divergence with different orders

We are more interested in the relative resolution of teeyRinformation divergence,
which equals the resolution divided by the dynamic range of the information divergence
(see Figure 4.5.9). The relative resolution for this application is also monotone increas-
ing with the value of the order of éyi information divergence. So in this registration
application, the larget, the better discrimnation capability.

We also investigate the resolution oeéRyi information divergence for another geo-
registration problem. In this application, we are given a series of DEM images taken at
different look angles and are asked to find the look angles of the registered image to the
reference image. Figure 4.5.10 gives a test image and the reference imageenite R’
information divergence of the test and reference images with different orders is shown in
Figure 4.5.11. In each subplot theaxis stands for the indexes of test images andythe
axis stands for the &iyi information divergence. Similar to the previous example, for any
values ofa, the information divergence achieves the minimum for the same test-reference

image pair. We plot the resolution and relative resolution of the information divergence
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Figure 4.5.9: Relative resolution ofeRyi information divergence with different orders

in Figures 4.5.12 and 4.5.13, respectively. From Figures 4.5.13 we see that the relative
resolution achieves the maximum fer= 0.5, which means the information divergence of

order0.5 has the the best discrimination capability among all possible fractional orders.

(a) Testimage (b) Reference image

Figure 4.5.10: Test and reference DEM images

Note that for the two appications, the best values ahe order of information diver-

gence, are not the same. In the first geo-registration application, the objects of interest are



a=0.1
0.4
0.3
0.2
0.1
0
0 100 200
a=04
1
0.5
0
0 100 200
a=0.7
1.5
1
0.5
0
0 100 200

Figure 4.5.11: Rnyi information divergence with difference orders

located close to the centers of images and hence the underlying densities of the images
are highly centered. ThedRyi information divergence achieves the maximum when the
order approaches 1. On the contrary, in the second registration application, the objects of
interest are scattered in the images and hence the underlying densities of the images have

heavier tails than those in the first application. So we have to use lower vatuéhah
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Figure 4.5.12: Resolution ofdRyi information divergence with difference orders
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Figure 4.5.13: Relative resolution oERyi information divergence with difference orders
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4.6 Feature Extraction

For the registration problem, we want to register a test infage the reference image
I,. We first do spatial-coordinate transformation on the imhge get a stack of images
with different transformation parameters. Let us denote the stack of imadég’b}s For
the purpose of conciseness, we Ulis& denote an image from the image $éﬁ")}.

A digital image is considered as a two-dimensional array. Each pixel is identified
by its coordinategz, y) and intensityl(x,y). Alternatively, each pixel can be treated
as a three-dimensional vectdr;, y, I(x,y)), and thus a pixel can be treated as a point
in the three dimensional space. With this point of view, the pixels of the image can be
considered as vertices in the three-dimensional space and then a minimum spanning tree
can be constructed over these vertices.

Consider registering twd5s6 x 256 images, which are quite small images in real world
applications. Each image contai?i6 x 256 = 65536 pixels. If we try to find the MST
over all image pixels, the MST should be constructed over as magpas x 2 = 131072
vertices, which is computationally prohibitive since MST algorithm is implemented in
polynomial time.

In order to make constructing MST feasible for the image registration problem, ap-
propriate features must be extracted to compress the original great amount of data. The
features should be able to well represent the original image and the number of feature
vectors should be under the limit that MST is able to handle for computational complexity
concern.

In our work, we investigate three approaches to extract feature vectors from the original
image — uniform spatial sub-sampling, vector quantization, and stratified sampling with

centroid refinements. We will illustrate the feature extraction process using the EO —
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terrain map registration application (Figure 4.4.3).

4.6.1 Feature Extraction Via Uniform Spatial Sub-sampling

Before extracting features, we notice that the background (dark area) of the image
does not contribute much to the registration. The histograms of both images are shown in

Figure 4.6.14. From the histograms we empirically determine the threshold to be 30.

Histogram of Image (290, -20, 130) Histogram of the reference image
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0 50 100 150 200 250 300 0 50 100 150 200 250 300

(a) (b)

Figure 4.6.14: Histograms of the EO and reference images

In order to justify that the background (dark area with intensity values less than 30)
of the image does not much affect the registration result, we plot @émyiRnformation
divergence for the pixels with intensity values greater (or less) than the threshold in Fig-
ure 4.6.1(a) (or Figure 4.6.1(b)). We can see that theyRinformation divergence changes
in a small range for pixels with intensity values less than the threshold, but the number of
those pixels are large. Thus removing those pixels can significantly reduce the number of
vertices in the corresponding graph while not losing too much information.

The thresholded images are shown in Figure 4.6.16.

After thresholding the image, we sub-sample the thresholded image with a uniform

grid. The pixels in the sub-sampled image will serve as the feature vectors to generate the
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Thresholded Image (290, -20, 130) Thresholded reference image

50 100 150 200 250 300 50 100 150 200 250 300

(a) (b)

Figure 4.6.16: Thresholded EO and reference images

graph, i.e., pixel (z, y) in the sub-sampled image corresponds to the vértex (z, y))

in the generating graph. The sub-sampling rate is selected such that the number of vertices
in the graph is computationally feasible for constructing MST while the remaining pixels
contain enough information of the original image. Figure 4.6.17 shows the sub-sampling

result with a sub-sampling rate of 8.

4.6.2 Feature Extraction Via Vector Quantization

Spatial sub-sampling greatly decreases the number of vertices in the graph. However,
the number of pixels in the image cannot be decreased too much since spatially distinct pat-
terns and texture may be lost. Therefore sub-sampling inevitably removes a great amount
of useful information for registration. Indeed at very low sampling rate, Nyquist tells us
that we will lose so much information that the resulting feature vectors are a very poor
representation of the original image.

Some advanced techniques other than spatial sub-sampling can be applied to the fea-
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thresholded and subsampled image thresholded and subsampled reference image

50 100 150 200 250 300 50 100 150 200 250 300

(a) (b)
Figure 4.6.17: Feature vectors extracted via uniform sampling

ture extraction problems to reduce the number of vertices in the graph without losing
much fidelity. In spatial sub-sampling algorithm, each coordinate of a pixel is uniformly
guantized. Basically, the spatial sub-sampling algorithm partitions the image into uniform
rectangular cells and places the vertices of the desired graph at the centers of each cell.
Instead of sub-sampling the image on each coordinate separately, we propose to group the
row and column coordinates together and quantize them as a single block. This idea is an
extension of vector quantization (VQ) [30] for lossy data compression.

In vector quantization, we takk samples from the source and treat each sample as a
component of a vector of dimensidn Both the encoder and decoder have a codebook that
is comprised ofL.-dimensional code-vectors, which are selected to be the representation
vectors for the source samples. For an encoder with Voronoi partition, each source sample
vectors is compared to all the code-vectors in the codebook, and the closest code-vector is

chosen to represent the input. The distance between two vectors are defined as

L

S - W), (4.47)

=1

D
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whereX] is the value of théth element of the vector, arld is the value of théth element
of the code-vector. This algorithm partitions the sample space into Voronoi cells that cor-
responds to the code-vectors. Optimal codebooks for VQ can be derived mathematically
for i.i.d. sources with certain distributions, such as, uniform, Gaussian, and Laplacian
distributions.

In the case of VQ spatial sub-sampling, we treat the row and column coordinates of
each pixel from the image as a two dimensional data vector. Given a certain number of
verticesV, we design a codebook withi code-vectors, that minimize the average squared

distanceD, which is given by
1 N M . .
D= oy 2D () = V) () 10y (4.48)
i1 M; i=1 j=1
where M, is the number of pixels in théh cell, »@7) andc(9) are the row and column
coordinates of thgth pixel in the:th cell, andVl(i) and VQ(“ are the row and column
coordinates of the vertex that representsitheell.
We propose to employ vector quantization technique to obtain the representation vec-

tors for a given image. These representation vectors will serve as the feature vectors for

constructing the MST. The feature extraction algorithm is as follows:
e Preset the number of representation vectors in each image (length of code book).
e Do vector quantization on the coordinates of the pixels.

¢ In each Voronoi region, the representation vector is the Voronoi centroid with the

mean intensity of the region as its intensity.

We use the Linde-Buzo-Gray (LBG) algorithm [66] to implement the vector quanti-
zation. Let{ X,,}_, denote the input vector set, namel, is a two dimensional vector

consisting of the coordinates of theth pixel, i.e.,X,, = (i, j»), wherei,, andj, are the
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row and column position for the-th pixel . Let{Z,,}}_, be the representation vectors,

whereM is a pre-determined constant. The LBG algorithm proceeds as follows:

O Start with an initial set of representation vectdégy.’ }¥_ . Setk = 0, D© = 0.

Select threshold.

0 Find quantization regions

VE = (X, |d(Xn, Zm) < d(Xn, Z), ¥l #m}, 1 =1,2,...,M —1

0 Compute the average distorti@i*) between the input vectors and the representa-

tion vectors.

0 |f D% =Dk=Y

Sm— < €, stop; otherwise, continue.

O k =k + 1. Find new representation vecto[rZ}(f) M_ that are the average value of

the elements of each of the quantization regitzﬁﬁ%‘l). Go to Step 2.

In Figure 4.6.18 we show the vector quantization regions for the thresholded images
(shown in Figure 4.6.16). Here we set the number of representation vectors to be 100 in
each image.

Vector quantization technique significantly reduces the number of feature vectors with-
out losing much useful information and thus the MST construction over these feature vec-
tors are much faster. However, in order to have a satisfactory representation of the original
image, the number of iterations in the LBG algorithm has to be sufficiently large. There-
fore the vector quantization algorithm is computationally expensive, too. Thus we need
to achieve a compromise between the computational load for vector quantization and the

load for the MST algorithm.
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Voronoi regions for Image (290,-20,130)
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Figure 4.6.18: Feature vectors via vector quantization
4.6.3 Feature Extraction Via Stratified Sampling with Centroid Refinements

The computation overhead of the vector quantization based feature extraction method
results from the large number of iterations in the LBG algorithm. The reason for such large
number of iterations is that the underlying distribution of the coordinates of the image pix-
els with intensities higher than a threshold is far from uniform, but the initial representation
vectors of the LBG algorithm are selected to be uniform distributed. The significant differ-
ence between the initial and final representation vectors results in long computational time.
One approach to speed up the LBG algorithm is to obtain a good initialization. However,
a good initialization usually requires a thorough knowledge of the underlying distribution
of the pixel coordinates, which is not easy to obtain.

From Figure 4.6.18, we notice that the representation vectors are concentrated in the
region of interest and in this region the distribution of representation vectors is fairly close

to the uniform distribution. By taking advantage of this fact, we propose a “quick” low
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complexity approximation of the Voronoi cells and centroids in the vector quantization

method. This feature extraction technique is described as follows:
e First divide the image with a uniform grid.

e Throw away the cells whose number of pixels is less than a pre-determined thresh-
old. The remaining cells are regarded as approximations to the Voronoi cells in the

vector quantization method.

e Calculate the coordinate centroid of each remaining cell. Take the centroid as the

representation vector with the mean intensity of the cell as its intensity.

Figure 4.6.19 illustrates the result of applying this feature extraction technique to the

thresholded images (shown in Figure 4.6.16).

Image (290, —20, 130) Reference image

350 350
300~ 1 300~
250} . 2501 RE
200 x:iiix 200} z:::ffZ:iiii
150] B T T R L
N E R T S
50| S 50/ R X
O0 160 260 360 O0 160 260 360
(a) (b)

Figure 4.6.19: Feature vectors via stratified sampling with centroid refinements
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4.7 MST Construction

The feature vectorér, y, F'(x,y)) extracted from the original image are used to gen-
erate a graph in a three-dimensional space and each feature stands for a vertex described
by a vector of length thre¢y, y, F/(z,y)). Forimage registration, we generate two graphs
G, andGq from the image to be registeréddand the reference imadg, respectively. To
register the two imageg andI, first we overlap the two graphs; andG, together and
get a mixture grapl/, and then we construct the MST over the gréph

In order to clearly render the overlapping graphs and the corresponding MST, when
we plot the figures, we use many fewer points than those actually required by image regis-
tration. Figure 4.7.20 demonstrates the MST over misaligned images, while Figure 4.7.21
shows the MST over aligned images. In both Figures 4.7.20(a) and 4.7.21(a), circle
points denote the pixels from Imadeand cross points denote the pixels from Imdge
From Figures 4.7.20(a) and 4.7.21(a) we see that for misaligned images, the representation
points have larger distances than those for aligned images. Therefore the corresponding
MST for the misaligned images has a longer length than that for the aligned images (Fig-
ures 4.7.20(b) and 4.7.21(b)).

We repeat the MST construction process over all the images in the ima@é{@@t
The MST length is plotted in Figure 4.7.22. The x-axis stands for the image index, which
corresponding to the viewing angles from the aircraft. The minimum of MST length in-
dicates the best matching of the EO image and the reference image, which are shown in

Figure 4.7.23.

4.8 Noise Removal withk-MST Technique

So far we have not considered the noisy image registration yet. The existence of noise

in the image will influence the construction of MST and hence affect the MST length.



Intensity
= N w S
o o o o

o

300

2]
o

Intensity
N
o

N
o

300

85

misaligned points MST demonstration
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Figure 4.7.20: MST demonstration for misaligned images
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Figure 4.7.21: MST demonstration for aligned images
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Figure 4.7.23: Result for EO-terrain map registration
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In order to robustly register two noisy images, the first and crucial step is to remove the
noise from the images. As we described in the Section/3MST is a good candidate
for noise removal. Sincg-MST is time consuming, it is impractical to find the optimal
sub-tree spanning a large number of nodes. Thus, noise removal will be implemented after
the feature extraction. After applyirgMST algorithm on each feature image to remove
outliers, we can employ the registration algorithm discussed in the preceding sections to
register the noise-removed images.

To illustrate the registration of two noisy images, let us consider the registration of the
images shown in Figure 4.4.6. The noise in the images is salt-and-pepper noise.

The feature vectors extracted via uniform sub-sampling method are shown in Fig-

ure 4.8.24.

