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ABSTRACT

Anomaly Detection and Sequential Filtering with Partial Observations

by

Elizabeth Hou

Chair: Alfred O. Hero III

With the rise of “big data” where any and all data is collected, comes a series of new

challenges involving the computation and analysis of such massive data sets. Nowadays,

data is continuously collected leading to questions of at which point should analysis begin

and how to incorporate new data into the analysis. And, within the massive amounts of data

collected, there can be other complications in addition to the noise. The features of interest

may not be directly observable to a user, and thus are modeled as latent variables. There

may be only a very small subset of the data with certain properties that are of interest to the

user. Or, there could be data that is only partially labeled due to the costs of user labeled

data or simply a lack of information.

In this thesis, we develop methods that deal with data containing partial labels, latent

variables, and anomalies. Many of the models in our frameworks are extendable to an

online or streaming scenario where the data is continuously being collected and discarded.

We also illustrate some real world applications of our proposed models using datasets from

cyber security, transportation, and weather systems.

The contributions of this thesis are that we have developed:

xi



1. Penalized ensemble Kalman filter that is designed for superior performance in non-

linear high dimensional systems.

2. Framework to generate and update regression and classification models, which can

be used to build an optimal non-linear filter and also an approximation to it that is

computationally efficient.

3. Recursive versions of supervised and semi-supervised maximum margin classifiers.

4. Method for detecting anomalous points that are partially labeled high utility by a

domain expert.

5. Framework and probabilistic model for detecting anomalous activity in the traffic

rates of sparse networks.
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CHAPTER 1

Introduction

Data collected in the real world is not perfect. In addition to being noisy, there can be
many other complications that make it hard to analyze. The data collection process may
not be finished before analysis starts. The data may only be partially labeled due to the
costliness of labeling or simply a lack of information. There may be features of the data
that cannot be directly observed. Or the data may contain anomalies, which if interesting,
must be identified by the model, as opposed to just robustifying the model against them. In
this thesis, we will address these additional issues of non-batch data, partial labels, latent
variables, and anomalies.

In particular, many of the problem areas addressed in thesis were motivated by the real
world scenario of data collected in the interests of nuclear non-proliferation. A nuclear fuel
cycle produces an abundant amount of data; however, like in all realistic scenarios, the data
observed or collected is not necessarily the exact information that is desired. For example,
materials transported between facilities in the fuel cycle constitutes a traffic network and
anomalous traffic in the network could indicated a diversion of nuclear materials. But it
may be expensive or impossible to directly track the movement of materials throughout the
fuel cycle. Instead if the facilities are monitored, the ingress and egress of materials for
each facility would be observed and the traffic of materials can be reconstructed in order
to test for anomalies. Or, if we know of some particular types of anomalies that are more
likely to indicate a diversion of nuclear materials, we can lower our false alarms by only
identifying those anomalies. Also, since a nuclear fuel cycle is continuously producing
data, and it is of essence to identify diversions of nuclear materials as soon as possible,
we must be able update our model to make predictions in an online fashion. The methods
in this thesis, while not directly applied to real nuclear fuel cycle data, are applied to real
datasets that could be surrogates for such unobtainable data.

Overall this thesis emphasizes the optimization of probabilistic models with prior infor-
mation. This builds off work from the past twenty years that have pushed towards solving
regularized objective functions. While we do not contribute new optimization algorithms,
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much of this work is only possible due to cleverly solving dual formulations that we have
proposed or have been recently studied. The probabilistic nature of our models has many
advantages such as incorporating latent variables with the Expectation-Maximization algo-
rithm or testing hypothesis for the existence of anomalies. It also allows us to bound the
errors of our model due to inaccuracies such as finite sample size or model mismatch. In
what remains of this section we will give an overview of the contributions of each chapter
and then a list of publications.

Chapter 2 treats the problem of the Kalman filter, which is the Bayesian optimal filter
for Gaussian distributed dynamic systems. This means it can incorporate new data by up-
dating the current model in an equivalent way to if the model was learned on the full batch
of data. However, when the system is strongly non-linear with potentially unknown gradi-
ents, it is no longer optimal. In the second chapter of this thesis, we propose an extension
to the ensemble Kalman filter (EnKF) to deal with its collapsing problems in high dimen-
sional systems. The ensemble Kalman filter is a data assimilation technique that uses an
ensemble of models, updated with data, to track the time evolution of a non-linear system.
It does so by using an empirical approximation to the well-known Kalman filter. Unfor-
tunately, its performance suffers when the ensemble size is smaller than the state space,
as is often the case for computationally burdensome models. This scenario means that the
empirical estimate of the state covariance is not full rank and possibly quite noisy. To solve
this problem in this high dimensional regime, a computationally fast and easy to implement
algorithm called the penalized ensemble Kalman filter (PEnKF) is proposed. Under certain
conditions, it can be proved that the PEnKF does not require more ensemble members than
state dimensions in order to have good performance. Further, the proposed approach does
not require special knowledge of the system such as those used by localization methods.
These theoretical results are supported with superior performance in simulations of several
non-linear and high dimensional systems.

Next we leave the specific Gaussian case and look at sequential filtering more broadly.
In the third chapter of this thesis called “Sequential Sparse Maximum Entropy Models for
Non-linear Regression”, we examine how to use the principle of minimum relative entropy
to create sequential filters for other models. We first present an optimal filter for Gaussian
linear regression derived from a minimum relative entropy objective, which can be seen as a
dual formulation for the recursive least squares filter. Extending upon this, we then consider
Gaussian non-linear regression using kernel functions. We present an optimal filter and then
an approximation to it that does not require re-visiting all the previous data. Then in chapter
4, entitled “Sequential Maximum Entropy Discrimination with Partial Labels”, we use the
framework presented in the previous chapter for binary classification in the supervised and
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semi-supervised settings. We show how to update maximum margin classifiers to allow for
sequential filtering of binary response variables. Our maximum margin classifier admits
a kernel representation to represent large numbers of features and can also be regularized
with respect to a smooth sub-manifold, allowing it to incorporate unlabeled observations.
We compare the performance of our classifier to its non-sequential equivalents in both
simulated and real datasets.

Now, instead of standard classification, where many samples are provided for each
class, in anomaly detection there are many samples from the nominal class and only very
few samples from the anomalous class. Most data-driven anomaly detection approaches
formulate the anomaly class as rare events that lie in the tails of the nominal class den-
sity. Data-driven anomaly detection methods suffer from the drawback that they do not
take account of the practical importance, or utility, of an anomaly to the user. Furthermore,
standard classification methods suffer when the difference in class sizes is extremely large,
which is bound to occur if one of the classes is anomalous data. In the fifth chapter of this
thesis entitled “Maximum Entropy Discrimination with Partial Labels for Anomaly Detec-
tion”, we address the problem of learning how to detect anomalies when there some of the
anomalous instances are labeled, e.g., by a human, as high utility. To this end, we propose
a novel method called Latent Laplacian Maximum Entropy Discrimination (LatLapMED)
as a potential solution. This method uses the EM algorithm to simultaneously incorporate
the Geometric Entropy Minimization principle for identifying statistical anomalies, and
the Maximum Entropy Discrimination principle to incorporate utility labels, in order to
detect high-utility anomalies. We apply our method in both simulated and real datasets to
demonstrate that it has superior performance over existing alternatives that independently
pre-process with unsupervised anomaly detection algorithms before classifying.

The previous chapter approaches anomaly detection from a partially supervised sce-
nario where some of the anomalies are known. In the sixth chapter of this thesis, entitled
“Anomaly Detection in Partially Observed Traffic Networks”, we will address a specific
unsupervised scenario, that of detecting anomalous activity in traffic networks where the
network is not directly observed. Given knowledge of what the node-to-node traffic in a
network should be, any activity that differs significantly from this baseline would be con-
sidered anomalous. We propose a Bayesian hierarchical model for estimating the traffic
rates and detecting anomalous changes in the network. The probabilistic nature of the
model allows us to perform statistical goodness-of-fit tests to detect significant deviations
from a baseline network. We show that due to the more defined structure of the hierarchical
Bayesian model, such tests perform well even when the empirical models estimated by the
EM algorithm are misspecified. We apply our model to both simulated and real datasets to
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demonstrate its superior performance over existing alternatives. Finally, in Chapter 7, we
summarize the thesis and highlight some future directions of research that we think would
be worthwhile.
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CHAPTER 2

Penalized Ensemble Kalman Filters for High
Dimensional Non-linear Systems

2.1 Introduction

The Kalman filter is a well-known technique to track the state of a linear system over time,
and many variants based on the extended and ensemble Kalman filters have been proposed
to deal with non-linear systems. The ensemble Kalman filter (EnKF) [2, 3] is particularly
popular when the non-linear system is extremely complicated and its gradient is infeasible
to calculate, which is often the case in geophysical systems. However, these systems are
often high dimensional and forecasting each ensemble member forward through the system
is computationally expensive. Thus, the filtering often operates in the high dimensional
regime where the number of ensemble members, n, is much less than the size of the state,
p. It is well known that even when p/n → const. and the samples are from a Gaussian
distribution, the eigenvalues and the eigenvectors of the sample covariance matrix do not
converge to their population equivalents, [4, 5]. Since our ensemble is both non-Gaussian
and high dimensional (n << p), the sample covariance matrix of the forecast ensemble will
be extremely noisy. In this paper, we propose a variant of the EnKF specifically designed
to handle covariance estimation in this difficult regime, but with weaker assumptions and
less prior information than competing approaches.

Other Work

To deal with the sampling errors, many schemes have been developed to de-noise the
forecast sample covariance matrix. These schemes “tune” the matrix with variance in-
flation and localization, [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]. However,
these schemes are often not trivial to implement because they require carefully choosing
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the inflation factor and using expert knowledge of the true system to set up the localiza-
tion. Additionally, the EnKF with perturbed observations introduces additional sampling
errors due to the perturbation noise’s lack of orthogonality with the ensemble. Methods
have been devised that construct perturbation matrices that are orthogonal, [20]; however
these methods are computationally expensive, [21]. This has lead to the development of
matrix factorization versions of the EnKF such as the square root and transform filters,
[22, 23, 24, 21, 25, 26, 27, 28], which do not perturb the observations and are designed to
avoid these additional sampling errors.

The ensemble Kalman filter is closely related to the particle filter [29], although it uses
a Gaussian approximation of the conditional state distribution in order to get an update
that is a closed form expression for the analysis ensemble (as opposed to one that requires
numerical integration). While the particle filter does not use this approximation, it also
requires an exponential number of particles to avoid filter collapse, [30]. Recently, there
has been significant effort to apply the particle filter to larger scale systems using equal
weights, [31, 32], and merging it with the ensemble Kalman filter to form hybrid filters,
[29, 33, 34, 35, 36]. EnKF is also related to the unscented Kalman filter, [37, 38], which
handles nonlinearity by propagating a carefully selected set of “sigma points” (as opposed
to the randomly sampled points of the EnKF) through the nonlinear forecast equations. The
results are then used to reconstruct the forecasted mean and covariance.

Most similar to our proposed work are [39] and [40], which also propose methods that
use sparse inverse covariance matrices. Both methods justify the appropriateness of using
the inverse space with large scale simulations or real weather data. The former reports
that their computational complexity is polynomial in the state dimension and requires the
stronger assumptions of Gaussianity and structural knowledge. The latter algorithm can be
implemented in parallel, making it very efficient, however, the paper still makes the much

stronger assumptions of Gaussianity and conditional independence.

Proposed Method

We propose a penalized ensemble Kalman filter (PEnKF), which uses an estimator of
the forecast covariance whose inverse is sparsity regularized. While the localization ap-
proaches effectively dampen or zero out entires in the covariance, our approach zeros

out entries in the inverse covariance, resulting in a sparse inverse covariance. This pro-
vides two advantages. First, it makes a weaker assumption about the relationship between
state variables. Second, our approach does not require anything like localization’s detailed
knowledge of which covariances to fix at zero or how much to dampen. Instead, it merely
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favors sparsity in the inverse covariance. Additionally, our method is very easy to im-
plement because it just requires using a different estimator for the covariance matrix in
the EnKF. We can explicitly show the improvement of our estimator through theoretical
guarantees.

Outline

In Section 2, we explain the assumptions in our high-dimensional system and we give
background on the EnKF and `1 penalized inverse covariance matrices. In Section 3, we
give details on how to modify the EnKF to our proposed PEnKF and provide theoretical
guarantees on the filter. Section 4 contains the simulation results of the classical Lorenz 96
system and a more complicated system based on modified shallow water equations.

2.2 Background

In this paper, we consider the scenario of a noisy, non-linear dynamics model f(·), which
evolves a vector of unobserved states vecxt ∈ Rp through time. We observe a noisy vector
vecyt ∈ Rr, which is a transformation of vecxt by a function h(·). Both the process noise
ωt and the observation noise εt are independent of the states vecxt. We assume both noises
are zero mean Gaussian distributed with known diagonal covariance matrices, QQQ and RRR.
Often, it is assumed that the dynamics model does not have noise making ωt a zero vector,
but for generality we allow ωt to be a random vector.

vecxt = f(vecxt−1) + ωt Dynamics Model

vecyt = h(vecxt) + εt Observation Model

As with localization methods, we make an assumption about the correlation structure
of the state vector in order to handle the high dimensionality of the state. In particular, we
assume that relatively few pairs of state variables have non-zero conditional correlation,
Cov(xi, xj|x−(i,j)) 6= 0 where x−(i,j) represents all state variables except xi and xj . This
means that, conditioning on all of the rest of the state, xi and xj are uncorrelated. They
may have a dependency, meaning that the correlation between them is non-zero, but that
correlation is entirely explained by dependence on other parts of the state. A sample exam-
ple is given by a one-dimensional spatial field with the three locations x1, x2, and x3 where
x1 and x3 are both connected to x2, but not each other. In this case, it might be reasonable
to model x1 and x3 as uncorrelated conditional on x2 although not necessarily uncondi-
tionally uncorrelated. Their simple correlation might not be zero, but their conditional or
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partial correlation is zero. This is similar to our assumption, although we do not assume
any particular pattern of the conditional dependencies as you might in a spatial field.

We assume that the set of non-zero conditional correlations is sparse. This is equivalent
to assuming that the inverse correlation matrix of the model state is sparse. In other words,
the inverse covariance matrix will have s non-zero off-diagonal entries. We can also quan-
tify the sparsity level as d, which is the maximum number of non-zero off-diagonals in any
row, so d2 << p2. Note that our assumption is on the conditional correlation or lack of it,
and we do not make any claims on the independence between states. This is because vecxt
is not Gaussian when f(·) is non-linear so uncorrelation does not imply independence thus
the zeros in the inverse covariance matrix do not imply conditional independence. This
assumption is weaker than the one made using localization. That assumption is equivalent
to assuming that the covariance matrix itself is sparse whereas our assumption admits a
dense covariance. Finally, because we do not assume that the state variable interactions are
the same for different time points, we allow the set Et and its size st to change over time.

2.2.1 Ensemble Kalman Filter

The standard EnKF algorithm of [20] is shown in Algorithm 1. At time t = 0, n sam-
ples are drawn from some distribution, which is often chosen as the standard multivariate
normal distribution, if the true initial distribution is unknown, to form an initial ensem-
ble AAA ∈ Rp×n. And, at every time point t, the observations vecyt are perturbed n times
with Gaussian white noise, vecηj ∼ N(vec0,RRR), to form a perturbed observation matrix
DDDt ∈ Rp×n, where vecdjt = vecyt + vecηj .

Algorithm 2.1 Ensemble Kalman Filter
Input: AAA,HHH,QQQ,RRR, and DDDt

where HHH is the the measurement operator
for t ∈ {1, ..., T} do
. Evolve each ensemble member forward in time

vecaj0 = f(vecaj) + vecwj ∀j ∈ {1, ..., n}
where vecwj ∼ N(vec0,QQQ)
. Correct the ensemble with the observations

AAA = AAA0 + K̂KK(DDDt −HAHAHA0)

where K̂KK = P̂PP
f
HHHT (HHHP̂PP

f
HHHT +RRR)−1

. Predict using the analysis ensemble mean
ˆvecxt = 1

n

∑n
j=1 vecaj

end for
Output: ˆvecxt
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The forecast covariance estimator P̂PP
f

is typically the sample covariance of the forecast
ensemble, defined as Ĉov(AAA0) = 1

n−1
(AAA0 − ĀAA0)(AAA0 − ĀAA0)T , where ĀAA0 is the sample mean

vector, but it can be another estimator such as a localized estimator (one that is localized
with a taper matrix), or a penalized estimator as proposed in this paper.

2.2.2 Bregman Divergence and the Penalty

Below, we give a brief overview of the `1 penalized log-determinant Bregman divergence
and some properties of its minimizing estimator, as described in [41]. We denote SSS to be
any arbitrary sample covariance matrix, and Σ = E(SSS) to be its true covariance matrix,
where E(·) is the expectation function.

The Bregman divergence is a very general method to measure the difference between
two functions. Here the functions to be compared are covariance matrices. Since we are
interested in finding a sparse positive definite estimator for the inverse covariance matrix,
a natural choice of Bregman function is − log det(·), which has a domain restricted to
positive definite matrices. Thus Θ, our optimal estimator for the inverse covariance matrix
Σ−1, will minimize

arg min
Θ∈Sp×p++

− log det(Θ)− log det(Σ) + tr
(
Σ(Θ−Σ−1)

)
where Sp×p++ is the set of all symmetric positive definite p × p matrices. This loss function
requires the covariance matrix Σ to be known, but it can approximated by an empirical
loss, which replaces Σ with its empirical equivalent SSS and adds a penalty term to ensure
strict convexity.

The empirical Bregman divergence with function − log det(·) and an `1 penalty term
essentially reduces (by dropping the constants) to

arg min
Θ∈Sp×p++

− log det(Θ) + tr(ΘSSS) + λ||Θ||1 (2.1)

where λ ≥ 0 is a penalty parameter, and || · ||1 denotes an element-wise `1 norm. This
can be generalized so that each entry of Θ can be penalized differently if λ is a matrix and
using a element-wise product with the norm.

This objective has a unique solution, Θ = (S̃SS)−1, which satisfies

∂

∂Θ
Bλ(Θ||SSS−1) = SSS−Θ−1 + λ∂||Θ||1 = 0
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where ∂||Θ||1 is a subdifferential of the `1 norm defined in (2.2) in the appendix. The
solution (S̃SS)−1 is a sparse positive definite estimator of the inverse covariance matrix Σ−1,
and we can write its inverse explicitly as S̃SS = SSS+ λZ̃ZZ, where Z̃ZZ is the unique subdifferential
matrix that makes the gradient zero. See [41] or [42] for a more thorough explanation of Z̃ZZ.

[41] show that for well-conditioned covariances and certain minimum sample sizes,
the estimator (S̃SS)−1 has many nice properties including having, with high probability, the
correct zero and signed non-zero entries and a sum of squared error that converges to 0 as
n, p, s → ∞. These properties will allow our method, described in the next section, to
attain superior performance over the EnKF.

2.3 Penalized Ensemble Kalman Filter

Our penalized ensemble Kalman filter modifies the EnKF, by using a penalized forecast
covariance estimator P̃PP

f
. This penalized estimator is derived from its inverse, which is the

minimizer of (2.1). Thus from Section 2.2.2.2, it can be explicitly written as P̃PP
f

= P̂PP
f

+λZ̃ZZ,
implying that we essentially learn a matrix Z̃ZZ, and use it to modify our sample covariance
P̂PP
f

so that (P̂PP
f

+ λZ̃ZZ)−1 is sparse. From this, our modified Kalman gain matrix is

K̃KK = (P̂PP
f

+ λZ̃ZZ)HHHT
(
HHH(P̂PP

f
+ λZ̃ZZ)HHHT +RRR

)−1

.

The intuition behind this estimator is that since only a small number of the state vari-
ables in the state vector vecxt are conditionally correlated with each other, the forecast

inverse covariance matrix (PPPf )−1 will be sparse with many zeros in the off-diagonal en-

tries. Furthermore, since minimizing (2.1) gives a sparse estimator for (PPPf )−1, this sparse
estimator will accurately capture the conditional correlations and uncorrelations of the state
variables. Thus P̃PP

f
will be a much better estimator of the true forecast covariance matrix

PPPf because the `1 penalty will depress spurious noise in order to make (P̃PP
f
)−1 sparse, while

the inverse of the sample forecast covariance (P̂PP
f
)−1, when it exists, will be non-sparse. As

in most penalized estimators, the P̃PP
f

is a biased estimator of the forecast covariance, while
the sample forecast covariance is not. But because the forecast distribution is corrected
for in the analysis step, it is acceptable to take this bias as a trade-off for less variance
(sampling errors). A more in-depth study of the consequences of this bias in `1 penalized
inverse covariance matrices and their inverses is described in [42]. Additionally, this bias
due to penalization in the inverse covariance behaves in a similar way as variance inflation
because the bias on the diagonal of (P̃PP

f
)−1 is due to it being increased by λ, so having a

biased estimator is not necessarily disadvantageous. And finally, since we do not assume
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the state variables interact in the same way over all time, we re-learn the matrix Z̃ZZ every
time the ensemble is evolved forward.

We can choose the penalty parameter λ in a systematic fashion by calculating a regu-
larization path, solving (2.1) for a list of decreasing λs, and evaluating each solution with
an information criterion such as an extended or generalized Akaike information criterion
(AIC) or Bayesian information criterion (BIC), [43, 44]. Additionally, if we have knowl-
edge or make assumptions about the moments of the ensemble’s distribution, we know the
optimal proportionality of the penalty parameter (see proof of Theorem 2.3.1. Thus, we
can refine the penalty parameter by calculating a regularization path for the constant of the
optimal order. In Section 2.4, we describe a practical approach to choosing λ using a free
forecast model run like in [36] and the BIC.

2.3.1 Implications on the Kalman Gain Matrix

The only estimated randomness in the EnKF occurs in the ensemble update step, which is
a linear function of the Kalman gain matrix. So, having an accurate estimator of the true
Kalman gain matrix KKK will ensure that the algorithm performs well. And, because the true
Kalman gain matrix inherits many of the properties of the forecast covariance matrix PPPf ,
our modified Kalman gain matrix K̃KK will benefit from many of the nice properties of our
forecast covariance estimator P̃PP

f
.

How good of an estimator we can get for the forecast covariance matrix PPPf will of
course depend on its structure. If it is close to singular or contains lots of entries with mag-
nitudes smaller than the noise level, it will be always be difficult to estimate. So for the
following theorem, we assume that the forecast covariance matrix is well-behaved. This
means that it satisfies the standard regularity conditions (incoherence, bounded eigenvalue,
sparsity, sign consistency and monotonicity of the tail function) found in many places in-
cluding [41, 42] and also defined in the appendix.

Theorem 2.3.1. Under regularity conditions and for the system described in Section 2.2,

when λ �
√

3 log(p)/n for sub-Gaussian ensembles and λ �
√
p3/m/n for ensembles

with bounded 4mth moments,

Sum of Squared Errors of K̃KK . Sum of Squared Errors of K̂KK

and as long as the sample size is at least o(n) = 3d2 log(p) for sub-Gaussian ensembles

and o(n) = d2p3/m for ensembles with bounded 4mth moments,

Sum of Squared Errors of K̃KK→ 0 with high probability as n, p, s→∞.
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The above theorem gives us a sense of the performance of the modified Kalman gain
matrix in comparison to the sample Kalman gain matrix. It shows that with high probability,
the modified Kalman gain matrix will have an asymptotically smaller sum of squared error
(SSE) than a Kalman gain matrix formed using the sample forecast covariance matrix.
Also, for a given number of states p, the theorem tell us the minimum ensemble size n
required for our modified Kalman gain matrix to be a good estimate of the true Kalman gain
matrix. The sub-Gaussian criterion, where all moments are bounded, is actually very broad
and includes any state vectors with a strictly log-concave density and any finite mixture
of sub-Gaussian distributions. However even if not all moments are bounded, the larger
the number of bounded fourth-order moments m, the smaller the necessary sample size.
In comparison, the sample Kalman gain matrix requires o(n) = p2 samples in the sub-
Gaussian case, and also significantly more in the other case (see appendix for exact details).
When the minimum sample size for a estimator is not met, good performance cannot be
guaranteed because the asymptotic error will diverge to infinity instead of converge to zero.
This is why when the number of ensembles n is smaller than the number of states p, just
using the sample forecast covariance matrix is not sufficient.

2.3.2 Implications on the Analysis Ensemble

It is well known that due to the additional stochastic noise used to perturb the observations,
the covariance of the EnKF’s analysis ensemble, Ĉov(AAA) is not equivalent to its analysis
covariance calculated by the Gaussian update P̂PP

a
= (III − K̂KKHHH)P̂PP

f
. This has led to the de-

velopment of deterministic variants such as the square root and transform filters, which do
have Ĉov(AAA) = P̂PP

a
. However, in a non-linear system, this update is sub-optimal because

it uses a Gaussian approximation of Pr(vecxt|vecyt−1), the actual distribution of forecast
ensemble AAA0. Thus let us denote PPPa as the true analysis covariance defined as∫

(vecxt)2 Pr(vecxt|vecyt)dvecxt −
(∫

vecxt Pr(vecxt|vecyt) dvecxt

)2

where Pr(vecxt|vecyt) = Pr(vecyt|vecxt) Pr(vecxt|vecyt−1)/Pr(vecyt) is not Gaussian.
Then, E(P̂PP

a
) 6= PPPa and there will always be this analysis spread error regardless of whether

Ĉov(AAA) = P̂PP
a

or not.
As also mentioned in [33], actually none of the analysis moments of the EnKF are

consistent with the true moments including the analysis mean. However this analysis error
is present in all methods that do not introduce particle filter properties to the EnKF, and
thus is not the focus of our paper. We are primarily concerned with the sampling errors in
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high-dimensional systems and simply wanted to address that the lack of equivalence to the
Gaussian update is irrelevant in our case of a non-linear system.

2.3.3 Computational Time and Storage Issues

The computational complexity of solving for the minimizer of (2.1) with the GLASSO
algorithm from [45] is O(sp2) because it is a coordinate descent algorithm. Although the
final estimator (P̃PPf )−1 is sparse and only requires storing s+p values, the algorithm requires
storing p × p matrices in memory. However, by using iterative quadratic approximations
to (2.1), block coordinate descent, and parallelization, the BIGQUIC algorithm of [46] has
computational complexity O(s(p/k)) and only requires storing (p/k) × (p/k) matrices,
where k is the number of parallel subproblems or blocks.

The matrix operations for the analysis updateAAA = AAA0 +up can also be linear in p ifRRR is
diagonal and HHH is sparse (like in banded interpolation matrices) with at most h << q non-
zero entries in a row. Then ((P̃PPf )−1 +HHHTRRR−1HHH) has at most (s+ p+ qh2) << p2 non-zero
entries and can be computed with O(s + p + qh2) matrix operations. And, solving for up
only takes O(n(s+p+qh2)) matrix operations because it is made from the solutions to the
sparse linear systems ((P̃PPf )−1 + HHHTRRR−1HHH)up = HHHTRRR−1(DDDt − HHHAAA0) where the right-hand
side takes O(pq2 + qpn) matrix operations to form.

2.4 Simulations

In all simulations, we compare to an ensemble Kalman filter where the forecast covariance
matrix is localized with a taper matrix generated from equation (4.10) in [47]. The taper
matrix parameter c is chosen using the true interactions of the system, so the localization
should be close to optimal for simple systems. We use this TAPER-EnKF as the baseline
because if the PEnKF can do as well as this filter, it implies that the PEnKF can learn a
close to optimal covariance matrix, even without the need to impose a known neighborhood
structure. If the PEnKF can do better than this filter, it implies that the PEnKF is learning
some structure that is not captured by localization with a taper matrix.

