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CHAPTER I

Background and Introduction

1.1 High Throughput Bio-Molecule Quantification

1.1.1 Microarray Transcription Profiling Platforms

The complete genome sequence of human and other species provides a new start-

ing point for understanding our basic genetic makeup and how variations in genetic

instructions result in human disease or other individual variations. The biological re-

search in post-genomic era has shifted from the traditional single component analysis

that focuses on a single gene or protein to the simultaneous analysis of thousands of

biomolecules analyzed/identified by high throughput quantification techniques, e.g.

gene expression microarrays (Lockhart et al. 1996, DeRisi et al. 1997) .

The abundance levels of biomolecules are tightly regulated to ensure the proper

functions of the biological system. Abnormal variations at each level can corre-

late with many diseases, e.g. genomic DNA copy number changes are hallmarks of

cancer (LaFramboise et al. 2005, Zhao et al. 2004). Simultaneous quantification of

the abundance levels of these biomolecules on the genomic scale and follow-up data

analyses provide a potential source of profound knowledge. Some of the more suc-

cessful applications are: cancer classification and prediction using gene expression

arrays (Alizadeh et al. 2000, Golub et al. 1999), discovery of differentially expressed

genes, functionally related genes, and gene regulation networks using expression ar-

1
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rays (Tusher et al. 2001, Butte and Kohane 2000, Zhu et al. 2005a), detecting tran-

scription factor binding sites using ChIP-on-chip technology (Harbison et al. 2004,

Lee et al. 2002), high throughput genotyping and DNA quantification using Single

Nucleotide Polymorphism (SNP) arrays (Kennedy et al. 2003), discovery of disease

bio-markers using Liquid Chromatography (LC) coupled with Mass Spectrum (MS)

for protein and lipid quantification (Patterson and Aebersold 2003, Goodacre et al.

2004).

Recent development of high throughput bio-molecule quantification techniques

makes data acquisition less of a challenge. The primary challenge lies in the ana-

lytical side imposed by noisy nature of the data and so-called “small N , large p”

paradigm, which includes thousands of variables (bio-molecules, denoted as p) with

only a few of observations (denoted as N). High throughput data analysis has raised

a number of statistical and computational questions in diverse traditional areas, such

as image processing, generalized linear models, linear mixed effect models, discrimi-

native analysis, machine learning, multiple testing and Bayesian statistics (Lee 2004,

Zareparsi et al. 2004). We use gene expression array data throughout this thesis to

illustrate our data analysis schemes. However the proposed techniques can also be

applied to data acquired through other platforms.

There are two types of microarray gene expression profiling techniques, i.e. sequencing-

based (Fig. 1.1) and hybridization-based (Fig. 1.2)(Lee 2004). For the sequencing-

based techniques, the strategy is to attach a double-stranded DNA tag to each copy

of cDNA, and the number of tags of each cDNA read from sequencing correspond

to its abundance. The representative example is Serial Analysis of Gene Expression

(SAGE)(Velculescu et al. 1995). For the hybridization-based techniques, the strat-

egy is to immobilize a large number of DNA clones (probes) with known sequences
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on the solid support. The pool of examined RNA (targets) is then labeled with

fluorescence tags and hybridized to the probes. There are three major hybridization-

based microarray technology platforms, namely, spotted cDNA array (DeRisi et al.

1997), spotted oligonucleotide array and in situ oligonucleotide arrays (Affymetrix

GeneChip, Lockhart et al. 1996). These three technology platforms quantify targets

based on fluorescence signal intensity. The first two techniques are similar except

that the former exploits cDNAs as a probe and the latter exploits synthetic oligonu-

cleotides as a probe. These two techniques differ significantly from the third in many

aspects such as the hybridization method and the chip design:

• For spotted cDNA arrays, the reference sample and the treated sample, labeled

with different dyes, e.g. cy3 (green) and cy5 (red), are competitively hybridized

to the same chip, while in Affymetrix GeneChip arrays, the reference and treated

samples are hybridized to two different chips.

• For the spotted cDNA arrays, one gene is represented by a long probe, while

for Affymetrix GeneChip, each gene is typically represented by 11-20 pairs of

shorter oligonucleotide probes. The first component of these pairs is referred to

as a Perfect Match (PM) probe and is designed to hybridize only with transcripts

from the intended gene (specific hybridization). Nevertheless, hybridization to

other sequences (non-specific hybridization) is unavoidable. The second compo-

nent of these pairs is referred to as a Mismatch (MM) probe and is designed to

measure the noise introduced by non-specific hybridization. Recent studies tend

to use PM probe intensities only, since MM probe intensities also measure spe-

cific hybridization and sometime are larger than PM intensities (Irizarry et al.

2003).
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• Compared to the spotted arrays, Affymetrix GeneChips enjoy the feature of

high density, on which the whole human genome transcription can be profiled.

1.1.2 Image Analysis

Following hybridization of a microarray and the readout of gene expression levels,

the data is stored as 16-bit images. Image analysis is the first important step, and

the accuracy of extracted intensities can have a large impact on subsequent data

analysis. For two-color cDNA array images, the processing of scanned microarray

images can be separated into three tasks (Yang et al. 2002):

• Addressing. Estimate location of spots centers.

• Segmentation. Classify pixels as foreground (signal) or background (noise).

• Information extraction. This step includes calculating, for each spot on the

array, red and green foreground fluorescent intensity pairs (R, G), background

intensities, and possibly, quality measures.

Affymetrix GeneChip image processing follows a similar procedure but only to Ad-

dressing (Step I) and Information extraction (Step III).

1.1.3 Low Level Analysis

The raw intensity data output from image scanner is usually subjected to a series

of pre-possessing analysis, e.g. background correction, normalization, summarization

(Irizarry et al. 2003, Yang et al. 2002). The background correction is to minimize

non-specific hybridization noise. The default adjustment, provided as part of the

Affymetrix system, is based on the difference between PM and MM probe intensities

(MAS4) or its robust estimation (MAS5). This approach can be improved via the

use of estimators derived from a statistical model that incorporates probe sequence
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information (Wu et al. 2004, Zhang et al. 2003). The normalization is to adjust

microarray data for effects which arise from variation in the technology rather than

from biological differences between the RNA samples or between the printed probes.

The ultimate goal of normalization is to minimize the technical (systematic) varia-

tion. Popular normalization methods include quantile normalization (Bolstad et al.

2003) and invariant-set normalization (Tseng et al. 2001).

Summarization as used in Affymetrix GeneChip, provides an estimate of mRNA

abundance, called a score, from a number of Perfect Match (PM)/Miss Match (MM)

intensities. Popular summarization methods include: Robust Multichip Average

(RMA)(Irizarry et al. 2003), Li-Wong’s model (Li et al. 2001), gcRMA (Wu et al.

2005), and trimmed mean (Rickman et al. 2001). There is still no single approach

that outperforms the others in all reported test cases (Bolstad et al. 2003, Shedden

et al. 2005), but RMA seems to be the most popular for general purposes, while

gcRMA has been reported to be more sensitive for low abundance probe intensities.

After these steps, the gene expression data is usually available in the format of

data matrix, in which rows correspond to gene names, and columns correspond to

relevant physiological/genetic conditions under which the gene expression levels are

quantified.

1.2 Screening Differentially Expressed Genes

Initial efforts to gain biological insight from gene microarray data focused on rank-

ing genes according to some ranking statistic, followed by examination of a handful

of genes on the top or bottom of the ranked list by biological experts. Identifying

truly differentially expressed genes in microarray studies is a major statistical chal-

lenge that has received much attention. Existing approaches can be roughly divided
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into three categories, univariate approaches (Wolfinger et al. 2001), multivariate ap-

proaches (Efron et al. 2001, Tusher et al. 2001), and multicriterion approaches (Hero

and Fleury 2004, Hero et al. 2004, Fleury et al. 2002).

Many univariate approaches are based on the classical Analysis of Variance (ANOVA)

model and its extensions such as linear mixed effect models. These type of approaches

fit models for each gene expression one-at-a-time. In the standard application of

ANOVA, one would proceed to test whether the sequential sum of squares for exper-

imental condition is large enough to reject the null hypothesis. The standard model

assumptions require the error term ε to be independently and identically distributed

(i.i.d.) Gaussian random variables. Other approaches use permutation test to avoid

assumptions about the error distribution. The ANOVA model assumes that the main

effects and interaction effects of the model are fixed, not random. In some studies,

however, it may be quite reasonable to treat some of these effects as random, and

more specifically, as Gaussian distributed. For example, sometimes array effects in

microarray experiments may be modeled as random effects and mixed model infer-

ence can outperform standard ANOVA (Zhu and Hero 2005b).

Univariate approaches allow flexible and powerful modeling choices, however, they

ignore the underlying covariance structure of gene regulation networks (termed “net-

work constraint” in the later chapters). Multivariate approaches study a set of genes

in one model, such as Empirical Bayes (EB) (Efron et al. 2001) and Significant Analy-

sis of Microarray (SAM) (Tusher et al. 2001), in which the ordinary t-test statistic

is modified by adding a fudge factor (estimated from a large set of genes) to the

denominator. The fudge factor is estimated in different ways to avoid the situation

where tiny variances can create large t-statistics even for a very small fold change.

Both univariate and multivariate statistics have been successfully applied to screen-
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ing differentially expressed genes. However, no single statistic is universally optimal

and there is seldom any basis or guidance for selecting a particular statistic. To

circumvent this difficulty, Hero and Fleury, 2004, (Hero and Fleury 2004) described

a novel gene screening approach in which they ranked genes using a multi-dimension

plot, called multicriterion scattergram. Genes that are maximal in the component-

wise ordering in the P -dimensional scatterplot corresponding to P screening statistics

are defined as Pareto fronts, on which the genes were selected as the most differen-

tially expressed. The multicriterion optimization method had also been generalized

to rank genes based on a set of pre-defined criteria, not limited to differential ex-

pression, such as strong monotonic increase, high end-to-end slope and low slope

deviation (Fleury et al. 2002, Speed 2003). More recently, Yang et al proposed a

distance synthesis scheme to integrate multiple statistics for screening differentially

expressed genes. Using the Affymetrix spike-in data in which the magnitude of differ-

ential expressions were known, they reported that the integrated statistic compares

favorably with the best individual statistics, while achieving robustness properties

lacked by the individual statistics (Yang et al. 2005).

The practice of screening differentially expressed genes plays a key role in un-

derstanding underlying biological mechanisms, and discovering disease bio-markers.

However, it has a number of major limitations:

• The process is subjective and often requires considerable biological expertise.

• The biological findings are often discrete and sporadic.

• Single gene analysis only reveals the most differentially expressed genes in the

pathway while missing out many less differentially expressed genes with concor-

dant changes.
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• There is poor overlap among different approaches, e.g. less than half of genes

are in common between the top 1000 differentially genes declared by ordinary

t-test and SAM t-test.

1.3 Gene Clustering

To overcome these limitations, the recent efforts have been focused on studying

a set of functionally related genes (so-called signaling pathway). We define signal-

ing pathway as a series of gene interactions leading to a specific biological endpoint

function. The interactions among genes can be interpreted as co-regulation or chem-

ical modification, e.g. phosphorylation, acetylation, and methylation. Therefore,

gene interactions are often inferred through calculating the correlation between gene

expression profiles over multiple relevant physiological/genetical conditions. Gene

pairs with high correlation (e.g. greater than 0.6) are hypothesized to be biologically

relevant and to interact directly in the signaling pathways.

It is typical that only a few genes are experimentally confirmed to be in a signaling

pathway. Gene clustering is a widely used approach that attempts to group all the

genes in the pathway into a cluster such that functional prediction of unknown genes

can be made based on the functionally known genes. Some of the more popular

clustering methods include: hierarchical clustering (Eisen et al. 1998), K-means type

clustering (Hartigan and Wong 1979), mixture model-based clustering (Yeung et al.

2001) and Hidden Markov Model (HMM) based clustering (Schliep et al. 2003). The

hierarchical clustering and K-means type clustering are heuristic approaches with

major distinction that the former belongs to unsupervised learning while the latter

belongs to supervised learning. These methods have been successful in inferring

many signaling pathways from gene microarray data. A new set of methods, called
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Gene Set Enrichment Analysis (GSEA) have been recently developed to address the

statistical significance of a given gene set (Subramanian et al. 2005, Mootha et al.

2003, Kim et al. 2005). Instead of analyzing a few differentially expressed genes, the

method inspects all the genes on the chips. Since it requires a pre-defined gene set

that is assumed to be functionally related, the method has not been very effective in

reconstructing gene pathways in unsupervised manner.

1.4 Problem Statement

We divide the signaling pathway reconstruction problem into two sub-problems:

discovery of pathway components and ordering the pathway components. Briefly,

we solve the first sub-problem using an innovative network constrained clustering

approach (Zhu et al. 2005c, Zhu and Hero 2005d, Zhu and Hero 2005e), and we solve

the second sub-problem applying a first-order Markov model approach (Rabbat et al.

2006). We first describe the previous approaches and their shortcomings.

1.4.1 Previous Approaches and Our Challenges

The ultimate goal of all gene clustering approaches is to group genes with similar

functions into one single cluster. These functional related genes are likely to be in

the same signaling pathway. In practice, most approaches simply group genes with

similar expression profiles (Eisen et al. 1998, Stuart et al. 2003, Lee et al. 2004),

denoted as “traditional clustering” throughout this thesis. However, many genes in

the same functional pathway may not have similar expression profiles as measured

by correlation statistics or other pairwise expression similarity measure. This is es-

pecially true for pairs of genes that are not in the same region of a signaling pathway.

These genes will not be discoverable using the traditional clustering methods. Thus,

a well-known limitation of the traditional clustering approaches is that it only groups
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functional related genes with similar expression profiles, but misses out many others

with dissimilar expression profiles.

In a gene regulation network, graph vertices represent genes, and edges represent

biological relationships between genes, such as co-regulation, chemical modification.

Different network models are able to infer many kinds of relationships among genes

(Butte and Kohane 2000, Butte et al. 2000, Zhou et al. 2002, Friedman et al. 2000,

Perrin et al. 2003, Yu et al. 2004, Rao et al. 2005). The traditional methods of

clustering assume that the underlying network is fully connected, i.e. any biological

function is executed through a direct interaction (relationship) between a pair of

genes (Fig. 1.3). Direct pairwise gene interactions, represented by the fully connected

subgraph (clique), only describes a small subset of gene interactions. In many cases,

an endpoint biological function is more commonly executed through a series of inter-

connected gene interactions (see Fig. 1.3c, gene A, B, C, D, E, F). Consequently,

for genes lying in a single pathway traditional clustering approaches often group

these genes into several different clusters, e.g., each cluster determined by a similarly

co-expressed clique. This breaking of a pathway across several clusters makes it

more difficult for biologists to identify groups of genes having common function.

Thus approaches that are able to go beyond pairwise interactions to group the whole

pathway into a single tight cluster are highly desirable.

A more realistic assumption for gene clustering may be that the underlying gene

regulation network is only partially connected, i.e. biological function is executed

through either direct interaction or through indirect interaction via one or more

intermediate genes (Fig. 1.3). A gene clustering algorithm that accounts for such

realistic network constraints is likely to be more powerful (Zhou et al. 2002, Zhou and

Gibson 2004). There are several challenges to developing such an approach. What
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kind of network model is most appropriate? How to reliably extract the relevance

network from noisy high throughput data? How to estimate the distance between

two non-adjacent genes (genes that do not have similar expression profiles) in the

network?

1.4.2 Selection of Network Models

Different network models have been applied to high throughput data to gain in-

sight into regulatory function. Popular network models include the Boolean network

(Liang et al. 1998, Szallasi et al. 1998, Wuensche 1998), the Bayesian network (Fried-

man et al. 2000), the Relevance network (Butte and Kohane 2000, Basso et al. 2005,

Fuente et al. 2004, Magwene and Kim 2004) and the Dynamic network (Rao et al.

2005, Perrin et al. 2003, Yu et al. 2004). The advantages and disadvantages of each

method are becoming increasingly clear. Boolean networks feature conceptual and

computational simplicity but have the problem of choice of threshold for the one bit

quantification of the expression scores. Bayesian networks and Dynamic networks

enable one to draw causal inference and/or to infer time varying network topologies,

but currently are only practical for reconstructing very small-size networks due to

the high computational complexity in the dimension of the topology search space.

Gene co-expression networks such as relevance and dependency networks, provide

satisfactory approximations to large-scale networks, however they do not allow for

causality and directionality of interactions. We choose to use the gene co-expression

network model for network based signaling pathway discovery for the following rea-

sons. First, the large scale network reconstructions can be used as a filter to select a

small number of significant interactions, regardless of directionality, prior to imple-

menting a Bayes network reconstruction. Second, it is too ambitious to reconstruct

signaling pathways in great detail from small numbers of replicates of the expression
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data alone. Third, co-expression network models enable computationally tractable

large-scale network construction with error control (false positives and false nega-

tives) (Zhu et al. 2005a, Zhu and Hero 2005f).

1.4.3 Constructing Gene Co-expression Networks

Gene co-expression networks typically use correlation statistics as pairwise simi-

larity measures (a decreasing function of the distance for clustering) between gene

expression profiles, followed by either direct correlation thresholding (Zhou et al.

2002) or a combination of significance level tests with correlation thresholding (Lee

et al. 2004). While direct thresholding is useful in many cases it only controls biolog-

ical significance but not error rate. Combining correlation thresholding with a level

of significance test does not allow one to control biological and statistical significance

in a systematic and reliable manner.

In estimating pairwise gene correlation from high throughput data, the estimates

are subject to high variances due to the noisy nature of the data and “small N , large

p paradigm” (Dobra et al. 2004, Schafer and Strimmer 2005a, Schafer and Strimmer

2005b). One way to account for these variances is to construct confidence interval(CI)

for each correlation parameter, and threshold on the upper/lower bounds rather on

sample estimate directly (Hero et al. 2004). Both frequentist statistics and Bayesian

statistics provide constructions of CI’s. In frequentist approaches, the confidence

interval on a scalar parameter is constructed by finding a “pivot” whose distribution

is independent of the parameter. In Bayesian approaches, the confidence interval

of a ‘parameter’ is constructed from its posterior distribution. We present a pair

of complementary network construction approaches for the small sample problem

and the larger sample problem using Bayesian and frequentist confidence interval

thresholding.
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For the relatively large sample problem (e.g. N = 20), we propose an approach

based on application of False Discovery Rate Confidence Intervals (FDR-CI) recently

proposed to control biological and statistical significance simultaneously (Hero et al.

2004, Zhu et al. 2005a). This approach is able to identify both linearly and nonlin-

early co-expressed genes using the Pearson correlation coefficient and the Kendall

correlation coefficient. The employment of Kendall’s correlation is important when

functionally related gene expression profiles may be non-linearly correlated. Non-

linear correlation can occur, for example, when gene expressions of different subunits

of a whole enzyme are differentially regulated due to different enzyme efficiencies

(Berg et al. 2006).

For the relatively small sample problem (e.g. N < 10), the frequentist approach

may suffer from “overfitting” and low discriminating power (Ledoit and Wolf 2004).

To solve this problem, we propose a Bayesian hierarchical model approach that is

able to globally estimate the correlation parameters (Zhu and Hero 2005g).

1.4.4 Estimating Distance between Non-adjacent Genes in the Network

Assume a reasonably well constructed co-expression network is available. The

shortest-path distance between two non-adjacent genes represents a natural and par-

simonious representation of biological interaction since genes along the shortest-path

are likely to have similar function (Zhou et al. 2002). Based on our network re-

construction algorithms and our shortest-path distance measure, we present a new

clustering approach, called “network constrained (NC) clustering”. NC clustering is

able to group more functionally related genes into a single tight cluster even if their

expression profiles are dissimilar.
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1.4.5 Pathway Order Reconstruction

While the network constrained clustering method may be able to group the whole

pathway into a single tight cluster, it does not directly address the ordering of genes

in the pathway. This raises the following sub-problem. Assuming the pathway com-

ponents are known, can we optimally infer the order of the genes in the pathway?