100 200 300 400

(a) Pre-operation image (b) Post-operation image

Figure 4.8.24: Sub-sampled brain images for registration

An illustration of thek-MST over the graph generated from pre-operation brain image
I, is shown in Figure 4.8.25. Those unconnected vertices are further away from the center
of the tree, which corresponds to the signal part of the mixture, and they are very unlikely

observations from the underlying signal density. FREIST total length as a function of
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n — k, the number of pruned points, is plotted in Figure 4.8.26, from which we can easily
determine the optimal knee, i.e., the number of pruned points, which-ig = 23 in this

case. The pruned images are shown in Figure 4.8.27.

300 °
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Figure 4.8.25: lllustration of k-MST for pre-operation brain image over the 3-dimensional
domain of pixel position and grey scale

After pruning noisy points an initial alignment was performed by translating pre-
operation brain imagé, to make the centroids af; and I, coincide. Then we rotate
Image I;, merge the two images and construct the MST on the resulting bitmaps. The
MST length as a function of the rotation angle is plotted in Figure 4.8.28. The minimal
MST length occurs at the rotation angle4°. The final result is shown in Figure 4.8.29.
Figure 4.8.29(a) shows the matching resulfgfwhile Figure 4.8.29(b) demonstrates the
registration error defined as the difference between the matched imagel the image

Iy.
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Figure 4.8.26: kMST length as a function of pruned number
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(a) Pre-operation (b) Post-operation

Figure 4.8.27: Sub-sampled images after outlier removal
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Figure 4.8.28: MST length as a function of rotation angle for brain image registration
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(a) Registered pre-operation brain image (b) Registration error

Figure 4.8.29: Registration result for brain images
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4.9 Sliding Sampling Grid Approach

In order to improve the accuracy and robustness of the registration via MST matching,

we proposed the following sliding sampling grid method:

O Coarsely sample the original images with high sampling rate to extract the feature

vectors.
0 Construct the MST over the graph generated from overlapped feature vectors.
O Shift the sampling grid in a neighborhood and repeat Steps 1 and 2 for each shifting.
O The summation of all MST lengths gives a dissimilarity metric between images.

We apply this registration technique to the geo-registration application. The sampling
grid is shifted in a neighborhood @&f x 3. The results are shown in Figures 4.9.30 and
4.9.31. Figure 4.9.30 shows the MST length functions for various shifted sampling grids
where the numbers above each subplot are the shift positions in the row and column direc-
tions, respectively (We assume the first subplot is corresponding to the original sampling
grid, which has (0,0) above the subplot)). Figure 4.9.31 shows the total MST length by
adding the MST length over all subgraphs.

From the results, we observe that although in certain subgraphs, the minimum of the
MST length does not occur for the registered image pair, the total MST length achieves
its minimum for the registered image pair. The accuracy and robustness of the sliding
sampling grid method are due to the fact that the individual MST length is correlated for

the registered image pair, but not correlated for the misregistered image pair.
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Figure 4.9.30: MST length over subgraphs



93

x 10" Sum of MST lengths
6 T T T T T T
5.8 o , |
® (0]
®
48t , , |
| | | | | |
0 20 40 60 80 100 120

Figure 4.9.31: Total MST lengths versus test image indexes



94

4.10 Conclusions and Future Work

Registration is a fundamental task in image processing and quite a few registration
techniques have been developed in various fields. In this chapter, we have proposed a
graph-theoretic technique for image registration. The registration process is carried out on
the feature vectors extracted from the original images. This registration algorithm uses the
joint Rényi entropy of overlapping feature vectors as a dissimilarity metric between the
two images. From the classical work of Steele [96], tleyR ‘entropy of feature vectors
can be estimated with the power weighted length of the minimum spanning tree over the
corresponding vertices in the generated graph. Thus we are able to make use of an equiv-
alent dissimilarity metric, the MST length over the overlapping graphs generated from
the original images, to align two images. Our method also takes advantage of the min-
imum k-point spanning tree approach to robustify the registration against outliers in the
images. Since the-MST length provides a robust and reliable distance measure between
the images to be registered, this graph matching registration algorithm yields accurate

registration results and is not sensitive to noise and small difference between images.

Comparison of Feature Extraction Strategies

Since the computational complexities of MST construction and approximm8T
construction are both in polynomials of the number of vertices in the graph and the corre-
sponding image size is usually large for practical use, feature extraction is a critical step
for registering images with graph matching algorithms. In our work, we have proposed

three strategies to extract feature vectors from the original to-be-registered images:

[0 extracting feature vectors with uniform spatial sub-sampling approach,

[0 extracting feature vectors with vector quantization algorithm, and
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O extracting feature vectors with stratified sampling with centroid refinements.

Extracting feature vectors with uniform spatial sub-sampling approach is straightfor-
ward and there is almost no additional computational load for the feature extraction pro-
cess. The drawback of this approach is that the sub-sampling rate cannot be too high in
order to keep enough information for registration process, and the number of vertices in
the generated graph is still too large for effectively constructing the MST and approximate
k-MST. Therefore, the feature vectors generated with the uniform sub-sampling approach
are not satisfactorily effective. For the geo-registration application, the running time of the
whole image registration process is about 24 minutes for satisfactory registration results.
(All running times in this section are counted with Matlab codes.)

Vector quantization is a generalization of spatial sub-sampling. Since vector quantiza-

tion takes into account the underlying densities of the feature vectors, it yields the most
effective features among the three proposed strategies. Unfortunately, since a good initial-
ization of representation vectors are not available in most applications, the LBG algorithm
is time consuming. Thus the computational overhead caused by vector quantization pro-
cedure is not negligible compared to the complexity of constructing MST'3ad&T's.
The image registration algorithm with this vector quantization approach consumes less
time than the registration method with the uniform sub-sampling approach. For the geo-
registration application, the running time of the whole image registration process is about
19 minutes for satisfactory registration results.

Extracting feature vectors with stratified sampling with centroid refinements is a low
complexity approximation to the vector quantization based feature extraction approach.
It takes advantage of the fact that most to-be-registered images have high information
concentrated in the region of interest. Thus this method provides quite effective feature

vectors and the registration process with this feature extraction method is much faster than
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the previous two approaches. For similar registration results, the registration process with

stratified sampling with centroid refinements is implemented in about 11 minutes.

Future Work

We have seen that feature vectors extracted from the original images play a very impor-
tant role in the graph matching image registration algorithm, both in registration accuracy
and computational complexity. If the feature vectors well represents the information in the
original images and their cardinality is not an obstacle for constructing MSTan8T
in a noisy environment, the graph matching registration method will achieve satisfactory
results. Since “good” features are application dependent, it is difficult to find universally
perfect features. However, it is known that some features are of great interest in image
registration field. For example, boundaries of the objects, pixels with very high intensity,
and rapidly changing regions. All these features contains great amount of information
and should be helpful in registration process. In the future, we shall investigate the effec-
tiveness and efficiency of more features and try to find a set of “good” features for some
typical registration applications.

We should point out that for a given application, the extracted feature vectors used for
matching images are not restricted to a single type. Then another direction of improving
the image registration algorithms via graph matching is to employ multiple types of fea-
tures. This multiple-type-feature registration method can be divided into two steps: first, a
minimum spanning tree is constructed for each type of feature vectors; then a combining
technique needs to be designed to appropriately incorporate the lengths of the MST’s over
different features. The challenge of this method lies in the design of effective combining
technique. It should take into account the dimensions and cardinalities of different types

of feature vectors, and it should put more weights on the lengths of those MST’s that cor-
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respond to the more discriminative features. When we take advantage of more than one
discriminative features in a single registration application, the number of the feature vec-
tors in each type is usually small and it is easy and fast to construct the MST over those
feature vectors. Thus, we can improve the accuracy of the graph-representation registra-

tion algorithm and reduce the computational complexity as well.



CHAPTER YV

Sensor Systems for Road Boundary Detection

5.1 Road Boundary Detection Problem

Lane and pavement boundary detection is an enabling or enhancing technology which
will have significant impact on the next generation of automotive systems such as road
departure or lane excursion warning, intelligent cruise control, and ultimately autonomous
driving. All of these applications have potential use in both military and civilian contexts.
We shall give two examples to show the critical role of lane and pavement boundary detec-
tion. In the application of drowsy driver warning, knowledge of the pavement boundaries
relative to the vehicle enables a driver assistance system to determine if the driver is run-
ning off the road. In the application of forward collision warning, pavement boundaries
help disambiguate potential collision threats in terms of their relevance to the vehicle’s
intended path.

Lane and pavement boundary detection problem is particularly difficult when no prior
knowledge of the road geometry is available (such as from previous time instants — see
[22, 49, 75]) and when the detection algorithms have to locate the boundaries even in
situations where there may be a great deal of clutter in the images.

Many gradient-based detection algorithms, which are applicable for structured edges

including lane and pavement boundaries, apply a threshold to the image gradient mag-

98
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nitude to detect edges — see [50, 53, 54, 55] and the references therein. When a visual
image has clearly visible lanes, and when the radar image has uniform regions with good
separation between the regions, good performance can be obtained with these algorithms.

However, real road scenes seldom give rise to such clean images —

O Clutter
Images may have structured noise, perhaps due to the presence of complex shadows

(Figure 5.1.1).

Figure 5.1.1: Clutter due to presence of complex shadows

0 Missing data
Valuable data might be missing, perhaps due to other vehicles occluding the bound-

aries of interest (Figure 5.1.2).

U Low SNR
The signal-to-noise ratio might be inherently very poor perhaps due to the limita-
tion of the (radar) imaging process (Figure 5.1.3). Figure 5.1.3(a) is the original

raw radar data, while Figure 5.1.3(b) is the enhanced radar image obtained by nor-
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Figure 5.1.2: Missing data due to other vehicles occluding the boundaries of interest

malizing the power values with respect to the maximum, taking one-fourth root of

the pixel intensities in the raw radar image, and scaling the resultant values to a
maximum of 255. Henceforth, all the radar images shown are enhanced versions
of the corresponding raw radar images. However, all the processing is done on the

raw(non-enhanced) radar images.

(a) Raw radar data (b) Enhanced radar data

Figure 5.1.3: Low signal-to-noise ratio radar data



101

O Spurious boundaries
Spatially significant non-lane or -pavement boundaries might be present, perhaps

due to entry/exit ramps (Figure 5.1.4).

Figure 5.1.4: Non-lane or -pavement boundaries due to entry/exit ramps

Needless to say, it is difficult to select thresholds which eliminate noise edges without
also eliminating many of the edge points of interest, and so the conventional edge detec-
tion algorithms described in [50, 53, 54, 55] are not suitable for our boundary detection
problem under the above mitigating conditions.

A class of successful methods that overcome the thresholding problem are studied
in [55, 56, 59, 68, 83]. These methods work directly with the image intensity array, as
opposed to separately detected edge points, and use a global model of lane and pavement

boundary shape. Two examples from this class are particularly relevant to our work:

O In Reference [56] the authors present a vision-based real-time algorithm called LOIS
for locating lane and pavement boundaries using a deformable template global shape
model. The global shape model adaptively adjusts and aligns a template so that it

best matches the underlying features of the lane and pavement-boundary over the
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entire image. At the heart of LOIS is a matching function that encodes the knowl-
edge that the edges of the lane should be near intensity gradients whose orientation
are perpendicular to the lane edge. This allows strong magnitude gradients to be dis-
counted if they are improperly oriented and weak magnitude gradients to be boosted
if they are properly oriented. LOIS is shown to work well under a wide variety of
conditions, including cases with strong mottled shadows and broken or interrupted

lane markings, which pose a challenge for gradient-based lane detection schemes.

0 In Reference [68] we present a method for detecting pavement boundaries in radar
images. Like in LOIS, here too a deformable template model is used. The biggest
difference though is in the matching function: [68] uses the log-normal probability
model of the radar imaging process, which was proposed in [59]. This function
encodes the knowledge that boundaries of the pavement should divide the image

into three “relatively” homogeneous regions.

In both references [56] and [68] the boundary detection problem on hand is reformulated
as a Bayesian estimation problem, where the deformable template model plays the role of
a prior pdf and the matching function plays the role of a likelihood pdf, respectively.

Note that previously lane boundary detection in optical images [53, 54, 55, 56, 83], and
pavement boundary detection in radar images [59, 48, 60, 68] have always been studied
separately. However, a single sensor, either optical or radar sensor, limits itself in the
ability to sense and identify the relevant features in varying environments. For example,
the optical sensor is not able to operate in a poorly illuminated environment, while the
radar sensor can not distinguish the lane markers on the road. To take advantage of the
strengths (and overcome the weaknesses) of both the optical and radar sensors, itis natural

to think of combining the two different types of sensed data together since multiple sensors
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will provide more information and hence a better and more precise interpretation of the

sensed environment.
5.2 Sensor Systems

The radar data and visual images used in this work are all obtained from an imaging
platform mounted on top of WOLVERINE I\(Vheeled Onroad Lab Vehicle Enabling Re-
search Into New Environmenis self-contained test-bed vehicle shown in Figure 5.2.5.
The imaging sensors consist of a millimeter-wave radar sensor and a bore-sighted opti-
cal/vision sensor. The radar sensor is a 77GHz frequency modulated continuous wave
(FMCW) radar sensor, with a maximum range of 128 meters (resolution 0.5 meters) and
angular field of view of64° (resolution1°). The radar sensor setup is shown in Fig-
ure 5.2.6. The radar and optical sensors observe the same road scenario simultaneously
in order to acquire a pair of co-registered images of that scene (Figures 5.2.7 and 5.2.8).
The problem of interest is simultaneous detection of lane and pavement boundaries using
observations from both the modalities. Consideration of both the modalities is meaningful
because lane and pavement boundaries for the same road scene are highly correlated.

The information contained in the optical image depends on the reflectivity of the road
illuminated by natural visible light. The lane boundaries, i.e., the white or yellow lane
markers, constitute one of the two boundaries of interest to us and are clearly visible in
the optical image if the image is obtained in a well-illuminated environment (see Fig-
ure 5.2.7(a)). The radar image is obtained by illuminating the road scene with electro-
magnetic radiation in the millimeter-wave spectrum — see [48] and [59] for a detailed
discussion of this image acquisition process. The relatively smooth road surface forward
scatters much of this incident electro-magnetic power and hence returns very little power

back to the radar; the side of the road, because it is made up of a coarser structure than the
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road, returns a slightly higher amount of power. Thus, in the radar image, the road region
is a little darker than the road sides, and the boundaries of the road delineate these three
regions of different contrast (Figure 5.2.7(b)).

