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ABSTRACT

High Dimensional Covariance Estimation for Spatio-Temporal Processes

by

Kristjan Greenewald

Chairs: Alfred O. Hero III and Shuheng Zhou

High dimensional time series and array-valued data are ubiquitous in signal pro-

cessing, machine learning, and science. Due to the additional (temporal) direction,

the total dimensionality of the data is often extremely high, requiring large numbers of

training examples to learn the distribution using unstructured techniques. However,

due to difficulties in sampling, small population sizes, and/or rapid system changes

in time, it is often the case that very few relevant training samples are available,

necessitating the imposition of structure on the data if learning is to be done. The

mean and covariance are useful tools to describe high dimensional distributions be-

cause (via the Gaussian likelihood function) they are a data-efficient way to describe

a general multivariate distribution, and allow for simple inference, prediction, and

regression via classical techniques.

In this work, we develop various forms of multidimensional covariance structure

that explicitly exploit the array structure of the data, in a way analogous to the

widely used low rank modeling of the mean. This allows dramatic reductions in

the number of training samples required, in some cases to a single training sample.
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Covariance models of this form have been increasing in interest recently, and statistical

performance bounds for high dimensional estimation in sample-starved scenarios are

of great relevance.

This thesis focuses on the high-dimensional covariance estimation problem, ex-

ploiting spatio-temporal structure to reduce sample complexity. Contributions are

made in the following areas: (1) development of a variety of rich Kronecker product-

based covariance models allowing the exploitation of spatio-temporal and other struc-

ture with applications to sample-starved real data problems, (2) strong performance

bounds for high-dimensional estimation of covariances under each model, and (3)

a strongly adaptive online method for estimating changing optimal low-dimensional

metrics (inverse covariances) for high-dimensional data from a series of similarity

labels.
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CHAPTER I

Introduction

1.1 Multidimensional Modeling

Multidimensional processes are ubiquitous, and modeling them is a critical task

in machine learning, signal processing, and statistics. A multidimensional process is

a process that can be expressed as a function of multiple variables, i.e.

x(t1, t2, . . . , tK).

As a common example, if a set of variables xi evolve in time t, we have the spatiotem-

poral process

x(i, t) = xi(t).

If time is sampled discretely at times τi, the process becomes array valued :

X =


x1(τ1) . . . x1(τq)

...
...

xp(τ1) . . . xp(τq)

 ∈ Rp×q

Spatio-temporal (or bi-dimensional) processes are universal, and include video (pixels

vs. time), EEG/MEG (electrodes vs. time), FMRI, sensor networks, and a large vari-
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ety of meteorological, physical, and biological data. In high dimensional applications,

however, unstructured modeling of the data becomes difficult since the number of

variables grows as pq. This severely limits the applicability of covariance-based meth-

ods in high dimensional problems. As a result, many types of structure have been

proposed, from ignoring the temporal dimension, including separability constraints

(Allen and Tibshirani , 2010; Werner et al., 2008), to application-specific generative

models. Many of these forms of structure are restrictive (e.g. separability), lack ex-

plicit spatio-temporal structure (e.g. sparsity), or are somewhat application specific

(generative models) (Tsiligkaridis and Hero, 2013; Kalaitzis et al., 2013).

In recent years, a great deal of success has been achieved by modeling bi-dimensional

processes as low rank, i.e. as a sum of r separable functions. Example applications

include recommender systems (Bell et al., 2007; Allen and Tibshirani , 2010), video

modeling (Moore et al., 2014; He et al., 2012), radar (Newstadt et al., 2014), and

many others. This does not require application-specific parameterizations, and can

drastically reduce the number of parameters to O(r(p+q)). This can make estimation

simpler, and often reduces the required number of training examples to one.

Low rank methods, however, only model the first moment of the data process.

While a variety of relatively ad-hoc methods exist for using the low rank model to

perform prediction, missing data inference, etc. (e.g. (Bell et al., 2007)), the statisti-

cally principled approach to such methods requires a model of the joint distribution

of the spatiotemporal data (Allen and Tibshirani , 2010).

In this thesis, we thus consider methods that extend the “low-rank modeling”

concept to the second moment, i.e. the bi-dimensional data covariance. In particular,

we consider modeling the covariance as a sum of separable covariances (Tsiligkaridis

and Hero, 2013). Even greater gains are possible than with the first moment, since

the number of elements in the unstructured covariance grows as p2q2. We consider the

covariance because (via the Gaussian likelihood function) it is a data-efficient way to
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describe a general multivariate distribution, and allows simple inference, prediction,

regression, anomaly detection, and classification. Significant reductions in the number

of parameters describing the covariance allows for effective modeling of the rich higher-

dimensional data sources ubiquitous in the age of big data. The added structure

allows significant reductions in the required number of iid training samples, without

compromising the bias of the estimate.

We introduce several models, incorporating aspects such as robustness (Chan-

drasekaran et al., 2009), block Toeplitz structure (Kamm and Nagy , 2000), estimation

of sparse graphical models (Banerjee et al., 2008), REPLACE time varying spatial

covariances (Zhou et al., 2010a), and the modeling of higher dimensional processes.

In addition to classical unlabeled covariance estimation, we also consider labeled “co-

variance learning”, where similarity labels are used to learn a time-varying regular-

ized metric (“inverse covariance”) efficiently describing high-dimensional data and its

low-dimensional structure. For each, we apply the model to real world datasets, and

derive strong performance guarantees. Both the real data experiments and the theory

demonstrate that significant reductions in the required number of training samples

are achieved. In several cases, single sample convergence is achieved, indicating that

the covariance can be learned from a single time series. This allows the application of

second moment spatio-temporal methods to individual datasets without iid replicates,

thus dramatically expanding their applicability.

We note that in this work we are focused on the low-sample regime, where the

celebrated convolutional neural network (CNN) and recurrent neural network (RNN)

approaches do not perform well (Srivastava et al., 2014). This focus allows us to

consider highly nonstationary and/or highly individualized data sources, where large

numbers of samples are either impossible (e.g. due to nonstationarity) or costly (e.g.

biological data) to obtain. Further research into hybrid approaches is of interest, for

example using our nonstationary methods on data-modality-specific features learned
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by a neural net to provide individualized learning, or by adding neural net structure

to nonlinearize our models. Our last chapter in particular focuses on task-specific

nonstationary online learning of an optimal data embedding, the application of which

to pre-learned nonlinear features could be especially fruitful.

1.2 Overview of Contributions

This thesis aims to address the problem of estimating covariances of high-dimensional

array-valued data, by developing strong, generally applicable forms of structure that

naturally model array valued processes. This structure should allow major reductions

in the required number of training samples to levels that allow practical application

of covariance methods to high-dimensional problems, particularly in the case where

distributions are changing in time, limiting the number of available training samples.

In (Tsiligkaridis and Hero, 2013), the covariance was modeled as a sum of r (sep-

arable) Kronecker products. This dramatically reduced the number of parameters

required to model a spatiotemporal covariance. In practice, however, there is almost

always sparsely correlated noise, and/or outliers or missing entries in spatiotemporal

data. These phenomena are not well modeled by r Kronecker products, and generally

result in the estimate of r being increased dramatically and/or damaging the condi-

tion number of the covariance estimate. To address this problem, Chapter III presents

the Robust KronPCA model of the covariance as a sum of r (separable) Kronecker

products and a sparse term to model noise and anomalies. A nuclear norm plus L1

norm penalized Frobenius norm objective function is introduced, and an algorithm

derived to find the global minimum. Additional block Toeplitz constraints are also

optionally incorporated, giving even greater reduction in the number of parameters.

Nonasymptotic bounds on the Frobenius norm of the error of the resulting estimator

are then derived using random matrix theory. These bounds and simulations con-

firm that the required number of training samples is significantly reduced in high
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dimensions for small r. Finally, an application to the discovery of periodicity in cell

cycle data is presented, demonstrating the ability of the estimator to estimate the

covariance in high noise, corrupted settings with a minimum of training samples.

An application of Kronecker structure to the synthetic aperture radar space-time

adaptive processing (STAP) problem is discussed in Chapter IV. STAP estimates

the subspace associated with stationary clutter and removes it, thus enhancing the

signatures of moving targets buried in the clutter and noise. Based on the physics of

the problem, a Kronecker product covariance model with low rank factors is derived,

and an iterative estimation algorithm presented. The resulting covariance estimate

is used to design optimal clutter cancelation filters, which we prove achieve high

moving target SINR with as few as O(1) training samples. Results on the Gotcha

multichannel SAR dataset are shown, demonstrating dramatically improved moving

target detection performance.

Up to this point, we have considered data arranged in a two-dimensional array, i.e.

a matrix. Many data sources, however, can be arranged in arrays of higher dimensions,

i.e. a K dimensional tensor. Examples include video (x vs. y vs. time), EEG/FMRI

data (spatial location vs. time vs. subject), and synthetic aperture radar (range

vs. time vs. channel vs. pass), and many others. Chapter V presents our TEnsor

gRAphical Lasso (TeraLasso) model, where the inverse covariance of a K dimensional

tensor process is modeled by K-way Kronecker sum of sparse factors, allowing for non-

separable estimation exploiting both Kronecker structure and sparsity in the inverse,

i.e. estimation of a graphical model. This is opposed to KronPCA, which gives a more

general model, but is limited to K = 2 and cannot efficiently estimate a graphical

model in the inverse covariance. The TeraLasso solves a convex L1 penalized objective

function to find the maximum-entropy sparse Kronecker sum approximation to the

precision matrix given projections of the data along each tensor mode. We derive non-

asymptotic bounds for the TeraLasso estimator that give one-sample convergence in
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high dimensions, and successfully apply the model to meteorological and brain EEG

datasets.

Complex, high dimensional datasets are often very rich, admitting a wide variety

of classification tasks and/or interpretations. In addition, real data sources often arise

from distributions that change with time. In both cases, it is desirable to find a set

of features that allow embedding the data in a low-dimensional space that preserves

only the structure needed for the task at hand. This optimal embedding may change,

due to changes in distribution and/or changes in task. In chapter VI, we consider

dynamic metric learning, where we use regularization and adaptive online learning

methods to track a changing optimal low rank metric (low rank embedding) on a

data space. Learning is based on a time series of similarity labels on pairs of points.

This allows us to perform feature selection on the fly, finding an optimal embedding

of the data that best emphasizes the desired structure at any given time or task. We

call our approach Online Convex Ensemble StrongLy Adaptive Dynamic Learning

(OCELAD), and it is broadly applicable beyond the realm of metric learning. Regret

bounds are derived that show OCELAD is strongly adaptive, implying low regret on

every subinterval in the face of a changing optimal metric. We apply our methods to

both simulated data, and to tracking changing political discussion on Twitter. Both

confirm the theoretical results and demonstrate the ability of OCELAD to rapidly

adapt and track changes in the optimal metric.

1.3 List of publications

Journal Publications

1. K. Greenewald, S. Zhou, and A. Hero, “The Tensor Graphical Lasso (Ter-

aLasso),” nearing submission to JMLR.

2. K. Greenewald, S. Kelley, B. Oselio, and A. Hero, “Similarity Function Track-
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CHAPTER II

Overview

In this chapter, we establish the mathematical setting, introduce the notation,

and cover the main results that will propel the thesis by chapter.

2.1 Kronecker Structured Covariance Estimation

In the first part of this work, we develop methods for structured estimation of

spatio-temporal covariances and apply them to multivariate time series modeling and

parameter estimation. The covariance for spatio-temporal processes is manifested as

a multiframe covariance, i.e. as the covariance not only between variables or features

in a single frame (time point), but also between variables in a set of pt nearby frames.

If each frame contains ps spatial variables, then the spatio-temporal covariance at

time t is described by a ptps by ptps matrix

Σt = Cov
[
{In}t−1

n=t−pt

]
, (2.1)

where In denotes the ps variables or features of interest in the nth frame.

As pspt can be very large, even for moderately large ps and pt the number of

degrees of freedom (pspt(pspt + 1)/2) in the covariance matrix can greatly exceed the

number n of training samples available to estimate the covariance matrix. One way
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to handle this problem is to introduce structure and/or sparsity into the covariance

matrix, thus reducing the number of parameters to be estimated.

A natural non-sparse option is to introduce structure by modeling the covari-

ance matrix Σ as the Kronecker product of two smaller symmetric positive definite

matrices, i.e.

Σ = A⊗B. (2.2)

When the measurements are Gaussian with covariance of this form they are said to

follow a matrix-normal distribution (Dutilleul , 1999; Dawid , 1981; Tsiligkaridis et al.,

2013). This model lends itself to coordinate decompositions (Tsiligkaridis and Hero,

2013), such as the decomposition between space (variables) vs. time (frames) natural

to spatio-temporal data (Tsiligkaridis and Hero, 2013; Greenewald et al., 2013). In

the spatio-temporal setting, the ps × ps B matrix is the “spatial covariance” and the

pt × pt matrix A is the “time covariance,” both identifiable up to a multiplicative

constant.

As it stands, the model (2.2) is somewhat insufficient for most practical appli-

cations. Separability of the covariance implies that predicting a variable in time

depends only on previous samples form that same variable, completely ignoring its

neighbors. While for some datasets separable models are useful, for many problems

non-separable models are critical to be able to perform effective prediction. The focus

of our covariance estimation work has thus been the exploitation of this natural Kro-

necker space-time structure and using it to develop a rich variety of models, most of

which are nonseparable, yet are able to exploit different forms of Kronecker structure

to provably achieve significant gains in sample complexity. Each method has its own

advantages and is applicable to its own set of problems.
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2.1.1 Kronecker PCA

The first model we consider is an extension to the representation (2.2). In (Tsiligkaridis

and Hero, 2013), the covariance matrix is approximated using a sum of Kronecker

product factors

Σ =
∑r

i=1
Ai ⊗Bi, (2.3)

where r is the separation rank, Ai ∈ Rpt×pt , and Bi ∈ Rps×ps . We call this the

Kronecker PCA (KronPCA) covariance representation.

This type of model (with r > 1) has been used successfully in various applications

by us and others, including

• video modeling (Greenewald et al., 2013)

• gender classification in video (Greenewald and Hero, 2014a)

• sensor network anomaly detection (Greenewald and Hero, 2014b)

• gene expression modeling (Chapter III)

• wind speed modeling (Tsiligkaridis and Hero, 2013)

• synthetic aperture radar (Rucci et al., 2010)

• MEG/EEG covariance modeling (De Munck et al., 2002, 2004; Bijma et al.,

2005; Jun et al., 2006).

In (Loan and Pitsianis , 1993) it was shown that any covariance matrix can be

represented in this form with sufficiently large r. This allows for more accurate

approximation of the covariance when it is not in Kronecker product form but most

of its energy can be accounted for by a few Kronecker components. An algorithm

(Permuted Rank-penalized Least Squares (PRLS)) for fitting the model (2.3) to a

measured sample covariance matrix was introduced in (Tsiligkaridis and Hero, 2013)

and was shown to have strong high dimensional MSE performance guarantees.
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The basic Kronecker PCA model does not naturally accommodate additive noise

since the diagonal elements (variances) must conform to the Kronecker structure of

the matrix. To address this issue, in (Greenewald et al., 2013; Greenewald and Hero,

2014b) we extended this KronPCA model, and the PRLS algorithm of (Tsiligkaridis

and Hero, 2013), by adding a structured diagonal matrix to (2.3). This model is

called Diagonally Loaded Kronecker PCA (DL-KronPCA) and, although it has an

additional pspt parameters, it was shown that for fixed r it performs significantly

better for inverse covariance estimation in cases where there is additive measurement

noise (Greenewald et al., 2013).

Σ =
(∑r

i=1
Ai ⊗Bi

)
+ U = Θ + U, (2.4)

where the diagonal matrix U is called the “diagonal loading matrix.”

Chapter III extends DL-KronPCA to the case where U in (2.4) is a sparse loading

matrix that is not necessarily diagonal. In other words, we model the covariance as

the sum of a low separation rank matrix Θ and a sparse matrix Γ:

Σ =
(∑r

i=1
Ai ⊗Bi

)
+ Γ = Θ + Γ. (2.5)

DL-KronPCA is obviously a special case of this model. The motivation behind the

extension (2.5) is that while the KronPCA model (2.3) may provide a good fit to most

entries in Σ, there are sometimes a few variables (or correlations) that cannot be well

modeled using KronPCA, due to complex non-Kronecker structured covariance pat-

terns, e.g. sparsely or uncorrelated additive noise, sensor failure, or corruption. Thus,

inclusion of a sparse term in (2.5) allows for a better fit with lower separation rank

r, thus reducing the overall number of model parameters. This notion of adding a

sparse correction term to a regularized covariance estimate is found in the Robust

PCA literature, where it is used to allow for more robust and parsimonious approx-
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imation to data matrices (Chandrasekaran et al., 2009, 2010; Candès et al., 2011;

Yang and Ravikumar , 2013). Robust KronPCA differs from Robust PCA in that it

replaces the outer product with the Kronecker product. Sparse correction strategies

have also been applied in the regression setting where the sparsity is applied to the

first moments instead of the second moments (Peng et al., 2010; Otazo et al., 2014).

The model (2.5) is called the Robust Kronecker PCA (Robust KronPCA) model,

and we propose regularized least squares based estimation algorithms for fitting the

model. In particular, we propose a singular value thresholding (SVT) approach using

a rearranged nuclear norm.

We derive high dimensional consistency results for the SVT-based algorithm that

specify the MSE tradeoff between covariance dimension and the number of samples.

Specifically, for n training samples and Θ a sum of r Kronecker products, we derive

non-asymptotic results that show that

‖Θ̂−Θ∗‖F = O

(
max

{
r
p2
t + p2

s + logM

n
,√

r
p2
t + p2

s + logM

n
,

√
s log ptps

n

})

as opposed to the unstructured SCM rate of ‖Σ̂SCM −Σ‖F = O

(√
p2
sp

2
t

n

)
.

We also allow for the enforcement of a temporal block Toeplitz constraint, which

corresponds to a temporally stationary covariance and results in a further reduction

in the number of parameters when the process under consideration is temporally

stationary and the time samples are uniformly spaced. This gives the improved rate

‖Θ̂−Θ∗‖F = O

(
max

{
r

2pt + p2
s + logM

n
,√

r
2pt + p2

s + logM

n
,

√
s log ptps

n

})
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2.1.2 Kronecker STAP

In chapter IV, we consider a practical application for which Kronecker structure

arises naturally from the physical model, and enables significant performance im-

provements.

In computer vision, the detection (and tracking) of moving objects is an impor-

tant task for scene understanding, as motion often indicates human related activity

(Newstadt et al., 2014). Radar sensors are uniquely suited for this task, as object

motion can be discriminated via the Doppler effect. We propose a spatio-temporal

decomposition method of detecting ground based moving objects in airborne Syn-

thetic Aperture Radar (SAR) imagery, also known as SAR GMTI (SAR Ground

Moving Target Indication).

Radar moving target detection modalities include MTI radars (Newstadt et al.,

2014; Ender , 1999), which use a low carrier frequency and high pulse repetition fre-

quency to directly detect Doppler shifts. This approach has significant disadvantages,

however, including low spatial resolution, small imaging field of view, and the inabil-

ity to detect stationary or slowly moving targets. The latter deficiency means that

objects that move, stop, and then move are often lost by a tracker.

SAR, on the other hand, typically has extremely high spatial resolution and can

be used to image very large areas, e.g. multiple square miles in the Gotcha data

collection (Scarborough et al., 2009). As a result, stationary and slowly moving ob-

jects are easily detected and located (Ender , 1999; Newstadt et al., 2014). Doppler,

however, causes smearing and azimuth displacement of moving objects (Jao, 2001),

making them difficult to detect when surrounded by stationary clutter. Increasing the

number of pulses (integration time) simply increases the amount of smearing instead

of improving detectability (Jao, 2001). Several methods have thus been developed

for detecting and potentially refocusing (Cristallini et al., 2013; Cerutti-Maori et al.,

2012) moving targets in clutter. Our goal is to remove the disadvantages of MTI and
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SAR by combining their strengths (the ability to detect Doppler shifts and high spa-

tial resolution) using space time adaptive processing (STAP) with a novel Kronecker

product spatio-temporal covariance model, as explained below.

SAR systems can either be single channel (standard single antenna system) or mul-

tichannel. Standard approaches for the single channel scenario include autofocusing

(Fienup, 2001) and velocity filters. Autofocusing works only in low clutter, however,

since it may focus the clutter instead of the moving target (Fienup, 2001; Newstadt

et al., 2014). Velocity filterbank approaches used in track-before-detect processing

(Jao, 2001) involve searching over a large velocity/acceleration space, which often

makes computational complexity excessively high. Attempts to reduce the computa-

tional complexity have been proposed, e.g. via compressive sensing based dictionary

approaches (Khwaja and Ma, 2011) and Bayesian inference (Newstadt et al., 2014),

but remain computationally intensive.

Multichannel SAR has the potential for greatly improved moving target detec-

tion performance (Ender , 1999; Newstadt et al., 2014). Standard multiple channel

configurations include spatially separated arrays of antennas, flying multiple passes

(change detection), using multiple polarizations, or combinations thereof (Newstadt

et al., 2014).

Several techniques exist for using multiple radar channels (antennas) to separate

the moving targets from the stationary background. SAR GMTI systems have an

antenna configuration such that each antenna transmits and receives from approx-

imately the same location but at slightly different times (Scarborough et al., 2009;

Ender , 1999; Newstadt et al., 2014; Cerutti-Maori et al., 2012). Along track interfer-

ometry (ATI) and displaced phase center array (DPCA) are two classical approaches

(Newstadt et al., 2014) for detecting moving targets in SAR GMTI data, both of

which are applicable only to the two channel scenario. Both ATI and DPCA first

form two SAR images, each image formed using the signal from one of the antennas.
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To detect the moving targets, ATI thresholds the phase difference between the images

and DPCA thresholds the magnitude of the difference. A Bayesian approach using

a parametric cross channel covariance generalizing ATI/DPCA to p channels was de-

veloped in (Newstadt et al., 2014), and a unstructured method fusing STAP and a

test statistic in (Cerutti-Maori et al., 2012). Space-time Adaptive Processing (STAP)

learns a spatio-temporal covariance from clutter training data, and uses these corre-

lations to filter out the stationary clutter while preserving the moving target returns

(Ender , 1999; Ginolhac et al., 2014; Klemm, 2002).

In this chapter, we focus on the SAR GMTI configuration and propose a covariance-

based STAP algorithm with a customized Kronecker product covariance structure.

The SAR GMTI receiver consists of an array of p phase centers (antennas) processing

q pulses in a coherent processing interval. Define the array X(m) ∈ Cp×q such that

X
(m)
ij is the radar return from the jth pulse of the ith channel in the mth range bin.

Let xm = vec(X(m)). The target-free radar data xm is complex valued and is assumed

to have zero mean. Define

Σ = Cov[x] = E[xxH ]. (2.6)

The training samples, denoted as the set S, used to estimate the SAR covariance Σ

are collected from n representative range bins. The sample covariance matrix (SCM)

is given by

S =
1

n

∑
m∈S

xmxHm. (2.7)

If n is small, S may be rank deficient or ill-conditioned (Newstadt et al., 2014; Ginolhac

et al., 2014; Greenewald et al., 2013; Greenewald and Hero, 2014b), and it can be

shown that using the SCM directly for STAP requires a number n of training samples

that is at least twice the dimension pq of S (Reed et al., 1974). In this data rich
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case, STAP performs well (Newstadt et al., 2014; Ender , 1999; Ginolhac et al., 2014).

However, with p antennas and q time samples (pulses), the dimension pq of the

covariance is often very large, making it difficult to obtain a sufficient number of

target-free training samples. This so-called “small n large pq” problem leads to severe

instability and overfitting errors, compromising STAP cancelation performance.

By introducing structure and/or sparsity into the covariance matrix, the number

of parameters and the number of samples required to estimate them can be reduced.

As the spatiotemporal clutter covariance Σ is low rank (Brennan and Staudaher ,

1992; Ginolhac et al., 2014; Rangaswamy et al., 2004; Ender , 1999), Low Rank STAP

(LR-STAP) clutter cancelation estimates a low rank clutter subspace from S and uses

it to estimate and remove the rank r clutter component in the data (Bazi et al., 2005;

Ginolhac et al., 2014), reducing the number of parameters from O(p2q2) to O(rpq).

Efficient algorithms, including some involving subspace tracking, have been proposed

(Belkacemi and Marcos , 2006; Shen et al., 2009). Other methods adding structural

constraints such as persymmetry (Ginolhac et al., 2014; Conte and De Maio, 2003),

and robustification to outliers either via exploitation of the SIRV model (Ginolhac

et al., 2009) or adaptive weighting of the training data (Gerlach and Picciolo, 2011)

have been proposed. Fast approaches based on techniques such as Krylov subspace

methods (Goldstein et al., 1998; Honig and Goldstein, 2002; Pados et al., 2007; Scharf

et al., 2008) and adaptive filtering (Fa and De Lamare, 2011; Fa et al., 2010) exist.

All of these techniques remain sensitive to outlier or moving target corruption of the

training data, and generally still require large training sample sizes (Newstadt et al.,

2014).

Instead, for SAR GMTI we propose to exploit the explicit space-time arrangement

of the covariance by modeling the clutter covariance matrix Σc as the Kronecker
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product of two smaller matrices

Σc = A⊗B, (2.8)

where A ∈ Cp×p is rank 1 and B ∈ Cq×q is low rank. In this setting, the B matrix is

the “temporal (pulse) covariance” and A is the “spatial (antenna) covariance.”

In this work, an iterative L2 based algorithm is proposed to directly estimate the

low rank Kronecker factors from the observed sample covariance. We then introduce

the Kron STAP filter, which projects away both the spatial and temporal clutter

subspaces. This projects away a higher dimensional subspace than does LR-STAP,

thereby achieving improved noise and clutter cancelation. Theoretical results indicate

significantly fewer training samples are required to achieve high signal-to-interference-

plus-noise ratio (SINR), specifically that the SINR loss ρ is O(1− 1
n
), as opposed to the

standard LR-STAP rate of O(1− r
n
) where r ∼ q is the rank of the clutter subspace.

It is also shown that the proposed approach improves robustness to corrupted

training data. Critically, robustness allows significant numbers of moving targets to

remain in the training set. Finally, we apply KronSTAP to both synthetic data and a

real SAR dataset, demonstrating significant performance improvement as expected.

2.1.3 Tensor Graphical Lasso (TeraLasso)

So far, we have focused on covariance modeling for matrix-valued data. In Chapter

V, we focus on developing structured, sparse inverse covariance models for high-

dimensional tensor data. Consider the K-order data tensor X ∈ Rd1×···×dK (Kolda

and Bader , 2009). For convenience, define a dimension vector p = [d1, . . . , dK ], and

set

p =
K∏
k=1

dk, mk =
∏
i 6=k

di =
p

dk
.
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We propose the TEnsor gRAphical Lasso (TeraLasso) model

(Cov[vec(XT )])−1 = Σ−1 = Ω = Ψ1 ⊕ · · · ⊕ΨK︸ ︷︷ ︸
K terms

, (2.9)

where the Ψk are sparse, each corresponding to a graph across the kth dimension of

the data tensor. We have used vec(X) as in (Kolda and Bader , 2009), and defined

XT ∈ RdK×···×d1 by analogy to the matrix transpose, i.e. [XT ]i1,...,iK = XiK ,...,i1 .

Many methods for first-moment modeling of tensor-valued data have been pro-

posed (Kolda and Bader , 2009). Many of these involve low-rank factor decomposi-

tions, including PARAFAC and CANDECOMP (Harshman and Lundy , 1994; Faber

et al., 2003) and Tucker decomposition-based methods such as (Tucker , 1966) and

(Hoff et al., 2016). Recently, several works have found that such modeling can be

improved by taking into account the second moment of the data (i.e. covariance),

which so far is typically modeled using Kronecker products (Xu et al., 2011; Zhe et al.,

2015; Pouryazdian et al., 2016).

As the second moment, or covariance, encodes relationships and interactions be-

tween variables, it is a powerful tool for modeling multivariate distributions, allowing

inference, likelihood calculation, and prediction. For tensor-valued data, however, the

very large number of variables prohibits the estimation and use of the O(
∏K

k=1 d
2
k)

element unstructured covariance in many situations. As a result, there has been in-

creasing interest in developing structured covariance models appropriate for matrix-

and tensor-valued data (Tsiligkaridis and Hero, 2013; Zhou, 2014; Werner et al., 2008;

Sun et al., 2015; Xu et al., 2011; Greenewald and Hero, 2015; Allen and Tibshirani ,

2010). As we have discussed in earlier chapters, the Kronecker product covariance

Σ = A1 ⊗ A2 ⊗ · · · ⊗ AK (2.10)

exploits the natural tensor arrangement of the variables and forms a joint model
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from K models each along one tensor axis. When the covariance (2.10) describes a

Gaussian distribution, this model is known as the matrix normal distribution (Dawid ,

1981) (K = 2) and tensor normal for K > 2 (Sun et al., 2015; Xu et al., 2011), with

a penalized version in (Allen and Tibshirani , 2010) called the transposable covariance

model.

In a Gaussian graphical model, edges correspond to nonzero entries in the precision

matrix Ω = Σ−1. The Kronecker product graphical model (Zhou, 2014; Tsiligkaridis

et al., 2013; Sun et al., 2015) estimates K sparse factor precision matrices Ψk ∈ Rdk×dk

(Figure 5.1(a-c)), setting Ω = Ψ1 ⊗ · · · ⊗ ΨK . This model has excellent statistical

convergence results, but creates an overall graph where each edge in the final model

is the product of K separate edges from the factor graphs Ψk. A proliferation of

inter-related edges is thus created, illustrated in Figure 5.1 (right), with each edge in

the factor models affecting up to m2
k total edges in the final graph.

Instead of the Kronecker product, one may imagine that it could be desirable to

have each edge in the factor models map directly to edges in the final model. One

such model, shown in Figure 2.1 (left) would map the i, jth edge in the kth factor

Ψk to edges between nodes in ith and jth position along the kth tensor mode. This

type of structure implies that conditional dependence moves along axes or modes, in a

manner analogous to several popular forms of Markov random fields used in computer

vision and other applications (Wang et al., 2013; Diebel and Thrun, 2005).

In order to estimate sparse Kronecker sum precision matrices, we derive a joint,

convex objective function that is an L1 penalization of the joint maximum likelihood

function:

Q(Ψ1, . . . ,ΨK) = − log |Ψ1 ⊕ · · · ⊕ΨK |+
K∑
k=1

mk

(
〈Sk,Ψk〉+ ρk|Ψ−k |1

)
, (2.11)

where 〈A,B〉 = tr(ATB). Due to the Kronecker sum structure, we have been able to
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Figure 2.1: Tensor graphical models on a 4 × 4 × 2 Cartesian node grid. Consider
three graphical models, one along each axis (a-c). The Kronecker sum and
Kronecker product of these graphs are computed, with only the edges
emanating from the orange node shown. The Kronecker sum (64 total
edges) preserves the sparsity of the axis graphs (a-c), forming a joint
model where each edge is associated with a single edge in an axis graph.
The Kronecker product (184 total edges), on the other hand, creates an
explosion of edges (marked green) each with a weight a multiple of three
separate weights from the axis graphs. Hence, we argue that in many
situations the Kronecker sum is a more natural and interpretable tensor
expansion of sparse graphical models.

eliminate all inner products involving the full sample covariance, replacing them with

dk × dk inner products.

Using this form of the objective, we derive a fast, scalable first-order algorithm

that is guaranteed to geometrically converge to the global minimum of the objective.

This algorithm enjoys a computational cost of O(p + d3
k) per iteration, as compared

to the O(p3) computation per iteration required for the GLasso.

We also derive nonasymptotic statistical convergence rates, that imply the follow-
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ing bounds.

‖Ω̂− Ω‖2
F = Op

(
(s+ p)

log p

nminkmk

)
,

K∑
k=1

‖∆−k ‖2
F

dk
= Op

((
1 +

K∑
k=1

sk
dk

)
log p

nminkmk

)
,

‖Ω̂− Ω‖2 = Op


√√√√(max

k

dk
mk

)(
1 +

K∑
k=1

sk
dk

)
log p

n

 ,

where ∆−k = Ψ̂−k −Ψ−0,k.

Observe that factorwise and spectral norm convergence in the fixed sample regime

holds whenever sk ≤ O(dk) and mk > dk. Finally, we confirm these rates by apply-

ing this estimator to synthetic data, as well as to meteorological and EEG seizure

prediction datasets.

2.2 Strongly Adaptive Online Metric Learning

The effectiveness of many machine learning and data mining applications rely

on an appropriate measure of pairwise distance between data points that accurately

reflects the objective, e.g., prediction, clustering or classification. In settings with

clean, appropriately-scaled spherical Gaussian data, standard Euclidean distance can

be utilized. However, when the data is heavy tailed, multimodal, contaminated by

outliers, irrelevant or replicated features, or observation noise, Euclidean inter-point

distance can be problematic, leading to bias or loss of discriminative power.

Many unsupervised, data-driven approaches for identifying appropriate distances

between points have been proposed. These methodologies, broadly taking the form

of dimensionality reduction or data “whitening”, aim to utilize the data itself to learn

a transformation of the data that embeds it into a space where Euclidean distance is

appropriate. Examples of such unsupervised techniques include Principal Component
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Analysis (Bishop, 2006), Multidimensional Scaling (Hastie et al., 2005), covariance

estimation (Hastie et al., 2005; Bishop, 2006), and manifold learning (Lee and Ver-

leysen, 2007). Such unsupervised methods do not have the benefit of human input on

the distance metric, and rely on prior assumptions, e.g., local linearity or smoothness.

For unimodal Gaussian data, the ideal metric is the Mahalonobis distance based

on the inverse covariance, i.e. d2(x, z) = (x − z)TΣ−1(x− z). The generalized Ma-

halonobis distance is parameterized by M as

d2
M(x, z) = (x− z)TM(x− z) (2.12)

where M ∈ Rn×n � 0. Our goal in this chapter is a generalized “inverse covariance”

estimation, finding a regularized matrix M that best separates clusters rather than

simply best explaining variation.

In other words, one seeks to learn linear transformations of the data that are well

matched to a particular task specified by the user. In this case, point labels or con-

straints indicating point similarity or dissimilarity are used to learn a transformation

of the data such that similar points are “close” to one another and dissimilar points

are distant in the transformed space. Learning distance metrics in this manner allows

a more precise notion of distance or similarity to be defined that is related to the task

at hand.

Many supervised and semi-supervised distance metric learning approaches have

been developed (Kulis , 2012). This includes online algorithms (Kunapuli and Shavlik ,

2012) with regret guarantees for situations where similarity constraints are received

in a stream. In this chapter, we propose a new way of formulating the distance metric

learning task. We assume the underlying ground-truth distance metric from which

constraints are generated is evolving over time. This problem formulation suggests

an adaptive, online approach to track the underlying metric (“inverse covariance”)
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as constraints are received. We present an algorithm for estimating time-varying

distance metrics inspired by recent advances in composite objective mirror descent

for metric learning (Duchi et al., 2010b) (COMID) and a framework proposed for

handling discrete nonstationarities (Daniely et al., 2015). We call our framework for

strongly adaptive, parameter-free handling of all types of dynamic nonstationarities

Online Convex Ensemble StrongLy Adaptive Dynamic Learning, or OCELAD. This

framework is widely applicable beyond metric learning.

Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA)

are classic examples of linear transformations for projecting data into more inter-

pretable low dimensional spaces. Unsupervised PCA seeks to identify a set of axes

that best explain the variance contained in the data. LDA takes a supervised ap-

proach, minimizing the intra-class variance and maximizing the inter-class variance

given class labeled data points.

Much of the recent work in Distance Metric Learning has focused on learning Ma-

halanobis distances on the basis of pairwise similarity/dissimilarity constraints. These

methods have the same goals as LDA; pairs of points labeled “similar” should be close

to one another while pairs labeled “dissimilar” should be distant. MMC (Xing et al.,

2002), a method for identifying a Mahalanobis metric for clustering with side infor-

mation, uses semidefinite programming to identify a metric that maximizes the sum

of distances between points labeled with different classes subject to the constraint

that the sum of distances between all points with similar labels be less than some

constant. Large Margin Nearest Neighbor (LMNN) (Weinberger et al., 2005) simi-

larly uses semidefinite programming to identify a Mahalanobis distance, however it

modifies the constraints to only take into account a small, local neighborhood for each

point. Information Theoretic Metric Learning (ITML) (Davis et al., 2007) is another

popular Distance Metric Learning technique. ITML minimizes the Kullback-Liebler

divergence between an initial guess of the matrix that parameterizes the Mahalanobis
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distance and a solution that satisfies a set of constraints.

In a dynamic environment, it is necessary to be able to compute multiple estimates

of the changing metric at different times, and to be able to compute those estimates

online. Online learning (Cesa-Bianchi and Lugosi , 2006) meets these criteria by

efficiently updating the estimate every time a new data point is obtained, instead of

solving an objective function formed from the entire dataset.

Many online learning methods have regret guarantees, that is, the loss in perfor-

mance relative to a batch method is provably small (Cesa-Bianchi and Lugosi , 2006;

Duchi et al., 2010b). In practice, however, the performance of an online learning

method is strongly influenced by the learning rate which may need to vary over time

in a dynamic environment (Daniely et al., 2015; McMahan and Streeter , 2010; Duchi

et al., 2010a).

Adaptive online learning methods attempt to address this problem by continu-

ously updating the learning rate as new observations become available. For example,

AdaGrad-style methods (McMahan and Streeter , 2010; Duchi et al., 2010a) perform

gradient descent steps with the step size adapted based on the magnitude of recent

gradients. Follow the regularized leader (FTRL) type algorithms adapt the regular-

ization to the observations (McMahan, 2014). Recently, a method called Strongly

Adaptive Online Learning (SAOL) has been proposed, which maintains several learn-

ers with different learning rates and selects the best one based on recent performance

(Daniely et al., 2015). Several of these adaptive methods have provable regret bounds

(McMahan, 2014; Herbster and Warmuth, 1998; Hazan and Seshadhri , 2007). These

typically guarantee low total regret (i.e. regret from time 0 to time t) at every time

(McMahan, 2014). SAOL, on the other hand, is guaranteed to have low regret on

every subinterval, as well as low regret overall (Daniely et al., 2015).

We formulate the metric learning problem as a cooperative dynamic game between

the learner and the analyst. Both players’ goal is for the learner to learn the internal
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metric M used by the analyst. The metric is changing over time, making the game

dynamic. The analyst selects pairs of data points (xt, zt) in Rn and labels them

as similar (yt = 1) or dissimilar (yt = −1). The labels are assumed to arrive in a

temporal sequence, hence the labels at the beginning may have arisen from a different

metric than those at the end of the sequence.

Following (Kunapuli and Shavlik , 2012), we introduce the following margin based

constraints:

d2
M(xt, zt) ≤ µ− 1, ∀{t|yt = 1} (2.13)

d2
M(xt, zt) ≥ µ+ 1, ∀{t|yt = −1}

where µ is a threshold that controls the margin between similar and dissimilar points.

A diagram illustrating these constraints and their effect is shown in Figure 6.2.

These constraints are softened by penalizing violation of the constraints with a

convex loss function `t. This gives the following objective:

min
M�0,µ≥1

1

T

T∑
t=1

`t(M, µ) + ρr(M) (2.14)

`t(M, µ) =`(mt), mt = yt(µ− uTt Mut), ut = xt − zt

where r is the regularizer. Kunapuli and Shavlik propose using nuclear norm regular-

ization (r(M) = ‖M‖∗) to encourage projection of the data onto a low dimensional

subspace (feature selection/dimensionality reduction). Other regularization such as

sparsity promoting 1-norm (r(M) = ‖M‖1) is also possible.