In order to choose the penalty parameter for PEnKF, we assume that the state variables
in our examples are sub-Gaussian. In this case, we can set λ = cλ

√
R log(p)/n for some

appropriate choice of cλ (see the proof of Theorem 2.3.1), where R is the observation
noise’s variance. To estimate cλ, we generate a representative ensemble (which may also
be our initial ensemble) using a free forecast run like in [36] in which a state vector is
drawn at random (e.g. from N(vec0, III)) and evolved forward. The representative ensemble
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is produced by taking a set of equally spaced points (e.g. every 100th state vector) from the
evolution. This ensemble is used to choose cλ from some predefined interval by minimizing
the extended Bayesian information criterion (eBIC) of [43] if p > n or the BIC of [48] if
p < n.

Of course (2.1) is not a likelihood unless the states are Gaussian. So, we have a mis-
specified model where we are treating the states as having a Gaussian likelihood when
evaluating a potential penalty parameter using an information criterion. In this case, we
should correct our information criterion for the misspecification as in [44]. However, this
can be quite difficult and we leave an in-depth exploration of this problem for future work.
In the meantime, we assume the misspecified information criterion is close to the correct
information criterion, and it does seem to perform well despite its lack of optimality.

We define the root mean squared error (RMSE) used to evaluate a filters performance
by

RMSEt =
√

(|| ˆvecxt − vecxt||2)2/p

where RMSEt is an element of a vector indicating the RMSE at time point t, vecxt is
a vector of the true hidden state variables, ˆvecxt is a filter’s estimators for the true state
vector, and || · ||2 is the `2 norm. We will refer to quantiles such as the mean or median
RMSE to be the mean or median of the elements of the RMSE vector.

2.4.1 Lorenz 96 System

The 40-state Lorenz 96 model is one of the most common systems used to evaluate ensem-
ble Kalman filters. The state variables are governed by the following differential equations

dxit
dt

=
(
xi+1
t − xi−2

t

)
xi−1
t − xit + 8 ∀i = 1, . . . , 40

where x41
t = x1

t , x
0
t = x40

t , and x−1
t = x39

t .
We use the following simulation settings. We have observations for the odd state vari-

ables, so vecyt = HHHvecxt+εt whereHHH is a 20×40 matrix with ones at entries {i, j = 2i−1}
and zeros everywhere else and εt is a 20 × 1 vector drawn from a N(vec0, 0.5 III). We ini-
tialize the true state vector from a N(vec0, III) and we assimilate at every 0.4t time steps,
where t = 1, . . . , 2000. The system is numerically integrated with a 4th order Runge-Kutta
method and a step size of 0.01. The main difficulties of this system are the large assimila-
tion time step of 0.4, which makes it significantly non-linear, and the lack of observations
for the even state variables.
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Since the exact equations of the Lorenz 96 model are fairly simple, it is clear how the
state variables interact with each other. This makes it possible to localize with a taper matrix
that is almost optimal by using the Lorenz 96 equations to choose a half-length parameter
c. However, we do not incorporate this information in the PEnKF algorithm, which instead
learns interactions by essentially extracting it from the sample covariance matrix. We set
the penalty parameter λ = cλ

√
0.5 log(p)/n by using an offline free forecast run to search

for the constant cλ in the range [0.1, 10] as described at the beginning of this section.
We average the PEnKF estimator of the forecast inverse covariance matrix at the time

points 500, 1000, 1500, and 2000 for 50 trials with 25 ensembles members, and we com-
pare it to the “true” inverse covariance matrix, which is calculated by moving an ensemble
of size 2000 through time. In Figure 2.1, each line represents the averaged normalized rows
of an inverse covariance matrix and the lines are centered at the diagonal. The penalized
inverse covariance matrix does a qualitatively good job of capturing the neighborhood in-
formation and successfully identifies that any state variables far away from state variable i,
do not interact with it.

Figure 2.1: Each line represents the normalized values of entries of row i of the inverse
covariance matrix, ordered from i − 20 to i + 20, where the values are averaged over 50
trials. The PEnKF algorithm is successful at identifying that the state variables far away
from variable i have no effect on it, even though there are fewer ensemble members than
state variables.

Because the PEnKF is successful at estimating the structure of the inverse covariance
matrix and thus the forecast covariance matrix, we expect it will have good performance for
estimating the true state variables. We compare the PEnKF to the TAPER-EnKF and other
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estimators from [49, 33, 34, 50] by looking at statistics of the RMSE. Note that in order
to have comparable statistics to as many other papers as possible, we do not add variance
inflation to the TAPER-EnKF (like in [49, 34, 50] and unlike in [33] ). Also, like in those
papers, we initialize the ensemble from a N(vec0, III), and we use this ensemble to start the
filters. Note that in this case, the initial ensemble is different than the offline ensemble that
we use to estimate the PEnKF’s penalty parameter. This is because the initial ensemble is
not representative of the system and its sample covariance is an estimator for the identity
matrix. The TAPER-EnKF, which is simply called the EnKF in the other papers, is localize
by applying a taper matrix where c = 10 to the sample covariance matrix.

We show the mean, median, 10%, and 90% quantiles of the RMSE averaged over 50
independent trials for ensembles of size 400, 100, 25, and 10 in Table 2.1. For 400 ensem-
ble members, the PEnKF does considerably better than the TAPER-EnKF and its relative
improvement is larger than that of the XEnKF reported in [49] and similar to those of the
NLEAF, EnKPF, and XEnKF reported in [33, 34, 50] respectively. For 100 ensemble mem-
bers, the PEnKF does do worse than the TAPER-EnKF and EnKPF of [34]; this we suspect
may be do to the bias-variance trade-off when estimating the forecast covariance matrix.
The PEnKF has the most significant improvement over the TAPER-EnKF in the most re-
alistic regime where we have fewer ensemble members than state variables. For both 25
and 10 ensemble members, the PEnKF does considerably better than the TAPER-EnKF
and it does not suffer from filter divergence, which [34] report occurs for the EnKPF at 50
ensemble members.

While it is clear the PEnKF does well even when there are fewer ensemble members
than state variables, 40 variables is not enough for the problem to be considered truly high-
dimensional. We now consider simulation settings where we increase the dimension of the
state space p while holding the number of ensemble members n constant. We initialize
the ensemble from the free forecast run and set λ and the taper matrix in the same way as
in the previous simulations. We examine the mean RMSE averaged over 50 trials and its
approximate 95% confidence intervals in the Figure 2.2. The mean RMSE of the PEnKF is
significantly smaller than the mean RMSE of the TAPER-EnKF for all p. Additionally the
confidence intervals of the mean RMSE are much narrower than the ones for the TAPER-
EnKF. This suggest that there is little variability in the PEnKF’s performance, while the
TAPER-EnKF’s performance is more dependent on the trial, with some trials being “easier”
for the TAPER-EnKF than others.
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Table 2.1: Mean, median, 10% and 90% quantile of RMSE averaged over 50 trials. The
number in the parentheses is the summary statistics’ corresponding standard deviation.

n = 400 10% 50 % Mean 90%
TAPER-EnKF 0.580 (.01) 0.815 (.01) 0.878 (.02) 1.240 (.03)

PEnKF 0.538 (.02) 0.757 (.03) 0.827 (.03) 1.180 (.05)

n = 100 10% 50 % Mean 90%
TAPER-EnKF 0.582 (.01) 0.839 (.02) 0.937 (.03) 1.390 (.06)

PEnKF 0.717 (.04) 0.988 (.04) 1.067 (.04) 1.508 (.05)

n = 25 10% 50 % Mean 90%
TAPER-EnKF 0.769 (.04) 1.668 (.13) 1.882 (.09) 3.315 (.11)

PEnKF 0.971 (.03) 1.361 (.03) 1.442 (.03) 2.026 (.04)

n = 10 10% 50 % Mean 90%
TAPER-EnKF 2.659 (.07) 3.909 (.06) 3.961 (.05) 5.312 (.06)

PEnKF 1.147 (.02) 1.656 (.02) 1.735 (.02) 2.437 (.04)

2.4.2 Modified Shallow Water Equations System

While the Lorenz 96 system shows that the PEnKF has strong performance because it is
successful at reducing the sampling errors and capable of learning the interactions between
state variables, the system is not very realistic in that all state variables are identical and
the relationship between state variables is very simplistic. We now consider a system based
on the modified shallow water equations of [51], which models cloud convection with
fluid dynamics equations, but is substantially computationally less expensive than actual
numerical weather prediction models. The system has three types of state variables: fluid
height, rain content, and horizontal wind speed.

To generate this system we use the R package “modifiedSWEQ” created by [52], and
the same simulation settings as in [36]. So we always observe the rain content, but wind
speed is only observed at locations where it is raining and fluid height is never observed.
Explicitly for the R function generate.xy(), we use hc = 90.02, hr = 90.4 for the cloud
and rainwater thresholds, a 0.005 rain threshold, σr = 0.1, σu = 0.0025 to be the standard
deviation of the observation noise for rain and wind respectively, and RRR = diag([R2

r =

0.0252 R2
u = σ2

u]) to be the estimated diagonal noise covariance matrix. All other param-
eters are just the default ones in the function. The initial ensemble is drawn from a free
forecast run with 10000/60 time-steps between each ensemble member. We give a snap-
shot of the system at a random time point in Figure 2.3. There are p = 300 state variables
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Figure 2.2: The RMSE of the TAPER-EnKF and PEnKF over 50 trials. The darker lines of
each linetype are the mean and the colored areas are the 95% confidence intervals. There
is clear separation between the RMSE of the two filters with the PEnKF’s error as signifi-
cantly smaller.

for each type, making the state space have 900 dimensions and we assimilate the system
every 5 seconds for a total time period of 6 hours. Like in [36], we choose to use only
50 ensemble members and we do not perturb rain observations that are 0, because at these
points there is no measurement noise.

The TAPER-EnKF uses a 3p× 3p taper matrix with c = 5, however the entries off the
p × p block diagonals are depressed (they are multiplied by 0.9). The NAIVE-LEnKPF
uses the same settings as in [36], so a localization parameter of 5km, which gives the same
taper matrix as the one used in the TAPER-EnKF, and an adaptive γ parameter. For the
PEnKF, we set the penalty parameter to be a 3p × 3p matrix, Λ = cλ

√
λRλTR log(3p)/n,

where the first p entries of the vector λR are reference units and the rest are to scale for
the perturbation noise of the different state types. So the first p are 1 (reference) for fluid
height, the second p are Ru for wind, and the last p are Rr for rain. We choose the constant
cλ with eBIC like before and search in the range [.005, 1].

Figure 2.4 shows the mean and approximate 95% confidence intervals of the RMSE
for fluid height, wind speed, and rain content over 6 hours of time using 50 trials. The
mean RMSE for all three filters are well within each others’ confidence intervals for the
fluid height and wind variables. For the rain variables, the mean RMSE of neither the
TAPER-EnKF nor the NAIVE-LEnKPF are in the PEnKF’s confidence intervals and the
mean RMSE of the PEnKF is on the boundary of the other two models’ confidence inter-
vals. This strongly suggests that the PEnKF’s rain error is statistically smaller than the rain
errors of the other two filters. Since this simulation is not as simple as the previous ones,
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Figure 2.3: Fluid height, rain, and wind at 300 different locations at an instance of time.
The blue dots are observations; rain is always observed, wind is only observed when the
rain is non-zero, fluid height is never observed. The dashed lines in fluid height are the
cloud and rainwater thresholds.

the interactions between the state variables are most likely not as effectively captured by
the taper matrix or other localization methods, and the results from this simulation suggest
that the PEnKF is learning more accurate interactions for the rain variables. We do not
show the results of the BLOCK-LEnKPF of [36] because the algorithm suffered from filter
divergence in 27 of the 50 trials, and in the trials where it did not fail, it performed very
similar to the NAIVE-LEnKPF.

2.5 Discussion

We propose a new algorithm based on the ensemble Kalman filter that is designed for su-
perior performance in non-linear high dimensional systems. This algorithm we call the
penalized ensemble Kalman filter because it uses the popular statistical concept of penal-
ization/regularization in order to make the problem of estimating the forecast covariance
matrix well-defined (strictly convex). This in turn both decreases the sampling errors in
the forecast covariance estimator by trading it off for bias and prevents filter divergence by
ensuring that the estimator is positive definite. The PEnKF is computationally efficient in
that it is not significantly slower than the standard EnKF algorithms and easy to implement
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Figure 2.4: The RMSE of the TAPER-EnKF, NAIVE-LEnKPF, and PEnKF over 50 trials.
The darker lines of each linetype are the mean and the colored areas are the 95% confidence
intervals. All three filters are pretty indistinguishable except for the PEnKF’s rain error,
which is statistically smaller than the others.

since it only adds one additional step, and this step uses the well-established GLASSO
algorithm available in almost any scientific computing language. We give theoretical re-
sults that prove that the Kalman gain matrix constructed from this estimator will converge
to the population Kalman gain matrix under the non-simplistic asymptotic case of high-
dimensional scaling, where the sample size and the dimensionality increase to infinity.

Through simulations, we show that the PEnKF can do at least as well as, and some-
times better than, localized filters that use much more prior information. We emphasize
that by doing just as well as the TAPER-EnKF which has a close to optimal taper matrix,
the PEnKF is effectively correctly learning the structure of interactions between the state
variables. In a non-simulation setting where there is no ground-truth knowledge of the in-
teractions between state variables, correct localization is much more difficult, making any
localized filter’s performance likely sub-optimal. In contrast, since the PEnKF does not use
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any of this “oracle” information, its performance will not differ in this way between sim-
ulations and real-life situations. The more complicated simulation, based on the modified
shallow water equations, highlights this advantage of the PEnKF through its substantial
superior performance in estimating the hidden states of the rain variables. Another feature
of the approach is that it seems to require less variance inflation. None was applied to any
algorithm in our comparison, but the PEnKF approach never collapsed. The penalization of
the inverse covariance actually produces a slight inflation on the diagonal of the covariance,
which seems to help in this regard.

While we display a very naive way of searching for a good penalty parameter for the
PEnKF in the simulations, it is theoretically incorrect and thus not a way to chose the
truly optimal penalty parameter. We do believe deriving a specific information criterion for
our PEnKF with correct theoretical properties is very important since the PEnKF can be
sensitive to the penalty parameter. However, this model selection in misspecified models
problem is not trivial to solve and an active topic in current statistical research. Therefore,
we will leave deriving a theoretically correct information criterion for future work.

Definition.

(D1) σmin(AAA) and σmax(AAA) denote the minimum and maximum singular values of any ma-

trix AAA.

(D2) The spectral ||·||2 and Frobenius ||·||F norms are submultiplicative ‖AAABBB‖ ≤ ‖AAA‖‖BBB‖
and unitary invariant ‖AAAUUU‖ = ‖UUUTAAA‖ = ‖AAAT‖ where UUUUUUT = III. So ‖AAABBB‖F =

‖AAAUUUDDDVVVT ||F = ‖AAAUUUDDD‖F ≤ ‖AAAUUUσmax(DDD)‖F = ‖AAAUUU‖F‖DDD‖2 = ‖AAA||F‖BBB‖2

(D3) ||AAA−1||2 = σmax(AAA−1) = 1/σmin(AAA)

(D4) KKK and K̃KK can be decomposed like

KKK = PPPfHHHT (HHHPPPfHHHT +RRR)−1

= PPPfHHHT
(
RRR−1 −RRR−1HHH((PPPf )−1 +HHHTRRR−1HHH)−1HHHTRRR−1

)
=
(
PPPf −PPPf

(
(PPPf )−1(HHHTRRR−1HHH)−1 + III

)−1
)
HHHTRRR−1

=
(
PPPf −PPPf

(
(HHHTRRR−1HHH)−1 +PPPf

)−1
PPPf
)
HHHTRRR−1

=
(
(PPPf )−1 +HHHTRRR−1HHH

)−1
HHHTRRR−1.

(D5) E is the edge set corresponding to non-zeros in (PPPf )−1 and Ec is its complement. Γ

is the Hessian of (2.1).
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(D6) ∂‖Θ‖1 can be any number between -1 and 1 where Θ is 0 because the derivative of

an absolute value is undefined at zero. Thus, it is the set of all matrices ZZZ ∈ Sp×p

such that

Zij =

 sign(Θij) if Θij 6= 0

∈ [−1, 1] if Θij = 0 .
(2.2)

(D7) A bounded 4mth moment is the highest fourth-order moment of a random variable

that is finite, where m is the number of fourth-order moments.

Lemma 2..1. Because HHH is a constant matrix, it does not affect the asymptotic magnitude

of the modified or sample Kalman gain matricies under any norm.

Proof of Lemma 2..1. ||K̃KK|| � ||HHH|| ||K̃KK|| � ||HHHK̃KK|| under any norm where HHHK̃KK

= HHHP̃PP
f
HHHT (HHHP̃PP

f
HHHT +RRR)−1 =

(
III +RRR(HHHP̃PP

f
HHHT )−1

)−1

= RRRRRR−1
(
RRR−1 + (HHHP̃PP

f
HHHT )−1

)−1

RRR−1

= III−RRR(HHHP̃PP
f
HHHT +RRR)−1

The same argument holds for K̂KK, where (HHHP̂PP
f
HHHT )−1 is the pseudoinverse if the inverse does

not exist.

Assumptions. The following assumptions are necessary for the minimizer of (2.1) to have

good theoretical properties, [41]. Thus we assume they are true for the theorem.

(A1) There exists some α ∈ (0, 1] such that max
e∈Ec
||ΓeE(ΓEE)−1||1 ≤ (1− α).

(A2) The ratio between the maximum and minimum eigenvalues of PPPf is bounded.

(A3) The maximum `1 norms of the rows of PPPf and (ΓEE)
−1 are bounded.

(A4) The minimum non-zero value of (PPPf )−1 is Ω(
√

log(p)/n) for a sub-Gaussian state

vector and Ω(
√
p3/m/n) for state vectors with bounded 4mth moments.

Our assumptions are stronger than necessary, and it is common to allow the error rates to

depend on the bounding constants above, but for simplicity we give the error rates only as

a function of the dimensionality n, p and sparsity s, d parameters.
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Proof of Theorem 2.3.1. From [53] and [41], we know that for sub-Gaussian random vari-
ables and those with bounded 4mth moments respectively, the SSE of the sample covari-
ance matrix are  O (p2/n)

O
(
(log2 log2(p))4 p(p/n)1−1/m

) (2.3)

and with high probability and the SSE of (P̃PP
f
)−1 are O (3(s+ p) log(p)/n) for λ �

√
3 log(p)/n

O
(
(s+ p)p3/m/n

)
for λ �

√
p3/m/n

(2.4)

with probability 1 - 1/p.

‖HHHK̂KK−HHHKKK‖2
F = ‖RRR(HHHPPPfHHHT +RRR)−1 −RRR(HHHP̂PP

f
HHHT +RRR)−1‖2

F

= ‖RRR
(

(HHHP̂PP
f
HHHT +RRR)−1

(
(HHHP̂PP

f
HHHT +RRR)− (HHHPPPfHHHT +RRR)

)
(HHHPPPfHHHT +RRR)−1

)
‖2
F

= ‖RRR(HHHP̂PP
f
HHHT +RRR)−1HHH(P̂PP

f
−PPPf )HHHT (HHHPPPfHHHT +RRR)−1‖2

F

≤ ‖RRR(HHHP̂PP
f
HHHT +RRR)−1HHH‖2

2‖(P̂PP
f
−PPPf )‖2

F‖HHHT (HHHPPPfHHHT +RRR)−1‖2
F

So, the second term has the rates in (2.3) and the final term is a constant. The first term is
also a constant because

‖RRR(HHHP̂PP
f
HHHT +RRR)−1HHH‖2

2 ≤ ‖(HHHP̂PP
f
HHHTRRR−1 + III)−1‖2

2‖HHH‖2
2

= ‖HHH‖2
2/(σmin(HHHP̂PP

f
HHHTRRR−1 + III))2 ≤ ‖HHH‖2

2.

Thus ‖HHHK̂KK−HHHKKK‖2
F also has the rates in (2.3) and from Lemma 2..1, ‖K̂KK−KKK‖2

F does too.

‖K̃KK−KKK‖2
F

= ‖
(

((P̃PP
f
)−1 +HHHTRRR−1HHH)−1 − ((PPPf )−1 +HHHTRRR−1HHH)−1

)
HHHTRRR−1‖2

F

= ‖
(

((PPPf )−1 +HHHTRRR−1HHH)−1
(

((PPPf )−1 +HHHTRRR−1HHH)

−((P̃PP
f
)−1 +HHHTRRR−1HHH)

)
((P̃PP

f
)−1 +HHHTRRR−1HHH)−1

)
HHHTRRR−1‖2

F

≤ ‖((PPPf )−1 +HHHTRRR−1HHH)−1‖2
F‖(PPPf )−1 − (P̃PP

f
)−1‖2

F‖K̃KK‖2
2

The first term is a constant and the second term has the rates in (2.4). The final term is also
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a constant because ||K̃KK||22 � ||HHHK̃KK||22 = 1/σmin(III+RRR(HHHP̃PP
f
HHHT )−1) ≤ 1 . Thus ‖K̃KK−KKK‖2

F also
has the rates in (2.4).
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CHAPTER 3

Sequential Sparse Maximum Entropy Models
for Non-linear Regression

In many real-world applications, data is not collected as one batch, but sequentially over
time, and often it is not possible or desirable to wait until the data is completely gathered
before analyzing it. Additionally the data generating process may not be stationary, making
it undesirable to use data that is too “old” in time. Thus, we propose a framework to
sequentially update a model by projecting it with the principle of minimum relative entropy.
Our framework allows for non-linear models using a kernel representation to represent large
numbers of features and can be seen as a generalization of many popular algorithms. We
show the performance and flexibility of our framework of models in both simulated and
real datasets.

3.1 Introduction

With the rise of big data, where any and all data is collected, it has become increasingly
important to develop sequential models that are able to continuously incorporate new data
into a pre-existing model i.e. update a model. These online models are particularly crucial
in applications that require real-time responses such as wearable devices that continuously
give feedback to the user. To this end, we propose a sequential framework to update the
probabilistic regression model built from Jayne’s principle of maximum entropy.

This paper discusses how the problem of minimizing the constrained relative entropy
for a given model can be cast as recursive Bayesian estimation where the likelihood func-
tion is a log-linear model formed from a series of constraints and weighted by Lagrange
multipliers. For regression problems with Gaussian noise, the optimized model shares sim-
ilarities with online regression algorithms, which have been previously studied in []. This
framework is built on concepts from the maximum entropy discrimination framework of
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[54], which has been extended for sequential data in [55] where they present an online
maximum margin classifier specifically for supervised and semi-supervised binary classifi-
cation problems.

We are interested in situations where we receive a stream of data X(1),X(2), . . . over
time t where each row ofX(t) is a sample in the n× p dimensional matrix with p denoting
the number of predictor variables and n = n(t) may vary with time. Given these features,
the data has a n × 1 vector corresponding to the continuous response variable y(t). For
notational simplicity, we will use the ˜ over features to indicate that there is an intercept
term x̃ = [1 x] and the subscript (1 : τ) to denote a vertical concatenation of samples up to
time τ e.g. X(1:2) = [X(1),X(2)] is a (n(1) +n(2))× p matrix. The rest of the paper is orga-
nized as follows: Section 2 gives a review of online linear and non-linear model algorithms.
Section 3 discusses how to formulate a regression model in the minimum relative entropy
framework and how this framework gives rise to a natural updating procedure. Section 4
validates the method by simulation and we discuss an application to a dataset of.

3.2 Review of Filtering

Methods that are capable of incorporating new data over time have numerous names in lit-
erature including: filtering, streaming, sequential modeling, and online learning, but almost
all of these methods have the underlying assumption that the data is generated according
to a Markov process. In this section we will review modeling under a stationary system
(parameter estimation) for both linear and non-linearly generated observations and discuss
modifications for modeling in a dynamic system.

3.2.1 Review of Linear Filters

Online learning for linear regression is a well studied problem in the literature. In lin-
ear regression, the response yi and predictor variables Xi are assumed to have a lin-
ear relationship with additive Gaussian noise. The observed or measurement model is
yi = Xiθ + b + ei where the noise terms ei are independent, identically distributed Gaus-
sian random variables with variance ε. Thus, minimizing the squared loss ||y−(Xθ+b)||22
for weights θ and intercept b is equivalent to maximizing the conditional Gaussian likeli-
hood yi|Xi ∼ N(Xiθ + b, ε).

Solving for the maximum likelihood estimators (MLE) by applying stochastic gradient
descent (ascent) on the log likelihood function `(·) leads to the least mean squares (LMS)
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algorithm which has updates

θ′ = θ +
1

ε
∇θ` = θ +

1

ε
XT

(t)(y(t) −X(t)θ)

b′ = b+
1

ε
∇b` = b+

1

ε

n∑
i=1

(y(t)i − b)

However, this filter is only optimal when using an optimal step size 1
ε

and typically requires
multiple passes through the mini-batches of data {X(t),y(t)}. This is not ideal in a stream-
ing setting where previous data is typically discarded or there are some constraints on the
amount of previous data that can be stored.

If instead we adaptively estimated the step size, the recursive least squares (RLS) al-
gorithm finds the optimum in a single pass through of the data. The RLS algorithm has
update

Θ′ = Θ + (P ′/ε)X̃T
(t)(y(t) −Θ)

where is Θ is a (p + 1) × 1 vertically concatenated vector [b,θ], X̃(t) = [1X(t)] is the
feature vectors with an intercept term, and P is recursively estimated as

P ′ =
(
P − PX̃T

(t)(εI + X̃(t)PX̃
T
(t))
−1X̃(t)P

)
instead of set to be the identity in the LMS algorithm. Similar to the connections between
minimizing the least squares problem and Gaussian maximum likelihood, the RLS algo-
rithm can be viewed probabilistically as a Gaussian filter. Thus after sweeping through
the τ mini-batches of data, the final estimator Θ will be equivalent to solving for a MAP
estimator of the full data problem where the prior is Θ ∼ N(0, εI) or a MLE estimator as
ε→∞ and the prior tends to non-informative.

The RLS algorithm can also be viewed as a Newton method because it uses second
order information. P ′/ε is an estimate of the inverse Hessian, which becomes clear when
the recursive update is rewritten as P ′−1 = P−1 + (1/ε)X̃T

(t)X̃(t). Thus the step size of the
RLS algorithm (εP−1 + X̃T

(t)X̃(t))
−1 is a weighted sum of the previous estimate and the

amount of variance in the current data where ε can be interpreted as a forgetting factor.

3.2.2 Review of Non-Linear Filters

Now we consider the scenario where the measurement model, yi = f(Xi)θ + b+ ei, is no
longer a direct linear relationship, but linear with respect to a function f(·) that maps the
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original features to a new feature space with corresponding weights θ. Often this function
can only be explicitly described through its inner products, so we define a parameter trans-
formation ω(Xi) = f(Xi)θ and kernel function as k(x, x′) = 〈f(x), f(x′)〉. As ei are still
additive Gaussian noise, an ideal filter still aims to minimize the squared loss between yi
and ω(Xi) + b.

Because the least squares problem can be explicitly defined with inner products, the
linearly optimal RLS algorithm can be extended to solve problems with a non-linear func-
tion ω(·) using the kernel trick. This is first proposed in [56] where they derive a kernel
based version of the RLS algorithm, dubbed KRLS, which is capable of recursively solving
nonlinear least squares problems. However, because the KRLS algorithm is recursive, the
computational complexity explodes as sample size increases. In the next section, we will
explicitly show how this recursive kernel not only has computational issues, but is also not
ideal in a streaming setting as it requires evaluations of the kernel function between any
new point x′ and all the previous data {D(t)}τt=1.

[56] and [57] deal with the problems of the recursive kernel by proposing algorithms
that are sparse and thus require evaluations with fewer previous data points. They attain this
sparsity by construction using their proposed approximate linear dependence (ALD) con-
dition, which only cares about data points that are not approximately linear combinations
of previous data points. Given a dictionary of m data points that are a subset of the total
training set, a new point x′ is only admitted into the dictionary if it violates the condition

min
α
αTk(X(t),X(t))α− 2αTk(X(t), x

′) + k(x′, x′) ≤ tol

where the sparsity level (size of m) depends on the tolerance level. This condition is used
to construct the kernel for an online SVR-like algorithm and an online KRLS algorithm in
[57] and [56] respectively.