Evidently, either optical or radar sensor used alone has limited capabilities for resolv-
ing ambiguities and providing consistent descriptions of the road scenario due to the op-
erating range and limitation which characterize the sensor. The optical sensor can pro-
vide high signal-to-noise ratio images in a well-illuminated environment such as a sunny
day (Figure 5.2.7(a)). Such images, which clearly reflect the lane information, are suf-
ficient for the lane boundary detection task. However, since it is a passive sensor and
works at visible light wavelengths, in an ill-illuminated environment, e.g., at night or in
foggy weather, the optical sensor will fail to provide sufficient information about the lane
boundary (Figure 5.2.8(a). The radar sensor, on the contrary, being an active sensor and
operating at millimeter wavelengths, has the ability to penetrate through rain, snow, fog,
darkness, etc., i.e., it can operate under all weather conditions and provides an “alternate”
image of the scenario in front of the vehicle (Figures 5.2.7(b) and 5.2.8(b)). Thus the
radar image, regardless of the illumination situations, can give us the pavement boundary
information, and the precise geometry of the pavement boundaries can be subsequently
used in a number of driver warning and vehicle control tasks. The downside of the radar
image though is its notoriously poor signal-to-noise ratio and low spatial resolution when
compared to a visual image of the same road scene.

Since the optical and radar sensors provide different but complementary information
about the road scene ahead of the vehicle, if the two types of information are combined
appropriately and efficiently, the accuracy of the detected lane and pavement boundaries
can be improved. The optical and radar fusion system shown in Figure 5.2.9 exploits this

redundancy, diversity and complementarity between the two modalities.
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Figure 5.2.9: Diagram of the optical and radar multisensor fusion

Since two sensors, radar and optical sensors, are used to measure the same entity, the
observational data are redundant. The redundancy of the data results from the fact that the
lane and pavement boundaries in the visual and radar images, respectively, are highly cor-
related. Both lane and pavement boundaries are concentric arcs on the ground-plane and
the lane boundaries are inside the road region, while the degradations of this boundary in-
formation introduced by the visual and radar imaging processes have completely different
characteristics.

Since the radar and optical sensors measure the same scene with different laws of
physics, we obtain physical sensor diversity. Since both sensors are placed at almost the
same location, spatial diversity is not an issue in our work. However, it is because of the
absence of spatial diversity that we can greatly simplify the registration process.

The optical sensor offers information about the lane boundaries, while the radar sensor
provides information about the pavement boundaries. Thus each of them observes a subset
of the environment space, and the union of these subsets makes up the whole road scenario.

In this way, we achieve data complementarity.



CHAPTER VI

Fusion Algorithm for Lane and Pavement Boundary
Detection with Existing Prior and Likelihood Models

We have seen that in previous work [56, 68], the authors studied separate lane or pave-
ment boundary detection algorithms using only optical or radar images. In their boundary
detection efforts, the lane and pavement boundaries are represented by parabolic curves,
the radar imaging process is modeled with a log-normal pdf, and the optical imaging pro-
cess is described with an empirical matching function. In this chapter, we propose a fusion
algorithm for detecting lane and pavement boundaries using existing prior shape models

and imaging likelihood functions.

6.1 Parabolic Models of Lane and Pavement Boundaries

In most cases, we can assume thatiori knowledge regarding the shape of the lane
and pavement boundaries in the optical and radar images is available. A commonly used
shape model for lane and pavement boundaries assumes that they can be approximated by
concentric circular arcs on a flat ground plane. Such arcs, at least within a reasonable field
of view, for small-to-moderate curvatures, are well approximated by parabolic curves on
the ground plane,
T = %ky2+my+b (6.1)

109
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where the parametéris the curvature of the arey is the tangential orientation, amhds
the offset. While the radius of curvature and tangential orientation of left and right lane and
pavement boundaries will differ slightly, constraining the left and right lane and pavement
boundaries to have the same parameteasd m closely approximates the actual edge
shapes for all but very small radii of curvature. So, it is assumed that concentric lane and
pavement boundaries share the same parametansim. Then the only parameter that
distinguishes the boundaries is the offset paramgttrat is, the left and right lane and
pavement boundaries are characterized by different values of

The radar image is composed of reflections from the ground, and its domain is in-
deed the ground plane. So, (6.1) can be directly applied to model the shape of pavement
boundaries in the radar image. The domain of the optical image, however, is a perspec-
tive projection of the ground plane, and therefore (6.1) needs to be rewritten in order to
model the shape of lane boundaries in the image plane. Assuming a tilted pinhole camera
perspective projection model, parabolic curves in the ground plane (6.1) transform into

hyperbolic curves in the image plahe:

k, / /
_ _ 2
c r_hz—l—b(r hz) 4+ vp (6.2)
where
kl = T ka
v = N M+ Nk k+ 1, and
b, = ™ b + My,m 1M + Mo,k k. (63)

In other words, thé’ parameter is linearly proportional to the curvature of the arc on the
ground plane. Thep parameter is a function of the tangential orientation of the arc on

the ground plane, with some coupling to the arc curvature as well. b'Tharameter is

1See [54] for a derivation
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a function of the offset of the arc from the camera on the ground plane, with couplings
to arc curvature and tangential orientation. The constants,., Mm.k, 17, M, Mo.m, andn, x
depend on the camera geometry (resolution, focal length, height of the camera from the
ground plane, and camera tilt).

Let9® = {£',vp, 0,0} andd” = {k, m, by, br} denote the unknown lane and pave-
ment boundaries’ parameters, respectively.bilrbg, b, b, the subscriptd. and R indi-
cates the offsets corresponding to the left and right boundariesf) £eff", °} denote
their adjoinment. By changing the valueglotarious lane and pavement boundary shapes
can be realized — see Figure 6.1.1. The templates of the upper row in Figure 6.1.1 illus-
trate a straight road scenario with the deformation parameéters0, vp' = 256, b, =
-0.6, b = 0.7, hz = =30, b, = —12.0, br = 2.4. The templates of the lower
row demonstrate a curved road scene with= 600, vp’ = 340, b, = —3.2, V) =
—1.0, hz =200, b, = —14.2, bp = 0.4.

The problem of simultaneous detection of the lane and pavement boundaries is now
equivalent to the problem of estimatidg The elements of have to satisfy some con-
straints, and for some elementsgbthe range of physically meaningful values they can
possibly assume is knowa priori. Given a hypotheticad, its fidelity to the observed
optical and radar images can also be assessed. In this report, we choose a probabilistic
Bayesian framework to express the constraintsatpegori beliefs, and the assessment of
fidelity to data.

We present the so-called prior pdf here (the likelihood pdf’s are in the next chapter):

p(0) =p(0°,0")
= Iy, 50, (b7, 00) X Iy, <y, (Vg, br) X (K" —ni ko)

X 6(vp' = [N M+ Mg k + 1))
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Figure 6.1.1: Boundary templates for the optical and radar images
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2 2 ﬂo,Q

X~ atanf,; x (b — b7)] x - atan[b,R - b’J
2 2

x Z atafif,, x (bg —b.)] x = atan b (6.4)
s ’ s bR — bL

wherels(x,y) is an indicator function,

1, if (z,y) satisfies relatiom
0, otherwise

andé(x) is the Kronecker delta function,

1, ifz=0
d(z) = (6.6)

0, otherwise

The terms on the first two lines of (6.4)'s RHS, correspond to the constraints that the
elements off have to satisfy. The first two terms impose the constraint that the lane
markers be contained within the pavement region, the last two terms impose the constraint
that the lane boundaries’ curvature and orientation be precisely related to the pavement
boundaries’ curvature and offset via (6.3). The terms on the last two lines of (6.4)'s RHS
expresses tha priori beliefs that lanes and pavements can be neither be too narrow nor

too wide.

6.2 Imaging Likelihoods

6.2.1 Radar Imaging Likelihood

The true boundaries of the pavement separate the observed radar image into three ho-
mogeneous regions associated with the road surface, the left side of the road, and the right
side of the road. So, given a parametereits fidelity to the observed radar image is
assessed by how homogeneous the corresponding three (road, left, and right) regions are.

A log normal probability law [2] is used to derive the homogeneity criteria.
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We caution the reader that the radar returns over the the left, right and road regions
are not truly homogeneous. Sources for non-homogeneity including point-like scatterers
(cars, sign posts, retro-reflectors, etc.), changes in the off-road surface (grass, gravel, etc.)
and presence of periodic off-road structures (bridges, fences, trees, etc.). Modeling all
such variability is impossible. The log-normal pdf is meant to be a reasonable but low-
complexity (two parameters per region) approximation to the actual variations in the data.

The rationale for using the log-normal law, as opposed to normal, exponential, or
Rayleigh laws, is due to previous studies [27, 89, 62]. To appreciate the appropriateness
of the log-normal pdf to describe radar returns, we refer the reader to Fig. 6.2.2, which
demonstrates that log-normal is an excellent approximation to the radar return.

Let £ ={(r,¢), 1 <7 < Tmazs Omin < & < dmaz} denote the range and azimuth
coordinates of the pixels in the millimeter-wave radar image Given the parameters
0" for pavement boundaries, the conditional probabilityZéftaking on a realization”

(corresponding to a single observation) is given by

p( 10) = ] ! exp {—W [log 27, — um(ﬂ’")]Q} (6.7)

(ro)et 2/ 2m074(0")

where i,4(0"), 07,(0") denote the mean and variance of the region to which the pixel
(r,¢) belongs. In (6.79" is explicitly referred to emphasize the dependencies of means
tre @nd variancesrfq5 on the unknown paramete#s. However, henceforth, in order to
make the representations concise, we will omit the explicit referenggs to

In its present form, (6.7) is not very useful for assessing the data fideli, afue
to the presence of nuisance paramexegsandaf¢. In the sequel, (6.7) is rewritten as a
function of these nuisance parameters, and it reveals an intuitively appealing homogeneity

criterion. Some additional notations are necessary for further derivation:

e Let V denote the number of pixels ifx
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Figure 6.2.2: Rationale for using log-normal pdf. (a) shows a radar image overlayed with
the correct positions for the left and right pavement boundaries. (b), (c), and
(d) show histograms of the actual radar returns for the three regions — the
road, the left-side and right-side of the road. Also shown in (b), (c), and (d)
are the maximum likelihood fits of the log-normal, Rayleigh, and Gaussian
pdf’s to the radar return histograms.
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e Also let £, £", £ denote the Cartesian coordinates of the pixels in the road,
left-side and right-side regions, respectively, &ntt, [07¢]2, N™?), (u!, [0!]?, N')
and(u™, [0"]?, N") denote the means, variances and the numbers of pixels of the

corresponding regions.

e Define
T T T
po= (gt optopt
gz — HO_rd]Z [O_lt]Z [O_rt]2]T,
logZ" = [log z{%m, -+, log z{%”, log z§¢min, e
r r r T
log Zhmanr " log ENpmins " log zN%M] ,
and

¢ Finally, letZ denote an indicator matrix defined as follows

T(1,1) Z(1,2) Z(L,3)

7(2,1) I(2,2) Z(2,3)

I(N,1) I(N,2) Z(N,3)

where for every such thatl < p < N, if p belongs tgj-th region,

1, if k=34, ke{1,2,3)}
I(p, k) =

0, if k#j, ke {1,2,3}

Now (6.7) can be expressed in terms of the above notations:

p(z" [8) = [
(

1 1 1
11 o 11 7 P {_ 507 10821 — “w]z}
r@)er 0 | (rg)ec \/2M05 ré



(T7¢7)€Crd
X H ! expq — L [log 2%, — u']?
O R W G
¢)ELt
1 1 12
T‘,¢ €Lt
1 1

Z7 (2m)N/2 | diagiZ o?]||1/2

X exp {—% [logZ’" —IH]T [diag(_’[QQ)]f1 [logzr _IH] }

(6.8)

Given a hypothetical shape of the pavement boundatigshe nuisance parameters
ando?, corresponding to the means and variances of the three regions, can be empirically
estimated from the observed radar imageby a maximum likelihood method. Note
that the likelihood is in a normal form, and so the maximum likelihood and least squares

estimate of the nuisance parameters are equivalent,
p=[T"7) " T log Z'
62=[T77] 'I" (logZ" — )" (logZ" — T j) (6.9)

Substituting these estimates pfand ¢* back into (6.8), and taking the logarithm
results in
logp(2"10") = —N"%log 6™ — N'" log &'

- 1
—N"log6™ —log Z" — §N(1 + log 27) (6.10)
This result leads to the following interpretation:

Given a hypothetical pavement boundary shépehe fidelity of this shape
to the observed radar imageéis assessed by the sum of the logarithm of the

variances of the observed image over the corresponding three (road, left-side,
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and right-side) regions. The smaller the sum of these variances, the better the

fidelity.
Weighted Log-normal Likelihood

It is indicated in (6.10) that part of the objective is trying to maximizep(z"(0"), i.e.,
to minimize N4 log 67 + N'log 't + N log 6", i.e., trying to minimize the standard
deviations, and hence, variances of the three regions. However, in the radar image, it
is clear that the backscatter distribution of the pavement is virtually homogeneous while
the backscatter distributions of the roadsides are much more complicated. Therefore, we
might prefer having an even smaller variance in the road region at the price of having
slightly larger variances in the roadside regions.

In the above method, the variances are weighted proportionately to the number of
pixels in their respective regions. In order for the standard deviation of the ¢65dp
weigh more heavily, in terms of its contribution to the likelihodd, would have to be
proportionately large. The same is true for the other two regions as well.

In order to re-enforce ou priori belief that road pixels tend to be homogeneous (at
least compared to the pixels belonging to either side of the road), and to overcome the
undue influence of bright point scatterers in the roadside regions, we propose a new radar
imaging likelihood function that gives the region of the road a different weightfrom

those given to the roadside regions.

Ing(ZT|QT) — _wrdNrd IOg OA.rd _ Nlt IOg OA.lt

- 1
—N"log6™ —log Z" — §N(1 + log 27) (6.11)

In this report, we will utilize (6.11) as the log-likelihood of radar imaging process in a

Bayesian estimation scheme. To make the representation of radar imaging log-likelihood
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function concise, we rewrite (6.11) as

logp(2"]0") = L"(2",0") — ¢ (6.12)

where
L'(2",0") = —(w“'N"logs™ + N"logs" + N log ™) (6.13)
& = logZ" + %N(l + log 27) (6.14)

L7 (2", 8") is the effective matching part of the log-likelihood function whilés a constant
for a specified image and thus can be neglected in the estimation process. From now on,

we call L" (2", §") as radar matching function.