We propose solution to this problem by applying a first-order Markov model based

approach that was originally developed and applied to a network tomography prob-

lem in telecommunication networks (Rabbat et al. 2006). The key advantage of this

model is that it takes full advantage of pathway composition information and network

constraints, allowing for a high level data integration and knowledge extraction.

1.5 Contributions

In this thesis, we present a unified framework for reconstructing signaling path-

ways from high throughput data by accounting for underlying network constraints.

The following lists the principal contributions of this thesis and the chapters in which

they are covered.

• Full frequentist statistical treatment of the co-expression network construction

problem. We hypothesize that only highly correlated gene pairs are biologically

relevant, and we extract an estimate of the network by combining correlation

thresholding and control of statistical significance. (Chapter II)

• One of the first full Bayesian treatments of the co-expression network construc-

tion problem. This approach provides a natural and seamless combination of

correlation strength thresholding, and variance regularization to small sample

size. (Chapter III)
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• Using both linear and nonlinear correlation statistics in screening network edges.

Most of previous approaches use only a linear correlation statistic. Nonlinear

correlations are commonly seen in many biological scenarios. (Chapter II)

• The first network constrained clustering approach that is able to group func-

tional related genes according to shortest path expression similarity. Other clus-

tering approaches do not exploit the underlying network structure. (Chapter

IV)

• A more objective way to evaluate clustering performance using Gene Ontology.

Instead of comparing clustering performance at one specified cluster number,

we compared it over a wide range of cluster numbers. (Chapter IV)

• Application of a novel model based pathway ordering algorithm to reconstruct

the ordering of pathway components from multiple data sources. (Chapter V)

1.6 Outline of Thesis

The goal of this thesis is to explore a long-standing problem in high throughput

data analysis, i.e. signaling pathway reconstruction. The problem is addressed in a

multi-stage process (Fig. 1.4). Chapter II introduces a full frequentist treatment of

the co-expression network construction problem for the reasonably large sample data.

Complementary to Chapter II, Chapter III introduces a full Bayesian treatment of

the co-expression network construction problem for problems having relatively small

sample size data. Based on the networks constructed in either Chapter II or Chapter

III, Chapter IV introduces the network constrained clustering approach. Chapter V

demonstrates the application of the first-order Markov model based method to the

pathway order reconstruction problem. Finally, in Chapter VI, we conclude with a

discussion of important issues and future work.
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Figure 1.1: Schematic of SAGE method. (Source: http://www.sagenet.org/findings/index.html)
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Figure 1.2: Schematic of GeneChip expression profiling method. (Source: http://www.affymetrix.com)
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Figure 1.3: Underlying network models and distance matrices for traditional clustering (a)(b) and network
constrained clustering (c)(d). Fig. 1.3c is obtained by removing some edges of weak correlations
(long distances), e.g. distance longer than 3. The distance between two genes is a decreasing
function of their correlation (see Eq. 4.1). (a). Fully connected network, it assumes any two
genes interact with each other directly in the network (connected). (b). Part of the distance
matrix for the network model (a). (c). Partially connected network, it assumes only two
genes with high correlation (e.g. 0.6) directly interact with each other (connected). Red edges
represent the shortest-path from A to D. (d). Part of the distance matrix for the network
model (c).
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Figure 1.4: The schematic outline of the thesis.



CHAPTER II

Co-expression Networks Construction - Frequentist
Approach

Gene co-expression networks provide a good approximation to the complicated

web of gene functional associations (Butte and Kohane 2000, Butte et al. 2000). In

constructing the gene co-expression networks, a most frequently assumed hypothesis

is that the gene pairs of high expression correlation indicate functional relevancy

(Eisen et al. 1998). Thus, the gene co-expression network can be viewed as a clus-

ter of functional modules, in which the pairwise gene expression correlations above

the threshold or below the threshold correspond to the presence or absence of co-

expression network edges. In order to construct the co-expression networks, statis-

tically, we need to simultaneously draw inference on a large number of correlation

parameters.

A full frequentist statistical treatment of the co-expression network construction

problem can be translated into either rejecting null hypotheses or accepting null

hypotheses at a certain significance level, in which the former declares the presence

of network edges, and the later declares the absence of network edges. Similarly, a full

Bayesian statistical treatment of the co-expression network construction problem can

be translated into simultaneously thresholding the posterior distributions of many

correlation ‘parameters’.

22
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2.1 A Two-Stage Algorithm for Constructing Co-expression Networks

2.1.1 Measures of the Strength of Association

There are many possible discriminants for strength of association between two

variables, which we generally denote as a real number Γ. Under a Gaussian linear

hypothesis, the Pearson correlation coefficient ρ is an appropriate metric. A robust

distribution-free alternative is the Kendall rank correlation coefficient (Kendall’s τ).

The Pearson (Bickel and Doksum 2000) and Kendall correlation coefficients (Hol-

lander and Wolfe 1999) are special cases of the generalized correlation coefficient

(Daniel 1944). We define {gp}G
p=1 as the indices of G gene probes on the microarray;

{Xgp}G
p=1 as normalized probe responses (random variables); and {{xgp(n)

}G
p=1}N

n=1 as

realizations of {Xgp}G
p=1 under N i.i.d. microarray experiments.

Pearson Correlation Coefficient.

The population Pearson correlation coefficient between random variables Xgi
and

Xgj
(defined as long as var(Xgi

), var(Xgj
) are positive) is:

(2.1) ρ(Xgi
, Xgj

) =
cov(Xgi

, Xgj
)√

var(Xgi
)var(Xgj

)
.

The sample Pearson correlation coefficient ρ̂ is an asymptotically consistent unbiased

estimator of ρ:

(2.2) ρ̂i,j =
SXgi ,Xgj√

SXgi ,Xgi
SXgj ,Xgj

,

where SXgi ,Xgi
, SXgj ,Xgj

, and SXgi ,Xgj
are sample variances and covariance given by

SXgi ,Xgi
= (N − 1)−1

N∑
n=1

(Xgi(n) −Xgi
)2,

SXgj ,Xgj
= (N − 1)−1

N∑
n=1

(Xgj(n) −Xgj
)2,



24

SXgi ,Xgj
= (N − 1)−1

N∑
n=1

(Xgi(n) −Xgi
)(Xgj(n) −Xgj

),

and Xgi
= N−1

∑N
n=1 Xgi(n), Xgj

= N−1
∑N

n=1 Xgj(n) are sample means.

Kendall Rank Correlation Coefficient.

Kendall’s τ statistic is a measure of correlation that captures both linear and non-

linear associations. The parameter τ is defined as τ = P+ − P−, where, for any two

independent pairs of observations (xgi(n)
, xgj(n)

), (xgi(m)
, xgj(m)

) from the population:

P+ = P [(xgi(n)
− xgi(m)

)(xgj(n)
− xgj(m)

) ≥ 0] and P− = P [(xgi(n)
− xgi(m)

)(xgj(n)
−

xgj(m)
) < 0]. An unbiased estimator of τ is given by the Kendall τ statistic:

(2.3) τ̂i,j = 2
∑∑

1≤n≤m≤N

Knm

N(N − 1)
,

here Knm is a indicator variable defined as Knm = sgn(xgi(n)
−xgi(m)

)sgn(xgj(n)
−xgj(m)

)

for each set of pairs drawn from {Xgi
}G

i=1 and {Xgj
}G

j=1.

2.1.2 Hypothesis Testing Scheme

To screen the strongly co-expressed pairs of G genes on each microarray, we will

simultaneously test the Λ =
(

G
2

)
pairs of composite hypotheses: {Hλ, Kλ : λ =

(gi, gj)}.

(2.4)

Hλ : Γgi,gj
≤ cormin versus Kλ : Γgi,gj

> cormin, for gi 6= gj, and gi, gj ∈ (1, 2, ...G)

where cormin is the specified minimum acceptable strength of correlation. The

sample correlation coefficient Γ̂i,j (ρ̂i,j or τ̂i,j) could be thresholded to decide on

pairwise dependency of two genes in the sample. When we must decide between the

null hypothesis Hλ and the alternative hypothesis Kλ based on such a threshold test,
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there will generally be decision errors in the form of false positives (Type I errors:

decide Kλ when Hλ is true) and false negatives (Type II errors: decide Hλ when Kλ

is true). The Per Comparison Error Rate (PCER) is defined as the number of Type

I errors over the number of independent trials, i.e. the probability of Type I error.

The p-value is the probability that a more improbable sample could have been drawn

from the population(s) being tested given the assumption that the null hypothesis is

true.

For N realizations of any pair of gene probe responses, {xgi(n)
, xgj(n)

}N
n=1, we first

calculate τ̂i,j or ρ̂i,j respectively. For large N , the PCER p-values for ρi,j or τi,j are:

(2.5) pρi,j
= 2

(
1− Φ

(
tanh−1(ρ̂i,j)

(N − 3)−1/2

))

(2.6) pτi,j
= 2

(
1− Φ

(
K

N(N − 1)(2N + 5)/181/2

))

where Φ is the cumulative density function of a standard Gaussian random vari-

able, and K =
∑∑

1≤n≤m≤N Knm. The above expressions are based on asymptotic

Gaussian approximations to ρ̂i,j (Bickel and Doksum 2000) and to τ̂i,j (Hollander

and Wolfe 1999).

The PCER p-value refers to the probability of Type I error incurred in testing

a single pair of hypothesis for a single pair of genes gi, gj. It is the probability

that purely random effects would have caused gi, gj to be erroneously selected based

on observing correlation between this pair of genes only. When considering the Λ

multiple hypotheses for all possible pairs, two adjusted error rates have frequently

been considered in microarray studies. These are family-wise error rate (FWER)

and false discovery rate (FDR)(Benjamini and Hochberg 1995). The FWER is the

probability that the test of all Λ pairs of hypotheses yields at least one false positive in
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the set of declared positive responses. In contrast, the FDR is the average proportion

of false positives in the set of declared positive responses. The FDR is dominated by

the FWER and is therefore a less stringent measure of significance. As in previous

studies (Reiner et al. 2003), we adopt the FDR to control statistical significance of

the selected gene pair correlations in our screening procedure.

Stage I (step-down): control of FDR at MAS = 0.

1. Specify FDR level α and MAS level cormin.

2. Compute a list of PCER p-values: p1, p2, ..., pΛ corresponding to Λ =
(
G
2

)
pairs of composite

hypotheses: {Hλ,Kλ : λ = (gi, gj)} from {ρ̂i,j} or {τ̂i,j}.
3. Sort the list of PCER p-values in increasing order, i.e. p(1), p(2), ..., p(Λ).

4. Find the index k0 where k0 = max{k : p(k) ≤ kα
Λν }.

5. Set initial screening G1 as those k0 = Λ1 gene pairs having p-values: p(1), p(2), ..., p(k0).

In step 4, ν = 1 if the test statistics can be assumed statistically independent or positively
dependent, where ν =

∑Λ
λ=1 λ−1 under the general dependency assumption.

Stage II: control of FDR and MAS = cormin.

1. Construct Λ1 different (1 − α) × 100% PCER-CI’s Iλ(α) for ρ or τ of each gene pair in
G1 (Appendices A.1, A.2).

2. Convert these PCER-CI’s into Λ1 different (1−α)×100% FDR-CI’s using formula (Benjamini
and Yekutieli 2005): Iλ(α) → Iλ(Λ1α/Λ).

3. Select the subset G2 containing Λ2 of Λ1 gene pairs whose FDR-CI’s do not intersect
[−cormin, cormin].

Figure 2.1: Two-stage direct screening procedure yields a subset G2 of all possible gene pairs G whose
strength of association exceeds MAS level cormin at FDR level α.

2.1.3 Two-stage Screening Procedure

One would proceed to test the hypothesis (Eq. 2.4) in one stage if the distrib-

utions of Pearson and Kendall correlations under the specific null hypothesis were

known. Under the null hypothesis of zero correlation, the distributions and p-values

of Pearson and Kendall correlations can be conveniently derived using the asymptotic

approximations (Fisher 1923, Hollander and Wolfe 1999). While deriving p-value un-

der the null hypothesis of non-zero correlation remains an open problem. For this
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reason, we test the composite hypothesis (Eq. 2.4) using a two-stage procedure.

Select a level α of FDR and a level cormin of MAS significance levels. We use

a modified version of the two-stage screening procedure proposed for gene screening

by (Hero et al. 2004). This procedure consists of two stages, summarized in Fig. 2.1.

Stage I. For each gene pair λ = (gi, gj) in the set G of all Λ =
(

G
2

)
gene pairs, test

the simple null hypothesis:

(2.7) Hλ : Γgi,gj
= 0 versus Kλ : Γgi,gj

6= 0, for gi 6= gj, and gi, gj ∈ (1, 2, ...G)

at FDR level α. The step-down procedure of Benjamini and Hochberg (Benjamini

and Hochberg 1995) is used to accomplish this.

Stage II. Suppose a number Λ1 pairs of genes, denoted by the set G1 ⊂ G, pass

the Stage I procedure. In Stage II, we first construct asymptotic PCER Confidence

Intervals (PCER-CI’s): Iλ(α) for each Γ (ρ or τ) in subset G1. We convert these

PCER-CI’s into FDR Confidence Intervals (FDR-CI’s): Iλ(α) → Iλ(Λ1α/Λ) using

the procedure in (Benjamini and Yekutieli 2005). A gene pair in subset G1 is declared

to be both statistically significant and biologically significant if its FDR-CI does not

intersect the MAS interval [−cormin, cormin] (see Fig. 2.6). The set of all such gene

pairs is called G2.

In many practical situations, the experimenter may not be comfortable in speci-

fying a MAS or FDR criterion in advance. In this situation, it is useful to solve the

inverse problem: what is the most stringent pair of criteria (α , cormin) that would

cause a particular subset of gene pairs to be included in the screen G2. The inverse

screening procedure is displayed in Fig. 2.2.
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1. Compute a list of PCER p-values: p1, p2, ..., pΛ corresponding to Λ =
(
G
2

)
pairs of composite

hypotheses: {Hλ,Kλ : λ = (gi, gj)} from {ρ̂i,j} or {τ̂i,j}.
2. Sort the list of PCER p-values in increasing order, i.e. p(1), p(2), ..., p(Λ).

for any gene pair λ0 ∈ {gi, gj}G
i,j=1:

• Find the minimal α = α(λ0) such that the PCER-CI Iλ0(α) does not intersect
[−cormin, cormin].

• Compute the integer index N(α(λ0)) =
∑Λ

k=1 I(p(k))k ≤ α(λ0)), where I(A) is an indicator
function of the truth of statement A. The FDR p-value of the gene pair λ0 is then simply pi,
where i = N(α(λ0)).

endfor

Figure 2.2: Inverse screening procedure allows the FDR p-value of a gene pair’s (λ0) strength of association
to be computed.

2.2 Simulation Studies

2.2.1 Validating the Two-stage Algorithm

Validating Asymptotic Null Distribution.

We first verify that the proposed two-stage algorithm controls FDR at a specified

MAS level using simulated data. Since the p-values are based on asymptotic distrib-

ution approximations (Eq. 2.5 and Eq. 2.6), we display in Fig. 2.3a the goodness of

fit of the ρ̂ sampling distribution to the Gaussian distribution using QQ plots. Note

that there is good agreement to the Gaussian distribution for N ≥ 10. Moreover,

since the construction of confidence intervals requires estimation of sampling distri-

bution variance, the accuracy of the variance approximation is vital. This can be

evaluated by the mean squared approximation error (MSE) for sample size N :

(2.8) MSE(N)
ρ = Λ−1

∑
1≤i<j≤G

(S
(N)

tanh−1(ρ̂i,j)
− (N − 3)−1/2)2,

MSE(N)
τ = Λ−1

∑
1≤i<j≤G

(S
(N)
τ̂i,j

− (
2

N(N − 1)

2(N − 2)

N(N − 1)2

N∑
i=1

(Cr − C) + 1− τ̂))2,

(2.9)
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where S
(N)

tanh−1(ρ̂i,j)
and S

(N)
τ̂i,j

denote standard errors of tanh−1(ρ̂i,j) and τ̂i,j at the

sample size N . The definitions of Cr and C̄ can be found in Appendix A.2. The

ρ̂ variance approximations are seen to be in good agreement even for small sample

sizes (N > 10) from Fig. 2.3b.

Validating the Error Control Procedure.

In order to validate our FDR and MAS error control procedure, we simulated

pairwise gene expression data based on known population covariances (Appendix

A.3). The actual FDR at a MAS level is calculated as a ratio of the number of

screened gene pairs whose corresponding population correlation parameters Γi,j are

less than the MAS level specified, divided by the total number of screened gene

pairs. The actual MAS is the minimum true discovery of population correlation Γi,j

among the screened pairs. We specified 16 pairs of (FDR,MAS) criteria (Four FDR

levels: 0.2, 0.4, 0.6, 0.8; Four MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted

as a different upper case Roman alphabet (Red) in Fig. 2.4. The 16 corresponding

pairs of actual (FDR,MAS) criteria are also shown in Fig. 2.4 using the same set of

lower case Roman alphabets (Blue). It can be observed that generally the actual

FDR’s (lower case) fall below the specified constraint (upper case) and the actual

MAS’s (lower case) fall above the specified constraints (upper case). Any deviations

of actual FDR’s and MAS’s from their specified levels are due to the conservative

asymptotic approximation (Eq. 2.5 and Eq. 2.6). Observe that use of Kendall cor-

relation (Fig. 2.4b) leads to greater overestimation of error rates than the Pearson

correlation (Fig. 2.4a). Overestimation of error rates will translate into a reduction

of power in discovering co-expressed pairs at the specified levels.
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2.2.2 Performance Comparisons

Comparisons in terms of p-values and Confidence Intervals

In Table 2.1 and Table 2.2, we compared the performance of the proposed two-

stage FDR-CI screening algorithm (labeled “FDR-CI” in the tables), with two other

commonly used algorithms, called thresholded FDR (labeled “FDR-only” in the

tables) and thresholded MAS (labeled “MAS” in the tables). All three algorithms aim

to control MAS at a level of cormin = 0.5. The two-stage FDR-CI and thresholded

FDR algorithms aim to control FDR at a level of α = 0.05 in addition to MAS. Both

of these latter algorithms were implemented as two-stage algorithms with common

Stage I, which is to select pairs of genes G1 that pass the test of association with

cormin = 0 at a FDR level of 5%. Stage II of the two-stage FDR-CI algorithm selects

G2 as a subset of G1 at the specified FDR-CI level of 5%. Stage II of the thresholded

FDR algorithm simply selects a subset of G1 having a strength of association greater

than 0.5. The single-stage thresholded MAS algorithm selects a subset of the original

496,506 gene pairs by thresholding Pearson correlation ρ̂i,j ≥ 0.5 (Table 2.1) and

Kendall coefficient τ̂i,j ≥ 0.5 (Table 2.2) without attempting to control FDR.

The number of screened and discovered gene pairs for the three algorithms is

indicated in the first two columns of Table 2.1 and Table 2.2. The maximum and

median of the FDR p-values of the discovered gene pairs are indicated in the third

and fourth columns for each algorithm. The last column indicates the average length

of the FDR-CI’s on correlation coefficients of the discovered gene pairs. We conclude

from Table 2.1 and Table 2.2 that the proposed two-stage FDR-CI algorithm outper-

forms the other algorithms in terms of: (1) maintaining the FDR requirement that

false positives not exceed 5% (column 4); (2) ensuring a substantially lower median

FDR p-value than the others (column 5); (3) discovering genes that have tighter (on
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Table 2.1: Performance comparison for three algorithms based on Pearson correlation coefficient for select-
ing gene pairs with a MAS level of 0.5. Thresholded MAS and thresholded FDR are significantly
worse in terms of statistical significance (p-value) than the proposed two-stage FDR-CI algo-
rithm (columns 4 and 5). Furthermore, the average length of the CI’s on ρ’s of the discovered
gene pairs are shorter for the two-stage FDR-CI algorithm than for the other algorithms (column
6).

