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ABSTRACT

ADAPTIVE TARGET DETECTION IN RADAR IMAGING

by

Hyung Soo Kim

Chair: Alfred O. Hero III

This thesis addresses a target detection problem in radar imaging for which the co-

variance matrix of an unknown Gaussian clutter background has block diagonal structure.

This block diagonal structure is the consequence of a target lying along a boundary between

two statistically independent clutter regions. We consider three di�erent assumptions on

knowledge of the clutter covariance structure: both clutter types totally unknown, one of

the clutter types known except for its variance, and one of the clutter types completely

known. Here we design adaptive detection algorithms using both the generalized likelihood

ratio (GLR) and the invariance principles. There has been considerable recent interest in

applying invariant hypothesis testing as an alternative to the GLR test. This interest has

been motivated by several attractive theoretical properties of invariant tests including: exact

robustness to variation of nuisance parameters, possible �nite-sample min-max optimality,

and distributional robustness, i.e. insensitivity to changes in the underlying probability dis-

tribution over a particular class. Furthermore, in some important cases the invariant test

gives a reasonable test while the GLR test has worse performance than the trivial coin ip

decision rule. By exploiting the known covariance structure, a set of maximal invariants is

obtained and compared to the GLR procedure. These maximal invariants are a compression

of image data which retain target information while being invariant to clutter parameters.

In our deep-hide target detection problem, however, there are regimes for which either of

the GLR and the invariant tests can outperform the other. We explore the relative advan-

tages of GLR and invariance procedures and their robustness to segmentation errors in the

context of this radar imaging and target detection application.
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CHAPTER 1

Introduction

In this chapter, we introduce the detection problem addressed in this thesis, and describe

the organization of the thesis.

1.1 Motivation and Contribution

The objective of this thesis is to develop and analyze adaptive detection algorithms

for imaging radar (IR) targets in structured clutter. In this context, both the generalized

likelihood ratio (GLR) principle and the invariance principle are exploited.

In automatic target recognition (ATR), it is important to be able to reliably detect or

classify a target in a manner which is robust to target and clutter variability yet maintains

the highest possible discrimination capability. When the clutter statistics are unknown or

highly variable, the false alarm rate of classical detection algorithms, e.g. the matched �lter,

cannot be controlled and target detection decisions become unreliable. The reason for this

is lack of robustness of the test statistics to clutter variations, and recent statistical signal

processing development is constant false alarm rate (CFAR) detection. The objective of

robust CFAR detection is to produce a test statistic whose probability distribution does

not depend on the unknown noise parameters, e.g. noise power or clutter spectrum, while

ensuring a high probability of signal detection. Such a detector is also sometimes referred

to as a noise adaptive detector. For a CFAR test statistic, the detection threshold can be

set to guarantee a prespeci�ed false alarm rate.

The GLR and invariance principles are worthwhile approaches since they often yield

good CFAR tests. The GLR principle implements the intuitive estimate-and-plug proce-

dure: replacing all unknowns in the likelihood ratio (LR) test by their maximum likelihood
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estimates (MLEs). The GLR is known to be asymptotically optimal, i.e. GLR becomes

uniformly most powerful (UMP) in that it attains the highest probability of correct detec-

tion for given probability of false alarm (PFA), as the number of observations become much

larger than the number of unknown clutter parameters [65]. In contrast, the application of

the principle of invariance, also called exact robustness [30], seeks to project away the clutter

parameters by compressing the observations down to a lower dimensional statistic while re-

taining the maximal amount of information for discrimination of the target [16, 18, 44, 56].

This statistic is called the maximal invariant and, if one is lucky, the form of the most

powerful (MP) LR test based on the maximal invariant does not depend on the nuisance

parameters, resulting in a uniformly most powerful invariant (UMPI) test [57, 58]. When

properly applied, the invariance principle can yield adaptive target detection algorithms

which outperform the GLR test, sometimes by a signi�cant margin. As we will show in this

thesis, for the problem of target detection in unknown but structured clutter background,

this margin of improvement can be quite signi�cant at low signal-to-noise ratio (SNR) for

small �xed PFA.

A common assumption in homogeneous but uncertain clutter scenarios is that the target

is of known form but unknown amplitude in Gaussian noise whose covariance matrix is

totally unknown or unstructured. This assumption induces parameter uncertainty for which

the general multivariate analysis of variance (GMANOVA) model applies and optimal and

suboptimal detection algorithms can be easily derived using the GLR principle [11, 34, 35,

50, 53]. In [34], the GLR principle produced an adaptive detector for detecting spatio-

temporal signals in Gaussian noise with unknown spatial covariance. A di�erent adaptive

detector was derived using the GLR in [11] for the case of optical images. The GLR for a

general multi-channel measurement was derived in [35] which specializes to the cases derived

in [34] and [11] via a coordinate transformation. A related result was presented in [52] where

exact con�dence regions for the GLR maximizing the signal vector were derived for unknown

spatial covariance. Additional applications of the GLR to multi-spectral infrared images

can be found in [51] and [67].

When some structure on the covariance matrix is known a priori, improvements over

this GLR test are possible. For example, in the context of antenna arrays for detection of an

impinging wavefront in clutter whose covariance matrix has Toeplitz structure, Fuhrmann

[19] showed through simulation that a signi�cant improvement over the GLR test [34] is

achieved by incorporating a Toeplitz constraint into the covariance estimation step in the

2



GLR detector. As previously mentioned, an alternative approach to estimation of the par-

tially known noise covariance is to project the data down to a test statistic whose noise-alone

distribution does not depend on this covariance. Bose and Steinhardt [6] proposed such an

invariant detector and showed that it outperforms the GLR for unstructured covariance

when the noise covariance matrix is assumed to have a priori known block diagonal struc-

ture. In [24], the diÆcult deep-hide scenario was considered where the target parks along

a known boundary separating two adjacent clutter regions, e.g. an agricultural �eld and

a forest canopy. It was shown there that under the reasonable assumption that the two

clutter types are statistically independent, the induced block diagonal covariance structure

can be used to derive an invariant test with performance advantage similar to Bose and

Steinhardt's test.

In this thesis, we derive the form of the GLR for block structured covariance. Then the

invariant approach considered in [6] and [24] is developed in the context of imaging radar

for deep-hide targets, and compared to the GLR. In this context, the spatial component

has clutter covariance matrix R, which decomposes into a block diagonal matrix under

an independence assumption between the two clutter regions, and the target is assumed

to come from a known set of signatures of unknown amplitudes and orientations. Several

cases, denoted in decreasing order of uncertainty as Cases 1, 2 and 3, of block diagonal

covariance matrices are examined:

R =

2
4 RA O

O RB

3
5 (1.1)

� Case 1: RA > 0, RB > 0

� Case 2: RA > 0, RB = �2I where �2 > 0

� Case 3: RA > 0, RB = I

where the subscripts denote the two di�erent regions A and B. Case 1 corresponds to two

completely unknown clutter covariance matrices RA and RB , and Case 2 corresponds to

one clutter covariance RA completely unknown and the other RB known up to a scale

parameter. As shown in [6] the known clutter covariance matrix in RB , represented by the

matrix I, can be taken as the identity matrix without loss of generality. Case 3 corresponds

to RB known exactly. Cases 2 and 3 arise, for example, in application where one of the

clutter regions is well characterized.
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For real valued observations, the GLR method is shown to have explicit form for each of

Cases 1, 2 and 3, involving the roots of a 4th order algebraic equation. For complex valued

observations, 4th order algebraic equations for real and imaginary parts of the unknown

target amplitude must be solved numerically. The maximal invariant statistics for Cases 1

and 2 were previously derived by Bose and Steinhardt and invariant tests were proposed

based on these statistics in [6]. We treat Cases 1-3 in a uni�ed framework and propose

alternative maximal invariant (MI) tests which are better adapted to the deep-hide target

application.

We show via simulation that there are regimes of operation which separate the perfor-

mance of the GLR and MI tests. When there are a large number of independent snapshots

of the clutter, the MLEs of the target amplitude and the block diagonal clutter covariance

are reliable and accurate, and the GLR test performs as well as the MI test. Conversely,

when a limited number of snapshots are available and SNR is low, the MLEs are unreliable

and the MI test outperforms the GLR test. This property is also con�rmed by the real data

example, i.e. the MI test can detect weaker targets than the other tests when the number of

snapshots is few. We show that the relative advantages between the GLR and MI tests are

robust to errors in segmenting an unknown but structured clutter image. The main results

of this thesis are presented in [37, 38, 39].

1.2 Organization

In Chapter 2, the image model for the detection problem is introduced in the context

of radar imaging. We �rst establish the general unstructured model from the GMANOVA

assumption, which is extended to the structured one. For each model, a canonical form is

obtained by coordinate transformation, and the detection problem is stated accordingly as

hypothesis testing. We then review the detection theory including the principles of GLR

and invariance in Chapter 3. Kelly's GLR test [34] for an unstructured covariance matrix

is derived as an illustration of these two principles. There we show that the GLR test is

also an invariant test under the totally unknown clutter covariance, which does not hold for

structured clutter.

Chapter 4 reviews the application of these two principles to detect a target across a

clutter boundary. Three GLR tests are derived matched to one of the three cases listed in

the previous section. Then, based on the sets of maximal invariants de�ned in propositions,

4



we propose three MI tests. All the results for the test statistics are summarized in tables in

Section 4.4 for a quick review. We also extend the detection problem from a single target

to one of multiple targets. This problem, discussed in Chapter 5, arises from the fact that

a single target can seem di�erently in di�erent positions or di�erent pose angles. There we

consider both unstructured and structured cases.

Chapter 6 explores the relations between the GLR and MI tests by simulation and

by analysis. The relative advantages of those two principles are investigated according to

several factors including SNR, dimensional parameters, and the prior uncertainty in the

spatial covariance. The properties developed there are also con�rmed by experiments with

a real synthetic-aperture radar (SAR) image which consists of a forest canopy and a grass

�eld. Then we investigate the sensitivity of our structured detectors to segmentation errors.

Finally, possible extensions of this research are proposed in Chapter 7.
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CHAPTER 2

Image Model

In this chapter, we briey review radar imaging for target detection application and

de�ne the image model under which our detection algorithms will be developed. Problems

of interest are stated for both the unstructured and the structured models.

2.1 Radar Imaging

Detection of targets in radar images is a multi-stage process involving pre-processing,

image formation from raw data, and formation of a test statistic. In this section, we

review some issues regarding imaging radars and their image outputs to which we can

apply detection algorithms. Further information on the image formation problem for radar

can be found in remote sensing books such as [28, 45, 59, 60, 64].

Radiometric sensors are usually divided into two groups according to their modes of

operation: passive sensors or radiometers, and active sensors such as imaging or non-imaging

radar. Most imaging radars used for remote sensing are divided into two groups: the real-

aperture systems that depend on the beamwidth determined by the baseline of a �xed

antenna, and the synthetic-aperture systems that form a virtual baseline with a moving

antenna. Synthetic-aperture radar (SAR) systems can acquire �ne resolution using a small

antenna with spatial resolution independent of the radial distance to target, which has

made spaceborne imaging radar with �ne resolution feasible [64]. Although we restrict our

attention to detection problems for radar images, the same techniques can be applied to

passive sensors such as long-wave infrared or thermal radiometers.

In active imaging radars, the returned signals are processed to extract complex images

of target reectivity which consist of magnitude and phase information. Figure 2.1 displays
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Figure 2.1: SAR image example.

the magnitude of such a complex valued SAR image which has been converted into decibels

(dB). It is common to model a complex valued radar image as linear in the target with

additive Gaussian distributed clutter. Examples where a Gaussian model is justi�ed for

terrain clutter can be found in [13]. Even in cases when such a model is not applicable to

the raw data, a whitening and local averaging technique can be implemented to obtain a

Gaussian approximation, e.g. by subtracting the local mean from the original image while

minimizing the third moment of the residual image [11, 51].

Assume that the complex image has been scanned or reshaped into an m � 1 column

vector x. If multiple snapshots x1; : : : ; xn of the terrain are available, they can be concate-

nated into a spatio-temporal matrix X with columns fxigni=1. We will call each of these

columns subimages or chips. Let s be the reshaped target vector to be detected in a clutter

background N having independent, identically distributed (i.i.d.) Gaussian columns with

zero mean. Then we have the simple image model

X = a s bH +N

where a is an unknown target amplitude and bH accounts for the articulation of the target

vector into the snapshot sequence, e.g. possible chip locations of the target. Concrete exam-

ples are: multi-spectral images where subimages correspond to a scene at n di�erent optical

or radar wavelengths (Figure 2.2); multiple pulse SAR images where repeated probing of a

scene produces a sequence of n subimages (Figure 2.3); polarized L or C band SAR where

subimages correspond to m = 3 polarization components (HH, HV, VV) at n di�erent

spatial locations; or n non-contiguous spatial cells of a single IR/SAR image (Figure 2.4).
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Figure 2.2: Multi-spectral radar example.

Figure 2.3: Multiple-dwell radar example.

Figure 2.4: Spatially-scanned radar example.
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In spatially scanned radar images, the vector bH would be equal to [1; 0; : : : ; 0] if the

target presence is to be detected in the �rst image chip (1st column of X). In this case,

this column will be called primary data while the rest of X will be called secondary data.

In multi-spectral images, described in [60] and studied by Reed [51], as can be thought of

as a vector of unknown spectral intensities and bH represents the known spatial signature.

We will consider a more general p target model in Section 2.3 and later in Chapter 5.

2.2 Deep-Hide Scenario under Structured Covariance

The most common assumption for clutter is that its spatial covariance matrix is com-

pletely unknown. This assumption makes derivation of the GLR decision rule easy and

leads to a CFAR test for which the false alarm rate is independent of the actual covariance

of the clutter [34, 35]. However, when available, inclusion of side information about the

noise clutter covariance will give improved performance, even though the derivation of the

GLR is often rendered more diÆcult. Such examples of side information are positivity or

Toeplitz constraints [19].

In [6], Bose and Steinhardt applied the structured covariance matrix to the array de-

tection problem, which is equivalent to the one de�ned as Case 2 in the previous chapter.

Then the corresponding image model can be partitioned as2
4 XA

XB

3
5 = a s bH +

2
4 NA

NB

3
5

withNA having the unknown covariance matrixRA, andNB having the diagonal covariance

matrix with unknown variance �2. This structure corresponds to the multi-path environ-

ment in which there is a low-rank interference component superimposed on the white noise.