6.2.2 Optical Imaging Likelihood

In [56] the authors give a fairly robust optical imaging likelihood function. In our work
we make a little modification of their proposed likelihood and describe the imaging like-
lihood based on an energy function, which directly interprets the observed optical image
without regard to how it is formed. The energy function, and hence the likelihood, encodes
the knowledge that the edges of the lane should be near intensity gradients whose orien-
tation should be perpendicular to the lane edge. More specifically, given a hypothetical
parameter set of underlying edg€s= {£’, vp', b , 0% }, we assume that the likelihood of

observing the optical imagg’ is given by
p(2°]6°%) = 7(8°) e 7" (6.15)

where E°(z2°,0°) denotes an energy function andd®) is a normalizing constant for a
given optical deformation parameter gét

R 1
fY(Q ) = fe_Eo(zo,QO)dzo (6'16)

The energy functior?®(2°, §°) can be described in the following steps:
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e Define the Cauchy density function
(6.17)
e Let g,,(r, c) be the gradient magnitude at pixel ¢), with g,(r, ¢) being the cor-

responding gradient direction. Instead of the observed optical image, the gradient

features are used in the representation of the energy function.

¢ Define the edges of the lane in the image by the curves:

!

1>

Si(r,c,0%) + b (r — hz) + op/

r— hz
!

>

Sr(r,c,0°) + Up(r — hz) +vp' (6.18)

r — hz

Given these definitions, the energy function of observing an image gradient field given

a set of lane shape parametétss

Eo(zoﬂgo) = Eo(gmagdago) (619)

= — ng(r, ¢) X flaym,c— Sp(r,c, 6°))
(re)

X f(ag, cos(ga(r, ) — atar(d%SL(r, ¢,0%)))

37 (1, €) X ¢ — Sg(r,c,0%))
(re)

d
X f(ca, cos(ga(r, c) — atar(%SR(r, ¢, 0%)))) (6.20)

In other words, the contribution made by a pixel to the energy is the gradient magnitude
at that pixel, multiplied by a function whose value decreases as the pixel column gets
further from the lane edge and a function whose value decreases as the gradient direction
at the pixel becomes less perpendicular to the tangent to the lane edge.

The logarithm of the optical imaging likelihood is

logp(2°]0°) = —E°(2%,6°) + log v(€°) (6.21)
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Define the optical matching functiakr (2, §°) as the negative of the energy function

E°(2°,0°),
Lo(2°,0°) = —E°(2°,8°) (6.22)
6.3 Joint MAP Estimate for Lane and Pavement Boundaries

Since the prior distribution of the deformation parameters and the imaging likelihood
functions are available, we shall pose the lane and pavement edge detection problem in
a Bayesian framework. Let be a realization of the radar random figdd and z° be a
realization of the optical random field’. The optical and radar fusion detection problem

can be solved by the joint MAP estimate

AT AQ

6 = {6,0}) = argmaxp (0]2", 2°)

= arg max p (07,0°|z",2°) (6.23)

According to the Bayes' rule, we have

h p(zr7Z07Qr7QO)
§ = arg max
{QT‘,QO} p(zr, ZO)

(6.24)

Since the denominatai(z", 2°) is fixed by the observation, the above formula can be

rewritten as

6 = arg{%gc}p(z ,2°,07,0°) (6.25)

By the chain rule of conditional probability, we have
p(z",2%,0",0°) = p(8")p(="[0")p(€°10", 2" )p(2°0°, 2", 0") (6.26)

Given the road shape parameféythe lane shape paramet&ris independent of the
radar observation”, i.e.,

p(0°18",2") = p(€°[8"), (6.27)
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and also given the lane shape paramétethe optical observation’ is independent of

the radar observatiofi and road shape paramet€ri.e.,
p(2°10°,2",0") = p(2°|6°) (6.28)

Substituting (6.27) and (6.28) into (6.26), and then substituting (6.26) into (6.25), we

have

0 = arg max p(0") p(="18") p(0°10") p(="]6")

= arg {g}%g}p(ﬁ’", 0°) p(2"10") p(2°16°) (6.29)

Making use of the logarithm of the density functions, the joint MAP estimate turns to

0 = arg max logp(z", 2°, 0)
= arg max {logp(8",0°) +logp(2"|0") + log p(2°|0°) }

= arg max {logp(0",0°) + L"(2",0") + L°(2°,8°) + v(€°)} ~ (6.30)

Calculatingy(#°) is intractable, as it involves an integration over all the realizations of

Z° (see (6.16)). We will use a relative weighting to compensate for negleetiig.

6.3.1 Empirical MAP

Sincev(6°) in (6.30) is intractable, it is impossible to obtain a theoretical estimate for
deformation parametei$ based on (6.30). The primary difficulty we met in this edge
detection problem is that for the two imaging likelihood functions, the radar imaging like-
lihood is normalized, while the optical imaging likelihood is not. Instead of computing the

normalizing factory(#°), we turn to the empirical MAP estimate,

1>

= arg max {logp(0",0°) + L"(2",0") + 5 - L°(2°,0°)} (6.31)

We expect the weighting factgtto play the same role as the normalizing constdft).
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The matching functiong’ (2", ") andL°(z°, 0°) are relative rather than absolute mea-
sure. This is the root cause of the problem — the matching functions are of different
dynamic ranges within the parameter space of interest. Figure 6.3.4 shows the different
dynamic ranges of the matching functions for an optical and radar image pair shown in
Figure 6.3.3. The dynamic range of the radar matching functidmdisc 103, while the
dynamic range of the optical matching functiontis x 10*. If the two matching functions
are combined without weighting, i.e., |8t= 1, then the instant result of the difference in
dynamic ranges is that in most cases, the optical image dominates the joint estimate. Fig-
ure 6.3.5 gives an example of such dominance. Figure 6.3.5(a) shows the lane boundary
detection result when only the optical observation data are used. The erroneously detected
lane boundaries curve too much to the right because the optical data at the far range are not
able to provide sufficient information for the curving of the road. The pavement boundary
detection result shown in Figure 6.3.5(b) is quite correct. However, when we jointly detect
the boundaries with no-weighting fusion algorithm, since the dynamic range of the optical
matching function is much larger than the dynamic range of the radar matching function,
the optical observation data dominate the joint estimate. Even though the the radar data
yield correct curve direction by itself, it cannot correct the wrong curve direction with the
fusion approach (see Figures 6.3.5(c) and (d)).

In order to overcome this inherent deficiency, we scale (using the wg)gbie of
the matching functions so that the ranges of variation for the weighted matching functions
are approximately the same. This fixed weight empirically derived by examining the
individual matching functions for a (training) set of optical and radar image pairs. Our
extensive experiments seem to indicate that 0.01 gives good performance for most

image pairs (Figure6.3.6).
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(a) Optical image (b) Radar image

Figure 6.3.3: A pair of optical and radar images
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Figure 6.3.4: Different dynamic range of the matching functions for optical and radar im-
ages
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method while (d) Pavement edge detection with fusion
B=1 method whiles = 1

Figure 6.3.5: Wrong edge detection results with fusion method and no-weight scheme
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(a) Lane edge detection (b) Pavement edge detection

Figure 6.3.6: Edge detection by fixed weight scheme
6.3.2 Computation of Empirical MAP Estimate

The problem is one of obtaining the maximum in (6.31). This problem is equivalent
to finding the mode of a six-dimensional density surface. The surface is non-concave with
many local maxima, hence we can not just apply the greedy search algorithms such as
conjugate gradient methods. In our work, we suggest two techniques to find the global

maximum.

6.3.2.1 Multi-resolution Pseudo-Exhaustive Search

Exhaustive search can find the optimal solutions at the cost of unacceptable computa-
tion resources in some optimization problems. For the problem we are considering, ex-
haustive search is not feasible due to the large searching space. Instead, a multi-resolution
pseudo-exhaustive search method is studied, aiming for an acceleration of the matching
process while maintaining the accuracy and robustness of the method. First, we constrain

the parameters in appropriate ranges. Then we select a set of coarse step sizes (coarse grid)
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for the parameters and do the pseudo-exhaustive search to find the maximum of the joint
MAP objective function (6.31). Once this coarse maximum is found, the corresponding
estimated parameters are taken as the center of a finer search procedure with finer step
sizes (finer grid) and smaller ranges of the parameters. Repeat the above step until the

desired parameter grid size is reached.

6.3.2.2 Metropolis Algorithm with Geometric Annealing

Although the multi-resolution pseudo-exhaustive search gives us relatively accurate
solutions, since we have six parameters to estimate, the search procedure is very time con-
suming. To accelerate the maximization procedure, we employ a sub-optimal approach,
the Metropolis algorithm [56] with a geometric annealing schedule [97], to perform this

maximization,
0 Seti = 0, and initialized®.
0 Calculatelog P(z", 22, §©).

O Pick § at random among all the possible parameter values in the neighborhood of

Q(i)_

0 Calculatelog P(z", 2%, 6).

i+1

. log P(z", o’é —log P(z", o’g(i) - Ttina maz_iter
0 Calculatgy? = exp ( e )>,whereT(l> = Tt (ﬁ) .

O Update the curve deformation parameters

;

|

if p) >1
9(’i+1) _

|

w.p. p@ if pl) < 1

0  otherwise

0 Seti=i+1and go to step 2.
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6.3.3 Performance Comparison

We have applied the proposed multisensor fusion method to jointly detect the lane and
pavement boundaries in registered radar and optical images. We have implemented the
scheme described in previous sections on a data set containing 25 optical and radar image
pairs. These image pairs were acquired under a variety of imaging (light, weather, etc.)
conditions.

Since multiple (optical and radar) sensors provide more information and hence a more
precise interpretation of the sensed environment, the performance of lane and pavement
boundary detection is robust and accurate. To illustrate the advantage of the fusion de-
tection algorithm over the single sensor based algorithm, we also implemented the MAP
estimator described in [68] to detect the pavement boundaries in radar images alone and
applied the LOIS algorithm presented in [56] to locate the lane boundaries using only op-
tical images, and we plot the detection results with both single sensor based and fusion
algorithms together in Figures 6.3.7, 6.3.8, and 6.3.9. In all the plots and for represen-
tative road scenes, the results obtained via independent optical and radar edge detection
algorithms are illustrated in the upper rows, while the results using the fusion method are
shown in the lower rows.

For the optical image shown in Figure 6.3.7(a), the snow line in the right side of the
road dominates the lane boundary detection and thus the single optical image processing
yields erroneous lane boundary detection result. However, the independent radar image
processing succeeds in detecting the pavement boundaries (Figure 6.3.7(b)). In the fusion
framework, since the prior constraints set on the shape parameters require that the lane
boundaries be inside the pavement boundaries, the fusion algorithm corrects the estima-
tion of the lane boundary offset parameters, and thus provides us the accurate lane and

pavement boundary detection (Figures 6.3.7(c) and (d)). In this example, we have shown
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that the radar image improves the lane detection in the optical image.

For the radar image shown in Figure 6.3.8(b), the left side region to the road is also
very homogeneous and serves as a spurious road leading to the wrong pavement detection
using the radar information alone. We declare the pavement detection wrong by looking
at the corresponding optical image — the road should curve to the right instead of curving
to the left. However, the corresponding optical image provides enough information to
yield correct lane detection (Figure 6.3.8(a)). The fusion algorithm, by combining both
radar and optical sensory data, gives satisfactory lane and pavement boundary detection
results (Figures 6.3.8(c) and (d)). This example has demonstrated that the information in
the optical image improves the pavement edge detection in the radar image.

Both examples (Figures 6.3.7 and 6.3.8) indicate that the fusion method outperforms
single sensor based method. We also noticed that fusion does not degrade the performance
of the individual detection results when they are good by themselves (see Figure 6.3.9).

To compare the advantage of the fusion method over the single sensor detection meth-
ods and to appreciate the role of likelihood weighting, we undertake a large experiment.
For the database of 25 optical and radar image pairs referred to earlier, we hand-picked
ground truth and plot the detection errors compared to ground truth in Figures 6.3.10 and
6.3.11. Figure 6.3.10 shows the reduction in detection errors when the two data modalities
are fused, compared to processing them individually. Figure 6.3.11 shows the reduction in
detection errors when the likelihoods are relatively weighted using0.01, compared to

when no weighting is used.
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 6.3.7: Performance comparison of the fusion and single sensor based methods
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 6.3.8: Performance comparison of the fusion and single sensor based methods
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 6.3.9: Performance comparison of the fusion and single sensor based methods



133

0.7
0.6F —— no fusion 1
—e—  with fusion
go.sf 1
4
0.4 i
Q
()
(o))
S0.3F 1
()
c
@©
—0.2¢ 1
0.1r _ . 1
— 5
0 L L L
50 100 150 200 250
Distance ahead (rows)
(a) Errors for lane edge detection
10
9" | —— no fusion 1
sl | with fusion |
E
o 7 I
o
o 6f ]
()
S 5f |
()
5 4 f
5
g 3 1
o
2, -
l, -
0 L L L L L L
0 20 40 60 80 100 120 140

Lookahead distance (m)

(b) Errors for pavement edge detection

Figure 6.3.10: Advantage of the fusion method over single sensor based method



134

0.8

0.7k —— No weight ]
) —— Fixed weight

0.6r 1

o
o
T

Lane edge error(m)
o
~

0.3 1
0.2 1
0.1r 1
0 L L L
50 100 150 200 250
Distance ahead (rows)
(a) Errors for lane edge detection
8
71 —— No weight |
—— Fixed weight
6 i

a1
T

Pavement edge error(m)
w B

N
T

O Il Il Il Il Il Il
0 20 40 60 80 100 120 140

Lookahead distance(m)

(b) Errors for pavement edge detection

Figure 6.3.11: Advantage of the fixed weighting scheme over no weight scheme



135

6.4 Confidence Measure for Parameter Estimate

6.4.1 Objective Confidence Measure

Over the years, lane and pavement detection systems have enjoyed systematic improve-
ments to their performance, including the techniques we just addressed in Chapters V and
VI. There are currently studies underway to compare the performance of several systems
side-by-side, and commercial availability of several such systems is imminent. While this
is indeed a positive development, and a feather in the cap for the intelligent vehicles com-
munity, systematic assessment of the system'’s performance is sadly lacking. Compared to
the volume of papers on various systems of lane and pavement detection and tracking the
number of papers that provide frameworks for assessing their performance is miniscule.