[58] approach the non-linear least squares problem using an online Gaussian Process
(GP) model where they are also concerned with the linear dependence of the features.
Similar to the ALD condition, they only include the new point x′ into their “basis vector
set” if it violates

k(x′, x′)− k(x′,X(t))k(X(t),X(t))
−1k(X(t), x

′) < tol

and they also use this value to decide which inputs to keep when the set reaches the maxi-
mum size. [59] also have a sparse online GP model, but they construct sparsity (zeros) in
the covariance matrix using compactified kernel functions.
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3.2.3 Filtering in Dynamic Systems

Models for online parameter estimation assume a very specific Markov process where the
observed response is generated according to the measurement model previously discussed,
but the parameters of this measurement model are the latent variables in a stationary system
model and thus constant. As a Gaussian filter, the RLS algorithm has obvious connections
to this special stationary case of the Kalman filter; (P /ε)X̃T

(t) is the Kalman gain matrix
and the updates for Θ′,P ′ are the a posteriori state and covariance estimates respectively.
From this Kalman filter perspective, it is clear why the RLS algorithm converges to the
optimal parameter estimates in a single pass through of the data because it is well known
that a Kalman filter is a Bayesian optimal filter for linear systems.

This stationary Markov process is often not applicable for real data though. The real
world is not frozen in time, so data is often not generated from fixed constants, but in-
stead parameters that slowly change over time. When the system model that dictates how
the parameters evolve is linear and known, then the time evolution of the latent variable
distribution is known resulting in the typical Kalman filter formulation. When the system
model is not known, it is no longer obvious how to account for the changes in parameters
over time. However, it is assumed that the current data observations are more reflective
of the current state of the parameters than previous data. This is accounted for in models
through a forgetting factor, which puts less weight on the a prior distribution as its param-
eters are estimated using the previous data. In Section 3, we will discuss this forgetting
factor in much greater detail including the geometric intuition that naturally arises in our
framework.

3.3 Sequential Maximum Entropy for Regression

In this section we will present algorithms that solve a dual problem to that of the filters
discussed in the previous section. We call them dual algorithms because instead of solving
the MLE or MAP, they solve a constrained relative entropy minimization, and the duality
between maximum entropy and maximum likelihood has been well-studied. The advantage
of this dual entropy problem is that it gives an intuitive framework on how to update a
model. Solving the constrained relative entropy minimization gives the closest, in terms
of Kullback-Leibler (KL) divergence, distribution to a prior subject to a set of data defined
moment constraints. Thus we can update a model trained on previous data by projecting it
onto a set that is constrained by the current data. In the following subsections, we will first
show that this consecutive projecting can create optimal linear filters. Then we will extend
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it to show that projecting can also create optimal non-linear filters. Finally we present a
computationally efficient approximation to the optimal non-linear filter with bounded error.

3.3.1 Optimal Linear Filtering with MER

Similar to Bayesian conjugate priors, there exist relative entropy conjugate priors that with
certain constraints produce optimal constrained relative entropy densities from the same
parametric family as the prior. So using this conjugacy, we can update models in a similar
fashion to Bayesian filtering. A general form of the constrained relative entropy problem
is presented below.

Let Q(ψ) be a previously trained statistical model parameterized by ψ. Then the solu-
tion to

arg min
P(ψ|D)

KL(P(ψ|D)||Q(ψ))

subject to

EP(ψ|D)(L(D, ψ)) ∈ C∫
P(ψ|D) dψ = 1

is the closest statistical model to the previously trained model that has expected loss L
with new data D that lies in some cost set C. From [60], we know that the solution has
the form P(ψ|D, ξ) = Q(ψ)

Z(ξ)
exp{〈ξ, L(D, ψ)〉} which is a exponential family distribution

parametrized by ξ (natural parameters) with partition function Z(ξ). As the ξi correspond
to each constraint, they can also be thought of as Lagrange multipliers.

The authors of [61] show that, if the prior distribution is from the exponential family
and the constraints are over only sufficient statistics, then the density that optimizes the
constrained relative entropy problem is also a member of the exponential family. From
information geometry, we know that the constraints induce an m-flat subspace and any ex-
ponential family manifold is m-flat in its expectation parameters. Thus when the constraints
are linear in the sufficient statistics, they lie on the exponential family manifold in the dual
expectation parameterized coordinate system. These are essentially guidelines on how to
choose a model family and constraints so that sequentially solving a series of constrained
relative entropy problems is tractable; each solution produces a model that can be projected
in the next problem.

In [55], they present a constrained relative entropy minimization problem whose solu-
tion performs sequential binary classification in both supervised and semi-supervised sce-
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narios. However, in this paper, we are concerned with regression and not classification. The
following theorem describes a choice of relative entropy conjugate priors and constraints
that produce a solution that is a regression model. This model we call sequential Maximum
Entropy Regression (MER).

Theorem 3.3.1. Let the prior at t = 1 factorize into P0(θ) = N(0, I),P0(b) = N(0, σ2),

P0(γi) = N(0, ε) and, P0(λ) = Exp.(∞) with constraints

E(y(t)i − (X(t)iθ + b)− γi) = 0 ∀i

E(ΘTX̃T
(t)X̃(t)Θ− λ) ≤ 0

Then at time point τ , the optimal posterior factorizes into distributions from the same fam-

ilies. The updated model for the regression weights is

P
(
Θ|X(1:τ)

)
= N

(
H̃−1

(τ)(H̃(τ−1)µ(τ−1) + X̃T
(τ)α̂(τ)), H̃

−1
(τ)

)
where µτ−1 is the mean of the previous model trained on data up to time τ − 1 and H̃(τ) =

H̃(τ−1) + 2β(τ)X̃
T
(τ)X̃(τ). The distributions of the other parameters do not depend on the

data, thus the initial priors are used every for time point.

Because the initial prior belongs to the exponential family and the constraints are linear
in the corresponding sufficient statistics Θ,ΘΘT , γi, λ, they satisfy the conjugacy require-
ments. The constraints are over a parametric family of regression functions X(t)θ + b to
ensure that the optimal solution to the constrained relative entropy minimization problem
will be a regression model. The first set of constraints ensure the expected squared loss lies
in an epsilon ball and the last constraint allows the covariance to be unknown, but bounds
its to be finite.

The optimal Lagrange multipliers solve
arg min
α(τ),β(τ)

− log(Z(α(τ), β(τ))), but when β(τ) is given or set to a fixed value, then α̂(τ) can

be solved in closed form. This sequential MER model has very similar form to the Kalman
Filter perspective of RLS algorithm and for a certain choice β they have exactly the same
solution allowing the sequential MER model to also perform optimal filtering.

Corollary 3.3.1.1. When all previous β(1), . . . , β(τ−1) are set to 1
2ε

and β(τ) = 0, so that

α̂(τ) =
(
εI + X̃(τ)H̃

−1
(τ)X̃

T
(τ)

)−1 (
y(τ) − X̃(τ)µ(τ−1)

)
then the model described in Theorem 3.3.1 has mean parameter updates that are optimal.
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The β(t) Lagrange multipliers appear only in H̃(τ), which is the inverse covariance
parameter of the model. Because the distribution P(y|x) is Gaussian, H̃(τ) is the nega-
tive Hessian of the log likelihood function of n ∗ τ samples and gives an empirical es-
timate of the curvature of the distribution. Thus when decomposed as H̃(τ) = (Σ(0) +∑τ

t=1 2β(t)X̃
T
(t)X̃(t)), it is clear that the β(t) control how much weight each mini-batch is

given for estimating the curvature. If all β(t) = 0 and the prior P0(θ) = N(0, ηI) is used
at the first time point, the MER model will have equivalent performance to the LMS algo-
rithm. In this case, the model no longer estimates the curvature using the data, but instead
has constant curvature only along the orthogonal basis. When the system model is dynamic,
the distribution P(y|x) is slowly changing over time and it is no longer guaranteed that its
curvature does not change. Thus the relevance of each mini-batch of data is no longer
equal; data from points closer in time are more representative of the current distribution
than that data from the far past. Thus depending on how quickly we believe the system is
changing, we can set the β(t) to decay or drop to 0 after a certain period.

3.3.2 Optimal Non-Linear Filtering with MER

Like the kernel version of the RLS algorithm, we can also express the MER algorithm
using only inner products for the kernel trick. Using the parameter transformation ω(X̃i) =

f(Xi)θ + b, we can rewrite the model described in Theorem 3.3.1 so that it is expressed
only in kernel functions.

Proposition 1. Let the prior at t = 1 factorize into P0(ω(X̃(1))) = N(0, k(X̃(1), X̃(1))),

P0(γi) = N(0, ε) and, P0(λ) = Exp.(∞) with constraints

E(y(t)i − ω(X̃(t)i)− γi) = 0 ∀i (3.1)

E(ω(X̃(t))
Tω(X̃(t))− λ) ≤ 0

Then at time point τ , the updated model for the regression function is P(ω(X̃(τ))|X(1:τ)) =

N(µ(τ)(X̃(τ)), k(τ)(X̃(τ), X̃(τ))) and the distributions for the other parameters are the

same as in Theorem 3.3.1. When β(τ) = 0 and

α̂(τ) =
(
εI + k(τ−1)(X̃(τ), X̃(τ))

)−1 (
y(τ) − µ(τ−1)(X̃(τ))

)
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the mean and kernel functions are

µ(τ)(x̃) = µ(τ−1)(x̃) + k(τ)(x̃, X̃(τ))α̂(τ)

k(τ)(x̃, x̃
′) = k(x̃, x̃′)− k(x̃, X̃(1:τ))

( 1

2B
+ k(X̃(1:τ), X̃(1:τ))

)−1
k(X̃(1:τ), x̃

′)

where B = diag(β(1:τ)) and the kernel function can also be recursively defined as

k(τ)(x̃, x̃
′) = k(τ−1)(x̃, x̃

′)− k(τ−1)(x̃, X̃(τ))

(
1

2β(τ)

I + k(τ−1)(X̃(τ), X̃(τ))

)−1

k(τ−1)(X̃(τ), x̃
′)

Like in the linear case, β(1), . . . , β(τ−1) = 1
2ε

and will provide the exact solution as
solving the non-linear least squares problem in a batch setting. In general the impact of
the β(t)’s is similar to the linear case, which is revealed when the kernel function is written
as k(τ)(x̃, x̃

′) = 1 + 〈f(x),H−1
(τ)f(x′)〉. Recall H(τ)/(n ∗ τ) is the empirical covariance

matrix (or operator) of all the data up to time τ . Thus it weights the kernel function so that
dimensions with high variance affect the similarity measure less.

However, unlike in the linear case, the computational complexity and storage are no
longer efficient. The mean is now a function that requires evaluating the new data against
all previous data, which has O(τ nt) computational complexity. Additionally all previous
data must be stored, which in a streaming setting is undesirable, especially when the stor-
age costs grow with time. These costs do not account for the mean containing a kernel
function that is a recursive function of previous kernel functions where all these functions
must be evaluated on the new data making the computational complexity explode; 4τ eval-
uations of O(pn2

t + n3
t ) complexity. Evaluating the kernel function in its non-recursive

form, is also often not feasible as it requires storing a (τ nt) × (τ nt) matrix in memory
and O(p(τ nt)

2 + (τ nt)
3) computational complexity. The computational burden of the re-

cursive kernel problem can be removed by setting all β(t)’s to 0, which produces a kernel
version of the LMS algorithm. However the model will then contain all the drawbacks the
LMS algorithm suffers from and the issue of storing all the data still remains.

3.3.3 Approximately Optimal Non-Linear Filtering with MER

Because of the computational complexity and storage issues of evaluating a function with
respect to previous data, it is desirable to evaluate the function with the smallest set of data
possible. This idea of reducing the training data to a sparse set or dictionary has been pre-
viously proposed in [56] and [58]. However, unlike the previously proposed methods, we
will encourage sparsity not through explicit construction, but implicitly in our algorithm.
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It is well known that penalizing predictions only when they lie outside a margin lead to
models that are sparse in the number of training points with non-zero weights e.g. support
vector machines (SVM), support vector regression (SVR). So by replacing the squared loss
constraints in Proposition 1 with margin constraints, we propose a sparse version of the
kernel MER model.

Proposition 2. Let the prior at t = 1 factorize into P0(ω(X(1))) = N(0, k(X(1),X(1))),

P0(b) = N(0,∞),P0(γi) = P0(γ′i) = C(1)e
C(1)(ε(1)−γi)I(γi ∈ [ε(1),∞)) and, P0(λ) =

Exp.(∞) with constraints

E(y(t)i − (ω(X(t)i) + b)− γi) ≤ 0 ∀i

E(y(t)i − (ω(X(t)i) + b) + γ′i) ≥ 0 ∀i (3.2)

E(ω(X(t))
Tω(X(t))− λ) ≤ 0

Then at time point τ , the optimal posterior factorizes similarly to in Proposition 1 into

distributions from the same families. The updated model for the regression function has the

same mean and kernel functions where α̂(τ) = α−α′ and α,α′ maximize

− 0.5(α−α′)Tk(τ−1)(X(τ),X(τ))(α−α′) + (α−α′)T (y(τ) − µ(τ−1)(X(τ)))

− ε(τ)(α+α′) +

n(τ)∑
i=1

log(1− αi
C(τ)

) + log(1− α′i
C(τ)

) (3.3)

subject to
n(τ)∑
i=1

αi − α′i = 0 αi, α
′
i ≥ 0 ∀i

and to center the predictions, the optimal bias at every time point b(τ) = b̂ are the solution

to

arg min
b

n(τ)∑
i=1

∣∣(y(τ)i − µ(τ)(X(τ)i)
)
− b
∣∣

These margin constraints and a similar prior are first proposed in [62]. While the up-
dated model above is Gaussian with the same parameters functions as the one in Proposition
1, the crucial difference lies in α̂(τ), which solve a different objective function that encour-
ages sparsity. At the first time point, when µ(τ−1)(X(τ)) = 0, the objective is similar to
the dual objective of SVR; there are log barrier terms to prevent αi, α′i from being greater
than a cost C(τ) instead of the inequality constraints. So similarly C(τ) is the cost imposed
on observations that lie outside of the ε(τ) sized margin. And the sparsity level of α − α′
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will depend on these hyper-parameters. At earlier time points, when less data has been ob-
served, it is important to establish a good model fit, so a complex model that is not as sparse
is often favorable. When ε(t) is small and C(t) is large, the model will be more complex as
there is a high penalty for being even slightly off from the regression mean. However, once
an accurate model is established, very little new information is contained in new points and
it is desirable to relax ε(t) and shrink C(t) making the model more robust to noise.

After the first time point, the objective in (3.3) differs from the SVR objective on ac-
count of updating a previously trained model. The additional term µ(τ−1)(X(τ)) is the mean
of the previously trained model evaluated with the current data i.e. the a priori prediction.
Instead of measuring the importance of a new point through the relationship between the
features of the new point and features of the previous observed data like in [56] and [58],
the model in Proposition 2 measures the importance of a new point by its difficulty in being
predicted by the previous model. The part of the objective

(αi − α′i)(y(τ)i − µ(τ−1)(X(τ)i))

puts higher weight on the αi, α′i pair where the residual between the current data and the
previous model prediction is large. Thus unlike the previously proposed models that are
agnostic to the response in their sparsity condition, the model in Proposition 2 is solely con-
cerned about the relationship between current and previous samples through the response.
This, along with the margin constraints, indicates that the sparse MER algorithm encour-
ages sparsity in points where the model already has good prediction or whose response
observations lie within a margin. Making it a far more natural criteria for sparsity because
the goal of regression is to model the map between response and features.

Enforcing sparsity through the response is especially relevant in dynamic systems,
where as previously discussed, the data are no longer identically distributed over time t.
For example, consider the extreme case where the system has some of the features that
have no relationship with the response (the feature weights are 0), and these useless fea-
tures suddenly change to have high variance. So while the model fit is still good because
the features have no impact on the response, an algorithm that only considers the depen-
dence of samples through their features will start unnecessarily growing of their dictionary.
Whereas the model in Proposition 2 would ignore any new samples that do not contain new
information about the response.

While the constraints in Proposition 2 admit a sparse model, its covariance is still a
recursive kernel function. The computational complexity and storage issues still remain
because the mean function depends on the kernel function. Because the Lagrange multipli-
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ers (αi−α′i) are only non-zero for observations that are “difficult”, we can assume that the
points that have corresponding non-zero weights are the ones that contain all the important
information in the full dataset. Thus at every time point τ , the prior model only needs to
trained on this subset of the data.

Theorem 3.3.2. Let the priors at t = 1 be the same as in Proposition 2. Let at any point

t > 1, the prior for the regression function update to

P0(ω(X(t))|XS) = N(µS(X(t)), kS(X(t),X(t))) where kS(x,x′) = 〈f(x),H−1
S f(x′)〉.

Then the posterior that minimizes the constrained relative entropy problem with the con-

straints in (3.2) factorizes into distributions from the same families where when β(t) = 0,

P(ω(X(t))|Xs,XS) is Gaussian with parameters

µs|S(x) = µS(x) + kS(x,Xs)α̂s|S

ks|S(x,x′) = 〈f(x), (HS + 2β(t)X
T
s Xs)

−1f(x′)〉

where Xs are points with corresponding non-zero α̂s|S that maximize (3.3). This model

is an approximately optimal filter whose predictions can be bounded in `2 norm from the

optimal batch solution

||k(x̃, X̃(1:τ))α̂(1:τ) − (µs|S(x) + b̂)||22 . δ

whenX(t)i are independent and identically distributed for all t.

Note that for stationary systems with Gaussian noise, the batch model with natural
parameters α̂(1:τ) achieves the Cramer-Rao lower bound. In this case, the mean squared
error (MSE) of any prediction ||y− (µs|S(x) + b̂)||22 can be bounded by δ+ σ2 where σ2 is
the variance of the noise. But in general, Theorem 3.3.2 indicates that as long as the mean
squared prediction error of the batch model is small, the error of the proposed sparse model
will also be small. For dynamic systems, proving the theorem holds is much more difficult,
but we empirically verify in simulations that the error is still small.

Let nS = |{i : α̂(t)i 6= 0}| be the cardinality of the non-zero subset where nS << τ nt.
The mean function now requiresO(p nS+n2

S) operations to predict a point and because the
α̂(t)i are sparse, the algorithm only needs to store the correspondingX(t)i. Solving (3.3) for
the optimalαs has polynomial complexity in nt if a conic interior point method is used, but
if the log barrier terms are relaxed into hard inequality constraints, it can be solved in linear
time with sequential minimal optimization (SMO). Updating the kernel function is more
expensive, requiringO(p n2

S+n3
S) operations, but this function only needs to updated when

either the previous β(t) change or there are non-zero α̂(s). Additionally, the storage costs are
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very manageable, requiring storing a (nS)× (nS) matrix in memory. This computationally
efficient model, which we call the sparse MER model is summarized below.

Algorithm 3.1 Sparse MER

Input: P0(ω(X(1)))P0(b),P0(γi)P0(γ′i)P0(λ)
while t <∞ do

Set β(t) = 0 and (optional) update previous β’s
Solve α̂(t) = α̂− α̂′ for the objective in (3.3)
b̄(τ) = b̄(τ−1) + (b̂− b̄(τ−1))/τ
if α̂(t)i 6= 0 for any i then

Save new relevant pointsXS = [XS ,Xs]
Update P(ω(x)) through its parameters

end if
end while
Return: µs|S(x) for prediction

While setting b̂ to be the median satisfies the constraints in (3.2), it may not be a very
stable estimator when each mini-batch of data is small. This is not the only choice of b̂
that satisfies the KKT conditions and balancing it with the average of all the previously
estimated bias terms can make it more robust to noise.

3.4 Experiments

In this section, we compare the proposed sequential maximum margin classifiers to the
batch model, which at every time point, is re-trained on all previous data. This is a lower
bound on performance because from Theorem 3.3.2, we known that the MSE of the sparse
kernel MER can be lower bounded by the MSE of the batch model.

3.4.1 Simulations

In the following simulations, the models receive roughly 100 samples (n(t) = [97, 103]) at
every time point and then are tested on an independent data set of 1000 test points. The
mean square prediction error is averaged over the 100 trials. For the sparse kernel MER
model, we show performance at three different sparsity levels with various sequences of
ε(t). In the low sparsity model we set ε(t) = e15(0.001t), in the medium sparsity model
ε(t) =

√
0.001 + 0.2t, and in the high sparsity model ε(t) = 1 + bt/10.1c. For all models,

we set the cost penalty to be C = 1000.
In the first simulation, we generate data from a polynomial kernel of degree 2 because

it has an explicit feature map. This allows us to compare against a RLS algorithm trained
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as linear regression model with the expanded features. The performance of this model will
be equivalent to the batch model as the RLS is an optimal linear filter. We set the ridge
component or forgetting factor of the RLS to be ε0 = 0.001. Thus the generative model
is y(t)i = f(X̃(t)i)Θ + ei where X is generated from a zero mean Gaussian distribution
with a random 20 × 20 covariance matrix and ei are white noise. The bias b is generated
uniformly from [−5, 5] and each of the 230 feature weights θj are generated uniformly from
[−3, 3]. Because the samples are identically distributed over time, we set all the previous
β(t) = 1/ε0, which in the fully dense scenario, will also be an optimal filter.

Figure 3.1: Mean squared prediction error of a batch model and the sparse kernel MER
model at different sparsity levels.

Figure 3.1 shows the trade-off between lower mean squared prediction error and higher
sparsity, which in turn gives a computationally faster model. At the final time point, the
high sparsity model is only using 21% of the total samples while the low sparsity model is
using 53% of the total samples. An even denser model than the low sparsity MER would
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give a mean squared prediction error that is on par with the batch model, however it is not
computationally feasible.

3.5 Conclusions

We have proposed a framework for generating regression models that can be sequentially
updated with new data. Our framework can be used to generate models with equal per-
formance to all the popular algorithms. It can also be use to generate approximate models
that are computationally efficient by reducing the amount of data that must be seen at each
iteration. In particular we show for stationary systems, we can bound the performance be-
tween our proposed sparse maximum entropy regression model and a model trained on the
entire batch of data.

Appendix

Proof of Theorem 3.3.1. Let

µ(τ−1) = Σ(τ−1)(Σ
−1
(τ−2)µ(τ−2) + X̃T

(τ−1)α̂(τ−1))

Σ(τ−1) = H̃−1
(τ−1) =

(
Σ(0) +

τ−1∑
t=1

2β(t)X̃
T
(t)X̃(t)

)−1

whereµ(0) = 0 and Σ(0) =

[
1/σ2 0

0 I

]
. At time τ , let the priors be Θ ∼ N(µ(τ−1),Σ(τ−1)),

γi ∼ N(0, ε), and λ ∼ Exp.(ν) where ν → ∞. Then the minimizing distribution
P(Θ,γ, λ|X(1:τ)) factorizes into

=
P0(Θ)

∏n(τ)

i=1 P0(γi)P0(λ)

Z(α(τ), β(τ))
exp

{n(τ)∑
i=1

α(τ)i(−y(τ)i + X̃(τ)iΘ + γi)− β(τ)(Θ
TX̃T

(τ)X̃(τ)Θ− λ)

}

=
P0(Θ)

ZΘ(α(τ), β(τ))
exp

{n(τ)∑
i=1

α(τ)iX̃(τ)iΘ− β(τ)Θ
TX̃T

(τ)X̃(τ)Θ

}
∏n(τ)

i=1 P0(γi)

Zγ(α(τ))
exp

{n(τ)∑
i=1

α(τ)iγi

}
P0(λ)eβ(τ)λ

Zλ(β(τ))
e−α

T
(τ)
y(τ) = P(Θ|X(1), . . . ,X(τ))P(γ)P(λ)
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where P(Θ|X(1), . . . ,X(τ))

=
exp

{
−0.5(Θ− µ(τ−1))

TΣ−1
(τ−1)(Θ− µ(τ−1))

}
det(2πΣ(τ−1))1/2

exp
{
αT(τ)X̃(τ)Θ− β(τ)Θ

TX̃T
(τ)X̃(τ)Θ

}
ZΘ(α(τ), β(τ))

= exp
{
−0.5

(
−2αT(τ)X̃(τ)Θ + 2β(τ)Θ

TX̃T
(τ)X̃(τ)Θ + ΘTH(τ−1)Θ

−2ΘTH̃(τ−1)µ(τ−1) + µT(τ−1)H̃(τ−1)µ(τ−1)

)}/(
det(2πH−1

(τ−1))
1/2ZΘ(α(τ), β(τ))

)
= exp

{
−0.5

(
ΘTH̃(τ)Θ− 2ΘT (H̃(τ−1)µ(τ−1) + X̃T

(τ)α(τ))

+(H̃(τ−1)µ(τ−1) + X̃T
(τ)α(τ))

TH̃−1
(τ)(H̃(τ−1)µ(τ−1) + X̃T

(τ)α(τ))
)}

exp
{

0.5
(
αT(τ)X̃(τ)H̃

−1
(τ)X̃

T
(τ)α(τ) − µT(τ−1)H̃(τ−1)µ(τ−1) + µT(τ−1)H̃(τ−1)H̃

−1
(τ)H̃(τ−1)µ(τ−1)

+2µT(τ−1)H̃(τ−1)H̃
−1
(τ)X̃

T
(τ)α(τ)

)}/(
det(2πH−1

(τ−1))
1/2ZΘ(α(τ), β(τ))

)
=
e−0.5(Θ−H̃−1

(τ)
(H̃(τ−1)µ(τ−1)+X̃

T
(τ)
α(τ)))

T H̃(τ)(Θ−H̃−1
(τ)

(H̃(τ−1)µ(τ−1)+X̃
T
(τ)
α(τ)))

det(2πH−1
(τ))

1/2

= N
(
H̃−1

(τ)(H̃(τ−1)µ(τ−1) + X̃T
(τ)α̂(τ)), H̃

−1
(τ)

)

P(γ) =

n(τ)∏
i=1

P(γi) =

n(τ)∏
i=1

exp{−0.5γ2
i /ε}√

2πε

exp{α(τ)iγi}
Zγi(α(τ)i)

=

n(τ)∏
i=1

exp{−0.5(γ2
i − 2εα(τ)iγi + ε2α2

(τ)i)/ε}√
2πε

exp{0.5εα2
(τ)i}

Zγi(α(τ)i)

=

n(τ)∏
i=1

exp{−0.5(γi − εα(τ)i)
2/ε}√

2πε
=

n(τ)∏
i=1

N(εα(τ)iγi, ε)

and

P(λ) =
ν exp{−νλ} exp{β(τ)λ}

Zλ(β(τ))
=
ν exp{−(ν + β(τ))λ}

Zλ(β(τ))

= Exp.(ν + β(τ))→ Exp.(∞) as ν →∞.

Proof of Corollary 3.3.1.1. The log partition functions − logZΘ(α(τ), β(τ)) and
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− logZγi(α(τ)i) are defined respectively as

= − log

∫ ∞
−∞

e−0.5(Θ−µ(τ−1))
TΣ−1

(τ−1)
(Θ−µ(τ−1))

det(2πΣ(τ−1))1/2
eα

T
(τ)
X̃(τ)Θ−β(τ)ΘT X̃T

(τ)
X̃(τ)ΘdΘ

= 0.5µT(τ−1)H̃(τ−1)µ(τ−1) − 0.5µT(τ−1)H̃(τ−1)H̃
−1
(τ)H̃(τ−1)µ(τ−1) − µT(τ−1)H̃(τ−1)H̃

−1
(τ)X̃

T
(τ)α(τ)

− 0.5αT(τ)X̃(τ)H̃
−1
(τ)X̃

T
(τ)α(τ) − log det(2πH−1

(τ))
1/2 + log det(2πH−1

(τ−1))
1/2

= − log

∫ ∞
−∞

e−0.5γ2i /ε

√
2πε

eα(τ)iγi dγi = − log

∫ ∞
−∞

e−0.5(γ2i−2εα(τ)iγi)/ε

√
2πε

dγi = −0.5εα2
(τ)i

and

− logZλ(β(τ)) = − log

∫ ∞
0

νe−νλeβ(τ)λ dλ = − log

(
ν

ν − β(τ)

)
⇒ if ν →∞, then log(1− β(τ)/ν) = 0 for finite β(τ).