We also applied a block diagonal structure to the clutter covariance matrix by assuming

that a target to be detected may lie along the boundary of two statistically independent

clutter regions. This assumption may lead to a deep-hide scenario compared to that of

totally unknown clutter. Also the structure of the covariance matrix may complicate the

design of optimal detectors. Nonetheless, as will be shown later, the payo� can be quite

signi�cant.
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2.3 Problem Formulation

2.3.1 Unstructured Covariance Model

As explained in Section 2.1, let fxigni=1 be n statistically independent m � 1 complex

Gaussian vectors constructed by raster scanning a set of n 2-D images. These vectors are

assumed to each have identical m �m covariance matrices R but with possibly di�erent

mean vectors (targets). Then by concatenating these n vectors we obtain the measurement

image matrix (m� n) X = [x1; : : : ; xn]. This matrix can be modeled as follows

X = S a bH +N (2.1)

where S =
�
s1; : : : ; sp

�
is an m � p matrix consisting of signature vectors of p possible

targets, a = [a1; : : : ; ap]
T is a p � 1 unknown target amplitude vector for p targets, and

bH = [b1; : : : ; bn] is a 1�n target location vector which accounts for the presence of target(s)

in each subimage. Also we assume that N is a complex multivariate Gaussian matrix with

i.i.d. columns: vecfNg � CN(0;R
N
In) where 0 is an mn� 1 zero vector, In is an n� n

identity matrix, and
N

is the Kronecker product. This model is a simpli�ed form of the

GMANOVA model

X = SAB+N

where S (m � p) of rank p and B (p � n) of rank p are known matrices, and A (p � p) is

a matrix of unknown amplitudes [30]. In this paper, the simpler form (2.1) will be used

throughout and correspond to the assumption that the target location vectors (rows of B)

for p targets are all identical, i.e. the target components in di�erent subimages di�er only

by a scale factor.

The detection problem is to seek the presence of target(s) for S and b known, a unknown,

and the independent columns of N having the unknown covariance matrix R. By applying

coordinate rotations to both of the column space and the row space of X we can put

the image model into a convenient canonical form as in [35]. Let S and b have the QR

decompositions

S = QS

2
4 TS

O

3
5 and b = Qb

2
4 tb

0

3
5 ;

respectively, where QS(m �m) and Qb(n � n) are unitary matrices, TS is a p � p upper-

triangular matrix, and tb is a scalar. Multiplying X on the left and right by QH
S and Qb,
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respectively, we have the canonical representation

~X = QH
S XQb =

2
4 TS

O

3
5 a

�
tHb 0H

�
+ ~N

where ~N is still n-variate normal with vecf ~Ng � CN(0; (QH
S RQS)

N
In) and the target

detection problem is not altered since R is unknown. Now the transformed data has the

partition

~X =

2
4 x11 X12

x21 X22

3
5

where x11 is a p � 1 vector, x21 is a (m � p) � 1 vector, X12 is p � (n � 1), and X22 is

(m � p) � (n � 1). Note that QH
S and Qb have put all the target energy into the �rst p

pixels of the �rst subimage, x11. This canonical form is identical to the one found in [8]. In

the sequel, unless stated otherwise, we will assume that the model has been put into this

canonical form.

For the special case of p = 1 (single target), this model reduces to the one studied by

Kelly [34]

X = a "1 e
T
1 +N (2.2)

where a is an unknown complex amplitude, e1 = [1; 0; : : : ; 0]T is the n� 1 unit vector, and

the known target signature is transformed into an m � 1 unit vector "1. With the model

(2.2) we can denote the unknowns by the unknown parameter vector � = fa;Rg 2 � where

� is the prior parameter range of uncertainty. Let �0 and �1 partition the parameter

space into target absent (H0) and target present (H1) scenarios: �0 = fa;R : a = 0;R 2
Hermitian(m �m)g, �1 = fa;R : a 6= 0;R 2 Hermitian(m�m)g. Then the general form

for the detection problem is expressed via the two mutually exclusive hypotheses:

H0 : X � f(X; �0); �0 = f0;Rg 2 �0

H1 : X � f(X; �1); �1 = fa;Rg 2 �1:

2.3.2 Structured Covariance Model

Now, following [6], we extend (2.2) to the structured covariance case. Consider Case 1

in Section 1. This is the scenario where a target parks along a known boundary of the two

unknown but independent clutter regions A and B. Then for p = 1 the target signature s
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is partitioned as

s =

2
4 sA (mA � 1)

sB (mB � 1)

3
5

where mA +mB = m, and the unitary matrices QSA and QSB can be obtained from the

QR decompositions of sA and sB , respectively. Using

QS =

2
4 QSA O

O QSB

3
5

in the canonical transformation,the model is then composed of two parts from regions A

and B

X =

2
4 XA

XB

3
5 = a

2
4 ~sA

~sB

3
5 eT1 +

2
4 NA

NB

3
5 (2.3)

where ~sA =
�
sHA ; 0; : : : ; 0

�H
and ~sB =

�
sHB ; 0; : : : ; 0

�H
. Note that sA and sB are the only

nonzero element in the transformed signatures ~sA and ~sB, respectively. Also NA (mA � n)

and NB (mB � n) are independent Gaussian matrices with unknown covariance matrices

RA (mA � mA) and RB (mB � mB), respectively. The target detection problem is now

simply stated as testing a = 0 vs. a 6= 0 in (2.3).
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CHAPTER 3

Detection Theory as Hypothesis Testing

3.1 Introduction

Detection and classi�cation arise in signal processing problems whenever a decision is

to be made among a �nite number of hypotheses concerning an observed waveform [12, 43].

The fundamental theory behind detection and classi�cation was developed in mathematical

statistics and decision theory, and signal detection is a special case of hypothesis testing

theory in statistical inference [18, 40].

As explained in the previous chapter, given an observation X a decision has to be made

between two hypotheses corresponding to presence of a target (H1) or no target (H0),

respectively. This is a simple binary hypothesis testing where the noise alone hypothesis H0

is referred to as the null hypothesis, and the signal present hypothesis H1 as the alternative

hypothesis. Then, in the parametric problem, the measurement X has the probability

density function (pdf) f(X; �) and under each hypothesis

H0 : � 2 �0

H1 : � 2 �1

where f�0;�1g can be considered as a partition of the prior parameter space � in the sense

that they are

�0 [�1 = � (exhaustive);

�0 \�1 = ; (disjoint):

Now the objective is to make a decision between H0 and H1 with small error, based on a

measurement X. This decision is equivalent to partitioning the observation space X into
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X0 and X1 where all values of x 2 X0 or x 2 X1 are such that H0 or H1 is decided,

respectively.

There are two general strategies for deciding between H0 and H1: the Bayesian strategy

and the frequentist strategy. In Bayes approach to detection, priors are assigned to the

probabilities of H0 and H1, and it is assumed that � is a random variable or vector with a

known pdf f(�). After assigning a set of costs to incorrect decisions, the Bayes objective

is to �nd and implement a decision rule which has minimum average cost or risk. In many

situations, however, it is diÆcult to assign not only the priors but also the cost under each

hypothesis. Moreover, the Bayes approach assures good performance only for the average

parameter values over �0 and �1. The Bayes approach does not control the performance

of a test for any speci�c parameter value which can arise. Also it provides no guaranteed

protection against false alarm (deciding H1 when H0 is true) and miss (deciding H0 when

H1 is true). The other approach is to work with the probability of false alarm (PFA) and

the probability of detection (PD). Note that PD is the probability of deciding H1 when H1

is true and PD = 1 � PM where PM is the probability of miss. The basic idea behind this

frequentist approach to detection is to constrain PFA and maximize PD or minimize PM .

In the next section, we discuss di�erent kinds of hypotheses and consider other optimal

criteria for detection. More details of the detection theory can be found in [1, 18, 40, 44,

48, 62, 65].

3.2 Constrained Optimal Strategies

Hypotheses are divided into two classes according to the parameter � underlying pdfs of

each of the hypotheses. When � can take on only one value, �xed and known, under each

hypothesis, the hypotheses are said to be simple. In this case, the pdf f(X; �) is known

given H0 or H1. Otherwise, hypotheses are said to be composite. In singly composite

hypotheses, only one of �0 or �1 contains a set of values of �, and in doubly composite

hypotheses, both �0 and �1 contain a set of values of �. Thus composite hypotheses only

specify a family of pdfs for X.

For simple hypotheses, �0 = f�0g and �1 = f�1g, the frequentist approach attempts

to maximize the conditional PD for �xed conditional PFA, or vice versa, resulting in the

Neyman-Pearson test. Speci�cally, a maximum tolerable level � of false alarm is speci�ed
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as

PFA(�0) � �

where PFA(�) = P (decideH1jH0; �) and a decision rule is selected which attains the largest

PD among all tests of level �. This test is also called the most powerful (MP) test [40].

In testing simple hypotheses, both Bayes and Neyman-Pearson criteria lead to the same

decision rule involving the likelihood ratio (LR) test. The only di�erence lies in the selection

of the thresholds applied to the test statistic. However, in a general problem of testing

composite hypotheses the two approaches di�er substantially. For non-random �, if such a

test existed, a frequentist would select a test of level � satisfying

max
�2�0

PFA(�) � �

which has the highest PD(�) among all tests of level � and for all � 2 �1. Such a test is

called a uniformly most powerful (UMP) test. Whenever a UMP test exists, it works as

well as if we knew �. Usually, however, such a test does not exist since the optimal decision

region of an LR test depends on the unknown parameters f�0; �1g, and consequently we need
to adopt other alternative strategies. For instance, in testing doubly composite hypotheses,

most detectors will have their PFA and PD varying as functions of unknown � 2 �0 and

� 2 �1, respectively. In such cases, two classes of strategies can be used: one is to optimize

an alternative decision criterion and the other is to constrain the form of detectors to a

class for which a UMP test may exist. Several methods utilizing one of these strategies are

listed below.

Some examples of alternative criterion are the minimax test and the locally most pow-

erful (LMP) test. A minimax test is a test of level � which maximizes the worst case

power

min
�2�1

PD(�)

and it is sometimes possible to arrive at minimax optimal detectors [61] through the method

of similar tests [40]. In order to implement this test, we need to �nd the least favorable

density which maximizes PD while constraining the speci�c level of PFA. Thus the minimax

detector can be viewed from the point of view of Bayesian detection implemented with a

lease favorable prior on the unknown noise density. However, the performance of a minimax

test can be overly conservative especially if least favorable priors concentrate on atypical
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values of �. Furthermore, the least favorable priors may be diÆcult to �nd in practice. The

main idea behind a LMP test is to �nd the MP test for detecting a small perturbation of

parameters from H0. The LMP test is particularly useful for weak signals.

Some examples of constrained classes of tests are unbiased tests, CFAR tests, and in-

variant tests. Unbiased tests are all tests of level � whose PD(�) is greater than � for all

� 2 �1. CFAR refers to the property that the tests have constant false alarm probability

over �0. Sometimes UMP CFAR tests exist when UMP tests do not exist. Finally, invariant

tests seek to �nd a transformation or compression of the data, which results in reducing the

e�ect of nuisance parameters. In many cases, the invariant and unbiased classes of tests

contain the minimax optimal test [18, 40].

3.3 GLR Principle

Generally, optimality is not guaranteed in a composite hypothesis test which involves

highly variable nuisance parameters, and a UMP test rarely exists. When such a test does

not exist, a popular sub-optimal strategy is to use the GLR principle. With unknown

parameters � in the likelihood ratio, a logical procedure is to �nd good estimates of � under

H0 and H1, and substitute these estimates into the likelihood ratio statistic as if they were

true. This is akin to reformulating H0 and H1 as simple hypotheses depending on the

estimated � values for which an MP test always exists. In GLR procedures, the pdfs of the

measurement under both hypotheses are maximized separately over all unknown parameters

by replacing them with their maximum likelihood estimates (MLEs), �̂0 and �̂1:

max�2�1
f(X; �)

max�2�0
f(X; �)

=
f(X; �̂1)

f(X; �̂0)
:

One of the main justi�cations of the GLR principle is its asymptotic optimality [31, 32].

As a function of MLEs, the GLR test is asymptotically UMP since, under broad conditions

[26], MLEs are consistent estimators as the number of observations goes to in�nity. And

in many physical problems of interest, either a UMP test will exist or a GLR test will

give satisfactory results [65]. However, there are two factors which can make the GLR test

unworkable in applications. First, the optimization or maximization involved in deriving

a GLR test may be intractable to obtain in closed form in some instances, e.g. when the

clutter covariance has block diagonal structure. Moreover, similarly to small sample MLEs,

the performance of a GLR test can be poor (not even unbiased) in a �nite sample regime

[40]. In other words, use of the GLR principle entails a loss in eÆciency [36, 50] which can
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severely impact �nite sample performance. In the next section, we review the principle of

invariance as an alternative strategy.

3.4 Invariance Principle

The method of invariance involves expressing uncertainty in the unknown clutter pa-

rameters as resulting from the set of algebraic actions on the observation by an appropriate

group of transformations. Once the uncertainty has been mapped to group actions, one can

often identify statistics whose statistical distributions are functionally invariant to unknown

noise parameters yet entail minimum loss of target discrimination capability. On the basis

of these statistics likelihood ratio tests which have constant false alarm rate can often be

speci�ed. These statistics are called the maximal invariants. Despite the diÆculty in �nd-

ing maximal invariants and their statistical distributions, the payo� for the extra e�ort in

signal processing applications can be high [6, 7, 55, 57, 58].

3.4.1 SuÆciency vs. Invariance

The main idea behind the invariance principle is to �nd a statistic which maximally

condenses the data while retaining the discrimination capacity of the original data set. It is

instructive to �rst consider the mechanism of data reduction associated with the minimal

suÆcient statistic [18, 40]. Recall that a function T = T (X) of the data is a suÆcient

statistic for testing between H0 and H1 if, for all �0 2 �0 and �1 2 �1, the likelihood ratio

� depends on X only through T (X):

�(X; �0; �1) ,
f(X; �1)

f(X; �0)
= g(T (X); �0; �1):

The sets fX : T (X) = tgt can be thought of as suÆciency orbits ofX which specify constant

contours of �(X). Thus a suÆcient statistic T (X) indexes the orbits and preserves all

information needed to discriminate between H0 and H1. SuÆcient statistics are not unique

and T (X) is a minimal suÆcient statistic if it is a function, i.e. a compression, of any other

suÆcient statistic.