In the preceding sections, we solve the simultaneous detection of lane and pavement
boundaries with multisensor fusion approach. Central to the fusion methodology is an
assessment of accuracy (i.e., confidence) of the lane and pavement boundary estimates.
To be specific, let us consider the performance of single sensor based boundary detection
approaches. For some pair of radar and optical imageﬁ,r leé the pavement bound-
ary parameters estimated from the radar image only,é%lmle lane boundary parameters
estimated from the optical image onI&r. and Qo have different degrees of accuracy due
to the different qualities of the original radar and optical images. In order to reflect the
confidence difference between the lane and pavement boundary parameter estimates, dif-
ferent weights (the rolg plays in (6.31)) should be imposed on the matching functions,
L"(z",0") andL’(z",#°), when they are combined in the joint MAP estimate.

SinceL"(2",0") andL°(2", 8°) have different dynamic ranges when we vary the shape

parameterg” andf®, it is unfair to compare them directly. To remedy this dilemma, we
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introduce the normalized matching functions

L (,07) — ming L'(,0')
g 0 .32
r(2",0") maxgr L7 (2", 0") — ming L7 (2", 6") (6.32)

L°(2°,0°) — minge L°(2°,0°)
[0 ) — 0 6.33
n(2%.0°) maxge L°(2°,0°) — ming L°(2°,6°) ( )

For a given radar image, both the subtracting term in the numeraiay; L" (2", 0"),
and the constant, and the denominatetx,- L" (2", §") —ming. L°(z°,§°), are constants.

So for certain parametef§, the normalized matching functiaif (2", ") is a monotone
function of the original matching functioh” (2", 6"), i.e., L! (2",0") provides similar fi-

delity of the parameters to the image observation.&ag", §") does, only different in
scales. Same with the optical case. In addition, the normalized matching functions have
identical dynamic range, which [8, 1]. For these two comparable normalized matching
functions, more weight need to be imposed on the function whose parameter estimates are
more reliable.

In this section, we will address an objective accuracy assessing technique for the pa-
rameter estimates of the lane and pavement boundaries. The idea is to assess the sensitivity
of the normalized matching functions with respect to their shape parameters. To evaluate
the sensitivity of a normalized matching function with respect to a parameter, a common
used methodology would be using the curvature (second derivative) of the normalized
matching function with respect to that parameter. The larger the curvature, the more confi-
dence in that parameter estimate. Then we define the confidence metric for the normalized
matching function as the average curvature among all the shape parameters.

Unfortunately, we do not have the exact likelihood function for the optical imaging
process, instead, what we have is a empirical matching function. For the radar imaging
process, we do have the exact likelihood function. However, since both radar imaging

likelihood function and optical matching function are not explicit in the shape parameters,
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it is impossible to analytically calculate the derivatives. Therefore, we will be satisfied if

we can approximate the curvatures.

6.4.2 Curvature Estimation

Let us utilize an example to illustrate the variation of the normalized matching function
values with respect to each shape parameter. We applied the MAP estimate algorithm
proposed in [68] to the radar image shown in Figure 6.3.9 (a) and obtained the shape
parameter estimat@s= {k, 1, by, b }. In Figure 6.4.12, we plot the cross sections of the
normalized radar matching function surfadé (=", ")) along one of the shape parameters
while setting all other parameters as their best estimates. For example, Figure 6.4.12(a)
shows the normalized matching function values as a function of the paranetdrsn
setting the other parameters= 1, b, = by, br = bx.

Let L(x) denote the normalized matching values as a function of the parameter

while setting all other parameters to their optimal estimates. zLeénote the optimal
estimate ofc. Suppose\ is the step size of when we calculate the normalized matching
function valuesL. Assume that there a2/ + 1 normalized matching function values,
L; = {L(z +iA),i = =M,...,—2,—-1,0,1,2,..., M}, available for the purpose of
calculating the curvature. Then assessing the reliability ¢f to estimate the second
derivative of the normalized matching functid@nz) at the point: given the discrete data
setl;.

One frequently used numerical approach to estimating the derivatives is using the dif-
ference between adjacent function values to approximate the derivatived/ (k¢tand

L"(x) denote the first and second derivatives, respectively.

L(z + A) — L(z)
A
L(z +2A) - L(z + D)
A
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Then
woan L'(z+A)—L'(z)
@) = A
L(z 4+ 2A) — 2L(¢ + A) + L(2)

= o (6.34)

This estimate is quite straightforward and easy to implement, however, since it just
uses three function values to make the estimation, the performance of this estimator is
very sensitive to noise and the choice of the step size

We propose using a quadratic curve to approximate the normalized matching func-
tion around the parameter estimate and then we use the curvature of the quadratic curve
as the curvature of the likelihood function. LE&f .,(z) = ai(z — &)* + as represent
a quadratic curve. And for certain choices and a,, we calculate the data sequence
forasi = {far.a0(@ +1iA),0 = =M, ..., —2,—-1,0,1,2,...,M}. In order to approxi-
mateL with f,, .,, we need to minimize the total squared error between sequéncesd

fa1.a0,2 With respect tay; anda,, while keepingf,, ., (x) less tharL(z) for anyz,

M
min 3 [furan(@ +i0) - L(i +iA)]
a1,a2 i— M

st foran(@) < L(z),

Vo € {#4+il,i=—M,...,—2,—1,0,1,2,..., M} (6.35)

The constraints are meant to guarantee 0.

Solving this constrained optimization problem we get the optimal quadratic curve ap-
proximation with parameter, anda,. Then—2a, is taken as the estimated curvature.
An example of this curve approximation is shown in Figure 6.4.13 where the solid curve
is the true normalized matching function while the dashed curve is the quadratic curve

approximation.
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6.4.3 lll-conditioned Parameter Estimation Problem

We have applied the proposed method to calculate the curvature of the normalized
matching function with respect to each shape parameter. In Tables 6.1 and 6.2, we give
the curvature results for some radar and optical images, respectively. With respective to a
shape parameter, the curvature estimates are in the same order of magnitude for different
images acquired under similar conditions, however, for different shape parameters, even
in the same image, the curvature estimates vary dramatically. For example, in the radar
image “anhinesb”, the curvature estimates with respecttiodb;, are1.63 x 107 and1.11,
respectively. The curvatures’ dramatic difference in the order of magnitudes makes it very
difficult to assess the confidence metric for the normalized matching function because
the largest curvature completely dominates the average of the curvatures. Furthermore, it
also implies that the surface of the objective function varies dramatically in one parameter
while negligible in another parameter, which means that this estimation problem is very

ill-conditioned.
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| Image name | Curv(k) | Curvin) | Curv(b,) | Curv(br) |
anhinesb 1.63 x 107 2555.71 1.11 3.99
anhinesc 1.11 x 107 | 2358.94 5.48 15.32
anhinesg 1.99 x 107 | 2391.72 1.76 9.10
evhines 1.30 x 107 | 2418.19 3.34 3.06
hinesbev 1.48 x 107 1950.46 8.82 11.61

Table 6.1: Curvature results for some radar images

Image name | Curv(¥’) | Curv(vp)) | Curv(d}) | Curv(ty,) |
anhinesb 1.07 x 107° | 0.02 39.17 642.00
anhinesc 0.71 x 10~° | 0.02 30.78 455.71
anhinesg 0.58 x 107° [ 0.01 36.00 497.98
evhines 1.02 x 10> | 0.01 9.78 398.15
hinesbev 0.86 x 10°° | 0.02 38.82 011.61

Table 6.2: Curvature results for some optical images

This ill-conditionedness is due to the inherent shortcomings of this parameterization
scheme. Let us take the model parametrss {k, m, by, br}, for the pavement bound-

aries as an example to illustrate why.

e Model parameters are of different units —the curvature parametéris in units
of inverse length, the orientation parameteis dimensionless, and the offset pa-

rameters;, andby are in units of length.

e Model parameters are of different order of magnitudes —the curvature param-
eterk is in the order ofl0~3, the orientation parameter is in the order ofl0~2,

and the offset parametelis andby, are in the order of 0.

e Variations in model parameters result non-uniform shape change —a substan-
tial change in the curvature parameter results in the pavement boundary shape chang-
ing only at distances far away from the host vehicle, while a small change in the

offset parameter leads to a completely different scenario.

The lane boundary parameteés, = {&',vp’, b, b}, have similar curvature perfor-
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mance as the pavement boundary parameférand(® have similar pitfalls: first of all,
the model parameters are of different units; and secondly, the model parameters are of
different order of magnitudes; and lastly, variations in the model parameters result non-
uniform shape change.

However, we do notice that the curvature results for lane (pavement) boundary offset
parameters; andl), (b, andbg) are actually comparable (See Tables 6.2) becéused
b, have the same physical meaning — offsets, and they are of the same units and of the
same order of magnitudes. The compatibility between the parameters enables us to utilize
curvatures to evaluate the reliability of these parameter estimates. In most optical images
(Figures 6.3.7(a), 6.3.8(a), and 6.3.9(a)), right lane boundaries are much clearer than their
left counterparts. l.e., image observations provide more information on right boundaries
than on the left boundaries. Therefore, the confidence of the matching funtfipm
B’R, the right lane boundary offset, should be better than the confiderﬁ@etine left lane
boundary offset. In Table 6.2 we observe that the curvatures of right lane boundary offsets,
Curv(b,), are usually larger than those of right lane boundary offsets, (@rv

The above observation has demonstrated that the proposed confidence measure indeed
assesses the reliability of the parameter’s estimate. Then in order to get rid of the inher-
ent ill conditionedness in parameter estimation for lane and pavement boundary detection
problem, we have to find other shape models whose parameters are compatible. In the next
chapter, we will propose a concentric circular shape model that can overcome the inherent

shortcomings of the parabolic model.



CHAPTER VII

Fusion Algorithm for Lane and Pavement boundary
Detection with Concentric Circular Models

Automated detection of lane and pavement boundaries has been broadly studied by re-
searchers in intelligent transportation. Many state of art systems for detecting and tracking
pavement boundaries usepriori shape models to mathematically describe the appear-
ance of these boundaries. The use of prior shape models allows these systems to reject
false boundaries (such as entry/exit ramps) and also overcome image clutter (shadows)
and occlusion.

Several types of shape models have been employed, and the choice of model is usually
made from the standpoint of accommodating all possible variations (in width, orientation,
curvature, tilt, etc.) of the lane and pavement boundaries relative to the host vehicle. Poly-
nomial (quadratic or cubic) shape models are the ones of choice. Polynomial shape mod-
els have improved the performance of lane and pavement boundary detection and tracking
systems with higher accuracy and better reliability [22, 52, 69, 71] than the conventional
gradient based methods. For example, we utilized quadratic shape models in our joint
lane and pavement boundary detection application and we illustrated promising boundary
detection results in Chapter VI. Unfortunately, as we have shown in the last chapter for a

special case, parabolic shape models, polynomial shape models have inherent pitfalls for
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their parameters’ estimation. Due to the parameters’ different units and different dynamic
ranges, the relating estimation problem is usually very ill conditioned.

It is common knowledge that in the United States public highway system lane and
pavement boundaries are laid as concentric circles, at least over small segments. In this
chapter we propose to directly use a circular model to describe the boundaries. Indeed the
polynomial shape models are intended as an approximation to the circular model, but to

our knowledge the circular model itself has never been used before.

7.1 Concentric Circular Models

The field-of-view of a radar image on the ground plane is a cone shaped region with
the apex at the position where the host vehicle stands. For an optical image, its field-
of-view on the ground plane is also cone shaped, but perhaps with a different radius and
azimuth from that of a radar image. Therefore, in our application domain, a typical road
(or lane) scenario can be modeled by an intersection of a cone with two concentric circles
(see Figures 7.1.1 and 7.1.2 for an illustration of road scenes). The cone represents the
field-of-view of the radar (or optical) sensor, and the two circles represent the left and
right pavement (or lane) boundaries.

Let us consider the representation of the pavement boundaries first. Assuming that the
apex of the cone is at the origif, 0), we represent the coordinates y) of the pavement

boundaries by circles centered(at, y.) with radii a; anda,, respectively

(l’ - xc)Q + (y - yc)2 = a%,Z ) (71)

wherea; < a,. That is,a, is always the radius of the smaller circle on which either
the left or right boundary is laid. So in this parameterization, the two boundaries are
not distinguished as left and right. However, given the parameteis, a;,andas, it is

easy to tell which radius corresponds to the left boundary < if> 0, then the larger
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radius,a,, corresponds to the left boundary (Figure 7.1.1); otherwise, the smaller radius,
a,, corresponds to the left boundary (Figure 7.1.2). The reason for this parameterization is
the ease of description of the constraints on the parameters. (This issue will be addressed
in later this section.) The parameté&s= {z., y., a;,a,} are capable of representing the
pavement boundaries.

Figure 7.1.1(b) shows the complete plot of the cone and concentric circles, and Fig-
ure 7.1.1(a) gives the segment of the model shown in Figure 7.1.1(b) that corresponds to
the field-of-view of the radar sensor. Similar with Figure 7.1.2.

Similarly, the lane boundaries on the ground plane can be represented as

(2 —2)* + (¥ — o) = (ai5)” (7.2)

whered) anda), are the radii of the circles that corresponds to the lane boundaries. Then
0° = {x.,vy.,a},a,} are the shape parameters for lane boundaries on the ground plane.
Note that the lane and pavement boundaries share the same pardmeigissince they

are concentric circles.

The domain of the radar image is actually the ground plane and (7.1) can be directly
applied to model the shape of pavement boundaries in the radar image.

The domain of the optical image, however, is a perspective projection of the road
scenario on the ground plane, and therefore we need to transform the optical image data
and the lane boundary model onto the same image plane.

There are two possible approaches to accomplish this goal. One is similar to that
technique for the parabolic shape model — apply the perspective projection operator to
the circular shape model (7.2) on the ground plane to obtain a lane boundary shape model
on the image plane. An alternative method is to use (7.2) to describe the lane boundaries

on the ground plane and project the optical image data onto the ground plane with the
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inverse perspective projection. For each pixel with row and col@mas) in the optical
image plane, its corresponding Cartesian coordingteg) on the ground plane can be

calculated by

h{1=r3(r—c)(c — h.)]

y= ri(r—hs)
y2+h2
x=cslc—ce (7.3)
i )\/1+r}2¢(r—cT)2

whereh, is the horizon row/: is the height of the focal point above the ground plane,
is the height of a pixel on the image plane divided by the focal lengtis the width of
a pixel on the image plane divided by the focal length, andndc, are one half of the
numbers of columns and rows, respectively.