Algorithms # Screened # Discovered Max(Pv) Median(Pv) AvgFDRCI
MAS 496,506 174,830 2.5e-02 2.1e-03 6.5e-01

FDR-only 153,983 153,983 1.6e-02 1.4e-03 6.3e-01
FDR-CI 153,983 18,135 1.3e-05 1.3e-06 3.3e-01

Table 2.2: Performance comparison for three algorithms based on Kendall’s τ statistic for selecting gene
pairs with a MAS level of 0.5. Thresholded MAS and thresholded FDR are significantly worse
in terms of statistical significance (p-value) than the proposed two-stage FDR-CI algorithm
(columns 4 and 5). Furthermore, the average length of the CI’s on τ ’s of the discovered gene
pairs are shorter for the two-stage FDR-CI algorithm than for the other algorithms (column 6).

Algorithm # Screened # Discovered Max(Pv) Median(Pv) AvgFDRCI
MAS 496,506 31,151 2.0e-02 6.4e-03 6.3e-01

FDR-only 95,205 31,151 2.0e-02 6.4e-03 6.3e-01
FDR-CI 95,205 3,552 1.4e-03 4.3e-04 4.1e-01

the average) confidence intervals on biologically significant (i.e. Γ ≥ 0.5) correlation

coefficients (column 6).

Comparisons using Receiving Operator Characteristic (ROC) Curve

We also compared the performance of the two two-stage algorithms (“thresholded

FDR” and ”FDR-CI”) using the Receiving Operator Characteristic (ROC) curve in

which “sensitivity” is plotted against “1 - specificity”. Let Λ0 denotes the number

of false hypotheses (true strength of pairwise association is smaller than or equal to

the threshold cormin), and Λα denotes the number of true hypotheses (true strength

of pairwise association is greater than the threshold cormin). We counted false

positives FP (falsely rejected hypotheses) and false negatives FN (falsely accepted

hypotheses). The “sensitivity” (True positive rate, pTP) can be calculated as pTP =
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1−E(FN/Λα); and the “1 - specificity” (False positive rate, pFP) can be calculated

as: pFP = E(FP/Λ0). Same as the above, the two-stage algorithm labeled as “FDR-

only” in Fig. 2.5 denotes the FDR test followed by a “hard” correlation thresholding;

and that labeled as “FDR-CI” denotes the FDR test followed by a “soft” correlation

thresholding (FDR-CI). In Fig. 2.5, we observe overall better performance of “FDR-

CI” test than the “FDR-only” test especially at low levels of correlation thresholding.

For example, at the MAS level of 0.2 and the specificity level of 0.9, the “FDR-CI”

method has a three-fold higher sensitivity (pTP ≈ 0.6) than the “FDR-only” method

(pTP ≈ 0.2).

2.3 Applications in Network Construction and Seeded Clustering

2.3.1 Constructing Relevance Networks with Controlled FDR and MAS

We demonstrate the application of our approach and compare it with the tradi-

tional approach using a yeast galactose metabolism two-color microarray data. This

data represents approximately 6200 gene expression levels on two-color cDNA mi-

croarrays over 20 physiological/genetic conditions (nine mutants and one wild type

strains incubated in either GAL-inducing or non-inducing media). A subset of 997

differentially expressed genes were identified by Ideker et al using a generalized like-

lihood ratio test procedure (Ideker et al. 2000). Genes having a likelihood ratio

statistic λ ≤ 45 were selected as differentially expressed, i.e. whose mRNA levels

differed significantly from the reference under one or more treatments.

Selecting biological significance level (MAS) is a key to constructing relevance

networks with controlled biological significance and statistical significance. In gen-

eral, there are two ways to tackle this problem. One way is to select a small portion

(e.g. 5%) of the top gene pairs ranked by the absolute magnitude of correlation (Lee

et al. 2004). The other way is to use a cut-off value (e.g. 0.6)(Zhou et al. 2005, Zhou
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et al. 2002, Butte and Kohane 2000). Both ways seek a good compromise between

sensitivity and specificity. Zhou et al advocated using the cutoff value between 0.5

and 0.7, and they considered two factors in choosing the biological significance level

(Zhou et al. 2005):

• It should be statistically conservative to achieve high sensitivity.

• It should retain a sufficient number of gene pairs for functional analysis to

achieve high specificity.

Correspondingly, they first performed a randomization test to determine that 0.6

is a statistically conservative cutoff value. They then used a series of correlation

cutoff values ranging from 0.4 to 0.9 to determine the number and the ratio of the

true positives (functional related gene pairs). They found that cutoff values from 0.5

to 0.7 give rise to good compromise between sensitivity and specificity (Zhou et al.

2005). Throughout this thesis, we select the cutoff value within this range to control

biological significance.

Fig. 2.6a and Fig. 2.6b illustrate the direct implementation of the two-stage pro-

cedure to screen positively or negatively correlated gene pairs based on the Pearson

correlation coefficient. The direct screening procedure is constrained by FDR level

α = 0.05 and MAS level cormin = 0.5. Stage I of the screen discovered Λ1 = 153, 983

out of Λ =
(
997
2

)
= 496, 506 gene pairs having FDR ≤ 0.05, leaving 153,983 corre-

lation coefficients for which FDR-CI’s must be constructed. Recall that gene pair

passes the Stage II screening if the FDR-CI does not intersect the interval [−0.5, 0.5].

Λ2 = 18, 135 of the 153,983 gene pairs passed the Stage II screening and were declared

to be both “biologically” and “statistically” significant. Similarly, using Kendall cor-

relation coefficient, there were Λ1 = 95, 205 gene pairs that passed the Stage I screen,
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and only Λ2 = 3, 552 gene pairs passed the Stage II screen constrained by the same

MAS and FDR criteria as above (Table A.1).

Although for Gaussian distributed pairs the Kendall rank correlation coefficient

has lower discovery power compared to the Pearson correlation coefficient, our screen-

ing procedure was nevertheless able to pull out many non-linearly correlated gene

pairs that were missed by the Pearson correlation procedure. These non-linearly

correlated gene pairs, just like those linearly correlated ones, may be biologically

relevant too. For example, the link between gene “RPC40” and gene “YDR516C”

passed both Stage I and II screening (α = 0.015, cormin = 0.5) when using Kendall

correlation coefficient (τ̂ =-7.5e-01, FDR p-value = 6.2e-04, FDR-CI = [-9.7e-01,

-5.4e-01]), but they failed to pass even the first screening when the Pearson corre-

lation coefficient was used (ρ̂ =-6.3e-01, FDR p-value = 1.2e-02). From the scatter

plot, we can observe an obvious non-linear correlation for this gene pair (Fig. 2.7).

The poor linear fit can be verified by fitting a simple linear regression model and

observing R2 = 0.36. Biologically, the gene “RPC40” encodes RNA polymerase (I

and III) subunit (transcription apparatus); although the specific function of gene

“YDR516C” remains unclear, it is recently shown that it involves in transcriptional

induction of the early meiotic-specific transcription factor IME1 (Dwight et al. 2002).

Both genes are thus components of transcription apparatus. Applying our two-stage

algorithm based on Pearson correlation coefficient alone will miss the important func-

tional relationship. Therefore, the Kendall correlation statistic can beat the Pearson

correlation statistic in some instances and hence the two correlation statistics should

be used together to capture functional relationships as many as possible.

Relevance networks are implemented as a graph where n nodes (genes) are con-

nected by m sets of edges (co-expressions). Each of the p sets of edges are discovered
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using a different similarity measure (Butte et al. 2000, Butte and Kohane 2000).

Therefore, our constructed networks are mixed networks with m = 2 in which edges

are discovered using either Pearson correlation coefficients or Kendall correlation

coefficients constrained by the same set of (FDR,MAS) criteria. In relevance net-

works, genes that are of considerable interest to the biologist are “hub genes” such

as RPL33A and RPS4A in Fig. 2.8. Hub genes are best connected genes that dom-

inate a large part of the network topology (Jeong et al. 2001, Barabàsi 2004). We

constructed five such networks that are constrained by five pairs of constraints (FDR

≤ 0.05, cormin = 0.5, 0.6, 0.7, 0.8, 0.9). Most of the “hub genes” in each discovered

network fall into two categories: “RPL” and “RPS”. The former encodes “Ribosome

Protein Large (60S) subunit,” and the latter encodes “Ribosome Protein Small (40S)

subunit”. Both of these categories are structural components of the ribosome that

is responsible for protein biosynthesis. Protein biosynthesis plays the central role

in galactose metabolism because galactose is not a primary carbon source for yeast,

when switching from primary carbon sources (glucose) to secondary carbon source

(e.g. galactose), many different types of proteins including transporters, enzymes,

and regulators have to be synthesized to be able to degrade the secondary carbon

source (Wieczorke et al. 1999). We ranked the “hub genes” by calculating and sort-

ing average rank of each “hub gene” over five networks (Table 2.3). The list of “hub

genes” (Table 2.3) are presumably indispensable for galactose metabolism (Jeong

et al. 2001).

Fig. 2.8 presents the discovered network topology with a FDR level of 5% (5%

discovered edges are expected to be false positive) at the MAS level of cormin = 0.9.

The network is composed of 89 connected vertices and 132 edges. Similar to some

other biological networks, the network marginal degree distributions appear to be
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of the form of a power-law. This was tested by verifying goodness of fit to the log-

transformed power-law model (R2 = 0.95) i.e., log P (Di) = −γ log Di + log η + εi

(Barabàsi 2004). Here γ and η are shape and intercept parameters, i is the index of a

gene in the network, εi is a residual fitting error, Di is the number of edges (degree)

of ith gene and P (Di) is the corresponding probability.

2.3.2 Seeded Clustering

Inspired by the Basic Local Alignment Search Tool (BLAST) (Altschul et al.

1990), and based on the “guilt-by-association” assumption (Eisen et al. 1998), we ap-

plied the two-stage screening procedure to cluster co-expressed genes with controlled

FDR and MAS. We sought to demo its application in metabolic pathway discovery

by “rediscovering” the extensively studied galactose metabolic pathway, which con-

sists of at least three types of genes including transporter genes (GAL2, HXTs etc),

enzyme genes (GAL1, GAL7, GAL10 etc) and transcription factor genes (GAL4,

GAL80, GAL3 etc). Some other genes are also involved in galactose metabolism but

their roles are not entirely clear (Rohde et al. 2000, Ideker et al. 2001). Therefore,

our aims are not only to validate our procedure by rediscovering known co-expressed

genes pairs, but also to discover some unknown genes in the pathway.

We selected gene “GAL10” as the “seed gene” which encodes the UDP-glucose-

4-epimerase (EC 5.1.3.3) (Fig. 2.9). We set a relatively stringent criterion (α =

0.05, cormin = 0.6), and cormin = 0.6 is widely used in the literature (e.g. Zhou

et al. 2002, Farkas et al. 2003). We discovered six genes (GAL10, GAL7, GCY1,

GAL1, GAL2 and YOR121C) (Table A.2). Five of six genes are known to be lying

in the pathway as shown in shaded squares in Fig. 2.9, which leads to a specificity

of at least 83%. The sixth gene “YOR121C” is a hypothetical ORF for which no

functional annotation is currently available. Our results provide strong motivation
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Table 2.3: Top twenty “hub genes” from the two-stage algorithm applied to galactose metabolism data
(Ideker et al. 2000). The rank of each gene is the average rank over five different networks.
Each of five networks is constrained by a different pair of (FDR,MAS) criteria. The highest
ranked gene is the most connected and stable gene under varying constraints of (FDR,MAS).

Gene Name Average Rank GO Annotation
RPL42B 4.2 protein biosynthesis[GO:0006412]
RPS16B 6.2 protein biosynthesis[GO:0006412]
RPL14A 7.4 protein biosynthesis[GO:0006412]
RPS3 7.4 protein biosynthesis[GO:0006412]
GTT2 8.0 glutathione metabolism[GO:0006749]
RPS4A 9.8 protein biosynthesis[GO:0006412]
RPL33A 11.6 protein biosynthesis[GO:0006412]
RPL23B 15.4 protein biosynthesis[GO:0006412]
RPS7A 15.8 protein biosynthesis[GO:0006412]
RPS4B 17.2 protein biosynthesis[GO:0006412]
RPL27A 17.8 protein biosynthesis[GO:0006412]
RPS18A 19 protein biosynthesis[GO:0006412]
RPL26B 19.8 protein biosynthesis[GO:0006412]
RPS9A 20 protein biosynthesis[GO:0006412]
RPL33B 20.6 protein biosynthesis[GO:0006412]
RPL21A 22.2 protein biosynthesis[GO:0006412]
RPL23A 22.2 protein biosynthesis[GO:0006412]
RPL9B 22.2 protein biosynthesis[GO:0006412]
RPL11B 23.8 protein biosynthesis[GO:0006412]
RPL20B 24.2 protein biosynthesis[GO:0006412]

to experimentally characterize this gene’s biological function. Known transcription

factor genes (GAL4 and GAL80) were not discoverable from this microarray experi-

ment as the GAL4 and GAL80 expressions are time shifted and only one time sample

was included. The pathways discovered using other “seed genes” in the pathway such

as GAL1 and GAL7 gave similar results (Table A.3, Table A.4, Table A.5).

2.4 Discussion

In this chapter, we presented a two-stage procedure for screening co-expressed

gene pairs that controls both biological and statistical significance of the discovered

strength of association, and hence the gene co-expression network. For the discovered

co-expressions, our method also provides an “accuracy” assessment of the strength

of association by constructing confidence intervals for the strength of each edge.
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Indeed, for the typically small sample size microarray data, a simultaneous confidence

interval is useful to characterize reliability of the reported strength of association.

Correlation thresholding is becoming standard practice in gene co-expression analyses

(e.g. Butte and Kohane 2000, Butte et al. 2000, Zhou et al. 2002, Farkas et al. 2003,

Lee et al. 2004), yet “hard” thresholding lowers the discriminative power of the FDR

based test (Fig. 2.5). Our “soft thresholding ” procedure is able to control error

rate and maintain discriminative power (Fig. 2.4). The method requires a tight

confidence interval on correlation, which may be difficult to obtain for small sample

sizes. However, we have shown that our algorithm provides error rate control at a

biologically relevant level with relatively large sample size (20 samples for Fig. 2.3b,

Fig. 2.4). In the Chapter III, we present a complementary approach that is more

suitable for small sample size data.

The algorithm is sufficiently general to be applied to many different correlation

measures, e.g. Spearman’s or Hotelling’s dependency statistics. The algorithm can

also be extended to different frameworks such as Gaussian Graphical Models (GGM)

in which partial correlation coefficients are used as the dependency measures (Whit-

taker 1990). Different groups have developed approaches to infer GGM from small

sample size microarray data (Wang et al. 2003, Schafer and Strimmer 2005a, Dobra

et al. 2004). Schafer and Strimmer recently presented a procedure that is based

on the bootstrap estimator of the partial correlation coefficient (Schafer and Strim-

mer 2005a). Most of the pairwise partial correlations discovered by their procedure

are very close to zero. On one hand, these ultra weak correlations screened by the

FDR based inference procedure are “true correlation” from a pure statistical point

of view. On the other hand, the “true correlation” may be caused by a variety of

factors other than functional relationship, such as positional and spatial artifacts of
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gene co-expression along chromosomes (Kluger et al. 2003). Thus it seems neces-

sary to combine such statistical testing with a “soft” thresholding to achieve high

sensitivity and specificity (Fig. 2.5). This chapter has presented such a method to si-

multaneously minimize the discovered proportion of the functionally irrelevant “true

correlations” and maximize that of functionally relevant ones. Our two-stage algo-

rithm has been extended to the GGM framework and implementations are included

in our R package “GeneNT” (available from http://cran.r-project.org/). Running

the partial correlation based two-stage algorithm and combining the results with

those of marginal correlation based two-stage algorithm may allow discovering addi-

tional functional links that would have been missed by running the latter algorithm

alone.

The scope of application of our statistical analysis is explicitly that of randomly

sampled, complete observational data (Dobra et al. 2004). In this thesis, we are

not concerned with developing models of causal gene networks(Dobra et al. 2004).

This would require a different experimentation and interventation approach to under-

stand directional influences, rather than the simple observational random sampling

paradigm adopted here (Dobra et al. 2004).

Finally we note that the two-stage procedures can be applied under the assump-

tion of independency/positive dependency or under more general dependency as-

sumptions (Benjamini and Hochberg 1995, Benjamini and Yekutieli 2001). The

implementation of the general dependency procedure (ν =
∑Λ

λ=1λ
−1) causes loss of

discovery power. The assumption of independence may not be critical in the discov-

ery of relevance networks since biological networks are typically very sparse (Yeung

et al. 2002).
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Figure 2.3: Verification of Gaussian null sampling distribution and variance approximation for Pearson
correlation coefficient. (a) QQ plot of transformed sampling distribution of Pearson correlation
coefficient ρ̂ versus Gaussian distribution. (b) Mean squared approximation errors (MSE) of
the variances of transformed sample Pearson correlation coefficients ρ̂.
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Figure 2.4: Verification of two-stage error control procedure based on Pearson correlation coefficient
(a) and Kendall correlation coefficient (b). Sample size N = 20.
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Figure 2.5: ROC curves of “FDR-CI” test procedure and “FDR-only” test procedure based on Pearson
correlation statistic
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Figure 2.6: Curves specify lower endpoints (a) and upper endpoints (b) of the 5% FDR-CI’s on the pos-
itive Pearson correlation coefficients (a) and negative Pearson correlation coefficients (b) for
the galactose metabolism study. Only those gene pairs whose FDR-CI’s do not intersect
[−cormin, cormin] are selected by the second stage of screening. When the MAS strength of
association criterion is cormin = 0.5, these gene pairs are obtained by thresholding the curves
as indicated.
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Figure 2.7: A pair of non-linearly correlated genes.
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“rediscovered” by our algorithm.



CHAPTER III

Co-expression Networks Construction - Bayesian Approach

In Chapter II, we demonstrated that the frequentist approach is able to simul-

taneously control statistical significance and biological significance. However, for

small number N of samples and large number p of genes the correlation estimates

have poor accuracy due to overfitting (Ledoit and Wolf 2004, Schafer and Strimmer

2005b). Introducing some form of strong dependency among correlation parameters

can lead to improved accuracy in this small sample situation. Many approaches to in-

troducing dependency can be adopted. For example, the full order partial correlation

estimation approach, also called Gaussian Graphical Modeling (GGM), introduces

a Bayes model from which all correlations are estimated using an Empirical Bayes

method (Schafer and Strimmer 2005a). Bayesian hierarchical models accomplish this

introduction of dependency in a simple but effective manner. We take this approach

in this chapter.

3.1 The Bayesian Hierarchical Model

The framework of Bayesian hierarchical models is a powerful technique that al-

lows for high complexity without a large number of parameters (Gelman et al. 2004).

We assume the correlation parameters are exchangeable meaning that their joint dis-

tribution is invariant to permutations of their indexes. Biologically, this represents

47
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a kind of topological invariance that imposes prior assumptions on the location of

high correlations in the network. We then regularize variances of the marginal cor-

relation densities by specifying a parent Gaussian distribution from which marginal

correlation parameters are sampled. Using a prior population distribution we are

able to introduce dependency into the parameters that tends to avoid problems of

overfitting. Using quantiles of posterior distributions of the correlation parameters

provide a seamless combination of correlation estimation and strength thresholding

that can be used as an alternative to FDR-CI methods for small samples.