On the other hand, data reduction via invariance is achieved by �nding a statistic

Z = Z(X), called the maximal invariant statistic, which indexes the set values (which we

can think of as constant contours) of the set function

~�(X) , f�(X; �0; �1) : �0 2 �0; �1 2 �1g: (3.1)
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To make this practical, a tractable mathematical characterization of this set function must

be adopted.

To illustrate the statistical reduction or data compression associated with suÆciency

and invariance, consider the signal model de�ned in (2.2) for real valued measurements.

For the special case of m = 1, this model reduces to

x = a eT1 +NT

where, as before, e1 is an n� 1 unit vector and NT is a normal row vector with zero mean

and covariance matrix �2I. The above model corresponds to testing for target presence at

a single pixel in a sequence of n snapshots. This is a simple i.i.d. real Gaussian example

with unknown parameters � = fa; �2g, and the pdf of x [63] is

f(x) =
1

(2�)n=2�n
exp

"
�1

2

(
(x1 � a)2

�2
+

nX
i=2

x2i
�2

)#
(3.2)

where x = [x1; x2; : : : ; xn]. Since the objective is to decide whether a = 0 or a 6= 0 when �2

is unknown, we de�ne �0 = f0; �2
0
g and �1 = fa; �2

1
g which are points in �0 = fa; �2 : a =

0; �2 > 0g and �1 = fa; �2 : a 6= 0; �2 > 0g, respectively. The likelihood ratio is

�(x; �0; �1) =
f(x; a; �2

1
)

f(x; 0; �2
0
)
:

With the pdf (3.2), we can express the log likelihood ratio as a function of x:

ln�(x; �0; �1) =
a

�2
1

� eT1 x+
�2
1
� �2

0

2�2
0
�2
1

� xTx� a2

2�2
1

+ n ln
�0
�1

where a 2 IR and �2
0
; �2

1
> 0. Thus � depends on x only through T (x) = ft1; t2g where

t1 = eT
1
x and t2 = xTx. T (X) is a minimal suÆcient statistic indexing the suÆciency orbit

illustrated in Figure 3.1 as a circle in IR3 when n = 3. Given t1 and t2 we can recover all

of the information in the entire n-sample required to discriminate between di�erent values

of the parameter pair fa; �2g [44]. Generally for n > 2, the suÆciency orbit of x is the

surface of an n � 1 dimensional hypersphere de�ned by the intersection of the surfaces of

the hypersphere fx :
Pn

i=1 x
2

i = t2g and the hyperplane fx : x1 = t1g.
This suÆcient statistic is the minimum amount of information required of x to estimate

the parameters fa; �2g. The maximal invariant is the minimum amount of information

required to discriminate between the sets of parameter values �0 and �1, i.e. detection

of the target. To determine the maximal invariant, the set function (3.1) of the likelihood
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Figure 3.1: SuÆciency orbit is a circle in IR3

ratio needs to be de�ned �rst. Since, under H1, a 2 IR and �2
0
; �2

1
> 0 are unknown, the

contours of the log likelihood ratio can be equivalently indexed by the parameters

~a = a=eT1 x

~�20 = �20=x
Tx

~�21 = �21=x
Tx:

That is, we can express the set function (3.1) as

ln ~�(x) =

(
~a

~�2
1

�
��eT
1
x
��2

xTx
+

~�2
1
� ~�2

0

2~�2
0
~�2
1

� ~a2

2~�2
1

�
��eT
1
x
��2

xTx
+ n ln

~�0
~�1

: ~a 2 IR; ~�20 ; ~�
2

1 > 0

)
:

We conclude that the set function (3.1) is indexed by the scalar:

z(x) =

��eT
1
x
��2

xTx
(3.3)

which is the maximal invariant in this example. In Figure 3.2, the invariance orbit is

illustrated as a cone in IR3. Each invariance orbit fx :
��eT
1
x
��2 =xTx = zg is indexed by

the equivalent maximal invariant, x2
1
=
Pn

i=2 x
2

i , which determines the tangent of this cone.

Thus, the compression to a scalar function of x provided by the maximal invariant is a more

vigorous compression than that provided by the minimal suÆcient statistic above.

3.4.2 Issues in Finding Maximal Invariant

The invariance principle is essentially a systematic method for data reduction which

accounts for parameter uncertainty. This can be accomplished when the probability model
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Figure 3.2: Invariance orbit is a cone in IR3

has functional invariance which can be characterized by group actions on the measurement

space X and induced group actions on the parameter space �. Let G be a group of transfor-

mations g : �! � acting on X. Assume that for each � 2 � there exists a unique �� = �g(�)

such that

f�(g(X)) = f��(X):

�g 2 �G is called the induced group action on �. The above relation implies that the natural

invariance which exists in the parameter space of � implies a natural invariance in the space

of measurement X. If we further assume that �g(�0) = �0; �g(�1) = �1, then the model

and the decision problem are said to be invariant to the group G. The orbits of X under

actions of G are de�ned by

X � Y if 9 g 2 G such that Y = g(X):

The orbits of � under actions of �G are similarly de�ned. Note that to capture natural

invariance of the model, the groups G and �G must have group actions with the largest

possible degrees of freedom among all groups leaving the decision problem invariant.

The principle of invariance stipulates that any optimal decision rule should only depend

on X through the maximal invariant Z = Z(X) which indexes the invariance orbits in the

sense that

1. (invariant property) Z(g(X)) = Z(X); 8 g 2 G

2. (maximal property) Z(X) = Z(Y)) Y = g(X); g 2 G.
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Clearly, the maximal invariant is not unique. Any other functions of X related to Z(X) in

a one-to-one manner can be maximal invariant. It can also be shown that the probability

density f(Z; Æ) of Z only depends on � through a reduced set of parameters Æ = Æ(�), which

is the induced maximal invariant under �G. Use of Z for detection gives the equivalent set

of hypotheses

H0 : Z � f(Z; Æ(�0)); �0 2 �0

H1 : Z � f(Z; Æ(�1)); �1 2 �1:

Since the new parameterization Æ(�) is generally a dimension reducing function of �, use of

the reduced data Z gives us better chances of �nding a CFAR test whose false alarm rate

is independent of �. In particular, when Æ(�0) is constant over �0 2 �0, the distribution of

Z under H0 is �xed and therefore any test based on Z will automatically be CFAR.

When there exists a group G that leaves a testing problem invariant, we can restrict our

attention to the class of invariant tests where a test function � on X satis�es

�(g(X)) = �(X);8g 2 G:

Any one-to-one function of the maximal invariants produces an equivalent invariant test

[30].

3.5 Example: Unstructured Covariance Case

We will �rst consider the case where the clutter is totally unknown. Suppose that the

measurement matrix is Gaussian with i.i.d. columns each having the unknown covariance

matrix and the problem is to decide the presence of a known target in a known subimage

with an unknown amplitude. Then we can use the image model in (2.2), X = a "1 e
T
1
+N,

and its partitioned form

X = [x1 X2] =

2
4 x11 x12

x21 X22

3
5 (3.4)

where x1 is the �rst subimage which may contain the target and all the target energy has

been put into the �rst pixel x11 of this subimage.

This is the case studied by Kelly [34], and the results are briey reviewed here to help

illustrate the application of the GLR principle and invariance principle discussed previously.

This will help the reader understand more complicated structured models of interest, covered

later in this thesis.
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3.5.1 GLR Approach

Since the m � n measurement matrix X is complex multivariate normal with m � n

mean E[X] = a "1 e
T
1
and mn�mn covariance cov[vec(X)] = R

N
I as described in Section

2.3, the problem is to decide whether a is 0 or not when R is unknown. If we write the

i.i.d. columns of X as fx1; x2; : : : ; xng, the pdf of X [46] is

f(X) =
1

�mnjRjn exp
"
�(x1 � a"1)

HR�1(x1 � a"1)�
nX
i=2

xHi R
�1xi

#
(3.5)

=
1

�mnjRjn exp
"
�tr

(
R�1

 
(x1 � a"1)(x1 � a"1)

H +

nX
i=2

xix
H
i

!)#
:

Obviously, the likelihood ratio involves unknown parameters, a and R, and we derive

the GLR by maximizing the likelihood ratio over those parameters, i.e. by replacing them

with their MLEs:

l1 =
max�2�1

f(X; �)

max�2�0
f(X; �)

=
maxa f(X; a; R̂1)

f(X; 0; R̂0)

where R̂0 and R̂1 are the sample covariance matrices under H0 and H1, respectively. It is

easily shown:

R̂0 =
1

n

nX
i=1

xix
H
i ;

R̂1 =
1

n

"
(x1 � a"1)(x1 � a"1)

H +

nX
i=2

xix
H
i

#
:

To ensure these matrices be nonsingular with probability one, we must impose the condition

that n > m. After canceling the exponential terms in the numerator and the denominator,

the GLR l1 can be reduced to

l1 = max
a

jR̂0jn
jR̂1(a)jn

:

To evaluate its determinant, write R̂0 as

R̂0 =
1

n

nX
i=2

xix
H
i +

1

n
x1x

H
1

= �R
1

2

�
I+

1

n
�R�

1

2x1x
H
1
�R�

1

2

�
�R

1

2

where �R = 1

n

Pn
i=2 xix

H
i . Then from Section 8.4 in [20]

jR̂0j = j �Rj �
����I+ 1

n
�R�

1

2x1x
H
1
�R�

1

2

����
= j �Rj � f1 + xH1 (n

�R)�1x1g
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and similarly,

jR̂1j = j �Rj � f1 + (x1 � a"1)
H(n �R)�1(x1 � a"1)g:

With these results and the fact that n �R = X2X
H
2
, we obtain the following simple form of

the GLR for this example by taking the n-th root of l1:

n
p
l1 = max

a

�
1 + xH

1
(X2X

H
2
)�1x1

1 + (x1 � a"1)
H(X2X

H
2
)�1(x1 � a"1)

�
: (3.6)

It remains to maximize this ratio over the unknown complex amplitude a. This can be

done by completing the square in the denominator of (3.6):

1 + (x1 � a"1)
H(X2X

H
2 )

�1(x1 � a"1)

= "T1 (X2X
H
2 )

�1"1 �
����a� "T

1
(X2X

H
2
)�1x1

"T
1
(X2X

H
2
)�1"1

����
2

+ 1 + xH1 (X2X
H
2 )

�1x1 �
j"T
1
(X2X

H
2
)�1x1j2

"T
1
(X2X

H
2
)�1"1

giving the MLE of the amplitude as

â =
"T
1
(X2X

H
2
)�1x1

"T
1
(X2X

H
2
)�1"1

: (3.7)

Thus the GLR test is equivalent to 1� 1= n
p
l1, denoted TKu:

TKu =
j"T
1
(X2X

H
2
)�1x1j2

"T
1
(X2X

H
2
)�1"1 � f1 + xH

1
(X2X

H
2
)�1x1g

: (3.8)

This test was obtained by Kelly [34] and will be called the unstructured Kelly's test. Kelly

also proved in [34] that this test has the CFAR property.

3.5.2 Invariance Approach

As de�ned above, an invariant test is a test statistic which is a function of the maximal

invariants. Here, we review the derivation of the maximal invariants under the unstructured

model described above, and prove that the Kelly's GLR test can be represented with the

maximal invariant statistics.

With the previous model, we can de�ne the following group of transformations acting

on X as

g(X) =

2
4 �1 �H

2

0 M

3
5 X

2
4 1 0T

0 U

3
5 (3.9)

where �1 6= 0, �
2
(1�(m�1)) andM((m�1)�(m�1)) are arbitrary, andU((n�1)�(n�1))

is a unitary matrix. In order to prove that the decision problem is invariant to this group,
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it is worthwhile to recall the important property of the Kronecker product that if an m�n

Gaussian matrix X has mean E[X] = � and covariance cov[vec(X)] = R
N
C, then FXH

has mean F�H and covariance FRFH
N
HCHH . With this property and the model X in

(3.4), we have

g(X) = ~a"1e
T
1 + ~N

where ~a = �1a and ~N is still zero-mean Gaussian with cov[vec( ~N)] = ~R
N
I where

~R =

2
4 �1 �H

2

0 M

3
5R

2
4 �1 �H

2

0 M

3
5
H

:

Thus the problem remains unchanged under this group since the unknown amplitude a and

covariance matrixR are just replaced by ~a and ~R, respectively. This group is also the group

whose actions have the largest possible number of free parameters which guarantee that the

decision problem remains unchanged. Indeed if the full linear group of row actions were used,

i.e. the �rst column of the left multiplying matrix in (3.9) were to be arbitrary, the signal

spatial structure "1 would not be preserved. Likewise, if a larger group of right multiplying

matrices than the one in (3.9) were applied to the columns of X, the independence of the

columns of X or the temporal (chip) structure e1 of the signal would not be preserved.

Once the invariant group of transformations is obtained, we can now de�ne a set of

statistics, i.e. maximal invariants, which indexes the orbits of X under this group.

Proposition 1 With the model (3.4) and the group of transformations (3.9), the maximal

invariant is 2-dimensional:

z10 = xH1 (X2X
H
2 )

�1x1;

z2 = xH21(X22X
H
22)

�1x21:

And z10 can be replaced by

z1 =

��x11 � x12X
H
22
(X22X

H
22
)�1x21

��2
x12
�
I�XH

22
(X22X

H
22
)�1X22

�
xH
12

since z10 = z1 + z2.

Proof: Bose and Steinhardt [6]. See the appendix for an independent derivation. �

To interpret this set of maximal invariants, consider the group of transformations (3.9) as

g(X) =

2
4 g1(x1;X2)

g2(x21;X22)

3
5 =

2
4 �Hx1 �HX2U

Mx21 MX22U

3
5
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Figure 3.3: Invariance orbits indexed by the maximal invariant

where �H = [�1 �H
2
]. From each group action on the measurement scaled by � or M,

and rotated by U, we can construct a orbit (cone) as illustrated in Figure 3.3. Then each

cone of g1 and g2 is indexed respectively by z10 and z2 which are the ratios of the norm

squared along the axis of the cone to that perpendicular to it. z2 is the sample correlation

between primary and secondary data whose distribution is same under H0 and H1. Thus

it is an ancillary statistic [30]. Also the representation of z1 gives it an interpretation as

the estimated s-prediction SNR, i.e. the ratio of the magnitude squared of the estimated

target error to that of the estimated clutter prediction error, where x12X
H
22
(X22X

H
22
)�1x21

is the least-squares estimate of x11 given x21 and X2.