Note that in the second approach mentioned above, the parameters of the lane bound-
aries {z., y., a}, a}}, have the same physical units (namely, units of length) and properties
as the parameters of the pavement boundafiesy., a;, a>}. This is a desirable charac-
teristic to ensure unit compatibility in the fusion algorithm. Therefore, we will take the
second approach, i.e., we project the optical image onto the ground plane and employ (7.2)
as the lane boundary representation. For the purpose of conciseness, during further algo-
rithm derivation for lane boundary detection, the optical image is referred to the projected
optical image on the ground plane.

We have shape parametets = {xz.,y., a1,as} for the pavement boundaries and
07 = {z,y., a},as} for the lane boundaries. Léf = {07,07} = {z., Y, a1, a2, a}, as}
denote the complete parameter set for the circular shape models. Also for further study
and comparison, let; = {k,m,b;, by} and@y = {k',vp’, b}, by} denote the parameters
for the parabolic models addressed in Chapter VI. Similarly, define- {Q;,Q;} =
{k,m, by, by, b, b,}. Note that we exclude the parametét@nduvp’ in this parameter set

because they can be calculated from the paramgtansim (6.3).
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There are a number of advantages of the new parameterization over the previous
one. First of all, the new model better reflects the road shape of the real world. Cir-
cular shape models exactly describe the road boundaries, while parabolic shape models
only approximate the road boundaries. For the circular shape model, the six parameters
Zey Yoo 1, G2, aj@Nndal, have the same units — that of length. In addition, the ranges of feasi-
ble values for them have the same order of magnitude. On the contrary, as we mentioned at
the end of the previous chapter, the parametenrs, b, br, b, , andd’, have different units
and different dynamic ranges. We also observe that for both shape models, the number of
parameters are the same, or in other words neither model is more complex to describe than
the other.

What sets the models apart are the constraints@mdf, which are imposed to satisfy
in order to result in a “feasible” pair of left and right lane and pavement boundaries. In the
guadratic case, the feasibility region is a hypercube with respect to the model parameters
{k,m,br,bg,b},b%}. Inthe circular model, the feasibility region is not so simple. The

feasibility region has the following restrictions:

0 The two circles corresponding to the pavement boundaries must intersect the cone.
That is, the cone cannot be totally inside the inner circle, neither can it be outside

the outer circle (see Figure 7.1)3The constraint on the model parameters is
a1 —p1 <2l +yl < az+po (7.4)

wherep; andp, are two appropriately selected positive numbers that will allow the
corresponding pavement boundaries to both be offset to either the left or the right of
the origin for extreme cases. Of course, the left boundary can be offset to the left of

the origin, and the right boundary to its right.

1The plots in Figures 7.1.3 and 7.1.4 only demonstrate the relationship between the circles and the cone.
In order to make the plots easily readable, we enlarged the size of the cone and the width of the road, while
decreased the size of the circles.
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Figure 7.1.3: Cases where circles do not intersect the cone

0 The image data are acquired under the assumption that the host vehicle is still within
the road (or at least the shoulder). As such, the cases shown in Figure 7.1.4 are not
realistic as they correspond to scenarios when the host vehicle is entirely off the

road. The corresponding constraint on the model parameters is

Umin S atan<%) S Omax (75)

Te

O The lane should be positioned inside the road region, i.e., the two circles on which
the lane boundaries are laid are between the two circles on which the pavement

boundaries are laid.

a; < aj < ay < as, (7.6)

O Finally, the road width has to be within minimum and maximum limits,

Wmin S a2 — S Wmax (77)

Similarly, there are upper and lower limits for the lane width,

! / ! !
minéa’Q_alSW

max

(7.8)
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Figure 7.1.4: Cases where circles intersect the cone in an infeasible way

The shape model (7.1) and the constraints (7.4), (7.5), (7.6) (7.7), and (7.8) constitute

the prior knowledge regarding pavement boundaries. This results in a so-called prior pdf:

1 Ye
P(QC) = ’7_ . [[al —pl,a2+p2] (xz + yz) ' ][amin;amaz} <atan<x_)>
) [[Wmin7Wma~"C] (a2 - al) : [[W;nznﬁwrlna"c}(a; - all)
ayag)(@1) - Liag 001 (03) (7.9)

where, is a normalizing constant and (x) is an indicator function,

1, ifzeA
Iu(z) =
0, otherwise

This prior pdf is empirically derived, and it is simply a uniform distribution over the space

of feasible model parameters, and zero elsewhere.

7.2 Decoupling of The Parameterization

It is obvious that the road width has both upper and lower bounds (see constraint (7.5))

and the lane should be located between the pavement boundaries(see constraint (7.6)).
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Therefore, the four radius parameters, a,, | andaj, are highly correlated. The apex

of the cone, where the host vehicle is located, is inside the road, at least on the shoulder.
Therefore. andy,. are constrained by the parameteranda, (see constraint (7.4)). The
dependence among the parameters makes the parameter constraints very complicated, as
we have seen in (7.9). And more critically, the dependence among the parameters makes
the estimation problem more difficult.

As a remedy to the difficulty caused by the parameterization, we propose an alternative
parameter set to describe the boundaries. The objective of this new parameterization is to
remove the high correlation among the shape parameters.

We remove the dependence among the pavement boundary parameters first. Instead
of using correlated parameteis anda,, we propose to use parametersand ws, the
distance between the left and right pavement boundaries. And to eliminate the dependence
betweena; andzx., we replacer. with x!, the horizontal coordinate of the intersection
point of the circle with radius; and the line segment passing the circle center and parallel
to thex axis. Figure 7.2.5 illustrates the new parameter set with right curved pavement
boundaries. In this case, the center is to the right of the circles. The right pavement
boundary corresponds to the circle with radiys C'is the center of the circles’A is a
line segment parallel to the axis and passing through the po(it A is the intersection
of the line segment’ A and the circle with radiug;. Then the Cartesian coordinatesAf
are(z.,y.), and

T =, + a;. (7.10)

The radius of the left boundary,, can be represented by the sum of the radius of the

right boundaryg, and the distance between the two boundarigs,

a9 = a1 + Wo (711)
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C: (ze, ye)

Figure 7.2.5: Reparameterization for the case where the center is to the left of the road

Figure 7.2.6 shows left curved boundaries. In this case, the center is to the left of the
circles and the left pavement boundary corresponds to the circle with radilet C' A
still be the line segment parallel to theaxis connecting two point§; andA. Then (7.11)

holds for this case, too. And’s coordinategz’, y.) satisfies
T, =1l —ay (7.12)

In order to unify (7.10) and (7.12) we define a new parametes

ar, if the center is to the right of the boundaries,
a= (7.13)

—ay, Otherwise

In other words, the magnitude ofis the radius value of the smaller circle, and the sign of
a depends on the relative position of the center and the boundaries. Then it is immediate
to geta, givena,

a; = |a| (7.14)
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Figure 7.2.6: Reparameterization for the case where the center is to the right of the road
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With this new parameter, rewriting (7.10) and (7.12) in a united form,

T, =T, + a. (7.15)

And with (7.13), (7.11) is rewritten as

as = wy + |al (7.16)

Define the new pavement shape parametet§ as {a, w, z.,y.}, the previous pa-
rameters{ay, as, z., y.} can be easily calculated with the relationships (7.14), (7.16), and
(7.15). That is{a,w.,’,y.} are capable of representing the pavement boundaries and
they are independent of each other.

To eliminate the dependence among the lane shape parafétat§ z., y.}, a simi-
lar decoupling technique is applied. The new lane shape paraméter§a’, wh, =/, y.}

satisfying

a},  ifthe center is to the right of the boundaries,
a = (7.17)

—a), otherwise

wy = ab— |d| (7.18)

¥, = x.—d (7.19)

In the fusion framework, we could easily define the joint shape param@ters
{60,0°} = {a,wq,d,wh, 2, y.}. Butin this parameterization, the lane and pavement
boundaries anda’ are coupled, which is not a desirable property. To remove this remain-
ing dependence, we propose a unified parameter set for both lane and pavement bound-
aries.

In Figure 7.2.7, we illustrate the unified shape paramefers,, w}, wh, ., y.} for

both lane and pavement boundaries. In this plot, the solid curves represent the pavement
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boundaries and the dashed curves represent the lane boundaries. For this parameter set,

is defined by (7.13). The distance parametersw’, andw;, satisfying

ay = w9+ |a| (720)
a; = wi+|a (7.21)
ahb = wh+|al (7.22)

And thex coordinate of the circle center is determined by (7.15).

y

C: (Te,ye)

Figure 7.2.7: Unified parameterization for both lane and pavement boundaries

The parameterga, wy, w, wh, z!., y.} are able to represent the lane and pavement
boundaries and they are independent from each other. In our fusion algorithm, we pro-
pose to use this parameterization to describe the prior information on the boundaries. Let

us defind,. = {a, wy, wi, wh, z!, y.}. The constraints of. can be easily derived from the
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previous constraints ofuy, as, a}, a}, x., y.} as follows

1 Ye
P(QC) = % ' I[|a\—p1,\a|+w2+p2]((a’ + IIC)Z + yz) . I[amin;amaz} <atan<a + x/ >)

Wi Winae) (W2) = Tiwr e (wh — wh) - Tiown)(wh) = Trut ) (w3)

min’

where~, is a normalizing constant.

7.3 Imaging Likelihoods

We have seen that in the fusion algorithm presented in Chapter VI, the joint MAP es-
timation is approximated by an ad hoc empirical parameter estimation. The root cause for
this approximation is that the optical and radar matching functions are not compatible and
different weights have to be imposed on them when they are combined in the fusion frame-
work. Although the radar imaging process is represented with a log-normal density, the
optical imaging process is described with an empirical likelihood function, which makes
it impossible to theoretically derive the weights.

To avoid the ad hoc approximation of the joint MAP estimation, we propose to use real
probability densities to represent both the radar and optical imaging processes in this chap-

ter, and hence no weighting scheme is needed in this newly proposed fusion algorithm.

7.3.1 Radar Imaging Likelihood

In Chapter VI we presented a log-normal pdf as a model for the radar imaging process.
With the circular shape parameters, we will evaluate (6.7) as the radar likelihood function
and (6.13) as the radar matching function. In order to be consistent with other symbols in
this chapter, we rewrite the likelihood and matching functions as

CAUAE| !

eXPy ~5 7 1y
(rd)el 2o/ 200, (07) { 207,4(0r)

[log 27, — uw(gg)]?} (7.24)
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and

Li(2",0) = — (w'N"logs™ + N"logé" + N log ™) (7.25)
7.3.2 Optical Imaging Likelihood

In Section 6.2.2 we utilized an empirical likelihood function (6.15) to describe the opti-
cal imaging process. Since this likelihood function involves a computationally intractable
normalizing constanty(67), it becomes a major obstacle in the fusion procedure (6.30).
The value ofy(07) effectively determined different weightings of the two matching func-
tions, L°(2°,07) andL" (2", 6;). (In (6.31),5 introduces a different weight on the optical
matching function.) Since there is no analytical approach to derive the weighe ex-
perimentally determine the value ¢6fby trying different weights on a training set of a
large number of radar and optical image pairs. This trial-and-error approach of choosing
the weight value is not only inaccurate but also time consuming. Since the root cause of
the weighting scheme is that the optical imaging likelihood function is not normalized,
to avoid this dilemma we propose propose a normalized Gaussian density to describe the
optical imaging process.

Given boundary shape parametfswve assume that the optical image gradient magni-
tudeG,, is the ideal gradient magnitud&6?) contaminated with additive white Gaussian
noisel?,

G = S(02) +W°, (7.26)
whereWV° are i.i.d. Gaussian random variables with méaand unknown variance?,

and whereS(¢7) is a tapered/spike function image with unknown height. Thus the optical

imaging process can be modeled by the conditional probability of the optical random field



158

Z° taking a realizatior®, which is a Gaussian pdf,

0|00\ __ 1 _i - 0 2
1) = [T oo { - galamten - szwn} 020
To better explain the tapered image, let us define a spike function
Flod) 2 —— (7.28)
Y T ad® '

wherea is a smoothing constant which controls the effective width of the spike function.
Then the intensity value of the tapered im&ag@?) at the pixel(z, y), s(07, z,y), can be

written as
s(0p,v,y) = A fa,di(7,y)) + A f(a,da(z,y)) (7.29)

whereA is the unknown height andl andd, are the distances from the pixel, y) to the
left and right lane boundaries, respectively.

Substituting (7.29) back to (7.27), we have the optical imaging likelihood function

|

p(z°162) = T exp
2
(o) V27O

{_i[gm(‘ray) - Af(Oé, dl(xay)) - Af(Oé, dz(x,y))]Q}

1 1
T Vo P {O’ Z[gm(:’va y) - Af(Oé, dl(xa y)) - Af(Oé, dg(.’L‘, y))]Q}
(z.y)
(7.30)

One thing worth mentioning is how to computgz, y) andd,(z, y) for a given pixel
(xz,y). In Figure 7.3.8 is the center of the concentric circles, aRds a point with
Cartesian coordinatés, y) in the field-of-view of the optical imagé. P is a line segment
connecting Point§’ and P. Point A is the intersection of the right lane and the extension

of C'P. SinceC' A is the radius of the circle corresponding to the right lane boundady,

is perpendicular to the tangent of the lane boundary. Thus, the len@tH of the distance
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from the pointP to the right lane boundary, i.e.,

di(z,y) = ||PA| = [ICA] = [[PA[|[] = |a} — do|

= |a} = V(@ — 2+ (y — 9%

= |ld'|+w] =/ (x — 2, —a)®+ (y — y.)?]