This objective can be solved online via Composite Objective Mirror Descent (CO-

MID) (Kunapuli and Shavlik , 2012). COMID, however, requires setting a learning

rate that decays to zero, thus preventing any further learning after a certain point. In
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order to be able to track an arbitrarily changing metric, we use the Strongly Adap-

tive Online Learning framework, which at every time point maintains a set of learners

operating at different learning rates and adaptively selects the most appropriate one

based on recent performance. We develop an efficient implementation of SAOL with

COMID learners, and apply it to the metric learning problem.

The performance of online algorithms is often quantified using regret bounds,

which measure the loss relative to a static batch estimate. A useful generalization

of the standard static regret to the dynamic case is as follows. Let w = {θt}t∈[0,T ]

be an arbitrary sequence of parameters. Then, the dynamic regret of an algorithm B

relative to a comparator sequence w on the interval I is defined as

RB,w(I) =
∑
t∈I

ft(θ̂t)−
∑
t∈I

ft(θt), (2.15)

where θ̂t are generated by B. This allows for a dynamically changing estimate.

In (Hall and Willett , 2015) the authors derive dynamic regret bounds that hold

over all possible sequences w such that
∑

t∈I ‖θt+1 − θt‖ ≤ γ, i.e. bounding the total

amount of variation in the estimated parameter. Without this temporal regulariza-

tion, minimizing the loss would cause θt to grossly overfit. In this sense, setting the

comparator sequence w to the “ground truth sequence” or “batch optimal sequence”

both provide meaningful intuitive bounds.

Strongly adaptive regret bounds Daniely et al. (2015) have claimed that static

regret is low on every subinterval, instead of only low in the aggregate. We use

the notion of dynamic regret to introduce strongly adaptive dynamic regret bounds,

proving that dynamic regret is low on every subinterval I ⊆ [0, T ] simultaneously.

Suppose there are a sequence of random loss functions `t(θt). The goal is to estimate

a sequence θ̂t that minimizes the dynamic regret.

Theorem II.1. Let w = {θ1, . . . , θT} be an arbitrary sequence of parameters and
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define γw(I) =
∑

q≤t<s ‖θt+1 − θt‖ as a function of w and an interval I = [q, s].

Choose an ensemble of learners B such that given an interval I the learner BI creates

an output sequence θt(I) satisfying the dynamic regret bound

RBI ,w(I) ≤ C(1 + γw(I))
√
|I| (2.16)

for some constant C > 0. Then the strongly adaptive dynamic learner OCELADB

using B as the ensemble creates an estimation sequence θ̂t satisfying

ROCELADB,w(I) ≤ 8C(1 + γw(I))
√
|I|+ 40 log(s+ 1)

√
|I|

on every interval I = [q, s] ⊆ [0, T ].

In a dynamic setting, bounds of this type are particularly desirable because they

allow for changing drift rate and guarantee quick recovery from discrete changes.

For instance, suppose K discrete switches (large parameter changes or changes in

drift rate) occur at times ti satisfying 0 = t0 < t1 < · · · < tK = T . Then since∑K
i=1

√
|ti−1 − ti| ≤

√
KT , this implies that the total expected dynamic regret on

[0, T ] remains low (O(
√
KT )), while simultaneously guaranteeing that an appropriate

learning rate is achieved on each subinterval [ti, ti+1].

We are able to confirm the superiority of the adaptive approach via simulation

and experiments on highly nonstationary Twitter data.
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CHAPTER III

Robust Kronecker Product PCA for

Spatio-Temporal Covariance Estimation

In this chapter, we develop a method for robust estimation of spatio-temporal

covariances and apply it to multivariate time series modeling and parameter estima-

tion. We exploit Kronecker structure by assuming the covariance can be expressed

as a sum of r Kronecker products and a sparse term.

3.1 Introduction

Let X be a ps × pt matrix with entries x̃(m, t) denoting samples of a space-

time random process defined over a ps-grid of spatial samples m ∈ {1, . . . , ps} and

a pt-grid of time samples t ∈ {1, . . . , pt}. Let x = vec(X) denote the ptps column

vector obtained by lexicographical reordering. Define the ptps × ptps spatiotemporal

covariance matrix Σ = Cov[x].

As pspt can be very large, even for moderately large ps and pt the number of

degrees of freedom (pspt(pspt + 1)/2) in the covariance matrix can greatly exceed the

number n of training samples available to estimate the covariance matrix. One way

to handle this problem is to introduce structure and/or sparsity into the covariance

matrix, thus reducing the number of parameters to be estimated. A natural non-
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sparse option is to introduce structure by modeling the covariance matrix Σ as the

Kronecker product of two smaller symmetric positive definite matrices, i.e.

Σ = A⊗B. (3.1)

An extension to the representation (5.2), discussed in (Tsiligkaridis and Hero,

2013), approximates the covariance matrix using a sum of Kronecker product factors

Σ =
∑r

i=1
Ai ⊗Bi, (3.2)

where r is the separation rank, Ai ∈ Rpt×pt , and Bi ∈ Rps×ps . We call this the

Kronecker PCA (KronPCA) covariance representation.

In (Loan and Pitsianis , 1993) it was shown that any covariance matrix can be

represented in this form with sufficiently large r. This allows for more accurate ap-

proximation of the covariance when it is not in Kronecker product form but most of

its energy can be accounted for by a few Kronecker components. An algorithm (Per-

muted Rank-penalized Least Squares (PRLS)) for fitting the model (5.5) to a mea-

sured sample covariance matrix was introduced in (Tsiligkaridis and Hero, 2013) and

was shown to have strong high dimensional MSE performance guarantees. It should

also be noted that, as contrasted to standard PCA, KronPCA accounts specifically for

spatio-temporal structure, often provides a full rank covariance, and requires signifi-

cantly fewer components (Kronecker factors) for equivalent covariance approximation

accuracy. Naturally, since it compresses covariance onto a more complex (Kronecker)

basis than PCA’s singular vector basis, the analysis of Kron-PCA estimation perfor-

mance is more complicated.

The standard Kronecker PCA model does not naturally accommodate additive

noise since the diagonal elements (variances) must conform to the Kronecker structure

of the matrix. To address this issue, in (Greenewald et al., 2013) we extended this
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KronPCA model, and the PRLS algorithm of (Tsiligkaridis and Hero, 2013), by

adding a structured diagonal matrix to (5.5). This model is called Diagonally Loaded

Kronecker PCA (DL-KronPCA) and, although it has an additional pspt parameters,

it was shown that for fixed r it performs significantly better for inverse covariance

estimation in cases where there is additive measurement noise (Greenewald et al.,

2013).

The DL-KronPCA model (Greenewald et al., 2013) is the r + 1-Kronecker model

Σ =
(∑r

i=1
Ai ⊗Bi

)
+ U = Θ + U, (3.3)

where the diagonal matrix U is called the “diagonal loading matrix.” Following

Pitsianis-VanLoan rearrangement of the square ptps × ptps matrix Σ to an equiv-

alent rectangular p2
s × p2

t matrix (Tsiligkaridis and Hero, 2013; Werner et al., 2008),

this becomes an equivalent matrix approximation problem of finding a low rank plus

diagonal approximation (Greenewald et al., 2013; Tsiligkaridis and Hero, 2013). The

DL-KronPCA estimation problem was posed in (Greenewald and Hero, 2014b; Gree-

newald et al., 2013) as the rearranged nuclear norm penalized Frobenius norm opti-

mization

min
Σ
‖Σ− Σ̂SCM‖2

F + λ‖R(Θ)‖∗ (3.4)

where the minimization is over Σ of the form (3.3), R(·) is the Pitsianis-VanLoan

rearrangement operator defined in the next section, and ‖ · ‖∗ is the nuclear norm. A

weighted least squares solution to this problem is given in (Greenewald et al., 2013;

Greenewald and Hero, 2014b).

This work extends DL-KronPCA to the case where U in (3.3) is a sparse loading

matrix that is not necessarily diagonal. In other words, we model the covariance as
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the sum of a low separation rank matrix Θ and a sparse matrix Γ:

Σ =
(∑r

i=1
Ai ⊗Bi

)
+ Γ = Θ + Γ. (3.5)

DL-KronPCA is obviously a special case of this model. The motivation behind the

extension (3.5) is that while the KronPCA models (5.5) and (3.3) may provide a

good fit to most entries in Σ, there are sometimes a few variables (or correlations)

that cannot be well modeled using KronPCA, due to complex non-Kronecker struc-

tured covariance patterns, e.g. sparsely correlated additive noise, sensor failure, or

corruption. Thus, inclusion of a sparse term in (3.5) allows for a better fit with

lower separation rank r, thus reducing the overall number of model parameters. In

addition, if the underlying distribution is heavy tailed, sparse outliers in the sample

covariance will occur, which will corrupt Kronecker product estimates (5.5) and (3.3)

that don’t have the flexibility of absorbing them into a sparse term. This notion of

adding a sparse correction term to a regularized covariance estimate is found in the

Robust PCA literature, where it is used to allow for more robust and parsimonious

approximation to data matrices (Chandrasekaran et al., 2009, 2010; Candès et al.,

2011; Yang and Ravikumar , 2013). Robust KronPCA differs from Robust PCA in

that it replaces the outer product with the Kronecker product. KronPCA and PCA

are useful for significantly different applications because the Kronecker product allows

the decomposition of spatio-temporal processes into (full rank) spatio-temporally sep-

arable components, whereas PCA decomposes them into deterministic basis functions

with no explicit spatio-temporal structure (Tsiligkaridis and Hero, 2013; Greenewald

et al., 2013; Werner et al., 2008). Sparse correction strategies have also been applied

in the regression setting where the sparsity is applied to the first moments instead of

the second moments (Peng et al., 2010; Otazo et al., 2014).

The model (3.5) is called the Robust Kronecker PCA (Robust KronPCA) model,
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and we propose regularized least squares based estimation algorithms for fitting the

model. In particular, we propose a singular value thresholding (SVT) approach using

the rearranged nuclear norm. However, unlike in robust PCA, the sparsity is applied

to the Kronecker decomposition instead of the singular value decomposition. We

derive high dimensional consistency results for the SVT-based algorithm that specify

the MSE tradeoff between covariance dimension and the number of samples. Following

(Greenewald and Hero, 2014b), we also allow for the enforcement of a temporal block

Toeplitz constraint, which corresponds to a temporally stationary covariance and

results in a further reduction in the number of parameters when the process under

consideration is temporally stationary and the time samples are uniformly spaced.

We illustrate our proposed robust Kronecker PCA method using simulated data and

a yeast cell cycle dataset.

The rest of the chapter is organized as follows: in Section 3.2, we introduce our Ro-

bust KronPCA model and introduce an algorithm for estimating covariances described

by it. Section 3.3 provides high dimensional convergence theorems. Simulations and

an application to cell cycle data are presented in Section 4.5, and our conclusions are

given in Section 4.6.

3.2 Robust KronPCA

Consider the model (3.5) for the covariance as the sum of a low separation rank

matrix Θ and a sparse matrix Γ:

Σ = Θ + Γ. (3.6)

Define M(i, j) as the i, jth ps×ps subblock of M, i.e., M(i, j) = [M ](i−1)ps+1:ips,(j−1)ps+1:jps .

The invertible Pitsianis-VanLoan rearrangement operator R(·) maps ptps × ptps ma-

trices to p2
t × p2

s matrices and, as defined in (Tsiligkaridis and Hero, 2013; Werner
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et al., 2008) sets the (i− 1)pt + jth row of R(M) equal to vec(M(i, j))T , i.e.

R(M) = [ m1 . . . mp2
t

]T , (3.7)

m(i−1)pt+j = vec(M(i, j)), i, j = 1, . . . , pt.

After Pitsianis-VanLoan rearrangement the expression (3.6) takes the form

R(Σ) =
∑r

i=1
aib

T
i + S = L + S, (3.8)

where ai = vec(Ai) and bi = vec(Bi). In the next section we solve this Robust

Kronecker PCA problem (low rank + sparse + noise) using sparse approximation,

involving a nuclear and 1-norm penalized Frobenius norm loss on the rearranged

fitting errors.

3.2.1 Estimation

Similarly to the approach of (Greenewald et al., 2013; Tsiligkaridis and Hero,

2013), we fit the model (3.6) to the sample covariance matrix Σ̂SCM = n−1
∑n

i=1(xi−

x)(xi − x)T , where x is the sample mean and n is the number of samples of the

space time process X. The best fit matrices Ai, Bi and Γ in (3.6) are determined by

minimizing the objective function

min
Θ̂,Γ̂
‖Σ̂SCM − Θ̂− Γ̂‖2

F + λΘ‖R(Θ̂)‖∗ + λΓ‖Γ̂‖1. (3.9)

We call the norm ‖R(Θ)‖∗ the rearranged nuclear norm of Θ. The regularization

parameters λΘ and λΓ control the importance of separation rank deficiency and spar-

sity, respectively, where increasing either increases the amount of regularization. The
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objective function (3.9) is equivalent to the rearranged objective function

min
L̂,Ŝ
‖R− L̂− Ŝ‖2

F + λΘ‖L̂‖∗ + λΓ‖Ŝ‖1, (3.10)

with R = R(Σ̂SCM). The objective function is minimized over all p2
t × p2

s matrices

R̂ = L̂ + Ŝ. The solutions L̂ and Ŝ correspond to estimates of R(Θ) and R(Γ)

respectively. As shown in (Greenewald et al., 2013), the left and right singular vectors

of L̂ correspond to the (normalized) vectorized Ai and Bi respectively, as in (3.8).

This nuclear norm penalized low rank matrix approximation is a well-studied op-

timization problem (Mazumder et al., 2010), where it is shown to be strictly convex.

Several fast solution methods are available, including the iterative SVD-based prox-

imal gradient method on which Algorithm 1 is based (Moore et al., 2014). If the

sparse correction Γ is omitted, equivalent to setting λΓ =∞, the resulting optimiza-

tion problem can be solved directly using the SVD (Tsiligkaridis and Hero, 2013).

The minimizers L̂, Ŝ of (4.15) are transformed to the covariance estimate by the

simple operation

Σ̂ = R−1
(
L̂ + Ŝ

)
, (3.11)

where R−1(·) is the inverse of the permutation operator R(·). As the objective func-

tion in Equation (4.15) is strictly convex and is equivalent to the Robust PCA ob-

jective function of (Moore et al., 2014), Algorithm 1 converges to a unique global

minimizer.

Algorithm 1 is an appropriate modification of the iterative algorithm described

in (Moore et al., 2014). It consists of alternating between two simple steps: 1) soft

thresholding of the singular values of the difference between the overall estimate and

the estimate of the sparse part (SVTλ(·)), and 2) soft thresholding of the entries

of the difference between the overall estimate and the estimate of the low rank part
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(softλ(·)). The soft singular value thresholding operator is defined as

SVTλ(M) = U
(
diag(σ1, . . . , σmin(m1,m2))− λI

)
+

VT , (3.12)

where Udiag(σ1, . . . , σmin(m1,m2))V
T is the singular value decomposition of M ∈ Rm1×m2

and (·)+ = max(·, 0). The entrywise soft thresholding operator is given by

[softλ(M)]ij = sign(Mij)(|Mij| − λ)+. (3.13)

Algorithm 1 Proximal Gradient Robust KronPCA

1: R = R(Σ̂SCM)
2: Initialize M,S,L, choose step sizes τk.
3: while R−1 (L + S) not converged do
4: Lk = SVTτkλ

′
Θ

(Mk−1 − Sk−1)

5: Sk = softτkλ′Γ(Mk−1 − Lk−1)

6: Mk = Lk + Sk − τk(Lk + Sk −R)
7: end while
8: Σ̂ = R−1 (L + S)

9: return Σ̂

Algorithm 2 Proximal Gradient Robust Toeplitz KronPCA

1: R̃ = PR(Σ̂SCM)
2: Initialize M,S,L, choose step sizes τk.
3: while R−1

(
PT (L + S)

)
not converged do

4: Lk = SVTτkλ
′
Θ

(Mk−1 − Sk−1)
5: for j ∈ I do
6: Skj+pt = softτkλ′Γcj(M

k−1
j+pt
− Lk−1

j+pt
)

7: end for
8: Mk = Lk + Sk − τk(Lk + Sk − R̃)
9: end while

10: Σ̂ = R−1
(
PT (L + S)

)
11: return Σ̂
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3.2.2 Block Toeplitz Structured Covariance

Here we extend Algorithm 1 to incorporate a block Toeplitz constraint. Block

Toeplitz constraints are relevant to stationary processes arising in signal and image

processing. For simplicity we consider the case that the covariance is block Toeplitz

with respect to time, however, extensions to the cases of Toeplitz spatial structure and

having Toeplitz structure simultaneously in both time and space are straightforward.

The objective function (4.15), is to be solved with a constraint that both Θ̂ and Γ̂

are temporally block Toeplitz.

For low separation rank component Θ =
∑r

i=1 Ai ⊗ Bi, the block Toeplitz con-

straint is equivalent to a Toeplitz constraint on the temporal factors Ai. The Toeplitz

constraint on Ai is equivalent to (Kamm and Nagy , 2000; Pitsianis , 1997)

[ai]k = v
(i)
j+pt

, ∀k ∈ K(j), j = −pt + 1, . . . , pt − 1, (3.14)

for some vector v(i) where ai = vec(Ai) and

K(j) = {k : (k − 1)pt + k + j ∈ [−pt + 1, pt − 1]}. (3.15)

It can be shown, after some algebra, that the optimization problem (4.15) con-

strained to block Toeplitz covariances is equivalent to an unconstrained penalized

least squares problem involving v(i) instead of ai. Specifically, following the tech-

niques of (Kamm and Nagy , 2000; Pitsianis , 1997; Greenewald and Hero, 2014b)

with the addition of the 1-norm penalty, the constrained optimization problem (4.15)

can be shown to be equivalent to the following unconstrained optimization problem:

min
L̃,S̃
‖R̃− L̃− S̃‖2

F+λ′Θ‖L̃‖∗ + λ′Γ
∑
j∈I

cj‖S̃j+pt‖1, (3.16)

where S̃j denotes the jth row of S̃, L̃ = PL̂, S̃ = PS, and R̃ = PR. The summation
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indices I, the 1-norm weighting constants cj, and the (2pt − 1) × p2
t matrix P are

defined as

I ={−pt + 1, . . . , pt − 1} (3.17)

cj =1/
√
pt − |j|

Ppt+j,i =


1√
pt−|j|

i ∈ K(j)

0 o.w.

where the last line holds for all j = −pt + 1, . . . , pt − 1, i = 1, . . . , p2
s. Note that this

imposition of Toeplitz structure also results in a significant reduction in computational

cost primarily due to a reduction in the size of the matrix in the singular value

thresholding step (Greenewald and Hero, 2014b). The block Toeplitz estimate is

given by

Σ̂ = R−1
(
PT
(
L̃ + S̃

))
, (3.18)

where L̃, S̃ are the minimizers of (3.16). Similarly to the non-Toeplitz case, the

block Toeplitz estimate can be computed using Algorithm 2, which is the appropriate

modification of Algorithm 1. As the objective function in Equation (4.15) is strictly

convex and is equivalent to the Robust PCA objective function of (Moore et al., 2014),

Algorithm 2 converges to a unique global minimizer.

The non-Toeplitz and Toeplitz objective functions (4.15) and (3.16), respectively,

are both invariant with respect to replacing Θ with ΘT and Γ with ΓT because ΣSCM

is symmetric. Furthermore, ‖(M + MT )/2‖ ≤ 1
2
(‖M‖+ ‖MT‖) = ‖M‖ (for both the

weighted 1-norm and nuclear norm) by the triangle inequality. Hence the symmetric

(Σ + ΣT )/2 = (Θ + ΘT )/2 + (Γ + ΓT )/2 will always result in at least as low an

objective function value as would Σ. By the uniqueness of the global optimum, the

Robust KronPCA covariance estimates Θ̂ and Γ̂ are therefore symmetric for both the
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Toeplitz and non-Toeplitz cases.

3.3 High Dimensional Consistency

In this section, we impose the additional assumption that the training data xi is

Gaussian with true covariance given by

Σ0 = Θ0 + Γ0, (3.19)

where Θ0 is the low separation rank covariance of interest and Γ0 is sparse.

A norm Rk(·) is said to be decomposable with respect to subspaces (Mk,M̄k) if

(Yang and Ravikumar , 2013)

Rk(u+ v) = Rk(u) +Rk(v), ∀u ∈Mk, v ∈ M̄⊥
k . (3.20)

We define subspace pairs MQ,M̄Q (Yang and Ravikumar , 2013) with respect

to which the rearranged nuclear (Q = Θ) and 1-norms (Q = Γ) are respectively

decomposable (Yang and Ravikumar , 2013). These are associated with the set of

either low separation rank (Q = Θ) or sparse (Q = Γ) matrices. For the sparse

case, let S be the set of indices on which vec{Γ} is nonzero. Then MΓ = M̄Γ is

the subspace of vectors in Rp2
t p

2
s that have support contained in S, and M̄⊥

Γ is the

subspace of vectors orthogonal to M̄⊥
Γ , i.e. the subspace of vectors with support

contained in Sc.

For the rearranged nuclear norm, note that by (Loan and Pitsianis , 1993) any

pq × pq matrix Θ can be decomposed as

Θ =

min(p2
t ,p

2
s)∑

i=1

σiA
(i)
Θ ⊗B

(i)
Θ (3.21)
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where for all i, ‖A(i)
Θ ‖F = ‖B(i)

Θ ‖F = 1, σi ≥ 0 and nonincreasing, the pt × pt {A(i)
Θ }i

are all linearly independent, and the ps× ps {B(i)
Θ }i are all linearly independent. It is

easy to show that this decomposition can be computed by extracting and rearranging

the singular value decomposition of R(Θ) (Loan and Pitsianis , 1993; Tsiligkaridis

and Hero, 2013; Werner et al., 2008) and thus the σi are uniquely determined. Let r

be such that σi = 0 for all i > r. Define the matrices

UA = [vec(A
(1)
Θ ), . . . , vec(A

(r)
Θ )],

UB = [vec(B
(1)
Θ ), . . . , vec(B

(r)
Θ )].

Then we define a pair of subspaces with respect to which the nuclear norm is decom-

posable as

MΘ =range(UA ⊗UB), (3.22)

M̄⊥
Θ =range(U⊥A ⊗U⊥B).

It can be shown that these subspaces are uniquely determined by Θ.

Consider the covariance estimator that results from solving the optimization prob-

lem in Equation (4.15). As is typical in Robust PCA, an incoherence assumption is

required to ensure that Θ and Γ are distinguisable. Our incoherence assumption is

as follows:

max
{
σmax

(
PM̄Θ

PM̄Γ

)
, σmax

(
PM̄⊥ΘPM̄Γ

)
, (3.23)

σmax

(
PM̄Θ

PM̄⊥Γ
)
, σmax

(
PM̄⊥ΘPM̄⊥Γ

)}
≤ 16

Λ2

where

Λ = 2 + max

{
3β
√

2r

λ
√
s
,

3λ
√
s

β
√

2r

}
, (3.24)
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PM̄Q
is the matrix corresponding to the projection operator that projects onto the

subspace M̄Q and σmax denotes the maximum singular value.

By way of interpretation, note that the maximum singular value of the product of

projection matrices measures the “angle” between the subspaces. Hence, the incoher-

ence condition is imposing that the subspaces in which Θ and Γ live be sufficiently

“orthogonal” to each other i.e., “incoherent.” This ensures identifiability in the sense

that a portion of Γ (a portion of Θ) cannot be well approximated by adding a small

number of additional terms to the Kronecker factors of Θ (Γ). Thus Θ cannot be

sparse and Γ cannot have low separation rank. In (Yang and Ravikumar , 2013) it

was noted that this incoherency condition is significantly weaker than other typically

imposed approximate orthogonality conditions.

Suppose that in the robust KronPCA model the n training samples are multi-

variate Gaussian distributed and IID, that L0 = R(Θ0) is at most rank r, and that

S0 = R(Θ0) has s nonzero entries (3.8). Choose the regularization parameters to be

λΘ = k‖Σ0‖max(α2, α), λΓ = 32ρ(Σ0)

√
log ptps
n

, (3.25)

where ρ(Σ) = maxj Σjj and k is smaller than an increasing function of t0 given in the

proof ((3.41)). We define α below.

Given these assumptions, we have the following bound on the estimation error

(defining M = max(pt, ps, n)).

Theorem III.1 (Robust KronPCA). Let L0 = R(Θ0). Assume that the incoher-

ence assumption (3.23) and the assumptions in the previous paragraph hold, and

the regularization parameters λΘ and λΓ are given by Equation (3.25) with α =√
t0(p2

t + p2
s + logM)/n for any chosen t0 > 1. Then the Frobenius norm error of
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the solution to the optimization problem (4.15) is bounded as:

‖L̂−L0‖F ≤ (3.26)

6 max

{
k‖Σ0‖

√
rmax(α2, α), 32ρ(Σ0)

√
s log ptps

n

}

with probability at least 1 − c exp(−c0 log ptps), where c, c0 are constants, and c0 is

dependent on t0 but is bounded from above by an absolute constant.

The proof of this theorem can be found in Appendix 3.6.1. Note that in practice

the regularization parameters will be chosen via a method such as cross validation,

so given that the parameters in (3.25) depend on Σ0, the specific values in (3.25) are

less important than how they scale with pt, ps, n.

Next, we derive a similar bound for the Toeplitz Robust KronPCA estimator.

It is easy to show that a decomposition of Θ of the form (3.21) exists where all

the Ai are Toeplitz. Hence the definitions of the relevant subspaces (M̄Γ, M̄Θ,MΓ,

MΘ) are of the same form as for the non Toeplitz case. In the Gaussian robust

Toeplitz KronPCA model (3.16), further suppose L̃0 = PL0 is at most rank r and

S̃0 = PS0 has at most s nonzero entries.

Theorem III.2 (Toeplitz Robust KronPCA). Assume that the assumptions of The-

orem III.1 hold and that PL0 is at most rank r and that PS0 has at most s non-

zero entries. Let the regularization parameters λΘ and λΓ be as in (3.25) with

α =
√
t0(2pt + p2

s + logM)/n for any t0 > 1. Then the Frobenius norm error of

the solution to the Toeplitz Robust KronPCA optimization problem (4.15) with coef-

ficients given in (3.17) is bounded as:

‖L̂−L0‖F ≤ (3.27)

6 max

{
k‖Σ0‖

√
rmax(α2, α), 32ρ(Σ0)

√
s log ptps

n

}
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with probability at least 1 − c exp(−c0 log ptps), where c, c0 are constants, and c0 is

dependent on t0 but is bounded from above by an absolute constant.

The proof of this theorem is given in Appendix 3.6.1.

Comparing the right hand sides of (3.26) and (3.27) in Theorems III.1 and III.2

we see that, as expected, prior knowledge of Toeplitz structure reduces the Frobenius

norm error of the estimator L̂ from O(p2
t ) to O(pt).

3.4 Results

3.4.1 Simulations

In this section we evaluate the performance of the proposed robust Kronecker PCA

algorithms by conducting mean squared covariance estimation error simulations. For

the first simulation, we consider a covariance that is a sum of 3 Kronecker products

(pt = 10, ps = 50), with each term being a Kronecker product of two autoregressive

(AR) covariances. AR processes with AR parameter a have covariances Ψ given by

ψij = ca|i−j|. (3.28)

For the p × p temporal factors Ai, we use AR parameters [0.5, 0.8, 0.05] and for the

q × q spatial factors Bi we use [0.95, 0.35, 0.999]. The Kronecker terms are scaled by

the constants [1, 0.5, 0.3]. These values were chosen to create a complex covariance

with 3 strong Kronecker terms with widely differing structure. The result is shown

in Figure 3.1. We ran the experiments below for 100 cases with randomized AR

parameters and in every instance Robust KronPCA dominated standard KronPCA

and the sample covariance estimators to an extent qualitatively identical to the case

shown below.

To create a covariance matrix following the non-Toeplitz “KronPCA plus sparse”

model, we create a new “corrupted” covariance by taking the 3 term AR covariance
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and deleting a random set of row/column pairs, adding a diagonal term, and sparsely

adding high correlations (whose magnitude depends on the distance to the diagonal)

at random locations. Figure 3.2 shows the resulting corrupted covariance. To create

a “corrupted” block Toeplitz “KronPCA plus sparse” covariance, a diagonal term

and block Toeplitz sparse correlations were added to the AR covariance in the same

manner as in the non-Toeplitz case.

Figures 3.3 and 3.4 show results for estimating the Toeplitz corrupted covari-

ance, and non-Toeplitz corrupted covariance respectively, using Algorithms 1 and 2.

For both simulations, the average MSE of the covariance estimate is computed for

a range of Gaussian training sample sizes. Average 3-steps ahead prediction MSE

loss using the learned covariance to form the predictor coefficients (Σ̂yxΣ̂
†
xx) is shown

in Figure 3.5. MSE loss is the prediction MSE using the estimated covariance mi-

nus E[(y −E[y|x])2], which is the prediction MSE achieved using an infinite number

of training samples. The regularization parameter values shown are those used at

n = 105 samples, the values for lower sample sizes are set proportionally using the

n-dependent formulas given by (3.25) and Theorem III.1. The chosen values of the

regularization parameters are those that achieved best average performance in the

appropriate region. Note the significant gains achieved using the proposed regular-

ization, and the effectiveness of using the regularization parameter formulas derived

in the theorems. In addition, note that separation rank penalization alone does not

maintain the same degree of performance improvement over the unregularized (SCM)

estimate in the high sample regime, whereas the full Robust KronPCA method main-

tains a consistent advantage (as predicted by the Theorems III.1 and III.2).

3.4.2 Cell Cycle Modeling

As a real data application, we consider the yeast (S. cerevisiae) metabolic cell

cycle dataset used in (Deckard et al., 2013). The dataset consists of 9335 gene probes
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Figure 3.1: Uncorrupted covariance used for the MSE simulations. Subfigures (clock-
wise starting from upper left): r = 3 KronPCA covariance with AR
factors Ai, Bi (5.5); its KronPCA and PCA spectra; and the first spatial
and temporal factors of the original covariance.

sampled approximately every 24 minutes for a total of 36 time points, and about 3

complete cell cycles (Deckard et al., 2013).

In (Deckard et al., 2013), it was found that the expression levels of many genes

exhibit periodic behavior in the dataset due to the periodic cell cycle. Our goal is

to establish that periodicity can also be detected in the temporal component of the

Kronecker spatio-temporal correlation model for the dataset. Here the spatial index

is the label of the gene probe. We use pt = 36 so only one spatio-temporal training

sample is available. Due to their high dimensionality, the spatial factor estimates have

very low accuracy, but the first few temporal Ai factors (36 × 36) can be effectively

estimated (bootstrapping using random sets of 20% genes achieved less than 3% RMS

variation) due to the large number of spatial variables. We learn the spatiotemporal

covariance (both space and time factors) using Robust KronPCA and then analyze

the estimated time factors (Ai) to discover periodicity. This allows us to consider
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the overall periodicity of the gene set, taking into account relationships between the

genes, as contrasted to the univariate analysis as in (Deckard et al., 2013). The sparse

correction to the covariance allows for the partial or complete removal of genes and

correlations that are outliers in the sense that their temporal behavior differs from

the temporal behavior of the majority of the genes.

Figure 3.6 shows the quantiles of the empirical distribution of the entries of the

sample covariance versus those of the normal distribution. The extremely heavy

tails motivate the use of a sparse correction term as opposed to the purely quadratic

approach of standard KronPCA. Plots of the first row of each temporal factor estimate

are shown in Figure 3.7. The first three factors are shown when the entire 9335

gene dataset is used to create the sample covariance. Note that 3 cycles of strong

temporal periodicity are discovered, which matches our knowledge that approximately

3 complete cell cycles are contained in the sequence. Figure 3.8 displays the estimates

of the first temporal factor when only a random 500 gene subset is used to compute

the sample covariance. Note that the standard KronPCA estimate has much higher

variability than the proposed robust KronPCA estimate, masking the presence of

periodicity in the temporal factor. This is likely due to the heavy tailed nature of the

distribution, and to the fact that robust KronPCA is better able to handle outliers

via the sparse correction of the low Kronecker-rank component.

3.5 Conclusion

This chapter proposed a new robust method for performing Kronecker PCA of

sparsely corrupted spatiotemporal covariances in the low sample regime. The method

consists of a combination of KronPCA, a sparse correction term, and a temporally

block Toeplitz constraint. To estimate the covariance under these models, a robust

PCA based algorithm was proposed. The algorithm is based on nuclear norm pe-

nalization of a Frobenius norm objective to encourage low separation rank, and high
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dimensional performance guarantees were derived for the proposed algorithm. Fi-

nally, simulations and experiments with yeast cell cycle data were performed that

demonstrate advantages of our methods, both relative to the sample covariance and

relative to the standard (non-robust) KronPCA.

3.6 Appendix

3.6.1 Robust KronPCA: Derivation of High Dimensional Consistency

In this section we first prove Theorem III.1 and then prove Theorem III.2, which

are the bounds for the non-Toeplitz and Toeplitz cases respectively.

A general theorem for decomposable regularization of this type was proven in

(Yang and Ravikumar , 2013). In (Yang and Ravikumar , 2013) the theorem was

applied to Robust PCA directly on the sample covariance, hence when appropriate

we follow a similar strategy for our proof for the Robust KronPCA case.

Consider the more general M-estimation problem

min
(θk)k∈I

L

(∑
k∈I

θk

)
+
∑
k∈I

λkRk(θk), (3.29)

where L is a convex differentiable loss function, the regularizers Rk are norms, with

regularization parameters λk ≥ 2R∗k(∇θkL(θ∗)). R∗k is the dual norm of the norm Rk,

∇θ denotes the gradient with respect to θ, and θ∗ is the true parameter value.

To emphasize that L depends on the observed training data X (in our case through

the sample covariance), we also write L(θ; X). Let Mk be the model subspace as-

sociated with the constraints enforced by Rk (Yang and Ravikumar , 2013). Assume

the following conditions are satisfied:

1. The loss function L is convex and differentiable.

2. Each norm Rk (k ∈ I) is decomposable with respect to the subspace pairs
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(Mk,M̄⊥
k ), where Mk ⊆ M̄k.

3. (Restricted Strong Convexity) For all ∆ ∈ Ωk, where Ωk is the parameter space

for parameter component k,

δL(∆k; θ
∗) := L(θ∗ + ∆k)− L(θ∗)− 〈∆θL(θ∗),∆k〉

≥ κL‖∆k‖2 − gkR2
k(∆k), (3.30)

where κL is a “curvature” parameter, and gkR2
k(∆k) is a “tolerance” parameter.

4. (Structural Incoherence) For all ∆k ∈ Ωk,

|L(θ∗ +
∑
k∈I

∆k) + (|I| − 1)L(θ∗)−
∑
k∈I

L(θ∗ + ∆k)|

≤ κL
2

∑
k∈I

‖∆k‖2 +
∑
k∈I

hkR2
k(∆k). (3.31)

Define the subspace compatibility constant as Ψk(M, ‖ ·‖) := supu∈M\{0}
Rk(u)
‖u‖ . Given

these assumptions, the following theorem holds (Corollary 1 in (Yang and Ravikumar ,

2013)):

Theorem III.3. Suppose that the subspace-pairs are chosen such that the true pa-

rameter values θ∗k ∈Mk. Then the parameter error bounds are given as:

‖θ̂ − θ∗‖ ≤
(

3|I|
2κ̄

)
max
k∈I

λkΨk(M̄k). (3.32)

where

κ̄ :=
κL
2
− 32ḡ|I|

(
max
k∈I

λkΨk(M̄k)

)2

,

ḡ := max
k

1

λk

√
gk + hk.
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We can now prove Theorem III.1.

Proof of Theorem III.1. To apply Theorem III.3 to the KronPCA estimation prob-

lem, we first check the conditions. In our objective function (4.15), we have a loss

L(Σ; X) = ‖Σ−Σ̂SCM‖2
F , which of course satisfies condition 1. It was shown in (Yang

and Ravikumar , 2013) that the nuclear norm and the 1-norm both satisfy Condition

2 with respect to MΘ,M̄Θ and MΓ,M̄Γ respectively. Hence we let the two Rk be

the nuclear norm (RΘ(·) = ‖ · ‖∗) and the 1-norm (RΓ(·) = ‖ · ‖1) terms in (4.15).

The restricted strong convexity condition (Condition 3) holds trivially with κL = 1

and gk = 0 (Yang and Ravikumar , 2013).

It was shown in (Yang and Ravikumar , 2013) that for the linear Frobenius norm

mismatch term (L(Σ) = ‖Σ− Σ̂SCM‖2
F ) that we use in (4.15), the following simpler

structural incoherence condition implies Condition 4 with hk = 0:

max
{
σmax

(
PM̄Θ

PM̄Γ

)
, σmax

(
PM̄Θ

PM̄⊥Γ
)
, (3.33)

σmax

(
PM̄⊥ΘPM̄Γ

)
, σmax

(
PM̄⊥ΘPM̄⊥Γ

)}
≤ 1

16Λ2

where Λ = maxk1,k2

{
2 +

3λk1
Ψk1

(M̄k1
)

λk2
Ψk2

(M̄k2
)

}
.

The subspace compatibility constants are as follows (Yang and Ravikumar , 2013):

ΨΘ(M̄Θ) = sup
∆∈M̄Θ\{0}

‖∆‖∗
‖∆‖F

≤
√

2r, (3.34)

ΨΓ(M̄Γ) = sup
∆∈M̄Γ\{0}

‖∆‖1

‖∆‖F
≤
√
s,

where r is the rank of Θ and s is the number of nonzero entries in Γ. The first follows

from the fact that for all Θ ∈ M̄Θ, rank(Θ) ≤ 2r since both the row and column

spaces of Θ must be of rank r (Yang and Ravikumar , 2013). Hence, we have that

Λ = 2 + max

{
3β
√

2r

λ
√
s
,

3λ
√
s

β
√

2r

}
. (3.35)
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Finally, we need to show that both of the regularization parameters satisfy λk ≥

2R∗k(∇θkL(θ∗; X)), i.e.

λΘ ≥ 2R∗Θ(∇ΘL(Θ0 + Γ0; X)) (3.36)

λΓ ≥ 2RΓ(∇ΓL(Θ0 + Γ0; X))

with high probability. Since the 1-norm is invariant under rearrangement, the argu-

ment from (Yang and Ravikumar , 2013) still holds and we have that

λΓ = 32ρ(Σ0)

√
log ptps
n

(3.37)

satisfies (3.36) with probability at least 1− 2 exp(−c2 log pspt).

For the low rank portion, (3.36) will hold if (Yang and Ravikumar , 2013)

λΘ ≥ 4‖R(Σ̂SCM −Σ0)‖. (3.38)

From (Tsiligkaridis and Hero, 2013) we have that for t0 ≥ f(ε) = 4C log(1+ 2
ε
) (C

absolute constant given in (Tsiligkaridis and Hero, 2013)), C an absolute constant,

and α ≥ 1

‖R(Σ̂SCM −Σ0)‖ ≤ ‖Σ0‖t0
1− 2ε

p2
t + p2

s + logM

n
(3.39)

with probability at least 1− 2M−t0/4C and otherwise

‖R(Σ̂SCM −Σ0)‖ ≤ ‖Σ0‖
√
t0

1− 2ε

√
p2
t + p2

s + logM

n
(3.40)

with probability at least 1 − 2M−t0/4C . Thus our choice of λθ satisfies (3.38) with

high probability. To satisfy the constraints on t, we need t0 > f 2(ε). Clearly, ε can
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be adjusted to satisfy the constraint and

k = 4/(1− 2ε). (3.41)

Recalling the sparsity probability 1 − 2 exp(−c2 log ptps), the union bound implies

(3.36) is satisfied for both regularization parameters with probability at least 1 −

2 exp(−c2 log ptps)− 2 exp(−(t0/4C) logM) ≥ 1− c exp(−c0 log ptps) and the proof of

Theorem III.1 is complete. �

Next, we present the proof for Theorem III.2, emphasizing only the parts that

differ from the non Toeplitz proof of Theorem III.1, since much of the proof for the

previous theorem carries over to the Toeplitz case. Let

∆n = R(W) (3.42)

W = Σ̂SCM −Σ0.