Any invariant test will be functions of z1 and z2, and we can show that the Kelly's test

(3.8) is one of them. As described in Proposition 1, xH
1
(X2X

H
2
)�1x1 = z1+ z2 and we have

TKu =
j"T
1
(X2X

H
2
)�1x1j2

"T
1
(X2X

H
2
)�1"1 � f1 + z1 + z2g

:

Since the measurement X has the partition in (3.4), we write

X2X
H
2 =

2
4 x12x

H
12

x12X
H
22

X22x
H
12

X22X
H
22

3
5 =

2
4 R11 R12

R21 R22

3
5 :
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Then using the relations for the inverse of partitioned matrices [20], de�ne

(X2X
H
2 )

�1 =

2
4 V11 V12

V21 V22

3
5

where

V11 = fR11 �R12R
�1

22
R21g�1

V21 = �R�1

22
R21V11

and since the m �m sample covariance matrix X2X
H
2

and its inverse are Hermitian [25],

V12 = V H
21
. With these notations, we can show

"T1 (X2X
H
2 )

�1"1 = fx12
�
I�XH

22(X22X
H
22)

�1X22

�
xH12g�1

"T1 (X2X
H
2 )

�1x1 =
x11 � x12X

H
22
(X22X

H
22
)�1x21

x12
�
I�XH

22
(X22X

H
22
)�1X22

�
xH
12

since V11 = fx12
�
I�XH

22
(X22X

H
22
)�1X22

�
xH
12
g�1. Thus

TKu =
z1

1 + z1 + z2
(3.10)

which establishes that the GLR test is also an invariant test.

No optimal properties are claimed for this test, and as noted earlier the number of chips,

n, must exceed the number m of spatial pixels per chip which can be quite large in many

radar applications. Kelly derived the pdf of the test statistic and showed that it depends

on the unknown covariance matrix R only through a SNR involving the unknown signal

amplitude a. Thus, under the clutter-alone hypothesis H0, the pdf of TKu is not a�ected

by the unknown parameters, and hence the test is CFAR.
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CHAPTER 4

Application to a Target Straddling a Clutter Boundary

4.1 Introduction

In this chapter, we consider the problem of detecting a known target straddling the

boundary of two independent clutter regions. From the model (2.3), the measurement

matrix X is composed of two di�erent regions A and B and can be partitioned as

X =

2
4 XA

XB

3
5 =

2
4 xA1 XA2

xB1 XB2

3
5 (4.1)

where xA1 and xB1 are the primary vectors which may contain the separated canonical parts

of a known target, sA and sB , respectively, with the unknown common amplitude a. Here

we remove the tildes from ~sA and ~sB for notational convenience. Under the clutter-alone

hypothesis H0, any of the i.i.d. columns of X will be multivariate Gaussian with zero mean

and a covariance matrix R having a block diagonal structure as de�ned in (1.1):

R =

2
4 RA O

O RB

3
5 :

To construct test statistics, both of the GLR and invariance principles are applied under

di�erent assumptions on RB :

� Case 1: RA > 0;RB > 0

(totally unknown clutter in regions A and B)

� Case 2: RA > 0;RB = �2I where �2 > 0

(clutter known in region B up to variance �2)

� Case 3: RA > 0;RB = I

(clutter known exactly in region B).
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4.2 GLR Tests

Let fxA1; xA2; : : : ; xAng and fxB1; xB2; : : : ; xBng represent the i.i.d. columns of the two

uncorrelated matrices XA and XB, respectively, then the pdf of X factors as

f(X) = f(XA)f(XB)

where f(XA) and f(XB) are de�ned similarly as (3.5) for each region:

f(XA) =
1

�mAnjRAjn exp
"
�(xA1 � asA)

HR�1

A (xA1 � asA)�
nX
i=2

xHAiR
�1

A xAi

#
;

f(XB) =
1

�mBnjRB jn exp
"
�(xB1 � asB)

HR�1

B (xB1 � asB)�
nX
i=2

xHBiR
�1

B xBi

#
:

Note that RA and RB are the regional covariances as given in (1.1), mA and mB are the

dimensions of the data vectors in XA and XB , respectively, and mA +mB = m. Now the

decision problem is to decide whether the primary data contains clutter alone (a = 0) or

clutter plus target (a 6= 0):

H0 : X � f(X; 0;RA;RB)

H1 : X � f(X; a;RA;RB):

As in the unstructured case, the GLR maximization can be performed for the unknown

covariance matrices RA and RB by replacing them with their MLEs (R̂A0; R̂B0 under H0,

and R̂A1; R̂B1 under H1):

� = max
a

f(X; a; R̂A1; R̂B1)

f(X; 0; R̂A0; R̂B0)
:

Here, the required condition for non-singularity of the estimated covariance matrices (n >

m) is relaxed since we need only n > maxfmA;mBg. This GLR, however, still involves a

maximization over the unknown amplitude a in a complex quartic equation and cannot be

represented in closed form. However, for real valued data the roots of the quartic equation

are explicit. For complex data we implement the GLR tests, derived under the structured

cases, using numerical root �nding and compare their performance in Chapter 6.

4.2.1 Case 1: RA > 0;RB > 0

The GLR for this case is just the product of the likelihood ratios from regions A and B:

�1 = max
a

f(XA; a; R̂A1)f(XB ; a; R̂B1)

f(XA; 0; R̂A0)f(XB ; 0; R̂B0)
:

28



Next we can apply the results of the unstructured example in Section 3.5 to both of the

two regions A and B separately:

�1 = max
a

��
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�n
�
�
1 + p(0; sB ;XB)

1 + p(a; sB ;XB)

�n�

or

1

n
ln�1 = max

a

�
ln

�
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�
+ ln

�
1 + p(0; sB ;XB)

1 + p(a; sB;XB)

��
(4.2)

where

p(a; sA;XA) = (xA1 � asA)
H(XA2X

H
A2)

�1(xA1 � asA): (4.3)

Now we call (4.2) GLR 1 which reduces to the GLR in (3.6) when R is unstructured and

for which the maximization over the quadratic equation in the denominator can be easily

achieved.

With this structured model, however, the maximization over a cannot be completed

explicitly. But since the maximizing value of the complex amplitude

â = argmin
a

f[1 + p(a; sA;XA)] � [1 + p(a; sB;XB)]g

involves a product of two positive quadratic equations, we can derive upper and lower

bounds to aid in numerical search. De�ne the local solutions from each region A, B as in

(3.7):

âA = argmin
a

p(a; sA;XA) =
sHA (XA2X

H
A2)

�1xA1
sHA (XA2X

H
A2)

�1sA
; (4.4)

âB = argmin
a

p(a; sB ;XB) =
sHB (XB2X

H
B2)

�1xB1
sHB (XB2X

H
B2)

�1sB
:

Then we know that â lies between those local solutions which serve as bounds, and GLR 1

can be implemented or maximized while varying a in such a way so as to guarantee

minfRefâAg;RefâBgg � Refâg � maxfRefâAg;RefâBgg;
minfImfâAg; ImfâBgg � Imfâg � maxfImfâAg; ImfâBgg:

4.2.2 Case 2: RA > 0;RB = �2I

This case is just as above except that RB is assumed to be diagonal with common

unknown variance �2 along the diagonal. With this assumption, the pdf of XB is

f(XB; a; �
2) =

1

�mBn�2mBn
exp

"
� 1

�2

(
jxB1 � asBj2 +

nX
i=2

jxBij2
)#
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and the GLR is expressed as

�2 = max
a

f(XA; a; R̂A1)f(XB ; a; �̂1)

f(XA; 0; R̂A0)f(XB ; 0; �̂0)
:

Again MLEs of the variance under both hypotheses can be easily found as

�̂21 =
1

mBn
q(a; sB;XB);

�̂20 =
1

mBn
q(0; sB ;XB)

where

q(a; sB ;XB) = tr
�
(XB � asBe

T
1 )

H(XB � asBe
T
1 )
	
: (4.5)

As before, the maximization over a in �2 cannot be completed in closed form. To bound

â, we �rst consider the GLR over the region B alone which can be simpli�ed to

l2 = max
a

�
q(0; sB ;XB)

q(a; sB ;XB)

�mBn
:

We named it l2 after the previous unstructured GLR test statistic l1 in (3.6). Then by

rewriting q(a; sB ;XB) as

q(a; sB ;XB) = jsB j2 �
����a� sHBxB1

jsBj2
����
2

+

nX
i=1

jxBij2 �
jsHBxB1j2
jsB j2

;

we see that the maximizing value of a is

âB =
sHBxB1
jsBj2

(4.6)

where sB is the canonical target of form sB = [sB; 0; : : : ; 0]
T . Thus we have the equivalent

form of this GLR

1� 1
mBn
p
l2

=
jxB11j2Pn
i=1 jxBij2

: (4.7)

Now back to �2, GLR 2 can be expressed as

1

n
ln�2 = max

a

�
ln

�
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�
+mB � ln

�
q(0; sB ;XB)

q(a; sB ;XB)

��
; (4.8)

and the maximizing value of a can be found between âA given as (4.4) for Case 1 and âB

given in (4.6).
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4.2.3 Case 3: RA > 0;RB = I

Suppose RB is exactly known to be an identity matrix. Then from the results of Case

2 we can derive a bound on the maximizing value of a required to implement the GLR.

De�ne the GLR l3 over XB alone:

l3 = max
a
fexp[q(0; sB ;XB)� q(a; sB ;XB)]g

where q is the same as de�ned previously in (4.5). Hence, the MLE of the amplitude a is

equal to âB given in (4.6), and the GLR over XB is equivalent to

ln l3 = jxB11j2: (4.9)

Thus, �nally, we can de�ne GLR 3 using the entire measurement X as

1

n
ln�3 = max

a

�
ln

�
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�
+

1

n
[q(0; sB;XB)� q(a; sB ;XB)]

�
(4.10)

where the maximization over a can be implemented similarly to Case 2.

4.3 MI Tests

In this section, we apply the invariance principle to the structured covariance cases

studied above and construct a test statistic as a function of the maximal invariants derived.

These results parallel those of Bose and Steinhardt [6]. It will be convenient to �rst de�ne

the partition of X which is re�ned from (4.1):

X =

2
4 XA

XB

3
5 =

2
6666664

xA11 xA12

xA21 XA22

xB11 xB12

xB21 XB22

3
7777775
: (4.11)

With this partition, the structured group of transformations induced by each model will be

de�ned as

g(X) =

2
4 gA(XA)

gB(XB)

3
5

and the maximal invariants under each group can easily be obtained. For each case, MI

test is proposed based on the maximal invariants and compared to the previous results of

Kelly [34] and Bose and Steinhardt [6].
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4.3.1 Case 1: RA > 0;RB > 0

In this case, the independent regions A and B both have unknown covariance matrices,

and we can construct a structured group of transformations on X which is extended from

(3.9):

g(X) =

2
6666664

2
4 � �H

A

0 MA

3
5 XA

2
4 1 0T

0 UA

3
5

2
4 � �H

B

0 MB

3
5 XB

2
4 1 0T

0 UB

3
5

3
7777775

(4.12)

where � 6= 0, �
A
(1�(mA�1)), �

B
(1�(mB�1)),MA((mA�1)�(mA�1)) andMB((mB�

1) � (mB � 1)) are arbitrary, and UA and UB are ((n � 1) � (n � 1)) unitary matrices.

Showing the invariant property of this group is analogous to the unstructured example.

With this group, the set of maximal invariants is de�ned in the following, which is also

briey covered in [6].

Proposition 2 With the model in (2.3) and the partition in (4.11), the maximal invariant

under the group of transformations in (4.12) is 5-dimensional:

zA1 =
juAj2
DA

;

zA2 = xHA21(XA22X
H
A22)

�1xA21;

zB1 =
juB j2
DB

;

zB2 = xHB21(XB22X
H
B22)

�1xB21;

zAB =
uA
uB

where the subscripts denote whether the quantities are computed over the region A, B or

both A and B, and

uA = xA11 � xA12X
H
A22(XA22X

H
A22)

�1xA21;

uB = xB11 � xB12X
H
B22(XB22X

H
B22)

�1xB21;

DA = xA12
�
I�XH

A22(XA22X
H
A22)

�1XA22

�
xHA12;

DB = xB12
�
I�XH

B22(XB22X
H
B22)

�1XB22

�
xHB12:

And zAB can be replaced by

zAB0 =
juA=sA � uB=sB j2

DA=jsAj2 +DB=jsB j2
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or

zAB00 =
juA=sA � uB=sB j2

qADA=jsAj2 + qBDB=jsB j2

where qA = 1 + zA1 + zA2 and qB = 1 + zB1 + zB2.

Proof: Bose and Steinhardt [6]. See the appendix for an independent derivation. �

We can see that zA1 and zA2 correspond to z1 and z2 in the unstructured case (Proposition

1) applied to region A, and zB1 and zB2 correspond to those applied to region B. The

coupling term, zAB , zAB0 , or zAB00 , not present in the unstructured test, captures the

common amplitude a for both regions.

Bose and Steinhardt proposed a natural modi�cation of Kelly's test (3.8) which reects

the block covariance structure:

TKs =

��sHK�1x1
��2

sHK�1s � f1 + xH
1
K�1x1g

(4.13)

where x1 = [xHA1 x
H
B1]

H , s = [sHA sHB ]
H and

K =

2
4 XA2X

H
A2 O

O XB2X
H
B2

3
5 :

To see that this is a function of maximal invariants derived in Proposition 2, �rst look at

the term in the bracket in the denominator of (4.13):

1 + xH1 K
�1x1 = 1 + xHA1(XA2X

H
A2)

�1xA1 + xHB1(XB2X
H
B2)

�1xB1

= 1 + zA1 + zA2 + zB1 + zB2

using the relation, z10 = z1 + z2, in Proposition 1. We can simplify the remaining factor in

the test using the results of the unstructured example:��sHK�1x1
��2

sHK�1s
=

��sHA (XA2X
H
A2)

�1xA1 + sHB (XB2X
H
B2)

�1xB1
��2

sHA (XA2X
H
A2)

�1sA + sHB (XB2X
H
B2)

�1xB

=

��(DA=jsAj2)�1uA=sA + (DB=jsB j2)�1uB=sB
��2

(DA=jsAj2)�1 + (DB=jsB j2)�1 (4.14)

where sA and sB are the �rst elements which are only non-zero in sA and sB, respectively.