(7.31)

dl (‘Ta )
dy
C: (we,ye)

Figure 7.3.8: An ideal lane scenario on the ground plane

In (7.30), the nuisance parametetando?, corresponding to the maximum value of
the gradient magnitude of the ideal lane boundaries and variance of the additive Gaussian
noise, can be empirically estimated from the observed optical irfalgg maximum like-
lihood. Since the likelihood function is a normal distribution, the maximum likelihood and

least squares estimate of the nuisance parameters are equivalent,

2 (ag) I (@ Y)f (@, di(z,y)) + fla, do(z,y))]

A= S o (@) + (o do(w )P




160

7 = = Y lonle.y) — Af(adi(z,) — Af(a,dofz )] (7.32)

(z,y)

Substituting these estimates dfand o2 back into (7.30), and taking the logarithm

results in

N N N N
logp(2°]67) = 5 log(27) — > log 6% + > log N — 5 (7.33)

whereN is the number of pixels in the optical image, and hence is a constant regardless of
different lane boundary parameters. Therefore, the important term in this log-likelihood
function is—% log 62, i.e., given a hypothetical lane boundary parameigrhe fidelity of

the hypothesized boundary to the observed optical imageevaluated by the logarithm

of the error residual between the model and the observed image. A smaller residual gives
better fidelity in the sense of better (higher) likelihood of the model. Define the optical
matching function as

Lo(2°,0°) = —g log 6°. (7.34)
7.4 Joint MAP Estimate for Lane and Pavement Boundaries

Since the prior distribution of the deformation parameters and the imaging likelihood
functions are available, we shall pose the lane and pavement edge detection problem in a
Bayesian framework. Giverf as a realization of the radar random fiéfl and z° as a
realization of the optical random field’, the lane and pavement boundary detection with

fusion technique can be solved by the joint MAP estimate

0.} = argmaxp (6,[2", 2%)

= arg {rgrrlaa?’(}p (QZ,Q2|ZT‘, zo)

cr=c

= arg {g}%gc}p(ﬂi, 02) p(2"0z) p(z°(67) (7.35)

The derivation of (7.35) follows exactly the same steps as the derivation of (6.29).
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Taking logarithm of the objective function, the joint MAP estimate turns to

>

b, = arg max {logp(0z, 02) + log p(2"|07) + log p(z°|07) }

= arg max {logp(8L.02) + LI(:".07) + LI(=".62) (7.36)

ey Ye
Yeille

We have seen that the main obstacle in the fusion algorithm proposed in Chapter VI
is how to weighting the radar and optical matching functions. The root cause for this
weighting scheme is due to the dramatically different dynamic ranges of two different
matching functions. In Chapter VI, we only got an empirical solution by experimentally
choosing the weighting constafiin (6.31).

In the fusion algorithm presented above in Equation (7.36), the radar imaging like-
lihood is modeled as a log-normal pdf and optical imaging likelihood is described by
a Gaussian density. Since both likelihood functions are normalized probability density
functions, they are compatible. Then the effective parts of the logarithm of the imaging
likelihood functions, i.e., the radar and optical matching functions should have well be-
haved dynamic ranges. For the optical and radar image pair shown in Figure 6.3.3, the
dynamic ranges of the optical and radar matching functions.age< 10* and3.20 x 103,
respectively. Since the optical image has higher resolution than the radar image, the op-
tical imaging log-likelihood tends to be more discriminative than the radar imaging log-
likelihood in a well illuminated environment. Therefore, the two dynamic ranges are ac-
tually compatible. And hence in this fusion algorithm we do not have to worry about the
different weightings on the matching functioris,(z", 8") and L2(z°, §?).

In Figure 7.4.9, we show the lane and pavement boundary detection results with single
sensor based detection algorithms and the proposed joint MAP estimate method (7.36).
We observe that the lane boundary detection result shown in Figure 7.4.9(a) is not right

but the pavement boundary detection result shown in Figure 7.4.9(b) is correct, and that
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the fusion algorithm yield the correct joint boundary detection (Figures 7.4.9(c) and (d)).
That is, the optical image does not dominate the parameter estimation in fusion process. In

the parabolic shape model case, the optical image does dominate the parameter estimation

in fusion process (see Figure 6.3.5).

(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection (d) Pavement edge detection

Figure 7.4.9: Boundary detection results with fusion method
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7.5 Experimental Results

We have implemented the proposed joint boundary detection algorithm to locate lane
and pavement boundaries in registered optical and radar images. In the implementation,
the boundary appearance is described by concentric circular shape models. We have car-

ried out three categories of experiments in our boundary detection effort.

[0 Detect lane boundaries using the optical image alone. MAP estimation algorithm is
employed to detect the lane boundaries in the optical image where the circular shape
template with its parameters’ distribution plays the role ofah@iori information

and the optical imaging process (7.30) plays the role of the likelihood function.

[0 Detect pavement boundaries using the radar image alone. MAP estimation algo-
rithm [70] is employed to detect the pavement boundaries in the radar image. In the
MAP estimator, the circular shape template and its parameters’ distribution serve as
thea priori information and the radar imaging process (7.24) serves as the likelihood

function.

00 Jointly detect lane and pavement boundaries with fusion approach (7.36) using infor-
mation from both optical and radar images. In this fusion approach, circular shape
models are utilized to describe the lane and pavement boundaries, and the Gaussian
and log-normal densities are employed to represent the optical and radar imaging

likelihood functions.

In Figure 7.5.10 we show the detection results obtained with the above three methods
for a pair of optical and radar images, both of good quality. Figure 7.5.10(a) shows the
detected lane boundaries in the optical image and Figure 7.5.10(b) shows the detected

pavement boundaries in the radar image. Both of them are quite satisfactory. This is due
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to the fact that both the optical and radar images are of high quality and each of them
provides enough information for the boundary detection. Figures 7.5.10(c) and (d) show
the boundary detection results using the proposed fusion approach. And we observe that
the fusion algorithm does not degrade the boundary detection performance compared to
that of single sensor based algorithms when both the optical and radar images are of good
quality.

In Figure 7.5.11 we show the detection results for a pair of optical and radar images
of different qualities. The optical image is degraded by the presence of snow. Wrong
lane boundary detection result is obtained when only the optical image is used (Fig-
ure 7.5.11(a)). However, the radar image still offers sufficient information to correctly
detect the pavement boundaries (Figure 7.5.11(b)). In the fusion approach, since we
make use of information from both optical and radar sensors to jointly detect the lane and
pavement boundaries, the radar image helps the lane detection in the optical images (Fig-
ures 7.5.11(c) and (d)).

In Figure 7.5.12 we show the detection results for a pair of fair-quality optical and
bad-quality radar images. The single sensor based algorithms do not operate well in either
lane or pavement boundary detection. Figure 7.5.12(a) gives the lane detection result in
the optical image. The traffic sign to the right of the road misleads the detected bound-
aries curving to the left. In Figure 7.5.12(b), a homogeneous region to the left of the road
results in wrong pavement boundary detection. Information from both optical and radar
images is explored in the fusion approach and the redundancy, diversity and complemen-
tarity between the optical and radar sensors significantly improve the boundary detection
performance. In Figures 7.5.12(c) and (d), we show that satisfactory results have been

achieved with the joint boundary detection algorithm.
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 7.5.10: Performance comparison of the fusion and single sensor based methods
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 7.5.11: Performance comparison of the fusion and single sensor based methods
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(a) Single sensor based lane edge detection (b) Single sensor based pavement edge de-
tection

(c) Lane edge detection with fusion method (d) Pavement edge detection with fusion
method

Figure 7.5.12: Performance comparison of the fusion and single sensor based methods
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All the examples have demonstrated that circular shape models and the newly formu-
lated radar and optical likelihoods are indeed successful in detecting lane and pavement
boundaries. And the proposed fusion algorithm improves the boundary detection perfor-
mance when either the optical or the radar image is unable to provide sufficient information
by itself. We note that the proposed fusion algorithm does not degrade the performance of
the individual detection results when they are good by themselves.

In chapter VI, the fusion algorithm suffers from the non-compatibility of optical and
radar matching functions, whose main cause is that the optical imaging process is modeled
by a non-normalized pdf. To compensate the different dynamic ranges of the two matching
functions, an empirically selected weightif (6.31)) is imposed on the optical matching
function when it combines with the radar matching function in the fusion process. Since
the weight is not analytically derived, it is not a perfect number that completely reflects
the difference between the two matching functions.

On the contrary, the joint MAP estimator proposed in this chapter overcomes this dif-
ficulty by modeling optical imaging process with a Gaussian pdf. Then in the fusion
setting we have two normalized pdf's and the sum of their logarithms is naturally derived
from the basic MAP formulation. Therefore, no more fancy weighting scheme needs to
be introduced into this fusion work. And most importantly, since no empirical numbers
are involved in the parameters’ estimation, this algorithm yields more accurate boundary
detection.

Another merit of the fusion algorithm proposed in this chapter is that it adopts circular
shape models instead of parabolic shape models to better reflect the road scenes in the real
world.

To compare the improvement of the fusion algorithm proposed in this chapter over the

fusion algorithm described in chapter VI, we applied both algorithms to the database of 25
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optical and radar image pairs referred earlier. The detection errors are plotin Figure 7.5.13.
The fusion algorithm proposed in this chapter is labeled as “Circular model” and the fu-
sion algorithm described in chapter VI is label as “Parabolic model” in this plot. Both Fig-
ures 7.5.13(a) and (b) demonstrate that the circular model fusion algorithm outperforms
the parabolic model fusion algorithm in detecting the lane and pavement boundaries.

As we have stated at the beginning of this chapter, the circular shape parameters,
{a1, as, z.,y.} for pavement boundaries afd’, a}, z., y.} for lane boundaries, possess
a number of advantages over the parabolic shape parameters. The circular shape parame-
ters are of the same units and the same order of magnitude for the dynamic ranges. And
the variation of any parameter uniformly affects the boundary appearance. An immedi-
ate implication from these merits is that the confidence measures defined in Chapter 6.4
shall have a desired property for parameter estimation — different parameters’ confidence
measure should be compatible.

We take the pavement boundary model as an example to illustrate the compatible con-
fidence measures. We know that the two parametersets,, =, y.} and{a1, as, ¢, y.}
are equivalent in representing the boundaries, and the former parameter set is a decoupled
version of the latter one. So the sensitivity of the matching function with respect to the
decoupled parameters is more of our concern in the context of parameter estimation. In
Tables 7.1 and 7.2 we gave the curvature results for some radar and optical images, re-
spectively. From Table 7.1 we observe that the curvatures for different shape parameters
are in the same order of magnitude, which leads the parameter estimation a much bet-
ter conditioned problem than the parameter estimation problem for the parabolic shape
models.

In each radar or optical image, the curvature,gfthe circle center’s vertical coordi-

nate, is smaller than all other curvatures, which means that the radar or optical matching
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Figure 7.5.13: Performance comparison of fusion algorithms
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| Image name | Curv(a) | Curv(w,) | Curv(zl) | Curv(j.) |
anhinesb 9.49 x 1073 [ 943 x 1072 | 1.35 x 1073 | 0.44 x 10
anhinesc 9.12x 1072 [ 853 x 107 | 1.42 x 1073 | 0.56 x 103
anhinesg 877 x 1073 [ 771 x 1072 | 0.75x 1073 | 0.55 x 1073
evhines 8.09x 1072 [ 7.35 x 1072 | 1.38 x 1073 | 0.47 x 1073
hinesbev 811 x 103 [814x 102 | 1.06 x 103 | 0.47 x 107

Table 7.1: Curvature results for some radar images with circular shape models

| Image name | Curv(a) | Curv(@w})) | Curv(zl) | Curv(j.) |
anhinesb 417 x 1072 [ 1.34 x 1072 [ 2.96 x 102 | 0.03 x 1072
anhinesc 418 %1072 [ 1.16 x 1072 | 2.30 x 1072 | 0.01 x 102
anhinesg 1.46 x 1072 | 11.46x1072 | 3.93 x 1072 | 0.34 x 1072
evhines 1.89 x 1072 | 3.73 x 1072 [ 2.38 x 1072 | 0.04 x 102
hinesbev 461 x 1072 [ 1.40 x 10~2 [ 3.78 x 102 | 0.01 x 1072

Table 7.2: Curvature results for some optical images with circular shape models

function is not so sensitive with the parameggas with other parameters. This coincides

with our knowledge that changing a little bit will not change the whole road scenario in

our field of view.

In most radar images, observation data near the left pavement boundary behave simi-

larly as those near the right boundary. Thus the sensitivities of the matching function to

both left and right pavement boundaries are very close. That is, the confidence measure

values for parametersandw, shall be very close. In Table 7.1, the curvature results for

a andw, have successfully justified that this is the case.

On the contrary, in optical images, the left and right lane boundaries are of different

gualities due to their different distances from the camera. In Figure 7.5.14 we show two

different optical images with their boundary detection results. The two images are called

“anhinesb’(Figure 7.5.14(a)) and “anhinesg”(Figure 7.5.14(b)), respectively. In both im-

ages, the right lane boundaries are closer to the camera and hence they have higher res-

olution than the left ones. In Image “anhinesb” the right lane is laid on the circle with

the smaller radius, and thus the paramet@&orresponds to the right boundary and the
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parametetw, corresponds to the left boundary. Therefore, the confidence measure for
is considerably larger than that far, (the first row in Table 7.2). In Image “anhinesg”
the left lane is laid on the circle with the smaller radius. Thusorresponds to the left
boundary andv, corresponds to the right boundary. So the confidence measudeigor

considerably smaller than that fos, (the third row in Table 7.2).

(a) anhineshb (b) anhinesg

Figure 7.5.14: Examples to show what confidence measure indicates

With experiments on real data we have shown the advantages of circular shape models
over parabolic models. In circular shape models, the parameters are compatible with each

other and their confidence measures indeed indicate the confidence of the parameters

estimates.
7.6 Conclusions

In this chapter we have proposed a new type of deformable templates to describe the
lane and pavement boundaries — concentric circular shape model. Since the US high-
way systems actually laid the lane and pavement boundaries on concentric circles, circular

shape models are better choices than their polynomial approximations. With experiments
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we have shown the advantages of this new parameterization over polynomial models. Pos-
sessing the same unit, the same order of magnitude, similar confidence measures of their
estimates, the circular shape parameters result in a much better conditioned parameter
estimation problem.

In this new fusion algorithm we also have adopted a Gaussian pdf to model the optical
imaging process. Since only normalized pdf’s are involved in the joint MAP estimator, no
weighting scheme is necessary to compensate the difference between matching functions
as occurred in the boundary detection algorithm presented in Chapter VI. Without any
experimentally selected weight, our experiments have shown that this fusion algorithm
yields more accurate and robust lane and pavement boundary detection results than the

algorithm which uses the empirical imaging likelihood function (Chapter VI).