We use ρ to denote the true correlation coefficient between a pair of gene expres-

sion profiles (Bickel and Doksum 2000). Specifically, let Xgj(n) be the n-th condition

index of the i-th gene profile and let SXgi ,Xgi
, SXgj ,Xgj

, and SXgi ,Xgj
are sample vari-

ances and covariance as in Eq. 2.2. The true correlation coefficient is defined as

(3.1) ρ =
E[SXgi ,Xgj

]
√

E[SXgi ,Xgi
]E[SXgj ,Xgj

]
,

where E[.] is statistical expectation. For G gene expression profiles in a gene mi-

croarray sequence, there are Λ =
(

G
2

)
of these correlation parameters ρ that need to

be estimated, denoted as ρλ, λ = 1, . . . , Λ. We define ρ̂λ as the λth sample corre-

lation coefficient, and Γ̂λ as the hyperbolic arc-tangent transformation of ρ̂λ. Then

the transformed sample correlation coefficients Γ̂λ = atanh(ρ̂λ) are asymptotically

Gaussian distributed with means of ρλ and stabilized variance approximations of

σ2
λ = 1/(N − 3) (Fisher 1923). As in Chapter II, N is the sample size. We define

Γλ = atanh(ρλ) as the corresponding transformed true correlation coefficients.

Simulation studies show that this variance approximation works reasonably well

even at a relatively small sample size, i.e. N < 10 (Fig. 2.3b). In this sequel

we assume known variance to reduce computational complexity. In case of unknown
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variances, the conditional posterior distribution can not generally be written in closed

form, for this reason, Markov Chain Monte Carlo (MCMC) techniques might be

applied but at high cost.

From our assumption that the {ρλ}Λ
λ=1 are exchangeable we model {ρλ}Λ

λ=1 as ran-

dom variables drawn from a Gaussian distribution with unknown hyperparameters

(α, β2) (Fig. 3.1).

(3.2) p(Γ1, . . . , ΓΛ|α, β2) =
Λ∏

λ=1

P (Γλ|α, β2),

where P (Γλ|α, β2) is a Gaussian distribution with mean α and variance β2.

Figure 3.1: Bayesian hierarchical model structure (Gelman et al. 2004, Chapter V).

In order to generate conditional posterior distributions p(Γλ|α, β, y) for each pa-

rameter Γλ, λ = 1, . . . , Λ, we performed simulation steps as follows: (Gelman et al.

2004, Chapter V) (refer to Appendix A.5 for details):

• Assign prior distribution for β, e.g. uniform prior distribution p(β) ∝ 1. Note,

the choice of uniform prior yields a proper posterior density while other nonin-

formative prior distributions such as, p(β) ∝ β−1 do not. (refer to Appendix
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A.4 for mathematical proof.)

• Draw β from posterior distribution p(β|y).

p(β|y) ∝ p(β)
∏Λ

λ=1 N(Γ̂λ|α̂, σ2
λ + β2)

N(α̂|α̂, Vα)
(3.3)

∝ p(β)V 1/2
α

Λ∏

λ=1

(σ2
λ + β2)

−1/2
exp(− (Γ̂λ − α̂)2

2(σ2
λ + β2)

),(3.4)

where α̂ and Vα are defined as:

(3.5) α̂ =

∑Λ
λ=1

1
σ2

λ+β2 Γ̂λ

∑Λ
λ=1

1
σ2

λ+β2

,

and

(3.6) V −1
α =

Λ∑

λ=1

1

σ2
λ + β2

.

See Appendix A.5 for detailed derivation of p(β|y).

• Draw α from p(α|β, y). Combining the data with the uniform prior density

p(α|β) yields,

(3.7) p(α|β, y) ∼ N(α̂, Vα).

where α̂ is a precision-weighted average of the Γ̂’s and Vα is the total precision.

Note, we define precision as inverse of variance.

• Draw Γλ from p(Γλ|α, β, y)

(3.8) p(Γλ|α, β, y) ∼ N(Θ̂λ, Vλ),

where Θ̂λ, Vλ are defined as:

(3.9) Θ̂λ =

1
σ2

λ
Γ̂λ + 1

β2 α

1
σ2

λ
+ 1

β2

,
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and

(3.10) Vλ =
1

1
σ2

λ
+ 1

β2

.

The atanh-transformed posterior mean correlation coefficient Θ̂λ is a precision-

weighted average of the prior population mean α and the λth sample mean

Γ̂λ.

The posterior distribution (Eq. 3.8) contains all the current information about

the atanh-transformed parameter ρλ. In particular, the posterior mean and posterior

interval are derived as the following:

E[Γλ] = E[atanh(ρλ)]

= atanh(E[ρλ]) = Θ̂λ.(3.11)

Applying function tanh to both sides of the Eq. 3.11, we have,

(3.12) E[ρλ] = tanh(Θ̂λ).

For deriving the posterior interval of the ρλ, we used the fact that the cumulative

density function (cdf) of Γλ
′ = Γλ−Θ̂λ√

Vλ
is Φ, the cdf of standard Gaussian random

variable. Hence, we define its quantile function as Φ−1, and write down the (1− q)×

100% posterior interval of the parameter Γλ
′:

(3.13) IΓλ
′
(q) : [Φ−1(q/2), Φ−1(1− q/2)].

After some algebraic derivation and based on the fact that tanh is a monotonically

increasing function, we have a (1 − q) × 100% posterior interval for the parameter

ρλ:

(3.14) Iρλ(q) : [tanh(
√

Vλ(Φ
−1(q/2)) + Θ̂λ), tanh(

√
Vλ(Φ

−1(1− q/2)) + Θ̂λ)].
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3.2 Simulation Studies

3.2.1 Comparisons in terms of Confidence Interval, Mean Squared Error, and Vari-
ance

We evaluated the performance of full Bayesian hierarchical model estimation of

correlations and compared with the frequentist method of last chapter. We define

the frequentist CI as the following: If L and U are statistics (i.e., observable random

variables) whose probability distribution depends on some unobservable parameter

θ, and

Pr(L ≤ θ ≤ U) = q, q ∈ (0, 1),

then the random interval [L,U] is a (1 − q) × 100% confidence interval for θ. A

frequentist interval may strictly be interpreted only in relation to a sequence of sim-

ilar inferences that might be made in repeated trials, while a Bayesian (confidence)

interval for an unknown quantity of interest can be directly regarded as having a

high probability of containing the unknown quantity. Therefore, Bayesian approach

where reliable prior is available, facilitates a common-sense interpretation of statis-

tical conclusions (Gelman et al. 2004).

We first compared two point estimators of correlations in terms of the average

width of the individual frequentist (Pearson) CI’s for the correlation parameters

versus that of the posterior CI’s for the same set of correlation parameters at the

corresponding significance levels. Obviously, more concentrated (narrower) CI’s, at

the given significance level, are superior to less concentrated CI’s. It is clear from

Fig. 3.2 and Fig. 3.3 that the average Bayesian posterior CI’s are uniformly narrower

than the average freqentist CI’s in both small (N = 4) and larger sample data

(N = 20). This dramatic contrast indicates the advantages of Bayesian approach

for small sample size problems (Fig. 3.3). From Eqs. 3.4 and 3.5, the posterior
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distributions of the mean p(α|β, y) and of the variance p(β|y) are decreasing functions

of Λ, i.e., the number of correlation parameter Γ′s. Therefore, narrower posterior

CI’s are expected for larger Λ. On the other hand, wider CI’s are expected when

transforming individual frequentist CI’s into simultaneous FDR-CI’s.
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Figure 3.2: Comparison of average posterior CI’s versus average individual frequentist CI’s over a wide
range of significance levels at a small sample size (N = 4).

We also compared these two correlation estimators in terms of Mean Squared

Error (MSE) and variance criteria. Similar to Chapter II, the MSE is defined as:

(3.15) MSE =
1

Λ

Λ∑

λ=1

(ρ̂λ − ρλ)
2,

where ρλ is the true population correlation, and ρ̂λ is the sample correlation estima-

tor, λ is the parameter index, and Λ is the total number of parameters.
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Figure 3.3: Comparison of average posterior CI’s versus average individual frequentist CI’s over a wide
range of significance levels at a larger sample size (N = 20).

The simulation steps proceed as follows:

• Draw Λ population correlations from a normal distribution with known mean

(α) and variance (β) (hyperparameters) as defined in Eq. 3.2.

• Re-estimate the Λ parameters either separately using the frequentist (Pearson)

correlation estimator or using Bayesian hierarchical model. For the Bayesian

approach, the correlation estimator is the posterior mean (Eq. 3.11).

• Compare the two estimators in terms of both MSE and variance. An estimator

with low MSE and variance are considered to be superior.

Fig. 3.4 plots MSE’s (upper panel) and variances (lower panels) of Bayesian corre-
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lation estimators and frequentist (Pearson) correlation estimators at a small sample

size (e.g. N = 4) and a larger sample size (e.g. N = 20) over 500 runs of sim-

ulations. It is evident in upper panel of the Fig. 3.4 that the MSE of Bayesian

estimators is about three-fold smaller than the frequentist estimators for larger sam-

ple size. Similarly to the CI’s comparisons, this indicates the advantages of the

Bayesian correlation estimator for the small sample size problems (Fig. 3.4). The

lower panel of the Fig. 3.4 plots variances of the Bayesian correlation estimator and

the frequentist correlation estimator. Again, the comparison of variances follow the

same trend as that of the MSE’s (Fig. 3.4).

Bayesian
 N=20

Marginal
 N=20

Bayesian
 N=4

Marginal
 N=4

0.
05

0.
20

Estimation Comparison: Bayesian vs. Marginal
 MSE:upper, Variance:lower

Bayesian
 N=20

Marginal
 N=20

Bayesian
 N=4

Marginal
 N=4

0.
00

0.
15

0.
30

Figure 3.4: Mean Squared Errors (MSE’s) and Variances of the Bayesian estimations versus the simple
estimations over 500 runs of simulations.



56

It is worth mentioning that the above simulations were biased towards the assump-

tions of Bayesian hierarchical model. In order to test robustness of our algorithm

to model mismatch, we also generated data using the uniform distribution but im-

plemented with Pearson CI’s and Bayesian CI’s that assume mismatched Gaussian

and hierarchical models, respectively. In Fig. 3.5, we compared the average width

of individual Pearson CI’s with that of individual Bayesian intervals. The superior

performance of hierarchical Bayesian estimator (Fig. 3.2, Fig. 3.3) is clearly offset by

the invalid model assumption in that average Bayesian CI’s are uniformly wider than

average frequentist CI’s (Fig. 3.5). This simulation results highlight the importance

of Fisher transformation in the section 3.1.
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3.2.2 Posterior Predictive Model Checking

After fitting a Bayesian model, one common practice is to check whether the model

is consistent with the data. In order to examine the goodness of fit, we generated

posterior predictive distributions of the following statistics: the largest observed

correlation (max), the smallest observed correlation (min), the mean of observed

correlations (mean), and the standard deviation of the observed correlations (sd).

We approximated the posterior predicative distribution of each test statistic by the

histogram of values obtained from simulations of the parameters and generated data

samples, and we compared each distribution to the observed value of the test statistic.

The results were displayed in Fig. 3.6 in which four boxplots represent empirical null

distributions of four test statistics. Define T0 is the test statistic calculated from

observations, and H0 is the null hypothesis, then the p-value of a test statistic is

defined as:

(3.16) p = Pr(|T | > T0|H0).

The posterior predictive model checking results reveal the remarkably high accuracy

and low variance of Bayesian estimation.

3.2.3 Evaluation of the Bayesian Hierarchical Model

In order to evaluate our Bayesian approach in terms of error control and compare

with the frequentist counterpart, we simulated pairwise gene expression data based on

known population covariances (Appendix A.3), and then simulated Bayesian intervals

for each parameter from the hierarchical model. The actual False Positive (FP) at

a given MAS level is calculated as a ratio of the number of screened gene pairs

whose corresponding population correlation parameters ρi,j are less than the MAS

level specified, divided by the total number of gene pairs. The actual MAS is the
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Figure 3.6: Posterior predictive distribution, observed results (red line), and p-value for each of four test
statistics.

minimum true discovery of population correlation ρi,j among the screened pairs.

We specified 16 pairs of (FP,MAS) criteria (Four FP levels: 0.2, 0.4, 0.6, 0.8; Four

MAS levels: 0.2, 0.4, 0.6, 0.8), and each is plotted as a different upper case Roman

alphabet (Red) in Fig. 3.7. The 16 corresponding pairs of actual (FP,MAS) criteria

are also shown in Fig. 3.7 using the same set of lower case Roman alphabets (Blue).

It can be observed that generally the actual FP’s (lower case) fall further below the

specified constraint (upper case) than those did in Chapter II (Fig. 3.7, Fig. 2.4),

and the actual MAS’s (lower case) fall above the specified constraints (upper case).

The more dramatic deviations of actual FP’s from their specified levels are due
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to multiple factors, such as, lack of multiplicity adjustment and the conservative

asymptotic approximation. Simulations using some other combinations of N and Λ,

as compared with the FDR-CI approach, give rise to the similar results. We conclude

that Bayesian hierarchical model yields better correlations estimates. However, the

false positive rate is overestimated by the Bayesian procedure and this leads to overly

stringent error control.
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Figure 3.7: Evaluation of error control of the Bayesian hierarchical model. Sample size N = 20, and
Λ = 1000 correlation coefficients were simulated. Simulations using smaller sample size data
yield more stringent error control.
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3.3 Applications to Network Construction and Seeded Clustering

3.3.1 Constructing Relevance Networks

We demonstrate the application of the Bayesian hierarchical model to high through-

put data and compare it with the frequentist approach using the same subset of yeast

galactose metabolism two-color microarray data that was described in Chapter II.

The data contains 997 gene expression profiles across 20 genetic/physilogical condi-

tions that was identified by Ideker et al using the generalized likelihood ratio test

(Ideker et al. 2000). This is the same data used for Chapter II.

Following the procedure described in section 3.1, we simulated the empirical pos-

terior distribution for each of the
(
997
2

)
= 496, 506 correlation parameters ρλ. The

(1− q)× 100% posterior interval for each ‘parameter’ was obtained by thresholding

q/2 × 100% and (1 − q/2) × 100% of it’s quantile function (Eq. 3.14). Analogous

to the FDRCI screening procedure described in the Chapter II, a network edge is

declared to be present at the significance level q and the MAS level cormin if it’s

posterior CI does not intersect with [−cormin, cormin]. We sought to compare the

two approaches in terms of network topological properties that are interesting to the

biologists. In particular, we compared the biological functional annotations of the

top hub genes of the two networks. In Chapter II, we controlled FDR at 5%, and

constructed networks at five MAS levels, i.e. 0.5, 0.6, 0.7, 0.8, 0.9. Correspondingly,

18135, 9337, 4151, 1346, 133 edges were declared to be present using Pearson correla-

tion statistic alone. Controlling the significance level at 5%, we screened the same set

of numbers of edges using Bayesian hierarchal model to construct the five networks

that are more comparable to those in Chapter II. A list of stable hub genes were

obtained by calculating and sorting the average rank of each vertex (gene) degree

over five networks (Table 3.1).
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Comparing the Table 3.1 with the Table 2.3, note that the GO biological process

annotation “protein biosynthesis[GO:0006412]” and/or it’s children annotations “hy-

pusine biosynthesis[GO:0046515]”, “branched chain family amino acid biosynthe-

sis[GO:0009082]”, and “tryptophan biosynthesis[GO:0000162]” are significantly en-

riched in both tables. This is consistent with the established fact that protein biosyn-

thesis plays a key role in galactose metabolism (Berg et al. 2006). The underlying

biological mechanism is that many types of proteins need to be synthesized upon

switching from primary carbon source (glucose) to secondary carbon source (galac-

tose)(Wieczorke et al. 1999).

A salient feature in Table 3.1 that is not possessed in Table 2.3 is that it includes

several transporters and regulators such as GAP1[GO:0006865], YBR043C[GO:0006855],

and ASC1[GO:0006417] etc. These proteins are essential for a smooth transition from

glucose to galactose (Berg et al. 2006, Wieczorke et al. 1999). In addition, Table 3.1

also includes several biologically unknown genes that are hypothesized to be impor-

tant for galactose metabolism. In general, the Bayesian data analysis results not only

conform to the previous frequentist data analysis results, but also provide additional

justification for the biological mechanism and motivation for illustrating new gene

functions.

3.3.2 Seeded Clustering

In parallel with the application of the two-stage algorithm to rediscover the galac-

tose metabolic pathway reported in Chapter II, we also applied the Bayesian hierar-

chical model to perform the seeded clustering. Performance was evaluated according

to the relative ranks of a handful biologically known genes lying in the galactose

metabolic pathway. The gene ranks were used instead of p-values due to substantial

differences of the two statistical frameworks.
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Table 3.1: Top twenty “hub genes” from Bayesian hierarchical model applied to the galactose metabolism
data (Ideker et al. 2000). The rank of each gene is the average rank over five different networks
with the same set of edge numbers as in Table 2.3. The highest ranked gene is the most
connected and stable gene under varying constraints of (FP,MAS).

Gene Name Average Rank GO Annotation
YJR070C 4 hypusine biosynthesis[GO:0046515]
YBR043C 4.4 multidrug transport[GO:0006855]

AGA2 4.4 agglutination[GO:0000771]
RPP0 4.6 protein biosynthesis[GO:0006412]

RPL26A 4.6 protein biosynthesis[GO:0006412]
YOR263C 5 biological process unknown

TRP2 5.4 tryptophan biosynthesis[GO:0000162]
ASC1 5.6 regulation of protein biosynthesis[GO:0006417]

YIL064W 5.6 biological process unknown
BOP2 5.6 biological process unknown
GAP1 5.8 amino acid transport[GO:0006865]
RPS2 6 protein biosynthesis[GO:0006412]

RPL11A 6.2 protein biosynthesis[GO:0006412]
SSF2 6.2 ribosomal subunit assembly[GO:0042257]
ILV5 6.2 branched chain family amino acid biosynthesis[GO:0009082]

YPL185W 6.2 biological process unknown
PCK1 6.4 hexose biosynthesis[GO:0019319]

YDR100W 6.4 biological process unknown
YMR291W 6.6 biological process unknown

ATC1 6.6 bipolar bud site selection[GO:0007121]



63

We selected gene “GAL10” as the “seed gene” in order to compare the results

with those reported in Chapter II. The comparison was made at a large sample

size N = 20 and a smaller sample size N = 4 respectively aiming to examine the

performance of the two methods as a function of the sample size. In the former, we

used all the 20 genetic/physiological conditions under which gene expression levels

were measured (Table A.6); In the later, we sampled a small subset (e.g. N = 4) of

these 20 conditions each time without replication and repeated a number of times to

obtain a “bagged” (stable) estimation of gene ranks in the seeded clusters (Table 3.2).

When all the 20 observations were used, the two approaches give rise to very

similar seeded clusters indicating that the Bayesian hierarchial model approach is as

powerful as the frequentist approach for relatively large sample size problems. As

shown in Table 3.2, all of the top 20 seeded gene pairs have the identical rank across

two methods. When multiple random subset data were used, many genes have dis-

similar average ranks across the two approaches. Among the top five genes (GAL10,

GAL7, GCY1 GAL1, GAL2) screened by the seeded clustering using “GAL10” as

the seed gene (see Chapter II and Table A.2), 4 out of 5 (GAL10, GAL7, GAL1,

GAL2) genes rank higher in Bayesian estimation than those in marginal estimation,

and the remaining “GCY1” gene receives tie ranks. In addition, our results provide

strong experimental motivation for examining the genes that received higher ranks

in the Bayesian analysis, for example, gene YEL057C. The evaluation using “GAL7”

as the “seed gene” gave the similar results.