Lemma 1 Suppose that p� p matrices DA, DB are hermitian and invertible, and uA, uB

are column vectors of size p, then

(D�1

A uA +D�1

B uB)
H(D�1

A +D�1

B )�1(D�1

A uA +D�1

B uB)

= uHAD
�1

A uA + uHBD
�1

B uB � (uA � uB)
H(DA +DB)

�1(uA � uB):
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Proof: See the appendix. �

Using Lemma 1, the equation in (4.14) is a special case for p = 1. Hence the structured

Kelly's test (4.13) can be expressed as

TKs =
zA1 + zB1 � zAB0

1 + zA1 + zA2 + zB1 + zB2
: (4.15)

Alternatively, by looking at the maximal invariant representation of TKs, we can obtain

another invariant test which reduces to the unstructured test (3.10):

T1 =

������
�
sHA sHB

� 24 qAXA2X
H
A2 O

O qBXB2X
H
B2

3
5
�1 2
4 xA1

xB1

3
5
������
2

�
sHA sHB

� 24 qAXA2X
H
A2 O

O qBXB2X
H
B2

3
5
�1 2
4 sA

sB

3
5

: (4.16)

Note that qA and qB are placed in the estimated covariance matrix attempting to separate

the coupled denominator in (4.15). Thus T1 is same as (4.14) except for qADA and qBDB

in place of DA and DB , respectively:

T1 =

��(qADA=jsAj2)�1uA=sA + (qBDB=jsB j2)�1uB=sB
��2

(qADA=jsAj2)�1 + (qBDB=jsB j2)�1 :

Then from Lemma 1 we have

T1 =
zA1

1 + zA1 + zA2
+

zB1
1 + zB1 + zB2

� zAB00 (4.17)

where the di�erent coupling term zAB00 is used instead of zAB0 . This MI test will be shown

to outperform (4.15) for some situations.

4.3.2 Case 2: RA > 0;RB = �2I

Now suppose RB = �2I with unknown �2, then the invariant group of transformations

in this case is

g(X) =

2
6666664

2
4 � �H

A

0 MA

3
5 XA

2
4 1 0T

0 UA

3
5

� XB

2
4 1 0T

0 UB

3
5

3
7777775

(4.18)

since XB still remains Gaussian under this group except that a and �2 are replaced by

~a = �a and ~�2 = (��)2. Similarly to (4.12), the same scaling factor � captures the common

amplitude in both regions.
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Proposition 3 With the partition in (4.11), the maximal invariant under the group of

transformations in (4.18) is composed of

zA1 =
juAj2
DA

;

zA2 = xHA21(XA22X
H
A22)

�1xA21;

zB =
jxB11j2Pn
i=1 jxBij2

;

zAB =
uA
xB11

where uA and DA are same as de�ned in Proposition 2. But, since the maximal invariant

is not unique, we can also de�ne alternative forms for zB and zAB: zB can be replaced by

zB0 =
jxB11j2

jxB12j2 + jxB21j2 + jXB22j2F
;

and zAB can be replaced by either of

zAB0 =
juA=sA � xB11=sB j2
�DA=jsAj2 + v1=jsB j2

where

� =
1

(n�mA)(1 + zA2)
;

v1 =
jxB12j2 + jxB21j2 + jXB22j2F

mBn� 1
;

or

zAB00 =
juA=sA � xB11=sB j2

qADA=jsAj2 + v2=jsB j2

where qA = 1 + zA1 + zA2 and

v2 =
1

mB

nX
i=1

jxBij2:

Proof: Bose and Steinhardt [6]. See the appendix for an independent derivation. �

zA1 and zA2 are same as those in Proposition 2, and the coupling terms are associated with

the common scaling � for a. Finally, zB or zB0 are the maximal invariant for the case that

only region B is considered. zB or zB0 can be interpreted as indexing the single orbit in XB

illustrated in Figure 4.1.

Bose and Steinhardt derived identical maximal invariants in the context of array de-

tection problems and the above results can all be found in [6]. In [5], a representation for

the joint pdf of the maximal invariants is derived which gives insight into the marginal
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primary

secondary

xβ Xβ_
B1 B2

U
B

Figure 4.1: Invariance orbit of XB

distributions: zA1, zA2 and zB as F-statistics, and zAB as complex Cauchy. Based on these

statistics an invariant test was proposed in [6] which was shown to be approximately CFAR:

TBS =

������
�
sHA sHB

� 24 �XA2X
H
A2 O

O v1I

3
5
�1 2
4 xA1

xB1

3
5
������
2

�
sHA sHB

� 24 �XA2X
H
A2 O

O v1I

3
5
�1 2
4 sA

sB

3
5

(4.19)

where � and v1 are as in Proposition 3. To see the maximal invariant representation, we

write this test as

TBS =

��(�DA=jsAj2)�1uA=sA + (v1=jsB j2)�1xB11=sB
��2

(�DA=jsAj2)�1 + (v1=jsB j2)�1

then from Lemma 1 we have

TBS =
zA1
�

+
jxB11j2
v1

� zAB0

= (n�mA)zA1(1 + zA2) + (mBn� 1)zB0 � zAB0 : (4.20)
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However, we can construct another invariant test statistic by considering the structures

of both the GLR test (4.8) and the MI test 1 (4.16):

T2 =

������
�
sHA sHB

� 24 qAXA2X
H
A2 O

O v2I

3
5
�1 2
4 xA1

xB1

3
5
������
2

�
sHA sHB

� 24 qAXA2X
H
A2 O

O v2I

3
5
�1 2
4 sA

sB

3
5

(4.21)

where � and v1 in (4.19) are replaced by qA and v2 de�ned in Proposition 3. Then this MI

test 2 has a maximal invariant form of

T2 =
zA1

1 + zA1 + zA2
+mB � zB � zAB00 : (4.22)

Thus the weighting between the terms from region A and region B is maintained as in (4.8),

and this test reduces exactly to the unstructured tests: (3.10) for XA alone or (4.7) for XB

alone. This reduction does not hold for the Bose and Steinhardt's test (4.20).

4.3.3 Case 3: RA > 0;RB = I

For this case, the invariant group of transformations is de�ned as

g(X) =

2
6666664

2
4 � �H

A

0 MA

3
5 XA

2
4 1 0T

0 UA

3
5

XB

2
4 1 0T

0 UB

3
5

3
7777775

where, unlike the previous two cases, there is no scaling term on the left of XB since the

variance is exactly known in XB and must not be altered by group actions. Thus g(X)

cannot have the common scaling term for the unknown amplitude in both regions, and the

set of maximal invariants doesn't include any coupling term from regions A and B.

However, MI test 3 can be induced from MI test 2 (4.21) by replacing v2 with v3 = n,

and we propose the following MI test 3

T3 =
zA1
qA

+
1

n
jxB11j2 � juA=sA � xB11=sB j2

qADA=jsAj2 + n=jsB j2 : (4.23)

Note that jxB11j2 can be interpreted as the maximal invariant when only region B is con-

sidered. This MI test 3 also reduces to either of the unstructured cases: (3.10) for XA alone

or (4.9) for XB alone.
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4.4 Conclusion

In this chapter, we have presented adaptive detection algorithms developed for a target

in structured clutter. For this, we considered both the GLR and invariance procedures. For

the GLR tests derived under 3 di�erent cases, the test statistics are summarized in Table

4.1. Those GLR tests are represented as logs of the likelihood ratios where p(a; sA;XA) and

q(a; sB;XB) are de�ned in (4.3) and (4.5), respectively. MI tests based on the MLE of the

structured covariance matrix are reproduced in Table 4.2 where qA and qB are de�ned in

Proposition 2. We have also shown that the MI tests are functions of the maximal invariants

under each case, which are listed in Table 4.3.

The next chapter extends the detection problem to the multiple signal model. Finally,

in Chapter 6 we compare and analyze the performance of the detectors.

Case RA RB Log GLR :
1

n
ln� = max

a
f�g

1 ? ? ln

�
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�
+ ln

�
1 + p(0; sB ;XB)

1 + p(a; sB ;XB)

�

2 ? �2I ln

�
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�
+mB � ln

�
q(0; sB;XB)

q(a; sB ;XB)

�

3 ? I ln

�
1 + p(0; sA;XA)

1 + p(a; sA;XA)

�
+

1

n
[q(0; sB ;XB)� q(a; sB ;XB)]

Table 4.1: GLR tests for Cases 1, 2 and 3 (The notation `?' denotes `unknown' quantity in

the model)

Case RA RB MI test :

������
�
sHA sHB

� 24 KA O

O KB

3
5
�1 2
4 xA1

xB1

3
5
������
2

�
sHA sHB

� 24 KA O

O KB

3
5
�1 2
4 sA

sB

3
5

1 ? ? KA = qAXA2X
H
A2; KB = qBXB2X

H
B2

2 ? �2I KA = qAXA2X
H
A2; KB = v2I (v2 =

1

mB

Pn
i=1 jxBij2)

3 ? I KA = qAXA2X
H
A2; KB = v3I (v3 = n)

Table 4.2: MI tests for Cases 1, 2 and 3
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Case RA RB MI test

1 ? ? T1 =
zA1
qA

+
zB1
qB

� juA=sA � uB=sB j2
qADA=jsAj2 + qBDB=jsB j2

2 ? �2I T2 =
zA1
qA

+
jxB11j2
v2

� juA=sA � xB11=sB j2
qADA=jsAj2 + v2=jsB j2

3 ? I T3 =
zA1
qA

+
jxB11j2
v3

� juA=sA � xB11=sB j2
qADA=jsAj2 + v3=jsB j2

Table 4.3: MI tests in the maximal invariant forms
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CHAPTER 5

Extension to One of Multiple Known Targets

5.1 Introduction

In this chapter, the previous results are extended to the problem of detecting the presence

of one target from a known set of p possible targets. Previously, the target signature in the

primary vector was assumed to be exactly known and the problem was to decide whether

the one and only signal vector s is present or not. In real radar applications, however, a

more realistic model can be considered. Suppose that we know the form of the target of

interest, but don't know its position in the subimage. Then, as illustrated in Figure 5.1,

di�erent target signature vectors can be constructed according to di�erent positions in that

subimage. Also, a target can be viewed at di�erent orientations and can have as many

signatures. Figure 5.3 shows the SLICY canonical target in Figure 5.2 imaged at di�erent

degrees of target aspect pose.

To accommodate this scenario, let the image model have anm�pmatrix S =
�
s1; : : : ; sp

�
for p target signatures:

aS �k e
T
1 +N (5.1)

where �k is a p � 1 unit vector [0; : : : ; 0; 1; 0; : : : ; 0]T and `1' is in position k. Here k 2
f1; : : : ; pg, and p � m for unstructured clutter or p � minfmA;mBg for structured clutter.

The model (5.1) implies that only one of the signatures, sk, may be present at a time in

the primary vector, and in the structured case this signature vector is written as

sk =

2
4 sAk

sBk

3
5 : (5.2)
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(a) (b)

Figure 5.1: A target of known form (3� 3 `+' target) can seem di�erently according to its

position in a subimage (5� 5): (a) or (b).

Figure 5.2: SLICY canonical target.

(a) 142Æ (b) 147Æ (c) 152Æ (d) 157Æ (e) 163Æ

Figure 5.3: SLICY canonical target images at di�erent degrees of aspect pose.
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For the GLR tests (4.2), (4.8), and (4.10), it is easy to extend the results of the single

target case to this multiple target case. We only need to replace sA and sB in the GLR

tests with p possible target signatures sAk and sBk, and maximize over k = 1; : : : ; p, i.e.

for i = 1; 2; 3 indexing each of the block covariance cases discussed above:

max
k=1;::: ;p

1

n
ln�i(sAk; sBk):

Similarly, for the MI tests one can also propose to maximize over the p target signatures.

In the following, the invariance procedure is applied to the model in (5.1) for both the

unstructured and structured cases. For the structured cases, only Case 1 is investigated.

5.2 Unstructured Covariance Case

First, we consider the case of totally unknown covariance. Since S is known, we can

de�ne the canonical model from (5.1) as

X =

2
4 (SHS)�1SH

PS

3
5 faS �k eT1 +Ng (5.3)

= a

2
4 �k

0

3
5 eT1 + ~N

where an (m � p) � m matrix PS is an orthogonal matrix to (SHS)�1SH and ~N is still

zero-mean Gaussian with i.i.d. columns. We partition X as before

X = [x1 X2] =

2
4 x11 X12

x21 X22

3
5 (5.4)

where the p � 1 vector x11 may contain any of the target signatures which have been

transformed to unit vectors f�kgpk=1. With this model, the group of transformations which

preserves the problem is de�ned as

g(X) =

2
4 � B

O M

3
5 X

2
4 1 0T

0 U

3
5 (5.5)

where � is a p � p diagonal matrix, B (p � (m � p)) and M ((m � p) � (m � p)) are

arbitrary, and U is an (n � 1) � (n � 1) unitary matrix. Note that by putting the model

(5.1) into the canonical form, we must restrict a diagonal matrix � in (5.5) instead of

an arbitrary matrix in order to preserve the known canonical form of the signal �k. This

group of transformations with larger degrees of freedom will lead to a larger set of maximal

invariants in the following proposition compared to the single target case.
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Proposition 4 The maximal invariant of the model (5.4) under the group of transforma-

tions in (5.5) consists of p+ 2 functions of the measurement:

z1 = uHD�1u;

z2 = xH21(X22X
H
22)

�1x21;

z3k = uHD�1�k(�
T
kD

�1�k)
�1�TkD

�1u

where k = 1; : : : ; p and

u = x11 �X12X
H
22(X22X

H
22)

�1x21;

D = X12

�
I�XH

22(X22X
H
22)

�1X22

�
XH
12:

Proof: See the appendix. �

Now the unstructured Kelly's test (3.8) can be modi�ed by maximizing over the p target

signatures f�kgpk=1:

TKu = max
k=1;::: ;p

����Tk 0T
�
(X2X

H
2
)�1x1

��2
�
�Tk 0T

�
(X2X

H
2
)�1

2
4 �k

0

3
5 � f1 + xH

1
(X2X

H
2
)�1x1g

:

We will next express this test as a function of the new maximal invariants. Since z1 and z2

are equivalent to those in Proposition 1 except for the dimension, it easily follows that

1 + xH1 (X2X
H
2 )

�1x1 = 1 + z1 + z2:

Also using the inverse of the partitioned matrix [20] on (X2X
H
2
)�1, we can write

(X2X
H
2 )

�1 =

2
4 V11 V12

V21 V22

3
5

where

V11 = D�1;

V21 = �D�1X12X
H
22(X22X

H
22)

�1:

Then we have

�
�Tk 0T

�
(X2X

H
2 )

�1

2
4 �k

0

3
5 = �TkD

�1�k;

�
�Tk 0T

�
(X2X

H
2 )

�1x1 = �TkD
�1u

and hence the Kelly's test is an invariant test of form

TKu = max
k=1;::: ;p

z3k
1 + z1 + z2

:
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5.3 Structured Covariance Case

Next consider Case 1 for the structured model. In this case, the signal model is same

as (5.1), but with the structured target signatures as in (5.2). Then, similarly to the above

unstructured case, the canonical image model is de�ned as

X = a

2
6666664

�k

0A

�k

0B

3
7777775
eT1 +N (5.6)

where 0A and 0B are (mA � p)� 1 and (mB � p)� 1 zero vectors, respectively. Thus, this

canonical form can be partitioned as

X =

2
4 XA

XB

3
5 =

2
6666664

xA11 XA12

xA21 XA22

xB11 XB12

xB21 XB22

3
7777775

and the invariant group of transformations on X is

g(X) =

2
6666664

2
4 � BA

O MA

3
5 XA

2
4 1 0T

0 UA

3
5

2
4 � BB

O MB

3
5 XB

2
4 1 0T

0 UB

3
5

3
7777775

(5.7)

where we have the same p � p diagonal matrix � for XA and XB to preserve the signal

vector �k and the same amplitude in region A and B.