CHAPTER VIII

Summary and Future Work for Boundary Detection

8.1 Summary

Part of this dissertation work concentrates on simultaneous lane and pavement bound-
ary detection using optical and radar sensors mounted on the host vehicle. In our work,
the lane and pavement boundaries are represented by deformable templates and thus the
boundary detection becomes a problem of estimating the shape parameters. We model
the optical and radar imaging processes with likelihood functions. Then the boundary de-
tection problem is set in a Bayesian framework and joint maxinauymosteriorimethod
is employed to estimate the shape parameters for both lane and pavement boundaries.
Since the fusion method makes most of the information from both optical and radar im-
ages, it yields more accurate and reliable boundary detection results than the separate
lane/pavement boundary detection algorithms.

We investigated two boundary shape models — parabolic and circular shape mod-
els. Parabolic shape models have been used in previous separate lane/pavement bound-
ary detection algorithms and they can capture the basic characteristic of the boundary
shapes within the field-of-view of the sensors. However, due to the incompatibility of
the parabolic shape parameters, the boundary parameters’ estimation is inevitably an ill

conditioned problem. on the contrary, circular shape models better represent the lane and

174
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pavement boundaries in the US highway system since the highways are constructed based
on the concentric circular models. We have proposed this never used circular shape mod-
els for our boundary detection algorithm and obtained much better conditioned estimation
problems than parabolic shape models due to the same unit and same order of magnitude
of the circular shape parameters.

In our previous work on pavement boundary detection algorithm using radar images
alone, we proposed to employ a log-normal pdf to describe the radar imaging likelihood
function [68]. In their work on lane boundary detection using optical images alone, Kluge
and Lakshmanan presented an empirical matching function to describe the fidelity of the
observation data to certain shape parameters. To take advantage of the previous work,
we employ the log-normal pdf and the empirical matching function to describe the radar
and optical imaging likelihood functions in our first effort in fusing information from both
radar and optical images to simultaneously detect the lane and pavement boundaries. But
since the optical imaging matching function is not a normalized pdf, the radar and optical
likelihood functions are of different dynamic ranges and different weights must be applied
to them. We experimentally choose the weights and in most cases the fusion algorithm
yields satisfactory detection results.

Since experimentally choosing the weights on two imaging likelihoods is not only
inaccurate but also time consuming, we have proposed a Gaussian pdf to describe the
optical imaging process. With the log-normal pdf describing the radar imaging process, we
have two normalized pdf’s for the imaging likelihood functions and no different weights
are necessary in the process of fusion. We have proposed an alternative fusion algorithm
where circular shape models play the rolagiriori information on the lane and pavement
boundaries and the Gaussian and log-normal pdf’'s play the role of imaging likelihood

functions. Joint MAP method is also applied to estimate the shape parameters and better
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detection results are achieved than the first fusion algorithm.

8.2 Future Work

Although circular shape models better describe the boundaries and give more accurate
detection results, it has problems in representing straight lane and pavement boundaries.
The radii of the concentric circles are infinity for straight boundaries and theoretically, our
detection algorithms are unable to handle such situations. In our implementation of the
proposed detection algorithms, we use very large radii to approximate the infinite radii and
the results are quite satisfactory in our experiments. To improve the detection results for
straight boundaries, we can adopt a detection algorithm using two shape models to describe
the boundaries. The two shape models are linear and circular models. The boundary
detection algorithm operates as follows: First, detect the lane and pavement boundaries
with the linear model; Second, with the estimated parameters of the linear model as the
initialization, detect the boundaries with the circular shape model. Finally, compare the
residual errors of the detection results with linear and circular models, the detection result
with the smaller residual error is the optimal detection results that we are looking for.

Another direction for this boundary detection problem is to take into account the dif-
ferent resolutions of the pixels in the optical (radar) image at near and far ranges. It is
obvious that the observation data at the near range have higher resolutions than the ob-
servation data at the far range. If we apply different and appropriate weights on the data
at different distances from the host vehicle so that it can take advantage of the resolution
difference, then the detection results should not be misled by some noise points at the far

range and yield erroneous detection results.
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APPENDIX

Proof of Convergence Rates of MST Length Functionals
for Non-uniform Samples

Before we start deriving the rate of convergence of MST length functidnefs.i.d. non-
uniform random vectors(;, Xo, ..., X,, in [0, 1]¢, we shall give some properties that are
critical in the derivation. Lef’ be a finite subset df, 1)¢,d > 2, i.e., F'is a set of points.

And letW be a real-valued function defined én
e Null condition W (¢) = 0, whereg¢ is the null set.

e Subadditivity There exists a constaut; with the following property: IfQ™ =
{Q;}™ is a uniform partition of0, 1] into m? subcubes); with edge parallel to
the axes and with edge length~! and volumem ¢ and if {¢;}"™} is the set of
points in[0, 1]¢ that translate eact); back to the origin such thad; — ¢; has the

form m=1[0, 1]¢, then for every finite subsét of [0, 1]¢,
md
W(F) <m ™'Y W (m[FNQ; — q]) + Cym* ™! (A1)
=1

e Superadditivity For the same conditions as above@®@p m, andg;, there exists a

constant’; with the following property:

W(F) Zm 'y W (m[F NQ:i = q]) - Com™! (A.2)
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e Continuity There exists a constant; such that for all finite subset® and G of

[0,1]¢,
W(FUG) - W(F)| < Cs(cardG)) =/ (A.3)
where cardG) is the cardinality of the subsét.

The functionallV is said to be a&ontinuous subadditive functionaf it satisfies the
null condition, sudadditivity and continuityi}” is said to be aontinuous superadditive
functional if it satisfies the null condition, superadditivity and continuity.

Many continuous subadditive functiondl$ on [0, 1]¢ are naturally related to dual
superadditive functiondlV’*, whereW (F') + 1 > W*(F) for every finite subset’ and

where for i.i.d. uniform random vectots, ..., U, in [0, 1]¢,
| EW(Uy,...,Uy)] — EW*(Uy,...,Up)] | < Cynld=2/d (A.4)

with C; a constant. We point out that the du&l* is not uniquely defined and is any
superadditive Euclidean functional satisfying (A.4). It has been shown that the boundary-
rooted version o1, namely, one where points may be connected to the boundary of the
unit cube, usually has the requisite property (A.4) of the dual.

A continuous subadditive functiondl (and its dual’*) is said to be guasi-additive
continuous functionaf W andW* satisfy the approximation property (A.4)

Redmond and Yukich have proved that MST length functionals are quasi-additive [86].

We shall derive the rate of convergence of the MST length functionals on non-uniform
samples with two steps — first consider blockwise constant distributions, then proceed to

arbitrary distributions.
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A.1 Convergence Rates of MST Length Functionals for Blockwise
Constant Distributed Samples

Assume that the underlying density of the sample paifits . . , X, is blockwise con-

stant

fl2) =2 dile,(@) (A5)

d -

where{Q;}™, is a uniform partition of the unit cub@, 1]? with edge lengthn!. Fur-
thermore, assume that > 0 for all .

Since the MST length functionals enjoy the property of subadditivity, we have

L(Xy,.., X)) <m™ Y L(m[{Xy,..., X} NQ; —g]) + Cim®!
=1
md
=m 'Y L(U,...,Uy,) + Cim* (A.6)

i=1
because in eac); the samples are drawn from a uniform distribution. Note thas a
random variable with the Binomial distributid®(n, ¢;m?).

Taking expectations on both sides of above inequality,

md
BEL(X,,..., X))  <m ' EL(U,...,U,) + Cim!
i=1
md
=™ Y B, [EL(UL..., Uy [ng)] + Cim*!

=1

(A.7)
For uniform sample#’y, . .., U, in [0, 1]¢, Redmond and Yukich proved the following
rates of convergence for MST length functionals L,
\EL(U,,...,U,) — Bin‘a | < Kin“@ (A.8)

d—1

WhereK1 = 03 + Cl (#)_T
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Using the result (A.8) and continuity of the MST length functionals, we have

EL(X1,...,X,)

md

d—1 d—2
d d

<m ! ZE” [ﬁlni + Kin; ] + Cymat
i=1

md
d=1 d=2
= ’In_1 [ﬁlE (nz B ) + KlE (nl d >:| + C’lmd_l

=1
md d-1 ~ m L d—2
- e 3 ((%) ) oK Y ((%) ) +Cymt !
(A.9)

For the Binomial distributed random variablg we employ the Taylor’s series expan-

sion and obtain

()7 = foorss (5 onr )
_ (@mfd)d%l i % (gbz-m’d)ﬁ (% _ ¢m d)
T (3) e G om ) o (-
(A.10)
and
() = fom s (2o
2 -2

Taking the expectations on both sides of the above two inequalities, we have
i\ T oyt _d-1 —ay i )’ —2
E{(;) } = (om™) * = (o) E[(T@'m )}*0(" )

4 d — a1
= ) (g (1= om0 ()

(A.12)

a
5y

= (am™)
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&
| — |
~/
3|8
N———
IsY
sn.||
[V
— ]
[l
—~
sy
3
|
u
N—"
a
&\‘
V]

_ % (¢Z_m—d)*% E [(% _ ¢imd)2] to(n?)

ez - dt2
= (¢im7d) ¢ Py (qﬁz ) T (gm (1 — gim ) + o (n’Q)

: -2 =2 1
Ky imt—= 67 +m L Bn T o (n"2) + Cymd! (A.14)
Changingn — nm? and dividing both sides of (A.14) wittnm¢ ) , We rewrite
(A.14) as

EL(Xy, ...

(nm?)
o d—1 d—1 o
< 51/¢d7dx—ﬂln_1 5 /¢)_5da:+ﬂln_1m_d ¥ /qude
+Klni/¢ Cdr — Kin~ @ m 2—/¢dd:¢

Xnmd)

Y
d—1
d

—Kln’ i de/¢ddx+mlﬁlo (n’ m % ) +C’1n’% (A.15)
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Whenm is sufficiently large,

EL(X1,..., Xpmi)

(nm) 7

-1 —1 —2 -1
§51/¢d7dx—51n_1d2d2 /¢_5dx+K1n_5/¢dex+C1n_dT

(A.16)

For fixedm and changing backm? — n,

EL(Xy,...,X,)
=

<h / (f)%df - ﬁln_lm

5 /¢—-dx+K1n dm/gb T dr 4+ Cin~ T m?!

(A.17)

Similarly we have the inequality for the dual functiodal,

EL*(Xy,...,X,)
d—1
n d
d—1
>ﬂl/¢dd de — Bin tm? S5 /gb dr + Kin dm/gb 2 dr 4+ Cyn~ "0 m?!
(A.18)
By the inequality between the MST length functional and its dual,
L(Xy,...,X,) +1> L*(Xy,..., X,), (A.19)
we have
L*(Xq,..., X -1
EL(X17 - 7Xn) > E ( 1; ) n) —n_dT (AZO)

nd n d

Therefore, with (A.18) and (A.20) we can obtain

EL(Xy,..., X, i1 -
: hd;l 7 )Zﬂl/ﬁﬁddldx—ﬂln lm 22 /¢
n-d
+Kin~ dm/gb Tdr 4+ Con™ T m® —n™T (A.21)
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For fixedm, we can defin€’, = C, — m~ %! and (A.21) becomes

FL(Xq,....X, _ d—1 1
(%4’ )2@/¢%memﬂmd /¢dm
na 2d?

+Kin"im / ¢ T dz + Cln~ T m! (A.22)

Define K, = max(Cy, C4) and from (A.17) and (A.22), we have

FL(Xy,...,X, _
‘ TR )—m/ﬁﬁwx

n 4

d
< —fin tm?

DefineK; = — ;% and we have

EL(Xy,..., X, -1
B [P

d—1
n-4a

< Klném/ﬁidzdquKgnddlmdl —|—K3n1md/¢}id:v

(A.24)

(A.24) can be rewritten as a function of the number of pixels in each cell,

EL(Xy,..., X, -1
N

d—1
n d

< K, (n/ind>d/d)%dl'+K2 (n/;d> ’ md_1+K3 (ﬁ) /d)_%dl‘

A.2 Convergence Rates of MST Length Functionals for Arbitrary
Continuous Distributed Samples

Hero and Michel have proved the following lemma in [39]. This lemma gives the upper
and lower bounds on the difference of the integrals of two density functions.
Lemma 1 Forv € [0,1] let f¥ be of bounded variation ovéo, 1]¢ and denote by

v its total variation over0, 1]%. Define the resolution /m block density approximation
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b(x) = X1, 61 1, (v) whereg; = m¢ [, f(x)dz. Then

0< / |p” (z z)|dx < m~ iv(Qz) (A.26)

Forv = ‘%1 let us denote the corresponding total variationaand forv = ‘%2 let
us denote the corresponding total variationiasAlso denote by, the total variation of
fa. Suppose that the underlying densjtysatisfies the assumptions in Lemma 1. By
using Schwartz inequality with (A.24) and (A.26), we have the convergence rate of MST

length functionals for arbitrary distributed samples,

‘EL(X:L;;.I.,XH) _ﬁl/f%l(x)dx
EL(XI,..., ») /¢ dx+61/¢ dx_ﬂl/de

‘ n
[ o' wa— [ 17

‘EL(Xl,..., —ﬂl/gb o)ds

< Kin~ dm/gb dx—i—Kgn_dde_l

IN

+ 5

ma

—l—Kgn_lmd/gb_%dx + ﬂlm_dZUl(Qi)

=1

< Kin“im V T (x)dz +m™1 i U2(Qz‘)}+ Kon™ T md!

mé

+Kyn~'md V foi(x)dz +m™ Z UO(Qi)] + Bim ™! Z v1(Qi)
i1 i1

d

< Kin~ dm/f 7 (z)dx + Kan~ Tlmd_lJrKgn_lmd/f_;(a:)da:

+5 (mdzvl(Qi)> +Kin"im (mdiUQ(Qi))
+K3ntm? (mdivo(Qi)> (A.27)

In the above expressiof]; is related to subadditivity and continuity of the MST length



186

functional, K, is related to subadditivity of the MST length functional and superadditivity
of the dual of the MST length functional, ard; is related to the asymptotic constant of

the MST length functional.
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