We require the following corollary based on an extension of a theorem in (Tsiligkaridis

and Hero, 2013) to the Toeplitz case:

Corollary III.4. Suppose Σ0 is a ptps × ptps covariance matrix, ‖Σ0‖2 is finite for

all pt, ps, and let M = max(pt, ps, n). Let ε′ < 0.5 be fixed and assume that t0 ≥ f(ε)

and C = max(C1, C2) > 0. We have that

‖∆n‖2 ≤
‖Σ0‖

1− 2ε′
max

{
t0α

2,
√
t0α
}

(3.43)

with probability at least 1− 2M− t0
4C , where

α =
2pt + p2

s + logM

n
. (3.44)

The proof of this result is in Appendix 3.6.2.
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Proof of Theorem III.2. Adjusting for the objective in (3.16), let the regularizers Rk

be RΘ(·) = ‖ · ‖∗ and RΓ(M) =
∑

j∈I cj‖Mj+pt‖1. Condition 1 still holds as in the

general non-Toeplitz case, and Condition 2 holds because RΓ is a positively weighted

sum of norms, forming a norm on the product space (which is clearly the entire

space). RΓ is decomposable because the 1-norm is decomposable and the overall

model subspace is the product of the model subspaces for each row. The remaining

two conditions trivially remain the same from the non Toeplitz case.

The subspace compatibility constant remains the same for the nuclear norm, and

for the sparse case we have for all ∆

RΓ(∆) ≤ ‖∆‖1 (3.45)

hence, the supremum under the 1-norm is greater than the supremum under the row

weighted norm. Thus, the subspace compatibility constant is still less than or equal

to
√
s, where s is now the number of nonzero entries in PR(Γ). A tighter bound is

achievable if the degree of sparsity in each row is known.

We now show that the regularization parameters chosen satisfy (3.36) with high

probability. For the sparse portion, we need to find the dual of RΓ, defined as

R∗Γ(Z) = sup {〈〈Z,X〉〉|RΓ(X) ≤ 1} , (3.46)

where 〈〈Z,X〉〉 = trace{ZTX}. Let the matrix P1 = diag{{
√
pt − |j|}pt−1

j=−pt+1}. De-

fine the matrices X′ such that X′ = P−1
1 X. Then RΓ(X) = ‖X′‖1 and

R∗Γ(Z) = sup {〈〈P1Z,X
′〉〉 | ‖X′‖1 ≤ 1} (3.47)

= ‖P1Z‖∞

since the dual of the 1-norm is the ∞-norm. From (Agarwal et al., 2012), (3.36) now
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takes the form

λΓ ≥ 4‖P1PW‖∞ = ‖W̃‖∞ (3.48)

where

W̃j+pt,i =
∑
`∈K(j)

W`,i. (3.49)

Hence

|W̃j+pt,i| ≤ (pt − |j|)‖W‖∞ (3.50)

‖W̃‖∞ ≤ pt‖W‖∞.

From (Agarwal et al., 2012) (via the union bound), we have

Pr

(
‖W‖∞ > 8ρ(Σ)

√
log ptps
n

)
≤ 2 exp(−c2 log(ptps)), (3.51)

giving

Pr

(
‖W̃‖∞ > 8ρ(Σ)pt

√
log ptps
n

)
≤ 2 exp(−c2 log(ptps)), (3.52)

which demonstrates that our choice for λΓ is satisfactory with high probability.

As before, for the low rank portion (3.36) will hold if (Yang and Ravikumar , 2013)

λΘ ≥ 4‖PR(Σ̂SCM −Σ0)‖. (3.53)

From Corollary III.4 we have that for t ≥ f(ε), C an absolute constant, and α ≥ 1

‖PR(Σ̂SCM −Σ0)‖ ≤ ‖Σ0‖t0
1− 2ε

2pt + p2
s + logM

n
(3.54)
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with probability at least 1− 2M−t0/4C and otherwise

‖PR(Σ̂SCM −Σ0)‖ ≤ ‖Σ0‖
√
t0

1− 2ε

√
2pt + p2

t + logM

n
(3.55)

with probability at least 1−2M−t0/4C . Hence, in the same way as in the non-Toeplitz

case we have with high probability

‖̂̃L−L̃0‖F ≤ 6 max

{
k‖Σ0‖

√
rmax(α2, α), 32ρ(Σ0)

√
s log ptps

n

}
(3.56)

and since L = PT L̃ the theorem follows.

�

3.6.2 Gaussian Chaos Operator Norm Bound

We first note the following corollary from (Tsiligkaridis and Hero, 2013):

Corollary III.5. Let x ∈ Sp2
t−1 and y ∈ Sp2

s−1. Let zi ∼ N (0,Σ0), i = 1, . . . , n be

ptps dimensional iid training samples. Let ∆n = R(Σ̂SCM−Σ0) = R( 1
n

∑
i ziz

T
i −Σ0).

Then for all τ > 0,

Pr(|xT∆ny| ≥ τ) ≤ exp

(
−nτ 2/2

C1‖Σ0‖2
2 + C2‖Σ0‖2τ

)
(3.57)

where C1, C2 are absolute constants.

The proof (appropriately modified from that of a similar theorem in (Tsiligkaridis

and Hero, 2013)) of Corollary III.4 then proceeds as follows:

Proof. Define N (Sd′−1, ε
′) as an ε′ net on Sd′−1. Choose x1 ∈ S2pt−2,y1 ∈ Sp2

s−1

such that |xT1 P∆ny1| = ‖P∆n‖2. By definition, there exists x2 ∈ N (S2pt−2, ε
′),y2 ∈
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N (Sp2
s−1, ε

′) such that ‖x1 − x2‖2 ≤ ε′, ‖y1 − y2‖2 ≤ ε′. Then

|xT1 P∆ny1| − |xT2 P∆ny2| ≤ |xT1 P∆ny1 − xT2 P∆ny2| (3.58)

≤ 2ε′‖P∆n‖2.

We then have

‖P∆n‖2(1− 2ε′) (3.59)

≤ max
{
|xT2 P∆ny2| : x2 ∈ N (S2pt−2, ε

′),

y2 ∈ N (Sp2
s−1, ε

′), ‖x1 − x2‖2 ≤ ε′, ‖y1 − y2‖2 ≤ ε′
}

≤ max
{
|xT2 P∆ny2| : x2 ∈ N (S2pt−2, ε

′),

y2 ∈ N (Sp2
s−1, ε

′)
}

since |xT1 P∆ny1| = ‖P∆n‖2. Hence

‖P∆n‖2 ≤
1

1− 2ε′
max

x∈N (S2pt−2,ε′),y∈N (S
p2s−1

,ε′)
|xTP∆ny|. (3.60)

From (Tsiligkaridis and Hero, 2013)

card(N (Sd′−1, ε
′)) ≤

(
1 +

2

ε′

)d′
(3.61)
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which allows us to use the union bound.

Pr(‖P∆n‖2 > ε′) (3.62)

≤ Pr

(
max

x∈N (S2pt−2,ε′),y∈N (S
p2s−1

,ε′)
|xTP∆ny| ≥ ε(1− 2ε′)

)

≤ Pr

 ⋃
x∈N (S2pt−2,ε′),y∈N (S

p2s−1
,ε′)

|xTP∆ny| ≥ ε(1− 2ε′)


≤ card(N (S2pt−2, ε

′))card(N (Sp2
s−1, ε

′))

× max
x∈N (S2pt−2,ε′),y∈N (S

p2s−1
,ε′)

Pr(|xTP∆ny| ≥ ε(1− 2ε′))

≤
(

1 +
2

ε′

)2pt+p2
s

× max
x∈N (S2pt−2,ε′),y∈N (S

p2s−1
,ε′)

Pr(|xTP∆ny| ≥ ε(1− 2ε′)).

Note that

‖xTP‖2
2 =

∑
j

x2
j+pt

pt − |j|
(pt − |j|) (3.63)

=
∑
j

x2
j = ‖x‖2

2 = 1,

so xTP ∈ Sp2
t−1. We can thus use Corollary III.5, giving

Pr(‖P∆n‖2 > ε′) (3.64)

≤ 2

(
1 +

2

ε′

)2pt+p2
s

exp

(
−nε2(1− 2ε′)2/2

C1‖Σ0‖2
2 + C2‖Σ0‖2ε(1− 2ε′)

)
.

Two regimes emerge from this expression. The first is where ε ≤ C1‖Σ0‖2
C2(1−2ε′)

, which

allows

Pr(‖P∆n‖2 > ε) ≤ 2

(
1 +

2

ε′

)2pt+p2
s

exp

(
−nε2(1− 2ε′)2/2

2C1‖Σ0‖2
2

)
. (3.65)
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Choose

ε =

√
t0‖Σ0‖2

1− 2ε′

√
2pt + p2

s + logM

n
. (3.66)

This gives:

Pr

(
‖P∆n‖2 >

√
t0‖Σ0‖2

1− 2ε′

√
2pt + p2

s + logM

n

)
(3.67)

≤ 2

(
1 +

2

ε′

)2pt+p2
s

exp

(
−t2(2pt + p2

s + logM)

4C1

)
≤ 2

((
1 +

2

ε′

)
e
− t0

4C1

)2pt+p2
s

M−t0/(4C1)

≤ 2M−t0/(4C1).

The second regime (ε > C1‖Σ0‖2
C2(1−2ε′)

) allows us to set ε to

ε =
t0‖Σ0‖2

1− 2ε′
2pt + p2

s + logM

n
(3.68)

which gives

Pr

(
‖P∆n‖2 >

t0‖Σ0‖2

1− 2ε′
2pt + p2

s + logM

n

)
(3.69)

≤ 2

(
1 +

2

ε′

)2pt+p2
s

exp

(
−t(2pt + p2

s + logM)

4C2

)
≤ 2M−t0/(4C2).

Combining both regimes (noting that t0 > 1 and
√
t0C1/C2 > 1) completes the proof.

�
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Figure 3.2: Corrupted version of the r = 3 KronPCA covariance (Figure 3.1), used
to test the robustness of the proposed Robust KronPCA algorithm. Sub-
figures (Clockwise from upper left): covariance with sparse corruptions
(3.5); its KronPCA, Robust KronPCA, and PCA spectra; and the (non-
robust) estimates of the first spatial and temporal factors of the corrupted
covariance. Note that the corruption spreads the KronPCA spectrum and
the significant corruption of the first Kronecker factor in the non-robust
KronPCA estimate.
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Non Toep λΘ = 0.05, λΓ = 0.002

Figure 3.3: MSE plots for both Toeplitz Robust KronPCA (Toep) and non Toeplitz
Robust KronPCA (Non Toep) estimation of the Toeplitz corrupted co-
variance, as a function of the number of training samples. Note the ad-
vantages of using each of Toeplitz structure, separation rank penalization,
and sparsity regularization, as proposed in this chapter. The regulariza-
tion parameter values shown are those used at n = 105 samples, the
values for lower sample sizes are set proportionally using the n-dependent
formulas given by (3.25) and Theorems III.1 and III.2.
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Figure 3.4: MSE plots for non-Toeplitz Robust KronPCA estimation of the corrupted
covariance, as a function of the number of training samples. Note the ad-
vantages of using both separation rank and sparsity regularization. The
regularization parameter values shown are those used at n = 105 sam-
ples, the values for lower sample sizes are set proportionally using the
n-dependent formulas given by (3.25) and Theorem III.1.
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Figure 3.5: 3-ahead prediction MSE loss plots using the OLS predictor with corrupted
covariance estimated by non-Toeplitz Robust KronPCA. Note the advan-
tages of using both separation rank and sparsity regularization. The
regularization parameter values shown are those used at n = 105 sam-
ples, the values for lower sample sizes are set proportionally using the
n-dependent formulas given by (3.25) and Theorem III.1. The sample co-
variance (λΘ = 0, λΓ =∞) and standard KronPCA (λΘ = 0.02, λΓ =∞)
curves are cut short due to aberrant behavior in the low sample regime.
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Figure 3.6: Plot of quantiles of the empirical distribution of the sample covariance
entries versus those of the normal distribution (QQ). Note the very heavy
tails, suggesting that an 2-norm based approach will break down relative
to the Robust KronPCA approach allowing for sparse corrections.
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Figure 3.7: Plots of the temporal covariance factors estimated from the entire cell
cycle dataset. Shown are the first rows of the first three temporal factors
(excluding the first entry). Note the strong periodicity of the first two.
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Figure 3.8: Plots of the first temporal covariance factors (excluding the first entry)
estimated from the highly subsampled (spatially) cell cycle dataset using
robust and standard KronPCA. Note the ability of Robust KronPCA to
discover the correct periodicity.
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CHAPTER IV

Robust SAR STAP via Kronecker Product

Decomposition

In the previous chapter, we focused on using Kronecker structure as a method

of approximating and estimating certain classes of spatiotemporal covariances. In

this chapter, we consider a highly practical vision application for which Kronecker

structure arises naturally from the physical model. By exploiting this structure, we

are able to achieve significant performance gains both in synthetic and challenging

real data.

4.1 Introduction

The detection (and tracking) of moving objects is an important task for scene

understanding, as motion often indicates human related activity (Newstadt et al.,

2014). Radar sensors are uniquely suited for this task, as object motion can be

discriminated via the Doppler effect. In this work, we propose a spatio-temporal de-

composition method of detecting ground based moving objects in airborne Synthetic

Aperture Radar (SAR) imagery, also known as SAR GMTI (SAR Ground Moving

Target Indication).

Radar moving target detection modalities include MTI radars (Newstadt et al.,
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2014; Ender , 1999), which use a low carrier frequency and high pulse repetition fre-

quency to directly detect Doppler shifts. This approach has significant disadvantages,

however, including low spatial resolution, small imaging field of view, and the inabil-

ity to detect stationary or slowly moving targets. The latter deficiency means that

objects that move, stop, and then move are often lost by a tracker.

SAR, on the other hand, typically has extremely high spatial resolution and can

be used to image very large areas, e.g. multiple square miles in the Gotcha data

collection (Scarborough et al., 2009). As a result, stationary and slowly moving ob-

jects are easily detected and located (Ender , 1999; Newstadt et al., 2014). Doppler,

however, causes smearing and azimuth displacement of moving objects (Jao, 2001),

making them difficult to detect when surrounded by stationary clutter. Increasing the

number of pulses (integration time) simply increases the amount of smearing instead

of improving detectability (Jao, 2001). Several methods have thus been developed

for detecting and potentially refocusing (Cristallini et al., 2013; Cerutti-Maori et al.,

2012) moving targets in clutter. Our goal is to remove the disadvantages of MTI and

SAR by combining their strengths (the ability to detect Doppler shifts and high spa-

tial resolution) using space time adaptive processing (STAP) with a novel Kronecker

product spatio-temporal covariance model, as explained below.

SAR systems can either be single channel (standard single antenna system) or mul-

tichannel. Standard approaches for the single channel scenario include autofocusing

(Fienup, 2001) and velocity filters. Autofocusing works only in low clutter, however,

since it may focus the clutter instead of the moving target (Fienup, 2001; Newstadt

et al., 2014). Velocity filterbank approaches used in track-before-detect processing

(Jao, 2001) involve searching over a large velocity/acceleration space, which often

makes computational complexity excessively high. Attempts to reduce the computa-

tional complexity have been proposed, e.g. via compressive sensing based dictionary

approaches (Khwaja and Ma, 2011) and Bayesian inference (Newstadt et al., 2014),
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but remain computationally intensive.

Multichannel SAR has the potential for greatly improved moving target detec-

tion performance (Ender , 1999; Newstadt et al., 2014). Standard multiple channel

configurations include spatially separated arrays of antennas, flying multiple passes

(change detection), using multiple polarizations, or combinations thereof (Newstadt

et al., 2014).

4.1.1 Previous Multichannel Approaches

Several techniques exist for using multiple radar channels (antennas) to separate

the moving targets from the stationary background. SAR GMTI systems have an

antenna configuration such that each antenna transmits and receives from approx-

imately the same location but at slightly different times (Scarborough et al., 2009;

Ender , 1999; Newstadt et al., 2014; Cerutti-Maori et al., 2012). Along track interfer-

ometry (ATI) and displaced phase center array (DPCA) are two classical approaches

(Newstadt et al., 2014) for detecting moving targets in SAR GMTI data, both of

which are applicable only to the two channel scenario. Both ATI and DPCA first

form two SAR images, each image formed using the signal from one of the antennas.

To detect the moving targets, ATI thresholds the phase difference between the images

and DPCA thresholds the magnitude of the difference. A Bayesian approach using

a parametric cross channel covariance generalizing ATI/DPCA to p channels was de-

veloped in (Newstadt et al., 2014), and a unstructured method fusing STAP and a

test statistic in (Cerutti-Maori et al., 2012). Space-time Adaptive Processing (STAP)

learns a spatio-temporal covariance from clutter training data, and uses these corre-

lations to filter out the stationary clutter while preserving the moving target returns

(Ender , 1999; Ginolhac et al., 2014; Klemm, 2002).

A second configuration, typically used in classical GMTI, uses phase coherent

processing of the signals output by an antenna array for which each antenna receives
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spatial reflections of the same transmission at the same time. This contrasts with the

above configuration where each antenna receives signals from different transmissions

at different times. In this second approach the array is designed such that returns

from different angles create different phase differences across the antennas (Klemm,

2002; Ginolhac et al., 2014; Rangaswamy et al., 2004; Kirsteins and Tufts , 1994;

Haimovich, 1996; Conte and De Maio, 2003). In this case, the covariance-based

STAP approach, described above, can be applied to cancel the clutter (Rangaswamy

et al., 2004; Ginolhac et al., 2014; Haimovich, 1996).

In this chapter, we focus on the first (SAR GMTI) configuration and propose a

covariance-based STAP algorithm with a customized Kronecker product covariance

structure. The SAR GMTI receiver consists of an array of p phase centers (antennas)

processing q pulses in a coherent processing interval. Define the array X(m) ∈ Cp×q

such that X
(m)
ij is the radar return from the jth pulse of the ith channel in the mth

range bin. Let xm = vec(X(m)). The target-free radar data xm is complex valued and

is assumed to have zero mean. Define

Σ = Cov[x] = E[xxH ]. (4.1)

The training samples, denoted as the set S, used to estimate the SAR covariance

Σ are collected from n representative range bins. The standard sample covariance

matrix (SCM) is given by

S =
1

n

∑
m∈S

xmxHm. (4.2)

If n is small, S may be rank deficient or ill-conditioned (Newstadt et al., 2014; Ginolhac

et al., 2014; Greenewald et al., 2013; Greenewald and Hero, 2014b), and it can be

shown that using the SCM directly for STAP requires a number n of training samples

that is at least twice the dimension pq of S (Reed et al., 1974). In this data rich
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case, STAP performs well (Newstadt et al., 2014; Ender , 1999; Ginolhac et al., 2014).

However, with p antennas and q time samples (pulses), the dimension pq of the

covariance is often very large, making it difficult to obtain a sufficient number of

target-free training samples. This so-called “small n large pq” problem leads to severe

instability and overfitting errors, compromising STAP tracking performance.

By introducing structure and/or sparsity into the covariance matrix, the number

of parameters and the number of samples required to estimate them can be reduced.

As the spatiotemporal clutter covariance Σ is low rank (Brennan and Staudaher ,

1992; Ginolhac et al., 2014; Rangaswamy et al., 2004; Ender , 1999), Low Rank STAP

(LR-STAP) clutter cancelation estimates a low rank clutter subspace from S and uses

it to estimate and remove the rank r clutter component in the data (Bazi et al., 2005;

Ginolhac et al., 2014), reducing the number of parameters from O(p2q2) to O(rpq).

Efficient algorithms, including some involving subspace tracking, have been proposed

(Belkacemi and Marcos , 2006; Shen et al., 2009). Other methods adding structural

constraints such as persymmetry (Ginolhac et al., 2014; Conte and De Maio, 2003),

and robustification to outliers either via exploitation of the SIRV model (Ginolhac

et al., 2009) or adaptive weighting of the training data (Gerlach and Picciolo, 2011)

have been proposed. Fast approaches based on techniques such as Krylov subspace

methods (Goldstein et al., 1998; Honig and Goldstein, 2002; Pados et al., 2007; Scharf

et al., 2008) and adaptive filtering (Fa and De Lamare, 2011; Fa et al., 2010) exist.

All of these techniques remain sensitive to outlier or moving target corruption of the

training data, and generally still require large training sample sizes (Newstadt et al.,

2014).

Instead, for SAR GMTI we propose to exploit the explicit space-time arrangement

of the covariance by modeling the clutter covariance matrix Σc as the Kronecker
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product of two smaller matrices

Σc = A⊗B, (4.3)

where A ∈ Cp×p is rank 1 and B ∈ Cq×q is low rank. In this setting, the B matrix

is the “temporal (pulse) covariance” and A is the “spatial (antenna) covariance,”

both determined up to a multiplicative constant. We note that this model is not

appropriate for classical GMTI STAP, as in that configuration the covariance has a

different spatio-temporal structure that is not separable.

Both ATI and DPCA in effect attempt to filter deterministic estimates of A to

remove the clutter, and the Bayesian method (Newstadt et al., 2014) uses a form of

this model and incorporates the matrix A in a hierarchical clutter model. Standard

SAR GMTI STAP approaches and the method of (Cerutti-Maori et al., 2012) do

not exploit this structure when estimating the spatiotemporal covariance. To our

knowledge, this work is the first to exploit spatio-temporal structure to estimate a

full low-rank spatio-temporal clutter covariance.

In this chapter, an iterative L2 based algorithm is proposed to directly estimate

the low rank Kronecker factors from the observed sample covariance. Theoretical

results indicate significantly fewer training samples are required, and it is shown that

the proposed approach improves robustness to corrupted training data. Critically,

robustness allows significant numbers of moving targets to remain in the training set.

We then introduce the Kron STAP filter, which projects away both the spatial and

temporal clutter subspaces. This projects away a higher dimensional subspace than

does LR-STAP, thereby achieving improved noise and clutter cancelation.

To summarize, the main contributions of this chapter are: 1) the exploitation of

the inherent Kronecker product spatio-temporal structure of the clutter covariance;

2) the introduction of the low rank Kronecker product based Kron STAP filter; 3) an
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algorithm for estimating the spatial and temporal clutter subspaces that is highly ro-

bust to outliers due to the additional Kronecker product structure; and 4) theoretical

results demonstrating improved signal-to-interference-plus-noise-ratio.

The remainder of the chapter is organized as follows. Section 4.2, presents the

multichannel SIRV radar model. Our low rank Kronecker product covariance estima-

tion algorithm and our proposed STAP filter are presented in Section 4.3. Section

4.4 gives theoretical performance guarantees and Section 4.5 gives simulation results

and applies our algorithms to the Gotcha dataset.

In this work, we denote vectors as lower case bold letters, matrices as upper case

bold letters, the complex conjugate as a∗, the matrix Hermitian as AH , and the

Hadamard (elementwise) product as A�B.

4.2 SIRV Data Model

Let X ∈ Cp×q be an array of radar returns from an observed range bin across

p channels and q pulses. We model x = vec(X) as a spherically invariant random

vector (SIRV) with the following decomposition (Yao, 1973; Rangaswamy et al., 2004;

Ginolhac et al., 2014, 2013):

x = xtarget + xclutter + xnoise = xtarget + n, (4.4)

where xnoise is Gaussian sensor noise with Cov[xnoise] = σ2I ∈ Cpq×pq and we define

n = xclutter + xnoise. The signal of interest xtarget is the sum of the spatio-temporal

returns from all moving objects, modeled as non-random, in the range bin. The

return from the stationary clutter is given by xclutter = τc where τ is a random

positive scalar having arbitrary distribution, known as the texture, and c ∈ Cpq is a

multivariate complex Gaussian distributed random vector, known as the speckle. We

define Cov[c] = Σc. The means of the clutter and noise components of x are zero.
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The resulting clutter plus noise (xtarget = 0) covariance is given by

Σ = E[nnH ] = E[τ 2]Σc + σ2I. (4.5)

The ideal (no calibration errors) random speckle c is of the form (Newstadt et al.,

2014; Ender , 1999; Cerutti-Maori et al., 2012)

c = 1p ⊗ c̃, (4.6)

where c̃ ∈ Cq. The representation (4.6) follows because the antenna configuration in

SAR GMTI is such that the kth antenna receives signals emitted at different times at

approximately (but not necessarily exactly) the same point in space (Newstadt et al.,

2014; Scarborough et al., 2009). This is achieved by arranging the p antennas in a

line parallel to the flight path, and delaying the kth antenna’s transmission until it

reaches the point xi in space associated with the ith pulse. The representation (4.6)

gives a clutter covariance of

Σc = 11T ⊗B, B = E[c̃c̃H ], (4.7)

where B depends on the spatial characteristics of the clutter in the region of interest

and the SAR collection geometry (Ender , 1999). While in SAR GMTI B is not

exactly low rank, it is approximately low rank in the sense that significant energy

concentration in a few principal components is observed over small regions (Borcea

et al., 2013).

Due to the long integration time and high cross range resolution associated with

SAR, the returns from the general class of moving targets are more complicated,

making simple Doppler filtering difficult. During short intervals for which targets

have constant Doppler shift f (proportional to the target radial velocity) within a
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range bin, the return has the form

x = αd = αa(f)⊗ b(f), (4.8)

where α is the target’s amplitude, a(f) = [ 1 ej2πθ1(f) . . . ej2πθp(f) ]T , the θi de-

pend on Doppler shift f and the platform speed and antenna separation (Newstadt

et al., 2014), and b ∈ Cq depends on the target, f , and its cross range path. The

unit norm vector d = a(f) ⊗ b(f) is known as the steering vector. For sufficiently

large θi(f), a(f)H1 will be small and the target will lie outside of the SAR clut-

ter spatial subspace. The overall target return can be approximated as a series of

constant-Doppler returns, hence the overall return should lie outside of the clutter

spatial subspace. Furthermore, as observed in (Fienup, 2001), for long integration

times the return of a moving target is significantly different from that of uniform

stationary clutter, implying that moving targets generally lie outside the temporal

clutter subspace (Fienup, 2001) as well.

In practice, the signals from each antenna have gain and phase calibration errors

that vary slowly across angle and range (Newstadt et al., 2014). It was shown in

(Newstadt et al., 2014) that in SAR GMTI these calibration errors can be accurately

modeled as constant over small regions. Let the calibration error on antenna i be

hie
jφi and h = [ h1e

jφ1 , . . . , hpe
jφp ], giving an observed return x′ = (h ⊗ I) � x

and a clutter covariance of

Σ̃c = (hhH)⊗B = A⊗B (4.9)

implying that the A in (5.2) has rank one.
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4.2.1 Space Time Adaptive Processing

Let the vector d be a spatio-temporal “steering vector” (Ginolhac et al., 2014),

that is, a matched filter for a specific target location/motion profile. For a measured

array output vector x define the STAP filter output y = wTx, where w is a vector of

spatio-temporal filter coefficients. By (4.4) and (4.8) we have

y = wHx = αwHd + wHn. (4.10)

The goal of STAP is to design the filter w such that the clutter is canceled (wHn

is small) and the target signal is preserved (wHd is large). For a given target with

spatio-temporal steering vector d, an optimal clutter cancellation filter is defined as

the filter w that maximizes the SINR (signal to interference plus noise ratio), defined

as the ratio of the power of the filtered signal αwHd to the power of the filtered

clutter and noise (Ginolhac et al., 2014)

SINRout =
|α|2|wHd|2

E[wHnnHw]
=
|α|2|wHd|2

wHΣw
, (4.11)

where Σ is the clutter plus noise covariance in (4.5).

It can be shown (Ender , 1999; Ginolhac et al., 2014) that, if the clutter covari-

ance is known, under the SIRV model the optimal filter for targets at locations and

velocities corresponding to the steering vector d is given by the filter

w = Foptd, Fopt = Σ−1. (4.12)

Since the true covariance is unknown, we consider filters of the form

w = Fd, (4.13)
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and use the measurements to learn an estimate of the best F.

For both classical GMTI radars and SAR GMTI, the clutter covariance has low

rank r (Brennan and Staudaher , 1992; Newstadt et al., 2014; Ender , 1999). Clutter

subspace processing finds a clutter subspace {ui}ri=1 using the span of the top r princi-

pal components of the clutter sample covariance (Ender , 1999; Ginolhac et al., 2014).

This gives a clutter cancelation filter F that projects onto the space orthogonal to

the estimated clutter subspace:

F = I−
r∑
i=1

uiu
H
i . (4.14)

Since the sample covariance requires a relatively large number of training sam-

ples, obtaining sufficient numbers of target free training samples is difficult in practice

(Newstadt et al., 2014; Ginolhac et al., 2014). In addition, if low amplitude moving

targets are accidentally included in training, the sample covariance will be corrupted.

In this case the resulting filter will partially cancel moving targets as well as clutter,

which is especially problematic in online STAP implementations (Newstadt et al.,

2014; Belkacemi and Marcos , 2006). The proposed Kronecker STAP approach dis-

cussed below mitigates these problems as it directly takes advantage of the inherent

space vs. time product structure of the clutter covariance Σc.

4.3 Kronecker STAP

4.3.1 Kronecker Subspace Estimation

In this section we develop a subspace estimation algorithm that accounts for

spatio-temporal covariance structure and has low computational complexity. In a

high-dimensional setting, performing maximum likelihood on low-rank Kronecker

product covariance estimation is computationally intensive under the Gaussian model

or its SIRV extensions, and existing approximations combining Kronecker products

75



with Tyler’s estimator (Greenewald and Hero, 2014b) do not give low rank estimates.

Similarly to the constrained least squares approaches of (Werner et al., 2008;

Greenewald et al., 2013; Tsiligkaridis and Hero, 2013; Greenewald and Hero, 2014b),

we fit a low rank Kronecker product model to the sample covariance matrix S. Specif-

ically, we minimize the Frobenius norm of the residual errors in the approximation

of S by the low rank Kronecker model (4.9), subject to rank(A) ≤ ra, rank(B) ≤ rb,

where the goal is to estimate E[τ 2]Σc. The optimal estimates of the Kronecker matrix

factors A and B in (4.9) are given by

Â, B̂ = arg min
rank(A)≤ra,rank(B)≤rb

‖S−A⊗B‖2
F . (4.15)

The minimization (4.15) will be simplified by using the patterned block structure

of A⊗B. In particular, for a pq × pq matrix M, define {M(i, j)}pi,j=1 to be its q × q

block submatrices, i.e. M(i, j) = [M](i−1)q+1:iq,(j−1)q+1:jq. Also, let M = KT
p,qMKp,q

where Kp,q is the pq × pq permutation operator such that Kp,qvec(N) = vec(NT ) for

any p× q matrix N.

The invertible Pitsianis-VanLoan rearrangement operator R(·) maps pq × pq ma-

trices to p2 × q2 matrices and, as defined in (Tsiligkaridis and Hero, 2013; Werner

et al., 2008) sets the (i− 1)p+ jth row of R(M) equal to vec(M(i, j))T , i.e.

R(M) = [ m1 . . . mp2 ]T , (4.16)

m(i−1)p+j = vec(M(i, j)), i, j = 1, . . . , p.

The unconstrained (i.e. ra = p, rb = q) objective in (4.15) is shown in (Werner

et al., 2008; Tsiligkaridis and Hero, 2013; Greenewald et al., 2013) to be equivalent

to a rearranged rank-one approximation problem, with a global minimizer given by

Â⊗ B̂ = R−1(σ1u1v
H
1 ), (4.17)
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where σ1u1v
H
1 is the first singular component of R(S). The operator R−1 is the

inverse of R, given by

R−1(M) = N ∈ Cpq×pq, (4.18)

N(i, j) = vec−1
q,q((M(i−1)p+j,1:q2)T ), i, j = 1, . . . , p,

where vec−1
q,q(·) is the inverse of the vectorization operator on q × q matrices, i.e. if

m = vec(M) ∈ Cq×q, M = vec−1
q,q(m).

When the low rank constraints are introduced, there is no closed-form solution of

(4.15). An iterative alternating minimization algorithm is derived in Appendix 4.7.1

and is summarized by Algorithm 3. In Algorithm 3, EIGr(M) denotes the matrix

obtained by truncating the Hermitian matrix M to its first r principal components,

i.e.

EIGr(M) :=
r∑
i=1

σiuiu
H
i , (4.19)

where
∑

i σiuiu
H
i is the eigendecomposition of M, and the (real and positive) eigen-

values σi are indexed in order of decreasing magnitude.

The objective (4.15) is not convex, but since it is an alternating minimization

algorithm, it can be shown (Appendix 4.7.1) that Algorithm 3 will monotonically

decrease the objective at each step, and that convergence of the estimates Ak,Bk to

a stationary point of the objective is guaranteed. We initialize LR-Kron with either

Â, B̂ from the unconstrained estimate (4.17). Monotonic convergence then guarantees

that LR-Kron improves on this simple closed form estimator.

We call Algorithm 3 low rank Kronecker product covariance estimation, or LR-

Kron. In Appendix 4.7.1 it is shown that when the initialization is positive semidefi-

nite Hermitian the LR-Kron estimator Â⊗ B̂ is positive semidefinite Hermitian and

is thus a valid covariance matrix of rank rarb.
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Algorithm 3 LR-Kron Covariance Estimation

1: S = ΣSCM , form S(i, j), S(i, j).
2: Initialize A0 (or B0) using (4.17), with A0 s.t. ‖A0‖F = 1 (correspondingly B0).
3: while Objective ‖S−Ak ⊗Bk‖2

F not converged do

4: RB =
∑p
i,j a

∗
k,ijS(i,j)

‖Ak‖2F
5: Bk+1 = EIGrb(RB)

6: RA =
∑q
i,j b
∗
k+1,ijS(i,j)

‖Bk+1‖2F
7: Ak+1 = EIGra(RA)
8: end while
9: return Â = Ak, B̂ = Bk.

4.3.2 Robustness Benefits

Besides reducing the number of parameters, Kronecker STAP enjoys several other

benefits arising from associated properties of the estimation objective (4.15).

The clutter covariance model (4.9) is low rank, motivating the PCA singular value

thresholding approach of classical STAP. This approach, however, is problematic in

the Kronecker case because of the way low rank Kronecker factors combine. Specifi-

cally, the Kronecker product A⊗B has the SVD (Loan and Pitsianis , 1993)

A⊗B = (UB ⊗UB)(SA ⊗ SB)(UH
A ⊗UH

B ) (4.20)

where A = UASAUH
A and B = UBSBUH

B are the SVDs of A and B respectively.

The singular values are s
(i)
A s

(j)
B , ∀i, j. As a result, a simple thresholding of singular

values is not equivalent to separate thresholding of the singular values of A and B

and hence won’t necessarily adhere to the space vs. time structure.

For example, suppose that the set of training data is corrupted by inclusion of a

sparse set of w moving targets. By the model (4.8), the ith moving target gives a

return (in the appropriate range bin) of the form

zi = αiai ⊗ bi, (4.21)
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where ai,bi are unit norm vectors.

This results in a sample data covariance created from a set of observations nm

with Cov[nm] = Σ, corrupted by the addition of a set of w rank one terms

S =

(
1

n

n∑
m=1

nmnHm

)
+

1

n

w∑
i=1

ziz
H
i . (4.22)

Let S̃ = 1
n

∑n
m=1 nmnHm and T̃ = 1

n

∑w
i=1 ziz

H
i . Let λS,k be the eigenvalues of

Σc, λS,min = mink λS,k, and let λT,max be the maximum eigenvalue of T̃. Assume

that moving targets are indeed in a subspace orthogonal to the clutter subspace. If

λT,max > O(λS,min), performing rank r PCA on S will result in principal components

of the moving target term being included in the “clutter” covariance estimate.

If the targets are approximately orthogonal to each other (i.e. not coordinated),

then λT,max = O( 1
n
|αi|2). Since the smallest eigenvalue of Σc is often small, this is

the primary reason that classical LR-STAP is easily corrupted by moving targets in

the training data (Newstadt et al., 2014; Ginolhac et al., 2014).

On the other hand, Kron-STAP is significantly more robust to such corruption.

Specifically, consider the rearranged corrupted sample covariance:

R(S) =
1

n

w∑
m=1

vec(aia
H
i )vec(bib

H
i )H +R(S̃). (4.23)

This also takes the form of a desired sample covariance plus a set of rank one terms.

For simplicity, we ignore the rank constraints in the LR-Kron estimator, in which

case we have (4.17)

Â⊗ B̂ = R−1(σ̂1u1v
H
1 ), (4.24)

where σ̂1u1v
H
1 is the first singular component of R(S). Let σ1 be the largest singular

value of R(S̃). The largest singular value σ̂1 will correspond to the moving target

term only if the largest singular value of 1
n

∑w
m=1 vec(aia

H
i )vec(bib

H
i )H is greater than
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O(σ1). If the moving targets are uncoordinated, this holds if for some i, 1
n
|αi|2 >

O(σ1). Since σ1 models the entire clutter covariance, it is on the order of the total

clutter energy, i.e. σ2
1 = O(

∑r
k=1 λ

2
S,k) � λ2

S,min. In this sense Kron-STAP is much

more robust to moving targets in training than is LR-STAP.

4.3.3 Kronecker STAP Filters

Once the low rank Kronecker clutter covariance has been estimated using Algo-

rithm 3, it remains to identify a filter F, analogous to (4.14), that uses the estimated

Kronecker covariance model. If we restrict ourselves to subspace projection filters and

make the common assumption that the target component in (4.4) is orthogonal to

the true clutter subspace, then the optimal approach in terms of SINR is to project

away the clutter subspace, along with any other subspaces in which targets are not

present. If only target orthogonality to the joint spatio-temporal clutter subspace is

assumed, then the classical low-rank STAP filter is the projection matrix:

Fclassical = I−UAUH
A ⊗UBUH

B , (4.25)

where UA,UB are orthogonal bases for the rank ra and rb subspaces of the low

rank estimates Â and B̂, respectively, obtained by applying Algorithm 3. This is

the Kronecker product equivalent of the standard STAP projector (4.14), though it

should be noted that (4.25) will require less training data for equivalent performance

due to the assumed structure.

The classical low-rank filter F = I − UUH is, as noted in section 4.2.1, merely

an approximation to the SINR optimal filter F = Σ−1. We note, however, that this

may not be the only possible approximation. In particular, the inverse of a Kronecker

product is the Kronecker product of the inverses, i.e. A ⊗ B = A−1 ⊗ B−1. Hence,

we consider using the low rank filter approximation on Â−1 and B̂−1 directly. The
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resulting approximation to Fopt is

FKSTAP = (I−UAUH
A )⊗ (I−UBUH

B ) = FA ⊗ FB. (4.26)

We denote by Kron-STAP the method using LR-Kron to estimate the covariance

and (4.26) to filter the data. This alternative approximation has significant appeal.

Note that it projects away both the spatial and temporal clutter subspaces, instead

of only the joint spatio-temporal subspace. This is appealing because by (4.8), no

moving target should lie in the same spatial subspace as the clutter, and, as noted

in Section 4.2, if the dimension of the clutter temporal subspace is sufficiently small

relative to the dimension q of the entire temporal space, moving targets will have

temporal factors (b) whose projection onto the clutter temporal subspace are small.