3.4 Discussion

Numerous previous studies have demonstrated the suitability of using gene co-

expression networks for functional discoveries (e.g. Butte and Kohane 2000, Zhou
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Table 3.2: Comparison of Bayesian estimations versus Marginal estimations using “seeded” clustering at a
small and a larger sample sizes. In the former, the ranks were averaged over 100 estimations, in
each of which a subset data of sample size N = 4 was randomly sampled from the whole data
of sample size N = 20. In the later, the ranks were obtained using the whole data of sample
size N = 20.

N = 4 N = 20
Gene1 Gene2 Bayesian Frequentist Gene1 Gene2 Bayesian Frequentist

GAL10 GAL1 5.25 5.35 GAL10 GAL7 1 1
GAL10 GAL2 6.65 7.4 GAL10 GCY1 2 2
GAL10 GAL7 6.7 6.85 GAL10 GAL1 3 3
GAL10 GCY1 7.7 7.7 GAL10 GAL2 4 4
GAL10 YOR121C 8.05 7.8 GAL10 YOR121C 5 5
GAL10 YEL057C 8.55 10.6 GAL10 YEL057C 6 6
GAL10 SSU1 8.6 7.65 GAL10 YDR010C 7 7
GAL10 FKS1 8.75 8.25 GAL10 SSU1 8 8
GAL10 PCL10 9.95 7.85 GAL10 PCL10 9 9
GAL10 YJL212C 11 8.85 GAL10 YJL212C 10 10
GAL10 MET14 11.1 10.4 GAL10 FKS1 11 11
GAL10 YDR010C 11.3 10.9 GAL10 MET14 12 12
GAL10 MCM1 11.35 12.3 GAL10 MCM1 13 13
GAL10 EXG1 11.85 13.1 GAL10 EXG1 14 14
GAL10 CRH1 12.05 12.95 GAL10 ARG1 15 15
GAL10 ARG7 12.8 12.3 GAL10 CRH1 16 16
GAL10 YPR157W 13.2 15.35 GAL10 PRY2 17 17
GAL10 PRY2 14.4 13.3 GAL10 YPR157W 18 18
GAL10 YKR012C 14.6 16.25 GAL10 YKR012C 19 19
GAL10 CPA2 16.15 14.85 GAL10 CPA2 20 20
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et al. 2002). The differences lie in the co-expression network construction method-

ology, i.e. the correlation statistic and the error control procedure used. For the

error control procedure, the main difference from existing approaches is that we test

whether the magnitude correlation is different from 0 or a non-zero positive number.

We noted that for small sample size the frequentist (Pearson) test declares many

small but statistically significant correlations to be biologically relevant. However,

these may be caused by non-biological effects such as spatial and positional effects

of genes along the chromosome (Kluger et al. 2003).

Fuente et al. proposed a limited order partial correlation estimation that is de-

pendent on a fixed number of neighboring nodes (order) in the network (Fuente et al.

2004). This approach is statistically sound, and it accounts for biological knowledge

that the functional relationship between a gene pair is typically regulated by only

a small number of surrounding genes in the gene regulation network. However, the

application is limited by a number of empirical difficulties, such as: estimating the

true order for tens of thousands of partial correlation parameters, and estimating

degree of freedom for null distribution. Schafer and Strimmer’s full order partial

correlation approach estimates the correlation between a gene pair conditioning on

all the rest of genes in the network (Schafer and Strimmer 2005a). The Gaussian

Graphical Model (GGM) approach, while effective in variance reduction, may be a

overly conservative way of correlation estimation. The implicit biological assumption

that the functional association of a gene pair is dependent on all the other genes in

the gene regulation network does not seem to have adequate biological support.

As discussed in the previous chapter, one should seek a good combination of level

of significance and correlation strength. The Bayesian approach prescribed here

imposes a model of the parameters as random variables sampled from a parental
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population distribution. This model structure allows the regularization of variances

by introducing dependency between the parameters. Using simulations, we have

shown the superior performance of Bayesian hierarchical model approach to marginal

estimation approach, in terms of width of the CI’s, MSE and variance, especially for

small sample size. The posterior distribution provides a natural way of correlation

thresholding that bridges between statistical correlation and biological relevancy.

In deriving the posterior distributions of the correlation ‘parameters’, the conju-

gate prior and likelihood (i.e. Gaussian parental distribution) were assumed in order

to keep the posterior distributions in a closed form. The computational load is thus

greatly reduced and we avoided MCMC techniques, making the application to the

larger networks become more feasible.



CHAPTER IV

Network Constrained Clustering

In the Chapters II and III, we presented a pair of complementary approaches to

infer gene interaction network topology. A pair of genes in the network can be either

directly associated or indirectly associated through one or more intermediate genes.

The partially connected network structure can be viewed as a network constraint

that can be used as side information to improve gene clustering performance. Gene

clusters group genes according to similar function. We focus on imposing network

constraints in gene clustering in this chapter, and we will describe how we might

impose network constraints in ordering pathway components in the Chapter V. In

network constrained clustering, we use the shortest-path distance as the estimate

of distance between non-adjacent genes in the network. Network constrained clus-

tering proceeds in two consecutive steps (Zhu et al. 2005c, Zhu and Hero 2005d,

Zhu and Hero 2005e). First we extract a giant connected component. Then we

calculate a “network constrained pairwise distance matrix” from which clustering is

accomplished.

67
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4.1 Network Constrained Clustering - Method

4.1.1 Extract the Giant Connected Component

Only gene pairs that are in the same Connected Component (CC) of the relevance

network have finite distances and can be clustered. The CC is defined as the cluster

of nodes within which any pair of nodes is mutually reachable from each other. The

largest connected component, usually of importance to both biological function and

network topology (Ma et al. 2004, Ma et al. 2004, Zhu and Qin 2005), is called the

Giant Connected Component(GCC) (see Fig. 1.3c, genes A, B, C, D, E, F form a

GCC). The GCC of an undirected graph G = (V,E), where V is the set of all vertices

and E is the set of all edges, is the maximal set of vertices U ⊂ V such that every

pair of vertices u and v in U are reachable from each other. Our network constrained

clustering method is applied to the GCC. Analogously to previous studies, we assume

that almost all important genes are included in the GCC. The standard depth first

search (DFS) algorithm (Cormem et al. 1990) was used to extract the GCC from the

gene microarray data.

4.1.2 Compute “Network Constrained Distance Matrix”

Let Γ̂ij be the sample correlation coefficient between gene i and j, e.g. estimated

from a gene microarray sequence by Pearson or Kendall correlation statistic. Let wij

be the weight of the edge between gene i and gene j. Similar to Zhou et al (Zhou

et al. 2002), the wij is defined as:

(4.1) wij = (1− abs(Γ̂ij))
p

The integer p is an exponential tuning parameter used to enhance the differences

between low and high correlation. We define the matrix W = [wij] as the “Traditional

distance matrix” (e.g. Fig. 1.3b).
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We use the standard Floyd-Warshall algorithm to search among all-pairs for the

shortest-paths within the GCC. Let d
(k)
ij be the weight of a shortest-path from vertex

i to vertex j such that all intermediate vertices on the path (if any) are in set

{1,2,. . . ,k}. When k = 0, there is no intermediate vertex between vertices i and j,

and we define d
(0)
ij = wij. A recursive definition of d

(k)
ij is given by (Cormem et al.

1990):

(4.2) d
(k)
ij =





wij if k = 0,

min(d
(k−1)
ij , d

(k−1)
ik + d

(k−1)
kj ) if k ≥ 1,

where d
(k−1)
ij is the length of shortest-path when k is not a vertex on the path, and

d
(k−1)
ik + d

(k−1)
kj is that k is a vertex on the path. We define the matrix D = [dij] as

the “Network constrained distance matrix” (e.g. Fig. 1d). It can be used as input

to many distance matrix based clustering software packages such as: hierarchical

clustering (Eisen et al. 1998) and K-medoids (Hartigan and Wong 1979). The cal-

culation of matrix D can be easily extended to higher Eukaryote since the algorithm

runs in polynomial time, i.e. O(V 3 + V + E).

The above algorithm uses the shortest-path between a gene pair to approximate

the corresponding geodesic distance. The geodesic approximation is motivated by

the fact that locally a smooth manifold is well “approximated” by a linear hyper-

plane, and so, geodesic distance is estimated by summing the sequence of such local

approximations over the shortest-path through the GCC (Costa et al. 2004, Silva

et al. 2002). Interested readers should refer to Costa et al. 2004 for mathematical

proof.

We note that the network constrained clustering can be also performed on the

whole large-scale network that is composed of many other smaller connected com-
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ponents. The above algorithm for computing pairwise distance remains unchanged

if the pair of genes lie in the same connected component. Otherwise, we set the

distance finitely large compared with within-component distances.

4.2 Network Constrained Clustering - Results

4.2.1 Sensitivity Analysis

The FDR, MAS, and exponential tuning parameter p are three parameters in-

volved in calculating the network constrained distance matrix. It would be interest-

ing to investigate the sensitivity of the results to variance in these parameters. The

biological significance level MAS = 0.6 has been widely adopted as a correlation cut-

off in the literature, e.g. Zhou et al. 2002, Zhou et al. 2005. The selection of FDR

statistical significance level is intimately associated with the sample size, and the

underlying biological mechanism. Our selection of FDR = 5% imposes the stringent

statistical criterion that on the average only 5% of the genes discovered and included

in the network will be false positives.

The parameter p in Eq. (4.1) is an exponential tuning factor used to enhance the

differences between expression similarity and dissimilarity. As pointed out by Zhou

et al. (Zhou et al. 2002), for a fixed correlation threshold, as p is increased more

transitive genes will be revealed at the expense of higher false discovery rate. In

Fig. 4.1 we present results of an empirical study of the influence of p on clustering

performance for the yeast galactose metabolism data set (Ideker et al. 2000).

A subset of 205 gene expression profiles whose Gene Ontology (GO) annotation

(Ashburner et al. 2000) falls into four functional classes were used (Yeung et al. 2003).

We investigate the effect of p by examining how closely the clusters reproduce these

functional classes as p varies. We used both the RAND index (Rand 1971) and the

adjusted RAND index (Hubert et al. 1985) as measures of consistency between the
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clustering results and GO annotations. Fig. 4.1 shows that the network constrained

clustering best conforms to the GO annotations when p = 6. Note that Zhou et al.

also suggested using p = 6 to define the edge weight in their analysis (Zhou et al.

2002).
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Figure 4.1: Selection of p using RAND indices.

4.2.2 Yeast Galactose Metabolism Data

Data Processing and Network Construction

We empirically evaluated the performance of the proposed clustering approach by

applying it to a relatively well-known yeast galactose metabolism signaling pathway

and comparing it with the traditional clustering approaches. We used the subset of

997 genes that were identified by Ideker et al using a standard generalized likelihood



72

ratio testing procedure (Ideker et al. 2000). Genes having a likelihood statistic λ ≤ 45

were selected as differentially expressed and whose mRNA levels differed significantly

from reference under one or more perturbations.

By measuring the pairwise gene correlations using both Pearson and Kendall

correlation coefficients, we applied a two-stage algorithm to screen gene pairs with

FDR ≤ 5% and MAS = 0.6 (Zhu et al. 2005a). The resulting network is a mixed

network within which edges are discovered with Pearson and Kendall correlation

statistics. Our network construction algorithm and the screening criteria ensures

false discovery of no more than 5% of the edges having strength of association greater

than 0.6 (Zhu et al. 2005a).

Network Constrained Clustering

We extracted the GCC from the co-expression network using a DFS type algo-

rithm (see Methods). The GCC contains 772 genes within which almost all known

structural genes in the pathway are included. This confirms the notion that GCC of

the network has not only structural but also functional significance (Ma et al. 2004,

Ma and Zeng 2003, Zhu et al. 2005a). The network constrained distance matrix

for GCC was computed according to Eq. 4.1 and Eq. 4.2 using GCC selected genes

(see Methods) while the distance matrix for the traditional clustering method was

computed according to Eq. 4.1 only.

As mentioned in Chapter II, the yeast galactose metabolism pathway consists of

at least three types of genes including transporter genes (GAL2, HXT1-10, the roles

of other HXT genes are not entirely clear), enzyme genes (GAL1, GAL7, GAL10 etc)

and transcription factor genes (GAL3, GAL4, GAL80 etc) (Wieczorke et al. 1999).

Transcription factor genes are not discoverable from this microarray experiment as

their expressions are typically time shifted and only one time sample was included.
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Since the pathway has been relatively well studied, we sought to compare our network

constrained clustering approach with the traditional clustering approach through

rediscovering the 14 important genes in the structural module (GAL2, HXT1-10, and

enzyme genes: GAL1, GAL7, GAL10) of the yeast galactose metabolism pathway.

For comparison to a widespread clustering algorithm we used agglomerative hier-

archical clustering (implemented in R function hclust()). We expect that other tradi-

tional clustering methods such as K-means or K-medoids would give similar results.

For calculating distance between clusters, we implemented a“complete” method in

which the longest geodesics between genes in the two clusters are used as distance

between clusters. As empirically demonstrated in (Speed 2003), the “complete”

method gives rise to better cluster separation.

Fig. 4.2 shows the traditional clustering approach using all 997 genes and Fig. 4.3

shows the traditional clustering approach using the 772 genes in the GCC. In both

cases, the 14 structural genes are separated into three subclusters (Fig. 4.2 and

Fig. 4.3). In Fig. 4.2, all GAL genes are nicely grouped in a cluster, but not the

HXT genes, while in Fig. 4.3, all HXT genes are grouped into a single cluster, but

the algorithm failed to combine GAL gene clusters with HXT gene clusters. Fig. 4.2

and Fig. 4.3 show that the GCC gene selection process has some desirable effects on

clustering by removing a few unrelated genes (Tseng and Wong 2005) that are not

relevant to the biological pathway. However, using the GCC gene selection procedure

alone does not significantly improve clustering performance.

We think that this undesirable separation of genes in the pathway is due to the

presence of gene expression dissimilarity between subclusters and gene expression

similarity within subclusters. To test this hypothesis, we plotted the correlation ma-

trix of 14 genes in the structural module and did hierarchical clustering (Fig. 4.4).
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Figure 4.2: Traditional clustering: agglomerative hierarchical clustering using all 997 differentially ex-
pressed genes. The 14 structural genes are separated into three clusters (red rectangular).

The color intensities in Fig. 4.4 correspond to the levels of correlations (increasing

correlations are represented from yellow to red). It is evident from Fig. 4.4 that

expression correlations within GAL genes and HXT genes are much higher than the

correlations between the two groups. This explains the separation of these two gene

clusters in the associated clustering dendrogram (Fig. 4.2 and Fig. 4.3). Among the

HXT gene clusters, HXT3, HXT6 and HXT7 are highly correlated (red (dark) zone

in Fig. 4.4). It explains the actual separation of these three genes from the remain-

ing HXT genes shown in the clustering dendrogram (Fig. 4.2). Fig. 4.2, Fig. 4.3

and Fig. 4.4 showed that traditional clustering methods failed to group functionally
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Figure 4.3: Traditional clustering: agglomerative hierarchical clustering using the GCC selected 772 genes.
The 14 structural genes are separated into three clusters (red rectangular). Dots indicate
incomplete clusters are shown due to space limitation.

related genes with dissimilar expression profiles (low correlations) into one cluster.

Fig. 4.5 presents results of applying our network constrained clustering algorithm

to the 772 genes selected by GCC extraction. Note that all 14 structural genes that

failed to be clustered together by the traditional approach (Fig. 4.2) are grouped

into a single tight cluster by the network constrained clustering approach. As has

been shown, the GCC selection process contributes only moderately to the apparent

success. This demonstrates that employment of the network constrained distance

matrix can lead to significant improvement in clustering performance.
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Figure 4.4: Correlation matrix of 14 structural genes with clustering dendrogram. White to grey corre-
sponds to the low correlations to high correlations.

4.2.3 Retinal Gene Expression Data

The aim of the retinal gene expression experiment is to investigate the gene path-

way of photoreception differentiation during retinal development and to discover

unknown genes related to this pathway. The retinal data represents a total of 45,101

gene expression profiles over five time points measured in both wide type and Nrl

(Swaroop et al. 1992)(the Maf-family transcription factor, key regulator of photore-

ceptor differentiation in mammals) knockout mice (Akimoto et al., 2005). The data

is available from the NCBI Gene Expression Omnibus (GEO) with accession ID:

GSE4051.
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Figure 4.5: Network constrained clustering: agglomerative hierarchical clustering using network con-
strained distance matrix calculated from relevance network (Eq. 4.2).

The data was preprocessed using the “rma” method (Bolstad et al., 2003), and it

was subjected to an initial screening using the two-stage screening method proposed

by Hero et al. (Hero et al., 2004) in which the top 1000 genes ranked by FDR and

Fold Change are kept for further analysis. We constructed a co-expression network

similarly to the yeast analysis (FDR ≤ 5% and MAS = 0.6) in the last subsection. A

GCC of size 790 genes was extracted. These 790 genes were used in our NC clustering

algorithm according to Eq. 4.1 and Eq. 4.2 while the total 1000 genes were used in

the traditional hierarchical clustering algorithm according to Eq. 4.1 only.

As above we used GO annotation as the objective criteria to compare the two
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clustering approaches. GO is a set of standard hierarchical vocabularies to describe

the biological process, molecular function and cellular component of genes. It is con-

veniently represented as a graph where nodes represents standard vocabularies and

edges represent the relationship (either “is-a” or “part of”) between vocabularies. A

child node is the more specific vocabulary than its parent node(s). A list of probe

sets obtained from any clustering method can be mapped to a GO graph (e.g. bi-

ological process graph), the appearance counts of all nodes of the GO graph can

be calculated as well as their p-values of chi-square statistics. The most significant

node(s)(corresponding to the smallest p-value(s)) usually describe(s) the biological

functions of the probe set list. Specifically, all genes that having GO annotation

”visual perception [GO:0007601]” are expected to belong to photoreceptor differen-

tiation pathway.

We thoroughly compared the two clustering results with respect to three criteria

(appearance counts, separation and p-values of the GO category: visual perception)

at each cluster number ranging from 1 to 20. Only the largest 20 clusters were

investigated as the remaining clusters contained fewer than 5 genes. The first two

clustering criteria measure stability of the ”visual perception” cluster as a function

of cluster numbers, and the third criterion measures the enrichment of the interested

GO vocabulary as a function of cluster numbers. Fig. 4.6 and Fig. 4.7 demon-

strate the ”visual perception” cluster acquired by NC clustering is quite stable over

different cluster numbers but not that acquired by traditional clustering. Fig. 4.8

demonstrates that the interested GO vocabulary ”visual perception” is much more

enriched by NC clustering over different cluster numbers. In Fig. 4.6, the initial

(cluster number=1) count difference (28 vs. 30) is due to the GCC gene selection

criterion.
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Figure 4.6: Clustering comparison - GO vocabulary “visual perception” counts.

4.3 Software Availability

The proposed network construction method and network constrained clustering

method have been implemented in a R package “GeneNT” that is freely available

from http://cran.r-project.org/ with detailed documentation and examples. To pro-

mote the accessability of the methods described in this thesis to the more general

users, in collaboration with Ritu Khanna, the programmer and analyst in Swaroop

lab, we further implemented the methods in an open source C based clustering

software with GUI (Fig. 4.9). The software implemented the generalized network

constrained clustering algorithm that is applicable to the whole network. The pro-
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Figure 4.7: Clustering comparison - GO vocabulary “visual perception” separation.

totype of the open source software was provided by M. J. L. de Hoon et al (de Hoon

et al. 2004) from Human Genome Center, Institute of Medical Science, University

of Tokyo. For more information, and software download, please visit http://www-

personal.umich.edu/vzhud/cluster 31.htm.

4.4 Discussion

Inferring signaling pathway components from gene expression data is one of most

active research areas in microarray data analysis. In this chapter, we proposed a new

clustering approach to solve the first sub-problem of the signaling pathway recon-

struction problem, i.e. discovery of pathway components. Our approach is based on
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co-expression analysis that remains to be one of the most popular approaches. While

at this stage many functional predictions made through co-expression analysis are

based on the assumption of “Guilt-by-Association,” there are still few methods for

functional predictions from dissimilar expression profiles. Transitive co-expression

analysis (Zhou et al. 2002) is a systematic method to accomplish functional predic-

tion from dissimilar gene expression profiles (Zhou and Gibson 2004, Zhou et al.