The optimal α̂(τ) are the solution to

arg max
α(τ)

− logZ(α(τ), β(τ)) ∝ arg max
α(τ)

−αT(τ)y(τ) −
n(τ)∑
i=1

logZγi(α(τ))− logZΘ(α(τ), β(τ))

so ∂
∂α(τ)

− logZ(α(τ), β(τ))

=
∂

∂α(τ)

αT(τ)y(τ) − 0.5εαT(τ)α(τ) −αT(τ)X̃(τ)H̃
−1
(τ)H̃(τ−1)µ(τ−1) − 0.5αT(τ)X̃(τ)H̃

−1
(τ)X̃

T
(τ)α(τ)

= y(τ) − X̃(τ)H̃
−1
(τ)H̃(τ−1)µ(τ−1) + (εI− X̃(τ)H̃

−1
(τ)X̃

T
(τ))α(τ) = 0

⇒ α̂(τ) = (εI + X̃(τ)H̃
−1
(τ)X̃

T
(τ))
−1(y(τ) − X̃(τ)H̃

−1
(τ)H̃(τ−1)µ(τ−1))

At every time point t = τ , set the previous β(1), . . . , β(τ−1) = 1
2ε

and the current β(τ) = 0.
Then H̃(τ) = H̃(τ−1) and the mean of the updated model reduces to µ(τ) = µ(τ−1) +

H̃−1
(τ−1)X̃

T
(τ)α̂(τ) where the optimal α̂(τ) =

(
εI + X̃(τ)H̃

−1
(τ)X̃

T
(τ)

)−1 (
y(τ) − X̃(τ)µ(τ−1)

)
.

Plugging α̂(τ) into the mean update recovers the same update as the RLS algorithm.
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Proof of Proposition 1. Define

ω = ω(X(τ)),µ(0) = 0,Σ(0) = 1 + k(X(1),X(1))

µ(τ−1) = µ(τ−1)(X̃(τ)) = µ(τ−2)(X̃(τ)) + k(τ−1)(X̃(τ), X̃(τ−1))α̂(τ−1)

Σ(τ−1) = k(τ−1)(X̃(τ), X̃(τ))

At time τ , let the priors be ω ∼ N(µ(τ−1),Σ(τ−1)), γi ∼ N(0, ε), and λ ∼ Exp.(ν) where
ν → ∞. Then the minimizing distribution P(ω(X(τ)),γ, λ|X(1:τ)) factorizes similarly as
in Theorem 3.3.1 into

=
P0(ω(X̃(τ)))

Zω(α(τ)), β(τ))
exp

{
αT(τ)ω(X(τ))− β(τ)ω(X(τ))

Tω(X(τ))
}

∏n(τ)

i=1 P0(γi)

Zγ(α(τ))
exp

{n(τ)∑
i=1

α(τ)iγi

}
P0(λ)eβ(τ)λ

Zλ(β(τ))
e−α

T
(τ)
y(τ)

= P(ω(X(τ))|X(1), . . . ,X(τ))P(γ)P(λ)

where P(ω(X̃(τ))|X(1), . . . ,X(τ))

=
e−0.5(ω−µ(τ−1))

TΣ−1
(τ−1)

(ω−µ(τ−1))

det(2πΣ(τ−1))1/2

eα
T
(τ)
ω−β(τ)ωTω

Zω(α(τ), β(τ))

=
exp

{
− 0.5ωT (Σ−1

(τ−1) + 2β(τ)I)ω + ωT (Σ−1
(τ−1)µ(τ−1) +α(τ))− 0.5µT(τ−1)Σ

−1
(τ−1)µ(τ−1)

}
(

det
(
2πΣ(τ−1)

)−1/2
Zω(α(τ), β(τ))

)
= exp

{
− 0.5

(
ω − k(τ)(X̃(τ), X̃(τ))(Σ

−1
(τ−1)µ(τ−1) +α(τ))

)T
k(τ)(X(τ),X(τ))

−1(
ω − k(τ)(X̃(τ), X̃(τ))(Σ

−1
(τ−1)µ(τ−1) +α(τ))

)}/
det
(

2πk(τ)(X̃(τ), X̃(τ))
)1/2

= N
(
k(τ)(X̃(τ), X̃(τ))(Σ

−1
(τ−1)µ(τ−1) + α̂(τ)), k(τ)(X̃(τ), X̃(τ))

)
for k(τ)(X̃(τ), X̃(τ)) = Σ(τ−1) −Σ(τ−1)(

1
2β(τ)

I + Σ(τ−1))
−1Σ(τ−1) =

(
2β(τ)I + Σ−1

(τ−1)

)−1

and the rest of distributions are the same as in Theorem 3.3.1.
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The log partition − log
(
Zω(α(τ)), β(τ)

)
= − log

∫ ∞
−∞

P0(ω(X̃(τ)))

det(2πΣ(τ−1))1/2
eα

T
(τ)
ω−β(τ)ωTωdω

= −0.5
(

log det
(
Σ(τ)Σ

−1
(τ−1)

)
− µT(τ−1)Σ

−1
(τ)µ(τ−1) + µT(τ−1)Σ

−1
(τ−1)µ(τ−1)

−αT(τ)k(τ)(X̃(τ), X̃(τ))α(τ) − 2αT(τ)k(τ)(X̃(τ), X̃(τ))Σ
−1
(τ−1)µ(τ−1)

)

so when β(τ) = 0,

α̂(τ) = arg max
α(τ)

−αT(τ)y(τ) −
n(τ)∑
i=1

logZγi(α(τ))− logZω(α(τ))

=
(
εI + k(τ−1)(X̃(τ), X̃(τ))

)−1 (
y(τ) − µ(τ−1)(X̃(τ))

)
.

Proof of Proposition 2. At time τ , let the priors be ω(X(τ)) ∼ N(µ(τ−1),Σ(τ−1)) whose
parameters are defined in Proposition 1, b ∼ N(0,∞),
γi, γ

′
i ∼ C(τ)e

C(τ)(ε(τ)−γi)I(γi ∈ [ε(τ),∞)) and, λ ∼ Exp.(ν) where ν → ∞. Then the
optimal distribution P(ω(X(τ)), b,γ,γ

′, λ| {D}τt=1) factorizes into

=
P0(ω(X(τ)))P0(b)

∏n(τ)

i=1 P0(γi)P0(γ′i)P0(λ)

Z(α,α′, β(τ))
exp

{
− β(τ)ω(X(τ))

Tω(X(τ))− λ

n(τ)∑
i=1

αi(−y(τ)i + (ω(X(τ)i) + b) + γi)− α′i(−y(τ)i + (ω(X(τ)i) + b)− γ′i)
}

= exp{−(α−α′)Ty(τ)}
P0(ω(X(τ)))

Zω(α,α′, β(τ))
exp

{
(α−α′)Tω(X(τ))− β(τ)ω(X(τ))

Tω(X(τ))
}

P0(b)

Zb(α,α′)
exp

{
1T (α−α′)

} ∏n(τ)

i=1 P0(γi)P0(γ′i)

Zγ(α,α′)
exp

{
αTγ +α′Tγ ′

} P0(λ) exp{β(τ)λ}
Zλ(β(τ))

= P(ω(X(τ))|X(1), . . . ,X(τ))P(b),P(γ)P(γ ′)P(λ)

where P(ω(X(τ))|X(1), . . . ,X(τ)) and P(λ) are the same as in Proposition 1 for
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α̂(τ) = α̂− α̂′. P(b) and P(γ) respectively are

=
exp {−0.5b2/σ2}√

2πσ2

exp
{
b1T (α−α′)

}
Zb(α,α′)

=
exp

{
−0.5(b2 − 2σ2b1T (α−α′))/σ2

}
√

2πσ2 Zb(α,α′)

=
exp{−0.5(b− σ21T (α−α′))2/σ2}√

2πσ2

exp{0.5σ2(1T (α−α′))2}
Zb(α,α′)

= N(σ21T (α−α′), σ2)→ N(0,∞) as σ →∞ for 1T (α−α′) = 0

=

∏n(τ)

i=1 C(τ) exp{C(τ)(ε(τ) − γi)}eαiγi
Zγi(αi)

=

n(τ)∏
i=1

C(τ) exp{αiε(τ)}
Zγi(αi)

exp{(C(τ) − αi)(ε(τ) − γi)}

=

n(τ)∏
i=1

(C(τ) − αi) exp{(C(τ) − αi)(ε(τ) − γi)}

with support γi ∈ [ε(1),∞) and same distribution for P(γ′)

Let− logZλ(β(τ)) be the same as in Theorem 3.3.1, use α̂− α̂′ in− logZω(α,α′). Define

− logZb(α,α
′) = − log

∫ ∞
−∞

e−0.5(b2−2σ2b1T (α−α′))/σ2

√
2πσ2

db

= − log

∫ ∞
−∞

e−0.5(b−σ21T (α−α′))2/σ2
e0.5σ2(1T (α−α′))2

√
2πσ2

db

= −0.5σ2(1T (α−α′))2 = −0.5σ2(1T (α−α′))2

⇒ if σ →∞, then 1T (α−α′) = 0 whereα ≥ 0,α′ ≥ 0 (inequality Lagrange multipliers),
and

− logZγi(αi) = − log

∫ ∞
ε(τ)

C(τ)e
αiγieC(τ)(ε(τ)−γi) dγi = − log

C(τ)e
C(τ)ε(τ)

αi − C(τ)

eγi(αi−C(τ))
∣∣∣∞
ε(τ)

= − log
−C(τ)e

ε(τ)αi

αi − C(τ)

= −ε(τ)αi − log(
C(τ)

C(τ) − αi
) = −ε(τ)αi + log(1− αi

C(τ)

)

where − logZγ′i(α
′
i) is defined similarly.
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Then given β(τ) = 0, the optimal α and α′ are the solution to

= arg max
α,α′

− logZω(α,α′) + (α−α′)Ty(τ) − logZb(α,α
′)−

n(τ)∑
i=1

logZγi,γ′i(αi, α
′
i)

= −0.5(α−α′)Tk(τ−1)(X̃(τ), X̃(τ))(α−α′)− (α−α′)Tµ(τ−1)(X(τ)) + (α−α′)Ty(τ)

+

n(τ)∑
i=1

log(1− αi/C(τ)) + log(1− αi/C(τ))− ε(τ)(αi + α′i)

subject to 1T (α−α′) = 0,α ≥ 0,α′ ≥ 0

which are then used to solve for an optimal bias term b̂. Since the distribution
P(b) = N(0,∞) is undefined, the bias term just needs to ensure that the expectation con-
straints in the original objective hold. Thus at every time point τ , b̂ minimize

n(τ)∑
i=1

∣∣(y(τ)i − (µ(τ−1)(X(τ)i) + k(τ)(X(τ)i),X(τ))α̂(τ))
)
− b
∣∣

⇒ b̂ is the median of the residuals of a prediction without an intercept term.

Proof of Theorem 3.3.2. If there is no previously trained model, given all data
{y(1:τ−1),X(1:τ−1)} up to time τ −1 and β(τ−1) = 0, let α̂(1:τ−1) maximize the negative log
partition function for the distribution that minimizes the constrained relative entropy prob-
lem using priors P0(ω(X̃(1:τ−1))) = N(0, k(X̃(1:τ−1), X̃(1:τ−1))),P0(γi) = N(0, ε) and,
P0(λ) = Exp.(∞) and the constraints in (3.1). Then α̂S = α−α′ are the natural parame-
ters for a sparse approximation to the optimal posterior distribution where α,α′ maximize
the negative log partition function of the distribution that minimizes the constrained rela-
tive entropy problem using priors P0(ω(X(1:τ−1))) = N(0, k(X(1:τ−1),X(1:τ−1))),P0(b) =

N(0, σ2),P0(γi) = P0(γ′i) = CSe
CS(εS−γi)I(γi ∈ [εS ,∞)) and, P0(λ) = Exp.(∞) and the

constraints in (3.2), and b̂ is the optimal bias term that centers the predictions.
At any point x, for σ2 →∞ such that (1T α̂(1:τ−1) − b̂)→ 0, there exists some δ1 such

that the difference in `2 norm between a prediction using α̂(1:τ−1) and one α̂S is small;

||(1T + k(x,X(1:τ−1)))α̂(1:τ−1) − (k(x,XS)α̂S + b̂)||22
= ||k(x,X(1:τ−1))(α̂(1:τ−1) −αS) + (1T α̂(1:τ−1) − b̂)||22
≤ ||k(x,X(1:τ−1))||22||α̂(1:τ−1) − α̂S ||22 ≤ δ1

where δ1 depends on the similarity between the new point x and the previous data, and the
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hyper-parameters CS , εS that control the sparsity level of α̂S .
Now using the optimal posterior distribution

P0(ω(X(τ))) = N(k(X(τ),X(1:τ−1)))α̂(1:τ−1), k(1:τ−1)(X(τ),X(τ))) as the prior, given data
y(τ),X(τ), the Lagrange multipliers α̂(τ) and α̂s|(1:τ−1) maximize the negative log partition
function defined using constraints (3.1) and (3.2) with corresponding priors for β(τ) = 0.
Again there exists some δ2 such that the difference in `2 norm is small;

||(1T α̂(1:τ−1) + µ(τ−1)(x) + k(1:τ−1)(x̃, X̃(τ))α̂(τ))

− (µ(τ−1)(x) + k(1:τ−1)(x,X(τ))α̂s|(1:τ−1) + b̂)||22
≤ ||k(1:τ−1)(x,X(τ))||22||α̂(τ) − α̂s|(1:τ−1)||22 ≤ δ2

where δ2 is a function of the prior’s cost Cs and margin εs parameters and the similarity
defined by the kernel function.

Finally let α̂s|(1:τ−1) and α̂s|S be the solutions to (3.3) when the kernel functions
k(1:τ−1)(x,x

′) and kS(x,x′) are used respectively. The kernel functions only differ in their
estimators of the negative Hessian where HS is composed of a subset of the X(1:τ−1) data
points inH(τ−1) = (I +

∑τ−1
t=1 2β(t)f(X(t))

Tf(X(t))).
Assume the data points f(X(t)i are independent and identically distributed from a

“nice” distribution such that f(X(t)) converges to f(x) in mean square. Then because
f(XS) is a subsequence of X(1:τ−1) and f(x) lie in a Hilbert space, H(τ−1) and HS con-
verge to the same thing as asymptotically. Thus as τ → ∞, α̂s|(1:τ−1) and α̂s|S solve the
same objective function.

Using the above, the difference in `2 norm between the optimal prediction ŷ and the
sparse MER prediction ŷs can be bounded as ||ŷ − ŷs||22

= ||(1T + k(x,X(1:τ−1)))α̂(1:τ−1) + k(1:τ−1)(x̃, X̃(τ))α̂(τ))

− (k(x,XS)α̂S + kS(x,X(τ))α̂s|S + b̂)||22
≤ ||k(x,X(1:τ−1))α̂(1:τ−1) − k(x,X(1:τ−1))α̂S ||22

+ ||k(1:τ−1)(x̃, X̃(τ))α̂(τ) − kS(x,X(τ))α̂s|S ||22
≤ δ1 + ||(k(1:τ−1)(x̃, X̃(τ))α̂(τ) − k(1:τ−1)(x,X(τ))α̂s|(1:τ−1))

+ (k(1:τ−1)(x,X(τ))α̂s|(1:τ−1) − kS(x,X(τ))α̂s|S)||22
≤ δ1 + δ2 + ||(k(1:τ−1)(x,X(τ))α̂s − kS(x,X(τ))α̂s)||22 . δ1 + δ2 = δ

where ŷ is equivalent to the prediction using a batch algorithm from Corollary 3.3.1.1.
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CHAPTER 4

Sequential Maximum Entropy Discrimination
with Partial Labels

In many real-world applications, data is not collected as one batch, but sequentially over
time, and often it is not possible or desirable to wait until the data is completely gathered
before analyzing it. Thus, we propose a framework to sequentially update a maximum mar-
gin classifier by taking advantage of the Maximum Entropy Discrimination principle. Our
maximum margin classifier allows for a kernel representation to represent large numbers
of features and can also be regularized with respect to a smooth sub-manifold, allowing it
to incorporate unlabeled observations. We compare the performance of our classifier to its
non-sequential equivalents in both simulated and real datasets.

4.1 Introduction

As the popularity of big data increases and more data is being gathered, the importance of
sequential models that are able to continuously update with new data has increased. These
models are particularly crucial in high throughput real-time applications such as speech or
streaming text classification. To this end, we propose a sequential framework to update the
probabilistic maximum margin classifier built from the Maximum Entropy Discrimination
(MED) principle of [54].

The proposed sequential MED framework can be cast as recursive Bayesian estimation
where the likelihood function is a log-linear model formed from a series of constraints
and weighted by Lagrange multipliers. In the Gaussian case it shares similarities with the
problem of Gaussian process classification, which has been previously studied [63, 64, 65,
66, 67, 68], but to the best of our knowledge, a method to recursively update the Gaussian
process classifier has not been developed. In the single time point case, sequential MED
can be specialized to the support vector machine [65] and Laplacian support vector machine
[1] as previously discussed in [54] and [69].
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We are interested in situations where we receive a stream of data X(1),X(2), . . . over
time twhere eachX(t) is a matrix of dimension p×n, with p denoting the number of feature
variables and n denoting the number of i.i.d. samples, where n = n(t) may vary with
time. In the fully labeled scenario, the data has corresponding labels yi = [1,−1]∀i and t;
however in the partially labeled scenario, at each time point t, only l(t) < n(t) of the samples
have labels. We define the observed data at any time point t as D(t) = {X(t),y(t)} and
all observed data up to time τ as {D(t)}τt=1. Such scenarios would arise in a variety of
domains such as a satellite that only transmits its data daily or a government agency that
only releases its data quarterly with their corresponding reports. The rest of the paper is
organized as follows: Section 2 and Section 3 will discuss how to sequentially update the
corresponding MED models for supervised and semi-supervised classification. Section 4
validates the method by simulation and we present an application to a dataset of spoken
letters of the English alphabet.

4.2 Sequential MED

Constrained relative entropy minimization is used to estimate the closest distribution to a
given prior distribution subject to a set of moment constraints. The authors of [61] show
that, if the prior distribution is from the exponential family, then the density that optimizes
the constrained relative entropy problem is also a member of the exponential family. Simi-
lar to Bayesian conjugate priors, there exist relative entropy conjugate priors that facilitate
evaluation of the closest distribution. These produce optimal constrained relative entropy
densities, which can be thought of as posteriors, from the same parametric family as the
prior. Maximum entropy discrimination (MED) [54] also admits conjugate priors as it a
special case of constrained relative entropy minimization where one of the constraints is
over a parametric family of discriminant functions L(X|Θ).

4.2.1 Review of MED for Maximum Margin Classification

In this paper, we are interested in maximum margin binary classifiers. In this case the
discriminant function L(X|θ, b) = f(X)θ + b is linear for some feature transformation
f(·), feature weights vector θ, and bias term b. Slack variables γi are used to create a margin
in the constraints E(yi(f(Xi)θ+b)−γi), the expected hinge loss with slack variables. The
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MED objective function is

min
P(Θ,γ|D)

KL (P(Θ,γ|D||P0(Θ,γ)) (4.1)

subject to
∫∫

P(Θ,γ|D) (yi(f(Xi)θ + b)− γi) dΘdγ ≥ 0 ∀i = 1, . . . , n

whose solution P(Θ,γ|D) is the constrained minimum relative entropy posterior. The
associated MED decision rule ŷi′ = sgn(

∫∫
P(Θ|D)(f(xi′)θ + b) dΘ) is a weighted com-

bination of discriminant functions. The minimum relative entropy posterior has the form

P(Θ,γ|D) =
P0(Θ,γ)

Z(α)
exp

{
n∑
i=1

αi (yi(f(X)θ + b)− γi)

}

where α = [α1, ..., αn]T ≥ 0 are Lagrange multipliers that minimize the partition function
Z(α). It is common to set the initial prior distribution to the separable form:
P0(Θ,γ) = P0(θ)P0(b)

∏n
i=1 P0(γi). If in addition, we specify that

P0(γi) = Ce−C(1−γi)I(γi ≤ 1), P0(θ) is N(0, I), and P0(b) is a zero mean Bayesian
non-informative (diffuse) prior, denoted N(0,∞), then the Lagrange multipliers can be
obtained as the solution α̂ to the constrained optimization

max
α
− 1

2
αTY f(X)f(X)TY α+

n∑
i=1

αi + log(1− αi/C)

subject to
n∑
i=1

yiαi = 0 and α1, . . . , αn ≥ 0

where Y = diag(y). This objective function has a log barrier term log(1− αi/C) instead
of the inequality constraints αi ≤ C commonly found in the dual form of the SVM. Except
in some ill-defined cases where the maximum lies near the boundary of the feasible set, the
α̂i will be identical to the optimal support vectors that maximize the SVM objective. The
authors in [54, 69] show that the maximum a posteriori (MAP) estimator for θ of the MED
posterior is related to the Lagrange multipliers by θ̂ = f(X)T α̂, so the MED posterior
mode is equivalent to a maximum margin classifier.

4.2.2 Updating MED

Under the separable prior assumptions above, the MED posterior P(Θ,γ|D) will take the
factored form P(θ|D)P(b|D)P(γ). Due to the fact that the slack parameters γi do not
depend on the data D, the density P(γ) does not affect the MED decision rule given after
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(4.1). Hence only P(θ|D) and P(b|D are important. This remaining part of the MED
posterior has the form: P(θ|D)P(b|D) = N(f(X)TY α, I)N(0,∞), which is a conjugate
distribution. Due to this conjugacy the posterior distribution optimizing the objective in
(4.1) can be propagated forward in time in a recursive manner. The updating procedure is
given in the following theorem and corollaries.

Theorem 4.2.1. Let the MED prior at t = 1 be θ ∼ N(0, I), b ∼ N(0,∞), and

P0(γi) = C(1)e
−C(1)(1−γi)I(γi ≤ 1). Then given data D(τ) at time point τ , the relative

entropy conjugate priors are

P0

(
θ|{D(t)}τ−1

t=1

)
= N

(
τ−1∑
t=1

f(X(t))
TY(t)α̂(t), I

)
P0

(
b|{D(t)}τ−1

t=1

)
= N(0,∞)

P0(γ) =

n(τ)∏
i=1

C(τ) exp
{
−C(τ)(1− γi)

}
I(γi ≤ 1)

and the MED posterior P(Θ| {D}τt=1) can represented as

P (θ| {D}τt=1) = N
(
µ0 + f(X(τ))

TY(τ)α̂(τ), I
)

where µ0 =
∑τ−1

t=1 f(X(t))
TY(t)α̂(t) is the prior mean and P(b| {D}τt=1) is the same as the

Bayes non-informative prior.

Introducing the kernel function k(x,x′) = 〈f(x), f(x′)〉 and the parameter transfor-
mation ω = f(X)θ, the posterior at time τ > 0 can be represented in terms of this kernel.

Corollary 4.2.1.1. The equivalent prior at t = 1 for the transformed parameter is

ω ∼ N(0,K(1)) where K(1) = f(X(1))f(X(1))
T . Furthermore, the posterior at time τ is

of Gaussian form P(ω|{D(t)}τt=1) = N(µ(τ),K(τ)) where the mean parameter satisfies the

recursions µ(τ) = µ(τ−1) +K(τ)Y(τ)α̂(τ).

Since P(θ|{D(t)}τt=1) is Gaussian, the MAP estimator is simply the mean parameter
µ(τ) given in the Corollary 4.2.1.1. Thus the decision rule reduces to ŷi′ = sgn(f(xi′)θ̂+ b̂)

where the MAP estimator θ̂ is a function of the previously estimated Lagrange multipliers
α̂(1), . . . , α̂(τ−1) and the maximizing values α̂(τ) and b̂ for the current time point τ .

Corollary 4.2.1.2. Given all previous α̂(1), . . . , α̂(τ−1), the current optimal Lagrange mul-

tipliers α̂(τ) are the solution to
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max
α(τ)

− 1

2
αT(τ)Y(τ)K(τ)Y(τ)α(τ) +

n(τ)∑
i=1

log(1−
α(τ)i

C(τ)

) +αT(τ)(1− Y(τ)

τ−1∑
t=1

k(X(τ),X(t))Y(t)α̂(t))

subject to yT(τ)α(τ) = 0 and α(τ)i ≥ 0 for all i = 1, . . . , n(τ)

and, holding the Lagrange multipliers fixed, the optimal bias b̂ =

arg min
b

∑
s∈{i|α̂(τ)i 6=0}

∣∣∣∣∣
(
y(τ)s −

τ∑
t=1

k(X(τ)s,X(t))Y(t)α̂(t)

)
− b

∣∣∣∣∣
ensures that the expectation constraints in the objective hold.

The above dual formulation for the Lagrange multipliers α(τ) has some interesting
implications. Since the Lagrange multipliers from the previous time points are fixed at time
step τ , the factor 1− Y(τ)

∑τ−1
t=1 k(X(τ),X(t))Y(t)α̂(t) are constants and can be thought of

as (unnormalized) weights for α(τ), the Lagrange multipliers from the current time point.
Thus the corresponding Lagrange multipliers for samples that are easily predicted using
only the prior information will have lower weight than the Lagrange multipliers for samples
that are difficult or incorrect.

4.3 Manifold Regularization

Next we consider the case wheres some of the labels are missing. Without loss of generality
we will assume the first l points are labeled and the latter n− l points are unlabeled.

We will adopt the semi-supervised MED classification framework of [69], called Lapla-
cian MED (LapMED). LapMED introduces an additional “geometric” constraint∫∫

P(θ, λ)

(∫
x∈M

θTf(x)∆Mf(x)θ dPx − λ
)
dθdλ ≤ 0 (4.2)

to (4.1) where M = supp(PX) ⊂ Rn is a compact submanifold, ∆M is the Laplace-
Beltrami operator on M, and λ controls the complexity of the decision boundary in the
intrinsic geometry ofPX . This constraint was motivated by the semi-supervised framework
of [1] to encourage the function f(x) to be smooth over the support set of the feature
distribution PX , inducing a geometric interpolation of unlabeled points. Since the marginal
distribution is unknown, from [70]
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f(X)TLf(X)→
∫
x∈M

f(x)∆Mf(x) dPx, as n→∞

where L is the normalized graph Laplacian formed with a heat kernel. The LapMED
posterior can be approximated as P(θ, b,γ, λ|D) =

P0(θ, b,γ, λ)

Z(α, β)
exp

{
l∑

i=1

αi (yi(f(X)θ + b)− γi) + β
(
λ− θTf(X)TLf(X)θ

)}

where β ≥ 0 is a Lagrange multiplier for the smoothness constraint.

4.3.1 Sequential Laplacian MED

The distribution P(Θ,γ, λ|D) that minimizes the objective with the additional constraint
(4.2) can similarly be factorized and, like the distribution of slack parameters considered
in Section 2, the distribution of the smoothness parameter λ is also independent of the
data D. Likewise, the distribution of the decision rule coefficients P(Θ|D) are conjugate
distributions with their priors. Thus the updating procedure for the LapMED problem is
similar to the updating procedure in Section 4.2.

Theorem 4.3.1. At t = 0, the MED priors for θ (orω), b, and γi are the same as in Theorem

1, and the prior for λ is a Bayesian zero mean point prior, denoted Exp.(∞). Then given

data D(τ) at time point τ , the MED conjugate prior and posterior are still Exp.(∞) for λ,

the same as in Theorem 1 for b and γi, and Gaussian of form N
(
µ(τ),Σ(τ)

)
for θ (or ω).