Proposition 5 With the model (5.6) and the group of transformations in (5.7), the maxi-

mal invariant is obtained as

zA1 = uHAD
�1

A uA;

zA2 = xHA21(XA22X
H
A22)

�1xA21;

zA3k = uHAD
�1

A �k(�
T
kD

�1

A �k)
�1�TkD

�1

A uA;

zB1 = uHBD
�1

B uB ;

zB2 = xHB21(XB22X
H
B22)

�1xB21;

zB3k = uHBD
�1

B �k(�
T
kD

�1

B �k)
�1�TkD

�1

B uB ;

zABk =
(�TkD

�1

A �k)
�1�TkD

�1

A uA
(�TkD

�1

B �k)
�1�TkD

�1

B uB
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where

uA = xA11 �XA12X
H
A22(XA22X

H
A22)

�1xA21;

uB = xB11 �XB12X
H
B22(XB22X

H
B22)

�1xB21;

DA = XA12

�
I�XH

A22(XA22X
H
A22)

�1XA22

�
XH
A12;

DB = XB12

�
I�XH

B22(XB22X
H
B22)

�1XB22

�
XH
B12

for k = 1; : : : ; p. And the coupling term zABk can be replaced by

zABk0 =

��(�TkD�1

A �k)
�1�TkD

�1

A uA � (�TkD
�1

B �k)
�1�TkD

�1

B uB
��2

(�TkD
�1

A �k)
�1 + (�TkD

�1

B �k)
�1

or zABk00 which is equivalent to zABk0 except that qADA and qBDB are substituted for DA

and DB, respectively, where qA = 1 + zA1 + zA2 and qB = 1 + zB1 + zB2.

Proof: See the appendix. �

Note that zA1, zA2, zB1 and zB2 are again equivalent to those in Proposition 2 except for

the dimension (p vs. 1).

For Case 1, we had before the structured Kelly's test, TKs (4.13), and the MI test, T1

(4.16). First, consider TKs modi�ed to �t the multiple signature model:

TKs = max
k=1;::: ;p

��sHk K�1x1
��2

sHk K
�1sk � f1 + xH

1
K�1x1g

where x1 and K are same as de�ned in (4.13), but for the target signature, we have struc-

tured one as in (5.6). Then, as before we have

1 + xH1 K
�1x1 = 1 + zA1 + zA2 + zB1 + zB2

and from the results of the previous section and Lemma 1, the remaining term can be

written as ��sHk K�1x1
��2

sHk K
�1sk

=

���TkD�1

A uA + �TkD
�1

B uB
��2

�TkD
�1

A �k + �TkD
�1

B �k
: (5.8)

Using the matrix identity [29], it can be veri�ed that (5.8) is identical to zA3k+zB3k�zABk0 .

Thus TKs is a function of maximal invariant of form

TKs = max
k=1;::: ;p

zA3k + zB3k � zABk0

1 + zA1 + zA2 + zB1 + zB2
:

MI test can also be modi�ed by replacing the signal vector with sk and maximizing over

k. Therefore, the modi�ed T1 is equivalent to (5.8) except for qADA and qBDB replacing
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DA and DB :

T1 = max
k=1;::: ;p

���Tk (qADA)
�1uA + �Tk (qBDB)

�1uB
��2

�Tk (qADA)�1�k + �Tk (qBDB)�1�k
:

This can also be written as

T1 = max
k=1;::: ;p

�
zA3k

1 + zA1 + zA2
+

zB3k
1 + zB1 + zB2

� zABk00

�
:

5.4 Conclusion

In this chapter, the more realistic problem of detecting one from a set of known targets

is considered. For both unstructured and structured cases, the invariance procedure is

investigated as well as the simple GLR extension.

To obtain the canonical image model, the di�erent transformation of the measurement

as in (5.3) is used instead of QR decompositions described in Chapter 2. This transfor-

mation (5.3) leads to the invariant group (5.5) for the unstructured case or (5.7) for the

structured case consisting of diagonal matrices. If we used unitary matrices obtained from

QR decompositions as in Chapter 2, we might have had in (5.5) and (5.7) arbitrary matrices

instead. Thus, using (5.5) and (5.7) with larger degrees of freedom, we can de�ne larger sets

of maximal invariants which are needed to modify invariant tests to �t this multiple target

case. However, since this canonical transformation (5.3) is not an orthogonal transforma-

tion of the measurement, only Case 1 can be considered where the test statistics are not

a�ected by this transformation. The extension problem for Cases 2 and 3 is not addressed

in the present thesis, and applying invariance procedure to this problem is a topic for future

research.
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CHAPTER 6

Numerical Comparison and Analysis

6.1 Introduction

To analyze the performance of the GLR and MI tests derived under the three structured

covariance assumptions, Case 1, 2, and 3, receiver operating characteristic (ROC) curves

are generated and compared in this chapter. Even though the exact distributions of the

test statistics are diÆcult to determine, it is well known that under H0 the log GLR test

statistic of the form 2 ln� has asymptotically a chi-square distribution with number of

degrees of freedom determined by the number of �xed parameters under H0 and H1 [3].

This asymptotic approximation can be used to determine the threshold on the GLR which

ensures a given PFA. In each simulation, we generated n 10 � 10 subimages containing 2

independent clutter regions of area mA and mB pixels, respectively, and a 5 � 5 synthetic

canonical target is inserted into the �rst subimage in such a manner to straddle the boundary

of the two di�erent regions. Each of the subimages is then concatenated into a column vector

of size 100 to obtain a 100�n measurement matrix. This procedure is illustrated in Figure

6.1. Each of the ROC curves (PD vs. PFA) shown below was obtained after 500 simulations.

In the following, the ROC curves are evaluated based on factors such as the target-to-

clutter power ratio; the dimensional parameters, mA, mB and n; and the prior uncertainty

on the spatial covariance R. Case 1, 2 and 3 are considered separately under di�erent

assumptions on clutter covariance. In each case, the three GLR tests (4.2), (4.8), (4.10),

and the three MI tests (4.17), (4.22), (4.23) matched to one of the three cases are compared.

Also shown are ROC curves for the following tests proposed by other authors: Kelly's

structured test (4.15) matched to Case 1, and Bose and Steinhardt's invariant test (4.20)

matched to Case 2. We also experimented with a real image where both of our GLR and
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Figure 6.1: Image matrix formation for ROC simulation.

MI tests were applied to a SAR clutter image with an inserted real target at various pose

angles.

6.2 ROC Simulation

6.2.1 Comparison with Di�erent SNRs

First, we compared the detectors by varying SNR in region B (SNRB) for Cases 1, 2 and

3. In Figures 6.2 - 6.4, the ROC curves of 8 di�erent tests are compared for several SNRs:

Structured Kelly's test (4.15), Bose and Steinhardt's test (4.20), MI test 1 (4.17), MI test

2 (4.22), MI test 3 (4.23), GLR 1 (4.2), GLR 2 (4.8), and GLR 3 (4.10). For each case, two

tests stand out as signi�cantly better than the other six: the GLR and MI tests which are

matched to the underlying scenario, e.g. GLR 1 and MI test 1 for Case 1; and GLR 2 and MI

test 2 for Case 2. This con�rms the results from the previous section. For Case 1, we were

able to achieve performance improvement by separating the same coupled denominator for

both regions found in the matched Kelly's test (4.15). For Case 2, the ROC improvement

over the matched Bose and Steinhardt's test is explained by the weighting between two

di�erent regions which is carefully managed in GLR 2 and MI test 2.

Note that, however, neither the GLR nor the MI test uniformly outperforms the other.

Of particular interest are the curve crossings in the low PFA regions between the GLR and
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the MI tests. In Figure 6.2 (b), we can observe the gains in PD of MI test 1 over GLR 1

for PFA < 0:1. Moreover, it should be noted that the ROC of the structured Kelly's test is

dominated by that of the MI test 1 in the low PFA region and by that of the GLR 1 in the

high PFA region. In Case 2 (Figure 6.3 (b)), both the MI test 2 and GLR 2 outperform Bose

and Steinhardt's matched invariant test and it appears that MI test 2 slightly outperforms

GLR 2 for low PFA. These crossings are also observed for mismatched cases: between MI

test 1 and GLR 1 in Case 2 (Figure 6.3), and between MI test 2 and GLR 2 in Case 1

(Figure 6.2 (b)).

For Case 3 (Figure 6.4), the ROC curves for GLR 2 approach those of the matched

GLR 3 in both (a) and (b) since a large number of pixels (mBn = 60 � 61) are available

to generate good MLEs of the unknown variance in region B. In Figure 6.5, those tests

derived under Cases 2 and 3 are compared with di�erent �2 in region B. As illustrated, the

performance of GLR 2 and MI test 2 is not a�ected by the underlying variance. But GLR

3 and MI test 3 which assume �2 = 1 approximate GLR 2 and MI teat 2 better when the

underlying variance is large ((b)) than when small ((a)). And again, we cannot separate

the tests for Case 2 and the tests for Case 3 with large number of data even when �2 = 1

((c)).

To compare GLR 2 and GLR 3, consider the second terms associated with region B. For

GLR 2 (4.8), this second term can be rewritten as

mB � ln
�
1 +

1

mBn�̂2
fq(0; sB ;XB)� q(â; sB;XB)g

�

where

�̂2 =
1

mBn
q(â; sB ;XB):

Thus, as mBn gets large, �̂2 goes to 1 under Case 3 and this term approaches that of the

matched GLR 3 (4.10):

1

n
[q(0; sB ;XB)� q(â; sB;XB)]:

In fact, in a typical radar detection problem, mB and n are quite large since they are the

number of pixels in a subimage and the number of subimages, respectively, and GLR 2

is expected to perform as well as GLR 3 under Case 3. Thus, in the following, we will

concentrate on the relative performance of GLR vs. MI tests for Cases 1 and 2.
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6.2.2 Comparison with Di�erent Windows

In this section, ROC curves are compared with di�erent ratios of mA=mB by up and

down shifting the 10 � 10 windows used to collect the subimages along the boundary. In

Figure 6.6 for Case 1, GLR 1 performs better as mB decreases since fewer parameters can

be more accurately estimated with the same number of chips (n = 61): the GLR test has

to estimate a covariance matrix (RB) of size 60 � 60 in (a), but only of size 40 � 40 in

(c). For the smaller size covariance of (b), the structured Kelly's test is almost as accurate

as the GLR and MI tests. Conversely, in Figure 6.7 of Case 2, GLR 2 performs better as

mB increases since in this case it only needs to estimate the scalar variance in region B

and the number of pixels available increases as mB increases ((a) mBn = 60 � 61 vs. (c)

mBn = 40� 61). Also Bose and Steinhardt's test is more sensitive to the number mB than

MI test 2 and GLR 2, and its ROC falls below even those of the mismatched tests shown

in (b) and (c).

The relative advantages of MI vs. GLR tests are more closely investigated in the next

two �gures. In Figures 6.8 and 6.9, we consider Case 1 and Case 2, respectively. In (a) of

both �gures, we increased the number of chips n while �xing SNR. Note that the GLR and

MI tests have ROCs which are virtually indistinguishable for large n. In (b), however, we

�xed n and increased SNR. The PFA positions of the crossings of the ROCs for the GLR

and MI tests decreased with increasing SNR. In particular, if one �xes a level of false alarm,

say PFA = 0:1, then note from Figure 6.8 (b) that the GLR test dominates the MI test for

SNR = 19 dB while the reverse is true for SNR = 7 dB. This behavior is best explained

by the fact that at high SNR, the MLE is an accurate estimate of target amplitude, while

at low SNR the MLE degrades signi�cantly. Therefore, the GLR which depends on the

accuracy of the MLE for accurate detection breaks down for low SNR.

6.3 Experiment with SAR Images

We consider an application to real SAR imagery in Figure 6.10. The image shown

is a rural scene near Redstone Arsenal at Huntsville, Alabama, reproduced from the data

collected using the Sandia National Laboratories Twin Otter SAR sensor payload operating

at X band (center frequency = 9.6 GHz, band width = 590 MHz). This clutter image

consists of a forest canopy on top and a �eld on bottom, separated by a coarse boundary.

The boundary was hand extracted, and a sequence of 9 � 7 SLICY targets at di�erent
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poses were also hand extracted from the image data in Figure 6.11. The images in Figure

6.11 correspond to the same target but viewed at di�erent pose angles of azimuth. The

elevation of 39Æ was �xed for all poses. The data from which these images are reproduced

was downloaded from the moving and stationary target recognition programs (MSTAR)

SAR database at the Center for Imaging Science [9].