Note that in the event rb is very close to q, either truncating rb to a smaller value

(e.g., determined by cross validation) or setting UB = 0 is recommended to avoid

canceling both clutter and moving targets.

Our clutter model has spatial factor rank ra = 1 (4.9), implying that the FKSTAP

defined in (4.26) projects the array signal x onto a (p−1)(q−rb) dimensional subspace.

This is significantly smaller than the pq − rb dimensional subspace onto which (4.25)

and unstructured STAP project the data. As a result, much more of the clutter that

“leaks” outside the primary subspace can be canceled, thus increasing the SINR and

allowing lower amplitude moving targets to be detected.

4.3.4 Computational Complexity

Once the filters are learned, the computational complexity depends on the im-

plementation of the filter and does not depend on the covariance estimation method

that determined the filter.

The computational complexity of learning the LR-STAP filter is dominated by
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the computation of the clutter subspace, which is O(p3q3). Our LR-Kron estimator

(Algorithm 1) is iterative, with each iteration having O(p2q2) + O(q3) + O(q2p2) +

O(p3) = O(p2q2 + p3 + q3) computations. If the number of iterations needed is small

and p, q are large, there will be significant computational gains over LR-STAP.

4.4 SINR Performance

For a STAP filter matrix F and steering vector d, the data filter vector is given by

(4.13): w = Fd (Ginolhac et al., 2014). With a target return of the form xtarget = αd,

the filter output is given by (4.10), and the SINR by (4.11).

Define SINRmax to be the optimal SINR, achieved at wopt = Foptd (4.12).

Suppose that the clutter has covariance of the form (4.9). Assume that the target

steering vector d lies outside both the temporal and spatial clutter subspaces as

justified in (Ginolhac et al., 2014). Suppose that LR-STAP is set to use r principal

components. Suppose further that Kron STAP uses 1 spatial principal component

and r temporal components, so that the total number of principal components of LR-

STAP and Kron STAP are equivalent. Under these assumptions, if the noise variance

σ2 approaches zero the SINR achieved using LR-STAP, Kron STAP or spatial Kron

STAP with infinite training samples achieves SINRmax (Ginolhac et al., 2014).

We analyze the asymptotic convergence rates under the finite sample regime.

Define the SINR Loss ρ as the loss of performance induced by using the estimated

STAP filter ŵ = F̂d instead of wopt:

ρ =
SINRout

SINRmax

, (4.27)

where SINRout is the output signal to interference ratio when using ŵ.

It is shown in (Ginolhac et al., 2014) that for large n and small σ, the expected
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SINR Loss of LR-STAP is

E[ρ] = 1− r

n
. (4.28)

This approximation is obtained specializing the result in (Ginolhac et al., 2014, Prop.

3.1) to the case of small σ.

We now turn to Kron STAP. Note that the Kron STAP filter can be decomposed

into a spatial stage (filtering by Fspatial) and a temporal stage (filtering by Ftemp):

FKSTAP = FA ⊗ FB = FspatialFtemp (4.29)

where Fspatial = FA ⊗ I and Ftemp = I⊗ FB (4.26). When the clutter covariance fits

our model, either the spatial or the temporal stage is sufficient to project away the

clutter subspace. Assume one adopts the naive estimator

Â = EIG1

(
1

q

∑
i

S(i, i)

)
= ψ̂ĥĥH (4.30)

for the spatial subspace h (‖h‖2 = 1). For large n and small σ, the expected SINR

Loss of Kron STAP using the estimator (4.30) for the spatial subspace is given by

E[ρ] = 1− 1

n
. (4.31)

This result is established in (Greenewald and Hero III , 2015, Theorem IV.2). The

proof is based on applying the LR-STAP result (4.28) to an equivalent rank-one

estimator. Since by (4.7) the full clutter covariance has rank r ∼ q, the gains of using

Kron STAP over LR-STAP (which decays linearly with r) can be quite significant.

Next we establish the robustness of the proposed Kron STAP algorithm to es-

timation errors, for which the SINR loss (4.27) can only be empirically estimated
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from training data. Specifically, consider the case where the spatial covariance has

estimation errors, either due to subspace estimation error or to A having a rank

greater than one, e.g., due to spatially varying calibration errors. Specifically, sup-

pose the estimated (rank one) spatial subspace is h̃, giving a Kron STAP spatial filter

Fspatial = (I− h̃h̃H)⊗ I. Suppose further that spatial filtering of the data is followed

by the temporal filter Ftemp based on the temporal subspace UB estimated from the

training data. Define the resulting SINR loss ρt|h̃ as

ρt|h̃ =
SINRout

SINRmax(h̃)
(4.32)

where SINRmax(h̃) is the maximum achievable SINR given that the spatial filter is

fixed at Fspatial = (I− h̃h̃H)⊗ I.

We then can obtain the following.Suppose that a value for the spatial subspace

estimate h̃ (with ‖h̃‖2 = 1) and hence Fspatial is fixed. Let the steering vector for a

constant Doppler target be d = dA ⊗ dB per (4.8), and suppose that dA is fixed and

dB is arbitrary. Then for large n and small σ, the SINR loss from using an estimate

of UB follows

E[ρt|h̃] ≈ 1− κrb
n
, κ =

d̃HAAd̃A

h̃HAh̃
. (4.33)

where d̃A = (I−h̃h̃H)dA
‖(I−h̃h̃H)dA‖2

. A proof sketch of this result is in Appendix 4.7.2, and more

details are given in (Greenewald and Hero III , 2015, Theorem IV.3).

Note that in the n� p regime (relevant when q � p), h̃ ≈ h, where h is the first

singular vector of A. This gives h̃HAh̃ ≈ s
(1)
A and κ → 0 if A is indeed rank one.

Hence, κ can be interpreted as quantifying the adverse effect of mismatch between

A and its estimate. From (4.33) it is seen that cancelation of the moving targets is

avoided when rb � q. Furthermore, since in the ideal large sample regime all the

clutter is removed by the spatial stage, rb can be smaller than rank(B), resulting in
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higher SINR.

In the next section, we provide empirical finite sample validation of these asymp-

totic results on robustness of the proposed Kron STAP algorithm.

4.5 Numerical Results

4.5.1 Dataset

For evaluation of the proposed Kron STAP methods, we use measured data from

the 2006 Gotcha SAR GMTI sensor collection (Scarborough et al., 2009). This dataset

consists of SAR passes through a circular path around a small scene containing various

moving and stationary civilian vehicles. The example images shown in the figures are

formed using the backprojection algorithm with Blackman-Harris windowing as in

(Newstadt et al., 2014). For our experiments, we use 31 seconds of data, divided into

1 second (2171 pulse) coherent integration intervals.

As there is no ground truth for all targets in the Gotcha imagery, target detection

performance cannot be objectively quantified by ROC curves. We rely on non ROC

measures of performance for the measured data, and use synthetically generated data

to show ROC performance gains. In several experiments we do make reference to

several higher amplitude example targets in the Gotcha dataset. These were selected

by comparing and analyzing the results of the best detection methods available.

4.5.2 Simulations

We generated synthetic clutter plus additive noise samples having a low rank

Kronecker product covariance. The covariance we use to generate the synthetic clutter

via the SIRV model was learned from a set of example range bins extracted from

the Gotcha dataset, letting the SIRV scale parameter τ 2 in (4.5) follow a chi-square

distribution. We use p = 3, q = 150, rb = 20, and ra = 1, and generate both n training
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samples and a set of testing samples. The rank of the left Kronecker factor A, ra, is

1 as dictated by the spatially invariant antenna calibration assumption and we chose

rb = 20 based on a scree plot, i.e., 20 was the location of the knee of the spectrum of

B. Spatio-temporal Kron-STAP, Spatial-only Kron-STAP, and LR-STAP were then

used to learn clutter cancelation filters from the training clutter data.

The learned filters were then applied to testing clutter data, the mean squared

value (MS Residual) of the resulting residual (i.e. (1/M)
∑M

m=1 ‖Fxm‖2
2) was com-

puted, and the result is shown in Figure 4.1 as a function of n. The results illustrate

the much slower convergence rate of unstructured LR-STAP. as compared to the pro-

posed Kron STAP, which converges after n = 1 sample. The mean squared residual

does not go to zero with increasing training sample size because of the additive noise

floor.

As an example of the convergence of the Algorithm 1, Figure 5.6 shows logarithmic

plots of Fi− limi→∞ Fi as a function of iteration i, where Fi = ‖S−Âi⊗B̂i‖F . Shown

are the results for a sample covariance used in the generation of Figure 4.1 (n = 50,

noise standard deviation σ0), and the results for the case of significantly higher noise

(noise standard deviation 10σ0). The zeroth iteration corresponds to the SVD-based

initialization in step 2 of Algorithm 1. In both cases, note the rapid convergence of

the algorithm, particularly in the first iteration.

To explore the effect of model mismatch due to spatially variant antenna calibra-

tion errors (ra > 1), we simulated data with a clutter spatial covariance A having

rank 2 with non-zero eigenvalues equal to 1 and 1/302. The STAP algorithms remain

the same with ra = 1, and synthetic range bins containing both clutter and a moving

target are used in testing the effect of this model mismatch on the STAP algorithms.

The STAP filter response, maximized over all possible steering vectors, is used as the

detection statistic. The AUC of the associated ROC curves is plotted in Figure 4.3

as a function of the number of training samples. Note again the poor performance
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and slow convergence of LR-STAP, and that spatio-temporal Kron-STAP converges

very quickly to the optimal spatial Kron-STAP performance.

Finally, we repeat the AUC vs. sample complexity experiment described in the

previous paragraph where 5% of the training data now have synthetic moving targets

with random Doppler shifts. The results are shown in Figure 4.4. As predicted by the

theory in Subsection 4.3.2, the Kronecker methods remain largely unaffected by the

presence of corrupting targets in the training data until the very low sample regime,

whereas significant losses are sustained by LR-STAP. This confirms the superior ro-

bustness of the proposed Kronecker structured covariance used in our Kron STAP

method.
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Figure 4.1: Left: Average mean squared residual (MSR), determined by simulations,
as a function of the number of training samples, of noisy synthetic clutter
filtered by spatio-temporal Kron STAP, spatial only Kron STAP, and
unstructured LR-STAP (SCM STAP) filters. On the right a zoomed in
view of a Kron STAP curve is shown. Note the rapid convergence and
low MSE of the Kronecker methods.

4.5.3 Gotcha Experimental Data

In this subsection, STAP is applied to the Gotcha dataset. For each range bin we

construct steering vectors di corresponding to 150 cross range pixels. In single antenna
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Figure 4.2: Convergence of the LR-Kron algorithm for estimation of the covariance
of Figure 1 with n = 50. The baseline noise (standard deviation σ0) case
is shown, along with a high noise example with noise standard deviation
10σ0. Shown are logarithmic plots of Fi − limi→∞ Fi where Fi = ‖S −
Ai⊗Bi‖F as a function of iteration i. Note the rapid convergence of the
algorithm.

SAR imagery, each cross range pixel is a Doppler frequency bin that corresponds to

the cross range location for a stationary target visible at that SAR Doppler frequency,

possibly complemented by a moving target that appears in the same bin. Let D be

the matrix of steering vectors for all 150 Doppler (cross range) bins in each range

bin. Then the SAR images at each antenna are given by x̃ = I⊗DHx and the STAP

output for a spatial steering vector h and temporal steering di (separable as noted in

(4.8)) is the scalar

yi(h) = (h⊗ di)
HFx (4.34)

Due to their high dimensionality, plots for all values of h and i cannot be shown.

Hence, for interpretability we produce images where for each range bin the ith pixel
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Figure 4.3: Area-under-the-curve (AUC) for the ROC associated with detecting a
synthetic target using the steering vector with the largest return, when
slight spatial nonidealities exist in the true clutter covariance. Note the
rapid convergence of the Kronecker methods as a function of the number of
training samples, and the superior performance of spatio-temporal Kron
STAP to spatial-only Kron STAP when the target’s steering vector d is
unknown.

is set as maxh |yi(h)|. More sophisticated detection techniques could invoke priors on

h, but we leave this for future work.

Shown in Figure 4.6 are results for several examplar SAR frames, showing for

each example the original SAR (single antenna) image, the results of spatio-temporal

Kronecker STAP, the results of Kronecker STAP with spatial filter only, the amount

of enhancement (smoothed dB difference between STAP image and original) at each

pixel of the spatial only Kronecker STAP, standard unstructured STAP with r = 25

(similar rank to Kronecker covariance estimate), and standard unstructured STAP

with r = 40. Note the significantly improved contrast of Kronecker STAP relative to

the unstructured methods between moving targets (high amplitude moving targets

marked in red in the figure) and the background. Additionally, note that both spatial

and temporal filtering achieve significant gains. Due to the lower dimensionality, LR-
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Figure 4.4: Robustness to corrupted training data: AUCs for detecting a synthetic
target using the maximum steering vector when (in addition to the spatial
nonidealities) 5% of the training range bins contain targets with random
location and velocity in addition to clutter. Note that relative to Figure
4.3 LR-STAP has degraded significantly, whereas the Kronecker methods
have not.

STAP achieves its best performance for the image with fewer pulses, but still remains

inferior to the Kronecker methods.

To analyze convergence behavior, a Monte Carlo simulation was conducted where

random subsets of the (bright object free) available training set were used to learn the

covariance and the corresponding STAP filters. The filters were then used on each

of the 31 1-second SAR imaging intervals and the MSE between the results and the

STAP results learned using the entire training set were computed (Figure 4.5). Note

the rapid convergence of the Kronecker methods relative to the SCM based method,

as expected.

Figure 4.5 (bottom) shows the normalized ratio of the RMS magnitude of the 10

brightest filter outputs yi(h) for each ground truthed target to the RMS value of the

background, computed for each of the STAP methods as a function of the number
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Figure 4.5: Gotcha dataset. Left: Average RMSE of the output of the Kronecker,
spatial only Kronecker, and unstructured STAP filters relative to each
method’s maximum training sample output. Note the rapid convergence
and low RMSE of the Kronecker methods. Right: Normalized ratio of
the RMS magnitude of the brightest pixels in each target relative to the
RMS value of the background, for the output of each of Kronecker STAP,
spatial Kronecker STAP, and unstructured STAP.

of training samples. This measure is large when the contrast of the target to the

background is high. The Kronecker methods clearly outperform LR-STAP.

4.6 Conclusion

In this chapter, we proposed a new method for clutter rejection in high resolution

multiple antenna synthetic aperture radar systems with the objective of detecting

moving targets. Stationary clutter signals in multichannel single-pass radar were

shown to have Kronecker product structure where the spatial factor is rank one and

the temporal factor is low rank. Exploitation of this structure was achieved using the

Low Rank KronPCA covariance estimation algorithm, and a new clutter cancelation

filter exploiting the space-time separability of the covariance was proposed. The re-

sulting clutter covariance estimates were applied to STAP clutter cancelation, exhibit-

ing significant detection performance gains relative to existing low rank covariance

estimation techniques. As compared to standard unstructured low rank STAP meth-
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ods, the proposed Kronecker STAP method reduces the number of required training

samples and enhances the robustness to corrupted training data. These performance

gains were analytically characterized using a SIRV based analysis and experimentally

confirmed using simulations and the Gotcha SAR GMTI dataset.

4.7 Appendix

4.7.1 Derivation of LR-Kron Algorithm 3

We have the following objective function:

min
rank(A)=ra,rank(B)=rb

‖S−A⊗B‖2
F . (4.35)

To derive the alternating minimization algorithm, fix B (symmetric) and minimize

(4.35) over low rank A:

arg min
rank(A)=ra

‖S−A⊗B‖2
F

= arg min
rank(A)=ra

q∑
i,j

‖S(i, j)− bijA‖2
F

= arg min
rank(A)=ra

q∑
i,j

|bij|2‖A‖2
F − 2Re[bij 〈A,S∗(i, j)〉]

= arg min
rank(A)=ra

‖A‖2
F − 2Re

[〈
A,

∑q
i,j bijS

∗(i, j)

‖B‖2
F

〉]

= arg min
rank(A)=ra

∥∥∥∥∥A−
∑q

i,j b
∗
ijS(i, j)

‖B‖2
F

∥∥∥∥∥
2

F

(4.36)

where bij is the i, jth element of B̂ and b∗ denotes the complex conjugate of b. This

last minimization problem (4.36) can be solved by the SVD via the Eckart-Young
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Figure 4.6: Four example radar images from the Gotcha dataset along with associated
STAP results. The lower right example uses 526 pulses, the remaining
three use 2171 pulses. Several moving targets are highlighted in red in
the spatial Kronecker enhancement plots. Note the superiority of the
Kronecker methods. Used Gotcha dataset “mission” pass, starting times:
upper left, 53 sec.; upper right, 69 sec.; lower left, 72 sec.; lower right
57.25 sec.
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theorem (Eckart and Young , 1936). First define

RA =

∑q
i,j b
∗
ijS(i, j)

‖B‖2
F

, (4.37)

and let uAi , σ
A
i be the eigendecomposition of RA. The eigenvalues are real and positive

because RA is positive semidefinite (psd) Hermitian if B is psd Hermitian (Werner

et al., 2008). Hence by Eckardt-Young the unique minimizer of the objective (4.36)

is

Â(B) = EIGra(RA) =
ra∑
i=1

σiu
A
i (uAi )H . (4.38)

Note that unless either S or B is identically zero, since B is psd RA and hence Â(B)

will be nonzero.

Similarly, minimizing (4.35) over B with fixed positive semidefinite Hermitian A

gives the unique minimizer

B̂(A) = EIGrb(RB) =

rb∑
i=1

σBi uBi (uBi )H , (4.39)

where now uBi , σ
B
i describes the eigendecomposition of

RB =

∑p
i,j a

∗
ijS̄(i, j)

‖A‖2
F

. (4.40)

Iterating between computing Â(B) and B̂(A) completes the alternating minimization

algorithm.

By induction, initializing with either a psd Hermitian A or B and iterating until

convergence will result in an estimate Â⊗ B̂ of the covariance that is psd Hermitian

since the set of positive semidefinite Hermitian matrices is closed.

Since for nonzero S a nonzero Bk implies a nonzero Ak+1 and vice versa, Ak and
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Bk will never go to zero. Hence, the closed-form factorwise minimizers (4.38) and

(4.39) are always uniquely defined, and cannot increase the value of the objective.

Thus monotonic convergence of the objective to a value b is ensured (Byrne, 2013).

Since the coordinatewise minimizers are always unique, if (4.38) or (4.39) result in

either Ak+1 6= Ak or Bk+1 6= Bk respectively, then the objective function must strictly

decrease. Thus, cycles are impossible and Ak,Bk must converge to values A∗,B∗.

The value of the objective at that point must be a stationary point by definition, else

A∗,B∗ would not be coordinatewise minima.

4.7.2 KronSTAP SINR: Proof Sketch of Theorem (4.33)

This is a proof sketch, the full proof can be found in our technical report (Gree-

newald and Hero III , 2015, Theorem IV.3).

After the spatial stage of Kron STAP projects away the estimated spatial subspace

h̃ ( ‖h̃‖2 = 1) the remaining clutter has a covariance given by

((I− h̃h̃H)A(I− h̃h̃H))⊗B. (4.41)

By (4.8), the steering vector for a (constant Doppler) moving target is of the form

d = dA ⊗ dB. Hence, the filtered output is

y = wHx = dHFx (4.42)

= (dHA ⊗ dHB )(FA ⊗ FB)x

= ((dHAFA)⊗ (dHBFB))x

= dHBFB

((
dHA

(
I− h̃h̃H

))
⊗ I
)

x
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Let d̃A = (I− h̃h̃H)dA and define c̃ =
(
d̃HA ⊗ I

)
c. Then

y = dHBFB(τ c̃ + ñ), (4.43)

where ñ = (d̃A ⊗ I)n and

Cov[c̃] =(d̃HAAd̃A)B (4.44)

Cov[ñ] =σ2I,

which are proportional to B and I respectively. The scalar (d̃HAAd̃A) is small if A

is accurately estimated, hence improving the SINR but not affecting the SINR loss.

Thus, the temporal stage of Kron STAP is equivalent to single channel LR-STAP

with clutter covariance (d̃HAAd̃A)B and noise variance σ2.

Given a fixed Â = h̃h̃H , Algorithm 3 dictates (4.40), (4.39) that

RB =

p∑
i,j

h̃∗i h̃
∗
j S̄(i, j) (4.45)

B̂ = EIGrb(RB),

which is thus the low rank approximation of the sample covariance of

xh = xc,h + nh = (h̃⊗ I)H(xc + n). (4.46)

Since xc = τc, xc,h = τ(h̃ ⊗ I)Hc is an SIRV (Gaussian random vector (h̃ ⊗ I)Hc

scaled by τ) with

Cov[xc,h] = τ 2(h̃HAh̃)B (4.47)

Furthermore, nh = (h̃⊗ I)Hn which is Gaussian with covariance σ2I. Thus, in both

training and filtering the temporal stage of Kron STAP is exactly equivalent to single
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channel LR STAP. Hence we can directly apply the methods used to prove the bound

for LR STAP, which after some work results in (4.33) as desired.
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CHAPTER V

The Tensor Graphical Lasso (TeraLasso)

The sum of Kronecker products model in Chapter III is an expressive model and

incorporates significant structure. It is not trivial, however, to extend it to tensor

valued data (low separation rank approximation of tensor covariances is in fact NP

hard), or to incorporate sparsity in the low-separation rank part of the model. The K-

way Kronecker product allows for both modeling of K-way tensors and incorporation

of sparsity, but the assumption that the process is separable in every dimension is

very strong, and hence not ideal.

Instead, in this chapter we consider a sum of K-way Kronecker products model

that gives a convex penalized maximum likelihood objective function, allows for sparse

factors, is nonseparable, and significantly less restrictive than the Kronecker product.

We demonstrate single-sample convergence of our estimator and apply it to meteoro-

logical and brain EEG datasets.
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5.1 Introduction

Learning useful structured models of high-dimensional datasets from relatively

few training samples is an important task in signal processing and machine learning.

Many high-dimensional problems involve data that is matrix- or tensor-valued, and

exploiting that structure is critical in the learning process. Some common exam-

ples of tensor-valued data include spatial and spatio-temporal data such as videos,

meteorological data, geolocated time series, fMRI, EEG and other medical imaging

modalities, synthetic aperture radar, gene expression data, wireless communication

applications (Werner et al., 2008) and sensor networks. Applications of tensor mod-

eling are far-ranging, including signal processing, numerical linear algebra, computer

vision, numerical analysis, data mining, graph analysis, and neuroscience. Many such

applications are discussed in (Kolda and Bader , 2009).

Covariance modeling is a fundamental problem in multivariate statistical analysis.

In this work, we focus on developing structured, sparse inverse covariance models for

high-dimensional tensor data. Our notation and terminology follows that of (Kolda

and Bader , 2009). Consider the K-order data tensor X ∈ Rd1×···×dK . For convenience,

define p = [d1, . . . , dK ], and set

p =
K∏
k=1

dk, mk =
∏
i 6=k

di =
p

dk
.

We propose the TEnsor gRAphical Lasso (TeraLasso) model

(Cov[vec(XT )])−1 = Σ−1 = Ω = Ψ1 ⊕ · · · ⊕ΨK︸ ︷︷ ︸
K terms

, (5.1)

where the Ψk are sparse, each corresponding to a graph across the kth dimension of

the data tensor, and ⊕ denotes the kronecker sum, A ⊕ B = A ⊗ In + ImB⊗, for

m ×m and n × n matrices A and B, respectively, Im is the m ×m identity matrix,
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and ⊗ denotes the Kronecker product operator. We have used vec(X) as in (Kolda

and Bader , 2009), and defined XT ∈ RdK×···×d1 by analogy to the matrix transpose,

i.e. [XT ]i1,...,iK = XiK ,...,i1 .

Many methods for first-moment modeling of tensor-valued data have been pro-

posed (Kolda and Bader , 2009). Many of these involve low-rank factor decomposi-

tions, including PARAFAC and CANDECOMP (Harshman and Lundy , 1994; Faber

et al., 2003) and Tucker decomposition-based methods such as (Tucker , 1966) and

(Hoff et al., 2016). Recently, several works have found that such modeling can be

improved by taking into account the second moment of the data (i.e. covariance),

which has typically been modeled using Kronecker products (Xu et al., 2011; Zhe

et al., 2015; Pouryazdian et al., 2016).

As the covariance encodes relationships and interactions between variables, it is

a powerful tool for modeling multivariate distributions, allowing inference, likelihood

calculation, and prediction. For tensor-valued data, however, the very large number

of free parameters, of order O(
∏K

k=1 d
2
k), makes the unstructured covariance model

impractical. As a result, there has been increasing interest in developing structured

covariance models appropriate for matrix- and tensor-valued data (Tsiligkaridis and

Hero, 2013; Zhou, 2014; Werner et al., 2008; Sun et al., 2015; Xu et al., 2011; Gree-

newald and Hero, 2015; Allen and Tibshirani , 2010). As the most common example,

the Kronecker product covariance

Σ = A1 ⊗ A2 ⊗ · · · ⊗ AK (5.2)

exploits the natural tensor arrangement of the variables and forms a joint model

from K lower-dimensional models each defined along one tensor axis. When the

covariance (5.2) describes a Gaussian distribution, this model is known as the matrix

normal distribution (Dawid , 1981) (K = 2) and tensor normal for K > 2 (Sun et al.,
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2015; Xu et al., 2011), with a penalized version in (Allen and Tibshirani , 2010) called

the transposable covariance model. Note that the inverse covariance Ω = Σ−1 of

a Kronecker product covariance (5.2) also has a Kronecker product representation

(Laub, 2005).

In a Gaussian graphical model edges correspond to nonzero entries in the precision

matrix Ω = Σ−1. The Kronecker product graphical model (Zhou, 2014; Tsiligkaridis

et al., 2013; Sun et al., 2015) estimates K sparse factor precision matrices Ψk ∈ Rdk×dk

(Figure 5.1(a-c)), setting Ω = Ψ1 ⊗ · · · ⊗ ΨK . This model has excellent statistical

convergence results, but creates an overall graph where each edge in the final model

is the product of K separate edges from the factor graphs Ψk. A proliferation of

inter-related edges is thus created, illustrated in Figure 5.1 (right), with each edge in

the factor models affecting up to m2
k total edges in the final graph.

The Kronecker product model became popular because of the separability inter-

pretation of the factors, hence it is perhaps not surprising that it is not that natural

of a parameterization of a sparse graphical model. Indeed, while the separable struc-

ture of (5.2) is intuitive for a wide variety of real matrix-valued and spatio-temporal

processes, the imposed structure is often restrictive and inaccurate in a wider set of ap-

plications (Tsiligkaridis and Hero, 2013; Kalaitzis et al., 2013; Greenewald and Hero,

2015). As a result, there has been significant recent effort on modeling covariances

using other Kronecker representations, with the goal of achieving comparable reduc-

tions in the number of parameters while expanding their applicability (Tsiligkaridis

and Hero, 2013; Rudelson and Zhou, 2015; Greenewald and Hero, 2015).

Instead of the Kronecker product, it is more desirable to have each edge in the fac-

tor model map directly to edges in the final model. One such model is the Kronecker

sum model, shown in Figure 5.1 (left), that maps the i, jth edge in the kth factor

Ψk to edges between nodes in ith and jth position along the kth tensor mode. This

type of structure implies that conditional dependence moves along axes or modes, in a
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manner analogous to several popular forms of Markov random fields used in computer

vision and other applications (Wang et al., 2013; Diebel and Thrun, 2005).

Figure 5.1: Tensor graphical models on a 4 × 4 × 2 Cartesian node grid. Consider
three graphical models, one along each axis (a-c). The Kronecker sum
and Kronecker product of these graphs are shown at the bottom left and
right of the figure, with only the edges emanating from the orange node
indicated. The Kronecker sum (64 total edges) preserves the sparsity of
the axis graphs (a-c), forming a joint model where each edge is associated
with a single edge in an axis graph. The Kronecker product (184 total
edges), on the other hand, creates an explosion of edges (marked green)
each with a weight a multiple of three separate weights from the axis
graphs. Hence, in many situations the Kronecker sum is a more natural
and interpretable tensor expansion of sparse graphical models.

It turns out that this hypothesized structure (Kalaitzis et al., 2013) is exactly

equivalent to modeling the offdiagonal of Ω as a Kronecker sum Ψ−1 ⊕· · ·⊕Ψ−K , where

Ψ− = Ψ− diag(Ψ) is the result of setting the diagonal entries of a matrix Ψ to zero.
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To simplify the multiway Kronecker notation, we let

I[dk:`] = Idk ⊗ · · · ⊗ Id`︸ ︷︷ ︸
`−k+1 factors

where ` ≥ k. Using this notation, the K-way Kronecker sum can be written as

Ω− = Ψ−1 ⊕ · · · ⊕Ψ−K =
K∑
k=1

I[d1:k−1] ⊗Ψ−k ⊗ I[dk+1:K ].

It remains to select a structured model for the diagonal elements of Ω. The most

natural solution is to use the full Kronecker sum model:

Ω = Ψ1 ⊕ · · · ⊕ΨK . (5.3)

This Kronecker sum model, as opposed to the Kronecker product model, is the focus

of this paper. To illustrate, in Figure 5.2 we show the inverse covariance (left) and

covariance (right) corresponding to a K = 3 Kronecker sum of autoregressive-1 (AR-

1) graphs with dk = 4.

Figure 5.2: Kronecker sum model. Left: Sparse 4 × 4 × 4 Cartesian AR precision
matrix Ω = Ψ1 ⊕Ψ2 ⊕Ψ3. Right: Covariance matrix Σ = Ω−1. Note the
nested block structure, especially of the covariance.

As compared to the Kronecker model, the Kronecker sum model (5.3) has several
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attractive properties. As illustrated in Figure 5.1 it provides a sparser representation

of the inverse covariance. Furthermore, under the model (5.3) the inverse covariance

has Kronecker product eigenvectors with linearly related eigenvalues, as opposed to

the multiplicative eigenvalues of the Kronecker product. For simplicity, we consider

the K = 2 case, but the result generalizes to the full tensor case (see Property 3 in

Appendix A). Suppose that Ψ1 = U1Λ1U
T
1 and Ψ2 = U2Λ2U

T
2 are the eigendecompo-

sitions of Ψ1 and Ψ2. Then (Laub, 2005), if Ω = Ψ1 ⊕Ψ2, the eigendecomposition of

Ω is

Ω = Ψ1 ⊕Ψ2 = (U1 ⊗ U2)(Λ1 ⊕ Λ2)(U1 ⊗ U2)T .

Thus, the eigenvectors of the Kronecker sum are the Kronecker products of the eigen-

vectors of each factor. This “block” structure is evident in the inverse Kronecker sum

example in Figure 5.2, and is analyzed further in (Canuto et al., 2014). This parallels

the eigenvector structure of the Kronecker product - specifically when Ω = Ψ1 ⊗Ψ2

Ω = Ψ1 ⊗Ψ2 = (U1 ⊗ U2)(Λ1 ⊗ Λ2)(U1 ⊗ U2)T .

Hence, use of the Kronecker sum model can be viewed as replacing the nonconvex,

relatively unstable multiplicative eigenvalues of the Kronecker product with a stable,

convex linear expression. As the tensor dimension K increases, this structural sta-

bility compared to the Kronecker product becomes even more increasingly dominant

(K term sums instead of K-order products).

Tensor unfolding or matricization of X along the kth-mode is denoted as X(k) ∈

Rdk×
∏
` 6=k d` , and is formed by concatenating the kth mode fibers Xi1,...,ik−1,:,ik+1,...,iK

as columns (Kolda and Bader , 2009). In tensor covariance modeling when the di-

mension p is much larger than the number of samples n, the Gram matrices Sk =

1
nmk

∑n
i=1Xi,(k)X

T
i,(k) are often used to model the rows and columns separately, no-

tably in the covariance estimation approaches of (Zhou, 2014; Kalaitzis et al., 2013).
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In (Kalaitzis et al., 2013) it was shown that the Kronecker sum model has a rather

satisfying connection to these factorwise Gram matrices Sk. Consider (similar to

(Zhou, 2014)) modeling the likelihood of each Sk independently, i.e. `(X(k)) ∝

exp{−〈Sk,Ψk〉} for some matrix Ψk. One may consider forming a joint likelihood

(where we undo the normalization of Sk by the unfolding dimension) to jointly max-

imize the factor likelihoods

`(X) ∝ exp

{
−

K∑
k=1

mk〈Sk,Ψk〉

}
,

enabling the joint maximization of the factor likelihoods. Now, in Lemma V.8, we

prove

L(X) ∝ exp

{
−

K∑
k=1

mk〈Sk,Ψk〉

}
= exp {−〈S,Ψ1 ⊕ · · · ⊕ΨK〉} .

Adding a normalization constant and taking the logarithm, we have

`(X) = logL(X) = − log |Ψ1 ⊕ · · · ⊕ΨK |+ 〈S,Ψ1 ⊕ · · · ⊕ΨK〉 (5.4)

which is exactly the Gaussian loglikelihood for precision matrices of the form Ω =

Ψ1 ⊕ · · · ⊕ ΨK . (Kalaitzis et al., 2013) use this form of the model to show that the

maximum entropy precision matrix estimate, given the Sk, is the maximum likelihood

Kronecker sum estimate. In other words, the Kronecker sum estimate makes the least

assumptions about the data given the matricized sample covariances Sk. Exploring

this connection further, we observe (Lemma V.8) that

〈S,Ψ1 ⊕ · · · ⊕ΨK〉 =

〈
(S1 ⊕ · · · ⊕ SK)− (K − 1)tr(S)

p
Ip,Ψ1 ⊕ · · · ⊕ΨK

〉
.

If the Gram matrices have eigendecompositions Sk = UkΛkU
T
k , then the eigenvectors
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of S1 ⊕ · · · ⊕ SK are U1 ⊗ · · · ⊗ UK . Since the objective (5.4) is unitarily invariant,

we have that the eigenvectors of Ω̂ = Ψ̂1⊕ · · · ⊕ Ψ̂K are also U1⊗ · · · ⊗UK , and thus

each factor estimate is of the form

Ψ̂k = UkΓkU
T
k ,

where Γk is diagonal. In other words, the eigenstructure of the Gram matrices are

directly incorporated into the associated Kronecker sum factors, making each factor

estimate nearly independent.

5.1.1 Related Work

The Kronecker product model has been applied to a wide variety of spatio-

temporal problems where structured covariance estimation is required with limited

training samples. Previous applications of the model of Equation (5.2) include MIMO

wireless channel modeling as a transmit vs. receive decomposition (Werner and Jans-

son, 2007), geostatistics (Cressie, 1993), genomics (Yin and Li , 2012), multi-task

learning (Bonilla et al., 2007), collaborative filtering (Yu et al., 2009), face recognition

(Zhang and Schneider , 2010), mine detection (Zhang and Schneider , 2010), networks

(Leskovec et al., 2010), and recommendation systems (Allen and Tibshirani , 2010). A

variety of estimation algorithms have been proposed, including an SVD based method

(Werner et al., 2008) and sparsity-inducing methods (Tsiligkaridis et al., 2013; Zhou,

2014).

The Kronecker sum model is related to the sum of Kronecker products model

introduced in (Tsiligkaridis and Hero, 2013). These authors proposed approximating

the covariance matrix using a sum of r Kronecker products

Σ =
∑r

i=1
Ai ⊗Bi, (5.5)
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where r is the unknown separation rank and is assumed to be small, Ai ∈ Rm×m, and

Bi ∈ Rn×n. All of the Kronecker factors A and B are symmetric but not necessarily

positive semi-definite matrices. It follows from (Loan and Pitsianis , 1993) that any

arbitrary covariance matrix can be represented in this form with sufficiently large

r. This allows for more accurate approximation of the covariance when most of

its energy can be accounted for by the sum of only a few Kronecker factors as in

(5.5). An algorithm (Permuted Rank-penalized Least Squares (PRLS)) for fitting the

model (5.5) to a measured sample covariance matrix was introduced in (Tsiligkaridis

and Hero, 2013) and was shown to have strong high dimensional MSE performance

guarantees. Additional extensions, such as the inclusion of a sparse correction for

robustness (Robust KronPCA) (Greenewald and Hero, 2015), and the introduction

of improved sketching estimators (Chi , 2016), have been developed.

A special case of the sum of Kronecker products model (5.5) is the restriction to

r = 2 components of the form

Σ = A⊕B = A⊗ In + Im ⊗B, (5.6)

where A−1 ∈ Rm×m and B−1 ∈ Rn×n are sparse (Rudelson and Zhou, 2015).

The proposed TeraLasso builds upon the sum of Kronecker products ideas from

PRLS, Robust KronPCA, and the Kronecker sum covariance model (Rudelson and

Zhou, 2015), with the critical difference that TeraLasso creates a sum of Kronecker

products in the inverse covariance matrix, while the previous methods create a sum

of Kronecker products in the covariance matrix itself. This difference raises new esti-

mation challenges, but allows direct, identifiable modeling of sparsity in the precision

matrix.

The Kronecker sum precision matrix model for K = 2 (Ω = A⊕B) was introduced

in (Kalaitzis et al., 2013) as the Bigraphical Lasso. In that work it was assumed that
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the diagonals of each of the Kronecker factors were known. Significant reduction of

the number of training samples required to learn the covariance was observed, shown

experimentally for a variety of real data processes, and comparing favorably with the

Kronecker product model (Kalaitzis et al., 2013).

The contributions of this work are as follows. We extend the sparse matrix-variate

Bigraphical lasso model to the sparse tensor-variate (K > 2) TeraLasso model, al-

lowing modeling of data with arbitrary tensor degree K. We establish nonasymptotic

estimator performance bounds for TeraLasso as well as the Bigraphical lasso, implying

single sample statistical convergence in the high dimensional regime. We propose a

highly scalable, first-order FISTA-based algorithm (TG-ISTA) to solve the TeraLasso

objective, prove that it enjoys a geometric convergence rate to the global optimum,

and demonstrate its practical advantages on problems up to the ? scale. Finally, we

applied the algorithm to synthetic, meteorological, and EEG datasets, demonstrat-

ing that TeraLasso significantly improves performance in the low- and single- sample

regimes. We argue that the intuitive graphical structure, robust eigenstructure, and

the maximum-entropy interpretation of the TeraLasso model makes it superior to

the Kronecker product model, and perhaps the ideal candidate for ultra-low sample

estimation of graphical models for tensor valued data.

5.1.2 Outline

The remainder of the paper is organized as follows. The TeraLasso objective

function is introduced in Section 5.3, and high dimensional consistency results are

presented in Section 5.4. Our proposed first order TG-ISTA optimization algorithm in

described in Section 5.5, with numerical geometric convergence to the globally optimal

estimator proven in Section 5.6. Finally, Sections 5.7 and 5.8 contain simulated and

real data results, with Section 5.9 concluding the paper.
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5.2 Kronecker Sum Notation

5.2.1 Kronecker Sum Subspace K̃p

We define the set of square matrices expressible as a Kronecker sum K̃p as

K̃p = {A ∈ Rp×p : ∃Bk ∈ Rdk×dk s.t. A = B1 ⊕ · · · ⊕BK}.

Observe that K̃p is a linear sum of K components, and thus K̃p is linearly spanned

by the K components. Thus K̃p is a linear subspace of Rp×p. Observe that by the

definition of the Kronecker sum

Ω = Ψ1 ⊕ · · · ⊕ΨK =
K∑
k=1

I[d1:k−1] ⊗Ψk ⊗ I[dk+1:K ].

This implies that each entry of Ψk appears in p/dk = mk entries of Ω. Thus, each

parameter appears in a minimum of minkmk entries of Ω. From a geometric perspec-

tive, TeraLasso exploits this minkmk repeating structure to correspondingly reduce

the variance of the parameter estimates.