2005).

Systematic network analysis approaches have been widely applied to many bio-

logical networks such as metabolic networks, e.g. (Gagneur et al. 2003). Many theo-

retical approaches have been implemented to analyze metabolic networks including
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Figure 4.9: A significant update to the open source clustering software (joint work with Ritu Khanna).

network decomposition and isomorphism methods. For example, Ma et al. (Ma et al.

2004) presented a network decomposition approach to analyze metabolic pathways,

by considering the global network structure rather than local marginal connectiv-

ity. They showed that chemical reactions in the same cluster are indeed functionally

related. Our approach extends this to gene co-expression networks extracted from

microarray data. Our network constrained clustering differs significantly from the

traditional clustering approach in at least two aspects: 1) it uses GCC selected genes

instead of all differentially expressed genes for clustering; 2) it uses a hybrid distance

matrix that is composed of both direct distances and shortest-path distances for

clustering instead of the traditional distance matrix that is composed of only direct

distance matrix. The latter has been shown to lead to clustering improvements.

There are, however, biological function constrained clustering approaches that

have previously been shown to possess clear advantages over the traditional clus-
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tering approaches. One early attempt to introduce constraints into gene clustering

was to account for the functional constraint revealed from well-studied metabolic

pathways (Hanisch et al. 2002). Two more recent approaches have been to shrink

the expression correlation based distance towards zero if the corresponding pair is

functionally related as defined by Gene Ontology (Cheng et al. 2004, Huang et al.

2006). These approaches are successful implementations of the constraint. Our

network constrained clustering approach extracts co-expression network information

directly from the expression data. Other sources of functional association can easily

be incorporated into our framework.

Gene co-expression networks differ from metabolic networks and protein-protein

interaction networks in that the edges are inferred from hypothetical rather than

physical interactions. Statistical methods are more useful in dealing with the in-

herent uncertainties. The method we adopted constructs the co-expression network

by simultaneously controlling biological and statistical significance. Our network

constrained clustering method has the following features: 1) it tends to group func-

tional related genes into a tight cluster disregarding whether these genes have similar

expression profiles; 2) it is sufficiently flexible because the calculated network con-

strained distance matrix can be fitted in many popular distance-based clustering

software packages; 3) the algorithm runs in polynomial time.



CHAPTER V

de Novo Signaling Pathway Reconstruction

5.1 Introduction

In this chapter, we focus on estimation of the order of genes along a pathway

assuming the unordered terminal and intermediate pathway components are known.

Signaling pathways are the primary means of regulating cell growth, metabolism,

differentiation, and apoptosis. The sensing and processing of extracellular stimuli

are mediated by signal transduction cascades, that molecular circuits seek to detect,

amplify, and integrate to generate responses such as changes in enzyme activity, acti-

vation/deactivation of transcription factors, gene expression, or ion-channel activity

(Berg et al. 2006). Biochemically, the extracellular signal is transmitted through a

series of molecular modifications (e.g. phosphorylation, dephosphorylation, acetyla-

tion, methylation) and interactions (e.g. protein-protein interaction, protein-DNA

interaction).

As discussed before, recent bioinformatics research efforts have been shifted from

the single gene analysis to signaling pathway analysis and network. With the evo-

lution of signaling pathway research methods, the definition of such pathways also

evolves. In earlier decades when genetic epistatic experiments were the predominant

approach to reconstruct the signaling pathways, signaling pathway was defined as:

84
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“The cascade of processes by which an extracellular signal (typically a hormone or

neurotransmitter) interacts with a receptor at the cell surface, causing a change in

the level of a second messenger for example calcium or cyclic AMP and ultimately

effects a change in the cells functioning” (Berg et al. 2006). In the post-genomic era,

simultaneous quantifying the abundance levels of thousands of biomolecules enables

“high throughput” signaling pathway reconstruction. Lu et al. defined a signal-

ing pathway as a specified group of genes that have coordinated association with

a phenotype of interest (Lu et al. 2005). Subramanian et al. gave a more general

definition: the groups of genes that share common biological function, chromosomal

location, or regulation (Subramanian et al. 2005). Subramanian’s approach looks at

a hypothetical set of genes and detects significant enrichment toward the top of a

rank-ordered list. Both of these studies give the analyst great power toward solving

the first sub-problem in signaling pathway reconstruction, i.e. discovery of path-

way components. However, in the past the epistatic relationships among pathway

components have been ignored, and these relationships are the key to understanding

the underlying biological mechanism. Our application of Network Inference from

Co-Occurrences (NICO) method can be used to solve this second sub-problem, i.e.

ordering the pathway components (Rabbat et al. 2006). We propose a new defini-

tion of signaling pathway as: “a series of gene interaction that leads to an endpoint

biological function from a membrane receptor.”

There are abundant biological and/or computational approaches to discovering

signaling pathway components. Biological approaches include the traditional low

throughput protein-protein interaction analysis such as immunoprecipitation, west-

ern blot and pull-down assay and high throughput protein-protein interaction analy-

sis such as yeast two-hybrid assay. Computational approaches are mainly focused
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on clustering genes according to function. Examples include network constrained

clustering introduced in Chapter IV and other methods (Eisen et al. 1998, Hartigan

and Wong 1979, Yeung et al. 2001, Schliep et al. 2003, Zhu et al. 2005c). These

analyses have led to discovery of many signaling pathway components. The ultimate

goal of pathway reconstruction analysis is to decipher the order through which the

signal is transmitted. However, despite its importance, there has only been limited

research on ordering pathway components.

The classical approach to pathway discovery is called genetic epistasis analysis,

in which a pair of genes are mutated in the same strain and the phenotype of the

double mutant was compared with those of the corresponding single mutants. The

predominant phenotype defines the epistatic relationship between genes (Avery and

Wasserman 1992). The success of this approach is contingent on the measured phe-

notype, therefore, the analysis of different pathways requires a variety of experiments.

For example, satisfactory answers to the following questions are prerequisites to ef-

fective epistasis analysis: what kind of phenotype to measure, how to quantify this

phenotype, e.g. morphology. In addition, as pointed out by Van Driessche et al.

(Van Driessche et al. 2005), “the rules of epistasis cannot be applied consistently

if the experimental procedures are not identical for all pairs of genes in a certain

pathway.”

Recently, Van Driessche et al. (Van Driessche et al. 2005) proposed a new epistasis

analysis using microarray gene expression profiles as a more objective phenotype.

Their approach greatly relaxed the stringent requirement of experimental expertise

in doing the classical epistasis analysis because the knowledge of relationship between

gene function and phenotype is not essential. They reconstructed part of the Protein

Kinase A Pathway by making ten combinations of single or double mutations in six
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genes. The approach is limited to reconstructing very small size pathways due to

the combinatorial explosion of the number of mutations needed. More mutations are

either prohibited by the cost or by possibly lethal effects. In addition, the approach

implicitly requires that the mutations have marked gene expression variation so that

the epistatic relationship can be determined using a computational method without

requiring replicated experiments.

In the last decade we have witnessed a rapid accumulation of high throughput

genomics data, however reliable knowledge extraction from this data lags far behind.

Instead of acquiring new data, Liu and Zhao proposed a pure computational ap-

proach to reconstruct the order of the pathway components from existing genomics

and proteomics data (Liu and Zhao 2004). Assuming all terminal and intermediate

components (unordered) are known, each permutation of the pathway components

was scored using a score function, which was defined as un-weighted sum of score

functions for gene expression data alone and for protein-protein interaction data

alone. The score function of gene expression data was derived, based on the hy-

pergeometric distribution, by testing whether the correlation between adjacent gene

pairs is significantly higher than the random gene pairs in the pathway (Liu and Zhao

2004). The score function of protein-protein interaction data was derived based on

the binomial distribution, in which the parameter (false negative rate) was estimated

from protein-protein interactions in the DIP (Database of Interacting Proteins) data-

base, and the binomial random variable corresponds to the observation whether the

adjacent proteins interact or not. Using the simplified Mitogen Activated Protein

Kinase (MAPK) pathway as an example, they reported that the “known” MAPK

pathway was scored the second highest among all pathway permutations, which is

much better than that obtainable using genomics data or proteomics data alone.
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Being probably the first pure computational approach of its kind, the advantage

of this approach is that it exploits existing data. The approach of Liu and Zhao

also provides compelling evidence of the advantages of integration of multiple data

sources. However, the approach also has a number of limitations:

• It heavily relies on the availability of high throughput data.

• It integrates only numeric data sources. Many kinds of non-numerical meta

information, e.g. published literature and biologist’s expert knowledge, are dif-

ficult to include in the current probability model.

• Similar to the classical epistasis analysis, the approach is limited to reconstruct-

ing nonlethal signaling pathways.

• The approach is also limited to ordering short pathways due to the computa-

tional complexity introduced by the permutation step.

Here we review and apply a new maximum likelihood approach that exploits

information about which genes are in each pathway to reconstruct a “gene regula-

tion network topology” in the form of a first-order Markov chain transition matrix

(denoted as NICO method throughout this chapter). The NICO method was origi-

nally developed by Rabbat et al (Rabbat et al. 2006) for tomographic reconstruction

of telecommunications networks. Information on the genes composing a pathway

can be integrated from multiple data sources (solid curves in Fig. 5.1). Non-zero

transition probabilities correspond to directed edges in the network. We use this

probability transition matrix to determine the maximum likelihood order of genes in

each pathway. The applied technique naturally combines pathway information (both

composition information and epistasis information) that are derived from multiple

data sources.

hero

hero

hero

hero
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To summarize, the features of this proposed techniques are:

• As shown in Fig. 5.1, the unordered pathway composition information can be

either integrated from high throughput experiments or from meta-information.

• The prior information on pathway epistasis can be easily integrated into the

first order Markov model in the format of prior on the transition matrix. For

example, kinase and phosphatase appear in front of their substrate in the path-

ways. The corresponding entries of the prior transition matrix can be inflated

to larger transition probabilities as compared to other entries in the same row

of the matrix.

• The approach is able to order relatively large pathways using Monte Carlo im-

portance sampling.

It is often the case that the available pathway composition information and prior

epistatic information are not sufficient to resolve the ambiguous epistasis relationship

among a subset of genes. Using the NICO method, we can provide confidence coeffi-

cients on the ordering of genes and these can be used to suggest future experiments

to the biologist to resolve the ambiguity. More specifically, more than one pathway

order may have the same confidence as measured by the likelihood score. Comparing

these “equally likely” candidate pathways may allow biologists to identify the non-

redundant set of genetic experiments to resolve the ambiguity (see dotted curves in

Fig. 5.1). In this sense, applying the technique may be incorporated into a sequential

design of experiments context, resulting in significant savings in experimental effort.

hero
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Figure 5.1: The schematic representation of the signaling pathway reconstruction algorithm. The starting
pathway component is in red (left), and the ending pathway component is in blue (right).
Pathway components in the parenthesis are intermediate and unordered. The solid lines rep-
resent the inputs to the algorithm (different sources of pathway information). The dotted lines
represent the outputs from the algorithm (the maximum likelihood pathway(s)).

5.2 Methods

5.2.1 Mathematical Formulation of the Problem

We assume a biologically known signaling pathway is an ordered path z = (z1, z2, . . . , zN)

that is sampled from a discrete-time first-order Markov chain where the states of the

chain, zi, are genes or proteins in the pathway. In reality, the pathways derived

from many data analysis schemes are unordered, defined as a gene co-occurrence

observation, i.e. a string of genes or problems x. One can interpret x as having been

obtained from z after subjecting z to a random permutation, τ . A biologically known

signaling network consisting of an ensemble of signaling pathways can be viewed as a

collection of T independent permuted Markov processes, X = {x(1),x(2), . . . , x(T )}.

The problem that we need to solve is to recover the signaling network topology given
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a set of co-occurrence strings X that are obtained from multiple sources such as:

cluster analysis of high throughput data; text literature mining or biological expert

knowledge. Treating the unobserved permutations, τ 1, . . . , τ T , as hidden variables.

For the sake of completeness, here we review an expectation-maximization (EM) al-

gorithm for computing the maximum likelihood estimates of the Markov chain para-

meters: the initial state distribution π (starting genes in the signaling pathways) and

transition matrix A (signaling network topology). This EM algorithm was originally

derived in the NICO framework to solve a network tomography problem in telecom-

munication networks (Rabbat et al. 2006). In section 5.2.2, we review the standard

approach to estimating parameters of a Markov chain when fully ordered pathways

are available. In section 5.2.3, we review an EM algorithm for estimating Markov

chain parameters from unordered pathways. For relatively large pathways, we review

a Monte Carlo E-step that approximates E-step computation (section 5.2.4). Finally,

we review how to extend NICO into a fully Bayesian framework that facilitates in-

corporating prior pathway information (section 5.2.5).

5.2.2 Estimating a Markov Chain from Direct Observations

The sections 5.2.2, 5.2.3, 5.2.4, 5.2.5 were in a large part summarized from de-

scriptions of the NICO methodology by our collaborators (Rabbat et al. 2006). Each

independent Markov process is fully defined by the parameters A and π,

(5.1) P [Zt = j|Zt−1 = i] = Ai,j,

for i, j ∈ S, where S is the number of Markov states (distinct set of pathway

components), and π = (π1, π2, . . . , π|S|) is the vector of marginal state probabilities,

πk = P (Zt = k). The biological signal has to be initially emitted from one of the S

pathway components, and the signal emitted from pathway component i, if it is not

hero
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It is emphasized that all of the material in Secs 5.2.2-5.2.5 are results developed by Rabbat et al. This background is provided for completeness so that the reader can see how it can be appled to the reconstruction of genetic signaling pathways.
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the terminal component, has to be received by one of the |S| pathway components,

indexed by j. Mathematically, the former corresponds to the constraint in Eq. 5.2

and the later corresponds to the constraint in Eq. 5.3:

(5.2)

|S|∑
i=1

πi = 1,

(5.3)

|S|∑
j=1

Ai,j = 1.

The probability of a length-N signaling pathway (z1, z2, . . . , zN) being generated by

the chain (S, A,π) is

(5.4) P [Z1 = z1, Z2 = z2, . . . , ZN = zN |A,π] = πz1

N∏
t=2

Azt−1,zt .

Now, suppose that instead of one pathway w = (w1, w2, . . . , wN), we have a set W

of T distinct pathways which are assumed to have been generated independently by

this Markov process. The log-likelihood for this set of pathways is simply

(5.5) logP [W|A, π] =
T∑

m=1

logP [w(m)|A, π].

Maximum likelihood (ML) estimates of π and A are obtained by maximizing logP [W|A, π]

under the constraints in Eqs. 5.2 and 5.3, i.e.

(5.6) Âi,j =

∑T
m=1

∑Nm

t=2 w
(m)
t−1,iw

(m)
t,j∑|S|

j=1

∑T
m=1

∑Nm

t=2 w
(m)
t−1,iw

(m)
t,j

(5.7) π̂i =
1

T

T∑
m=1

w
(m)
1,i ,

where m = 1, . . . , T is the pathway index, t = 2, . . . , Nm is the pathway component

index, and (wt,i = 1) ⇔ (zt = i).
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5.2.3 Estimating a Markov Chain from Shuffled Observations via the EM Algorithm

We are now ready to proceed to solve the general pathway reconstruction problem

in which we only observe the pathway components, but not their orders. In order to

cast this into the familiar framework of EM algorithm, we suppose that the observed

T unordered pathways are partial data, denoted as X = x(1), x(2), . . . , x(T ) and their

orders are missing data, modeled as a set of shuffling matrices R = r(1), r(2), . . . , r(T )

so that (r
(m)
t,t′ = 1) ⇔ (x

(m)
t′ = w

(m)
t ). Given both r(m) and x(m), we could recover

the unshuffled sequence w(m) by applying (Rabbat et al. 2006)

(5.8) w
(m)
t,i =

Nm∏

t′=1

(x
(m)
t′,i )

r
(m)

t,t′ ,

adopting the convention 00 = 1.

We are now ready to write the complete log-likelihood. Starting by observing that

(5.9) logP [X ,R|A,π] = logP [X|R,A,π] + logp[R],

and that p[R] is just a constant (assuming uniform distribution over the set of all

possible permutations), we have

(5.10) logP [X ,R|A,π] ∝ logP [X|R,A,π] =
T∑

m=1

logP [x(m)|r(m),A, π]

The EM algorithm proceeds by computing the expected value of the complete log-

likelihood logP [X ,R|A,π] with respect to the missing data, conditioned on the

observations and on the current estimate of the model parameters Â and π̂,

(5.11) Q(A,π; Â, π̂) = E[logP [X ,R|A, π]|X , Â, π̂].

A key observation which facilitates the derivation of the E-step is that the complete

log-likelihood is linear with respect to simple functions of the missing variables:

• the first row of each matrix r(m), that is, for m = 1, . . . , T and t′ = 1, . . . , Nm;
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• sums of products of pairs of variables: α
(m)
t′,t′′ ≡

∑Nm

t=2 r
(m)
t,t′ r

(m)
t−1,t′′ , for m = 1, . . . , T ,

and t′, t′′ = 1, 2, . . . , Nm.

Since the conditional expectation of a linear function of a random variable is simply

that linear function computed at the expected value of the random variable, in the E-

step we just have to compute the conditional expectations of r
(m)
t,t′ and α

(m)
t′,t′′ and plug

them into the complete log-likelihood function. After some algebraic derivations, the

conditional expectation function Q(A,π; Â, π̂) is (Rabbat et al. 2006)

(5.12)

Q(A,π; Â, π̂) =
T∑

m=1

Nm∑

t′,t′′=1

|S|∑
i,j=1

ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j logAi,j +

T∑
m=1

Nm∑

t′=1

|S|∑
i=1

r̄
(m)
1,t′ x

(m)
t′,i logπi,

where the ᾱ
(m)
t′,t′′ and r̄

(m)
1,t′ are defined as:

(5.13) ᾱ
(m)
t′,t′′ ≡ E[α

(m)
t′,t′′ |X , Â, π̂] = P [α

(m)
t′,t′′ = 1|X , Â, π̂],

and

(5.14) r̄
(m)
1,t′ ≡ E[r

(m)
1,t′ |X , Â, π̂] = P [r

(m)
1,t′ = 1|X , Â, π̂].

The model parameter estimates are then updated according to

(5.15) (Ânew, π̂new) = argmaxA,πQ(A,π; Â, π̂),

and the process is repeated cyclically until some convergence criterion is met. Eq. 5.12

is the E-step, and Eq. 5.15 is the M-step. Maximization under the constraints in 5.2

and 5.3 leads to the following simple update equations (Rabbat et al. 2006):

• Transition matrix:

(5.16) (Âi,j)new =

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,r′′x

(m)
t′′,ix

(m)
t′,j∑|S|

j=1

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

.
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• Initial probabilities:

(5.17) (π̂i)new =

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i∑|S|

i=1

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i

.

The EM algorithm can easily be modified to handle the special case that the

starting and ending genes of each pathway are known and only the intermediate

pathway components are unordered. The knowledge of the endpoints of each pathway

imposes the constraints

(5.18) r
(m)
1,1 = 1,

and

(5.19) r
(m)
Nm,Nm

= 1.

Under the first constraint, estimates of the initial state probabilities are simply given

by

(5.20) π̂i =
1

T

T∑
m=1

x
(m)
1,i .

Thus, only the transition matrix has to be estimated using the EM algorithm. Let

(5.21) ΨN = {r ∈ ΨN : r1,1 = 1, rN,N = 1},

denote the collection of permutations of N pathway components with fixed endpoints.