Define a l × n expansion matrix as J = [I 0]. Then the mean and covariance parameters

for the distribution of θ are

µ(τ) = G−1
(τ)

τ∑
t=1

f(X(t))
TJTY(t)α̂(t), Σ(τ) = G−1

(τ),

where G(τ) = G(τ−1) + 2β(τ)f(X(τ))
TL(τ)f(X(τ)) is a recursive graph of vertex disjoint

subgraphs, and for the distribution of ω are

µ(τ) =
τ∑
t=1

k(τ)

(
X(τ),X(t)

)
JTY(t)α̂(t), Σ(τ) = k(τ)

(
X(τ),X(τ)

)
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where k(τ)(x,x
′) = 〈f(x),G−1

(τ)f(x′)〉 is a kernel function that is recursively defined as

k(τ)(x,x
′) = k(τ−1)(x,x

′) (4.3)

− k(τ−1)(x,X(τ))

((
2β(τ)L(τ)

)−1
+ k(τ−1)

(
X(τ),X(τ)

))−1

k(τ−1)(X(τ),x
′).

Theorem 2 gives the posterior distribution for semi-supervised classification whose
form is comparable to the form given in Corollary 4.2.1.1 for the supervised case. In-
deed the forms are identical except for the presence of the precision matrix term G(τ) in
the semi-supervised case. As the sparsity of G(τ) is associated with the graph Laplacian,
the kernel function of the semi-supervised case is a regularized version of the kernel func-
tion that appears in Corallary 4.2.1.1. If we let β(t) be a fixed parameter, then α̂(t) and b̂
optimize an objective of the same form as in Corollary 4.2.1.2, but with kernel function
k(τ)(x,x

′). If β(t) is chosen to be 0, the sequential LapMED simply ignores the unlabeled
data of time point t, and if all β(i)’s are 0, then the unlabeled data is always ignored and
the updating procedure is exactly the same as in the supervised scenario. These parameters
are functions of the γA and γI , which are identical to the penalty parameters in the Lapla-
cian SVM [1], associated with the reproducing kernel Hilbert space and data distribution
respectively: C(t) = 1

2l(t)γA
and β(t) = γI

2γAn
2
(t)

.

4.3.2 Approximating the Kernel Function

Because the kernel function in (4.3) is a function of the previous kernel functions, calcu-
lating a map to its associated Hilbert space H(τ) can be computationally expensive. Thus
in this subsection, we derive an approximation to the map to 〈x,x′〉H(τ)

, which is compu-
tationally easier than direct recursive calculation.

Recall that we approximate the constraint in (4.2), at any time point t, empirically with
the graph Laplacian L(t) formed using the data from that time point X(t). However, the
non-empirical constraint using the Laplace-Beltrami operator over the unknown marginal
distribution Px, is actually the same at every time point. Thus as n(τ−1) → ∞, the prior
graphG(τ−1) converges to

B

∫
x∈M

f(x)∆Mf(x) dPx ≈ B

∞∑
i=1

δiξ
2
i υi(z)υi(z) (4.4)

where B = 2
∑τ

t=1 β(t), δi are the eigenvalues of the Laplace-Beltrami operator, and υi(z)

and ξi are the infinite sequence of right singular functions and singular values of
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f(x) =
∫
k(x, z)f(z) dz. The approximate decomposition arises since the left singular

functions of f are the eigenfunctions of the Laplace-Beltrami operator [71] and [1]. Thus
instead of empirically approximating the Laplacian as a sum of subgraphs
G(τ−1) = I +

∑τ−1
t=1 2β(t)f(X(t))

TL(t)f(X(t)), we can instead implement approximations
to the eigen/singular values and singular functions in (4.4).

Assuming that the sample size n is large enough, the average eigenvalues of the τ − 1

graph Laplacians would be a good estimator for the eigenvalues of the Laplace-Beltrami
operator. Additionally the rows of the matix V T from the singular value decomposition
of X will contain the basis for its row space. Thus because the right singular functions
form an orthonormal basis for the coimage of f , if the mapping approximately preserves
the basis, the mapped average singular vectors f(V̄i) would be good estimators for the right
singular functions υi(z) and correspondingly so for the singular values.

The posterior kernel function k(τ)(x,x
′) using an approximation to the decomposi-

tion in (4.4) will no longer be a recursive function of prior kernel functions k(τ−1)(x,x
′)

that have the same form, like in (4.3). Instead for τ > 2, it uses a prior kernel function
k̃(τ−1)(x,x

′) =

k(x,x′)− k(x, V̄(τ−1))

( diag(s̄ 2
(τ−1)d̄(τ−1))

−1

B
+ k(V̄(τ−1), V̄(τ−1))

)−1

k(V̄(τ−1),x
′).

where k(x,x′) = 〈f(x), f(x′)〉 is the non-regularized kernel function. So at time τ , the
singular vectors of X(τ−1) are used to update the average singular vectors, in the above
function, through

V̄(τ−1) = V̄(τ−2) +
V(τ−1) − V̄(τ−2)

τ − 1

and similarly so for the average corresponding singular values s̄(τ−1) and the average eigen-
values of the graph Laplacians d̄(τ−1).

4.4 Experiments

In this section, we compare the proposed sequential maximum margin classifiers to popular
supervised and semi-supervised maximum margin classifiers (SVM [65] and LapSVM [1])
where the model is trained using just the current time points data and where the model
has been re-trained on all previous data. The former type of model is a lower bound on
performance since it ignores all previous data and the latter type of model is an upper
bound since it is re-trained on all previous data at every time point. Note the MED and
SVM models only differ by a weak log-barrier term in the objective function making their
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performance identical, and similarly so for LapMED and LapSVM. Thus their performance
curves will referred to as Full SVM/MED and Full LapSVM/LapMED.

4.4.1 Simulations

In both of the following simulations, the models receive roughly 100 samples
(n(t) = [97, 103]) at every time point, the parameters are empirically chosen with a valida-
tion set, and then the models are tested on an independent data set of 1000 test points. The
test accuracy TP+TN

1000
is the average accuracy over 100 trials of simulation.

In the first simulation, we generate data from 200 categorical distributions where 100 of
the variables are sparse so they have high probability of being 0, another 50 of the variables
have lower probability of being 0, and the final 50 variables are used to distinguish between
the two classes. We use the term frequency - inverse document frequency (TF-IDF) kernel
of [72], which is used in document processing and topic models. Figure 4.1 shows that the
accuracy of the sequential model (SeqMED) improves as the model is updated with more
training data and has much better results even after one model update versus the indepen-
dent model (SVM) that ignores previous training data. Of course the sequential model does
not improve as rapidly as the model that is re-trained on all the data (Full SVM/MED), but
this is the price paid for lower computational complexity. For example, at t = 30, SeqMED
updates and fits 100 coefficients for the new data whereas Full SVM/MED fits 3,000 coef-
ficients for all the data.

Figure 4.1: Accuracy of prediction for categorical fully labeled simulated data. The pro-
posed sequential MED (SeqMED) classifier performs almost as well as the full batch im-
plementation of the SVM/MED (Full SVM/MED).

In the second simulation, we generate data from the interior of a 3-dimensional sphere
where one class is roughly at the center of the sphere and the other class is on the shell,
but only 10% of the samples are labeled. We use a rbf kernel with width 1 for the kernel
function and a heat kernel with width 0.01 and a 20 nearest neighbors graph for the graph
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Laplacian. Figure 4.2 shows improvement in performance of the sequential model similar
to in Figure 4.1. We use the approximate kernel function of Subsection 4.3.2 to perform
each update, establishing that the approximation is adequate.

Figure 4.2: Accuracy of prediction for continuous simulated data with 10% labeled.

4.4.2 Data

We compare the proposed algorithms on the Isolet speech database from the UCI machine
learning repository [73] following the experimental framework used in [1]. To train the
models, we take the entire training set of 120 speakers (isolet1 - isolet4) and break them
into 24 groups (time points) of 5 speakers where only the first speaker is labeled. At each
time point, the models train on 260 samples (t = 21 and 23 only have 259) where 52 of
the samples are labeled. The parameters are set in the same way as in [1] and the test
set is similarly composed of the 1,559 samples from isolet5. Figure 4.3 shows that, after
two time points, the sequential model always performs better than the model that ignores
previous data, and comes close to performing as well as the fully re-trained model as time
progresses.

Figure 4.3: Accuracy of prediction on isolet5 for models trained on partially labeled
speech isolets 1-4. The proposed semi-supervised sequential Laplacian MED classifier
(SeqLapMED) comes close to the full Laplacian SVM [1] as time progresses.
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4.5 Conclusions

We have proposed recursive versions of supervised and semi-supervised maximum margin
classifiers in the minimum entropy discrimination (MED) classification framework. The
proposed sequential maximum margin classifiers perform nearly as well as a much more
computationally expensive fully re-trained maximum margin classifiers and significantly
better than a classifier that ignores previous data.

Appendix

Proof of Theorem 4.2.1. Let µ(τ−1) =
∑τ−1

t=1 f(X(t))
TY(t)α̂(t) where µ(0) = 0. At time τ ,

let the priors be θ ∼ N(µ(τ−1), I), b ∼ N(0, σ2) where σ2 →∞, and
γi ∼ C(τ)e

−C(τ)(1−γi)I(γi ≤ 1). Then the posterior P(θ, b,γ| {D}τt=1)

=
P0(θ)P0(b)P0(γ)

Z(α̂(τ))
exp

{n(τ)∑
i=1

α̂(τ)i

(
y(τ)i(f(X(τ))θ + b)− γi

)}

=
P0(θ)

Zθ(α̂(τ))
exp

{n(τ)∑
i=1

α̂(τ)iy(τ)if(X(τ))θ

}
P0(b)

Zb(α̂(τ))
exp

{
b

n(τ)∑
i=1

y(τ)iα̂(τ)i

}
∏n(τ)

i=1 P0(γi)

Zγi(α̂(τ))
exp

{
−

n(τ)∑
i=1

α̂(τ)iγi

}
= P(θ|X(1),y(1), . . . ,X(τ),y(τ))P(b|y(1), . . . ,y(τ))P(γ).

So the posterior of the weights P(θ|X(1),y(1), . . . ,X(τ),y(τ))

=
exp

{
−0.5(θ − µ(τ−1))

T (θ − µ(τ−1)) + α̂T(τ)Y(τ)f(X(τ))θ
}

(2π)p/2Z(α̂(τ))

=

exp{−0.5(θT θ−2µT
(τ−1)

θ−2α̂T
(τ)
Y(τ)f(X(τ))θ)}

(2π)p/2∫ exp
{
−0.5

(
θT θ−2µT

(τ−1)
θ−2α̂T

(τ)
Y(τ)f(X(τ))θ

)}
(2π)p/2

dθ

=
exp

{
−0.5

(
θ − (µ(τ−1) + f(X(τ))

TY(τ)α̂(τ))
)T (

θ − (µ(τ−1) + f(X(τ))
TY(τ)α̂(τ))

)}
(2π)p/2

∼ N(µ(τ−1) + f(X(τ))
TY(τ)α̂(τ), I),
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the posterior of the bias term P(b|y(1), . . . ,y(τ))

=
(2πσ2)−1/2 exp

{
−0.5(b2 − 2σ2byT(τ)α̂(τ))/σ

2
}

∫
(2πσ2)−1/2 exp

{
−0.5(b2 − 2σ2byT(τ)α̂(τ))/σ2

}
db

=
exp{−0.5(b− σ2yT(τ)α̂(τ))

2/σ2}
√

2πσ2

∼ N(σ2yT(τ)α̂(τ), σ
2)

⇒ if σ →∞, then N(σ2yT(τ)α̂(τ), σ
2)→ N(0,∞)

as long as the optimal Lagrange multipliers satisfy yT(τ)α̂(τ) = 0, and the posterior of the
margin parameters P(γ) do not depend on the data.

Proof of Corollary 4.2.1.1. At time τ , letω = f(X(τ))θ have priorN(µ(τ−1),K(τ)) where
µ(τ−1) =

∑τ−1
t=1 k(X(τ),X(t))Y(t)α̂(t). Then the posterior P(ω|X(1),y(1), . . . ,X(τ),y(τ))

=
P0(ω) exp

{∑n(τ)

i=1 α̂(τ)iy(τ)iω
}

Zω(α̂(τ))
=

exp
{
−0.5(ω − µ(τ−1))

TK−1
(τ)(ω − µ(τ−1)) + α̂T(τ)Y(τ)ω

}
|2πK(τ)|1/2Zω(α̂(τ))

=
exp{−0.5

(
ω − (µ(τ−1) +K(τ)Y(τ)α̂(τ))

)T
K−1

(τ)

(
ω − (µ(τ−1) +K(τ)Y(τ)α̂(τ))

)
}

|2πK(τ)|1/2

∼ N(µ(τ−1) +K(τ)Y(τ)α̂(τ),K(τ)).

Proof of Corollary 4.2.1.2. The optimal Lagrange multipliers at t = τ are the solution to

arg max
α(τ)

− log
(
Z(α(τ))

)
= arg max

α(τ)

− log
(
Zθ(α(τ))

)
− log

(
Zb(α(τ))

)
− log

(
Zγ(α(τ))

)
or

arg max
α(τ)

− log
(
Z(α(τ))

)
= arg max

α(τ)

− log
(
Zω(α(τ))

)
− log

(
Zb(α(τ))

)
− log

(
Zγ(α(τ))

)
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where

− log
(
Zθ(α(τ))

)
= − log

(∫
eα

T
(τ)
Y(τ)f(X(τ))θ−0.5(θ−µ(τ−1))

T (θ−µ(τ−1))

(2π)p/2
dθ

)
= −αT(τ)Y(τ)f(X(τ))µ(τ−1) − 0.5αT(τ)Y(τ)f(X(τ))f(X(τ))

TY(τ)α(τ)

− log
(
Zω(α(τ))

)
= − log

(∫
eα

T
(τ)
Y(τ)ω−0.5(ω−µ(τ−1))

TK−1
(τ)

(ω−µ(τ−1))

|2πK(τ)|1/2
dω

)
= −αT(τ)Y(τ)µ(τ−1) − 0.5αT(τ)Y(τ)K(τ)Y(τ)α(τ)

− log
(
Zb(α(τ))

)
= − log

(∫
e−0.5(b−σ2yT

(τ)
α(τ))

2/σ2

√
2πσ2

db

)
− log

(
e0.5σ2(yT

(τ)
α(τ))

2
)

= −0.5σ2(yT(τ)α(τ))
2 ⇒ if σ →∞, then yT(τ)α(τ) = 0

− log
(
Zγ(α(τ))

)
= −

n(τ)∑
i=1

log
(
Zγi(α(τ))

)
= −

n(τ)∑
i=1

log

(∫ 1

−∞
C(τ)e

−C(τ)(1−γi)e−α(τ)iγi dγi

)

= −
n(τ)∑
i=1

log

(
C(τ)

C(τ) − α(τ)i

e−C(τ)+γi(C(τ)−α(τ)i)

∣∣∣∣1
−∞

)

= −
n(τ)∑
i=1

log

(
C(τ)e

−α(τ)i

C(τ) − α(τ)i

)
=

n(τ)∑
i=1

α(τ)i + log

(
1−

α(τ)i

C(τ)

)
.

Proof of Theorem 4.3.1. At time τ , let the priors for b and γi be the same as in Theorem
4.2.1, λ ∼ Exp.(ν) where ν →∞, and θ (or ω) ∼ N

(
µ(τ−1),Σ(τ−1)

)
. Then the posterior

P(θ, b,γ, λ| {D}τt=1) and partition function Zθ(α(τ), β(τ)) factorize similarly as

P(θ|X(1),y(1), . . . ,X(τ),y(τ))P(b|y(1), . . . ,y(τ))P(γ)P(λ)

and

Zθ(α(τ), β(τ))Zb(α(τ))Zλ(β(τ))

l(τ)∏
i=1

Zγi(α(τ)).

The bias and margin terms are independent of β(τ), so their posterior and partition functions
are the same as in Theorem 4.2.1. The posterior of the smoothness parameter λ does not
depend on the data and

− log
(
Zλ(β(τ))

)
= − log

(∫ ∞
0

νe−νλeβ(τ)λ dλ

)
= − log

(
ν

ν − β(τ)

)
⇒ if ν →∞, then log(1− β(τ)/ν) = 0.
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Let the parameters for the prior distribution of θ be

µ(τ−1) = G−1
(τ−1)

τ−1∑
t=1

f(X(t))
TJTY(t)α̂(t), Σ(τ−1) = G−1

(τ−1),

where G(τ−1) = G(τ−2) + 2β(τ−1)f(X(τ−1))
TL(τ−1)f(X(τ−1)), and G(0) = I, then the

posterior P(θ|X(1),y(1), . . . ,X(τ),y(τ))

=
exp

{
−0.5(θ − µ(τ−1))

TΣ−1
(τ−1)(θ − µ(τ−1))

}
det(2πΣ(τ−1))1/2

exp
{
α̂T(τ)Y(τ)Jf(X(τ))θ − β(τ)θ

Tf(X(τ))
TL(τ)f(X(τ))θ

}
Zθ(α̂(τ), β(τ))

= exp

{
− 0.5

(
θTG(τ−1)θ +

(
τ−1∑
t=1

f(X(t))
TJTY(t)α̂(t)

)T

G−1
(τ−1)

(
τ−1∑
t=1

f(X(t))
TJTY(t)α̂(t)

)

− 2θT
τ−1∑
t=1

f(X(t))
TJTY(t)α̂(t) − 2α̂T(τ)Y(τ)Jf(X(τ))θ + 2β(τ)θ

Tf(X(τ))
TL(τ)f(X(τ))θ

)}
/(

det(2πG−1
(τ−1))

1/2Zθ(α̂(τ), β(τ))
)

= exp

{
− 0.5

(
θTG(τ)θ − 2θT

τ∑
t=1

f(X(t))
TJTY(t)α̂(t)

+

(
τ∑
t=1

f(X(t))
TJTY(t)α̂(t)

)T

G−1
(τ)

(
τ∑
t=1

f(X(t))
TJTY(t)α̂(t)

))

−

(
τ−1∑
t=1

f(X(t))
TJTY(t)α̂(t)

)T
G−1

(τ−1)

2

(
τ−1∑
t=1

f(X(t))
TJTY(t)α̂(t)

)

+

(
τ∑
t=1

f(X(t))
TJTY(t)α̂(t)

)T
G−1

(τ)

2

(
τ∑
t=1

f(X(t))
TJTY(t)α̂(t)

))}
/(

det(2πG−1
(τ−1))

1/2Zθ(α̂(τ), β(τ))
)

=
e
−0.5

(
θ−G−1

(τ)

∑τ
t=1 f(X(t))

TJTY(t)α̂(t)

)T
G(τ)

(
θ−G−1

(τ)

∑τ
t=1 f(X(t))

TJTY(t)α̂(t)

)
det(2πG−1

(τ))
1/2

∼ N

(
G−1

(τ)

τ∑
t=1

f(X(t))
TJTY(t)α̂(t), (G(τ))

−1

)
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and − log
(
Zθ(α(τ)), β(τ)

)
= − log

det(2πG−1
(τ))

1/2

det(2πG−1
(τ−1))

1/2
− 0.5(

τ∑
t=1

f(X(t))
TJTY(t)α(t))

TG−1
(τ)(

τ∑
t=1

f(X(t))
TJTY(t)α(t))

− 0.5(
τ−1∑
t=1

f(X(t))
TJTY(t)α(t))

TG−1
(τ−1)(

τ−1∑
t=1

f(X(t))
TJTY(t)α(t))

= log
(

det(2πG−1
(τ−1))

)
− log

(
det(2πG−1

(τ))
)
− 0.5

(
(
τ−1∑
t=1

f(X(t))
TJTY(t)α(t))

T

(
G(τ−1)

(
2β(τ)f(X(τ))

TL(τ)f(X(τ))
)−1
G(τ−1) +G(τ−1)

)−1

(
τ−1∑
t=1

f(X(t))
TJTY(t)α(t))

)
− 0.5αT(τ)Y(τ)Jf(X(τ))G

−1
(τ)f(X(τ))

TJTY(τ)α(τ)

−αT(τ)Y(τ)Jf(X(τ))G
−1
(τ)

τ−1∑
t=1

f(X(t))
TJTY(t)α(t)

= 0.5
(
Const.β(τ)−α

T
(τ)Y(τ)Jf(X(τ))G

−1
(τ)f(X(τ))

TJTY(τ)α(τ)

)
−αT(τ)Y(τ)Jf(X(τ))G

−1
(τ)

τ−1∑
t=1

f(X(t))
TJTY(t)α(t)

where Const.β(τ) can be dropped from the objective when β(t) are fixed parameters.
Or let the parameters for the prior distribution of ω = f(X(τ))θ be

µ(τ−1) =
τ−1∑
t=1

k(τ−1)(X(τ),X(t))J
TY(t)α̂(t)

Σ(τ−1) = k(τ−1)(X(τ),X(τ)) where k(0)(x,x
′) = 〈f(x), f(x′)〉

k(τ−1)(x,x
′) = k(τ−2)(x,x

′)

− k(τ−2)(x,X(τ−1))
((

2β(τ−1)L(τ−1)

)−1
+ k(τ−2)

(
X(τ−1),X(τ−1)

))−1

k(τ−2)(X(τ−1),x
′).
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The posterior P(ω|X(1),y(1), . . . ,X(τ),y(τ))

=
exp

{
−0.5(ω − µ(τ−1))

TΣ−1
(τ−1)(ω − µ(τ−1))

}
det(2πΣ(τ−1))1/2

exp
{
α̂T(τ)Y(τ)Jω − β(τ)ω

TL(τ)ω
}

Zω(α̂(τ), β(τ))

= exp

{
− 0.5

(
ωT
(
k(τ−1)(X(τ),X(τ))

−1 + 2β(τ)L(τ)

)
ω

+
( τ−1∑
t=1

k(τ−1)(X(τ),X(t))J
TY(t)α̂(t)

)T
k(τ−1)(X(τ),X(τ))

−1
( τ−1∑
t=1

k(τ−1)(X(τ),X(t))J
TY(t)α̂(t)

)
− 2ωTk(τ−1)(X(τ),X(τ))

−1
( τ−1∑
t=1

k(τ−1)(X(τ),X(t))J
TY(t)α̂(t) + k(τ−1)(X(τ),X(τ))J

TY(τ)α̂(τ)

))}
/(

det
(
2πk(τ−1)(X(τ),X(τ))

)1/2
Zω(α̂(τ), β(τ))

)
=
e−0.5(ω−

∑τ
t=1 k(τ)(X(τ),X(t))JTY(t)α̂(t))

T
k(τ)(X(τ),X(τ))

−1(ω−
∑τ
t=1 k(τ)(X(τ),X(t))JTY(t)α̂(t))

det
(
2πk(τ)(X(τ),X(τ))

)1/2

∼ N

(
τ∑
t=1

k(τ)(X(τ),X(t))J
TY(t)α̂(t), k(τ)(X(τ),X(τ))

)

and − log
(
Zω(α(τ)), β(τ)

)
= −0.5

(
log
(
det
(
k(τ)(X(τ),X(τ)) k(τ−1)(X(τ),X(τ))

−1
))

+
( τ−1∑
t=1

k(τ−1)(X(τ),X(t))J
TY(t)α(t)

)T
k(τ−1)(X(τ),X(τ))

−1
( τ−1∑
t=1

k(τ−1)(X(τ),X(t))J
TY(t)α(t)

)
−
( τ∑
t=1

k(τ)(X(τ),X(t))J
TY(t)α(t)

)T
k(τ)(X(τ),X(τ))

−1
( τ∑
t=1

k(τ)(X(τ),X(t))J
TY(t)α(t)

))
= 0.5

(
Const.β(τ)−α

T
(τ)Y(τ)Jk(τ)(X(τ),X(τ))J

TY(τ)α(τ)

)
−αT(τ)Y(τ)J

τ−1∑
t=1

k(τ)(X(τ),X(t))J
TY(t)α(t).
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CHAPTER 5

Maximum Entropy Discrimination with Partial
Labels for Anomaly Detection

Data-driven anomaly detection methods suffer from the drawback of detecting all instances
that are statistically rare, irrespective of whether the detected instances have real-world sig-
nificance or not. In this paper, we are interested in the problem of specifically detecting
anomalous instances that are known to have high real-world utility, while ignoring the low-
utility statistically anomalous instances. To this end, we propose a novel method called
Latent Laplacian Maximum Entropy Discrimination (LatLapMED) as a potential solution.
This method uses the EM algorithm to simultaneously incorporate the Geometric Entropy
Minimization principle for identifying statistical anomalies, and the Maximum Entropy
Discrimination principle to incorporate utility labels, in order to detect high-utility anoma-
lies. We apply our method in both simulated and real datasets to demonstrate that it has
superior performance over existing alternatives that independently pre-process with unsu-
pervised anomaly detection algorithms before classifying.

5.1 Introduction

Anomaly detection is a very pervasive problem applicable to a variety of domains includ-
ing network intrusion, fraud detection, and system failures. It is a crucial task in many
applications because failure to detect anomalous activity could result in highly undesirable
outcomes. For example, (i) detection of anomalous medical claims is important to identify
fraud; (ii) detection of fraudulent credit card transactions is necessary to help prevent iden-
tity theft; and (iii) detection of abnormal network traffic is necessary to identify hacking.

Many techniques have been developed for anomaly detection. These methods can be
broadly classified into two categories: (i) rule-based systems, and (ii) statistical data-driven
approaches. The rule-based systems are based on domain expertise and look for specific
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types of anomalies while the data-driven approaches look to identify anomalies by iden-
tifying statistically rare patterns. Examples of data-driven methods include parametric
methods that assume a known family for the nominal (non-anomalous) distribution and
non-parametric methods such as those using unsupervised or semi-supervised support vec-
tor machines (SVMs) [74, 75] or based on minimum volume set estimation [76, 77, 78].

The advantage of data-driven approaches over rule-based methods is that they can iden-
tify novel types of anomalies that are unknown to the domain expert. In the network traffic
example, they can be used to identify previously unknown types of network attacks that
would not have been detected by rule-based systems. The disadvantage is that sometimes
the anomalies, while statistically rare, are not interesting to the domain expert. For in-
stance, the data-driven methods would detect routine monthly backup events due to the
high volume of network traffic.

5.1.1 Related work

To identify the domain expert’s interests, one could simply have the user label instances as
high or low utility through active learning frameworks like the algorithms in [79, 80], and
subsequently use popular supervised or semi-supervised classification methods [81, 1, 82,
83] to discriminate between the high-utility and low-utility instances. The drawback with
this approach in contrast to our proposed approach is that these methods do not exploit the
following key idea: only statistically rare points can be of high- utility, or equivalently,
all nominal points are low-utility. As a result, the existing methods are less successful in
detecting high utility instances given the limited number of labeled instances.

To incorporate this idea that nominal points are low-utility, one could pre-identify
anomalous/nominal points using a statistical anomaly detection method [74, 75, 76, 77, 78],
and subsequently use the instances labeled as nominal by the anomaly detection method as
additional nominal labels for the classifier [84]. However, as we demonstrate in our exper-
imental results, this strategy is not optimal because the detected anomalies are independent
of the utility labels that are available. In contrast, our algorithm holistically utilizes the
labeled information to accurately detect anomalies, and the detected anomalies to improve
utility classification.

A similar approach to ours was taken in [85] where the authors also distinguish be-
tween high utility anomalies and low utility statistical outliers by incorporating human
expert utility labels (which they acquire using an active learning loop). Their algorithm is
set up to ensure that the anomaly scores of all labeled anomalies (high-utility) is higher than
a threshold, and the scores of all labeled nominals (low-utility) is lower than that threshold.
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Another related approach is the Bayesian posterior probability model of [86]. Their algo-
rithm makes similar assumptions about anomalous points being far away, in distance, from
the nominal points.