It should be noted that Ω = Ψ1⊕ · · ·⊕ΨK does not uniquely determine {Ψk}Kk=1,

i.e. the Kronecker sum parameterization is not fully identifiable. Specifically, observe

that for any c

A⊕B = A⊗ I + I ⊗B = A⊗ I − cI + cI + I ⊗B = (A− cI)⊕ (B + cI),

and thus the trace of each factor is nonidentifiable. Observe that Ψ−k , Ω+ are unaf-

fected by the trace ambiguity, where we define the notation M− = M−diag(M), and

M+ = diag(M). Thus, this trace ambiguity does not affect Ω or the off diagonals of
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the factors Ψk. Hence, the decomposition

Ω = Ω+ + (Ψ−1 ⊕ · · · ⊕Ψ−K). (5.7)

is identifiable. We will present estimator bounds with respect to this decomposition.

5.2.2 Projection onto K̃p

Since K̃p is a subspace of Rp×p, we can define a unique projection operator onto

K̃p

ProjK̃p
(A) = arg min

M∈K̃p

‖A−M‖2
F .

We first introduce a submatrix notation. Fix a k, and choose i, j ∈ {1, . . .mk}. Let

E1 ∈ R
∏k−1
`=1 dk×

∏k−1
`=1 dk and E2 ∈ R

∏K
`=k+1 dk×

∏K
`=k+1 dk be such that [E1⊗E2]ij = 1 with

all other elements zero. Observe that E1 ⊗ E2 ∈ Rmk×mk . For any matrix A ∈ Rp×p,

let A(i, j|k) ∈ Rdk×dk be the submatrix of A defined via

[A(i, j|k)]rs = tr((E1 ⊗ eres ⊗ E2)A), r, s = 1, . . . , dk. (5.8)

The submatrix A(i, j|k) is defined for all i, j ∈ {1, . . .mk} and k = 1, . . . , K. When

A is a covariance matrix associated with a tensor X, this subblock corresponds to the

covariance matrix between the ith and jth slices of X along the kth dimension.

We can now state a closed-form of the projection operator ProjK̃p
(A): the projec-

tion corresponds to setting each factor k to the coordinatewise dk × dk average of A

with a correction that removes trace redundancy:

ProjK̃p
(A) = (A1 ⊕ · · · ⊕ AK)− (K − 1)

tr(A)

p
Ip,

where Ak =
∑mk

i=1A(i, i|k) is the average of A over dimensions 1, . . . , k−1, k+1, . . . , K

(see Appendix A for details).
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5.2.3 Additional Notation

We define the set Kp of positive semidefinite Kronecker sum matrices A ∈ K̃p as

Kp = {A � 0|A ∈ K̃p}.

Since Kp is the intersection of the linear subspace K̃p and the positive semidefinite

cone, Kp is a closed convex set.

In this paper we use the inner product associated with the Frobenius norm,

〈A,B〉 = tr(ATB) = vec(A)Tvec(B).

For n independent identically distributed samples xi = vec(XT
i ), i = 1, . . . ., n, let

S = 1
n

∑n
i=1 xix

T
i be its sample covariance. We extract the factor-wise covariances

Σ(k) = E[Sk] and sample covariances Sk (Gram matrices) of the k-mode matricizations

Xi,(k) of Xi by taking the average over the other K − 1 dimensions:

Sk =
1

nmk

n∑
i=1

Xi,(k)X
T
i,(k) =

mk∑
j=1

S(j, j|k), Σ(k) =
1

mk

E[X(k)X
T
(k)] =

mk∑
j=1

Σ(j, j|k).

5.3 Tensor graphical Lasso (TeraLasso)

5.3.1 Subgaussian Model

We first present our generative model for data generated via the TeraLasso model.

For a random variable Y , the sub-gaussian (or ψ2) norm of Y , denoted by ‖Y ‖ψ2 ,

is defined as

‖Y ‖ψ2 = sup
q≥1

q−1/2(E|Y |q)1/q;

if E[Y ] = 0, then E[exp(tY )] ≤ exp(Ct2‖Y ‖2
ψ2

) ∀t ∈ R.

We define X ∈ Rd1×d2×···×dK to be a K-order subgaussian random tensor when x =
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vec(XT ) is a subgaussian random vector. We say that x is a subgaussian random

vector when

x = Σ1/2v,

for some covariance matrix Σ � 0 and random vector v = [v1, . . . , vp]
T with indepen-

dent, zero mean entries vj whose variance E[v2
j ] = 1 and whose subgaussian norm is

bounded ‖vj‖ψ2 ≤ κ <∞.

In what follows, we assume the data samples Xi are independent identically dis-

tributed subgaussian random tensors following the above model. We will present an

estimation procedure for Σ−1 = Ω ∈ Kp, where we recall (5.1)

Ω = Ψ1 ⊕ · · · ⊕ΨK .

5.3.2 Objective Function

The classic graphical lasso (Banerjee et al., 2008; Yuan and Lin, 2007; Zhou, 2014;

Zhou et al., 2011; Rolfs et al., 2012) estimates Ω by minimizing the objective function

(L1 penalized Gaussian loglikelihood)

Q(Ω) = − log |Ω|+ 〈S,Ω〉+
∑
ij

ρij|Ωij|,

where S is the sample covariance. Our proposed Tensor graphical Lasso (TeraLasso)

estimate of the precision matrix Ω in (5.1) will minimize the GLasso objective func-

tion, restricted to Kronecker sum precision matrices Ω ∈ Kp:

Ψ̂1 ⊕ · · · ⊕ Ψ̂K = Ω̂ = arg min
Ω∈Kp

Q(Ω),
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or equivalently substituting in the Kronecker sum parameterization,

arg min
Ω∈Kp

Q(Ω) = arg min
Ω∈Kp

Q(Ψ1, . . . ,ΨK) = (5.9)

− log |Ψ1 ⊕ · · · ⊕ΨK |+ 〈S,Ψ1 ⊕ · · · ⊕ΨK〉+
K∑
k=1

ρkmk|Ψ−k |1.

The nondiagonal elements of the factors in a Kronecker sum have disjoint support

(Appendix A), hence ρkmk|Ψ−k |1 has direct correspondence to
∑

ij ρij|Ωij| for an ap-

propriate choice of ρij. This form of the objective function for K = 2 is related to

the bigraphical lasso objective (Kalaitzis et al., 2013), except we do not penalize the

nonidentifiable diagonals in the Ψk’s. Lemma V.9 in Appendix A reveals that the

high dimensional sample covariance S only enters into the objective function through

its lower dimensional projections Sk onto the Kronecker sum factors:

〈S,Ψ1 ⊕ · · · ⊕ΨK〉 =
K∑
k=1

mk〈Sk,Ψk〉. (5.10)

The simplified objective is

Q(Ψ1, . . . ,ΨK) = − log |Ψ1 ⊕ · · · ⊕ΨK |+
K∑
k=1

mk

(
〈Sk,Ψk〉+ ρk|Ψ−k |1

)
. (5.11)

We emphasize that (5.11) and (5.9) are mathematically equivalent, and represent the

same objective function. We will usually cite the form (5.11) for simplicity. The

objective function Q is jointly convex, and its minimization over Kp has a unique

solution.

Theorem V.1 (Joint Convexity and Uniqueness of the Estimate). The objective

function (5.11) is jointly convex in {Ψk}Kk=1. Furthermore, define the set A =

{{Ψk}Kk=1 s.t. Q({Ψk}Kk=1) = Q∗} where Q∗ = min{Ψk}Kk=1
Q({Ψk}Kk=1). If this set

is nonempty, it maps to a unique inverse covariance Ω∗, i.e. there exists a unique
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Ω∗ ∈ Kp that achieves the minimum of Q such that

Ψ1 ⊕ · · · ⊕ΨK = Ω∗ ∀ {Ψk}Kk=1 ∈ A (5.12)

Proof. See Appendix 5.12. �

5.4 High Dimensional Consistency

In this section, we derive high dimensional consistency results for the TeraLasso

estimator. In addition to the subgaussian generative model detailed above, we make

the following assumptions on the true model:

A1 : For all k = 1, . . . , K, let the sets Sk = {(i, j) : i 6= j, [Ψk]ij 6= 0}. Then

card(Sk) ≤ sk ∀k. Observe that the total number of nonzero edges in Ω is thus

s =
∑K

k=1 mksk.

A2 : φmin(Ω0) =
∑K

k=1 φmin(Ψk) = 1
‖Σ0‖ ≥ kΩ, and φmax(Ω0) =

∑K
k=1 φmax(Ψk) ≤ kΩ.

Note that these assumptions only involve identifiable parameters of the model.

Under these assumptions, we have the following bound on the Frobenius norm error

of the estimator, both on the full Ω and on the identifiable parameters.

The unique factor expansions of the off diagonals of Ω0 and its TeraLasso estimate

Ω̂ are of the form

Ω̂− = Ψ−1 ⊕ · · · ⊕Ψ−K

Ω−0 = Ψ−0,1 ⊕ · · · ⊕Ψ−0,K .

Using this notation, we have the following theorems.

Theorem V.2 (TeraLasso estimator: Frobenius error bound). Suppose the assump-

tions A1-A2 hold, and that Ω̂ is the minimizer of (5.11) with ρk = C
kΩ

√
log p
nmk

. Then
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with probability at least 1− 2(K + 1) exp(−c log p)

‖Ω̂− Ω0‖2
F ≤ C1K

2(s+ p)
log p

nminkmk

.

Theorem V.3 (TeraLasso estimator: Factorwise and L2 error bounds). Suppose

assumptions A1-A2 hold. If ρk = C
kΩ

√
log p
nmk

, then with probability at least 1 − 2(K +

1) exp(−c log p) we have

‖Ω̂+ − Ω+
0 ‖2

2

(K + 1) maxk dk
+

K∑
k=1

‖Ψ−k −Ψ−0,k‖2
F

dk
≤ cK2

(
1 +

K∑
k=1

sk
dk

)
log p

nminkmk

(5.13)

and

‖Ω̂− Ω0‖2 ≤ cK
√
K + 1

√√√√(max
k

dk
mk

)(
1 +

K∑
k=1

sk
dk

)
log p

n
.

Theorems V.2 and V.3 are proved in Appendix 5.13 and 5.17 respectively.

Observe that by (5.13) the parameters of Ω can be estimated in the single sample

regime when the dimension is large (mk > dk). Due to the repeating structure and

increasing dimension of Ω, the parameter estimates can converge without the overall

Frobenius error ‖Ω̂−Ω0‖F converging. To see this, suppose that ∆Ω = ∆⊕0⊕· · ·⊕0

where ‖∆‖F = ε. Then

‖∆Ω‖F =
√
m1ε.

The following corollary immediately follows from Theorems V.2 and 3.

Corollary V.4. Suppose the assumptions of Theorem V.2 hold, that K is fixed, and
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that all the mk, k = 1, . . . , K grow without bound.

‖Ω̂− Ω‖2
F = Op

(
(s+ p)

log p

nminkmk

)
,

‖Ω̂+ − Ω+
0 ‖2

2

maxk dk
+

K∑
k=1

‖Ψ−k −Ψ−0,k‖2
F

dk
= Op

((
1 +

K∑
k=1

sk
dk

)
log p

nminkmk

)
,

‖Ω̂− Ω‖2 = Op


√√√√(max

k

dk
mk

)(
1 +

K∑
k=1

sk
dk

)
log p

n

 .

Hence the TeraLasso estimate converges to the true precision matrix as n increases.

Observe further that in the single sample regime (n = 1), the TeraLasso estimates

of the identifiable parameters and the overall spectral norm error converge as the

dimensions dk increase, whenever sk/dk remains bounded and (dk log p)/mk goes to

zero. As an example, this latter condition is guaranteed to hold whenever K ≥ 3 and

maxk dk/mink dk remains bounded.

For comparison to the GLasso, recall that the subgaussian GLasso rate is (Zhou

et al., 2011; Rothman et al., 2008)

‖Ω̂− Ω‖2
F = Op

(
(p+ s) log p

n

)
,

and that the Frobenius norm bound in Corollary V.4 improves on this result by a

factor of minkmk, clearly exploiting the redundancy across dimensions.

Furthermore, if the dimensions are equal (dk = p1/K and sk = s̃ for all k) and K

is fixed, Corollary V.4 implies

‖∆k‖2
F = Op

(
(dk + sk) log p

mkn

)
,

indicating that TeraLasso with n replicates estimates the identifiable representation

of Ψk with an error rate equivalent to that of GLasso with Ω = Ψk and nmk available

replicates.
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5.5 Algorithm

When the BiGLasso model was proposed (Kalaitzis et al., 2013), a simple alternating-

minimization estimation algorithm was given. It required, however, the diagonal ele-

ments of the inverse covariance to be known a priori, which is unrealistic in practice.

Hence, we derive a joint first-order primal algorithm for BiGLasso and TeraLasso

estimation that is not subject to this limitation.

As the TeraLasso objective (5.11) is non-differentiable because of the L1 penalties,

we use a iterative soft thresholding (ISTA) method restricted to the convex set Kp of

possible positive semidefinite Kronecker sum precision matrices. We call our approach

Tensor Graphical Iterative Soft Thresholding, or TG-ISTA.

5.5.1 Composite gradient descent and proximal first order methods

Our goal is to solve the objective (5.11)

Q(Ψ1, . . . ,ΨK) = − log |Ψ1 ⊕ · · · ⊕ΨK |+
K∑
k=1

mk

(
〈Sk,Ψk〉+ ρk|Ψ−k |1

)
.

Note that this objective can be decomposed into the sum of a differentiable function

f and a lower semi-continuous but nonsmooth function g:

Q(Ψ1, . . . ,ΨK) = f(Ω) + g(Ω)

f(Ω) = − log |Ψ1 ⊕ · · · ⊕ΨK |+
K∑
k=1

mk〈Sk,Ψk〉

= − log |Ω|+ 〈S,Ω〉|Ω∈K̃p

g(Ω) =
K∑
k=1

mkρk|Ψ−k |1. (5.14)

For objectives of this form (Nesterov et al., 2007) proposed a first order method called

composite gradient descent, which has been specialized to the case of g = | · |1 and
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is widely known as Iterative Soft Thresholding (ISTA) (Tseng , 2010; Combettes and

Wajs , 2005; Beck and Teboulle, 2009; Nesterov , 1983, 2004). This method is also

applicable to nonconvex regularizers g (Loh and Wainwright , 2013).

In the unconstrained setting composite gradient descent is an iterative solution

given by the updates

Ωt+1 ∈ arg min
Ω∈Rp×p

{
1

2
‖Ω− (Ωt − ζ∇f(Ωt))‖2

F + ζg(Ω)

}
,

where ζ is a scalar stepsize parameter. This optimization can be solved in closed-form

for many common regularizers g, including the one in (5.14).

Paralleling previous applications of ISTA to the positive semidefinite cone (Rolfs

et al., 2012), we will derive unrestricted composite gradient descent in the relevant

space (K̃p for TeraLasso) and enforce the positive semidefinite constraint at each step

by performing line search to find a suitable stepsize ζ. Convergence to the optimal

solution in Kp is guaranteed (see Section 5.6.2) since the positive definite cone is

an open subset of Rp×p and the objective Q goes to infinity on the boundary of the

positive semidefinite cone.

Thus, composite gradient descent within the linear subspace K̃p is given by

Ωt+1 ∈ arg min
Ω∈K̃p

{
1

2

∥∥∥Ω−
(

Ωt − ζProjK̃p
(∇f(Ωt))

)∥∥∥2

F
+ ζg(Ω)

}
, (5.15)

whenever the initialization Ω0 ∈ K̃p.

5.5.2 TG-ISTA

To apply this form of composite gradient descent to the TeraLasso objective, we

first derive the gradient of

f(Ω) = − log |Ω|+ 〈S,Ω〉 (5.16)
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restricted to the space K̃p.

Since the gradient of 〈S,Ω〉 with respect to Ω is S, the gradient of 〈S,Ω〉 for Ω

in the subspace K̃p is the projection of S onto the subspace K̃p. This is given by

(Lemma V.8)

∇Ω∈K̃p
(〈S,Ψ1 ⊕ · · · ⊕Ψk〉) = ProjK̃p

(S) (5.17)

=

(
S1 −

K − 1

K

tr(S1)

d1

Id1

)
⊕ · · · ⊕

(
SK −

K − 1

K

tr(SK)

dK
IdK

)
= S̃1 ⊕ · · · ⊕ S̃K = S̃

S̃k = Sk −
K − 1

K

tr(Sk)

dk
Idk .

Recall that in Rp×p the gradient of− log |Ω| is Ω−1 (Boyd and Vandenberghe, 2009).

As the inverse of a Kronecker sum is in general not a Kronecker sum, we project Ω−1

onto K̃p to find the gradient in K̃p. Thus the gradient of the log determinant portion

is

∇Ω∈K̃p
(− log |Ψ1 ⊕ · · · ⊕ΨK |) = G1 ⊕ · · · ⊕GK = G = projK̃p

(
(Ψ1 ⊕ · · · ⊕ΨK)−1

)
.

(5.18)

In Algorithm 5 we show an efficient method of computing this projected inverse by

exploiting the eigendecomposition identity in Appendix A Property 3 and Lemma

V.21.

Substituting (5.18) and (5.17) into the composite gradient framework (5.15) gives

Ωt+1 ∈ arg min
Ω∈K̃p

{
1

2

∥∥∥Ω−
(

Ωt − ζ
(
S̃ −G

))∥∥∥2

F
+ ζ

K∑
k=1

mkρk|Ψ−k |1

}
. (5.19)

In Appendix 5.18 we show the following:
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Lemma V.5 (Decomposition of objective). For Ωt,Ω ∈ K̃p, i.e.

Ωt = Ψt
1 ⊕ · · · ⊕Ψt

K , Ω = Ψ1 ⊕ · · · ⊕ΨK ,

the objective (5.19) can be decomposed into K + 1 fully identifiable, independent op-

timization problems. Specifically,

[Ψt+1
k ]− = arg min

Ψ−k

1

2

∥∥∥Ψ−k − ([Ψt
k]
− − ζ(S̃−k −G

−
k ))
∥∥∥2

F
+ ζρk|Ψ−k |1 (5.20)

Ω+
t+1 = arg min

Ω+

1

2

∥∥∥Ω+ −
(

Ω+
t − ζ

(
S̃+ −G+

))∥∥∥2

F
. (5.21)

Since the diagonal Ω+ is unregularized in (5.21), we have

Ω+
t+1 = Ω+

t − ζ(S̃+ −G+),

i.e.

[Ψt+1
k ]+ = [Ψt

k]
+ − ζ(S̃+

k −G
+
k ). (5.22)

For the off diagonal factors, the problem (5.20) is the L1 proximal operator. The

solution is given by (Beck and Teboulle, 2009)

[Ψt
k]
− = shrink−ζρk((Ψ

t
k − ζ(S̃k −Gk))

−), (5.23)

where we define the shrinkage operator shrink−ρ (·) as

[shrink−ρ (M)]ij =

 sign(Mij)(|Mij| − ρ)+ i 6= j

Mij o.w.
(5.24)
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Combining (5.23) and (5.22) gives a unified expression

Ψt+1
k = shrink−ζtρk(Ψ

t
k − ζ(S̃k −Gk)). (5.25)

Our approach to composite gradient descent is summarized in Algorithm 4.

5.5.3 Choice of step size ζt

It remains to set the stepsize parameter ζt at each step t. We follow the approach

of (Beck and Teboulle, 2009; Rolfs et al., 2012). We will prove linear convergence

when ζt is chosen such that

f(Ωt+1) = − log |Ωt+1|+ 〈S,Ω〉 ≤ Qζt(Ωt+1,Ωt) (5.26)

where Qζ is a quadratic approximation to f given by

Qζ(Ωt+1,Ωt) = f(Ωt) + 〈Ωt+1 − Ωt,∇f(Ωt)〉+
1

2ζ
‖Ωt+1 − Ωt‖2

F (5.27)

= − log |Ωt|+ 〈S̃,Ωt〉+ 〈Ωt+1 − Ωt, S̃ −G〉+
1

2ζ
‖Ωt+1 − Ωt‖2

F .

At each iteration t, we thus select a stepsize ζt, and compute the update (5.25). If

the resulting Ωt+1 is not positive definite or does not decrease the objective sufficiently

according to (5.26), we decrease the stepsize to cζt for c ∈ (0, 1) and try again. This

is guaranteed to find an appropriate step since by construction Ωt is positive definite,

and the positive definite cone is an open set. We continue retesting and decreasing

the stepsize by c until the constraints on Ωt are satisfied. If after a set number of

backtracking steps the conditions are still not satisfied, we can always take the safe

step

ζt = λ2
min(Ωt) =

K∑
k=1

min
i

[sk]
2
i .
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As the safe stepsize is often slow, we use the more aggressive Barzilei-Borwein

step to set a starting ζt at each time. The Barzilei-Borwein stepsize (Barzilai and

Borwein, 1988) creates an approximation to the Hessian, in our case given by (see

identities in Appendix A)

ζt+1,0 =
‖Ωt+1 − Ωt‖2

F

〈Ωt+1 − Ωt, Gt −Gt+1〉
(5.28)

The norms and inner products in (5.28) and (5.27) can be efficiently computed factor-

wise using the formulas in Appendix A. The complete algorithm is shown in Algorithm

5.

Algorithm 4 TG-ISTA (high level)

1: Input: SCM factors Sk, regularization parameters ρi, backtracking constant c ∈
(0, 1), initial step size ζ1,0, initial iterate Ω0.

2: while not converged do
3: Compute the subspace gradient Gt

1 ⊕ · · · ⊕Gt
K at Ωt.

4: Set stepsize ζt.
5: for k = 1, . . . , K do
6: Perform the composite objective gradient update: Ψt+1

k ← shrink−ζtρk(Ψ
t
k −

ζt(S̃k −Gt
k)).

7: end for
8: end while
9: Return {Ψt+1

k }Kk=1.

5.6 Numerical Convergence

5.6.1 Cost

Due to the representation (5.10), the TG-ISTA algorithm never needs to form the

full p × p covariance. The memory footprint of TG-ISTA is only O(p +
∑K

k=1 d
2
k)

as opposed to the O(p2) storage required by unstructured estimators such as the

GLasso. Since the training data itself requires O(np) storage, the storage footprint

of TG-ISTA is scalable to large values of p =
∏K

k=1 dk when the dk/p decrease (e.g.

122



Algorithm 5 TG-ISTA

1: Input: SCM factors Sk, regularization parameters ρi, backtracking constant c ∈
(0, 1), initial step size ζ1,0, initial iterate Ω0 = Ψ0

1 ⊕ · · · ⊕Ψ0
K .

2: for k = 1,. . . , K do
3: sk, Uk ← Eigendecomposition of Ψ0

k = Ukdiag(sk)U
T
k .

4: S̃k ← Sk − Idk
tr(Sk)
dk

K−1
K

.
5: end for
6: while not converged do

7: {s̃}Kk=1 ← ProjK̃p

(
diag

(
1

s1⊕···⊕sK

))
.

8: for k = 1 . . . K do
9: Gt

k ← Ukdiag(sk)U
T
k .

10: end for
11: for j = 0, 1, . . . do
12: ζt ← cjζt,0.
13: for k = 1, . . . , K do
14: Ψt+1

k ← shrink−ζtρk(Ψ
t
k − ζt(S̃k −Gt

k)).

15: Compute eigendecomposition Ukdiag(sk)U
T
k = Ψt+1

k .
16: end for
17: Compute Qζt({Ψt+1

k }, {Ψt
k}) via (5.27).

18: if f({Ψt+1
k }) ≤ Qζt({Ψ

t+1
k }, {Ψt

k}) as in (5.27) and mini([s1⊕· · ·⊕sK ]i) > 0
then

19: Stepsize ζt is acceptable; break
20: end if
21: end for
22: Compute Barzilei-Borwein stepsize ζt+1,0 via (5.28)
23: end while
24: Return {Ψt+1

k }Kk=1.

dk = p1/K).

The computational cost per iteration is dominated by the computation of the

gradient, which is performed by doing K eigendecompositions of size d1, . . . , dK re-

spectively and then computing the projection of the inverse of the Kronecker sum of

the resulting eigenvalues. The former step costs O(
∑K

k=1 d
3
k), and the second costs

O(pK). Thus the computational cost per iteration will be

O

(
pK +

K∑
k=1

d3
k

)
. (5.29)

For K > 1 and dk/p � 1, this gives a dramatic improvement on the O(p3) =
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O(
∏K

k=1 d
3
k) cost per iteration of unstructured Graphical Lasso algorithms (Rolfs et al.,

2012; Hsieh et al., 2014). In addition, for K ≤ 3 the cost per iteration is comparable to

the O(d3
1 +d3

2 +d3
3) cost per iteration of the most efficient (K = 3) Kronecker product

GLasso methods (Zhou, 2014). Given that (Zhou, 2014) solves separate factor-wise

objective functions, the fact that our joint optimization approach achieves comparable

per-iteration computational complexity to the separable Kronecker product model is

indicative of the power of the nonseparable Kronecker sum model in high dimension.

5.6.2 TG-ISTA Algorithm Convergence Rate

In Appendix 5.19, we prove the following results demonstrating geometric conver-

gence of the iterates of TG-ISTA.

Theorem V.6. Assume that the iterates Ωt of Algorithm 5 satisfy aI � Ωt � bI, for

all t, for some fixed constants 0 < a < b < ∞. Suppose further that Ω∗ is the global

optimum. If ζt ≤ a2 for all t, then

‖Ωt+1 − Ω∗‖F ≤ max

{∣∣∣∣1− ζt
b2

∣∣∣∣ , ∣∣∣∣1− ζt
a2

∣∣∣∣} ‖Ωt − Ω∗‖F .

Furthermore, the step size ζt which yields an optimal worst-case contraction bound

s(ζt) is ζ = 2
a−2+b−2 . The corresponding optimal worst-case contraction bound is

s(ζ) = 1− 2

1 + b2

a2

.

Theorem V.7. Let ρk > 0 for all k and let Ωinit be the initialization of TG-ISTA

(Algorithm 5). Let

α =
1∑K

k=1 ‖Sk‖2 + dkρk
, b′ = ‖Ω∗‖2 + ‖Ωinit − Ω∗‖F ,

and assume ζt ≤ α2 for all t. Then the iterates Ωt of Algorithm 5 satisfy αI � Ωt � b′I
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for all t, with b′ = ‖Ω∗‖2 + ‖Ωinit − Ω∗‖F .

These two theorems together imply geometric convergence of the precision matrix

estimate to the global optimum Ω∗ when the stepsize is not excessive.

Note that the contraction rate bound only depends on the dimension through a

weighted sum of the dimensions dk, confirming the scalability of TG-ISTA in the

number of iterations as well as in the cost per iteration.

5.7 Synthetic Data

In this section, we verify the performance of TeraLasso and TG-ISTA on synthetic

data. See Algorithm 6 in Appendix A for a scalable method of generating the random

vector x = vec(XT ) under the Kronecker sum model. We created random graphs for

each factor Ψk using both an Erdos-Renyi (ER) topology and a random grid graph

topology. We generated the ER type graphs according to the method of (Zhou et al.,

2010b). Initially we set Ψ = 0.25In×n, where n = 100. Then, we randomly select p

edges and update Ψ as follows: for each new edge (i, j), a weight a > 0 is chosen

uniformly at random from [0.2, 0.4]; we subtract a from Ψij and Ψji, and increase

Ψii,Ψjj by a. This keeps Ψ positive definite. We repeat this process until all edges

are added. An example 25-node ER graph and precision matrix are shown in Figure

5.3, along with a 225-node precision matrix formed from the Kronecker sum 25 and

9-node ER precision matrices.

The random grid graph is produced in a similar way, with the exception that edges

are only allowed between adjacent nodes, where the nodes are arranged on a square

grid (Figure 5.4).

5.7.1 Algorithmic Convergence

We first compared our proposed TG-ISTA algorithm to the original BiGLasso al-

gorithm proposed in (Kalaitzis et al., 2013). It should be noted that the BiGLasso
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Figure 5.3: Example random Erdos-Renyi (ER) graph with 25 nodes and 50 edges.
Left: Graphical representation. Center: Corresponding precision matrix
Ψ. Right: Full K = 2, 225-node Kronecker sum of Ψ with an ER graph
of size 9.

Figure 5.4: Example random grid graph (square) with 25 nodes and 26 edges. Left:
Graphical representation. Center: Corresponding precision matrix Ψ.
Right: Full K = 2, 225-node Kronecker sum of Ψ with a grid graph of
size 9.

algorithm does not estimate the diagonal elements of Ω (it assumes they are known),

so it cannot strictly be considered to solve the general BiGLasso or TeraLasso ob-

jectives. Figure 5.5 shows comparative convergence speeds on a K = 2 random ER

graph estimation scenario. Observe that TG-ISTA’s ability to efficiently exploit the

Kronecker sum structure to obtain computational and memory savings allows it to

quickly converge to the optimal solution, while the alternating-minimization based

BiGLasso algorithm with its heavy per-iteration computation and memory costs is

impractically slow.

To confirm the linear convergence theory for the TG-ISTA algorithm, we next
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generated Kronecker sum inverse covariance graphs and plotted the Frobenius norm

between the inverse covariance iterates Ωt and the optimal point Ω∗. For simplicity,

we used equal dk and set the Ψk to be random ER graphs (see above) with dk edges.

We set the ρk = ρ using cross validation. Figure 5.6 shows the results as a function

of iteration, for a variety of dk and K configurations. For comparison, the statistical

error of the optimal point is also shown, as optimizing beyond this level provides

reduced benefit. As predicted, linear or better convergence to the global optimum is

observed, and as expected it does not appear that increasing dk, p, or K dramatically

affect the number of iterations required. Overall, the small number of iterations

required combined with the low cost per iteration confirm the efficiency of TG-ISTA.
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Figure 5.5: BiGLasso algorithm (Kalaitzis et al., 2013) and our TG-ISTA approach,
estimating a K = 2 Kronecker sum of random ER graphs with p =
[75, 75], i.e. p = 5625, and n = 10. Normalized Frobenius norm between
iterates Ωt and converged Ω∗ are shown for each algorithm. Note the
greatly superior speed of TG-ISTA. Recall further that TG-ISTA finds
the complete optimum (i.e. Ω∗ = Ωopt) and uses O(p+ d2

k) storage, while
BiGLasso does not estimate the diagonal elements of Ω, is limited to
K = 2, and requires O(p2) storage.

5.7.2 Tuning Parameters

In the formulation of the TeraLasso objective (5.11) and the TG-ISTA algorithm,

the sparsity of the estimate is controlled by K tuning parameters ρk for k = 1, . . . , K.

However, Theorem V.2 seems to indicate that the ρk can be set formulaically, using
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Figure 5.6: Linear convergence of TG-ISTA. Shown is the normalized Frobenius norm
‖Ωt−Ω∗‖F of the difference between the estimate at the tth iteration and
the optimal Ω∗. On the left are results comparing K = 2 and K = 4
on the same data with the same value of p (different dk), on the right
they are compared for the same value of dk (different p). Also included
are the statistical error levels, and the computation times required to
reach them. Observe the consistent and rapid linear convergence rate,
not strongly depending on K or dimension dk.

a single tuning parameter. Specifically, we can expect good performance when we set

ρk = ρ̄

√
log p

nmk

(5.30)

with ρ̄ being the single tuning parameter. Below, we experimentally validate the

reliability of this tuning parameter expression (5.30) for a case of K = 3 factors.

As performance metrics, we consider the Frobenius norm (‖Ω̂−Ω0‖F ) and spectral

norm (‖Ω̂ − Ω0‖2 errors of the precision matrix estimate Ω̂, and use the Matthews
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correlation coefficient to quantify the edge support estimation performance. Let the

number of true positive edge detections be TP, true negatives TN, false positives FP,

and false negatives FN. The Matthews correlation coefficient is defined as (Matthews ,

1975)

MCC =
TP · TN− FP · FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
,

where we consider each nonzero off diagonal element of Ψk as a single edge. Increasing

values of MCC imply better edge estimation performance, with MCC = 0 implying

complete failure and MCC = 1 implying perfect edge set estimation.

We conduct experiments to verify the single tuning parameter approach, shown

in Figure 5.7. Shown are the MCC, normalized Frobenius error, and spectral norm

error as functions of ρ̄1 and ρ̄2 where

ρ̄k =
ρk√
log p
nmk

. (5.31)

If ρ̄1 = ρ̄2 = ρ̄3 is near optimal, then indeed the formula (5.30) is successful and using

the single tuning parameter will give reliable results.

5.7.3 Empirical Validation of Statistical Convergence

Having verified the single tuning parameter approach, hereafter we will cross-

validate only ρ̄ in our plots, using the formulaic variation with respect to p and

n. We next verify that our bounds on the rate of convergence are tight. In this

experiment, we will hold ‖Σ0‖2 and s/p constant. Following the full form bound on

the Frobenius error ‖Ω̂− Ω0‖F in Lemma V.15, we use

ρk = C

√
log p

nmk

(5.32)
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Figure 5.7: Setting tuning parameters with K = 3, n = 1, and d1 = d3 = 64.
Shown are the MCC, relative Frobenius error, and relative L2 error of
the estimate as the scaled tuning parameters are varied (5.31). Shown
are deviations of ρ̄2 from the theoretically dictated ρ̄2 = ρ̄1 = ρ̄3. Top:
Equal dimensions, d1 = d2 = d3. First and third factors are random
ER graphs with dk edges, and the second factor is random grid graph
with dk/2 edges. Bottom: Dimensions d2 = 2d1, each factor is a random
ER graph with dk edges. Notice that in all these scenarios, using ρ̄1 =
ρ̄2 is near optimal, confirming the viability of using a theory-motivated
single-tuning-parameter approach guided by (5.30). This fact significantly
simplifies the problem of choosing the tuning parameters.

where C is an absolute constant. By Lemma V.15, this implies an “effective number

of samples” proportional to the inverse of the bound on ‖Ω̂− Ω0‖2
F/p:

Neff ∝
n(∑K

k=1

√
log p
mk

)2 . (5.33)

For each experiment, we varied K and d2 over a total of 6 scenarios. To ensure

that the constants in the bound were minimally affected, we held Ψ1 constant over all

(K, d2) scenarios, and let Ψ3 = 0 and d3 = d1 when K = 3. We let d2 vary by powers

of 2, allowing us to create a fixed matrix B and set Ψ2 = Id2/d2,base
⊗B to ensure the
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Figure 5.8: Frobenius norm convergence rate verification for proposed TeraLasso.
Shown (ordered by increasing difficulty) are results for AR graphs with
d1 = 40 (top left), random ER graphs with d1 = 10 (top right), d1 = 40
(bottom left), and random grid graphs with d1 = 36 (bottom right). For
each covariance, 6 different combinations of d2 and K are considered, and
the resulting Frobenius error plotted versus the effective number of sam-
ples Neff (5.33). In all cases, ρk are set according to their theoretical
values in equation (5.32). The closeness of the plots over the six scenarios
verifies the tightness of the bounds we derive.

eigenvalues of Ψ2 and thus ‖Σ0‖2 remain unaffected as d2 changes.

Results averaged over random training data realizations are shown in Figure 5.8

for ER (dk/2 edges per factor), random grid (dk/2 edges per factor), and AR-1 graphs

(AR parameter .5 for both factors). Observe that in each case, the curves for the six

scenarios are very close in spite of the wide variation in dimension, indicating that our

expression for the effective sample size and thus our bound on the rate of convergence

is tight. Small variations are not unexpected, since the objective function is joint

over all factors, making the several approximations needed in the proof have varying

degrees of accuracy.

Figure 6.5 illustrates how increasing dimension p and the increasing structure

associated with larger K improves single sample performance. Shown are the average
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TeraLasso edge detection precision and recall values for different values of K in the

single and 10-sample regimes, all increasing to 1 (perfect structure estimation) as p,

K, and n increase.
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Figure 5.9: Low sample edge support estimation on random ER graphs, with the ρk
set according to (5.32). Graphical model edge detection precision and
recall curves are shown as a function of data dimension p =

∏K
k=1 dk.

For each value of the tensor order K, we set all the dk = p1/K . Observe
single sample convergence as the dimension p increases and the structure
increases (increasing K).

5.8 Real Data

5.8.1 NCEP Windspeed Data

We illustrate the TeraLasso model on a dataset involving measurements on a

spatio-temporal grid, specifically, meteorological data from the US National Center
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Figure 5.10: Rectangular 10 × 20 latitude-longitude grids of windspeed locations
shown as black dots. Elevation colormap shown in meters. Left: “West-
ern grid”, Right: “Eastern grid”.

for Environmental Prediction (NCEP). One such data source is meteorological data.

The NCEP maintains records of average daily wind velocities in the lower troposphere,

with daily readings beginning in 1948. Velocities are recorded globally, in a 144× 73

latitude-longitude grid with spacings of 2.5 degrees in each coordinate. Over large but

bounded areas, the spacing is approximately a rectangular grid, suggesting a K = 2

model (latitude vs. longitude) for the spatial covariance, and a K = 3 model (latitude

vs. longitude vs. time) for the full spatio-temporal covariance.

We considered the time series of daily-average wind speeds. We first regressed

out the mean for each day in the year via a 14-th order polynomial regression on

the entire history from 1948-2015 (Tsiligkaridis and Hero, 2013). We extracted two

20× 10 spatial grids, one from eastern North America, and one from Western North

America, with the latter including an expansive high-elevation area and both Atlantic

and Pacific oceans (Figure 5.10). Figures 5.11 and 5.12 show precision matrix esti-

mate results trained on the eastern and western grids respectively, using time samples

from January in n years following 1948. The TeraLasso estimates are compared to

the unstructured shrinkage estimator, the TeraLasso estimator with sparsity param-

eter ρ = 0 (non-sparse Kron. sum estimate), and the maximum likelihood Kronecker

product estimator. Note the graphical structure similar to that associated with AR

structure in each dimension - a not unreasonable structure given the physical ar-
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rangement of the wind stations. The TeraLasso estimate is much more stable than

the Kronecker product estimate for much lower sample size n. The estimated lati-

tude and longitude factors are shown in Figure 5.13. Observe the approximately AR

structure, and the break in correlation (Figure 5.13, bottom right) in the Western

Longitude factor. This break corresponds to the high elevation line of the Rocky

Mountains, which is satisfying given the geographical feature’s significant impact on

weather patterns.

As an example application of the learned precision matrices, we consider likelihood-

based season classification. We considered data in the 51-year span from 1948-2009.

We considered training spatial precision matrices on n consecutive days in January

and June of a training year respectively, and running anomaly detection on 30-day

sequences of observations in the remaining 50 testing years. Note that for all results,

we cycle through 51 1-vs.-50 train-test partitions of the 51-year data, and average the

results. One set of sequences was from summer (June), and the other from winter

(January), and we computed the classification error rate for the winter vs. sum-

mer classifier obtained by comparing the loglikelihoods −
∑m

i=1(xi − µi)T Ω̂(xi − µi).