The M-step (update for Â) remains exactly same. The E-step can be computed using

summary statistics (Rabbat et al. 2006):

(5.22) γ̃(m) =
∑

r∈Ψ̃Nm

P [x(m)|r, Â, π̂]

(5.23) γ̃
(m)
t′,t′′ =

∑

r∈Ψ̃Nm

P [x(m)|r, Â, π̂]
Nm∑
t=2

rt,t′rt−1,t′′ ,

for t′, t′′ = 1, . . . , Nm, and setting ᾱ
(m)
t,t′,t′′ =

γ̃
(m)

t,t′,t′′
γ̃

.
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5.2.4 Monte Carlo E-Step by Important Sampling

For a large pathway, the combinatorial nature of the equations (5.13) and (5.14),

that is, the need to sum over all permutations of the pathway, may render exact

computation intractable. We review a sampling-based approximation version of the

E-step, which avoids the combinatorial nature of its exact version (Rabbat et al.

2006). Without loss of generality, we focus on a particular length-N pathway x =

x1, x2, . . . , xN to lighten the notation. We also drop the hats from (Â, π̂) and use

simply (A,π) to denote the current Markov chain parameter estimates in the EM

algorithm (Rabbat et al. 2006).

An intuitive Monte Carlo approximation to the sums in Eqs. 5.13 and 5.14 would

be based on random permutations, sampled from the uniform distribution over ΨN

(the collections of all permutations of N components). For a large ΨN , only a small

fraction of these random permutations will have non-negligible posterior probability,

P [r|x,A, π], and so a very large number of uniform samples is needed to obtain

a good approximation to r̄1,t′ and ᾱt′,t′′ . Ideally, one could sample permutations

directly from the posterior distribution P [r|x,A,π]; however, sampling from this

distribution would require determining its value from all N ! permutations in ΨN .

Instead, importance sampling (IS) was employed (Rabbat et al. 2006): the step is

that one sample L permutations, r1, . . . , rL, from a distribution R[r], from which

it is easier to sample than P [r|x,A,π], and then apply a corrective re-weighting

to obtain approximations to r̄1,t′ and ᾱt′,t′′ . The importance sampling estimates are

given by (Rabbat et al. 2006)

(5.24) r̄1,t′ w
∑L

i=1 zir
i
1,t′∑L

i=1 zi

,
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(5.25) ᾱt,t′,t′′ w
∑L

i=1 zi

∑Nm

t=2 ri
t,t′r

i
t−1,t′′∑L

i=1 zi

,

where zi is the correction factor (or weight) for sample ri, given by

(5.26) zi =
P [ri|x,A,π]

R[ri]
,

the ratio between the desired distribution and the sampling distribution employed.

5.2.5 Incorporating Prior Information

Prior information about the Markov chain parameters A and π can easily be

incorporated into the algorithm by applying independent Dirichlet priors to each row

of the transition matrix and to the initial state distribution (Rabbat et al. 2006). The

Dirichlet distribution that was used to incorporate prior knowledge about the Markov

chain parameters is exactly a prior. It is fixed before performing the inference via

the EM algorithm and it does not change from iteration to iteration. Hence, we have

(5.27) P [π|u] ∝
|S|∏
i=1

πui−1
i

(5.28) p[A|v] ∝
|S|∏
i=1

|S|∏
j=1

A
vi,j−1
i,j ,

where the parameter ui and vi,j should be non-negative in order to have proper

priors. The larger that ui is relative to the other ui′ , i′ 6= i, the greater our prior

belief that pathway component i is a starting component of the pathway rather than

the others. In the case that the pathway terminal components were known, we set

ui = 1. Similarly, the larger vi,j relative to other vi,j′ for j′ 6= j, the more likely we

expect that, a prior, the signal is transmitted from pathway component i to pathway

component j relative to the transmissions from i to the other pathway components.
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Plugging Eqs. 5.27 and 5.28 into the complete log-likelihood (Eq. 5.12), it is found

that incorporating priors into the EM algorithm only results in a change to the M-

step (Rabbat et al. 2006). In particular, instead of the ML estimator recursions of

Eq. 5.17, we have recursions for the maximum a posteriori (MAP) estimates,

(5.29) (π̂i)new =
ui +

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i∑|S|

i=1

(
ui +

∑T
m=1

∑Nm

t′=1 r̄
(m)
1,t′ x

(m)
t′,i

) ,

and instead of Eq. 5.16, we have

(5.30) (Âi,j)new =
vi,j +

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,r′′x

(m)
t′′,ix

(m)
t′,j∑|S|

j=1

(
vi,j +

∑T
m=1

∑Nm

t′,t′′=1 ᾱ
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

) .

After convergence the corresponding a posteriori log-likelihood can be approximated

using Eq. 5.12 and Eqs. 5.27 and 5.28,

(5.31) logP (X|Â, π̂)P (Â, π̂) w Q(A,π; Â, π̂) + logP (π̂|u) + logp(Â|v).

5.3 Results

Using three representative signaling pathways, we intend to show three useful

properties of the NICO method: reconstruction of the order of genes in the pathway

assuming the intermediate and terminal components are known; ease of incorpo-

rating prior knowledge in the form of a prior on the transition matrix; identifying

the most important missing information that prevents high confidence path order

reconstruction. The latter will be useful for specifying the most informative future

experiment if needed (Fig. 5.1).

5.3.1 Protein Kinase A Pathway

The protein kinase A (PKA) pathway is an essential signaling pathway for de-

velopment. The central component cyclic AMP (cAMP)-dependent protein kinase

A is able to phosphorylate a variety of proteins and thereby affect their activity.
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Malfunction of this pathway lead to developmental arrest or attenuation, precocious

development and aberrant sporulation and germination (Loomis et al. 1998, Van

Driessche et al. 2005). Van Driessche et al used this pathway to demonstrate a mi-

croarray based epistasis approach (Van Driessche et al. 2005). They reconstructed

an incomplete pathway by making ten combinations of single or double mutations in

six genes. The relationships between several pairs of genes could not be determined

from their analysis. For example, the level of interaction between acaA and pkaR

was not tested because the corresponding mutations were not analyzed or difficult

to make. Despite this missing information, our approach is able to reconstruct the

reported pathway based only on the information about terminal components and

the unordered intermediate components in each pathway (Fig. 5.2, Fig. 5.3). This

suggests that our techniques may enable biologists to reconstruct pathways without

having to perform exhaustive experiments on all pairwise interactions.

PKA Pathway

, (pkaC, pkaR), 

, (pkaR, pka

acaA

regA

Development

CC), 

, (pufA, pkaC), 

Development

DevelopmentyakA

Figure 5.2: The (unordered) protein kinase A signaling pathway. Membrane receptors are in red (left),
and transcription factors are in blue (right). Activation or inhibition information between
pathway components are omitted. The pathway is mainly adapted from Van Driessche et al
(Van Driessche et al. 2005).

Since the protein kinase A pathway is a relatively small pathway, it is perhaps not

surprising that we are able to reconstruct it in a straightforward manner. For larger

pathways, without prior epistatic knowledge available pathway composition informa-

tion often only allows the pathway be reconstructed to a “certain low resolution”,

i.e. up to certain ambiguities in relative ordering within the pathway. Incorporat-

hero

hero
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acaA

pkaR

pkaC Development

regA

yakA pufA

Figure 5.3: The reconstructed protein kinase A signaling network topology from unordered pathway com-
position data (Fig. 5.2).

ing prior knowledge can often help to reveal the order of the whole pathway, or an

ensemble of pathways, i.e. a signaling network. In the next subsection we illustrate

the NICO method on the more complicated SAPK/JNK pathway.

5.3.2 SAPK/JNK Pathway

Stress-activated protein kinases (SAPK)/Jun N-terminal kinases (JNK) are mem-

bers of the MAPK family and are activated by a variety of environmental stresses,

inflammatory cytokines, growth factors and GPCR agonists. Stress signals are deliv-

ered to this cascade by small GTPases of the Rho family (Rac, Rho, Cdc42) (Weston

et al. 2002). Similar to our study of the protein kinase A pathway, we attempt to

reconstruct pathway order based only on the terminal components and on unordered

list of intermediate pathway components (Fig. 5.4).

In the framework of first-order Markov chains, epistasis relationships of the path-

way components are fully defined by the probability transition matrix A. For the

observed unordered SAPK/JNK pathway, multiple pathway orders as defined by the

corresponding probability transition matrixes may have the same likelihood score.
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For example, the two estimates of A in Eq. 5.32 and Eq. 5.33 corresponding to two

possible epistasis relationships between MEKK and MKK are equally likely. The or-

dered row names are: “GF”, “RAS”, “CDC42”, “MEKK”, “MKK”, “JNK”, “RAC”,

“Rho”, “HPK”, “CS1”, “CS2”, “FASL”, “GCKs”, “OS”, “ASK1”. All-zero rows cor-

respond to the end-of-pathway components “JNK” and “RHO” (these terminals do

not emit signals), and probabilities in non-zero rows sum up to 1. We incorporated

prior information that the MEKK protein phosphorylates the MEK protein (Weston

et al. 2002) by setting parameter v4,5 = 1 in the Dirichlet prior p[A|v] on the transi-

tion matrix A. Recall that the larger we make this probability, the more confidence

we have in prior belief, so our setting corresponds to 100% confidence. With this

prior the algorithm reconstructed the whole pathway correctly after 10 iterations

(Fig. 5.5).

(5.32) Â =




0 0.8 0 0 0 0 0 0 0.2 0 0 0 0 0 0
0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0
0 0 0 0.333 0 0 0.667 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0.8 0 0 0 0.2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0



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(5.33) Â′ =




0 0.8 0 0 0 0 0 0 0.2 0 0 0 0 0 0
0 0 0.5 0 0 0 0.5 0 0 0 0 0 0 0 0
0 0 0 0 0.333 0 0.667 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0.875 0 0.125 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0.2 0 0 0.8 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0



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Figure 5.4: The (unordered) SAPK/JNK signaling pathway. Membrane receptors are in red (left), and
transcription factors are in blue (right). Activation or inhibition information between pathway
components are omitted. “GF” stands for Growth Factor, “CS” stands for Cellular Stress,
“FASL stands for Fas Ligand”, “OS” stands for Oxidation Stress. The pathway is adapted
from http://www.cellsignal.com/.

Often prior epistasis information or pathway composition information may not

suffice to resolve all ordering ambiguity in the pathway. In such cases it would be

useful to predict the crucial pieces of information necessary to resolve remaining

ambiguity. We next show how the NICO method can be applied to perform such a

prediction for the Nuclear Factor κB (NFκB) pathway.
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5.3.3 NFκB Pathway

NFκB proteins function as dimeric transcription factors that control genes reg-

ulating a broad range of biological processes including innate and adaptive immu-

nity, inflammation, apoptosis, stress responses, B cell development and lymphoid

organogenesis (Pomerantz and Baltimore 2002). NFκB pathways mediate the sig-

nal transduction from extracellular stimuli to these transcription factors including

controlled cytoplasmic-nuclear shuttling and modulation of transcriptional activity

(Ghosh et al. 2002).

We specified the terminal components of different stimuli receptors (start) and

NFκB (end), and pathway components corresponding to each stimuli (Fig. 5.6). The

latter can often be derived from a combination of computational approaches (e.g.

clustering) and the biologist’s expert knowledge. The biological expert knowledge

is acquired gradually over years from multiple sources such as literature, science

seminar, and experimental results. We also incorporated several pieces of prior bio-

logical information including the epistasis relationships between PI(3)K and PLCγ2

(Humphries et al. 2004), between PLCγ2 and PKC (Humphries et al. 2004), between

PKC and MALT1 (Che et al. 2004), between MALT1 and TRAF6 (TNF-receptor-

associated factor 6) (Sun et al. 2004), between TRAF6 and TAK1 (TGFβ-activated

kinase 1) (Morlon et al. 2005), between TAK1 and IKK (Sun et al. 2004), between

PI(3)K and Akt/Cot complex (Kane et al. 2002), and between JNK and βTrCP

(β Transducin Repeat-Containing Protein) (Spiegelman et al. 2001). The biology

background is as follows: Upon PI(3)K activation the Akt/Cot complex is likely re-

cruited to the membrane through the Akt PH domain, which binds the phospholipid

PIP3 (Kane et al. 2002). JNK induces βTrCP to activate NFκB pathway (Spiegel-

man et al. 2001). Tyrosine phosphorylation of phospholipase PLCγ2 is a crucial

hero
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activation switch that initiates, and maintains, intracellular calcium mobilization

in response to extracellular stimuli (Humphries et al. 2004). PKC was reported to

be able to activate MALT1 upon receiving extracellular stimuli (Che et al. 2004).

MALT1 binds and activates TRAF6 (Sun et al. 2004). TRAF6 activates TAK1

through the adaptor protein TAB2 (Morlon et al. 2005) and TAK1 activates IKK

(Sun et al. 2004).

Our application of the NICO method successfully reconstructed most of the path-

way component orders after 7 iterations and used approximate search for path longer

than 8 components. The sole ambiguity is between NFκB complex1 and complex2

(Fig. 5.7). Indeed in this case the ambiguity can be detected by investigating the

relative maxima of the likelihood function (Eq. 5.31). A relative maximum that is

approximately equal to the global maximum indicates an ambiguity that is local-

ized by the positions of the relative maxima over the space of transition matrices A

(Eqs. 5.32, 5.33, Appendix. A.6). To resolve this ambiguity, our analysis indicates

that biologists should focus on investigating the epistatic relationship between these

two complexes.

5.3.4 Assembling Signaling Pathways into Signaling Networks

Biological signaling pathways tend to share a fair amount of common signal com-

ponents, and we often define these as signaling networks. The latter provides a

more complete view of cellular regulatory mechanisms. Fig. 5.8 presents a signaling

network assembled from SNK/JNK and NFκB pathways.

5.4 Software Availability

The NICO method have been implemented in a set of Matlab codes by Mike Rab-

bat. Dongxiao Zhu wrote wrapper functions to apply the method to reconstructing

hero
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signaling pathways. The set of codes will be soon available for download from au-

thors’ website.

5.5 Discussion

In this chapter, we reviewed and applied a model based approach to reconstruct

the order of an unordered list of pathway components along with terminal genes

(Rabbat et al. 2006). Compared to previous genetic and computational approaches,

the approach does not directly depend on the numeric format of the data, thus it

enjoys the features of versatility, flexibility and a high level of data abstraction. The

knowledge of pathway intermediate components and terminal components can be

derived either from numeric data using computational/statistical methods or from

meta-data using biological expertise, e.g., terminal genes of a pathway are often

specified as membrane receptor (start) and transcription factor (end). In this sense,

the approach represents progress in data integration for gene pathway discovery.

Moreover, the adapted Bayesian framework permits seamless incorporation of prior

epistatic knowledge in the form of a prior on the transition matrix. When ambiguities

do exist our algorithm can identify them and provide information on the most fruitful

set of future experiments to resolve the ambiguities.

Many researchers have found the topology of networks of signaling pathways to

be scale-free and sparse. In such topologies a small number of nodes (hub nodes)

are highly connected while the remaining nodes are not. The hub nodes may form

interaction motifs (functional modules) that are often shared by multiple pathways.

Our pathway ordering approach may be used to exploit the scale-free property by

better defining these multiple pathways. One limitation of our approach shared by

previous approaches, is that our method assumes a linear pathway model without

hero
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any feedback loops. Many signaling pathways have been found to be interconnected

and regulated via positive/negative feedback loops. Examples are the p53 signal-

ing pathways that correspond to a variety of intrinsic and extrinsic stress signals

that impacts upon cellular homeostatic mechanisms (Vogelstein et al. 2000). These

pathways consist of multiple positive/negative feedback loops, e.g. between p53 and

MDM2. The linear pathway model assumption may result in suboptimal pathway

reconstruction. In future work, this limitation might be overcome by integrating

more sophisticated graphical models into the methodology.
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Figure 5.5: Upper panel: The correct SAPK/JNK signaling network topology defined by the probability
transition matrix Eq. 5.32 estimated from unordered pathway composition data (Fig. 5.4) im-
proved by incorporating a prior information on gene-gene interactions, in particular the inter-
actions between the two double-circled components. Lower panel: The incorrect SAPK/JNK
signaling network topology defined by the probability transition matrix Eq. 5.33 estimated
from unordered pathway composition data without incorporating prior information.
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Figure 5.6: The (unordered) NFκB signaling pathways. Membrane receptors are in red (left), and tran-
scription factors are in blue (right). Activation or inhibition information between pathway
components are omitted. “Ag” stands for Antigen, “Ag-MHC” stands for Major Histocompat-
ibility Complex (MHC) Antigen, “IL-1” stands for Interleukemia-1, “dsRNA” stands for double
stranded RNA, TNF stands for Tumor Necrosis Factor, “GF” stands for Growth Factor, “LT”
stands for heat-labile enterotoxin. “NFκBC1” and “NFκBC2” stand for NFκB complexes 1
and 2. The pathway is adapted from http://www.cellsignal.com/.
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Figure 5.7: The two possible NFκB signaling network topologies defined by the probability transition ma-
trix Eq.A.16 and Eq.A.17 estimated from unordered pathway composition data (Fig. 5.6) after
incorporating prior information. The relationships between the two double-circled components
are disambiguated from prior information. The epistasis relationship labeled with “?” remains
ambiguous and deserves further investigation.
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CHAPTER VI

Conclusion, Discussion and Future Works

In this thesis, we have addressed the problem of reconstructing gene interaction

networks and signaling pathways. We provided a series of logically coherent ap-

proaches to attack the problem, including network construction from high through-

put data, clustering genes according to similar function while discounting expression

dissimilarity, and pathway reconstruction from multiple data sources. We presented

a full statistical formulation of the network construction problem, and solved it using

a combination of frequentist and Bayesian approaches. By taking into account the

underlying network constraint, we then proposed an improved gene clustering ap-

proach that is able to group the whole pathway into a single cluster. Given partially

known pathway components, e.g. inferred from clustering and/or biologist expert

knowledge, we employed a first-order Markov model to reconstruct the order of the

entire pathway.

Bio-molecules, including genes, proteins and metabolites etc, exist in a compli-

cated network of tight regulation and interaction. There is considerable interest in

inferring the network topology from high throughput data, which is the key to sys-

tematic biological discovery. Under the framework of a statistical hypothesis test,

the null network topology model may be fully connected, meaning that all pairs
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of bio-molecules have direct relationships, e.g. co-regulation, interaction, chemical

modification etc. However, the null network model does not reflect biological reality

and does not conform to the rules of parsimony in life. In the real world, many

biological networks are found to be only partially connected and very sparse. For

example, in the metabolic networks of the selected single cell organisms, the “concen-

tration” (defined as the ratio of the total number of network edges over the maximal

allowable number of edges) of the edges is estimated to be less than 1% (Zhu and

Qin 2005).

Unfortunately, many current data analysis schemes implicitly assume an uncon-

strained model, e.g., the null network model introduced in Chapter I. More familiar

examples are the ‘one-gene-at-a-time’ approaches reviewed in Chapter I, and the

traditional clustering approaches reviewed in Chapter IV. One extension of our work

could be employment of a complexity constrained model, e.g., implemented by a

shrinkage method, in analyzing high throughput biological data. A statistical moti-

vation for such a method lies in the “small n, large p paradigm” and the complexity

reducing dependency structure among response variables. A biological motivation is

the existence of only a few well connected hub genes or proteins among biomolecules.

We briefly discuss some well-known examples of complexity constraints here.

For identifying differentially expressed genes, shrinkage methods have received

much recent attention. Examples include Significant Analysis of Microarrays (SAM,

Tusher et al. 2001), Empirical Bayes (EB, Efron et al. 2001) and Penalized Linear

Regression Model (Wu et al. 2005a, Wu et al. 2005b). In SAM and EB methods, the

idea of penalizing for complexity of the model was implemented in the framework

of variance shrinkage that adds a constant ‘fudge factor’ to the denominator of the

ordinary t-test statistic. The fudge factor, estimated from a large number of genes,
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penalizes the ranks of those differentially expressed genes with very small variances.