In a �rst experiment the target signature at pose of azimuth 163Æ from Figure 6.11 (e)

was tested at di�erent positions along the boundary. In Figure 6.10, the target is inserted

additively with the center at column 305 so that it straddles the boundary. From the

realigned image in Figure 6.12, we took subimages (chips) along the boundary by centering

a 20� 20 window at the boundary and sliding it over the image from left to right. Each of

these subimages is then concatenated into a column vector of size m = 400 where mA = 200

and mB = 200. Since we need at least 200 secondary chips to implement the structured

detectors, clutter-alone pixels above and below those 20 � 20 subimages taken along the

boundary were used to generate enough secondary data for region A and B, respectively.

Each of the subimages along the boundary was tested as a primary chip, and the test

statistics derived under Case 1 were calculated and maximized over each possible location

in the subimage. After normalizing the known target signature, we obtained the minimum

magnitude of target amplitude required for each test to detect the target at the correct

location. The resulting amplitude is the minimum detectable threshold for each of the

detectors and these thresholds are shown in Table 6.1 for di�erent number of secondary

chips (n� 1). As can be seen, with a large number of chips (n� 1 = 250), both the GLR

and MI tests perform as well as the structured Kelly's test. On the other hand, with a

limited number of chips (n� 1 = 200), MI test 1 successfully detects the target down to a

signi�cantly lower threshold than for GLR 1 and structured Kelly detectors.

jaj
Test

(n� 1 = 250) (n� 1 = 200)

MI test 1 1:454 � 10�2 0:609 � 10�1

GLR 1 1:462 � 10�2 1:042 � 10�1

Structured Kelly 1:407 � 10�2 1:049 � 10�1

Table 6.1: Minimum detectable amplitudes for detection of the target at the correct location.

As a next experiment we maximized the test statistics over the di�erent target poses in

Figure 6.11 as well as over all possible locations along the boundary. Again the normalized
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signature from Figure 6.11 (e) was inserted with jaj = 0:015, and 250 secondary chips

were obtained from the surrounding clutter. Test values for the 3 detectors under Case 1

are obtained using 9 di�erent target signatures. For each test the peak values for 9 target

signatures are plotted in Figure 6.13. Note that all the tests successfully picked the signature

at the true pose and location for this target amplitude.

6.4 Robustness of the Structured Detectors to Segmentation

Errors

Both of our structured GLR and MI tests are derived under the known boundary as-

sumption separating two di�erent regions. Thus these tests could only be implemented and

compared with the pre-segmented clutter regions so far. However, edge detection or image

segmentation is not a simple task in SAR images in which a natural blur due to the �nite

aperture and speckle noise are well known problems [14, 47]. In this section, sensitivity of

the structured detectors to segmentation errors is investigated.

First, the e�ect of the false boundary information is illustrated in Figure 6.14. Figure

6.14 (a) shows the true underlying boundary and the false boundary moved downward by

one pixel in all subimages. Note that even one pixel di�erence in a subimage will lead

to a much larger di�erence (number of columns in each subimage) after reshaping those

subimages into column vectors of the measurement matrix. In (b), ROC curves obtained

with the biased boundary are compared with those using the true boundary. The overall

performance of each test is deteriorated with the false information, but we can still observe

the crossing of the ROC curves between the GLR and MI tests. Next we compare the ROC

performance with the estimated boundary utilizing Sobel's edge detection method [27, 41].

As illustrated in Figure 6.15 (a), we consider the e�ect of segmentation errors only in the

secondary clutter-alone subimages to preserve the same target signature in the primary

subimage for both simulations with the true boundary and the estimated boundary. The

relative advantages of the GLR and MI tests can still be observed in this case (Figure 6.15

(b)).

Finally, we experiment with the SAR images in Figure 6.10 and 6.11, and compare with

the results in Section 6.3. Figure 6.16 shows the clutter image in Figure 6.10 with the

hand-extracted boundary superimposed on it. We obtain the estimated boundary using

Sobel's method and its deviation from the hand-extracted boundary is plotted in Figure
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6.17. As in Section 6.3, minimum detectable amplitudes for the GLR and MI tests are

obtained using the estimated boundary. Note that we only apply the estimated boundary

to the clutter-alone chips so that we can have the same target signature as used for the

results in Table 6.1. Table 6.2 shows the results for 200 secondary chips using two di�erent

boundary information. As in the ROC simulation, both detectors need larger amplitudes

for correct detection, but we can conclude that the MI test is more robust than the GLR

test.

jaj (n� 1 = 200)
Test

(with hand-extracted boundary) (with estimated boundary)

MI test 1 0:609 � 10�1 2:327 � 10�1

GLR 1 1:042 � 10�1 8:655 � 10�1

Table 6.2: Minimum detectable amplitudes with the hand-extracted boundary and the

estimated boundary.

6.5 Conclusion

These numerical results con�rm the intuitions developed in Chapter 4. We could observe

the e�ects of such factors on the detector performance as the prior uncertainty in the

structured clutter covariance, the target-to-clutter power ratio, and several dimensional

parameters. In particular, the existing Kelly's structured test and Bose and Steinhardt's

test are more sensitive to mA or mB than the new GLR and MI tests, as expected from

their maximal invariant forms. However, these results also indicate that neither GLR nor

MI tests dominate the other in terms of ROC performance. Simply stated, the GLR test

is good only when the high estimator accuracy is attainable, and there exists a threshold

number of data points in each region for which the suÆcient high accuracy can be obtained

favoring the GLR test. Otherwise, the MI test is better, especially in low PFA, because it

tries to smooth over unknown parameters rather than estimate them.

In our studies, both of the GLR and MI detectors are derived assuming that the bound-

ary of two di�erent regions is known a priori. These tests can only be implemented in

the realigned image along the boundary. In the context of a real radar imaging applica-

tion, however, we must estimate the boundaries at the same time as detecting the target.

Boundary segmentation will be hampered when a strong target lies along the boundary,
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even though target detection might normally be expected to improve for a strong target.

A future goal is to combine optimal boundary estimation and target detection. This would

ideally involve a fully automated procedure which is capable of detecting a target in any

subimage located in clutter by applying the appropriate structure to the clutter covariance

whenever a boundary exists. In any such procedure, it will be necessary to establish the

tradeo�s between segmentation and detection, and the sensitivity of the detector to the

unknown boundary. The tools and approach developed in previous chapters will be useful

for attaining this goal.
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Figure 6.2: ROC curves for Case 1 with (a) SNR = 14 dB, (b) SNR = 22 dB (mA =

50;mB = 50; n = 51).
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Figure 6.3: ROC curves for Case 2 with (a) SNR = 4 dB, (b) SNR = 10 dB (mA = 40;mB =

60; n = 61).
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Figure 6.4: ROC curves for Case 3 with (a) SNR = 4 dB, (b) SNR = 10 dB (mA = 40;mB =

60; n = 61).
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Figure 6.5: Comparison of tests derived under Case 2 and Case 3 with regard to �2 in region

B with SNR = 10 dB (mA = 40;mB = 60; n = 61).
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Figure 6.6: ROC curves for Case 1 with di�erent ratios of mA=mB , and SNR = 19 dB

(n = 61).
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Figure 6.7: ROC curves for Case 2 with di�erent ratios of mA=mB , and SNR = 10 dB

(n = 61).
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Figure 6.8: Comparison of GLR and MI tests for Case 1 by (a) varying n with �xed SNR,

(b) increasing SNR with small n, and (c) decreasing SNR with large n (mA = 60;mB = 40).
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Figure 6.9: Comparison of GLR and MI tests for Case 2 by (a) varying n with �xed SNR,

(b) increasing SNR with small n, and (c) decreasing SNR with large n (mA = 50;mB = 50).
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Figure 6.10: SAR clutter image with a target in Figure 6.11 (e) straddling the boundary at

column 305.

(a) 142Æ (b) 147Æ (c) 152Æ (d) 157Æ (e) 163Æ

(f) 169Æ (g) 175Æ (h) 187Æ (i) 193Æ

Figure 6.11: SLICY canonical target images (54�54) at elevation 39Æ and di�erent azimuth

angles. Image in (e) is inserted in Figure 6.10.
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Figure 6.12: Image realigned along the extracted boundary. SLICY target is located at

column 305 with jaj = 0:015. This target is just above the minimal detectable threshold for

the three tests investigated in Figure 6.13.
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Figure 6.13: Peak values obtained by (a) structured Kelly's test, (b) MI test 1 and (c) GLR

1 for 9 di�erent target images in Figure 6.11 (jaj = 0:015; n � 1 = 250).
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(a) True and false information on the boundary

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

P
FA

P
D

MI test 1
GLR 1    

w/ TRUE boundary 

w/ FALSE boundary 

(b) ROC comparison

Figure 6.14: Comparison of ROC curves for Case 1 using true boundary and false boundary

moved downward by one pixel in each snapshot (True values: mA = 60;mB = 40; n = 61).
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(a) Estimated boundary in secondary chips
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Figure 6.15: Comparison of ROC curves for Case 1 using true boundary and estimated

boundary in secondary snapshots (True values: mA = 60;mB = 40; n = 61).
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Figure 6.16: Hand-extracted boundary superimposed on the initial image in Figure 6.10.
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Figure 6.17: Di�erence between the estimated boundary and the hand-extracted boundary.
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CHAPTER 7

Conclusion

7.1 Summary

In this thesis, we have presented the adaptive target detection algorithms developed

under structured clutter covariance. From the assumption that a target of interest may

lie along a boundary of two statistically independent clutter regions, three instances of the

structured covariance model were considered for di�erent clutter scenarios. In all three

cases, for which no uniform optimality is possible, two detection strategies were investi-

gated: generalized likelihood ratio (GLR) and maximal invariant (MI) test procedures.

Even though the maximization over a complex quartic equation in each GLR could only be

implemented numerically, its architecture provided us with an insight to forming MI test

statistics with the sets of maximal invariants. Since the maximal invariant provides data

compression through a group of transformations leaving the decision problem unchanged,

this is of great help in image detection problems characterized by large dimensional data

and parameter spaces.

Both the GLR and MI detectors have comparable receiver operating characteristic

(ROC) performance when a large number of independent clutter samples are available.

However, when a suÆcient number of clutter samples are not available, we have shown that

the GLR test is outperformed by the MI test particularly in low probability of false alarm

(PFA) regime. In addition, this relative advantage was shown to be robust to boundary

segmentation errors. Therefore, the MI test not only plays an important role as an alter-

native to the GLR test, but also features the desirable property of reliable performance in

low PFA which is of particular interest in radar detection applications.
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7.2 Future Research

In this section, we address several issues for further research including both theoretical

and experimental extensions of results presented in this thesis.

7.2.1 Probabilistic Analysis

The characteristics of the structured GLR and MI tests such as the ROC performance

and the CFAR property should be explained analytically with their probability distributions.

While Kelly and Forsythe [35] obtained statistical properties of the unstructured GLR test

which is also a function of maximal invariants, for the structured model used here this is

a very challenging problem. Fortunately, the analysis of the GLR test using well known

asymptotic (non-central) chi-square properties [3] will be helpful for this analysis. With

this asymptotic property, we may de�ne an upper bound for detection power of the tests

at least in the large sample regime. The problem is that the marginal distributions [5] of

the maximal invariants are not suÆcient to describe their interactions in a test statistic

unless the maximal invariants can be transformed into a set of independent statistics. This

is frequently possible in simpler version of our problem; in the example of an i.i.d. Gaussian

vector, illustrated in Section 3.4.1, the scalar maximal invariant in (3.3) is a function of the

sample mean and the sample variance which are independent statistics. However, a number

of issues regarding the maximal invariant under the structured covariance model remain

unanswered.

7.2.2 Generalization of the Problem

We studied the target detection problem in clutter composed of two di�erent regions

with a known boundary. We also assumed that the two clutter regions are statistically inde-

pendent and multivariate Gaussian with unknown covariance. Several useful generalizations

which immediately arise from this model are as follows:

� The linearity assumption between a target and clutter should be relaxed to accom-

modate canopy interactions with the target. This is a very challenging problem, but

is relevant to SAR imaging modalities.

� For applications where the Gaussian clutter assumption may not be appropriate, non-

Gaussian models should be investigated. A promising model might be the class of
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elliptically symmetric distributions or spherically invariant random vector (SIRV) dis-

tributions. Some results exist for GLR and invariant tests for these models when no

covariance structure is present [30].

� For spatial acquisition mode SAR, the case should be considered where a target may

lie across two di�erent chips.

� We may also come across a case in which a target lies across several boundaries

separating more than two regions. The covariance model should be adjusted corre-

spondingly.

� Since the known boundary assumption may not be realistic, as we remarked in Section

6.4, edge/boundary estimation and its interaction with detection should be further

investigated. There are two conceivable ways in which a structured detector can

be implemented with the unknown boundary. One is to make an estimate of this

boundary and plug it into the test. The other is to execute boundary segmentation

and detection simultaneously using the GLR principle or the theory of simultaneous

detection and estimation developed in [2]. Once this problem is resolved, we may be

able to extend our analysis to include: sensitivity of detector performance to boundary

estimation, and tradeo�s between optimal segmentation and optimal detection.