The K = 2 results for TeraLasso are shown in Figure 5.14 (top), with unregularized

TeraLasso (ML Kronecker Sum) and maximum likelihood Kronecker product results

shown for comparison. Note the superiority and increased single sample robustness of

the ML Kronecker Sum estimate as compared to the ML Kronecker product estimate,

confirming the better fit of TeraLasso. Spatio-temporal tensor (K = 3) results for

different sized temporal covariance extents (T = d3) are shown in Figure 5.15 (top)

with similar results. We only show the overall classification error rate (instead of the

elements of the confusion matrix) because the low number of test samples implies

that the apportionment of the total error into the two error types is not statistically

meaningful.
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Figure 5.11: Windspeed data, eastern grid. Inverse spatial covariance estimation,
comparing TeraLasso to unstructured and Kronecker product tech-
niques. Spatial covariance, K = 2. Observe TeraLasso’s ability to
recover structure with even one sample. For improved contrast, the
diagonal elements have been reduced in the plot.
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Figure 5.12: Windspeed data, western grid. Inverse spatial covariance estimation,
comparing TeraLasso to unstructured and Kronecker product tech-
niques. Spatial covariance, K = 2. Observe TeraLasso’s ability to
recover structure with even one sample.
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Figure 5.13: TeraLasso estimate factors, K = 2. Top: Eastern grid, Bottom: Western
grid. Observe the decorrelation (the longitude factor entries connecting
nodes 1-13 to nodes 14-20 are essentially zero) in the Western grid lon-
gitudinal factor, corresponding to the high-elevation line of the Rocky
Mountains.
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Figure 5.14: Classification using Gaussian loglikelihood and learned spatial (K = 2)
precision matrices for each season. Shown are windspeed summer vs.
winter classification error rates as a function of training samples n. Due
to the low number of testing examples (50 per season) and low error rate
of the proposed methods, we do not differentiate the two types of error.
Note the n = 1 stability of the Kronecker sum estimate, and superior
performance throughout indicating better model fit.
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Figure 5.15: Classification using Gaussian loglikelihood and learned spatio-temporal
(K = 3) precision matrices for each season, where T is the temporal
dimension in days. Shown is windspeed summer vs. winter classification
error rate as a function of training samples n and length of temporal
window T . Note the n = 1 stability of the Kronecker sum estimate, and
superior performance throughout indicating better model fit.

5.8.2 EEG Seizure Data

We also consider a canine EEG dataset collected for a Kaggle challenge on seizure

prediction. This dataset consists of sets of hour-long 500Hz 16-lead EEG recordings

on dogs with epilepsy. The recordings are divided into a set of interictal recordings

which are temporally isolated from seizure events, and preictal recordings recorded

from 1 hour, 5 minutes prior to a seizure event up until 5 minutes before the event.

The primary purpose of the dataset is to find local anomalies indicative of an

oncoming seizure event. Due to the relative lack of preictal training data, and the a

priori impossibility of determining the times at which warning events occur, we focus

on detection of anomalous structure. For each one-hour segment, we use an epoch at

the beginning of the segment to estimate the spatio-temporal Kronecker sum precision
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matrix graph, which we set as a reference. The spatial factor is (16 leads x 16 leads),

and we used a (20 samples x 20 samples) temporal factor. In a series of epochs

spaced evenly through the remaining segment, we re-estimate the spatio-temporal

covariance, and compare the estimated sparse edges with the reference graph. The

total number of edge changes between the current estimate and the reference is then

calculated. Example plots of the normalized edge changes as a function of time for

a preictal segment of Dog #1 and of Dog #2 are shown in Figure 5.17. Note the

significant increase in change towards the end of the segment closest to the oncoming

seizure event.

Using the same segments from the two dogs, we show estimate graphs for each fac-

tor in Figure 5.18 and Figure 5.19 for a variety of number of training samples n. The

times (1, 2, and 3) used as examples for each segment are marked on the trajectories

in Figure 5.17. The training samples are obtained via a sliding temporal window,

and thus are strongly correlated, inflating the value of n required for convergence.

Note the increased temporal correlation structure at times 2 and 3 (near the seizure

event) relative to the reference estimate at time 1. The changes in spatial structure

are more subtle, but present, especially in magnitude.

Given the very small amount of preictal training data, it was impractical to identify

a specific structure associated with seizure warning. We instead focused on detecting

structural change, forming a reference structure estimate at the start of the episode,

and tracking the total edge-change distance for all subsequent steps. The resulting

centered interictal and preictal trajectories for both Dog #1 and Dog #2 are shown

in Figure 5.20. Declaring a detection when the trajectories cross a threshold gives a

preictal vs. interical detection performance with AUCs of .86 and .81 for Dogs #1

and 2 respectively, where all parameters were optimized on Dog #3 only. While our

experimental setup is not directly comparable to the classification-based approach

used in the Kaggle challenge, the winning entry in that challenge achieved a classifi-
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cation AUC of .83, indicating the difficulty of the problem and perhaps the possibility

of “warning episodes” not being guaranteed to produce full seizures. The relatively

strong performance of our basic detector scheme highlights how TeraLasso’s very low

sample performance allows it to track rapid, short term changes in spatiotemporal

graphical structure.
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Figure 5.16: EEG data. Precision matrix estimates, with the diagonals set to zero
for better contrast. Note the similarity of the GLasso estimate at n =
100 and the TeraLasso estimates. The Kronecker product estimate has
many spurious positively-weighted edges away from the main diagonal
block. The correspondence of the TeraLasso estimate to the high-sample
GLasso estimate confirms that the Kronecker sum model fits the data.
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Figure 5.17: Example preictal edge change trajectories of the sparse TeraLasso es-
timate, computed for dogs #1 (left) and #2 (right). Note the large
increase in change towards the end of the epoch, indicating an oncoming
seizure. The times used in Figures 5.18 and 5.19 are marked.

5.9 Conclusion

We presented an extension of the Bigraphical Lasso method to tensor valued data,

and presented an algorithm for estimation under the TeraLasso model. We derived

strong performance guarantees for TeraLasso that showed significant gains over the

unstructured approach, and demonstrated single-sample convergence in simulations

as well as the tightness of the bounds. Finally, applications to real meteorological

data and EEG data were considered, where the TeraLasso was shown to model the

data well and enable improved single-sample performance for estimation, prediction,

and anomaly detection.

While K in our model should not exceed the order of the data tensor, tensor modes

can be combined to form lower-order (smaller K) models with less structure. The

question of how and when to combine tensor modes could provide a way to transition

between the ultra low sample K-order regime and a less-structured higher sample

regime, and is an interesting question for future work. Potential extensions to our

approach also include generalizing the first-order approach of TG-ISTA to incorporate

Hessian information along the lines of (Hsieh et al., 2014), and extending the inverse

Kronecker sum model of TeraLasso to more general sums (along the lines of the sum

of Kronecker products model (Tsiligkaridis and Hero, 2013; Greenewald and Hero,
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Figure 5.18: Estimated graphs at times 1, 2, and 3 for dog #1 for different values of
n. Top: Spatial graph (16 variables) and Bottom: Temporal graph (20
samples). Note the changes in structure between the initial state (time
1) and the states closer to the seizure event (times 2, 3).

2015)) allowing for better approximation while maintaining the gains in sparsity and

sample complexity.
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Figure 5.19: Estimated graphs at times 1, 2, and 3 for dog #2 for different values of
n. Top: Spatial graph (16 variables) and Bottom: Temporal graph (20
samples). Note the changes in structure between the initial state (time
1) and the states closer to the seizure event (times 2, 3).

5.10 Appendix

5.11 Useful Properties of the Kronecker Sum

5.11.1 Basic Properties

As the properties of Kronecker sums are not always widely known, we have com-

piled a list of some fundamental algebraic relations we use.
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(a) Dog #1. Pre-seizure activity detection AUC .86.
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(b) Dog #2. Pre-seizure activity detection AUC .81.

Figure 5.20: Centered edge-change trajectories vs. time. The total length of each seg-
ment is 1 hour, and all parameters were optimized on Dog #3 only. Left:
Interictal segments, Right: Preictal. A threshold on absolute change
gives a detector of pre-seizure activity with an AUC of .86 for Dog #1
and .81 for Dog #2.

1. Sum or difference of Kronecker sums (Laub, 2005):

cA(A1⊕· · ·⊕AK)+ cB(B1⊕· · ·⊕BK) = (cAA1 + cBB1)⊕· · ·⊕ (cAAK + cBBK).

2. Factor-wise disjoint off diagonal support (Laub, 2005). By construction, if for

any k and i 6= j

[I[d1:k−1] ⊗ Ak ⊗ I[dk+1:K ]]ij 6= 0,

then for all ` 6= k

[I[d1:`−1] ⊗ A` ⊗ I[d`+1:K ]]ij = 0.
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Thus,

|A−1 ⊕ · · · ⊕ A−K |1 =
K∑
k=1

|I[d1:k−1] ⊗ A−k ⊗ I[dk+1:K ]|1 =
K∑
k=1

mk|A−k |1.

3. Eigendecomposition: If Ak = UkΛkU
T
k are the eigendecompositions of the fac-

tors, then (Laub, 2005)

A1 ⊕ · · · ⊕ AK = (U1 ⊗ · · · ⊗ UK)(Λ1 ⊕ · · · ⊕ ΛK)(U1 ⊗ · · · ⊗ UK)T

is the eigendecomposition of A1⊕ · · · ⊕AK . Some resulting identities useful for

doing numerical calculations are as follows:

(a) L2 norm:

‖A1 ⊕ · · · ⊕ AK‖2 = max

(
K∑
k=1

max
i

[Λk]ii,−
K∑
k=1

min
i

[Λk]ii

)
≤

K∑
k=1

‖Ak‖2.

(b) Determinant:

log |A1 ⊕ · · · ⊕ AK | =

log |Λ1 ⊕ · · · ⊕ ΛK | =
d1∑
i1=1

· · ·
dK∑
iK=1︸ ︷︷ ︸

K sums

log

[Λ1]i1i1 + · · ·+ [ΛK ]iK iK︸ ︷︷ ︸
K terms

 .

(c) Matrix powers (e.g. inverse, inverse square root):

(A1 ⊕ · · · ⊕ AK)v = (U1 ⊗ · · · ⊗ UK)(Λ1 ⊕ · · · ⊕ ΛK)v(U1 ⊗ · · · ⊗ UK)T .

Since the Λk are diagonal, this calculation is memory and computation

efficient.
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5.11.2 Projection onto K̃p

Lemma V.8 (Projection onto K̃p). For any A ∈ Rp×p,

ProjK̃p
(A) = A1 ⊕ · · · ⊕ AK − (K − 1)

tr(A)

p
Ip

=

(
A1 −

K − 1

K

tr(A1)

d1

Id1

)
⊕ · · · ⊕

(
AK −

K − 1

K

tr(AK)

dK
IdK

)
,

where

Ak =
1

mk

mk∑
i=1

A(i, i|k).

Since the submatrix operator A(i, i|k) is clearly linear, ProjK̃p
(·) is a linear operator.

Proof. Since K̃p is a linear subspace, projection can be found via inner products.

Specifically, recall that if a subspace A is spanned by an orthonormal basis U , then

ProjA(x) = UUTx.

Since K̃p is the space of Kronecker sums, the off diagonal elements are independent

and do not overlap across factors (Property 4). The diagonal portion is more difficult

as each factor overlaps on the same entries, creating an overdetermined system. We

can create an alternate parameterization of K̃p:

ProjK̃p
(A) = Ā1 ⊕ · · · ⊕ ĀK + τAIp = τAIp +

K∑
k=1

I[d1:k−1] ⊗ Āk ⊗ I[dk+1:K ] (5.34)

where we constrain tr(Āk) = 0. Each of the K+1 terms in this sum is now orthogonal
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to all other terms since by construction

〈I[d1:k−1] ⊗ Āk⊗I[dk+1:K ], I[d1:`−1] ⊗ Ā` ⊗ I[d`+1:K ]〉

=
p

dkd`
tr((Āk ⊗ Id`)(Idk ⊗ Ā`))

=
p

dkd`
tr(Āk)tr(Ā`) = 0

〈τAIp, I[d1:k−1] ⊗ Āk ⊗ I[dk+1:K ]〉 = 〈τAI[d1:k−1] ⊗ Idk ⊗ I[dk+1:K ], I[d1:k−1] ⊗ Āk ⊗ I[dk+1:K ]〉

= mk〈Idk , Āk〉 = mktr(Āk) = 0

for ` 6= k and all possible Āk, τA. Thus, we can form bases for the Āk and τA

independently. To find the Āk it suffices to project A onto a basis for Āk. We can

divide this projection into two steps. In the first step, we ignore the constraint on

tr(Āk) and create the orthonormal basis

u
(ij)
k :=

1
√
mk

I[d1:k−1] ⊗ eie
T
j ⊗ I[dk+1:K ]

for all i, j = 1, . . . dk. Recall that in a projection of x, the coefficient of a basis

component u is given by uTx = 〈u,x〉. We can thus apply this elementwise to the

projection of A. Hence projecting A onto these basis components yields a matrix

B
√
mk ∈ Rdk×dk where

Bij =
1

mk

〈A, I[d1:k−1] ⊗ eie
T
j ⊗ I[dk+1:K ]〉.

To enforce the tr(Āk) = 0 constraint, we project away from B the one-dimensional

subspace spanned by Idk . This projection is given by

B − tr(B)

dk
Idk , (5.35)
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where by construction

tr(B)

dk
=

1

dkmk

dk∑
i=1

〈A, I[d1:k−1] ⊗ eie
T
i ⊗ I[dk+1:K ]〉

=
1

p
〈A, Ip〉 =

tr(A)

p
.

Equation (5.35) completes the projection onto a basis for Āk, so we can expand the

projection
√
mkB back into the original space. This yields a Āk of the form

[Āk]ij =


1
mk
〈A, I[d1:k−1] ⊗ eie

T
j ⊗ I[dk+1:K ]〉 i 6= j

1
mk
〈A, I[d1:k−1] ⊗ eie

T
i ⊗ I[dk+1:K ]〉 − tr(A)

p
i = j

Finally, for τA we can compute

τA =
1

p
〈A, Ip〉 =

tr(A)

p
.

Combining all these together and substituting into (5.34) allows us to define the

projection in terms of matrices Ãk, where we split the τAIp term evenly across the

other K factors. Specifically

ProjK̃p
(A) = Ã1 ⊕ · · · ⊕ ÃK .

where

[Ãk]ij =


1
mk
〈A, I[d1:k−1] ⊗ eie

T
j ⊗ I[dk+1:K ]〉 i 6= j

1
mk
〈A, I[d1:k−1] ⊗ eie

T
i ⊗ I[dk+1:K ]〉 − K−1

K
tr(A)
p

i = j
.

An equivalent representation using factorwise averages is

Ã = Ak −
K − 1

K

tr(A)

p
,
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where

Ak =

mk∑
i=1

A(i, i|k).

Moving the trace corrections to a last term and putting the result in terms of the Ak

yields the lemma.

�

5.11.3 Inner Product in K̃p

Lemma V.9 (Inner Products with S). Suppose B ∈ Rp×p. Then for any Ak ∈

Rdk×dk , k = 1, . . . , K,

〈B,A1 ⊕ · · · ⊕ AK〉 =
K∑
k=1

mk〈Bk, Ak〉.

Proof.

〈B,A1 ⊕ · · · ⊕ AK〉 =
K∑
k=1

〈B, I[d1:k−1] ⊗ Ak ⊗ I[dk+1:K ]〉

=
K∑
k=1

mk∑
i=1

〈B(i, i|k), Ak〉

=
K∑
k=1

〈
mk∑
i=1

B(i, i|k), Ak

〉

=
K∑
k=1

mk〈Bk, Ak〉.

where we have used the definition of the submatrix notation B(i, i|k) and the matrices

Bk = 1
mk

∑mk
i=1B(i, i|k).

�
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5.11.4 Identifiable Parameterization of K̃p

Lemma V.10. The space K̃p is linearly, identifiably, and orthogonally parameter-

ized by the quantities

(
τB ∈ R,

{
Ãk ∈ {A ∈ Rdk×dk |tr(A) ≡ 0}

}K
k=1

)
. Specifically,

any B ∈ K̃p can be identifiably written as

B = τBIp + (Ã1 ⊕ · · · ⊕ ÃK)

where tr(Ãk) ≡ 0. By orthogonality, the Frobenius norm can be decomposed as

‖B‖2
F = pτ 2

B +
K∑
k=1

mk‖Ãk‖2
F ≥

K∑
k=1

mk

∥∥∥τB
K
Idk + Ãk

∥∥∥2

F
,

noting that

B =
(τB
K
Id1 + Ã1

)
⊕ · · · ⊕

(τB
K
IdK + ÃK

)
.

Corollary V.11 (Construction of Identifiable Parameterization). Given a B ∈ K̃p

with any representation B = A1⊕· · ·⊕AK, the identifiable parameters (τB, {Ãk}Kk=1)

can be computed as

τB =
tr(B)

p
, Ãk = Ak −

tr(Ak)

dk
Idk .

The parameterized result is

B = τBIp + (Ã1 ⊕ · · · ⊕ ÃK).

5.11.4.1 Identifiable Parameterization

We now prove Lemma V.10.
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Proof. Based on the original parameterization

B = A1 ⊕ · · · ⊕ AK ,

we know that the number of degrees of freedom in B is much smaller than the num-

ber of elements p2. We thus seek a lower-dimensional parameterization of B. The

Kronecker sum parameterization is not identifiable on the diagonals, so we seek a

representation of B that is identifiable.

Let B ∈ K̃p. By definition, there exists A1, . . . , AK such that

B = A1 ⊕ · · · ⊕ AK =
K∑
k=1

I[d1:k−1] ⊗ Ak ⊗ I[dk+1:K ]

=
K∑
k=1

(
I[d1:k−1] ⊗ (Ak − τkIdk)⊗ I[dk+1:K ] + τkIp

)
=

(
K∑
k=1

τk

)
Ip + ((A1 − τ1Id1)⊕ · · · ⊕ (AK − τKIdK )).

where τk = tr(Ak)/dk. Observe that tr(Ak − τkIdk) = 0 by construction, so we can

set Ãk = Ak − τkIdk , creating

B =

(
K∑
k=1

τk

)
Ip + (Ã1 ⊕ · · · ⊕ ÃK).

Note that in this representation, tr(Ã1 ⊕ · · · ⊕ ÃK) = 0, so letting τB = tr(B)/p,

τB =
K∑
k=1

τk.

Thus, we can write any B ∈ K̃p as

B = τBIp + (Ã1 ⊕ · · · ⊕ ÃK),
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and in the other direction, it is easy to verify any B expressible in this form is in K̃p.

Observe that under this parameterization B is a linear function of the parameters

(τB, {Ãk}Kk=1).

Thus, (τB, {Ãk}Kk=1) parameterizes K̃p. It remains to show that this parameteri-

zation is identifiable.

5.11.4.2 Orthogonal Parameterization

We will show that under the linear parameterization of K̃p by (τB, {Ãk}Kk=1), each

of the K + 1 components are linearly independent of the others.

To see this, we compute the inner products between the components:

〈τBIp, I[d1:k−1] ⊗ Ãk ⊗ I[dk+1:K ]〉 = τBmktr(Ãk) ≡ 0

〈I[d1:k−1] ⊗ Ãk ⊗ I[dk+1:K ],I[d1:`−1] ⊗ Ã` ⊗ I[d`+1:K ]〉

= tr
(
I[d1:k−1] ⊗ Ãk ⊗ I[dk+1:`−1] ⊗ Ã` ⊗ I[d`+1:K ]

)
=

p

dkd`
tr(Ãk)tr(Ã`) ≡ 0,

for all possible values of (τB, {Ãk}Kk=1) and combinations of k < `. We have recalled

that by definition, tr(Ãk) ≡ 0 identically. Since all the inner products are identically

zero, the components are orthogonal, thus they are linearly independent. Hence, by

the definition of linear independence, this linear parameterization (τB, {Ãk}Kk=1) is

uniquely determined by B ∈ K̃p (i.e. it is identifiable).

5.11.4.3 Decomposition of Frobenius norm

Using the identifiability and orthogonality of this parameterization, we can find a

direct factorwise decomposition of the Frobenius norm on K̃p.
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By orthogonality (cross term inner products equal to zero)

‖B‖2
F = ‖τBIp‖2

F +
K∑
k=1

‖I[d1:k−1] ⊗ Ãk ⊗ I[dk+1:K ]‖2
F (5.36)

= pτ 2
B +

K∑
k=1

mk‖Ãk‖2
F .

This completes the first decomposition, representing the squared Frobenius norm as

weighted sum of the squared Frobenius norms on each component.

For convenience, we also observe that given any B ∈ K̃p with identifiable param-

eterization

B = τBIp + (Ã1 ⊕ · · · ⊕ ÃK),

we can absorb the scaled identity into the Kronecker sum and still bound the Frobe-

nius norm decomposition. Specifically, observe that

pτ 2
B = pK

K∑
k=1

(τB
K

)2

≥ p
K∑
k=1

(τB
K

)2

.

Substituting this into (5.36),

‖B‖2
F = pτ 2

B +
K∑
k=1

mk‖Ãk‖2
F ≥ p

K∑
k=1

(τB
K

)2

+
K∑
k=1

mk‖Ãk‖2
F

=
K∑
k=1

mk

(∥∥∥τB
K
Idk

∥∥∥2

F
+ ‖Ãk‖2

F

)

=
K∑
k=1

mk

∥∥∥τB
K
Idk + Ãk

∥∥∥2

F
,

where the last term follows because tr(Ãk) ≡ 0 implies that 〈Idk , Ãk〉 ≡ 0.

Observe that

B =
(τB
K
Id1 + Ã1

)
⊕ · · · ⊕

(τB
K
IdK + ÃK

)
,
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hence the lemma is proved.

�

5.11.4.4 Spectral Norm Bound

This parameterization reveals that the geometry of K̃p implies a bound on the

spectral norm relative to the Frobenius norm.

Corollary V.12 (Spectral Norm Bound). For all B ∈ K̃p,

‖B‖2 ≤
√

K + 1

minkmk

‖B‖F .

Proof. Using the identifiable parameterization of B

B = τBIp + (Ã1 ⊕ · · · ⊕ ÃK),

and the triangle inequality, we have

‖B‖2 ≤ |τB|+
K∑
k=1

‖Ãk‖2 ≤ |τB|+
K∑
k=1

‖Ãk‖F ≤
√
K + 1

√√√√τ 2
B +

K∑
k=1

‖Ãk‖2
F

≤
√

K + 1

minkmk

√√√√pτ 2
B +

K∑
k=1

mk‖Ãk‖2
F

≤
√

K + 1

minkmk

‖B‖F .

�

5.11.5 Generation of Kronecker Sum Random Tensors

Generating random tensors given a Kronecker sum precision matrix can be made

efficient by exploiting the Kronecker sum eigenstructure. Algorithm 6 allows efficient

generation of data following the TeraLasso model.
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Algorithm 6 Generation of sub-Gaussian tensor X ∈ Rd1×···×dK under TeraLasso
model.

1: Assume Σ−1 = Ψ1 ⊕ · · · ⊕ΨK .
2: Input precision matrix factors Ψk ∈ Rdk×dk , k = 1, . . . , K.
3: for k = 1, . . . , K do
4: Uk,Λk ← EIG(Ψk) eigendecomposition of Ψk.
5: end for
6: v = [v1, . . . , vp]← diag(Λ1)⊕ · · · ⊕ diag(ΛK) ∈ Rp.
7: Generate isotropic subgaussian random vector z ∈ Rp.
8: x̃i ← v

−1/2
i zi, for i = 1, . . . , p.

9: for k = 1, . . . , K do
10: x̃← (I[d1:k−1] ⊗ Uk ⊗ I[dk+1:K ])x̃.
11: end for
12: Reshape x̃ into X ∈ Rd1×···×dK .

5.12 Proof of Joint Convexity (Theorem V.1)

Proof. Our objective function is (5.11)

Q({Ψk}) = − log |Ψ1 ⊕ · · · ⊕ΨK |+ 〈S,Ψ1 ⊕ · · · ⊕ΨK〉+
∑
k

ρkdk‖Ψ−k ‖1 (5.37)

By definition,

Ψ1 ⊕ · · · ⊕ΨK =Ψ1 ⊗ Im1 + · · ·+ ImK ⊗ΨK (5.38)

is an affine function of z = [vec(Ψ1); . . . ; vec(ΨK)]. Thus, since log |A| is a concave

function (Boyd and Vandenberghe, 2009), all the terms of Q are convex since convex

functions of affine functions are convex and the elementwise L1 norm is convex. Hence

Q is jointly convex in {Ψk}Kk=1 on Kp. Hence, every local minima is also global.

We show that a nonempty set of {Ψk}Kk=1 such that Q({Ψk}Kk=1) is minimized maps

to a unique Ω = Ψ1 ⊕ · · · ⊕ ΨK . If only one point {Ψk}Kk=1 exists that achieves the

global minimum, then the statement is proved. Otherwise, suppose that two distinct
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points {Ψk,1}Kk=1 and {Ψk,2}Kk=1 achieve the global minimum Q∗. Then, for all k define

Ψk,α = αΨk,1 + (1− α)Ψk,2 (5.39)

By convexity, Q({Ψk,α}Kk=1) = Q∗ for all α ∈ [0, 1], i.e. Q is constant along the

specified affine line segment. This can only be true if (up to an additive constant)

the first two terms of Q are equal to the negative of the second two terms along the

specified segment. Since

− log |A|+ 〈S,A〉 (5.40)

is strictly convex and smooth on the positive definite cone (i.e. the second derivative

along any line never vanishes) Boyd and Vandenberghe (2009) and the sum of the two

elementwise `1 norms along any affine combination of variables is at most piecewise

linear when smooth, this cannot hold when Ωα = Ψ1,α ⊕ · · · ⊕ ΨK,α varies with α.

Hence, Ωα must be a constant Ω∗ with respect to α. Thus, the minimizing Ω∗ is

unique and Theorem V.1 is proved.

�

5.13 Statistical Convergence: Proof of Theorem V.2

5.13.1 Notation

Let Ω0 be the true value of the precision matrix Ω. Since Ω,Ω0 ∈ K̃p and K̃p is

convex, we can write

∆Ω = Ω− Ω0 = ∆+
Ω + (∆−Ψ,1 ⊕ · · · ⊕∆−Ψ,K), (5.41)
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where ∆+
Ω = Ω+ − Ω+

0 and ∆−Ψ,k = Ψ−k − Ψ−0,1 and we recall the identifiable parame-

terizations

Ω = Ω+ + (Ψ−1 ⊕ · · · ⊕Ψ−K)

Ω0 = Ω+
0 + (Ψ−0,1 ⊕ · · · ⊕Ψ−0,K).

due to the identifiability of the off diagonals.

Let I(·) be the indicator function. For an index set A and a matrix M = [mij],

define the operator PA(M) ≡ [mijI((i, j) ∈ A)] that projects M onto the set A. Let

∆−k,S = PSk(∆−Ψ,k) be the projection of ∆−Ψ,k onto the true sparsity pattern of that

factor. Let Sck be the complement of Sk, and ∆k,Sc = PSck(∆
−
Ψ,k).

Furthermore, let

∆Ω,S = (∆−1,S ⊕ · · · ⊕∆−K,S)

be the projection of ∆Ω onto the full sparsity pattern S. Recall S does not include

the diagonal.

5.13.2 Proof

Proof. Let

Q̄(Ω) = Q(Ω)−Q(Ω0) =〈Ω, S〉 − log |Ω|+
∑
k

ρkmk|Ψ−k |1

− 〈Ω0, S〉+ log |Ω0| −
∑
k

ρkmk|Ψ−k,0|1 (5.42)

be the difference between the objective function (5.9) at Ω and at Ω0. This definition

is invariant to the decompositions of Ω and Ω0 since the objective function is (Theorem

1). Let G(∆Ω) = Q̄(Ω0 + ∆Ω). Then clearly ∆̂Ω = Ω̂ − Ω0 minimizes G(∆Ω), which
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is a convex function with a unique minimizer on Kp as per Theorem V.1.

Define

Tn = {∆Ω ∈ K̃p : ∆Ω = Ω− Ω0,Ω,Ω0 ∈ Kp, ‖∆Ω‖F = Mrn,p} (5.43)

for some rn,p and

M =
1

2
φmax(Ω0)

√
minkmk

K + 1
. (5.44)

We have the following proposition:

Proposition V.13. In the event that G(∆Ω) > 0 for all ∆Ω ∈ Tn, we have that

‖∆̂Ω‖F < Mrn,p.

Proof. By definition, G(0) = 0, so G(∆̂Ω) ≤ G(0) = 0. Thus if G(∆Ω) > 0 on Tn,

then by Proposition V.18 (Appendix 5.14.2.1), ∆̂Ω /∈ Tn ∪ Vn where Vn is defined

therein. The proposition results. �

Thus it remains to show that G(∆Ω) > 0 on Tn for some rn,p.

In Lemma V.17 in Appendix 5.14.2 we show that if rn,p ≤ 1, for all ∆Ω ∈ Tn we

have that

log |Ω0 + ∆Ω| − log |Ω0| ≤ 〈Σ0,∆Ω〉 − 2 ‖∆Ω‖2
F /(9 ‖Ω0‖2

2), (5.45)
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Substituting into (5.42),

G(∆Ω) = Q̄(Ω0 + ∆Ω) (5.46)

= 〈Ω0 + ∆Ω, S〉 − 〈Ω0, S〉 − log |Ω0 + ∆Ω|+ log |Ω0|

+
∑
k

ρkmk(|Ψ−k,0 + ∆−Ψ,k|1 − |Ψ
−
k,0|1)

≥ 〈∆Ω, S〉 − 〈∆Ω,Σ0〉+
2

9‖Ω0‖2
2

‖∆Ω‖2
F +

∑
k

ρkmk(|Ψ−k,0 + ∆−Ψ,k|1 − |Ψ
−
k,0|1)

= 〈∆Ω, S − Σ0〉+
2

9‖Ω0‖2
2

‖∆Ω‖2
F +

∑
k

ρkmk(|Ψ−k,0 + ∆−Ψ,k|1 − |Ψ
−
k,0|1).

where we have used the bilinearity of the inner product. We next bound the inner

product term with high probability.

Lemma V.14. Let A be the event defined in the proof (Appendix 5.14.1). Then

Pr(A) ≥ 1− 2(K + 1) exp(−c log p), and when A holds the following holds:

|〈∆Ω, S − Σ0〉| ≤ C ′‖Σ0‖2

K∑
k=1

(
|∆+

Ω|1 +mk|∆−Ψ,k|1
)√ log p

mkn
.

The proof is in Appendix 5.14.1.

Substituting the bound of Lemma V.14 into (5.46), we have that under event A

G(∆Ω) ≥ 2

9‖Ω0‖2
2

‖∆Ω‖2
F − C ′‖Σ0‖2

K∑
k=1

(
|∆+

Ω|1 +mk|∆−Ψ,k|1
)√ log p

mkn
(5.47)

+
∑
k

ρkmk(|Ψ−k,0 + ∆−Ψ,k|1 − |Ψ
−
k,0|1)︸ ︷︷ ︸

I

.

By the decomposability of the L1 norm and the reverse triangle inequality |A+B|1 ≥
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|A|1 − |B|1, we have

|Ψ−k,0 + ∆−Ψ,k|1 − |Ψ
−
k,0|1 = |Ψ−k,0 + ∆−k,S|1 + |∆−k,Sc |1 − |Ψ

−
k,0|1 (5.48)

≥ |Ψ−k,0|1 − |∆
−
k,S|1 + |∆−k,Sc|1 − |Ψ

−
k,0|1

≥ |∆−k,Sc |1 − |∆
−
k,S|1

= |∆−Ψ,k|1 − 2|∆−k,S|1,

since Ψk,0 is assumed to follow sparsity pattern Sk by assumption A1. Substituting

(5.48) into the expression for term I of (5.47),

I =
∑
k

ρkmk(|Ψ−k,0 + ∆−Ψ,k|1−|Ψ
−
k,0|1) ≥

∑
k

ρkmk(|∆−Ψ,k|1 − 2|∆−k,S|1) (5.49)

≥

(∑
k

ρkmk|∆−Ψ,k|1

)
− 2(max

k
ρk)
∑
k

mk|∆−k,S|1

≥

(∑
k

ρkmk|∆−Ψ,k|1

)
− 2|∆−Ω,S|1

∑
k

ρk,

where we have recalled the fact that
∑

kmk|∆−k,S|1 = |∆−Ω,S|1 (Appendix A.1 Property

2). Substituting (5.49) into (5.47), under event A

G(∆Ω) ≥ 2

9‖Ω0‖2
2

‖∆Ω‖2
F − C ′‖Σ0‖2

K∑
k=1

(
|∆+

Ω|1 +mk|∆−Ψ,k|1
)√ log p

mkn
(5.50)

+

(∑
k

ρkmk|∆−Ψ,k|1

)
− 2|∆−Ω,S|1

∑
k

ρk.
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Substituting the expressions ρk = C‖Σ0‖2

√
log p
nmk

into (5.51) gives, for C ≥ C ′

G(∆Ω) ≥ 2

9‖Ω0‖2
2

‖∆Ω‖2
F − C ′‖Σ0‖2|∆+

Ω|1
K∑
k=1

√
log p

mkn
(5.51)

+

(
C‖Σ0‖2

K∑
k=1

mk|∆−Ψ,k|1
√

log p

nmk

)
−

(
C ′‖Σ0‖2

K∑
k=1

mk|∆−Ψ,k|1
√

log p

mkn

)
︸ ︷︷ ︸

≥0

− 2C‖Σ0‖2|∆−Ω,S|1
K∑
k=1

√
log p

mkn

≥ 2

9‖Ω0‖2
2

‖∆Ω‖2
F − C ′‖Σ0‖2|∆+

Ω|1
K∑
k=1

√
log p

mkn
− 2C‖Σ0‖2|∆−Ω,S|1

K∑
k=1

√
log p

mkn

=
2

9‖Ω0‖2
2

‖∆Ω‖2
F − 2C‖Σ0‖2|∆−Ω,S + ∆+

Ω|1
K∑
k=1

√
log p

mkn

where we use the disjoint support of ∆+
Ω and ∆−Ω,S.

Note that by the properties of the L1 norm |∆−Ω,S+∆+
Ω|1 ≤

√
s+ p‖∆−Ω,S+∆+

Ω‖F ≤
√
s+ p‖∆Ω‖F , so we have

G(∆Ω) ≥ 2

9‖Ω0‖2
2

‖∆Ω‖2
F − 2C‖Σ0‖2

√
s+ p‖∆Ω‖F

K∑
k=1

√
log p

mkn
.

Since by Assumption A2 ‖Ω0‖2, ‖Σ0‖2 are upper bounded by constants, observe

that G(∆Ω) is guaranteed to be greater than zero if

‖∆Ω‖2
F ≥ c(s+ p)

(
K∑
k=1

√
log p

mkn

)2

for some c large enough. Setting r2
n,p = c′

M2 (s + p)
(∑K

k=1

√
log p
mkn

)2

in the definition

(5.43) of Tn and recalling Proposition V.13 above implies the following lemma.

Lemma V.15 (Tighter Frobenius norm bound). Suppose the conditions of Theorem
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V.2. Then with probability at least 1− 2(K + 1) exp(−c log p),

‖Ω̂− Ω0‖2
F ≤ C1(s+ p)

(
K∑
k=1

√
log p

mkn

)2

.

This bound is complex, but can be approximated by a more interpretable form.

Observe that (
K∑
k=1

√
log p

mkn

)2

≤ K2 max
k

log p

mkn
. (5.52)

Thus, under event A

‖∆Ω‖2
F ≤ cK2(s+ p)

log p

nminkmk

.

This completes the Theorem V.2 Frobenius norm bound on Ω̂. �

5.14 Proof of Statistical Convergence: Lemmas

5.14.1 Proof of Lemma V.14: Bound on 〈∆Ω, S − Σ0〉.

Proof. Using the definition of ∆Ω (5.41), the projection operator ProjK̃p
(·), the tri-

angle inequality, and letting τΣ = (K − 1) tr(S−Σ0)
p

, we have that

|〈∆Ω, S − Σ0〉| = |〈∆Ω,ProjK̃p
(S − Σ0)〉| (5.53)

=
∣∣∣〈∆+

Ω + (∆−Ψ,1 ⊕ · · · ⊕∆−Ψ,K), (S1 − Σ
(1)
0 )⊕ · · · ⊕ (SK − Σ

(K)
0 )− τΣIp〉

∣∣∣
≤
∣∣∣〈∆+

Ω, (S1 − Σ
(1)
0 )⊕ · · · ⊕ (SK − Σ

(K)
0 )− τΣIp〉

∣∣∣
+
∣∣∣〈∆−Ψ,1 ⊕ · · · ⊕∆−Ψ,K , (S1 − Σ

(1)
0 )⊕ · · · ⊕ (SK − Σ

(K)
0 )〉

∣∣∣ ,
where we have used the fact that ∆−Ψ,1 ⊕ · · · ⊕ ∆−Ψ,K is zero along the diagonal and

thus has zero inner product with Ip.

Expanding the diagonal term out using the definition of the Kronecker sum, and
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simplifying the off diagonal term using Lemma V.9, we have

|〈∆Ω, S − Σ0〉| (5.54)

≤

(
|τΣtr(∆+

Ω)|+
K∑
k=1

|〈∆+
Ω, I[d1:k−1] ⊗ (Sk − Σ

(k)
0 )⊗ I[dk+1:K ]〉|

)

+
K∑
k=1

mk|〈∆−Ψ,k, Sk − Σ
(k)
0 〉|

≤

(
|τΣ||∆+

Ω|1 +
K∑
k=1

p∑
i=1

|[∆Ω]ii| · |〈eieTi , I[d1:k−1] ⊗ (Sk − Σ
(k)
0 )⊗ I[dk+1:K ]〉|

)

+

(
K∑
k=1

mk|〈∆−Ψ,k, Sk − Σ
(k)
0 〉|

)

≤

(
|τΣ||∆+

Ω|1 +
K∑
k=1

p∑
i=1

|[∆Ω]ii| ·max
i

∣∣∣[Sk − Σ
(k)
0 ]ii

∣∣∣)

+

(
K∑
k=1

mk

dk∑
i,j=1

|[∆−Ψ,k]ij| ·max
ij

∣∣∣[Sk − Σ
(k)
0 ]ij

∣∣∣) .
Now, by Corollary V.19 we know that for fixed k

max
ij

∣∣∣[Sk − Σ
(k)
0 ]ij

∣∣∣ ≤ C‖Σ0‖2

√
log p

mkn
. (5.55)

with probability at least 1−2 exp(−c′ log p). Denoting this event as Ak, we have that

Pr(Ak) ≥ 1 − 2 exp(−c′ log p). Note that E[tr(S)] = tr(Σ0). Viewing 1
p
tr(Σ0) as a

1 × 1 covariance factor since 1
p
tr(S) = 1

pn

∑n
i=1 vec(Xi)vec(Xi)

T , we can invoke the

proof of Corollary V.19 and show that with probability at least 1− 2 exp(−c′ log p)

|tr(S)− tr(Σ0)|
p

= |τΣ| ≤ C‖Σ0‖2

√
log p

pn
. (5.56)

We call this event A0. Let the event that A0, A1, . . . AK hold be A = A0∩A1∩· · ·∩AK

By the union bound, we have Pr(A) ≥ 1− 2(K + 1) exp(−c log p).
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Substituting (5.55) and (5.56) into (5.54), we have that on event A

|〈∆Ω, S − Σ0〉| ≤

(
|∆+

Ω|1C‖Σ0‖2

√
log p

pn
+

K∑
k=1

|∆+
Ω|1C‖Σ0‖2

√
log p

mkn

)

+
K∑
k=1

mk|∆Ψ,k|1C‖Σ0‖2

√
log p

mkn

≤

(
K∑
k=1

|∆+
Ω|1C

′‖Σ0‖2

√
log p

mkn

)
+

K∑
k=1

mk|∆Ψ,k|1C ′‖Σ0‖2

√
log p

mkn

=
K∑
k=1

(
|∆+

Ω|1 +mk|∆−Ψ,k|1
)
C ′‖Σ0‖2

√
log p

mkn
.

where C ′ = 2C and we have used p > mk and recalled the definition of | · |1.

�

5.14.2 Bound on Log Determinant

Recall (5.44)

M =
1

2
φmax(Ω0)

√
minkmk

K + 1
.

and let

Tn = {∆ ∈ K̃p : ∆ = Ω− Ω0,Ω,Ω0 ∈ Kp, ‖∆‖F = Mrn,p} (5.57)

We first state the following proposition, modified from a proposition in (Zhou, 2014).