Wu et al cast the differential expression detection problem in the familiar framework

of linear regression (Wu et al. 2005a, Wu et al. 2005b). By using the alternative

penalized regression model, a penalized t/F-statistic for screening differentially ex-

pressed gene was developed. Compared with the former ad hoc shrinkage methods

such as SAM (Tusher et al. 2001), the latter provides a more rigorous and unified

statistical framework.

Recently, network constraints have been imposed to identify differentially ex-

pressed genes. For example, Morrison et al. adjusted the gene rank obtained from

the regular statistical tests using the network structure inferred from gene annota-

tions (gene ontology) or expression profile correlations (Morrison et al. 2005). Thus

the original gene rank was altered by the corresponding network connectivity that

can be treated as a network constraint. This approach is able to reveal additional

functionally important genes having weak differential expression. We define the

single gene approach as “network constrained screening of differentially expressed

genes”. However, there are relatively few studies on imposing multi-gene network

constraints to analyze high throughput data analysis. In this thesis, we proposed

a generalized multi-gene network constraint using clustering and signaling pathway

reconstruction. We think that our success might open an avenue for future research

on network constrained high throughput data analysis.

The possibility of future implementations of complexity constraints are certainly

warranted. We propose two possible future directions as the closure of this thesis.

One possible future direction is to adapt sophisticated shrinkage methods to the

network construction problem. Shrinkage methods developed in diverse statistical

areas can be readily be adapted to cope with the small n, large p challenge in inferring
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bio-molecule networks from high throughput data. Some of more promising methods

are: large-scale multiple test, penalized discriminant analysis, penalized regression,

support vector machine (SVM), supervised and unsupervised principal component

analysis (Hastie et al. 2001). A key point is how to incorporate the network construc-

tion problem into the sparsity constrained statistical framework. In particular, the

core of network construction problem is to reliably declare the presence and absence

of network edges from noisy data with complicated dependency structure. This is

highly similar to a number of statistical problems such as large-scale multiple test-

ing (including this work), Bayesian hierarchical model (including this work), logistic

regression, SVM and discriminant analysis. Therefore, the recent developments of

shrinkage methods for these classical problems can be readily applied to network con-

structions. More generally, in stead of declaring network edges in a binary manner,

we can also view it as multinomial outcomes, in which possible network edges are

classified into multiple classes based on levels of confidence. More methods might

be adapted, such as decision tree-based methods and their extensions (Hastie et al.

2001), e.g. random forest and neural networks.

Another possible future direction is network constrained discovery. Graphical

models and network optimization have already been applied to many areas of con-

temporary bioinformatics. Some of more successful applications are: network flow

algorithms applied to protein domain decomposition (Xu et al. 2000), protein func-

tion prediction (Nabieva et al. 2005) and subgraph searching algorithms applied to

mining coherent dense subgraphs (Hu et al. 2005). The recent developments in net-

work reconstruction techniques with error control provide new opportunities. Net-

work constrained high throughput data analysis remains a very promising area of

research.
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APPENDIX A

Technical Details and Supplemental Tables

A.1 Construct PCER-CI for ρ

Here we present the details of constructing asymptotic PCER-CI for ρ as described

in section 2.1.2.

Based on the fact that z is the z = tanh−1(ρ̂) monotonic function of ρ̂, the as-

ymptotic PCER (1 − α) × 100% Confidence Interval: Iλ(α) on each true Pearson

correlation coefficient ρ of the set G1 is: tanh(z− zα/2

(N−3)1/2
) ≤ ρ ≤ tanh(z +

zα/2

(N−3)1/2
),

where P (N(0, 1) > zα/2) = α/2.

A.2 Construct PCER-CI for τ

Here we present the details of constructing asymptotic PCER-CI for τ as described

in section 2.1.2.

The asymptotic PCER (1 − α) × 100% Confidence Interval: Iλ(α) on each true

Kendall correlation coefficient τ of the set G1 is constructed as follows:

• Compute Cr =
∑N

t=1
t6=r

Q((Xr, Yr), (Xt, Yt)), for r = 1, 2, ..., N., where Q((a, b), (c, d))



117

is given by:

(A.1) Q((a, b), (c, d)) =





1 if (d− b)(c− a) > 0,

0 if (d− b)(c− a) = 0,

−1 if (d− b)(c− a) < 0.

• Let C̄ = 1
N

∑N
r=1 Cr and define σ̂τ = 2

N(N−1)
2(N−2)
N(N−1)

∑N
i=1[(Cr − C̄)2 + 1− τ̂ 2]

• Iλ(α) : τ̂ − zα/2σ̂τ ≤ τ ≤ τ̂ + zα/2σ̂τ .

A.3 Simulating Bivariate Data Based on Pre-specified Population Co-
variances

Here we present the steps to simulate bivariate data based on pre-specified pop-

ulation covariances as described in section 2.2.1.

Pearson correlation coefficient ρ

• Specify a covariance matrix V and a mean vector µ.

• Form the Cholesky decomposition of V, i.e. find the lower triangular matrix L

such that V = LLT .

• Simulate a vector z with independent N(0, 1) elements.

• A vector simulated from the required multivariate normal distribution is then

given by µ + Lz.

Kendall’s τ

• Specify a value for τ .

• Simulate an N ×N indicator matrix M given τ as follows:

(A.2) M [n,m]1≤n<m≤N =





1 if Bernulli(1+τ
2

) is TRUE,

−1 if Otherwise.
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• Simulate i.i.d pairs (Xr, Yr) (r = 1, 2, ..., N) according to M matrix and defini-

tion

(A.3) Q((a, b), (c, d)) =





1 if (d− b)(c− a) > 0,

−1 if (d− b)(c− a) < 0.

No tied observations are generated. Alternatively, τ̂ can be directly calculated from

the indicator matrix M without generating the i.i.d pairs (Eq. 2.3).

A.4 Selecting Prior Distribution

Here we present the mathematical details of choosing a prior as described in

section 3.1. They were adapted from the solution to exercises 2.8 in Gelman et al.

2004.

We need to show the joint posterior density p(Γ, α, β|y) is improper if we select

the hyperprior distribution p(β) ∝ β−1, while p(Γ, α, β|y) is proper if we select the

hyperprior distribution p(β) ∝ 1.

We first factor the joint posterior distribution p(Γ, α, β|y) ∝ p(β|y)p(α|β, y)p(Γ|α, β, y).

Note that p(α|β, y) and p(Γ|α, β, y) have proper densities. The joint posterior den-

sity p(Γ, α, β|y) is proper if and only if the marginal density p(β|y) is proper, i.e. has

a finite integral for β from 0 to ∞.

In Eq. 3.3, as β approaches 0, everything multiplying p(β) approaches a nonzero

constant limit C(y). Thus the behavior of p(β|y) near 0 is determined by the prior

density p(β). It is easy to show that the function p(β) ∝ 1/β is not integrable for

any small interval around 0, and so it leads to a nonintegrable posterior density.

If prior density p(β) ∝ 1, then the posterior density is integrable near zero. We

need to examine the behavior as β →∞ and find an upper bound that is integrable.

The exponential term is clearly less than or equal to 1. We can rewrite the remaining
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terms as (
∑J

j=1[
∏

k 6=j(σ
2
k + β2)])−1/2. For β > 1 we make this quantity bigger by

dropping all of the σ2 to yield (Jβ2(J−1))
−1/2

. An upper bound on p(β|y) for β large

is p(β)J−1/2/βJ−1. When p(β) ∝ 1, this upper bound is integrable if J > 2, and so

p(β|y) is integrable if J > 2.

A.5 Deriving Posterior Distribution p(β|y)

Here we present the mathematical details of deriving posterior distribution p(β|y)

as described in section 3.1. They were adapted from Chapter V of Gelman et al.

2004.

We factor the marginal posterior density of the hyperparameters as follows:

(A.4) p(α, β|y) = p(α|β, y)p(β|y),

which is equivalent to:

(A.5) p(β|y) =
p(α, β|y)

p(α|β, y)
.

We then derive p(α, β|y) and p(α|β, y) respectively as the following. For hierar-

chical model, we can simply consider the information supplied by data about the

hyperparameters directly:

(A.6) p(α, β|y) ∝ p(α, β)p(y|α, β).

For many problems, decomposition in Eq. A.6 is of no help since p(y|α, β) cannot

generally be written in closed form. For the Gaussian distribution, the marginal

likelihood has a particularly simple form. The marginal distributions of the sample

correlation Γ̂λ are independent (but not identically distributed) Gaussian:

(A.7) p(Γ̂λ|α, β) ∝ N(α, σ2
λ + β2).
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Thus we can write the marginal posterior density as

(A.8) p(α, β|y) ∝ p(α, β)
Λ∏

λ=1

N(Γ̂λ|α, σ2
λ + β2).

From inspection of Eq. A.8 with β assumed known, and with a uniform conditional

prior density p(α|β), where p(α|β, y) is also Gaussian, i.e.

(A.9) p(α|β, y) ∝ N(α̂, Vα),

where

(A.10) α̂ =

∑Λ
λ=1

1
σ2

λ+β2 Γ̂λ

∑Λ
λ=1

1
σ2

λ+β2

,

and

(A.11) V −1
α =

Λ∑

λ=1

1

σ2
λ + β2

.

α̂ is a precision-weighted average of Γ’s and Vα is the total precision. We define

precision as inverse of variance. From Eqs. A.5, A.8 and A.9,

p(β|y) =
p(α, β|y)

p(α|β, y)
(A.12)

∝ p(β)
∏Λ

λ=1 N(Γλ|α, σ2
λ + β2)

N(α|α̂, Vα)
(A.13)

This identity holds for any value of α, in particular, it holds if we set α to α̂, which

makes evaluation of the expression quite simple.

p(β|y) ∝ p(β)
∏Λ

λ=1 N(Γ̂λ|α̂, σ2
λ + β2)

N(α̂|α̂, Vα)
(A.14)

∝ p(β)V 1/2
α

Λ∏

λ=1

(σ2
λ + β2)

−1/2
exp(− (Γ̂λ − α̂)2

2(σ2
λ + β2)

),(A.15)

where α̂ and Vα are defined in Eqs. A.10 and A.11. Both expressions are functions

of β, which means that p(β|y) is a complicated function of β.
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A.6 Two Equally Likely Probability Transition Matrices for NFκB Path-
way

Here we present two equally likely probability transition matrices for NFκB path-

way as described in section 5.3.3. The likelihood of these two matrices were calculated

according to Eq. 5.31. The ordered row names are: “Ag”, “PI3K”, “PLCγ2”, “PKC”,

“MALT1”, “TRAF6”, “TAK1.TAB”, “IKK”, “NFκBC1”, “NFκBC2”, “NFκB”,

“Ag.MHC”, “IL1”, “dsRNA”, “PKR”, “TNF”, “MEKK”, “GF”, “Art.Cot”, “LT”,

“NIK”, “UV”, “JNK”, “bTrCP”. Notice that the 11th rows of both matrices are

all-zero corresponding to the end-of-pathway component “NFκB”.

(A.16)

Â =




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



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(A.17)

Â′ =




0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.6 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0.5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.5 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0



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Table A.1: Sample output of screening co-expressed gene pairs based on Kendall correlation coefficient. It
was described in section 2.3.1.

index1 index2 gene1 gene2 corr p-value q-value lower higher
971 972 HXT7 HXT6 0.965703 2.63E-09 0.000277 0.893359 1
266 356 RPL11B GTT2 0.947368 5.22E-09 0.000277 0.834336 1
445 446 ERR1 ERR2 0.947368 5.22E-09 0.000277 0.84075 1
260 261 RPL9B RPL9A 0.936842 7.69E-09 0.000277 0.821361 1
268 269 RPS23B RPS23A 0.936842 7.69E-09 0.000277 0.827631 1
254 266 RPL24A RPL11B 0.93404 8.52E-09 0.000277 0.829735 1
230 356 RPS6B GTT2 0.926316 1.13E-08 0.000277 0.822449 1
239 301 RPS16B YPL142C 0.926316 1.13E-08 0.000277 0.822449 1
247 334 RPS18A ENT4 0.926316 1.13E-08 0.000277 0.755724 1
254 356 RPL24A GTT2 0.923486 1.25E-08 0.000277 0.794477 1
275 348 YLL044W SEC65 0.923486 1.25E-08 0.000277 0.797236 1
277 334 RPL42A ENT4 0.923486 1.25E-08 0.000277 0.81526 1
230 266 RPS6B RPL11B 0.91579 1.65E-08 0.000277 0.793336 1
233 313 RPL21A RPS3 0.91579 1.65E-08 0.000277 0.812017 1
253 266 RPL24B RPL11B 0.91579 1.65E-08 0.000277 0.799229 1
267 356 RPL11A GTT2 0.91579 1.65E-08 0.000277 0.805438 1
294 295 RPL20B RPL20A 0.91579 1.65E-08 0.000277 0.772159 1
300 302 RPL33B RPL33A 0.91579 1.65E-08 0.000277 0.777149 1
249 250 RPL27A RPL27B 0.912932 1.83E-08 0.000277 0.802223 1

Table A.2: Clustering co-expressed genes with controlled FDR (5%) at a MAS level of 0.6 using “GAL10”
as the “seed gene”. Known genes in the pathway are in bold face. Pearson correlation coefficient
was used as metric. It was described in section 2.3.2.

index1 index2 gene1 gene2 corr p-value q-value lower higher
2 2 GAL10 GAL10 1 0.00E+00 0.00E+00 1
2 1 GAL10 GAL7 0.925103 5.35E-09 2.67E-06 0.727108 0.981023
2 4 GAL10 GCY1 0.91733 1.27E-08 4.20E-06 0.701969 0.97899
2 3 GAL10 GAL1 0.905611 3.99E-08 9.95E-06 0.665053 0.975901
2 59 GAL10 GAL2 0.893609 1.12E-07 2.23E-05 0.628426 0.972709
2 5 GAL10 YOR121C 0.891345 1.34E-07 2.23E-05 0.621649 0.972104

Table A.3: Clustering co-expressed genes with controlled FDR (5%) at a MAS level of 0.5 using “GAL7”
as the “seed gene”. Known genes in the pathway are in bold face. (a) Pearson correlation
coefficient as metric. It was described in section 2.3.2.

index1 index2 gene1 gene2 corr p-value q-value lower higher
1 1 GAL7 GAL7 1 0.00E+00 0.00E+00 1 1
1 2 GAL7 GAL10 0.925103 5.35E-09 2.67E-06 0.737186 0.980188
1 62 GAL7 YMR318C 0.892639 1.21E-07 4.03E-05 0.638563 0.971244
1 68 GAL7 YBR042C 0.882089 2.71E-07 5.84E-05 0.608213 0.968289
1 3 GAL7 GAL1 0.880999 2.93E-07 5.84E-05 0.605123 0.967982
1 70 GAL7 FAR1 0.864743 8.72E-07 1.45E-04 0.559998 0.963377
1 59 GAL7 GAL2 0.851884 1.88E-06 2.68E-04 0.525538 0.959693
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Table A.4: Clustering co-expressed genes with controlled FDR (5%) at a MAS level of 0.5 using “GAL7”
as the “seed gene”. Known genes in the pathway are in bold face. (b) Kendall correlation
coefficient as metric. It was described in section 2.3.2.

index1 index2 gene1 gene2 corr p-value q-value lower higher
1 1 GAL7 GAL7 1 7.07E-10 7.05E-07 1 1
1 3 GAL7 GAL1 0.705263 1.38E-05 6.86E-03 0.442609 0.967917
1 2 GAL7 GAL10 0.652632 5.74E-05 1.88E-02 0.355487 0.949776

Table A.5: Clustering co-expressed genes with controlled FDR (5%) at a MAS level of 0.5 using “GAL1” as
the “seed gene”. Known genes in the pathway are in bold face. Pearson correlation coefficient
as metric. It was described in section 2.3.2.

index1 index2 gene1 gene2 corr p-value q-value lower higher
3 3 GAL1 GAL1 1 0.00E+00 0.00E+00 1 1
3 2 GAL1 GAL10 0.905611 3.99E-08 1.99E-05 0.660385 0.976295
3 10 GAL1 FKS1 0.89891 7.22E-08 2.40E-05 0.639567 0.974545
3 1 GAL1 GAL7 0.880999 2.93E-07 7.30E-05 0.585731 0.969822

Table A.6: Clustering co-expressed genes with Bayesian hierarchical model at the significance level 5%
using “GAL10” as the “seed gene”. Known genes in the pathway are in bold face (N = 20). It
was described in section 3.3.2.

Gene1 Gene2 2.5% 50% 97.5%
GAL10 GAL7 0.699967273 0.843269806 0.919377659
GAL10 GCY1 0.695895931 0.83904824 0.917448689
GAL10 GAL1 0.685628575 0.824914454 0.906837751
GAL10 GAL2 0.664031223 0.817631953 0.903466008
GAL10 YOR121C 0.652511568 0.814118521 0.901500909
GAL10 YDR010C 0.574348042 0.77081336 0.875409524
GAL10 YEL057C 0.582835775 0.769743768 0.880618535
GAL10 SSU1 0.584487078 0.769335123 0.879019784
GAL10 PCL10 0.552529392 0.751817344 0.871763977
GAL10 YJL212C 0.543601479 0.747480187 0.862433646
GAL10 MET14 0.525320838 0.723128249 0.852859396
GAL10 FKS1 0.515021843 0.719874179 0.854759107
GAL10 MCM1 0.474061933 0.697313988 0.834101087
GAL10 EXG1 0.446476056 0.666889754 0.818233838
GAL10 ARG1 0.382292245 0.63708452 0.807736956
GAL10 CRH1 0.344971636 0.594425382 0.773435199
GAL10 PRY1 0.299057555 0.588919717 0.774038296
GAL10 YPR157W 0.29645952 0.576125639 0.765975044
GAL10 CPA2 0.303356019 0.571475575 0.745218878
GAL10 YKR012C 0.262900828 0.566724743 0.748081117
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ABSTRACT

Reconstructing Signaling Pathways from High Throughput Data

by

Dongxiao Zhu

Chair: Alfred O Hero

Many bioinformatics problems can be tackled from a fresh angle offered by the

network perspective. Taking into account the network constraints on gene inter-

action, we propose a series of logically-coherent approaches to reconstruct signaling

pathways from high throughput expression profiling data. These approaches proceed

in three consecutive steps: co-expression network construction with controlled biolog-

ical and statistical significance, network constrained clustering, and reconstruction

of the order of pathway components.

The first step relies on detecting pairwise co-expression of genes. We attack the

problem from both frequentist statistics and Bayesian statistics perspectives. We

designed and implemented a frequentist two-stage co-expression detection algorithm

that controls both statistical significance (False Discovery Rate, FDR) and biological

significance (Minimum Acceptable Strength, MAS) of the discovered co-expressions.

In order to regularize variances of the correlation estimation in small sample sce-



1

nario, we also designed and implemented a Bayesian hierarchical model, in which

correlation parameters are assumed to be exchangeable and sampled from a parental

Gaussian distribution. Using simulated data and the galactose metabolism data,

we demonstrated advantages of our approaches and compared the differences among

them.

The second problem considered is distance-based clustering that accounts for “net-

work constraints” extracted from the Giant Connected Component (GCC) of the

network discovered from the data. The clustering is performed using a “hybrid” dis-

tance matrix composed of direct distance between adjacent genes and “shortest-path”

distance between non-adjacent genes in the network. The third problem considered

is the reconstruction of the order of pathway components. We applied a first-order

Markov model, originally developed and applied to a network tomography problem

in telecommunication networks, to reconstruct three well-known signaling pathways

from unordered pathway components. We suggest that the methods proposed here

can also be applied to other high throughput data analysis problems.