We construct our model using the Maximum Entropy Discrimination (MED) [54] frame-
work, a variant of the classical minimum relative entropy principle, but with a discriminant
function in some of the constraints. By choosing different priors, discriminant functions,
or constraints, the MED framework can be used for corrupt measurements [87], infinite
mixture classifiers [88], and Markov networks [89] among other applications. In our case,
we choose to add constraints that are hinge loss style discriminant functions with latent
variables and a regularizer on the smoothness of the discriminant function.

5.1.2 Proposed Work

In this paper, we develop a novel method called Latent Laplacian Maximum Entropy Dis-
crimination (LatLapMED) which detects high-utility anomalies that are of interest to the
domain expert by exploiting the idea that all high-utility points are statistically rare. We are
interested in situations where we have data X of sample size n, but their labels yi, which
denote high utility (yi = 1) or not (yi = −1) are only partially observed. Some of the sam-
ples Xi are also anomalous with latent variables indicating whether they are (ηi = 1) or
are not (ηi = 0). Without loss of generality, we assume the labels are observed for the first
l << n points and that the first a points are anomalous (all labeled points are anomalous
so l ≤ a << n).

By adding constraints to the MED framework to incorporate partially labeled observa-
tions, the subsequent decision boundary will be able to separate the high-utility anomalous
points from the other points despite this incomplete information. However the nominal dis-
tribution is unknown, so one way to identify anomalies is by using the Geometric Entropy
Minimization (GEM) principle [76, 78]. This idea of integrating the GEM principle into
the MED framework has been previously studied by [87], who look at classifying nominal
points in a fully supervised setting. In our algorithm, we use exploit the probabilistic nature
of the MED framework and solve it with the EM algorithm so that the E-step estimates the
latent variables with GEM and the M-Step maximizes over only the anomalous points.

5.1.2.1 Notation

The dataset is of size n where a sample Xi ∈ Rp. For notational simplicity, we assume
the first l samples are labeled as high utility (yi = 1) or not (yi = −1) and the first a
points are anomalous with indicator variables (ηi = 1) and the rest are not (ηi = 0). We
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denote KL(·||·) to be the Kullback-Leibler divergence, P(·) and P0(·) to be a probability
density and prior respectively, E(·) as the expectation of random variables with respect to
their distribution, I(·) to be an indicator function, M(·|·) to be a discrimination function,
Z(·) to be the partition function or normalizing constant, and || · ||2 and || · ||F to be the `2

and Frobenius norm respectively. The following are parameters for: the decision boundary
Θ = {θ, b}, the margin of each labeled sample γi, and the smoothness of the discrimination
function λ. Their corresponding Lagrange multipliers are αi and β. We define the following
matrices: I as the identity, 0 as a zero vector, L as the normalized graph Laplacian matrix,
K as the Gram matrix of a kernel function k(·, ·), Y as a diagonal matrix of the labels, J
as a 0-1 expansion matrix, andH as a diagonal matrix of the anomaly indicators with h as
only its non-zero rows. Anything with a “hat” ˆ is an estimator of its true value which has
the same symbol, but no “hat”.

The rest of this paper is organized as follows: Section 2 will briefly review the MED
framework and discuss constructing maximum margin classifiers with it. Section 3 will
propose an additional constraint to incorporate unlabeled points and derive a probabilistic
interpretation of the Laplacian SVM. Section 4 will describe the proposed Latent Lapla-
cian MED method, which uses the EM algorithm to simultaneously estimate unobserved
anomalous labels and form a utility decision boundary. Section 5 contains simulation re-
sults of the performance of our proposed method, an application to a dataset of Reddit
subforums, and two applications to datasets of botnet traffic (CTU-13).

5.2 Maximum Entropy Discrimination

Maximum entropy is a classical method of estimating an unknown distribution subject to
the expected values of a set of constraints where the expectation is with respect to the un-
known distribution. When the prior distribution is not uniform, this can be generalized as
minimizing the relative entropy (or Kullback-Leibler divergence). The MED framework
[54] extends the minimum relative entropy principle to have discriminant power by requir-
ing one of the constraints to be over a parametric family of decision boundaries M(X|Θ).
Thus, it creates models that have both the classification robustness of discriminative ap-
proaches and the ability to deal with uncertain or incomplete observations of generative
approaches.
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The basic MED objective function is

min
P(Θ,γ|X,y)

KL (P(Θ,γ|X,y)||P0(Θ,γ))

subject to∫∫
P(Θ,γ) (y1M(X1|Θ)− γ1) dΘdγ ≥ 0

...∫∫
P(Θ,γ) (ynM(Xn|Θ)− γn) dΘdγ ≥ 0

which has solution,

P(Θ,γ|X,y) =
P0(Θ,γ)

Z(α)
exp

{
n∑
i=1

αi (yiM(Xi|Θ)− γi)

}

where the rows Xi ∈ Rp are samples, yi ∈ {−1, 1} are labels, P0(Θ,γ) is the joint prior,
and α = [α1, ..., αn]T ≥ 0 are Lagrange multipliers, which can be found by maximiz-
ing the negative log partition function − log (Z(α)). Because the posterior distribution
P(Θ,γ|X,y) is over the decision and margin parameters Θ and γ, the MED framework
gives a distribution of solutions. This gives additional flexibility because the decision rule
ŷi′ = sign(

∫∫
P(Θ,γ|X,y)M(Xi′|Θ)dγdΘ) is a weighted combination of discriminant

functions, and different priors on γ can permit different degrees of separability in the clas-
sification. If the support of this prior includes negative values, the decision boundary can
be found on non-separable data.

5.2.1 Interpretation as a Maximum Margin Classifier

Specifically in the case when the discriminant function M(X|θ, b) = Xθ+b is linear, and
the prior distribution is P0(Θ,γ) = P0(θ)P0(b)

∏n
i=1 P0(γi) where

P0(γi) = Ce−C(1−γi)I(γi ≤ 1), P0(θ) is N(0, I), and P0(b) is a Gaussian non-informative
prior, [54] shows that the MED solution is very similar to a support vector machine (SVM).
The maximum a posteriori (MAP) estimator for θ is

∑n
i=1 αiyiX

T
i where αi maximize

− log (Z(α)) =− 1

2

n∑
i=1

n∑
i′=1

αiαi′yiyi′XiX
T
i′ +

n∑
i=1

(
αi + log(1− αi

C
)
)

subject to
n∑
i=1

yiαi = 0 and αi ≥ 0 for all i
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which has a log barrier term log(1 − αi/C) instead of the inequality constraints αi ≤ C

found in the dual form of an SVM. Otherwise the two objective functions are equivalent,
so the α̂i are roughly the optimal support vectors and would only differ from actual support
vectors when the posterior mode lies near the boundary of its support.

The connection between SVMs and Gaussian process classification has been previously
studied in many works including [63, 64, 65, 90, 67]. The model in [67] is also a proba-
bilistic interpretation of an SVM and also uses a MAP estimator with a Gaussian process
prior. However, the MED framework is more generalizable and intuitive because we can
easily tailor the posterior to have specific properties by narrowing the feasible set of poste-
riors through additional goodness-of-fit constraints expressed as statistical expectations of
fitting errors. In the following sections we will show how the probabilistic interpretation
of an SVM can incorporate partially labeled points and latent variables through additional
constraints.

5.3 MED with Partially Labeled Observations

In order to incorporate unlabeled points, we use the semi-supervised framework of [1],
which requires the decision boundary to be smooth with respect to the marginal distribution
of all the data, PX . This is because we assume that unlabeled points have the same label as
their labeled neighbors and prefer decision boundaries in low density regions. So we can
restrict the choice of posteriors to be one that induces a decision boundary with at least a
certain level of expected smoothness by the additional constraint∫∫

P(θ, λ)

(∫
x∈M
||∇MM(X|θ)||22 dPX − λ

)
dθdλ ≤ 0

whereM = supp(PX) ⊂ Rn is a compact submanifold, ∇M is the gradient along it, and
λ controls the complexity of the decision boundary in the intrinsic geometry of PX . Note
the bias/intercept term b does not appear in the constraint.

Since the marginal distribution of the data is unknown, we must approximate the con-
straint. From [70],

M(X|θ)TLM(X|θ)→
∫
x∈M
||∇MM(X|θ)||22 dPX

where L is the normalized graph Laplacian formed with a heat kernel using all the data.

68



Thus, we define the empirical objective function for this semi-supervised problem as

min
P(θ,b,γ,λ|X,y)

KL (P(θ, b,γ, λ|X,y)||P0(θ, b,γ, λ))

subject to∫∫∫
P(θ, b,γ) (yiM(X1|θ, b)− γ1) dθdbdγ ≥ 0

...∫∫∫
P(θ, b,γ) (ylM(Xl|θ, b)− γl) dθdbdγ ≥ 0∫∫

P(θ, λ)(M(X|θ)TLM(X|θ)− λ) dθdλ ≤ 0

which has solution, P(θ, b,γ, λ|X,y) =

P0(θ, b,γ, λ)

Z(α, β)
exp

{
l∑

i=1

αi (yiM(Xi|θ, b)− γi) + β
(
λ−M(X|θ)TLM(X|θ)

)}

where the αi’s are Lagrange multipliers for the mean goodness-of-fit constraint onM(X|θ)

and β ≥ 0 is the Lagrange multiplier for the smoothness constraint on M(X|θ).

5.3.1 Laplacian MED as a Maximum Margin Classifier

When one uses a linear discriminant function, the same independent priors as in Sec-
tion 5.2.1, but with additional exponential non-informative prior P0(λ), the MAP estima-
tor is thus a maximum margin classifier. This estimator is defined as θ̂ =

∑l
i=1(I +

2βXTLX)−1XT
i yiαi where the Lagrange multipliersα, β maximize the negative log par-

tition function − log (Z(α, β)) =

− 1

2

l∑
i=1

l∑
i′=1

αiαi′yiyi′Xi(I + 2βXTLX)−1XT
i′ (5.1)

+
l∑

i=1

(αi + log(1− αi/C)) + log
(
det(I + 2βXTLX)

)
subject to

∑l
i=1 yiαi = 0, α1, . . . , αl ≥ 0, and β ≥ 0.

Since the smoothness constraint is formulated using the semi-supervised framework
of [1], the above objective function is very similar to their proposed Laplacian SVM
(LapSVM). This is more obviously seen by extending (5.1) to nonlinear discriminant func-
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tions though a kernel function k(·, ·) and treating β as a fixed parameter to be chosen
separately.

Proposition 3. LetM(X|θ, b) = Xθ+b and P0(θ, b,γ, λ) = P0(θ)P0(b)
∏l

i=1 P0(γi)P0(λ)

where P0(γi) = Ce−C(1−γi)I(γi ≤ 1), P0(θ) is N(0, I), and P0(λ) and P0(b) approach

exponential and Gaussian non-informative priors. Then for a given parameter β ≥ 0, the

dual problem to maximizing the posterior P(θ, b,γ, λ|X,y) for θ is

arg max
α

l∑
i=1

αi −
1

2
αTY JK(I + 2βLK)−1JTY α+

l∑
i=1

log(1− αi/C)

subject to
l∑

i=1

yiαi = 0, α1, . . . , αl ≥ 0

where K is the Gram matrix of the kernel function, Y = diag(y1, ..., yl) and J = [I 0] is

a l × n expansion matrix. The decision rule in this dual form is

ŷi′ = sign
(
k(Xi′ ,X)(I + 2βLK)−1JTY α̂+ b̂

)
where

b̂ = arg min
b

∑
s∈{i|α̂i 6=0} |(ys − ŷs)− b| is equivalent to an SVM bias term [91].

Again the log barrier term produces a relaxation of the inequality constraints αi ≤ C

and decreases the objective function if the optimum is near the boundary of the support.
The parameters can be written as C = 1

2lγA
and β = γI

2γAn2 so that they are functions of
γA and γI , the penalty parameters in the LapSVM for the norms associated with the repro-
ducing kernel Hilbert space (RKHS) and data distribution PX respectively. Due to these
similarities, we will call the classifier of Proposition 3 the Laplacian MED (LapMED).

5.4 MED with Latent Variables

Now that we have established a method to incorporate unlabeled points in MED, we will
present a method to also incorporate latent variables. This joint method of simultaneously
incorporating unlabeled points and latent variables is our proposed Latent Laplacian MED
(LatLapMED) method. We will first consider the case where we can observe the latent
variables, so that we have a complete posterior distribution. Then we will derive a lower
bound for the observed posterior distribution and discuss how to deal with estimating the
latent variables when they are not observed. This will allow us to apply the EM algorithm,
which alternates between estimating the latent variables and maximizing the lower bound.
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5.4.1 The Complete Posterior

If we observe the anomaly indicator variables ηi, then we can construct a posterior that
depends on these variables by modifying the constraints on mean goodness-of-fit. The
discriminant function M(Xi, ηi|θ, b) = ηi(Xiθ + b) can be used to create a maximum
margin classifier that gives positive or negative values for anomalous points and zeros for
nominal points. This is reasonable because all labeled points are anomalous, so if they are
mistakenly classified as nominal, the loss function embedded in the constraints∫∫∫

P(θ, b,γ) (yiη1(Xiθ + b)− γ1) dθdbdγ ≥ 0

... (5.2)∫∫∫
P(θ, b,γ) (ylηl(Xlθ + b)− γl) dθdbdγ ≥ 0

will penalize the labeled points as if they were inside the margin.
Additionally if some of the anomalous points are not labeled, then we will use the same

semi-supervised framework as before and add a smoothness constraint. Since the discrimi-
nant function M(Xi, ηi|θ, b) will always give zeros for nominal points, it really only needs
to be smooth with respect to the marginal distribution of the anomalies PXη . Thus because∫
x∈M ||∇MM(X|θ)||22 dPX =

∫
x∈Mη

||∇MηM(X|θ)||22 dPXη , there are two choices for
the empirical smoothness constraint that converge to the same limit,∫∫

P(θ, λ)(θTXTHTLHXθ − λ) dθdλ ≤ 0 (5.3)∫∫
P(θ, λ)(θTXThTLηhXθ − λ) dθdλ ≤ 0 (5.4)

where Lη is the normalized graph Laplacian of the anomalous points, H = diag(η), and
h is a a× n submatrix of only the non-zero rows ofH .

The solution to the MED problem, using constraints (5.2) and either (5.3) or (5.4), is a
posterior distribution P(θ, b,γ, λ|X,η,y) and its MAP estimator can also be a maximum
margin classifier when the priors are the ones in Proposition 3. If possible, it is more ideal
to use constraint (5.4) because the maximum margin classifier forms a decision boundary
with just the a anomalous points; so it takes considerable less computation time than the
equivalent classifier using constraint (5.3).

Lemma 5.4.1. Using the same priors as in Proposition 3, but with discriminant function

M(Xi, ηi|θ, b) = ηi(Xiθ + b), the dual problem to maximizing the posterior of the MED

problem with constraints (5.2) and (5.4) is maximizing
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arg max
α

l∑
i=1

αi −
1

2
αTY JKη(I + 2βLηKη)

−1JTY α+
l∑

i=1

log(1− αi/C)

subject to
l∑

i=1

αiyi = 0, α1, . . . , αl ≥ 0

whereKη is an a×a submatrix of the Kernel matrix and J = [I 0] is now a l×a expansion

matrix.

Now, we consider the more realistic scenario where the anomaly indicator variables are
latent. Because Lη depends on both X and η, it is simpler to use constraint (5.3) to derive
a posterior. Additionally, the posterior distribution is no longer concave and thus difficult
to maximize so we will derive a lower bound to maximize instead.

5.4.2 A Lower Bound

Since the anomaly indicator variables ηi are not actually observable, the posterior distribu-
tion we can observe is of the form

P(θ, b,γ, λ|X,y) =
P0(θ, b,γ, λ)

∑
P(X,η,y|θ, b,γ, λ)∑

P(X,η,y|α)
(5.5)

where the summation
∑

is over all ηi ∈ {0, 1}. So, we need a lower bound for the negative
log expected partition function − log (

∑
P(X,η,y|α)) that is practical to maximize.

Lemma 5.4.2. Let (5.5) be the posterior of the MED problem with constraints (5.2) and

(5.3), then using the same assumptions as Lemma 5.4.1, the dual problem to MAP esti-

mation is maximizing − log (
∑

P(X,η,y|α)) for α. This objective has a lower bound

proportional to

l∑
i=1

αi −
1

2
αTY JK

(
I + 2βEη(HTLH)K

)−1
JTY α+

l∑
i=1

log(1− αi/C)

subject to
l∑

i=1

αiyi = 0, α1, . . . , αl ≥ 0

where Eη is the expectation with respect to P(η|X,y,αt−1) and αt−1 are the optimal

Lagrange multipliers of the previous iteration.

With this lower bound, we have an objective to maximize in the M-step of the EM al-
gorithm. In the following subsection, we give a way to estimate E(HTLH|X,y,αt−1) =

L � E(ηηT |X,y,αt−1) for the E-step.
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5.4.3 Estimating the Latent Variables

Since ηi = 1 when the data point Xi does not come from the nominal distribution, we
can define it as an indicator variable ηi = I(Xi /∈ Ωφ) where Ωφ is a minimum entropy
set of level φ. So ηi can be viewed as the test function for a statistical test of whether the
density of Xi is equal to the density of the nominal points or not, and Ωφ is the optimal
acceptance region of the test. However because the nominal distribution ofX is unknown,
the GEM principle [76, 78] estimates the optimal acceptance region using the property that
if lim
K,N→∞

K
N

= φ, a greedy K point k nearest neighbors graph (K-kNNG) converges almost

surely to the minimum υ-entropy set containing at least (1 − φ)% of the mass. Thus, for
any ij element of the matrix E(ηηT |X,y,αt−1), we have

E(ηiηj|X,y,αt−1) = E
(
I(Xi,Xj /∈ Ωφ)|X,y,αt−1

)
≈ I(Xi,Xj /∈ Ω̂φ) = η̂iη̂j

where Ω̂φ is the estimated acceptance region.
However, if Ω̂φ uses the standard K-kNNG with edge lengths equal to Euclidean dis-

tances, the graph does not incorporate label information or how the points lie relative to
the decision boundary. Since the neighbors of an anomalous point are also most likely
anomalous, we instead use a similarity metric that penalizes a point for having anomalous
neighbors. So the edge length between a point i and its neighbor j is

|ei(j)| =

||Xi −Xj||2 + d̂ t−1
j if d̂t−1

j > ρ or yj = 1

||Xi −Xj||2 otherwise
(5.6)

where d̂t−1
j is the signed perpendicular distance between Xj and the decision boundary,

ρ ≥ 0 is some threshold, and yj is the label of Xj . Using a graph with the above edges
in the GEM principle, we can estimate the optimal acceptance region, given a decision
boundary and labels, by

Ω̂φ = arg min
XN,K⊂XN

K∑
i=1

k∑
j=1

|ei(j)| (5.7)

where XN,K is a size K subset of the set of all points XN and {ei(1), ..., ei(k)} are the edges
between point i and its k neighbors.

So using the GEM principle described above, L � η̂η̂T = ĤTLĤ is an estimator for
E(HTLH|X,y,αt−1). However, if the MED problem uses constraint (5.4), the E-step
would need an estimator for E(hTLηh|X,y,αt−1) instead.
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Lemma 5.4.3. Assume thatL�η̂η̂T = ĤTLĤ is a good estimator for E(HTLH|X,y,αt−1)

and that the firstm neighbors of any anomalous points are also anomalous. Then ĥT L̂ηĥ is

a good estimator for E(hTLηh|X,y,αt−1) where ĥ is the a× n submatrix of the nonzero

rows of Ĥ and L̂η is the Laplacian matrix on only the set of data points {Xi : η̂i = 1}.

5.4.4 Maximum Margin Classification with the EM Algorithm

From the previous three subsections, it is obvious that the EM algorithm for MAP estima-
tion of the unobserved posterior distribution P(θ, b,γ, λ|X,y) is also a maximum margin
classifier, which we call Latent Laplacian MED (LatLapMED).

Theorem 5.4.4. Under Lemmas 5.4.1 and 5.4.3, the E-step of the EM algorithm is just get-

ting estimators η̂i = I(Xi /∈ Ω̂φ) for the function of unknown parameters E(ηi|X,y,αt−1).

And, the M-step for maximizing P(θ, b,γ, λ|X,y) is a maximum margin classifier of the

form,

arg max
α

l∑
i=1

αi −
1

2
αTY JK̂η(I + 2βL̂ηK̂η)

−1JTY α+
l∑

i=1

log(1− αi
C

)

subject to
l∑

i=1

αiyi = 0, α1, . . . , αl ≥ 0

arg min
b

∑
s∈{i|α̂i 6=0}

|(ys − k(Xs,Xη̂)(I + 2βL̂ηK̂η)
−1JTY α̂)− b|

where Ω̂φ is approximated with the GEM principle described in subsection 5.4.3 and K̂η

is a× a submatrix of only {Xi : η̂i = 1}.

LatLapMED exploits the idea that all high utility points are anomalous because the
similarity metric in Ω̂φ is dependent on the decision boundary and label information; thus
it will be skewed away from points with high utility neighbors. This is crucial because any
high utility points incorrectly estimated as nominal will not be considered in the M-step
and thus cannot be predicted as high utility. In contrast, it is not that vital to correctly
estimate low utility anomalous points because it is not of interest to distinguish between
them and the nominal. As the decision boundary moves every EM iteration, it changes the
penalties that neighboring nodes can incur in the similarity metric. Since the normalized
margin is 1, setting ρ = 1 is typical; however, if the data is difficult to classify, it may be
appropriate to set ρ > 1 because there is less confidence in the classification. Thus the
threshold ρ can be set empirically using prior domain knowledge of the structure of the
data or by cross-validation.
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Corollary 5.4.4.1. Once the EM algorithm converges, the decision rule is

ŷi′ =

−1 if η̂i′ = 0

sign
(
k(Xi′ ,Xη̂)(I + 2βL̂ηK̂η)

−1JTY α̂+ b̂
)

otherwise

whereXη̂ are the data points estimated to be anomalous and α̂, b̂ are optimal parameters.

In this work, we approximate Eη(ηηT |X,αt−1) using the GEM principle with similar-
ity metric (5.6) because the expectation distribution is unknown. Because the GEM princi-
ple is nonparametric, it does not impose, potentially incorrect, distributional assumptions
on the unknown distribution of anomalies, which may be extremely difficult to parametri-
cally characterize. Other estimators, derived using either a different similarity metric in the
GEM principle or another nonparametric method altogether, could be used instead in the E-
step. We believe our estimator is a good choice because it is asymptotically consistent and
empirically we find it is sufficient enough such that the objective in the M-step increases
every iteration. The LatLapMED algorithm, summarized below, produces a joint estimate
of both anomaly and utility labels. This simultaneous estimation allows the method to in-
corporate additional information that would be lost when estimating the anomaly and utility
labels independently.

Algorithm 5.1 LatLapMED
Input: φ, ρ, k, C, β,X,y
repeat

E-Step:
1) Given d̂t−1 = K̂η(I + 2βL̂ηK̂η)

−1JTY α̂t−1 + b̂t−1

2) η̂i = I(Xi /∈ Ω̂φ) where Ω̂φ is the solution of (5.7)
M-Step:

1) Given η̂, form new submatrices K̂η and L̂η
2) Solve the objectives in Theorem 5.4.4 to get α̂t, b̂t

until convergence
Return: η̂, α̂, b̂

5.4.4.1 Computational Complexity

The E-step uses a K-kNNG for the estimators η̂i. This K-kNNG is defined by the Eu-
clidean distance between points, which is constant over all EM iterations, and a penalty,
which changes between EM iterations. The Euclidean distances are calculated and the
k neighbors are sorted only once at initialization, which have computational complexity
O(n2p+n2 log(n)). At every EM iteration, the E-step just needs to add the n penalties given
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from the previous M-step and sort the n total edge lengths, adding computational complex-
ity O(n log(n)) per iteration. The M-step maximizes a quadratic objective (formed from
O(a3) matrix operations) over the Lagrange multipliers αi, which can be solved with conic
interior point methods in polynomial a time, where a << n. Alternatively, the M-step
objective can be approximated as a quadratic program and solved using sequential minimal
optimization in linear a time. Thus, the LatLapMED algorithm has overall computation
time O(n2p+ n2 log(n) + #iter(n log(n) + a3 + aq)) where 1 ≤ q <<∞ depends on how
the objective is solved. If we assume that the computational time of the E-step dominates
significantly over the computational time of the M-step because a << n, then this reduces
to roughly O(n2p + n2 log(n) + #iter(n log(n))) . We have had no problem implement-
ing the algorithm even for n as high as 100,000 points. Parallelization of the initial sorted
distances for the K-kNNG can also improve its computational speed to O(n

2p+n2 log(n)
#nodes

).
The final LatLapMED posterior P(θ, b,γ, λ|X, η̂,y), where η̂ is the estimated latent

variables at EM convergence, is a probabilistic model with a mode that performs maximum
margin classification. Thus LatLapMED has the classification robustness of discriminant
methods, but the natural flexibility of generative methods to incorporate latent variables.
Additionally the generative nature also provides for sequential classification by using the
posterior distribution as a new prior for new data in the MED framework. This allows
LatLapMED to be very applicable to real world problems where data is often continuously
collected in a stream. Alternatively, it can also be used to process a very large dataset,
n >> 105, in smaller batches allowing for the algorithm to be feasible for very large n.

5.4.4.2 Limitations and Future Work

While the computational complexity of the LatLapMED algorithm is feasible for mod-
erately large datasets, it is still more computationally expensive than many competing
methods. However the performance improvement may make it worthwhile to implement
the proposed algorithm in challenging anomaly detection problems. Strategies for reduc-
ing computational complexity through parallelization, specialized hardware approaches, or
implementation of second order acceleration methods are also possible. Additionally, the
problem of online sequential anomaly detection and classification is open. One possible
approach would be to make the E-step be only weakly dependent on of the prior informa-
tion to make it adaptive to changes in the prior over time. An alternative solution would be
to modify the K-kNNG in the GEM algorithm to incorporate a time varying prior through
weighted edges or a suitable choice of level set boundary that varies with the prior. Finally
the number of tuning parameters in the LatLapMED algorithm might be reduced by using
hyperpriors or empirical risk minimization methods.
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5.5 Experiments

In this section, we apply the LatLapMED algorithm to both simulated and real data sets
and demonstrate that the proposed method outperforms alternative two-stage methods that
first estimate the anomaly labels and then predict the utility labels of only the estimated
anomalous points. For combination in the two-stage methods, we consider three algorithms
for non-parametric anomaly detection and both popular supervised and semi-supervised
algorithms for classification; these are shown in Table 5.1.

Table 5.1: Algorithms Used to Form Two-Stage Methods

Anomaly Detector Supervised Classifier Semi-Supervised

GEM SVM LapMED

1SVM + RF or LapSVM

SSAD NN LDS

The one class SVM (1SVM) of [74] and the standard GEM with euclidean distance
K-kNNG of [76] are unsupervised, but the semi-supervised anomaly detection (SSAD) al-
gorithm of [75] incorporates the labeled points as known anomalous points. In the three
supervised methods: SVM, random forests (RF) of [81], and neural networks (NN), we
train the algorithms with labeled points and predict the labels of only the anomalous unla-
beled points, and in the three semi-supervised methods: the LapMED from Section 5.3.1,
the LapSVM of [1], and the low density separation (LDS) algorithm of [82], we train the
algorithms on all anomalous points to classify their unlabeled ones. Because these two-
stage methods naively perform anomaly detection independently of classification, there is
no synergy between the two stages unlike in the LatLapMED method, which binds the two
actions through the EM algorithm.

For all of the following experiments, we choose the parameters of classifiers based
on the methods described in their original papers. We verify that our parameter choices
are acceptable because under “oracle” conditions where the anomaly labels are known, all
classifiers can classify relatively equally as well, which is to be expected. All methods
are implemented in MATLAB, but most of the optimization is done with an optimization
package written in another language. Specifically, we use LIBSVM [92] for the SVM
classifiers, CVX [93, 94] for optimization of the LapMED objective, CVX or LIBQP [95]
for SSAD, the code provided in [82] for LDS, and the corresponding MATLAB toolboxes
for random forest and neural networks. Thus the GEM routine in the E-step of LatLapMED
is solved purely in MATLAB, but the LapMED objective in the M-step is solved with CVX.
Because the high utility class is much smaller than the low utility class, we choose to use
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precision and recall to measure performance due to the benefits argued in [96].