Proposition V.16. Under Assumption A2, for all ∆ ∈ Tn for which rn,p = o(1), we

have that

φmin(Ω0) > 2Mrn,p = o(1) (5.58)

so that Ω0 + v∆ � 0,∀v ∈ I ⊃ [0, 1], where I is an open interval containing [0, 1].
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Proof. By Corollary V.12, for all ∆ ∈ Tn

‖∆‖2 ≤
√

K + 1

minkmk

‖∆‖F ≤
√

K + 1

minkmk

Mrn,p = o(1).

The rest of the proposition follows immediately. �

Thus we have that log |Ω0 + v∆| is infinitely differentiable on the open interval

I ⊃ [0, 1] of v. This allows us to use the Taylor’s formula with integral remainder to

obtain the following lemma, drawn from (Zhou, 2014).

Lemma V.17. Suppose the conditions of Proposition V.16. Then for all ∆ ∈ Tn,

log |Ω0 + ∆| − log |Ω0| ≤ 〈Σ0,∆〉 −
2

9‖Ω0‖2
2

‖∆‖2
F .

Proof. Let us use A as a shorthand for

vec {∆ }T

 1∫
0

(1− v)(Θ0 + v∆)−1 ⊗ (Θ0 + v∆)−1dv

 vec {∆ } ,

where vec {∆ } ∈ Rp2
is ∆p×p vectorized. Now, the Taylor expansion gives

log |Ω0 + ∆| − log |Ω0| =
d

dv
log |Ω0 + v∆|

∣∣∣∣
v=0

∆ +

1∫
0

(1− v)
d2

dv2
log |Ω0 + v∆|dv

= 〈Σ0,∆〉 − A. (5.59)

The last inequality holds because ∇Ω log |Ω| = Ω−1 and Ω−1
0 = Σ0.

We now bound A, following arguments from (Zhou et al., 2011; Rothman et al.,
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2008).

A =

1∫
0

(1− v)
d2

dv2
log |Ω0 + v∆|dv

= vec(∆)T

 1∫
0

(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv)

 vec(∆)

≥ ‖∆‖2
Fφmin

 1∫
0

(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv

 .

Now,

φmin

 1∫
0

(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv


≥

1∫
0

(1− v)φ2
max((Ω0 + v∆)−1)dv ≥ min

v∈[0,1]
φ2

min((Ω0 + v∆)−1)

1∫
0

(1− v)dv

=
1

2
min
v∈[0,1]

1

φ2
max(Ω0 + v∆)

=
1

2 maxv∈[0,1] φ2
max(Ω0 + v∆)

≥ 1

2(φmax(Ω0) + ‖∆‖2)2
.

By Corollary V.12 and using rn,p ≤ 1,

‖∆‖2 ≤
√

K + 1

minkmk

‖∆‖F ≤
√

K + 1

minkmk

Mrn,p ≤
√

K + 1

minkmk

M =
1

2
φmax(Ω0).

Hence,

φmin

 1∫
0

(1− v)(Ω0 + v∆)−1 ⊗ (Ω0 + v∆)−1dv

 ≥ 2

9φ2
max(Ω0)

.
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Thus, substituting into (5.59) we have

log |Ω0 + ∆| − log |Ω0| ≤ 〈Σ0,∆〉 −
2

9‖Ω0‖2
2

‖∆‖2
F ,

completing the proof. �

5.14.2.1 Proposition V.18

Proposition V.18. Let

Tn = {∆ ∈ K̃p : ∆ = Ω− Ω0,Ω,Ω0 ∈ Kp, ‖∆‖F = Mrn,p}.

If G(∆) > 0 for all ∆ ∈ Tn, then G(∆) > 0 for all ∆ in

Vn = {∆ ∈ K̃p : ∆ = Ω− Ω0,Ω,Ω0 ∈ Kp, ‖∆‖F > Mrn,p}.

Hence if G(∆) > 0 for all ∆ ∈ Tn, then G(∆) > 0 for all ∆ ∈ Tn ∪ Vn.

Proof. By contradiction, suppose G(∆′) ≤ 0 for some ∆′ ∈ Vn. Let ∆0 = Mrn,p
‖∆′‖F

∆′.

Then ∆0 = θ0 + (1 − θ)∆′, where 0 < 1 − θ = Mrn,p
‖∆′‖F

< 1 by definition of ∆0.

Hence ∆0 ∈ Tn since by the convexity of the positive definite cone Ω0 + ∆0 � 0

because Ω0 � 0 and Ω0 + ∆′ � 0. By the convexity of G(∆), we have that G(∆0) ≤

θG(0)+(1−θ)G(∆′) ≤ 0, contradicting our assumption that G(∆0) > 0 for ∆0 ∈ Tn.

�
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5.15 Subgaussian Concentration (Lemma V.19)

Lemma V.19 (Subgaussian Concentration). Suppose that log p � mkn for all k.

Then, with probability at least 1− 2 exp(−c′ log p),

|〈∆, Sk − Σ
(k)
0 〉| ≤ C|∆|1‖Σ0‖2

√
log p

mkn

for all ∆ ∈ Rdk×dk , where c′ is a constant depending on C given in the proof.

Proof. We use a K-way generalization of the invertible Pitsianis-Van Loan type (Loan

and Pitsianis , 1993) rearrangement operator Rk(·), which maps p × p matrices to

d2
k ×m2

k matrices. For a matrix M ∈ Rp×p we set

Rk(M) = [ m1 . . . mm2
k

], (5.60)

m(i−1)mk+j = vec(M(i, j|k)),

where we use the M(i, j|k) ∈ Rdk×dk subblock notation from the introduction.

Consider the inner product 〈∆, Sk−Σ
(k)
0 〉, where ∆ is an arbitrary dk×dk matrix.

Let

h = vec(∆), f = vec(Imk×mk).

By the definition of the factor covariances Sk and the rearrangement operator Rk, it

can be seen that

vec(Sk) =
1

mk

Rk(S)f ,

and that similarly by the definition of the factor covariances Σ
(k)
0

vec(Σ
(k)
0 ) =

1

mk

Rk(Σ0)f .
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Hence,

〈∆, Sk − Σ
(k)
0 〉 =

1

mk

〈vec(∆),Rk(S − Σ0)f〉 (5.61)

=
1

mk

hTRk(S − Σ0)f

=
1

mk

d2
k∑

i=1

hie
T
i Rk(S − Σ0)f

by the linearity of the rearrangement operator and definition of the inner product.

Note that ei and f are deterministic and fixed for fixed i, k. Hence, we can apply

Lemma V.20 (Appendix 5.16) and take a union bound over i = 1, . . . , d2
k. By Lemma

V.20,

Pr
(∣∣eTi Rk(S − Σ0)f

∣∣ ≥ ε
√
mk‖Σ0‖2

)
≤ 2 exp

(
−cε

2n

K4

)
for 0 ≤ ε√

mk
≤ 1

2
. Taking the union bound over all i, we obtain

Pr
(

max
i
|eTi Rk(S − Σ0)f | ≥ ε‖Σ0‖2

√
mk

)
≤ 2d2

k exp

(
−cε

2n

K4

)
≤ 2 exp

(
2 log dk − c

ε2n

K4

)
.

Setting ε = C
√

log p
n

for large enough C, with probability at least 1− 2 exp(−c′ log p)

we have

max
i
|eTi Rk(S − Σ0)f | ≤ C‖Σ0‖2

√
mk

√
log p

n
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where we assume log p ≤ nmk
4C2 and let c′ = cC2

K4 − 2. Hence, by (5.61)

|〈∆, Sk − Σ
(k)
0 〉| =

1

mk

∣∣∣∣∣∣
d2
k∑

i=1

hie
T
i Rk(S − Σ0)f

∣∣∣∣∣∣
≤ 1

mk

d2
k∑

i=1

|hieTi Rk(S − Σ0)f |

≤ C‖Σ0‖2
1
√
mk

√
log p

n

d2
k∑

i=1

hi

= C‖Σ0‖2

√
log p

mkn
|∆|1

with probability at least 1 − 2 exp(−c′ log p). The first inequality follows from the

triangle inequality and the last from the definition of h = vec(∆) and | · |1.

�

5.16 Concentration Bound

Lemma V.20 (Concentration of Measure). Let u ∈ Sd2
k−1 and f = vec(Imk). Assume

that xt = Σ
1/2
0 zt where zt has independent entries zt,f such that Ezt,f = 0, Ez2

t,f = 1,

and ‖zt,f‖ψ2 ≤ K. Let ∆n = S − Σ0. Then for all 0 ≤ ε√
m1

< 1
2
:

Pr(|uTRk(∆n)f | ≥ ε
√
mk‖Σ0‖2) ≤ 2 exp

(
−cε

2nmk

K4

)

where c is an absolute constant.

Proof. We prove the case for k = 1. The proofs for the remaining k follow similarly.

By the definition (5.60) of the permutation operator R1 and letting xt(i) =
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[xt,(i−1)m1+1, . . . , xt,im1 ],

R1(S) =
1

n

n∑
t=1



vec(xt(1)xt(1)T )T

vec(xt(1)xt(2)T )T

...

vec(xt(d1)xt(d1)T )T


(5.62)

Hence,

uTR1(S)f =
1

n

n∑
t=1

xTt (U ⊗ Imk)xt =
1

n

n∑
t=1

zTt Mzt (5.63)

where M = Σ
1/2
0 (U ⊗ Imk)Σ

1/2
0 , U = vec−1

d1,d1
(u).

Thus, by the Hanson-Wright inequality,

Pr(|uTR1(S)f − E[uTR1(S)f ]| ≥ τ) (5.64)

≤ 2 exp

[
−cmin

(
τ 2N2

K4n‖M‖2
F

,
τn

K2‖M‖2

)]
≤ 2 exp

[
−cmin

(
τ 2N

K4m1‖Σ0‖2
2

,
τn

K2‖Σ0‖2

)]

since ‖U ⊗ Im1‖2 = ‖U‖2 ≤ 1 and ‖U ⊗ Im1‖2
F = ‖U‖2

F‖Im1‖2
F = m1. Substituting

ε = τ√
m1‖Σ0‖2

Pr(|uTR1(∆n)f | ≥ ε
√
m1‖Σ0‖2) ≤ 2 exp

(
−cε

2n

K4

)
(5.65)

for all ε2n
K4 ≤ εn

√
m1

K2 , i.e. ε ≤ K2√m1 ≤
√
m1

2
, since K2 > 1

2
by definition.

�

171



5.17 Factorwise and Spectral Norm Bounds - Theorem V.3

5.17.1 Factor-wise bound

Proof. From the proof of Theorem V.2, we know that under event A,

‖∆Ω‖2
F ≤ cK2(s+ p)

log p

nminkmk

. (5.66)

Furthermore, since the identifiable parameterizations of Ω̂,Ω0 are of the form (Lemma

V.10)

Ω̂ = τ̂ Ip + (Ψ̃1 ⊕ · · · ⊕ Ψ̃K)

Ω0 = τ0Ip + (Ψ̃0,1 ⊕ · · · ⊕ Ψ̃0,K),

we have that the identifiable parameterization of ∆Ω is

∆Ω = τ∆Ip + (∆̃1 ⊕ · · · ⊕ ∆̃K), (5.67)

where τ∆ = τ̂ − τ0, ∆̃k = Ψ̃k − Ψ̃0,k. Observe that tr(∆̃k) = tr(Ψ̃k)− tr(Ψ̃0,k) = 0.

By Lemma V.10 then,

‖∆Ω‖2
F = pτ 2

∆ +
K∑
k=1

mk‖∆̃k‖2
F .

Thus, the estimation error on the underlying parameters is bounded by (5.66)

pτ 2
∆ +

K∑
k=1

mk‖∆̃k‖2
F ≤ cK2(s+ p)

log p

nminkmk

,

172



or, dividing both sides by p

τ 2
∆ +

K∑
k=1

‖∆̃k‖2
F

dk
≤ cK2 s+ p

p

log p

nminkmk

(5.68)

= cK2

(
s

p
+ 1

)
log p

nminkmk

.

Recall that s =
∑K

k=1mksk, so s
p

=
∑K

k=1
sk
dk

. Substituting into (5.68)

τ 2
∆ +

K∑
k=1

‖∆̃k‖2
F

dk
≤ cK2

(
1 +

K∑
k=1

sk
dk

)
log p

nminkmk

. (5.69)

From this, it can be seen that the bound converges as the mk increase with constant

K. To put the bound in the form of the theorem, note that since τ∆Ip+(∆̃+
1 ⊕· · ·⊕∆̃+

K)

‖∆+
Ω‖2

2

maxk dk
≤

(
τ∆ +

∑K
k=1 ‖∆̃

+
k ‖2

)2

maxk dk

≤ K + 1

maxk dk

(
τ 2

∆ +
K∑
k=1

‖∆̃+
k ‖

2
2

)

≤ (K + 1)

(
τ 2

∆ +
K∑
k=1

‖∆̃+
k ‖2

F

dk

)
.

To confirm single sample convergence, we must check that the condition rn,p =

o(1) remains satisfied, i.e. that r2
n,p = c′

M2 (s + p)
(∑K

k=1

√
log p
mkn

)2

≤ 1. Equivalently,

we must show

K + 1

minkmk

(s+ p)

(
K∑
k=1

√
log p

mkn

)2

= o(1)

(K + 1)K2

(
1 +

K∑
k=1

sk
dk

)(
max
k
dk

) log p

nminkmk

= o(1), (5.70)

where we have substituted in s
p

=
∑K

k=1
sk
dk

and (5.52). The relation (5.70) will hold
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whenever the bound (5.68) implies convergence of

(
max
k
dk

)(
τ 2

∆ +
K∑
k=1

‖∆̃k‖2
F

dk

)
.

For n = 1 and constantK, convergence is implied whenever sk ≤ O(dk) and minkmk >

dk. Thus the bound in (5.68) implies single sample convergence of the identifiable

parameter estimates in this regime, completing the proof of the theorem. �

5.17.2 Spectral norm bound

Proof. The factor-wise bound immediately implies the bound on the spectral norm

‖∆Ω‖2 of the error under event A. We recall the identifiable representation (5.67)

∆Ω = τ∆Ip + (∆̃1 ⊕ · · · ⊕ ∆̃K).

By Property 3a in Appendix A and the fact that the spectral norm is upper bounded

by the Frobenius norm,

‖∆Ω‖2 ≤ |τ∆|+
K∑
k=1

‖∆̃k‖2 ≤ |τ∆|+
K∑
k=1

‖∆̃k‖F

≤
√
K + 1

√√√√τ 2
∆ +

K∑
k=1

‖∆̃k‖2
F

≤
√
K + 1

√
max
k
dk

√√√√τ 2
∆ +

K∑
k=1

‖∆̃k‖2
F

dk

≤ cK
√
K + 1

√√√√(max
k
dk)

(
1 +

K∑
k=1

sk
dk

)√
log p

nminkmk

,

where in the second line, we have used the fact that for ak elements of a ∈ RK the

norm relation ‖a‖1 ≤
√
K‖a‖2 implies (

∑K
k=1 |ak|) ≤

√
K
√∑K

k=1 a
2
k. �
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5.18 Proof of Lemma V.5

Proof. Expanding out the Kronecker sums, for

Ωt = Ψt
1 ⊕ · · · ⊕Ψt

K , Ω = Ψ1 ⊕ · · · ⊕ΨK ,

the Frobenius norm term in the objective

Ωt+1 ∈ arg min
Ω∈K̃p

{
1

2

∥∥∥Ω−
(

Ωt − ζ
(
S̃ −G

))∥∥∥2

F
+ ζ

K∑
k=1

mkρk|Ψ−k |1

}

can be decomposed using disjoint support into a sum of a diagonal portion and a

factor-wise sum of the off diagonal portions. This holds by Property 2 in Appendix

A which states the off diagonal factors Ψ−k have disjoint support in Ω. Thus,

∥∥∥Ω−
(

Ωt − ζ
(

(S̃1 −G1)⊕ · · · ⊕ (S̃K −GK)
))∥∥∥2

F

=
∥∥∥(Ψ1 − (Ψt

1 − ζ(S̃1 −G1))
)
⊕ · · · ⊕

(
ΨK − (Ψt

K − ζ(S̃K −GK))
)∥∥∥2

F

=
∥∥∥Ω+ −

(
Ω+
t − ζ

(
S̃+ −G+

))∥∥∥2

F
+

K∑
k=1

mk

∥∥∥∥(Ψ1 − (Ψt
1 − ζ(S̃1 −G1))

)−∥∥∥∥2

F

.

Substituting into the objective (5.19), we obtain

Ωt+1 ∈ arg min
Ω∈K̃p

{
1

2

∥∥∥Ω+ −
(

Ω+
t − ζ

(
S̃+ −G+

))∥∥∥2

F

+
K∑
k=1

mk

(
1

2

∥∥∥∥(Ψk − (Ψt
k − ζ(S̃k −Gk))

)−∥∥∥∥2

F

+ ζρk|Ψ−k |1

)}
.

This objective is decomposable into a sum of terms each involving either the diagonal

Ω+ or one of the off diagonal factors Ψ−k . Thus, we can solve for each portion of Ω

independently, giving
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[Ψt+1
k ]− = arg min

Ψ−k

1

2

∥∥∥Ψ−k − ([Ψt
k]
− − ζ(S̃−k −G

−
k ))
∥∥∥2

F
+ ζρk|Ψ−k |1

Ω+
t+1 = arg min

Ω+

1

2

∥∥∥Ω+ −
(

Ω+
t − ζ

(
S̃+ −G+

))∥∥∥2

F
.

completing the proof. �

5.19 Convergence Rate

5.19.1 Contraction factor (Theorem V.6)

Proof. Recall that the TG-ISTA update is of the form (5.19)

Ωt+1 = arg min
Ω∈K̃p

{
1

2

∥∥∥Ω−
(

Ωt − ζt
(
S̃ −G

))∥∥∥2

F
+ ζt

K∑
k=1

mkρk|Ψ−k |1

}

= arg min
Ω∈K̃p

{
1

2

∥∥∥Ω−
(

Ωt − ζt
(

ProjK̃p
(S − Ω−1

t

))∥∥∥2

F
+ ζt

K∑
k=1

mkρk|Ψ−k |1

}

= ηζt(Ωt − ζtProjK̃p
(S − Ω−1

t )),

where we let ηζ(M) = arg minΩ∈K̃p

{
1
2
‖Ω−M‖2

F + ζ
∑K

k=1mkρk|Ψ−k |1
}

for M ∈ K̃p.

Since
∑K

k=1mkρk|Ψ−k |1 is a convex function on K̃p, and since K̃p is a linear subspace,

ηζ(·) is a proximal operator by definition.

By convexity in K̃p and Theorem V.1, the optimal point Ω∗ρ is a fixed point of the

ISTA iteration (Combettes and Wajs (2005), Prop 3.1). Thus,

Ω∗ρ = ηζt(Ω
∗
ρ − ζtProjK̃p

(S − (Ω∗ρ)
−1).
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Since proximal operators are not expansive (Combettes and Wajs , 2005), we have

‖Ωt+1 − Ω∗ρ‖F = ‖ηζt(Ωt − ζtProjK̃p
(S − Ω−1

t ))− ηζt(Ω∗ρ − ζtProjK̃p
(S − (Ω∗ρ)

−1))‖F

≤ ‖Ωt − ζtProjK̃p
(S − Ω−1

t )− (Ω∗ρ − ζtProjK̃p
(S − (Ω∗ρ)

−1))‖F

= ‖Ωt + ζtProjK̃p
(Ω−1

t )− (Ω∗ρ + ζtProjK̃p
((Ω∗ρ)

−1))‖F .

For γ > 0 define hγ : Kp → Kp by

hγ(Ω) = vec(Ω) + vec(γProjK̃p
(Ω−1)).

Since ∂Ω−1/∂Ω = −Ω−1 ⊗ Ω−1,

∂ProjK̃p
(Ω−1)

∂Ω
= −P (Ω−1 ⊗ Ω−1)P T

where P is the projection matrix that projects vec(Ω) onto the vectorized subspace

K̃p. Thus, we have the Jacobian (valid for all Ω ∈ Kp)

Jhγ (Ω) = PP T − γP (Ω−1 ⊗ Ω−1)P T .

Recall that if h : U ⊂ Rn → Rm is a differentiable mapping, then if x, y ∈ U and U

is convex, then if Jh(·) is the Jacobian of h,

‖h(x)− h(y)‖ ≤ sup
c∈[0,1]

‖Jh(cx+ (1− c)y)‖‖x− y‖.

Thus, letting Zt,c = vec(cΩt + (1− c)Ω∗ρ), for c ∈ [0, 1] we have

‖hζt(x)− hζt(y)‖ ≤ sup
c∈[0,1]

‖PP T − ζtP (Z−1
t,c ⊗ Z−1

t,c )P T‖‖Ωt − Ω∗ρ‖F .
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By Weyl’s inequality,

λmax(Zt,c) ≤ max{‖Ωt‖, ‖Ω∗ρ‖}

and

λmin(Zt,c) ≥ min{λmin(Ωt), λmin(Ω∗ρ)}.

Furthermore, note that for any Y and projection matrix P

λmax(PY P T ) ≤ λmax(Y ).

We then have

‖PP T − ζtP (Z−1
t,c ⊗ Z−1

t,c )P T‖ ≤ ‖Ip2 − ζtZ−1
t,c ⊗ Z−1

t,c ‖ ≤ max

{∣∣∣∣1− ζt
b2

∣∣∣∣ , ∣∣∣∣1− ζt
a2

∣∣∣∣} ,
where the latter inequality comes from (Rolfs et al., 2012). Thus,

‖Ωt+1 − Ω∗ρ‖F ≤ s(ζt)‖Ωt − Ω∗ρ‖F

s(ζ) = max

{∣∣∣∣1− ζ

b2

∣∣∣∣ , ∣∣∣∣1− ζ

a2

∣∣∣∣}

as desired. Algorithm 5 will then converge if s(ζt) ∈ (0, 1) for all t. The minimum of

s(ζ) occurs at ζ = 2
a−2+b−2 , completing the proof. �

5.20 Eigenvalue bound on iterates (Theorem V.7)

Proof. We first prove the following properties of the Kronecker sum projection oper-

ator.

Lemma V.21. For any A ∈ Rp×p and orthogonal matrices Uk ∈ Rdk×dk , let U =

U1 ⊗ · · · ⊗ UK ∈ K̃p. Then

ProjK̃p
(A) = UProjK̃p

(UTAU)UT .
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Furthermore, if the eigendecomposition of A is of the form A = (U1⊗· · ·⊗UK)Λ(U1⊗

· · · ⊗ UK)T with Λ = diag(λ1, . . . , λp), we have

ProjK̃p
(A) = UProjK̃p

(Λ)UT

and

λmin(A) ≤ λmin(ProjK̃p
(A)) ≤ λmax(ProjK̃p

(A)) ≤ λmax(A).

Proof. Recall

ProjK̃p
(A) = arg min

M∈K̃p

‖A−B‖2
F = arg min

B∈K̃p

‖UTAU − UTBU‖2
F

since UTAU = Λ and the Frobenius norm is unitarily invariant. Now, note that for

any matrix B = B1 ⊕ · · · ⊕BK ∈ K̃p,

(U1 ⊗ · · · ⊗ UK)TB(U1 ⊗ · · · ⊗ UK)

=
K∑
k=1

(U1 ⊗ · · · ⊗ UK)T (I[d1:k−1] ⊗Bk ⊗ I[dk+1:K])(U1 ⊗ · · · ⊗ UK)

=
K∑
k=1

I[d1:k−1] ⊗ UT
k BkUk ⊗ I[dk+1:K]

= (UT
1 B1U1)⊕ · · · ⊕ (UT

KBKUK)

∈ K̃p,

since UT
k IdkUk = Idk . Since UTBU ∈ K̃p, the constraint B ∈ K̃p can be moved to

C = UTBU , giving

ProjK̃p
(A) = U(arg min

C∈K̃p

‖UTAU − C‖2
F )UT

= U(ProjK̃p
(UTAU))UT .
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If A = (U1⊗ · · · ⊗UK)Λ(U1⊗ · · · ⊗UK)T , then UTAU = Λ, completing the first part

of the proof. As shown in the Lemma V.8, ProjK̃p
(Λ) is a diagonal matrix whose

entries are weighted averages of the diagonal elements λi. Hence

min
i
λi ≤ min

i
[ProjK̃p

(Λ)]ii ≤ max
i

[ProjK̃p
(Λ)]ii ≤ max

i
λi.

Since ProjK̃p
(Λ) gives the eigenvalues of ProjK̃p

(A) by the orthogonality of U , this

completes the proof. �

Lemma V.22. Let 0 < a < b be given positive constants and let ζt > 0. Assume

aI � Ωt � bI. Then for

Ωt+1/2 := Ωt − ζt(ProjK̃p
(S − Ω−1

t ))

we have

λmin(Ωt+1/2) ≥

 2
√
ζt − ζtλmax(S) if a ≤

√
ζt ≤ b

min
(
a+ ζt

a
, b+ ζt

b

)
− ζtλmax(S) o.w.

and

λmax(Ωt+1/2) ≤ max

(
a+

ζt
a
, b+

ζt
b

)
− ζtλmin(S).

Proof. Let UΓUT = Ωt be the eigendecomposition of Ωt, where Γ = diag(γ1, . . . , γp).

Then all b ≥ γi ≥ a > 0. Since Ωt ∈ K̃p, by the eigendecomposition property in
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Appendix A we have U = U1 ⊗ · · · ⊗ UK and Γ ∈ K̃p, letting us apply Lemma V.21:

Ωt+1/2 = Ωt − ζt(ProjK̃p
(S)− ProjK̃p

(Ω−1
t ))

= UΓUT − ζt(ProjK̃p
(S)− UProjK̃p

(Γ−1)UT )

= U
(

Γ− ζt(UTProjK̃p
(S)U − ProjK̃p

(Γ−1))
)
UT

= U
(

ProjK̃p
(Γ)− ζt

(
ProjK̃p

(UTSU)− ProjK̃p
(Γ−1)

))
UT

= ProjK̃p

(
U(Γ + ζΓ−1 − ζt(UTSU))UT

)
= ProjK̃p

(Ω̃t+1/2),

where we set Ω̃t+1/2 = U(Γ + ζΓ−1 − ζt(U
TSU))UT and recall the linearity of the

projection operator ProjK̃p
(·) (Lemma V.8). By Weyl’s inequality, for

γ1 +
ζt
γ1

− ζtλmax(S) ≤ λmin(Ω̃t+1/2) ≤ λmax(Ω̃t+1/2) ≤ γp +
ζt
γp
− ζtλmin(S).

By Lemma V.21,

γ1 +
ζt
γ1

− ζtλmax(S) ≤ λmin(Ωt+1/2) ≤ λmax(Ωt+1/2) ≤ γp +
ζt
γp
− ζtλmin(S).

Note that the only extremum of the function f(x) = x+ ζt
x

over a ≤ x ≤ b is a global

minimum at x =
√
ζt. Hence

inf
a≤x≤b

x+
ζt
x

=

 2
√
ζt if a ≤

√
ζt ≤ b

min
(
a+ ζt

a
, b+ ζt

b

)
o.w.

sup
a≤x≤b

x+
ζt
x

= max

(
a+

ζt
a
, b+

ζt
b

)
.
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By our assumption, a ≤ γ1 ≤ b. Thus

λmin(Ωt+1/2) ≥

 2
√
ζt − ζtλmax(S) if a ≤

√
ζt ≤ b

min
(
a+ ζt

a
, b+ ζt

b

)
− ζtλmax(S) o.w.

λmax(Ωt+1/2) ≤ max

(
a+

ζt
a
, b+

ζt
b

)
− ζtλmin(S).

as desired.

�

Lemma V.23. For A ∈ Kp and ε = [ε1, . . . , εK ]:

λmin(A)−
K∑
k=1

dkεk ≤ λmin(ηε(A))

Proof. Recall that A ∈ Kp can be written as

A = A(1) ⊕ · · · ⊕ A(K),

and the Kronecker sum soft thresholding operator can be decomposed as

ηε(A) = η1,ε1(A(1))⊕ · · · ⊕ ηK,εK (A(K)).

By the properties of the Kronecker sum, we thus have that

λmin(ηε(A)) =
K∑
k=1

λmin(ηk,εk(A
(k))).

Via Weyl’s inequality and the proof of Lemma 6 in (Rolfs et al., 2012), λmin(ηk,εk(A
(k))) ≥

λmin(A(k))− dkεk. Hence,

λmin(ηε(A)) ≥
K∑
k=1

λmin(A(k))−
K∑
k=1

dkεk = λmin(A)−
K∑
k=1

dkεk
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�

Lemma V.24. Let ρ = [ρ1, . . . , ρK ] with all ρi > 0. Define

χ =
K∑
k=1

dkρk

and let α = 1
‖S‖2+χ

< b′. Assume αI � Ωt+1. Then αI � Ωt+1 for every 0 < ζt < α2.

Proof. Since ζt < α2,
√
ζt /∈ [α, b′], and min

(
α + ζt

α
, b′ + ζt

b′

)
= α + ζt

α
. Lemma V.22

then implies that

λmin(Ωt+1/2) ≥ min

(
α +

ζt
α
, b′ +

ζt
b′

)
− ζtλmax(S)

= α +
ζt
α
− ζtλmax(S).

By Lemma V.23,

λmin(Ωt+1) = λmin

(
ηζtρ(Ωt+1/2)

)
≥ λmin(Ωt+1/2)− ζtχ

≥ α +
ζt
α
− ζtλmax(S)− ζtχ.

Hence, since ζt > 0, λmin(Ωt+1) ≥ α whenever

ζt

(
1

α
− λmax(S)− χ

)
≥ 0

1

α
− λmax(S)− χ ≥ 0

α ≤ 1

‖S‖2 + χ
.

�

Lemma V.25. Let χ be as in Lemma V.24 and let α = 1
‖S‖2+χ

. Let ζt ≤ α2 for all
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t. We then have Ωt � b′I for all t when b′ = ‖Ω∗ρ‖2 + ‖Ω0 − Ω∗ρ‖F .

Proof. By Lemma V.24, αI � Ωt for every t. Since Ωt → Ω∗ρ, by strong convexity

αI � Ω∗ρ. Hence a = min{λmin(Ωt), λmin(Ω∗ρ)} ≥ α. For b > a and ζt ≤ α2,

max

{∣∣∣∣1− ζt
b2

∣∣∣∣ , ∣∣∣∣1− ζt
a2

∣∣∣∣} ≤ 1.

Hence, by Theorem V.6 ‖Ωt − Ω∗ρ‖F ≤ ‖Ωt−1 − Ω∗ρ‖F ≤ ‖Ω0 − Ω∗ρ‖F . Thus

‖Ωt‖2 − ‖Ω∗ρ‖2 ≤ ‖Ωt − Ω∗ρ‖2 ≤ ‖Ωt − Ω∗ρ‖F ≤ ‖Ω0 − Ω∗ρ‖F

so

‖Ωt‖2 ≤ ‖Ω∗ρ‖2 + ‖Ω0 − Ω∗ρ‖F .

�

�
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CHAPTER VI

Time-varying Metric Learning

So far, we have looked at the estimation of structured spatio-temporal covariances.

As the pdf of a Gaussian distribution is determined by the mean and covariance ma-

trix, the covariance (specifically the inverse covariance) is very useful for providing

distance between points in a distribution, with applications to anomaly detection,

clustering, and classification. However, real data is often not Gaussian distributed,

and is often multiclass and multimodal. In this chapter, we abstract the notion of

covariance to that of a metric on the data space, and attempt to find the optimal

metric (“inverse covariance”) that best emphasizes the structure of the dataset, e.g.

improving separation of clusters, measuring how anomalous a data point is, etc. We

allow the optimal metric to change in time, allowing for complex data sources for

which the distribution changes rapidly in time. Adaptive online algorithms allow us

to efficiently estimate the metric in as few training samples as possible, and regu-

larization allows us to promote low-rank embeddings (low rank metric) and feature

selection (sparse metric).

6.1 Introduction

The effectiveness of many machine learning and data mining algorithms depends

on an appropriate measure of pairwise distance between data points that accurately
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reflects the learning task, e.g., prediction, clustering or classification. The kNN clas-

sifier, K-means clustering, and the Laplacian-SVM semi-supervised classifier are ex-

amples of such distance-based machine learning algorithms. In settings where there is

clean, appropriately-scaled spherical Gaussian data, standard Euclidean distance can

be utilized. However, when the data is heavy tailed, multimodal, or contaminated by

outliers, observation noise, or irrelevant or replicated features, use of Euclidean inter-

point distance can be problematic, leading to bias or loss of discriminative power.

To reduce bias and loss of discriminative power of distance-based machine learning

algorithms, data-driven approaches for optimizing the distance metric have been pro-

posed. These methodologies, generally taking the form of dimensionality reduction

or data “whitening,” aim to utilize the data itself to learn a transformation of the

data that embeds it into a space where Euclidean distance is appropriate. Examples

of such techniques include Principal Component Analysis (Bishop, 2006), Multidi-

mensional Scaling (Hastie et al., 2005), covariance estimation (Hastie et al., 2005;

Bishop, 2006), and manifold learning (Lee and Verleysen, 2007). Such unsupervised

methods do not exploit human input on the distance metric, and they overly rely on

prior assumptions, e.g., local linearity or smoothness.

In distance metric learning one seeks to learn transformations of the data asso-

ciated with a distance metric that is well matched to a particular task specified by

the user. Pairwise labels or “edges” indicating point similarity or dissimilarity are

used to learn a transformation of the data such that similar points are “close” to one

another and dissimilar points are distant in the transformed space. Learning distance

metrics in this manner allows a more precise notion of distance or similarity to be

defined that is better related to the task at hand.

Figure 6.1 illustrates this notion. Data points, or nodes, have underlying similar-

ities or distances between them. Absent an exhaustive label set, given an attribute

distance function d(·, ·) it is possible to infer similarities between nodes as the dis-
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tance between their attribute vectors. As an example, the kNN algorithm uses the

Euclidean distance to infer similarity. However, the distance function must be spec-

ified a priori, and may not match the distance relevant to the task. Distance metric

learning proposes a hybrid approach, where one is given a small number of pairwise

labels, uses these to learn a distance function on the attribute space, and then uses

this learned function to infer relationships between the rest of the nodes.

Many supervised and semi-supervised distance metric learning approaches have

been developed for machine learning and data mining (Kulis , 2012). This includes

online algorithms (Kunapuli and Shavlik , 2012) with regret guarantees for situations

where similarity constraints are received sequentially.

This paper proposes a new distance metric tracking method that is applicable to

the non-stationary time varying case of distance metric drift and has provably strongly

adaptive tracking performance.

Figure 6.1: Similarity functions on networks, with different clusters indicated by dif-
ferent colored nodes. Attributes of nodes denoted as a 5-element col-
umn vector with an unknown similarity function d(·, ·) between attributes.
Learn and track similarity function implied by observed edges, use result
to infer similarities between other nodes.

Specifically, we suppose the underlying ground-truth (or optimal) distance met-

ric from which constraints are generated is evolving over time, in an unknown and

potentially nonstationary way. In Figure 6.1, this corresponds to having the relation-

ships between nodes change over time. This can, for example, be caused by changes
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in the set of features indicative of relations (e.g. polarizing buzzwords in collective

discourse), changes in the underlying relationship structure (e.g. evolving communi-

ties), and/or changes in the nature of the relationships relevant to the problem or to

the user. When any of these changes occur, it is imperative to be able to detect and

adapt to them without casting aside previous knowledge.

We propose a strongly adaptive, online approach to track the underlying metric

as the constraints are received. We introduce a framework called Online Convex

Ensemble StrongLy Adaptive Dynamic Learning (OCELAD), which at every time

step evaluates the recent performance of and optimally combines the outputs of an

ensemble of online learners, each operating under a different drift-rate assumption.

We prove strong bounds on the dynamic regret of every subinterval, guaranteeing

strong adaptivity and robustness to nonstationary metric drift such as discrete shifts,

slow drift with a widely-varying drift rate, and all combinations thereof. Applying

OCELAD to the problem of nonstationary metric learning, we find that it gives

excellent robustness and low regret when subjected to all forms of nonstationarity.

Social media provides some of the most dynamic, rapidly changing data sources

available. Constant changes in world events, popular culture, memes, and other

items of discussion mean that the words and concepts characteristic of subcultures,

communities, and political persuasions are rapidly evolving in a highly nonstationary

way. As this is exactly the situation our dynamic metric learning approach is designed

to address, we will consider modeling political tweets in November 2015, during the

early days of the United States presidential primary.

6.1.1 Related Work

Linear Discriminant Analysis (LDA) and Principal Component Analysis (PCA)

are classic examples of the use of linear transformations for projecting data into more

interpretable low dimensional spaces. Unsupervised PCA seeks to identify a set of
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axes that best explain the variance contained in the data. LDA takes a supervised

approach, minimizing the intra-class variance and maximizing the inter-class variance

given class labeled data points.

Much of the recent work in Distance Metric Learning has focused on learning

Mahalanobis distances on the basis of pairwise similarity/dissimilarity constraints.

These methods have the same goals as LDA; pairs of points labeled “similar” should

be close to one another while pairs labeled “dissimilar” should be distant. MMC (Xing

et al., 2002), a method for identifying a Mahalanobis metric for clustering with side

information, uses semidefinite programming to identify a metric that maximizes the

sum of distances between points labeled with different classes subject to the constraint

that the sum of distances between all points with similar labels be less than or equal

to some constant.

Large Margin Nearest Neighbor (LMNN) (Weinberger et al., 2005) similarly uses

semidefinite programming to identify a Mahalanobis distance. In this setting, the

algorithm minimizes the sum of distances between a given point and its similarly

labeled neighbors while forcing differently labeled neighbors outside of its neighbor-

hood. This method has been shown to be computationally efficient (Weinberger and

Saul , 2008) and, in contrast to the similarly motivated Neighborhood Component

Analysis (Goldberger et al., 2004), is guaranteed to converge to a globally optimal so-

lution. Information Theoretic Metric Learning (ITML) (Davis et al., 2007) is another

popular Distance Metric Learning technique. ITML minimizes the Kullback-Liebler

divergence between an initial guess of the matrix that parameterizes the Mahalanobis

distance and a solution that satisfies a set of constraints. For surveys of the metric

learning literature, see (Kulis , 2012; Bellet et al., 2013; Yang and Jin, 2006).

In a dynamic environment, it is necessary to track the changing metric at different

times, computing a sequence of estimates of the metric, and to be able to compute

those estimates online. Online learning (Cesa-Bianchi and Lugosi , 2006) meets these
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criteria by efficiently updating the estimate every time a new data point is obtained

instead of minimizing an objective function formed from the entire dataset. Many

online learning methods have regret guarantees, that is, the loss in performance rel-

ative to a batch method is provably small (Cesa-Bianchi and Lugosi , 2006; Duchi

et al., 2010b). In practice, however, the performance of an online learning method is

strongly influenced by the learning rate, which may need to vary over time in a dy-

namic environment (Daniely et al., 2015; McMahan and Streeter , 2010; Duchi et al.,

2010a), especially one with changing drift rates.

Adaptive online learning methods attempt to address the learning rate problem by

continuously updating the learning rate as new observations become available. For

learning static parameters, AdaGrad-style methods (McMahan and Streeter , 2010;

Duchi et al., 2010a) perform gradient descent steps with the step size adapted based

on the magnitude of recent gradients. Follow the regularized leader (FTRL) type

algorithms adapt the regularization to the observations (McMahan, 2014). Recently,

a method called Strongly Adaptive Online Learning (SAOL) has been proposed for

learning parameters undergoing K discrete changes when the loss function is bounded

between 0 and 1. SAOL maintains several learners with different learning rates and

randomly selects the best one based on recent performance (Daniely et al., 2015).