7.2.3 Other Applications

The methods described herein can be applied to other detection problems involving

boundary and target interactions. Examples include: detection of cancer nodules embed-

ded on lung tissues, and detection of astronomical objects through a partially turbulent

atmosphere. As we mentioned in Section 2.2, another application is the multi-path array

environment with a low-rank interference component superimposed on ambient and internal

sensor noise. These results are also applicable to a wide range of problems in communica-

tions and signal processing where there exists covariance structure.
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APPENDIX A

Proof of Proposition 1

Maximal invariant should satisfy both the invariant and the maximal properties under

the de�ned group of transformations. Before showing those properties, note that the group

action can be partitioned as

g(X) =

2
4 �Hx1 �HX2U

Mx21 MX22U

3
5

where �H =
h
�1 �

H
2

i
. Then the invariant property follows directly;

z10(g(X)) = xH1 �(�
HX2UU

HXH
2 �)

�1�Hx1

= xH1 (X2X
H
2 )

�1x1

= z10(X);

z2(g(X)) = xH21M
H(MX22UU

HXH
22M

H)�1Mx21

= xH21(X22X
H
22)

�1x21

= z2(X):

Now to show the maximal property, let z10(X) = z10(Y) or

xH1 (X2X
H
2 )

�1x1 = yH
1
(Y2Y

H
2 )

�1y
1
:

Then by the Vinograd's theorem [66] (Theorem A9.5 in [44]),

(Y2Y
H
2 )

�
1

2 y
1
= H(X2X

H
2 )

�
1

2x1

for some m�m orthogonal matrix H, and we have

y
1
= Fx1 (A.1)
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where F = (Y2Y
H
2
)
1

2H(X2X
H
2
)�

1

2 . Also from this result,

yH
1
(Y2Y

H
2 )

�1y
1
= xH1 F

H(Y2Y
H
2 )

�1Fx1;

thus (Y2Y
H
2
)�1 = (FX2X

H
2
FH)�1 or

Y2 = FX2U (A.2)

for some (n� 1)� (n� 1) orthogonal matrix U. Therefore, from (A.1) and (A.2), we have

Y = FX

2
4 1 0T

0 U

3
5 : (A.3)

Next by using z2, i.e. x
H
21
(X22X

H
22
)�1x21 = yH

21
(Y22Y

H
22
)�1y

21
, and the Vinograd's theorem

again, we have

h
y
21
Y22

i
= [0M] [x1 X2]

2
4 1 0T

0 U

3
5 (A.4)

whereM = (Y22Y
H
22
)
1

2J(X22X
H
22
)�

1

2 for some (m�1)� (m�1) orthogonal matrix J. Then

from (A.3) and (A.4), it is veri�ed that Y = g(X). Therefore, fz10 ; z2g satis�es both the

invariant and the maximal properties, and hence uniquely indexes the orbits of X under

the group action.

Now we can easily verify that z10 = z1 + z2 by using the relations for the inverse of a

partitioned matrix [20]. De�ne

(X2X
H
2 )

�1 =

2
4 x12x

H
12

x12X
H
22

X22x
H
12

X22X
H
22

3
5
�1

=

2
4 V11 V12

V21 V22

3
5 ;

then from the relations;

V11 = fx12
�
I�XH

22(X22X
H
22)

�1X22

�
xH12g�1;

V12 = �V11x12XH
22(X22X

H
22)

�1;

V21 = �V11(X22X
H
22)

�1X22x
H
12;

V22 = (X22X
H
22)

�1 + V11(X22X
H
22)

�1X22x
H
12x12X

H
22(X22X

H
22)

�1:

Therefore, plugging these values into the equation

z10 = xH11V11x11 + xH21V21x11 + xH11V12x21 + xH21V22x21;
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we have

z10 = V11
��x11 � x12X

H
22(X22X

H
22)

�1x21
��2 + xH21(X22X

H
22)

�1x21

= z1 + z2

and hence fz1; z2g can also serve as the maximal invariant.
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APPENDIX B

Proof of Proposition 2

From Proposition 1, we can see clearly that fzA1; zA2g is the maximal invariant corre-

sponding to the group of transformations

gA(XA) =

2
4 �1 �H

A

0 MA

3
5XA

2
4 1 0T

0 UA

3
5 (B.1)

and fzB1; zB2g to the group of transformations

gB(XB) =

2
4 �2 �H

B

0 MB

3
5XB

2
4 1 0T

0 UB

3
5 (B.2)

where we can only use arbitrary �1 and �2 separately for each group. So it suÆces to show

that zAB is in the maximal invariant set which gives �1 = �2 = �.

Since the group action (4.12) can be partitioned as

g(X) =

2
6666664

�xA11 + �H
A
xA21 (�xA12 + �H

A
XA22)UA

MAxA21 MAXA22UA

�xB11 + �H
B
xB21 (�xB12 + �H

B
XB22)UB

MBxB21 MBXB22UB

3
7777775

with the partition in (4.1), the following results are �rst calculated for convenience;

uA(g(X)) = �uA(X)

DA(g(X)) = j�j2DA(X);

and

uB(g(X)) = �uB(X)

DB(g(X)) = j�j2DB(X):
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Then, it is easily veri�ed that zAB is invariant under g(X) since

zAB(g(X)) =
�uA
�uB

= zAB(X):

Now for the maximal property we need to show that

zAB(X) = zAB(Y) ) �1 = �2

where

Y =

2
4 YA

YB

3
5 =

2
4 gA(XA)

gB(XB)

3
5 (B.3)

with gA in (B.1) and gB in (B.2). Then it is also straightforward since, from zAB(X) =

zAB(Y), we have

uA
uB

=
�1uA
�2uB

:

Thus �1 = �2 and we have proved that

Y = g(X):

Next, zAB0 and zAB00 can be shown to be the alternative terms for zAB by expressing

them as functions of the maximal invariant previously veri�ed. First, we can write

zAB0 =

juB=sB j2 �
������
uA=sA

uB=sB
� 1

������
2

DB=jsB j2 �
0
@DA=jsAj2
DB=sBj2 + 1

1
A
:

Thus, zAB0 is a function of the maximal invariant of form

zAB0 = zB1 �

������zAB �
sB

sA
� 1

������
2

DA

DB
�
jsBj2
jsAj2 + 1

where sA and sB is known, and DA=DB is just a supplementary term to zAB . Also zAB00 can

be represented similarly with the additional terms qA and qB which are already functions

of the maximal invariant, and this completes the proof.
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APPENDIX C

Proof of Proposition 3

We know from Proposition 2 that fzA1; zA2g is the maximal invariant to the group of

transformations on XA

gA(XA) =

2
4 �1 �H

A

0 MA

3
5XA

2
4 1 0T

0 UA

3
5 (C.1)

where �1 6= 0 is an arbitrary scalar. Therefore, we need to show that zB is the maximal

invariant to the group action on XB

gB(XB) = �2XB

2
4 1 0T

0 UB

3
5 (C.2)

where �2 6= 0 is also an arbitrary scalar, and �nally �1 = �2 with zAB .

First, write zB as

zB =
jxB11j2

trfXH
BXBg

:

Then the invariant property is easily followed;

zB(g(X)) =
j�xB11j2

trf(�XB)H(�XB)g = zB(X)

since

trfAg = trfPHAPg

for any n�n matrix A and orthogonal matrix P, [20]. Next, for the maximal property, let

zB(XB) = zB(YB), then

jxB11j2
trfXH

BXBg
=

jyB11j2
trfYH

BYBg
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or

xHB11
�
trfXH

BXBg
��1

xB11 = yHB11
�
trfYH

BYBg
��1

yB11:

Thus, from the Vinograd's theorem, we have

yB11 = �2xB11 (C.3)

where �2 =
�
trfYH

BYBg
�1=2

H
�
trfXH

BXBg
��1=2

for some orthogonal matrix H. Then, we

can also write

j�2xB11j2
trfYH

BYBg
=

jxB11j2
trfXH

BXBg
and from this, we have

trfYH
BYBg = trf(�2XB)

H(�2XB)g

or

YB = �2XBU (C.4)

for some unitary matrix U. From (C.3) and (C.4), we can say YB = gB(XB) as in (C.2)

and zB is the maximal invariant under gB on XB. In addition, since zB can be written as

zB =
jxB11j2

jxB11j2 + jxB12j2 + jxB21j2 + jXB22j2F
=

1

1 + 1=zB0

;

zB0 is also a maximal invariant which can be substituted for zB .

Now it is quite simple to prove zAB as in the proof of Proposition 2. As before, the

invariant property is easily veri�ed since

zAB(g(X)) =
�uA
�xB11

= zAB(X);

and for the maximal property, we have

uA(XA)

xB11
=

uA(YA)

yB11
(C.5)

from zAB(X) = zAB(Y). Since we have already proved that YA = gA(XA) with gA in (C.1)

and YB = gB(XB) with gB in (C.2), we can write

uA(YA) = �1uA(XA);

yB11 = �2xB11:

Thus, from (C.5), �1 = �2 and zAB implies the common scaling term � in (4.18).

Finally, the proof for the alternative terms, zAB0 and zAB00 , are easily followed from the

proof of Proposition 2 since both terms are equivalent to zAB00 in Proposition 2 except for

xB11 instead of uB , and the invariant terms �, v1 and v2.

76



APPENDIX D

Proof of Proposition 4

Since the group action g(X) in (5.5) can be partitioned as

g(X) =

2
4 �x11 +Bx21 (�X12 +BX22)U

Mx21 MX22U

3
5 ;

the following results are �rst calculated for convenience;

u(g(X)) = (�x11 +Bx21)� (�X12 +BX22)X22(X22X
H
22)

�1x21

= �fx11 �X12X22(X22X
H
22)

�1x21g
= �u(X);

D(g(X)) = (�X12 +BX22)
�
I�XH

22(X22X
H
22)

�1X22

�
(XH

12�
H +XH

22B
H)

= �fX12

�
I�XH

22(X22X
H
22)

�1X22

�
XH
12g�H

= �D(X)�H :

Then with the partitioned structure of X and the above results, we can easily verify the

invariant property as follows;

z1(g(X)) = uH�H(�D�H)�1�u

= uHD�1u

= z1(X);

z2(g(X)) = xH21M
H(MX22UU

HXH
22M

H)�1Mx21

= xH21(X22X
H
22)

�1x21

= z2(X);
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and

z3k(g(X)) = uH�H(�D�H)�1�k
�
�Tk (�D�H)�1�k

��1
�Tk (�D�H)�1�u

= uHD�1(��1�k)
�
(��1�k)

HD�1(��1�k)
��1

(��1�k)
HD�1u

= uHD�1�k(�
T
kD

�1�k)
�1�TkD

�1u

= z3k(X):

Next, for the maximal property, it is easily followed from Proposition 1 that z1(X) =

z1(Y) and z2(X) = z2(Y) gives

Y =

2
4 A B

O M

3
5X

2
4 1 0T

0 U

3
5

where we have a p � p non-zero matrix A instead of �1 in (3.9) and others are de�ned in

(5.5). Note that this is a general case of Proposition 1 (p = 1) and the proof directly follows

that of Proposition 1 except for the dimension.

Now we only need to show that A is a p � p diagonal matrix with z3k. Let A�1 =h

1
; : : : ; 

p

i
, then

z3k(Y) = uHAH(ADAH)�1�k
�
�Tk (ADA

H)�1�k
��1

�Tk (ADA
H)�1Au

= uHD�1(A�1�k)
�
(A�1�k)

HD�1(A�1�k)
��1

(A�1�k)
HD�1u

= uHD�1
k
(H

k
D�1

k
)�1H

k
D�1u:

Then from z3k(X) = z3k(Y),

uHD�1
�k�

T
k

�TkD
�1�k

D�1u = uHD�1

k
H
k

H
k
D�1

k

D�1u:

Thus we have

�k�
T
k

�TkD
�1�k

=

k
H
k

H
k
D�1

k

, which gives 
k
= Æ�1k �k for some scalar Æk 6= 0 and k = 1; : : : ; p. This means that

A = diag(Æ)

where Æ = [Æ1; : : : ; Æp].
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APPENDIX E

Proof of Proposition 5

From the proof of Proposition 4, we know that fzA1; zA2; zA3kg and fzB1; zB2; zB3kg are
associated with the groups

gA(XA) =

2
4 �A BA

O MA

3
5XA

2
4 1 0H

0 U

3
5

and gB(XB) =

2
4 �B BB

O MB

3
5XB

2
4 1 0H

0 U

3
5 ;

respectively. So it suÆces to show that �A = �B = � with zABk.

First, the invariant property of zABk directly follows from the properties of u and D on

g(X) in the proof of Proposition 4. Next, for the maximal property of zABk, let zABk(X) =

zABk(Y) with

Y =

2
4 gA(XA)

gB(XB)

3
5

where �A = diag([ÆA1; : : : ; ÆAp]) and �B = diag([ÆB1; : : : ; ÆBp]), then

(�TkD
�1

A �k)
�1�TkD

�1

A uA
(�TkD

�1

B �k)
�1�TkD

�1

B uB
=

ÆAk(�
T
kD

�1

A �k)
�1�TkD

�1

A uA
ÆBk(�

T
kD

�1

B �k)
�1�TkD

�1

B uB
:

Therefore, ÆAk = ÆBk for k = 1; : : : ; p and we have proved that �A = �B.

Finally, we can substitute zABk0 for zABk since zABk0 is a function of the previously

obtained maximal invariant of form

zABk0 = zB3k �
jzABk � 1j2

(�TkD
�1

A �k)
�1

(�TkD
�1

B �k)
�1

+ 1
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where (�TkD
�1

A �k)
�1=(�TkD

�1

B �k)
�1 is just a supplementary term for zABk. Similarly, zABk00

can also be shown to be a substitute for the coupling term with the additional functions of

the maximal invariant qA and qB.
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APPENDIX F

Proof of Lemma 1

We can write the equation as

(uHAD
�1

A + uHBD
�1

B )(D�1

A +D�1

B )�1(D�1

A uA +D�1

B uB)

= uHAD
�1

A (D�1

A +D�1

B )�1D�1

A uA + uHAD
�1

A (D�1

A +D�1

B )�1D�1

B uB

+ uHBD
�1

B (D�1

B +D�1

A )�1D�1

A uA + uHBD
�1

B (D�1

B +D�1

A )�1D�1

B uB

and from the Woodbury identity, we have

(D�1

A +D�1

B )�1 = DA �DA(DB +DA)
�1DA;

or (D�1

B +D�1

A )�1 = DB �DB(DA +DB)
�1DB :

Thus, applying this identity, the equation becomes

(uHAD
�1

A + uHBD
�1

B )(D�1

A +D�1

B )�1(D�1

A uA +D�1

B uB)

= uHAD
�1

A uA + uHBD
�1

B uB � (uA � uB)
H(DA +DB)

�1(uA � uB) + L1 + L2

where

L1 = uHA
�
D�1

B � (DA +DB)
�1 � (DA +DB)

�1DAD
�1

B

�
uB ;

L2 = uHB
�
D�1

A � (DA +DB)
�1 � (DA +DB)

�1DBD
�1

A

�
uA:

Now we can remove the extra terms L1 and L2 since

L1 = uHA (DA +DB)
�1 [(DA +DB)�DB �DA]D

�1

B uB = 0;

L2 = uHB (DA +DB)
�1 [(DA +DB)�DA �DB ]D

�1

A uA = 0

and this completes the proof.
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