5.5.1 Simulation Results

We simulate datasets of sample size 7,000 where the variables come from a multivariate
folded t-distribution with location µ = 0, a random positive definite scale matrix Σ, and
30 degrees of freedom. We calculate the utility scores for each point by
scorei = max

h

1
|Ch|
∑

j∈ChXij − 1
p−|Ch|

∑
j /∈ChXij where Ch is a random set of column

indicies for random utility component h. Thus 5% of the data is anomalous and the top
25% of anomalies with the highest utility scores are defined as having high utility. We
observed 30% of the high utility anomalies and an equal number of low utility anomalies.

In the exact simulations below, we use the parameters listed in Table 5.2. For SSAD, we
allow the regularization parameter for margin importance κ to vary. For LatLapMED, we
set ρ = 1 because we believe, in the space of only the anomalies, the data is pretty separable
and easily classified. Figure 5.1a shows the “oracle” scenario, where anomaly labels are
known; so the nominal points, ηi = 0, are automatically given a label ŷi = −1, and
the semi-supervised methods (LapMED, LapSVM, LDS) train and classify on only points
with ηi = 1 while the supervised methods (SVM, RF, NN) predict on the unlabeled ηi = 1

points. Under this scenario, all classifiers have relatively equal precision and recall, which
indicates that our parameter choices are acceptable since each classifier has its advantages
and disadvantages. Note that LapMED and LapSVM are essentially the same model as
discussed theoretically in Section 5.3.1. Additionally note that when the anomaly labels
are known, we have the complete posterior for LatLapMED described in Section 5.4.1,
which has the same mode as the LapMED posterior given only anomalous data.

In a realistic scenario, as opposed to the “oracle” one, the anomaly labels are unknown
and must be estimated. So we compare our LatLapMED method, which estimates the
anomaly and utility labels simultaneously, with two-stage methods that first perform either
GEM or 1-class SVM for anomaly detection and then uses one of the above classifiers to
label the utility of the anomalous points. In Figure 5.1b, we show similar boxplot plots to
the ones in Figure 5.1a, but in this scenario, the anomaly labels are latent. While the Lat-
LapMED method has similar precision as the alternative two-stage methods, it has much
better recall. This indicates that LatLapMED is able leverage more information from the
labeled anomalous points than a naive two-stage method that treats the utility label infor-
mation and anomaly status of points as independent.
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Table 5.2: Parameters Used in the Algorithms

Anomaly Detector Parameters
GEM k = 10 neighbors in kNN graph, the K points = φn

1SVM σ = 1 in rbf kernel, ν = φ

SSAD σ = 1 in rbf kernel, κ, label C = 1, unlabel C = 1/φ

Classifier Parameters
SVM σ = 1 in rbf kernel, cost C = 50

LapSVM ⇑, β = 10Cl
a2

, Laplacian: k = 50, τ = 100 in heat kernel

LapMED ⇑ (same as above in LapSVM)

LDS k = 50 neigh., σ = 1 in rbf, C = 50, softening = 1.5

RF 50 weak learners, default params. in MATLAB toolbox

NN 50 neurons, default params. in MATLAB toolbox

Joint Method Parameters
LatLapMED ⇑ (same as above in LapMED), threshold ρ = 1, φ

Figure 5.1: Boxplots showing 50 trials of precision and recall of different methods. a)
Under the “oracle” scenario, where anomaly labels are known, all classifiers have relatively
equal performance. b) The anomaly labels are unknown, but the percentage of the data that
is anomalous is known to be φ = 0.05. All methods have relatively equal precision, but
the LatLapMED method has much better recall because it does not treats the utility and
anomaly labels as independent.

79



Figure 5.2 compares LatLapMED against all combinations of alternative two-stage
methods in p = 3 and p = 6 dimensions respectively. The Precision-Recall (PR) curves
(averaged over 50 trials) show that for all levels of φ LatLapMED always dominates all
of the naive two-stage methods. It is well known that as dimensionality increases, non-
parametric estimation becomes more difficult, so the performance of all methods degrade
because anomaly detection becomes more difficult. However, Table 5.3 shows that Lat-
LapMED always has superior performance over the other methods irrespective of the di-
mension.

(a) p = 3 (b) p = 6

Figure 5.2: PR curves for various anomaly levels φ in 3 and 6 dimensions. The area under
the PR curves are listed in Table 5.3. The LatLapMED method significantly outperforms
all the naive two-stage methods.

Figure 5.3 gives an in-depth view of LatLapMED compared to some alternative two-
stage methods. The anomaly level φ of the methods is set to be between 0.05 and 0.06

to control the number of false positives. The number of false negatives in LatLapMED is
much lower than that of the other methods. This is because unlike the two-stage methods,
if LatLapMED misses some high-utility points when estimating anomalies, it can correct
for them in the next EM iteration. Figure 5.4 shows how both the number of false positives
and false negatives decrease as the EM algorithm in LatLapMED iterates. In comparison
to the naive two-stage GEM+LapMED, which would be equivalent to LatLapMED with
only one EM iteration, LatLapMED is able to recover over 50% of the high utility points
initially missed in the first EM iteration.
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Table 5.3: Area Under the PR Curve (AUC-PR)

p = 3 p = 4 p = 5 p = 6

GEM+LapMED 0.69246 0.55129 0.43539 0.42204

1SVM+LapSVM 0.66449 0.54049 0.439 0.41696

SSAD+LapSVM 0.66899 0.54406 0.44189 0.41842

GEM+LDS 0.65386 0.53299 0.44842 0.41061

1SVM+LDS 0.63228 0.52483 0.44607 0.41522

SSAD+LDS 0.63614 0.52994 0.45126 0.41557

GEM+SVM 0.68738 0.56141 0.43449 0.42702

1SVM+SVM 0.6675 0.55206 0.43766 0.42286

SSAD+SVM 0.67246 0.55739 0.44122 0.42413

GEM+RF 0.65483 0.52194 0.42837 0.4151

1SVM+RF 0.63192 0.51556 0.43516 0.41667

SSAD+RF 0.63823 0.52169 0.43913 0.41737

GEM+NN 0.68344 0.54716 0.44525 0.41907

1SVM+NN 0.66064 0.54109 0.44639 0.42216

SSAD+NN 0.66673 0.54613 0.45027 0.42216

LatLapMED 0.76253 0.66417 0.51792 0.47854

Figure 5.3: The number of false positives and false negatives in 20 different trials with
φ ∈ [0.05, 0.06] to control the number of false positives. LatLapMED has far fewer false
negatives for the same number of false positives compared to the other methods.

81



Figure 5.4: The number of false positives (FP) and false negatives (FN) predicted by Lat-
LapMED decrease as the EM iterations in the algorithm increase. This is due to the synergy
between the anomaly detection in the E-step and the classification in the M-step.

Table 5.4: Mean and standard deviation of CPU times over 50 trials.

Average CPU time Standard Deviation

SSAD+LapSVM 3.9784 0.11991

SSAD+LDS 4.2316 0.18557

SSAD+SVM 3.9491 0.29182

SSAD+RF 4.2800 0.23246

SSAD+NN 4.2534 0.26558

GEM+LapMED 1.4428 0.13992

GEM+LDS 1.7278 0.19305

GEM+SVM 1.0253 0.05716

GEM+RF 1.3775 0.09409

GEM+NN 1.2916 0.11141

1SVM+LapSVM 0.3750 0.09295

1SVM+LDS 0.7897 0.19116

1SVM+SVM 0.2106 0.06824

1SVM+RF 0.5984 0.17712

1SVM+NN 0.4781 0.11465

LatLapMED 2.9944 0.64291

In Table 5.4, we show the mean and standard deviation of the CPU time in seconds for
each algorithm over 50 trials. The algorithms were run on a quad-core Intel i7-6700HQ
CPU at 3.20GHz using Matlab. While we have not numerically optimized each algorithm,
we used as many built-in functions and optimizers, which are written in compiled languages
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(C++, Fortran), to show the best performance. LatLapMED is slower than many of the two-
stage methods, but it is not exorbitantly slower, and it is still faster than two-stage methods
that use SSAD.

5.5.2 Experiment on Reddit data

We apply LatLapMED to the May 2015 comments of the Reddit comment dataset [97]. We
form a sample of subreddits with variables: Avg. Number of Users, Avg. Gilded, and Avg.

Score, where only subreddits with at least 100 comments are included and additionally only
the top 7,000 most controversial subreddits are chosen (from approximately 10,000). The
anomalous data points are defined as those that lie in the tail 3% of any variable’s marginal
distribution and we are interested in only the controversial subreddits among these anoma-
lous points. Thus, we treat the average controversy of each subreddit as a utility score,
with again 30% visible and the top 25% as high utility. This mimics the situation where a
domain expert is given roughly 1.5% of the dataset that is considered to be anomalous, and
asked to label it.

Here the cost regularization parameter C = 2 is chosen to be smaller than in the sim-
ulations because we expect the margin to be noisier, and similarly the softening parameter
in LDS is increased to 100. The other parameters, which basically describe the structure of
the classifiers, are the same as in the simulations. We choose φ to control the false positive
rate (FPR) to be around 0.05, which corresponds to a commonly chosen Type 1 error level.
Table 5.5 shows the rates of LatLapMED, all the competing naive two-stage methods, and
an “oracle” LapMED, which we use as a lower/upper bound on the best LatLapMED could
do. For a Type 1 error level of 0.05, LatLapMED does considerably better than the com-
peting methods. It has the lowest false negative rates (FNR) and the highest recall. While
1SVM+RF and GEM+NN have slightly higher precision than LatLapMED, they also have
much lower recall.

Additionally compared to “oracle” LapMED, LatLapMED does not do considerably
worse. Its precision is not nearly as high as the “oracle” method’s; however, 191 out of
the 338 subreddits incorrectly predicted to be controversial (false positives), actually have
controversy scores in the top 25%, but since they are not anomalous, they are not labeled
as high utility by our criteria. This is very promising because it implies that our method
is able to additionally find high utility points that may not lie far enough in the tails of
the empirical distribution. The recall of LatLapMED is almost as high as that of the “ora-
cle” method’s with LatLapMED only failing to label as controversial (false negatives) the
subreddits [‘vegetarian’, ‘DesignPorn’] compared to the “oracle”. Otherwise, both meth-
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Table 5.5: False Positive Rate, False Negative Rate, Recall, Precision for Reddit Data

FPR FNR Recall Precision

“oracle” LapMED 0.02224 0.13008 0.86992 0.41797

GEM+LapMED 0.050022 0.17886 0.82114 0.22697

1SVM+LapSVM 0.050167 0.1626 0.8374 0.22991

SSAD+LapSVM 0.050167 0.17886 0.82114 0.22646

GEM+LDS 0.050894 0.19512 0.80488 0.22049

1SVM+LDS 0.048422 0.17073 0.82927 0.23448

SSAD+LDS 0.049004 0.1626 0.8374 0.23409

GEM+SVM 0.056275 0.15447 0.84553 0.21181

1SVM+SVM 0.049295 0.1626 0.8374 0.23303

SSAD+SVM 0.048131 0.17886 0.82114 0.2338

GEM+RF 0.050749 0.17073 0.82927 0.22616

1SVM+RF 0.047114 0.17886 0.82114 0.23765

SSAD+RF 0.049731 0.1626 0.8374 0.23146

GEM+NN 0.047259 0.17886 0.82114 0.23709

1SVM+NN 0.047404 0.18699 0.81301 0.23474

SSAD+NN 0.047695 0.19512 0.80488 0.23185

LatLapMED 0.049149 0.14634 0.85366 0.23702

ods failed to find the other 16 subreddits: [‘pathofexile’, ‘Cleveland’, ‘Liberal’, ‘mississauga’,

‘Eesti’, ‘Images’, ‘uofmn’, ‘trackertalk’, ‘Kuwait’, ‘asianbros’, ‘saskatchewan’, ‘rule34 comics’,

‘boop’, ‘macedonia’, ‘wanttobelieve’, ‘DebateACatholic’] . While some of these topics are defi-
nitely controversial, others such as ‘mississauga’ and ‘saskatchewan’ (providences of Canada)
or ‘uofmn’ (University of Minnesota) seem to have unreasonably high controversy scores.
It is not particularly worrisome that LatLapMED failed to predict these topics as contro-
versial because the “oracle” also incorrectly classified them, so many of them could be
considered mislabeled by the domain expert.

5.5.3 Experiment on CTU-13 data

Finally, we apply LatLapMED to the CTU-13 dataset, which is of botnet traffic on a uni-
versity network that was captured by CTU University, Czech Republic, in 2011 [98]. The
dataset contains real botnet traffic mixed with normal traffic and background traffic. The
authors of [98] processed the captured traffic into bidirectional NetFlows and manually la-
beled them. The dataset contains 13 different scenarios and for our experiments below we
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considered two scenarios, 1 and 8. Scenario 1 contains the malware Neris.exe, which is a
bot that sent spam, connected to an HTTP CC, and used HTTP to do ClickFraud. Scenario
8 has malware QvodSetuPuls23.exe, which contacted many different Chinese C&C hosts,
received large amounts of encrypted data, and scanned and cracked the passwords of ma-
chines. We are interested in identifying the botnet traffic (high-utility points) from the rare,
but uninteresting normal traffic (low-utility, anomalous points) and the background traffic
(nominal points) in a situation where instead of manually labeling all points, only a small
subset is labeled.

For each scenario, we randomly sample 38,000 NetFlows of background traffic and
1000 NetFlows each of normal and botnet traffic, making 5% of the samples anomalous.
We allow 300 of the normal and 300 of the botnet traffic to have visible labels so a domain
expert would only be manually labeling 1.5% of all the samples in the dataset. We used
9 of the features provided by the NetFlows dataset: duration of the flow, direction of the
flow, total packets, total bytes, source bytes, source and destination port numbers and IP
addresses (in integer format). Thus each of the two datasets have dimensions p = 9 features
and n = 40,000 total samples, of which a = 2,000 are anomalous and l = 600 are labeled. In
order to have multiple trials, we perform this sampling 10 times so that we have 10 almost
independent experiments for each scenario. The following results are the average of these
10 trials.

Because many of the features are discrete and not continuous, we use cosine distances
and cosine kernels instead of euclidean distances and the radial basis kernel; otherwise, the
parameters are the same as in Table 5.2. We choose φ so that the Type 1 error level (or FPR)
is 0.01. Like in the Reddit experiments, we compare LatLapMED against all the competing
naive two-stage methods and an “oracle” LapMED and summarize the performance in
Tables 5.6 and 5.7 for scenarios 1 and 8 respectively. The only two-stage method we do
not compare against are those using SSAD due to its unmanageably high computational
complexity.

The average error rates of the “oracle” method shown in Tables 5.6 and 5.7 indicates
that identifying the botnet traffic is not extremely difficult when the anomalies are known.
However, when the anomaly indicator variables are latent or unknown, the tables show that
the problem is more difficult. Nonetheless, in both scenarios, LatLapMED has the lowest
false negative rates (FNR) and the highest precision and recall. The most competitive two-
stage methods do not come close to the performance of LatLapMED, and particularly in
scenario 8, LatLapMED has significantly higher precision and recall. This is a direct result
of the fact that all malware are statistical outliers, so incorporating label information into
anomaly detection helps to identify botnet traffic.
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Table 5.6: Mean False Positive Rate, False Negative Rate, Recall, Precision for Scenario 1

FPR FNR Recall Precision

“oracle’ LapMED 0.0038308 0.3457 0.6543 0.82145

GEM+LapMED 0.012279 0.6916 0.3084 0.39202

GEM+LDS 0.010464 0.6929 0.3071 0.4317

GEM+SVM 0.010049 0.6936 0.3064 0.44034

GEM+RF 0.0062231 0.6924 0.3076 0.56775

GEM+NN 0.010844 0.691 0.309 0.43359

1SVM+LapSVM 0.012713 0.6836 0.3164 0.38969

1SVM+LDS 0.0098 0.6816 0.3184 0.45581

1SVM+SVM 0.0093462 0.6853 0.3147 0.4641

1SVM+RF 0.0078769 0.6742 0.3258 0.51662

1SVM+NN 0.0089462 0.6762 0.3238 0.48675

LatLapMED 0.0094692 0.402 0.598 0.61899

Table 5.7: Mean False Positive Rate, False Negative Rate, Recall, Precision for Scenario 8

FPR FNR Recall Precision

“oracle’ LapMED 0.0031538 0.15 0.85 0.87359

GEM+LapMED 0.011538 0.6979 0.3021 0.41185

GEM+LDS 0.011118 0.6997 0.3003 0.42204

GEM+SVM 0.011267 0.6969 0.3031 0.42978

GEM+RF 0.007859 0.6967 0.3033 0.49887

GEM+NN 0.0095487 0.696 0.304 0.4506

1SVM+LapSVM 0.0092205 0.6916 0.3084 0.4729

1SVM+LDS 0.010682 0.6919 0.3081 0.43073

1SVM+SVM 0.011746 0.6898 0.3102 0.43154

1SVM+RF 0.010272 0.6807 0.3193 0.44506

1SVM+NN 0.0096103 0.6818 0.3182 0.46041

LatLapMED 0.011064 0.1779 0.8221 0.65125

We also measure the CPU times of the two scenarios using the same Intel CPU and
code as described in the simulations of subsection 5.5.1. Tables 5.8 and 5.9 show that while
LatLapMED is significantly slower than all the competing methods, it on average takes less
than 1 minute to process on dataset of 40,000 NetFlows, which is still very reasonable.
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Table 5.8: Mean and standard deviation of CPU times (in seconds) for Scenario 1

Average CPU time Standard Deviation

GEM+LapMED 31.2625 0.58902

GEM+LDS 27.7656 0.68016

GEM+SVM 26.55 0.68274

GEM+RF 26.9656 0.82544

GEM+NN 27.0109 1.2891

1SVM+LapSVM 4.1141 0.10951

1SVM+LDS 3.3328 0.22134

1SVM+SVM 1.9734 0.08137

1SVM+RF 2.6484 0.18001

1SVM+NN 2.5859 0.57919

LatLapMED 56.2547 15.4514

Table 5.9: Mean and standard deviation of CPU times (in seconds) for Scenario 8

Average CPU time Standard Deviation

GEM+LapMED 31.7359 0.66264

GEM+LDS 29.4672 0.28389

GEM+SVM 26.4953 0.24859

GEM+RF 26.9734 0.31724

GEM+NN 26.9922 0.6696

1SVM+LapSVM 4.3141 0.0814

1SVM+LDS 6.8063 0.22136

1SVM+SVM 1.9953 0.10154

1SVM+RF 2.6875 0.10725

1SVM+NN 2.6219 0.55448

LatLapMED 50.3656 0.84805

5.6 Conclusion

We have proposed a novel data-driven method called latent Laplacian minimum entropy
discrimination (LatLapMED) for detecting anomalous points that are of high utility. Lat-
LapMED extends the MED framework to simultaneously handle semi-supervised utility la-
bels and incorporate anomaly information. Through this extended framework, LatLapMED
exploits the key idea that high-utility points are also anomalous, which allows it to work
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successfully when provided with a very small number of utility labels. Our simulation
results show its advantages over combinations of standard anomaly detection and classifi-
cation algorithms. In particular, theses two-stage approaches perform worse because they
treat statistical rarity and label information as independent components, which LatLapMED
overcomes by explicitly combining them through a latent variable model and the EM al-
gorithm. This performance increase is shown in the EM iterations of LatLapMED where
using previous label information helps identify anomalies and vice versa. Finally, we ap-
plied our method to the Reddit and CTU-13 botnet datasets to show its applicability in real
life situations where only certain high-utility anomalies are of interest to the end user.

Appendix

5..1 Proofs for Section III

Proof of Proposition 3. The posterior P(θ, b,γ, λ|X,y) is a log concave distribution where
the log posterior can be treated as a Lagrangian function. So the MAP estimator θ̂ is the
solution to ∂

∂θ
log (P(θ, b,γ, λ|X,y)) =

∑l
i=1 αiyiX

T
i − (I + 2βXTLX)θ = 0 and the

Lagrange multipliers α are the solution to

∂

∂α
log (P(θ, b,γ, λ|X,y)) |θ=θ̂ =

∂

∂α
− log (Z(α)) = 0
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where − log (Z(α)) = Bias + Smoothness +
∑l

i=1 Margini + Weight, defined as

Bias:− log

(∫ ∞
−∞

e−b
2/2σ2

2πσ2
exp

{
l∑

i=1

αiyib

}
db

)
= −σ

2

2

(
l∑

i=1

αiyi

)2

⇒ if σ →∞, then
l∑

i=1

αiyi = 0

Smoothness:− log

(∫ ∞
0

Be−Bλeβλ dλ

)
= log

(
1− β

B

)
→ 0 as B →∞

Margin:− log

(∫ 1

−∞
Ce−C(1−γi)e−αiγi dγi

)
= αi + log(1− αi/C)

Weight:− log

(∫ ∞
−∞

e−θ
T θ/2

(2π)p/2
exp

{
l∑

i=1

αiyiXiθ − βθTXTLXθ

}
dθ

)

= −1

2

(
l∑

i=1

αiyiXi

)
(I + 2βXTLX)−1

(
l∑

i=1

XT
i αiyi

)
+ log

(
det(I + 2βXTLX)

)
= −0.5αTY J(K−1 + 2βL)−1JTY α+ tr (log(I + 2βLK))

∝ −0.5αTY JK(I + 2βLK)−1JTY α.

Thus the relationship between the probabilistic primal estimator and the kernel dual esti-
mator isXθ̂ = X(I + 2βXTLX)−1XTJTY α̂ = K(I + 2βLK)−1JTY α̂.

5..2 Proofs for Section IV

Proof of Lemma 5.4.1. Note that all labeled points are anomalous so yiηi = yi for all i ∈
[1, l] or JH = J . Thus following the same procedure as Proposition 3, the MAP estimator
for the posterior P(θ, b,γ, λ|X,η,y) is θ̂ = (I + 2βXThTLηhX)−1XTJTY α where
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the Lagrange multipliers α are the solution to arg max
α

− log (Z(α)), which has terms

Bias:− log

(∫ ∞
−∞

e−b
2/2σ2

2πσ2
exp

{
l∑

i=1

αiyiηib

}
db

)
= −σ

2

2

(
l∑

i=1

αiyiηi

)2

⇒ if σ →∞, then
l∑

i=1

αiyiηi =
l∑

i=1

αiyi = 0

Smooth: Same as Proposition 3

Margin: Same as Proposition 3

Weight:

− log

(∫ ∞
−∞

e−θ
T θ/2

(2π)p/2
exp

{
l∑

i=1

αiyiηiXiθ − βθTXThTLηhXθ

}
dθ

)

∝−1

2

(
l∑

i=1

αiyiηiXi

)
(I + 2βXThTLηhX)−1

(
l∑

i=1

XT
i αiyiηi

)
= −1

2
αTY JH(2βhTLηh+K−1)−1HJTY α

= −1

2
αTY J

(
(2βhTLηh+K−1)−1 � ηηT

)
JTY α

Instead of n × n matrix operations, the Weight term can be compressed to a × a matrix
operations by permuting the rows and columns of the matrices so that the first a rows/cols
correspond to ηi = 1. Then

(
(2βhTLηh+K−1)−1 � ηηT

)
is 0 everywhere except for the

top left a×a block, which (using block matrix inversion) can be expressed as [(2βhTLηh+

K−1)−1]11 = (Lη +K−1
η )−1 = Kη(I +LηKη)

−1 whereKη is the top left a× a block of
the original Gram matrix.

Thus the primal dual relationship isXθ̂ = Kη(I + 2βLηKη)
−1JTY α̂.

Proof of Lemma 5.4.2. Because P(X,η,y|α) is log convex, the function − log(·) is con-
cave on its domain. Thus by Jensen’s Inequality, − log (P(X,y|α))

= − log

(
1∑

η1=0

· · ·
1∑

ηn=0

q(η)
P(X,η,y|α)

q(η)

)
≥ Eη (− log P(X,y,η|α))− Eη (− log q(η))

where q(η) is an arbitrary distribution. A natural choice for the distribution is q(η) =

P(η|X,y,αt−1) whereαt−1 are the optimal Lagrange multipliers of the previous iteration.
Since the second term Eη (log (P(η|X,y,αt−1))) does not depend on α, it can be dropped
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so the lower bound is proportional to just the first term Eη (− log (Z(α))) =

l∑
i=1

αi + Eη

(
−1

2
αTY JH(2βHTLH +K−1)−1HJTY α

)
+

l∑
i=1

log(1− αi/C)

subject to
l∑

i=1

αiyi = 0, α1, . . . , αl ≥ 0.

By Jensen’s inequality again and (JH = J ), the quadratic term above has lower bound

≥ −1

2
αTY J

(
K−1 + 2Eη(HTLH)

)−1
JTY α

= −1

2
αTY JK

(
I + 2Eη(HTLH)K

)−1
JTY α.

Proof of Lemma 5.4.3. Define kL and kLη as the number of neighbors in the kNNG of the
graph Laplacians L and Lη. There are kNNG with at least kL neighbors inHTLH , which
is formed on all the data and then pruned to just contain just the anomalous nodes, that
will contain the subgraph in hTLηh, which is a kNNG of only anomalous nodes with kLη
neighbors. This is true for any η or its estimators η̂. So, there exists some m (defined as
the first m points of any anomalous point are also anomalous) and kL ≥ kLη such that

||E(HTLH|X,y,αt−1)− E(hTLηh|X,y,αt−1)||F ≤ δ(m)

||ĥT L̂ηĥ− ĤTLĤ||F ≤ δ′(m)

with equality and δ(m) = δ′(m) = 0 when kL = kLη = m because then the pruned graph
is exactly the graph in Lη.

And since the GEM principle described in Section 5.4.3 gives a good estimator, then

||ĤTLĤ − E(HTLH|X,y,αt−1)||F ≤ ζ

has small ζ . So if m is sufficiently large relative to kLη so that δ′(m) and δ(m) are small,
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then ĥT L̂ηĥ is a good estimator

||ĥT L̂ηĥ− E(hTLh|X,y,αt−1)||F
≤ ||ĥT L̂ηĥ− ĤTLĤ||F + ||ĤTLĤ − E(HTLH|X,y,αt−1)||F

+ ||E(HTLH|X,y,αt−1)− E(hTLηh|X,y,αt−1)||F
≤ δ′(m) + ζ + δ(m)

(by triangle inequality) because δ′(m) + ζ + δ(m) is also small.

Proof of Theorem 5.4.4. By Jensen’s inequality, the log observed posterior has tight lower
bound, log (P(θ, b,γ, λ|X,y))

≥ log (P0(θ, b,γ, λ)) + Eη (log (P(X,η,y|θ, b,γ, λ)))− Eη (log (P(X,η,y|α)))

where the expectation is with respect to P(η|X,y,αt−1). When the posterior is the MED
solution using constraints (5.2) and (5.4), maximizing the lower bound for θ gives the
primal form for the M-step as the solution to derivative of the lower bound

l∑
i=1

αiyiEη(η)XT
i −

(
I + 2βXTEη(hTLηh)X

)
θ = 0.

Following the same procedure as Lemma 5.4.2, the dual form for the M-step has a lower
bound with quadratic term

− 1

2
αTY JK

(
I + 2Eη(hTLηh)K

)−1
JTY α.