Several of these adaptive methods have provable regret bounds (McMahan, 2014;

Herbster and Warmuth, 1998; Hazan and Seshadhri , 2007). These typically guaran-

tee low total regret (i.e. regret from time 0 to time T ) at every time (McMahan, 2014).

SAOL, on the other hand, attempts to have low static regret on every subinterval,

as well as low regret overall (Daniely et al., 2015). This allows tracking of discrete

changes, but not slow drift. Our work improves upon the capabilities of SAOL by

allowing for unbounded loss functions, using a convex combination of the ensemble in-

stead of simple random selection, and providing guaranteed low regret when all forms

of nonstationarity occur, not just discrete shifts. All of these additional capabilities
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are shown in Section 6.6 to be critical for good metric learning performance.

The remainder of this paper is structured as follows. In Section 6.2 we formal-

ize the time varying distance metric tracking problem, and section 6.3 presents the

basic COMID online learner and our Retro-Initialized COMID Ensemble (RICE) of

learners with dyadically scaled learning rates. Section 6.4 presents our OCELAD

algorithm, a method of adaptively combining learners with different learning rates.

Strongly adaptive bounds on the dynamic regret of OCELAD and RICE-OCELAD

are presented in Section 6.5, and results on both synthetic data and the Twitter

dataset are presented in Section 6.6. Section 6.7 concludes the paper.

6.2 Nonstationary Metric Learning

Metric learning seeks to learn a metric that encourages data points marked as

similar to be close and data points marked as different to be far apart. The time-

varying Mahalanobis distance at time t is parameterized by Mt as

d2
Mt

(x, z) = (x− z)TMt(x− z) (6.1)

where Mt ∈ Rn×n � 0.

Suppose a temporal sequence of similarity constraints are given, where each con-

straint is the triplet (xt, zt, yt), xt and zt are data points in Rn, and the label yt = +1

if the points xt, zt are similar at time t and yt = −1 if they are dissimilar.

Following (Kunapuli and Shavlik , 2012), we introduce the following margin based

constraints for all time points t:

d2
Mt

(xt, zt) ≤ µ− 1 ∀yt = 1

d2
Mt

(xt, zt) ≥ µ+ 1 ∀yt = −1
(6.2)

where µ is a threshold that controls the margin between similar and dissimilar points.
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A diagram illustrating these constraints and their effect is shown in Figure 6.2. These

constraints are softened by penalizing violation of the constraints with a convex loss

function `. This gives a combined loss function

L({Mt, µ}) =
1

T

T∑
t=1

`(yt(µ− uTt Mtut)) + λr(Mt) (6.3)

=
1

T

T∑
t=1

ft(Mt, µ),

where ut = xt− zt, r is the regularizer and λ the regularization parameter. Kunapuli

and Shavlik (Kunapuli and Shavlik , 2012) propose using nuclear norm regularization

(r(M) = ‖M‖∗) to encourage projection of the data onto a low dimensional subspace

(feature selection/dimensionality reduction), and we have also had success with the

elementwise L1 norm (r(M) = ‖vec(M)‖1). In what follows, we develop an adaptive

online method to minimize the loss subject to nonstationary smoothness constraints

on the sequence of metric estimates Mt.

Figure 6.2: Visualization of the margin based constraints (6.2), with colors indicat-
ing class. The goal of the metric learning constraints is to move target
neighbors towards the point of interest (POI), while moving points from
other classes away from the target neighborhood.
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6.3 Retro-initialized COMID ensemble (RICE)

Viewing the acquisition of new data points as stochastic realizations of the un-

derlying distribution (Kunapuli and Shavlik , 2012) suggests the use of composite

objective stochastic mirror descent techniques (COMID). For convenience, we set

`t(Mt, µt) = `(yt(µ− uTt Mtut)).

For the loss (6.3) and learning rate ηt, application of COMID (Duchi et al., 2010b)

gives the online learning update

M̂t+1 = arg min
M�0

Bψ(M, M̂t) (6.4)

+ ηt〈∇M`t(M̂t, µ̂t),M− M̂t〉+ ηtλ‖M‖∗

µ̂t+1 = arg min
µ≥1

Bψ(µ, µ̂t) + ηt∇µ`t(M̂t, µ̂t)
′(µ− µ̂t),

where Bψ is any Bregman divergence. As this is an online framework, the t indexing

directly corresponds to the received time series of pairwise constraints (xt, zt, yt). In

(Kunapuli and Shavlik , 2012) a closed-form algorithm for solving the minimization in

(6.18) with r(M) = ‖M‖∗ is developed for a variety of common losses and Bregman

divergences, involving rank one updates and eigenvalue shrinkage.

The output of COMID depends strongly on the choice of ηt. Critically, the optimal

learning rate ηt depends on the rate of change of Mt (Hall and Willett , 2015), and

thus will need to change with time to adapt to nonstationary drift. Choosing an

optimal sequence for ηt is clearly not practical in an online setting with nonstationary

drift, since the drift rate is changing. We thus propose to maintain an ensemble of

learners with a range of ηt values, whose output we will adaptively combine for optimal

nonstationary performance. If the range of ηt is diverse enough, one of the learners in

the ensemble should have good performance on every interval. Critically, the optimal

learner in the ensemble may vary widely with time, since the drift rate and hence

the optimal learning rate changes in time. For example, if a large discrete change
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occurs, the fast learners are optimal at first, followed by increasingly slow learners as

the estimate of the new value improves. In other words, the optimal approach is fast

reaction followed by increasing refinement, in a manner consistent with the attractive

O(1/
√
t) decay of the learning rate of optimal nonadaptive algorithms (Hall and

Willett , 2015).

Figure 6.3: Retro-initialized COMID ensemble (RICE). COMID learners at multiple
scales run in parallel, with the interval learners learning on the dyadic set
of intervals I. Recent observed losses for each learner are used to create
weights used to select the appropriate scale at each time. Each yellow
and red learner is initialized by the output of the previous learner of the
same color, that is, the learner of the next shorter scale.

Define a set I of intervals I = [tI1, tI2] such that the lengths |I| of the intervals are

proportional to powers of two, i.e. |I| = I02j, j = 0, . . . , with an arrangement that is

a dyadic partition of the temporal axis, as in (Daniely et al., 2015). The first interval

of length |I| starts at t = |I| (see Figure 6.3), and additional intervals of length |I|

exist such that the rest of time is covered.

Every interval I is associated with a base COMID learner that operates on that

interval. Each learner (6.18) has a constant learning rate proportional to the inverse

square of the length of the interval, i.e. ηt(I) = η0/
√
|I|. Each learner (besides the

coarsest) at level j (|I| = I02j) is initialized to the last estimate of the next coarsest

learner (level j − 1) (see Figure 6.3). This strategy is equivalent to “backdating”

the interval learners so as to ensure appropriate convergence has occurred before the

interval of interest is reached, and is effectively a quantized square root decay of

the learning rate. We call our method of forming an ensemble of COMID learners
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on dyadically nested intervals the Retro-Initialized COMID Ensemble, or RICE, and

summarize it in Figure 6.3.

At a given time t, a set ACT(t) ⊆ I of floor(log2 t) intervals/COMID learners

are active, running in parallel. Because the metric being learned is changing with

time, learners designed for low regret at different scales (drift rates) will have different

performance (analogous to the classical bias/variance tradeoff). In other words, there

is a scale Iopt optimal at a given time.

To adaptively select and fuse the outputs of the ensemble, we introduce Online

Convex Ensemble StrongLy Adaptive Dynamic Learning (OCELAD), a method that

accepts an ensemble of black-box learners and uses recent history to adaptively form

an optimal weighted combination at each time.

6.4 OCELAD

To maintain generality, in this section we assume the series of random loss func-

tions is of the form `t(θt) where θt is the time-varying unknown parameters. We

assume that an ensemble B of online learners is provided on the dyadic interval set I,

each optimized for the appropriate scale. To select the appropriate scale, we compute

weights wt(I) that are updated based on the learner’s recent estimated regret. The

weight update we use is inspired by the multiplicative weight (MW) literature (Blum

and Mansour , 2005), modified to allow for unbounded loss functions. At each step,

we rescale the observed losses so they lie between -1 and 1, allowing for maximal

weight differentiation while preventing negative weights.

rt(I) =

(∑
I

wt(I)∑
I wt(I)

`t(θt(I))

)
− `t(θt(I)) (6.5)

wt+1(I) =wt(I)

(
1 + ηI

rt(I)

maxI∈ACT(t) |rt(I)|

)
, ∀t ∈ I.
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These hold for all I ∈ I, where ηI = min{1/2, 1/
√
|I|}, Mt(I), µt(I) are the outputs

at time t of the learner on interval I, and rt(I) is called the estimated regret of the

learner on interval I at time t. The initial value of w(I) is ηI . Essentially, (6.5) is

highly weighting low loss learners and lowly weighting high loss learners.

For any given time t, the outputs of the learners of interval I ∈ ACT(t) are

combined to form the weighted ensemble estimate

θ̂t =

∑
I∈ACT(t) wt(I)θt(I)∑

I∈ACT(t) wt(I)
(6.6)

The weighted average of the ensemble is justified due to our use of a convex loss

function (proven in the next section), as opposed to the possibly non-convex losses of

(Blum and Mansour , 2005), necessitating a randomized selection approach. OCELAD

is summarized in Algorithm 1, and the joint RICE-OCELAD approach as applied to

metric learning of {Mt, µt} is shown in Algorithm 2.

Algorithm 7 Online Convex Ensemble Strongly Adaptive Dynamic Learning (OCE-
LAD)

1: Provide dyadic ensemble of online learners B.
2: Initialize weight: w1(I).
3: for t = 1 to T do
4: Observe loss function `t(·) and update B ensemble.
5: Obtain |ACT(t)| estimates θt(I) from the B ensemble.

6: Compute weighted ensemble average θ̂t via (6.6) and set as estimate.
7: Update weights wt+1(I) via (6.5).
8: end for
9: Return {θ̂t}.
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Algorithm 8 RICE-OCELAD for Nonstationary Metric Learning

1: Initialize weight: w1(I)
2: for t = 1 to T do
3: Obtain constraint (xt, zt, yt), compute loss function `t,c(Mt, µt).
4: Initialize new learner in RICE if needed. New learner at scale j > 0: initialize

to the last estimate of learner at scale j − 1.
5: COMID update Mt(I), µt(I) using (6.18) for all active learners in RICE en-

semble.
6: Compute

M̂t ←
∑

I∈ACT(t) wt(I)Mt(I)∑
I∈ACT(t) wt(I)

µ̂t ←
∑

I∈ACT(t) wt(I)µt(I)∑
I∈ACT(t) wt(I)

.

7: for I ∈ ACT(t) do
8: Compute estimated regret rt(I) and update weights according to (6.5) with

θt(I) = {Mt(I), µt(I)}.
9: end for

10: end for
11: Return {M̂t, µ̂t}.

6.5 Strongly Adaptive Dynamic Regret

The standard static regret of an online learning algorithm generating an estimate

sequence θ̂t is defined as

RB,static(I) =
∑
t∈I

ft(θ̂t)−min
θ∈Θ

∑
t∈I

ft(θ). (6.7)

where ft(θt) is a loss with parameter θt. Since in our case the optimal parameter

value θt is changing, the static regret of an algorithm B on an interval I is not

useful. Instead, let w = {θt}t∈[0,T ] be an arbitrary sequence of parameters. Then, the

dynamic regret of an algorithm B relative to any comparator sequence w = {θt}t∈I

on the interval I is defined as

RB,w(I) =
∑
t∈I

ft(θ̂t)−
∑
t∈I

ft(θt), (6.8)
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where θ̂t are generated by B. This allows for comparison to any possible dynamically

changing batch estimate w = {θt}t∈I .

In (Hall and Willett , 2015) the authors derive dynamic regret bounds that hold

over all possible sequences w such that
∑

t∈I ‖θt+1 − θt‖ ≤ γ, i.e. bounding the total

amount of variation in the estimated parameter. Without this temporal regulariza-

tion, minimizing the loss would cause θt to grossly overfit. In this sense, setting the

comparator sequence w to the “ground truth sequence” or “batch optimal sequence”

both provide meaningful intuitive bounds.

Figure 6.4: 25-dimensional synthetic dataset used for metric learning in Figure 6.5.
Datapoints exist in R25, with two natural 3-way clusterings existing si-
multaneously in orthogonal 3-D subspaces A and B. The remaining 19
dimensions are isotropic Gaussian noise. Shown are the projections of
the dataset onto subspaces A and B, as well as a projection onto a por-
tion of the 19 dimensional isotropic noise subspace, with color codings
corresponding to the cluster labeling associated with subspaces A and B.
Observe that the data points in the left and right columns are identical,
the only change is the cluster labels.
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Figure 6.5: Tracking of a changing metric. Top: Rate of change of the data gener-
ating random-walk drift matrix Dt as a function of time. Two discrete
changes in clustering labels are marked, causing all methods to have a
sudden decrease in performance. Metric tracking performance is com-
puted for RICE-OCELAD, nonadaptive COMID (high learning rate and
low learning rate), the batch solution (LMNN), SAOL and online ITML.
Shown as a function of time is the mean k-NN error rate (middle) and
the probability that the k-means normalized mutual information (NMI)
exceeds 0.8 (bottom). Note that RICE-OCELAD alone is able to effec-
tively adapt to the variety of discrete changes and changes in drift rate,
and that the NMI of ITML and SAOL fails completely.

Strongly adaptive regret bounds (Daniely et al., 2015) can provide guarantees that

static regret is low on every subinterval, instead of only low in the aggregate. We use

the notion of dynamic regret to introduce strongly adaptive dynamic regret bounds,

proving that dynamic regret is low on every subinterval I ⊆ [0, T ] simultaneously.

The following result is proved in the appendix. Suppose there are a sequence of

random loss functions `t(θt). The goal is to estimate a sequence θ̂t that minimizes

the dynamic regret.
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Theorem VI.1 (General OCELAD Regret Framework). Let w = {θ1, . . . , θT} be an

arbitrary sequence of parameters and define γw(I) =
∑

t∈I ‖θt+1 − θt‖ as a function

of w and an interval I ⊆ [0, T ]. Choose an ensemble of learners B such that given

an interval I the learner BI creates an output sequence θt(I) satisfying the dynamic

regret bound

RBI ,w(I) ≤ C(1 + γw(I))
√
|I| (6.9)

for some constant C > 0. Then the strongly adaptive dynamic learner OCELADB

using B as the ensemble creates an estimation sequence θ̂t satisfying

ROCELADB,w(I) ≤8C(1 + γw(I))
√
|I|

+ 40 log

(
1 + max

t∈I
t

)√
|I|

on every interval I ⊆ [0, T ].

In other words, the regret of OCELAD on any finite interval I is sublinear in

the length of that interval (
√
|I|), and scales with the amount γw(I) of variation in

true/optimal batch parameter estimates. The logarithmic term in s exists because of

the logarithmically increasing number of learners active at time s, required to achieve

guaranteed O(
√
|I|) regret on intervals I for which |I| can be up to the order of s.

In a dynamic setting, bounds of this type are particularly desirable because they

allow for changing drift rate and guarantee quick recovery from discrete changes.

For instance, suppose a number K of discrete switches (large parameter changes or

changes in drift rate) occur at times ti satisfying 0 = t0 < t1 < · · · < tK = T .

Then since
∑K

i=1

√
|ti−1 − ti| ≤

√
KT , this implies that the total expected dynamic

regret on [0, T ] remains low (O(
√
KT )), while simultaneously guaranteeing that an

appropriate learning rate is achieved on each subinterval [ti, ti+1].

We emphasize that this type of nonstationarity includes not only changes in model

drift rate, but also changes in the time-separation of the incoming labels, as both types
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of nonstationarity are equivalent under this model.

Now, reconsider the dynamic metric learning problem of Section II. It is reasonable

to assume that the transformed distance between any two points is bounded, implying

‖M‖ ≤ c′ and that `t(Mt, µt) ≤ k = `(c′maxt ‖xt − zt‖2
2). Thus the loss (and the

gradient) are bounded. We can then show the COMID learners in the RICE ensemble

have low dynamic regret. The proof of the following result is given in the appendix.

Corollary VI.2 (Dynamic Regret: Metric Learning COMID). Let the sequence

M̂t, µ̂t be generated by (6.18), and let w = {Mt}Tt=1 be an arbitrary sequence with

‖Mt‖ ≤ c. Then using ηt+1 ≤ ηt gives

Rw([0, T ]) ≤ Dmax

ηT+1

+
4φmax
ηT

γ +
G2
`

2σ

T∑
t=1

ηt (6.10)

and setting ηt = η0/
√
T ,

Rw([0, T ]) (6.11)

≤
√
T

(
Dmax + 4φmax(

∑
t ‖Mt+1 −Mt‖F )

η0

+
η0G

2
`

2σ

)
=O

(
√
T

[
1 +

T∑
t=1

‖Mt+1 −Mt‖F

])
. (6.12)

Since the COMID learners have low dynamic regret on the metric learning prob-

lem, we can apply the OCELAD framework to the RICE ensemble.

Theorem VI.3 (Strongly Adaptive Dynamic Regret of RICE-OCELAD applied to

metric learning). Let w = {Mt}t∈[0,T ] be any sequence of metrics with ‖Mt‖ ≤ c

on the interval [0, T ], and define γw(I) =
∑

t∈I ‖Mt+1 −Mt‖. Let B be the RICE

ensemble with ηt(I) = η0/
√
|I|. Then the RICE-OCELAD metric learning algorithm
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(Algorithm 2) satisfies

ROCELAD,w(I) ≤ (6.13)

4

21/2 − 1
C(1 + γw(I))

√
|I|+ 40 log(s+ 1)

√
|I|,

for every subinterval I = [q, s] ⊆ [0, T ] simultaneously. C is a constant.

6.6 Results

6.6.1 Synthetic Data

We run our metric learning algorithms on a synthetic dataset undergoing different

types of simulated metric drift. We create a synthetic 2000 point dataset with 2

independent three-way clusterings (denoted as clusterings A and B) of the points

when projected onto orthogonal 3-dimensional subspaces of R25. The clusterings are

formed as 3-D Gaussian blobs with cluster assignment probabilities .5, .3, and .2.

The remaining 19 coordinates are filled with isotropic Gaussian noise. Specifically,

datapoints xt ∈ R25 are generated as

xt =


N (mit ,Σit)

N (mjt ,Σjt)

N (0, σ2
0I19×19)



Pr(it = k) = Pr(jt = k) =


.5 k = 1

.3 k = 2

.2 k = 3

where it, jt are independent, σ0 is the standard deviation of the noise dimensions, and

the mk ∈ R3,Σk ∈ R3×3 are the means and covariances associated with each blob.

The label of xt under clustering A is it, and the label of xt under clustering B is jt.
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We create a scenario exhibiting nonstationary drift, combining continuous drifts

and shifts between the two clusterings (A and B). To simulate continuous drift, at

each time step we perform a random rotation of the dataset, i.e.

x̃t = Dtxt, z̃t = Dtzt,

where Dt is a random walk (analogous to Brownian motion) on the 25-D sphere of

rotation matrices in R25, with D0 chosen uniformly at random. The time-varying

rate of change (random walk stepsize) chosen for Dt is shown in Figure 6.5, with the

small changes in Dt at each time step accumulating to major changes over longer

intervals. For the first interval, partition A is used and the dataset is static, no drift

occurs (Dt = D0). Then, the partition is changed to B, followed by an interval of

first moderate, then fast, and then moderate drift. Finally, the partition reverts back

to A, followed by slow drift. The similarity labels yt are dictated by the partition

active at time t. In order to achieve good performance, the online metric learners

must be able to track both large discrete changes (change in clustering) as well as the

nonstationary gradual drift in Dt.

We generate a series of T constraints from random pairs of points in the dataset

(x̃t, z̃t) running each experiment with 3000 random trials. For each experiment con-

ducted in this section, we evaluate performance using two metrics. We plot the

K-nearest neighbor error rate, using the learned embedding at each time point, aver-

aging over all trials. We quantify the clustering performance by plotting the empirical

probability that the normalized mutual information (NMI) of the K-means clustering

of the unlabeled data points in the learned embedding at each time point exceeds 0.8

(out of a possible 1). Clustering NMI, rather than k-NN classification performance,

is a more intuitive and realistic indicator of metric learning performance, particularly

when finding a relevant embedding in which the clusters are well-separated is the
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primary goal.
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Figure 6.6: Number of tweets per day over the month of November 2015 for four of
the US presidential candidates’ political hashtags specified in the legend.

In our results, we consider RICE-OCELAD, SAOL with COMID (Daniely et al.,

2015), nonadaptive COMID (Kunapuli and Shavlik , 2012), LMNN (batch) (Wein-

berger et al., 2005), and online ITML (Davis et al., 2007).

For RICE-OCELAD, we set the base interval length I0 = 1 time step throughout,

and set η0 via cross-validation in a separate scenario with no drift, emphasizing that

the parameters do not need to be tuned for different drift rates. All parameters for

the other algorithms were set via cross validation, so as to err on the side of optimism

in a truly online scenario. For nonadaptive COMID, we set the high learning rate

using cross validation for moderate drift, and we set the low learning rate via cross

validation in the case of no drift. The results are shown in Figure 6.5. Online ITML

fails due to its bias agains low-rank solutions (Davis et al., 2007), and the batch

method and low learning rate COMID fail due to an inability to adapt. The high

learning rate COMID does well at first, but as it is optimized for slow drift it cannot

adapt to the changes in drift rate as well or recover quickly from the two partition

changes. SAOL, as it is designed for mildly-varying bounded loss functions without

slow drift and does not use retro-initialized learners, completely fails in this setting
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(a) OCELAD Metric Learning
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(b) Time-windowed PCA

Figure 6.7: Embeddings of political tweets during the last week of November 2015.
Shown are the 2-D embeddings using the OCELAD learned metric from
the midpoint of the week (a), and using PCA (b). Note the much more
distinct groupings by candidate in the OCELAD metric embedding. Us-
ing 3-D embeddings, the LOO k-NN error rate is 7.8% in the OCELAD
metric embedding and 60.6% in the PCA embedding.

(zero probability of NMI > .8 throughout). RICE-OCELAD, on the other hand,

adapts well throughout the entire interval, as predicted by the theory.

6.6.2 Tracking Metrics on Twitter

As noted in the introduction, social media represents a type of highly nonsta-

tionary, high dimensional and richly clustered data. We consider political tweets in

November 2015, during the early days of the United States presidential primary, and

attempt to learn time-varying metrics on the TF-IDF features.

We first extracted all available tweets containing the hashtags #trump2016, #cruz2016,

#bernie2016, #hillary2016, representing the two most successful primary candidates

from each of the two major parties. We then removed all hashtags from the tweets,

and extracted 194 term frequency - inverse document frequency (TF-IDF) stemmed

word features. TF-IDF features have been applied to various problems in Twitter data

(Signorini et al., 2011; Antoine et al., 2015; Petrović et al., 2010). This provided us

with a time series of hashtag-labeled 194-dimensional TF-IDF feature vectors. We
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chose to generate pairwise comparisons by considering time-adjacent tweets and label-

ing them as similar if they shared the same candidate hashtag, and dissimilar if they

had different candidate hashtags. This created a time series of 13600 pairwise com-

parisons, with the time intervals between comparisons highly nonstationary, strongly

depending on time of day, day of the week, and various other factors.

We ran RICE-OCELAD metric learning on this time series of pairwise compar-

isons, with the base interval set at length 1 and base learning rate set at 1. This

emphasizes RICE-OCELAD’s complete freedom from tuning parameters. To illus-

trate the learned embedding on the TF-IDF stems, Figure 6.7 shows the projection

of tweets from the last week of the month onto the first two principal components of

the learned metric MT from the midpoint of the last week. Note the clear separation

into clusters by political hashtag as desired, with a LOO-kNN error rate of 7.8% in

the learned embedding. The standard PCA embedding, on the other hand, is highly

disorganized, and suffers a 60.6% LOO-kNN error rate in the same scenario.

Having confirmed that our approach successfully learns the relevant embedding,

we illustrate how the learned metric evolves throughout the month in response to

changing events. For each metric M, we computed the first two principle component

vectors u1 and u2. For each feature stem, we found the corresponding entries in u1,

u2 and used these as (x, y) coordinates in a scatter plot, creating word/stem scatter

plots (Figure 6.8). By way of interpretation, the scatter plot location of a word/stem

is the point in the 2D embedding to which a tweet containing only that word would

be mapped, and quantifies the contribution of each word/stem to the metric.

Figure 6.8 shows word stem scatter plots for the learned metrics at the beginning

and end of the month, and the day of and the day after the televised November 10

Republican debate. Only the top 60 terms most relevant to the metric are shown

for clarity. Observe the changing structure of the term embeddings, with new terms

arising and leaving as the discussion evolves. An alternate view of this experiment
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is shown in Figure 6.9, showing the changing relevance of selected individual terms

throughout the month. In the captions, we have mentioned explanatory contextual

information that can be found in news articles from the period. In both figures, time-

varying structure is evident, with Figure 6.8 emphasizing how similar embeddings

of words indicate similar meaning/relevance to a candidate, and with Figure 6.9

emphasizing the nonstationary emergence and recession of clustering-relevant terms

as the discussion evolves in response to news events.

The ability of RICE-OCELAD metric learning, without parameter tuning or spe-

cialized feature extraction, to successfully adapt the embedding and identify terms

and their relevance to the discussion in this highly nonstationary environment con-

firms the power of our proposed methodology. RICE-OCELAD allows significant

insight into complex, nonstationary data sources to be gleaned by tracking a task-

relevant, adaptive, time-varying metric/low dimensional embedding of the data.

6.7 Conclusion

Learning a metric on a complex dataset enables both unsupervised methods

and/or a user to home in on the problem of interest while de-emphasizing extraneous

information. When the problem of interest or the data distribution is nonstation-

ary, however, the optimal metric can be time-varying. We considered the problem of

tracking a nonstationary metric and presented an efficient, strongly adaptive online

algorithm (OCELAD), that combines the outputs of any black box learning ensem-

ble (such as RICE), and has strong theoretical regret guarantees. Performance of

our algorithm was evaluated both on synthetic and real datasets, demonstrating its

ability to learn and adapt quickly in the presence of changes both in the clustering

of interest and in the underlying data distribution.

Potential directions for future work include the learning of more expressive metrics

beyond the Mahalanobis metric (e.g. nonlinearization via neural network architec-
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ture), the incorporation of unlabeled data points in a semi-supervised learning frame-

work (Bilenko et al., 2004), and the incorporation of an active learning framework to

select which pairs of data points to obtain labels for at any given time (Settles , 2012).
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(a) Beginning of the month (Nov 2): Af-
termath of Oct 28 Republican debate
and revelations from sister of Benghazi
victim. Uniteblue campaign to unite
Democrats.
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(b) End of the month (Nov 30): Contin-
ued Benghazi scandal discussion, conser-
vative criticism of University of Missouri
protests, Sen. Cruz IRS/tax proposals.
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(c) Hours before Nov 10 Republican de-
bate: Discussion of Clinton Benghazi
scandal, media bias, Bernie Sanders.
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(d) Day after Nov 10 Republican de-
bate: Importance of term “debate”, Sen.
Cruz’s proposals for a flat tax and the
abolishing of the IRS, and references to
Trump “yuge” and Ben Carson.

Figure 6.8: Changing metrics on political tweets. Shown are scatter plots of the 60
largest contributions of words to the first two learned metric components.
The greater the distance of a word from the origin (marked as a red dot),
the larger its contribution to the metric. For readability, we have moved
in words with distance from the origin greater than a threshold. Note the
changes in relevance and radial groupings of words before and after the
Nov 10 Republican debate, and across the entire month.
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(a) Sister of Benghazi victim spoke out
Oct 23, leading to higher relevance early
in November.

(b) Accusations of media bias during
and after the CNBC Republican debate
on Oct 28, but not at the FoxNews Re-
publican debate on Nov 10. Increases in
“debate”, “reaction”, loosely matching
the aftermath of those debates, as well
as the Nov 14 Democrat debate.

(c) The campaign known as Unite-
blue attempted to unify the Demo-
cratic party, and ugly sweater promo-
tions for Sanders occurred later in the
month. “Uniteblue,” “feelthebern,” and
“stophillary” uptick in relevance during
Democratic debate.

(d) On Nov 9 a video of a University
of Missouri professor blocking a journal-
ist drew increased attention to liberal
protests at that university, related to the
rise of the “libcrib” and “mizzou” terms.
Cruz policy proposals to limit gun con-
trol (“gunsense”) and abolish the IRS
(“abolish”) become informative around
and following the Nov 10 Republican de-
bate.

Figure 6.9: Alternate view of the Figure 6.8 experiment, showing as a function of time
the relevance (distance from the origin in the embedding) of selected terms
appearing in Figure 6.8. The rapid changes in several terms confirms the
ability of OCELAD to rapidly adapt the metric to nonstationary changes
in the data.
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6.8 Appendix

6.8.1 OCELAD - Strongly Adaptive Dynamic Regret

We will prove Theorem 1, giving strongly adaptive dynamic regret bounds. The

bound for RICE-OCELAD applied to metric learning follows by combining this gen-

eral result with Corollary 1.

Define as a function of I = [q, s] ⊆ [0, T ]

w̃t(I) =



0 t < q

1 t = q

w̃t−1(I)(1 + ηIρt−1rt−1(I)) q < t ≤ s+ 1

w̃s(I) t > s+ 1

(6.14)

and set

ρt =
1

maxI |rt(I)|
, W̃t =

∑
I∈I

w̃t+1(I). (6.15)

Note that wt(I) = ηII(t)w̃t(I) where I(t) is the indicator function for the interval I,

and assume that ρt > cρ, i.e. the estimated regret rt is bounded, where the bound

need not be known.

Recall our definition of the set I of intervals I such that the lengths |I| of the

intervals are proportional to powers of two, i.e. |I| = I02j, j = 0, . . . , with an

arrangement that is a dyadic partition of the temporal axis. The first interval of

length |I| starts at t = |I| (see Figure 6.3), and additional intervals of length |I| exist

such that the rest of the time axis is covered.

We first prove a pair of lemmas.

Lemma VI.4.

W̃t ≤ t(log(t) + 1)
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for all t ≥ 1.

Proof. For all t ≥ 1, by the definition of the set of dyadic intervals I, we have that the

number of intervals in I with endpoint t is given by |{[q, s] ∈ I : q = t}| ≤ blog(t)c+1,

where | · | indicates cardinality. Thus summing over all intervals I in the dyadic set

of intervals I,

W̃t+1 =
∑
I∈I

w̃t+1(I)

=
∑

I=[q,s]∈I:q=t+1

w̃t+1(I) +
∑

I=[q,s]∈I:q≤t

w̃t+1(I)

≤ log(t+ 1) + 1 +
∑

I=[q,s]∈I:q≤t

w̃t+1(I).

Then

∑
I=[q,s]∈I:q≤t

w̃t+1(I) =
∑

I=[q,s]∈I:q≤t

w̃t(I)(1 + ηII(t)ρtrt(I))

=W̃t +
∑
I∈I

wt(I)ρtrt(I).

Suppose that W̃t ≤ t(log(t) + 1). Furthermore, note that

∑
I∈I

wt(I)ρtrt(I) = Wt

∑
I∈I

pt(I)ρt

(
`t(θ̂t)− `t(θt(I))

)
= ρt

(
`t

(∑
I∈I

pt(I)θt(I)

)
−
∑
I∈I

pt(I)`t(θt(I))

)

≤ 0.
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since `t is convex. Thus

W̃t+1 ≤ t(log(t) + 1) + log(t+ 1) + 1 + ρt
∑
I∈I

wt(I)rt(I)

≤ (t+ 1)(log(t+ 1) + 1).

Since W̃1 = w̃([1, 1]) = 1, the lemma follows by induction.

�

Lemma VI.5.

E
s∑
t=q

rt(I) ≤ 5 log(s+ 1)
√
|I|,

for every I = [q, s] ∈ I.

Proof. Fix I = [q, s] ∈ I. Recall that

w̃s+1(I) =
s∏
t=q

(1 + ηII(t)ρtrt(I)) =
s∏
t=q

(1 + ηIρtrt(I)).

Since ηI ∈ (0, 1/2) and log(1 + x) ≥ (x− x2) for all x ≥ −1/2,

log(w̃s+1(I)) =
s∑
t=q

log(1 + ηIρtrt(I)) (6.16)

≥
s∑
t=q

ηIρtrt(I)−
s∑
t=q

(ηIρtrt(I))2

≥ ηI

(
s∑
t=q

ρtrt(I)− ηI |I|

)
.

where we have used |ρtrt(I)| = |rt(I)|
maxI |rt(I)|

≤ 1. By Lemma VI.4 we have

w̃s+1(I) ≤ W̃s+1 ≤ (s+ 1)(log(s+ 1) + 1),
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so

log(w̃s+1(I)) ≤ log(w̃s+1(I)) ≤ log(s+ 1) + log(log(s+ 1) + 1).

Combining with (6.16) and dividing by ηI ,

s∑
t=q

ρtrt(I) ≤ ηI |I|+
1

ηI
(log(s+ 1) + log(log(s+ 1) + 1))

≤ ηI |I|+ 2η−1
I log(s+ 1)

= 5 log(s+ 1)
√
|I|,

since x ≥ log(1 + x) and ηI = min{1/2, |I|−1/2}. Since ρt > cρ > 0, this implies

s∑
t=q

rt(I) ≤ 5

cρ
log(s+ 1)

√
|I|.

�

Define the restriction of I to an interval J ⊆ N as I|J = {I ∈ I : I ⊆ J}. Note

the following lemma from (Daniely et al., 2015):

Lemma VI.6. Consider the arbitrary interval I = [q, s] ⊆ N. Then, the interval I

can be partitioned into two finite sequences of disjoint and consecutive intervals, given

by (I−k, . . . , I0) ⊆ I|I and (I1, I2, . . . , Ip) ⊆ I|I , such that

|I−i|/|I−i+1| ≤ 1/2, ∀i ≥ 1,

|Ii|/|Ii−1| ≤ 1/2, ∀i ≥ 2.

This enables us to extend the bounds to every arbitrary interval I = [q, s] ⊆ [0, T ]

and thus complete the proof.
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Let I =
⋃p
i=−kIi be the partition described in Lemma VI.6. Then

ROCELADB,w(I) ≤ (6.17)∑
i≤0

ROCELADB,w(Ii) +
∑
i≥1

ROCELADB,w(Ii).

By Lemma VI.5 and (6.9),

∑
i≤0

ROCELADB,w(Ii)

≤ C
∑
i≤0

(1 + γw(Ii))
√
|Ii|+ 5

∑
i≤0

log(si + 1)
√
Ii

≤ (C(1 + γ(I)) + 5 log(si + 1))
∑
i≤0

√
Ii,

since γw(Ii) ≤ γw(I) by definition. By Lemma VI.6,

∑
i≤0

√
|Ii| ≤

√
2√

2− 1

√
|I| ≤ 4

√
|I|.

This bounds the first term of the right hand side of Equation (6.17). The bound for

the second term can be found in the same way. Thus,

ROCELADB,w(I) ≤ (8C(1 + γ(I))
√
|I|+ 40 log(s+ 1)

√
|I|.

Since this holds for all I, this completes the proof.
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6.8.2 Online DML Dynamic Regret

In this section, we derive the dynamic regret of the COMID metric learning algo-

rithm. Recall that the COMID algorithm is given by

M̂t+1 = arg min
M�0

Bψ(M, M̂t) (6.18)

+ ηt〈∇M`t(M̂t, µt),M− M̂t〉+ ηtλ‖M‖∗

µ̂t+1 = arg min
µ≥1

Bψ(µ, µ̂t) + ηt∇µ`t(M̂t, µ̂t)
′(µ− µ̂t),

where Bψ is any Bregman divergence and ηt is the learning rate parameter. From

(Hall and Willett , 2015) we have:

Theorem VI.7.

G` = max
θ∈Θ
‖∇f(θ)‖, φmax =

1

2
max
θ∈Θ
‖∇ψ(θ)‖

D = max
θ,θ′∈Θ

Bψ(θ′‖θ)

Let the sequence θ̂t, t = 1, · · · , T be generated via the COMID algorithm, and let

w be an arbitrary sequence in W = {w|
∑T−1

t=0 ‖θt+1− θt‖ ≤ γ}. Then using ηt+1 ≤ ηt

gives a dynamic regret

Rw([0, T ]) ≤ D

ηT+1

+
4φmax
ηT

γ +
G2
`

2σ

T∑
t=1

ηt (6.19)

Using a nonincreasing learning rate ηt, we can then prove a bound on the dynamic

regret for a quite general set of stochastic optimization problems.
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Applying this to our problem, we have

G` = max
‖M‖≤c,t,µ

‖∇(`t(M, µ) + λ‖M‖∗)‖2

φmax =
1

2
max
‖M‖≤c

‖∇ψ(M)‖2, D = max
‖M‖,‖M′‖≤c

Bψ(M′‖M).

For `t(·) being the hinge loss and ψ = ‖ · ‖2
F ,

G` ≤
√

(max
t
‖xt − zt‖2

2 + λ)2

φmax = c
√
n, D = 2c

√
n.

The other two quantities are guaranteed to exist and depend on the choice of Bregman

divergence and c. Thus,

Corollary VI.8 (Dynamic Regret: Metric Learning COMID). Let the sequence

M̂t, µ̂t be generated by (6.18), and let w = {Mt}Tt=1 be an arbitrary sequence with

‖Mt‖ ≤ c. Then using ηt+1 ≤ ηt gives

Rw([0, T ]) ≤ D

ηT+1

+
4φmax
ηT

γ +
G2
`

2σ

T∑
t=1

ηt (6.20)

and setting ηt = η0/
√
T ,

Rw([0, T ]) (6.21)

≤
√
T

(
D + 4φmax(

∑
t ‖Mt+1 −Mt‖F )

η0

+
η0G

2
`

2σ

)
=O

(
√
T

[
1 +

T∑
t=1

‖Mt+1 −Mt‖F

])
. (6.22)

Corollary VI.8 is a bound on the regret relative to the batch estimate of Mt that

minimizes the total batch loss subject to a bounded variation
∑

t ‖Mt+1 −Mt‖F .

Also note that setting ηt = η0/
√
t gives the same bound as (6.22).
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In other words, we pay a linear penalty on the total amount of variation in the un-

derlying parameter sequence. From (6.22), it can be seen that the bound-minimizing

η0 increases with increasing
∑

t ‖Mt+1 −Mt‖F , indicating the need for an adaptive

learning rate.

For comparison, if the metric is in fact static then by standard stochastic mirror

descent results (Hall and Willett , 2015)

Theorem VI.9 (Static Regret). If M̂1 = 0 and ηt = (2σDmax)
1/2/(Gf

√
T ), then

Rstatic([0, T ]) ≤ Gf (2TDmax/σ)1/2. (6.23)
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CHAPTER VII

Conclusion

In conclusion, covariance estimation for array-valued data can be made tractable

and efficient by enforcing structure such as sparsity, separation rank deficiency, rank

deficiency, bounded nonstationarity, and Kronecker sum structure. In particular,

Kronecker structure and strong adaptivity are powerful tools in the modeling of non-

stationary spatio-temporal data, and Kronecker models effectively formulate natural

spatio-temporal structure and dramatically reduce the required number of training

samples. Strong performance bounds were derived, in several cases showing single-

sample convergence in high dimensions. In real data applications, orders of magnitude

were gained in training sample complexity, resulting in significant performance im-

provements and enabling greater spatial and temporal resolution of the covariance

estimates in highly nonstationary data.
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