So using the same block matrix inversion procedure as Lemma 5.4.1, the dual objective for
the M-step is

l∑
i=1

αi + log
(

1− αi
C

)
− 1

2
αTY JK̂η(I + 2βL̂ηK̂η)

−1JTY α

subject to
l∑

i=1

αiyi = 0, α1, . . . , αl ≥ 0

where L̂η is the Laplacian matrix on only the set of data points {Xi : η̂i = 1} and K̂η is
the a× a submatrix of these same data points.
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Proof of Corollary 5.4.4.1. The primal dual relationship is

Xθ̂ = k(X,Xη̂)(I + 2βL̂ηK̂η)
−1JTY α̂.

So for any pointXi′ , the prediction is

η̂i′
(
Xi′θ̂ + b̂

)
= η̂i′

(
k(Xi′ ,Xη̂)(I + 2βL̂ηK̂η)

−1JTY α̂+ b̂
)
.

Because all nominal points are low utility, for simplicity they will be given the predicted
label −1.
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CHAPTER 6

Anomaly Detection in Partially Observed Traffic
Networks

In this chapter, we address the problem of detecting anomalous activity in traffic networks
where the network is not directly observed. Given knowledge of what the node-to-node
traffic in a network should be, any activity that differs significantly from this baseline would
be considered anomalous. We propose a Bayesian hierarchical model for estimating the
traffic rates and detecting anomalous changes in the network. The probabilistic nature of the
model allows us to perform statistical goodness-of-fit tests to detect significant deviations
from a baseline network. We show that due to the more defined structure of the hierarchical
Bayesian model, such tests perform well even when the empirical models estimated by the
EM algorithm are misspecified. We apply our model to both simulated and real datasets to
demonstrate its superior performance over existing alternatives.

6.1 Introduction

In today’s connected world, communication is increasingly voluminous, diverse, and essen-
tial. Phone calls, delivery services, and the Internet are all modern amenities that send mas-
sive amounts of traffic over immense networks. Thus network security, such as the ability
to detect network intrusions or illegal network activity, plays a vital role in defending these
network infrastructures. For example, (i) computer networks can protect themselves from
malware such as botnets by identifying unusual network flow patterns; (ii) supply chains
can prevent cargo theft by monitoring the schedule of shipments or out-of-route journeys
between warehouses; (iii) law enforcement agencies can uncover smuggling operations by
detecting alternative modes of transporting goods.

Identifying unusual network activity requires a good estimator of the true network traf-
fic, including the anomalous activity, in order to distinguish it from a baseline of what the
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network should look like. However, often it is not possible to for an external observer to
observe the network directly due to constraints such as cost, protocols, or legal restrictions.
This makes the problem of estimating the rate of traffic between nodes in a network difficult
because the edges between nodes are latent unobserved variables. Network tomography ap-
proaches have been previously proposed for estimating network topology or reconstructing
link traffic from incomplete measurements and limited knowledge about network connec-
tivity. However for network anomography, the detection of anomalous deviations of traffic
in the network, highly accurate estimation of all network traffic may not be necessary. It
often suffices to detect perturbations within the network at an aggregate or global scale.
This paper addresses the problem of network anomography rather than that of network
tomography or traffic estimation.

6.1.1 Related Work

Broadly defined, the network tomography problem is to reconstruct complete network
properties, e.g., source-destination (SD) traffic or network topology, based on incomplete
data. The term “network tomography” was introduced in [99] where the objective is to es-
timate unknown source destination traffic intensities given observations of link traffic and
known network topology. Since the publication of [99], the scope of the term network to-
mography has been used in a much broader sense (see the review papers [100, 101, 102],
and [103]). For example, a variety of passive or active packet probing strategies have been
used for topology reconstruction of the Internet, including unicast, multicast, or multi-
multicast [104, 105], and [106]; or using different statistical measures including packet
loss, packet delay, or correlation [107, 108, 109], and [110].

In the formulation of [99], the network tomography objective is to determine the total
amount of traffic between SD pairs given knowledge of the physical network topology and
the total amount of traffic flowing over links, called the link data. This leads to the linear
model for the observations yt = Axt where A is the known routing matrix defining the
routing paths, and at each time point t, yt is a vector of the observed total traffic on the links
and xt is a vector of the unobserved message traffic between SD pairs. Using the model that
the elements of xt are independent and Poisson distributed, an expectation-maximization
(EM) maximum likelihood estimator (MLE) and a method of moments estimator are pro-
posed in [99] for the Poisson rate parameters λ. The authors of [111] propose a Bayesian
conditionally Poisson model, which uses a Markov chain Monte Carlo (MCMC) method to
iteratively draw samples from the joint posterior of λ and x. The authors of [112] and [113]
assume the message traffic is instead from a Normal distribution, obtaining a computation-

95



ally simpler estimator of the SD traffic rates. The authors of [114] relax the assumption that
the traffic is an independent and identically Poisson distributed sequence and instead con-
sider the network as a directly observable Markov chain. Under this weaker assumption,
they derive a threshold estimator for the Hoeffding test in order to detect if the network
contains anomalous activity.

In [115] the authors propose an EM approach for Poisson maximum likelihood es-
timation when the network topology is unknown; however, their solution is only com-
putationally feasible for very small networks and it does not account for observations
of traffic through interior nodes. This has led to simpler and more scalable solutions in
the form of gravity models where the rate of traffic between each SD pair is modeled by
xsd = (NsNd)/N where Ns and Nd are the total traffic out of the source node and into
the destination node respectively and N is the total traffic in the network. Standard gravity
models do not account for the interior nodes, thus in [116] and [117] tomogravity and en-
tropy regularized tomogravity models were proposed, which incorporate the interior node
information in the second stage of their algorithm. The authors of [118] generalize the
tomogravity model from a rank one (time periods are independent) to a low rank approx-
imation (time periods are correlated) and allow additional observations on individual SD
pairs. Similarly, the authors of [119] and [120] use a low rank model with network traffic
maps to incorporate a sparse anomaly matrix, and they solve their multiple convex objec-
tives with the alternating direction method of multipliers (ADMM) algorithm.

Dimensionality reduction has also been used directly for anomaly detection in the SD
traffic flows in networks. Under the assumption that traffic links have low rank structure,
the authors in [121] and [122] use Principle Component Analysis (PCA) to separate the
anomalous traffic from the nominal traffic. This low rank framework is generalized to ap-
plying PCA in networks that are temporally low rank or have dynamic routing matrices,
in [123]. The authors of [123] also coin the term “network anomography” to reflect the
influence of network topology reconstruction, which is a necessary component to detecting
anomalies in a network with unknown structure. However, later work in [124] discusses
the limitations of PCA for detecting anomalous network traffic, e.g., it is sensitive to (i)
the choice of subspace size; (ii) the way traffic measurements are aggregated; (iii) large
anomalies. The low rank plus sparse framework is extended to online setting with a sub-
space tracking algorithm in [125].

Specifically for Internet Protocol (IP) networks, some works prefer to perform anomaly
detection on the flows from the IP packets instead of the SD flows. The authors of [126]
use PCA to separate the anomalous and nominal flows from sketches (random aggregations
of IP flows) while the authors of [127] model the sketches as time series and detect change
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points with forecasting. The works of [128] and [129] also perform change point detection
using windowed hypothesis testing with generalized likelihood ratio or relative entropy
respectively.

Because our approach in this paper is based on traffic networks or SD models, these
types of approaches were the focus of our related works subsection. However, networks
can also be represented as graph models or as features of the network characteristics. This
subsection would be incomplete if it did not mention anomaly detection approaches to other
types of network models. So, we refer to some survey papers that cover many of the recent
techniques in graph based approaches: [130] and [131]. In particular, similar to the low
rank approaches for SD networks, there are low rank approaches to graph models such as
[132] who assume the inverse covariance matrix of their wireless sensor network data has
a graph structure and solve a low rank penalized Gaussian graphical model problem and
[133] who impose graph smoothness by a low rank assumption on graph Laplacian of the
features of the network. [134] also uses a low rank approach on their KDD intrusion data
set, but they directly apply the low rank assumption to the network characteristics of their
data.

6.1.2 Our Contribution

In this paper, we consider networks where an exterior node (a node in an SD pair) only
transmits and receives messages from a few other nodes, but because, as an external ob-
server (one that is not located on a node), we cannot observe network directly, we do not
know which SD pairs have traffic and which do not. Thus, we develop a novel framework
to detect anomalous traffic in sparse networks with unknown sparsity pattern. Our contribu-
tions are the following. 1) In order to estimate the network traffic, we propose a parametric
hierarchical model that alternates between estimating the unobserved network traffic and
optimizing for the best fit rates of traffic using the EM algorithm. 2) We warm-start the al-
gorithm with the solution to non-parametric minimum relative entropy model that directly
projects the rates of traffic onto the nearest attainable sparse network. 3) Since we do not
make assumptions of fixed edge structure in our model, it allows us to accommodate the
possibility of anomalous edges in the actual network structure because anomalies will never
be known in advance. 4) Using our probabilistic model’s estimator of actual traffic rates,
we test for anomalous network activity by comparing it to a baseline to determine which
deviations are anomalies and which are estimation noise. We develop specific statistical
tests, based on the generalized likelihood ratio framework, to control for the false positive
rate of our probabilistic model, and show that even when our models are misspecified, our
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tests can accurately detect anomalous activity in the network.
The rest of the paper is organized in the following way. Section II proposes a problem

formulation of the network we are interested in and our assumptions about it. Section
III describes our proposed hierarchical Bayesian model, which is solved with a generalized
EM algorithm and warm-starting the EM with a solution that satisfies the minimum relative
entropy principle. Section IV describes our anomaly detection scheme through statistical
goodness of fit tests and Section V describes the computational complexity of our method.
Section VI contains simulation results of the performance of our proposed estimators and
applications to the CTU-13 dataset of botnet traffic and a dataset of NYC taxicab traffic.
Finally, Section VII concludes the paper.

6.2 Proposed Formulation

We give a simple diagram of a notional network in Fig. 6.1a. An exterior node, Vi, sends
messages, N t

ij , at a rate, Λij , to another exterior node, Vj , at each time point, t. Messages
can flow through interior nodes, such as U1, but the interior nodes do not absorb or create
messages. Because the magnitude of flow is just the total number of messages that have
been sent from one node to another, network traffic between nodes is a counting process.
For tractability, it is common to assume the messages are independent and identically dis-
tributed (i.i.d.) and the total number of messages in a time period is from some parametric
distribution. The Poisson distribution is the most natural choice because it models events
occurring independently with a constant rate, and it is used by [99], [115], [111], [112],
and [113] although the latter two works use a Normal approximation to the Poisson for
additional tractability.

When the network is observed directly, the edge structure and rates can be easily esti-
mated using a sample of observations at different time points. Under these Poisson process
assumptions, the uniformly minimum variance unbiased estimator is simply the maximum
likelihood estimator (MLE) of the Poisson distribution. However, this is a very strong and
unrealistic assumption because it implies that we, as an external observer, are able to track
every single message being passed in the network. Thus, we are interested in the much
weaker assumption that we can only monitor the nodes themselves. Fig. 6.1b shows what
we can actually observe from the network under this weaker assumption. While we also
observe the total amount of traffic, unlike in [99], we do not know the network topology.

Since we can only monitor the nodes, we can only observe the total ingress and egress
of the exterior nodes. Thus we know an exterior node, Vi, transmits N t

i· messages and
receives N t

·i messages, but we do not know which of the other nodes it is interacting with.
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We can also observe the flow through interior nodes, but we cannot distinguish where the
messages come from or are going to. For instance, in Fig. 6.1a, an interior node, such as
U1, will observe all messages, F t

1 = N t
14 + N t

2P , that flow through it, but it will not be
able to distinguish the number of messages from each SD pair or whether all the SD pairs
actually send messages.

(a) Proposed Network: Vi - exterior nodes, Ui - inte-
rior nodes, N t

ij - messages from node i to node j at
time point t

(b) Actual Observed Network: N t
i· - total egress of

exterior nodes, N t
·i - total ingress of exterior nodes,

F t
i - total flow through interior nodes

Figure 6.1: Diagram of a network with P exterior nodes and 2 interior nodes.

A network with P exterior nodes can naturally be mathematically formulated as a P ×
P matrix, which is observed T times. Let N t be the unobserved traffic matrix at time
instance t and let the elements of the matrix, N t

ij , be the amount of traffic between nodes
i and j. The row and column sums of the traffic are denoted by R = [N1. . . . NP.]

′ and
C = [N.1 . . . N.P ]′ respectively, and F = [Fh] are the observed flows through interior
nodes, which are indexed by h. The traffic at each time instance t is generated from a
distribution with mean Λ, the true intensity/rate parameter of the matrix, and Λ0 is the
baseline parameter of a network without any anomalies. This mathematical formulation is
shown below.

N t=



0 N t
12 N t

13 · · · N t
1P

N t
21 0 N t

23 · · · N t
2P

N t
31 N t

32 0 · · · N t
3P

...
...

...
. . .

...

N t
P1 N t

P2 N t
P3 · · · 0



Observations

N t
.j =

∑P
i=1N

t
ij

N t
i. =

∑P
j=1N

t
ij

F th =
∑
N t
ij

N t
ij for some ij
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We assume a priori that the distribution of the rate matrix is centered around some
baseline rate matrix Λ0, which are the assumed rates when there is no anomalous activity.
We then update this prior distribution using the observations D = {Rt,Ct,F t}Tt=1 in
order to get a distribution of the rates P(Λ|D), which does account for potential anomalous
activity.

6.3 Hierarchical Poisson Model with EM

We propose a generative model that assumes a series of statistical distributions govern the
generation of the network. We assume that the messages N t

ij passed through the network
are Poisson distributed with rates Λij . However, because we cannot observe the traffic net-
work directly, we do not have the complete Poisson likelihood and use the EM algorithm.
In the following subsections, we will show a series of generative models with increasing
complexity that attain successively higher accuracy. Then we will discuss warm-starting
the EM algorithm at a robust initial solution to compensate for its sensitivity to initializa-
tion.

6.3.1 Proposed Hierarchical Bayesian Model

6.3.1.1 Maximum Likelihood by EM

The simplest hierarchical model assumes all priors are uniform, thus the only distributional
assumption is that likelihood P(N 1, . . . ,NT |Λ) is

∏T
t=1

∏
ij Poisson(Λij). The maxi-

mum likelihood estimator for the Poisson rates Λ can be approximated by lower bounds
of the observed likelihood P(D|Λ) using the maximum likelihood expectation maximiza-
tion (MLEM) algorithm. The MLEM alternates between computing a lower bound on the
likelihood function P(D|Λ), the E-step, and maximizing the lower bound, the M-step. A
general expression for the E-step bound can be expressed as:

log P(D|Λ)≥
T∑
t=1

Eqt
(
log P(Rt,Ct,F t,N t|Λ)

)
+ H(qt) (6.1)

where qt is an arbitrarily chosen distribution ofN t, Eqt denotes statistical expectation with
respect to the reference distribution qt, and H(qt) is the Shannon entropy of qt. The choice
of qt that makes the bound (6.1) the tightest, and results in the fastest convergence of the
MLEM algorithm, is qt = P(N t|Rt,Ct,F t,Λ), (see Section 11.4.7 of [135]); however,
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this is not a tractable distribution. When the observations consist of the row and column
sums of the matrix N t, this distribution is the multivariate Fisher’s noncentral hyperge-
ometric distribution, and when the flows are also observed the distribution is unknown.
Unfortunately, use of this optimal distribution leads to an intractable E-step in the MLEM
algorithm due to the coupling (dependence) between the row and column sums of N t. As
an alternative we can weaken the bound on the likelihood function (6.1) by using a different
distribution q that leads to an easier E-step. To this aim, we propose to use a distribution q
that decouples the row sum from the column sum; equivalent to assuming that each sum is
independent, e.g., as if each were computed with different realizations ofN t.

Proposition 4. Assume t1, t2 and t3 are different time points so that observations at these

time points are independent

P(D|Λ) =
T∏

t1=1

P(Rt1|Λ)
T∏

t2=1

P(Ct2|Λ)
T∏

t3=1

P(F t3|Λ).

Then the tightest lower bound of the observed data log likelihood is

log P(D|Λ) ≥
3∑

τ=1

T∑
tτ=1

H(qtτ ) + Eqtτ
(
log P(N tτ |Λ)

)
where qt1 = P(N t1|Rt1 ,Λ), qt2 = P(N t2|Ct2 ,Λ), and qt3(N t3) = P(N t3|F t3 ,Λ) are

multinomial distributions.

In the EM algorithm, the expectation in the E-step is taken with respect to the dis-
tribution estimated using the previous iteration’s estimate of the parameter Λ̂k, and the
M-step does not depend on the entropy terms in the lower bound in Proposition 4, which
are constant with respect to Λ. Since the likelihoods are all Poisson, the E-step reduces to
computing the means of multinomial distributions and the M-step for any ij pair is given
by the Poisson MLE with the unknown N t

ij terms replaced by their mean values. Explicitly
the M-step objective is

Λ̂k+1
ij = arg max

Λij

− Λij + log(Λij)N
total
ij (6.2)

where N total
ij =

∑T
t1=1 E(N t1

ij |Rt1 , Λ̂k) +
∑T

t2=1 E(N t2
ij |Ct2 , Λ̂k) +

∑T
t3=1 E(N t3

ij |F t3 , Λ̂k)

and the expectations are with respect to the multinomial distributions of Proposition 4.
Thus the Poisson MLE equals Λ̂k+1

ij = N total
ij /3T .

101



6.3.1.2 Maximum a Posteriori by EM

Because there are P 2 unobserved variables and onlyO(P ) observed variables, the expected
log likelihoods have a lot of local maxima. In order to make the EM objective better
defined and incorporate the baseline Poisson rate information Λ0, a prior can be added to
the likelihood model of the previous subsection. The EM objective of this new model is
now the expected log posterior and the estimator in the M-step is the maximum a posteriori
(MAP) estimator. It is natural to choose a conjugate prior of the form P(Λ) =

∏
ij P(Λij)

where each Λij ∼ Gamma(εijΛ0 ij + 1, εij) (shape, rate) as this choice yields a closed
form expression for the posterior distribution. These priors have modes at the baseline rates
Λ0 ij . The hyperparameters εij can be thought of as the belief we have in the correctness
of the baseline so as ε → 0, the prior variance goes to infinity, and the prior becomes
non-informative because we have no confidence in the baseline, while as ε→∞, the prior
variance goes to zero, and the prior degenerates into the point Λ0 ij because we are certain
the baseline is correct.

Given a matrix of hyperparameters ε, the complete data posterior distribution is
P(Λ|ε,N 1, . . . ,NT ) =

∏
ij P(Λij|εij, N1

ij, . . . , N
T
ij ) where each posterior is of the form of

Gamma(εijΛ0 ij + 1 +
∑T

t=1Nij, εij + T ). Because we can only observe the network
indirectly D = {Rt,Ct,F t}Tt=1, we again must estimate the mode of this posterior using
the EM algorithm, which is very similar to the algorithm for the likelihood model. The only
difference is the M-step in which an additional term of the form

∑
ij(εijΛ0 ij) log(Λij) −

εijΛij is added to (6.2). Thus at every EM iteration, the entries of the MAP estimator matrix
Λ̂k+1 are

Λ̂k+1
ij =

εijΛ0 ij +N total
ij

εij + 3T
(6.3)

where N total
ij is the same as in (6.2).

6.3.1.3 Bayesian Hierarchical Model

Choosing the hyperparameters εij can be difficult because it is not always possible to quan-
tify our belief in the correctness of the baseline rates. We can rectify this by allowing the
εij to be random with hyperpriors εij ∼ Uniform(0,∞). We choose uninformative hyper-
priors for εij > 0. A notional diagram for the proposed hierarchical model is shown in Fig.
6.2.
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Figure 6.2: The statistical process believed to underlie our network.

With these uninformative priors the posterior takes the form

P(Λ|N 1, . . . ,NT ) =

∫
P(N 1, . . . ,NT |Λ)P(Λ|ε)P(ε)

P(N 1, . . . ,NT )
dε

=

∫
P(N 1, . . . ,NT |Λ)P(Λ|ε)

P(N 1, . . . ,NT |ε)
P(N 1, . . . ,NT |ε)P(ε)

P(N 1, . . . ,NT )
dε

=

∫
P(Λ|ε,N 1, . . . ,NT )P(ε|N 1, . . . ,NT ) dε (6.4)

where P(ε|N 1, . . . ,NT ) =
∫

P(Λ, ε|N 1, . . . ,NT ) dΛ. The observed (incomplete data)
log posterior log P(Λ|D) has lower bound proportional to

log

(∫
exp

{
Eq
(
log P(Λ|ε,N 1, . . . ,NT )

)}
exp

{
Eq

(
log

∫
P(Λ, ε|N 1, . . . ,NT ) dΛ

)}
dε

)
which is tight when q = P(N 1, . . . ,NT |D,Λ), as shown in (6.9) in the Appendix.

However, marginalizing the joint posterior
∫

P(Λ, ε|N 1, . . . ,NT ) dΛ is often not fea-
sible, so instead it is popular to use empirical Bayes to approximate it with a point-estimate.

We propose an empirical Bayes approach to maximizing the log posterior as an alter-
native to maximization of (6.4), ε̂ = arg max

ε
P(ε|N 1, . . . ,NT ). This empirical Bayes

approximation can be embedded in the EM algorithm so that once we have an estimate
for ε, an estimator for Λ is obtained by maximizing the expected log conditional posterior
Eq
(
log P(Λ|ε̂,N 1, . . . ,NT )

)
.
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Theorem 6.3.1. Using the time independence in Proposition 4 and the empirical Bayes

approximation, the E-step of the EM algorithm for the hierarchal model is

N̂ t1
ij = E(N t1

ij |Rt1 , Λ̂k) =
Λ̂k
ij∑P

j=1 Λ̂k
ij

Rt1
i

N̂ t2
ij = E(N t2

ij |Ct2 , Λ̂k) =
Λ̂k
ij∑P

i=1 Λ̂k
ij

Ct2
j ,

N̂ t3
ij = E(N t3

ij |F t3 , Λ̂k) =
Λ̂k
ij∑

ij Λ̂k
ij

F t3
h for any pair ij,

and the M-step is

ε̂ k+1
ij = arg max

εij

3∑
τ=1

T∑
tτ=1

log
Γ(N̂ tτ

ij + εijΛ0 ij + 1)

Γ(εijΛ0 ij + 1)

+
3∑

τ=1

T∑
tτ=1

(εijΛ0 ij + 1) log
εij

1 + εij
− N̂ tτ

ij log(1 + εij)

and

Λ̂k+1
ij = arg max

Λij

(ε̂ijΛ0 ij) log(Λij)− ε̂ijΛij − 3TΛij

+ log(Λij)

(
T∑

t1=1

N̂ t1
ij +

T∑
t2=1

N̂ t2
ij +

T∑
t3=1

N̂ t3
ij

)
.

Since the function that lower bounds the observed log likelihood changes after every
iteration of the EM algorithm, the prior should also change after every iteration. Intuitively,
the earlier iterations of the EM algorithm will have expected log likelihoods that are more
misspecified than the later iterations. This suggests spreading the prior distribution in the
earlier iterations. The empirical Bayes approximation of Theorem 6.3.1 effectively does
this by allowing the variance of the prior to be chosen using the data instead of fixing it
as a constant. In this manner, the empirical Bayes approximation can be thought of as a
Bayesian analog to the regularized EM algorithm of [136].

6.3.2 Warm Starting with Minimum Relative Entropy

The EM algorithm is well known to be sensitive to initialization, especially if the objective
has a lot of local maxima. Thus if instead of a random initialization, the EM algorithm is
warm-started, it is more likely to converge to a good maximum and also potentially con-
verge faster. A good choice for an initialization point is a more robust estimator of the
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rate matrix such as the solution to a model with fewer distributional assumptions. Thus
instead of modeling an explicit generative model, we can instead adopt the minimum rel-
ative entropy (MRE) principle [137, 138, 60], and [61]. Geometrically, this reduces to an
information projection of the prior distribution, as shown in Fig. 6.3.

Figure 6.3: A projection of the prior, P0(Λ), onto a feasible set P of distributions that
satisfy the observed data, D.

The constrained minimum relative entropy distribution is the density that is closest to
a given prior distribution and lies in a feasible set, P . This feasible set is formed from
constraints that require their expected values, with respect to the minimum relative entropy
distribution, to match properties of the observations,D (the total ingress, egress, and flows).
And because relative entropy is the Kullback-Leibler (KL) divergence between probability
distributions, this is used as the metric for closeness. This closeness criterion is well suited
to the anomaly detection problem of interest to us because anomalous activity is rare, so
the distribution of the actual rates, Λ, should be similar to the prior distribution P0(Λ) =

P(Λ|Λ0), which is parameterized by the baselines rates Λ0.
The MRE objective is

min
P(Λ|R,C,F )

KL (P(Λ|R,C,F )||P0(Λ))

subject to∫
P(Λ|R,C,F )(Λ1− R̄) dΛ = 0∫
P(Λ|R,C,F )(1′Λ− C̄) dΛ = 0∫
P(Λ|R,C,F )(AΛB − F̄ ) dΛ = 0

where 0 and 1 are vectors of zeros and ones respectively, C̄ = 1
T

∑T
t=1C

t and R̄ =
1
T

∑T
t=1R

t are the average rates of observed total traffic into and out of each node, and A
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andB are 0-1 matrices summing the rates that flow through each of the interior nodes with
average observations F̄ = 1

T

∑T
t=1 F

t. Using the Legendre transform of the Lagrangian to
get the Hamiltonian, the optimal density has the form

P(Λ|R,C,F ) =
P0(Λ)

Z(ρ,γ,φ)
exp

{
ρ′(Λ1− R̄) + γ ′(1′Λ− C̄) + φ′(AΛB − F̄ )

}
(6.5)

where ρ,γ,φ are Lagrange multipliers that maximize the negative log partition function
− log(Z (ρ,γ,φ)).

Proposition 5. Let P0(Λ) =
∏

ij P0(Λij) be independent Laplace distributions with mean

parameter Λ0 ij and scale parameter 1, then the constrained mode of the MRE distribution

is the solution to

arg max
Λ∈R+

− ||Λ−Λ0||1 + ρ̂′(Λ1− R̄) + γ̂ ′(1′Λ− C̄)′ + φ̂′(AΛB − F̄ )

where ρ̂, γ̂, φ̂ = arg max
ρ,γ,φ

− log (Z(ρ,γ,φ)).

Maximizing the above expression over Λ (constrained to only positive real numbers)
can be seen as a slight relaxation of the more direct objective of minimizing the loss func-
tion

arg min
Λ∈R+

||Λ−Λ0||1 subject to Λ1 = R̄, 1′Λ = C̄, AΛB = F̄ (6.6)

where || · ||1 is the element wise `1 norm. The loss function in (6.6) has the advantage that
it can be easily implemented in any constrained convex solver such as CVX [94].

The objective in (6.6) is an easily interpretable formulation for estimating the rate ma-
trix, which does not depend on the unobserved traffic N t

ij . And, because it does not put
distributional assumptions on the “likelihood”, it is more robust to model mismatch, at the
cost of accuracy. The generality of the solution to (6.6), while not precise enough on its
own, makes it a good candidate to be further refined by the EM algorithm in the Hierarchi-
cal Poisson model.

6.4 Testing For Anomalies

Since the estimators in the previous section are maximizers of probabilistic models, a nat-
ural way to test for anomalies in the rate matrix Λ is to compare goodness of fit of the
fitted model using hypothesis testing. By testing the null hypothesis vec(Λ) = vec(Λ0)
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against the alternative hypothesis vec(Λ) 6= vec(Λ0), we can control the false positive rate
(FPR) (Type 1 error), of incorrectly declaring anomalous activity in the rate matrix, using
a level-α test. In this section we will represent a statistical model with the notationM(·),
as the results apply for both log likelihood and log posterior models.

Depending on if the statistical models are likelihoods or posteriors, the statistic

ψ = −2
T∑
t=1

(
log(Mt(Λ0))− log(Mt(Λ̂))

)
(6.7)

would be either a log likelihood ratio (LR) statistic or a log posterior density ratio (PDR)
statistic [139] respectively, where Λ̂ = arg max

Λ∈R+

M(Λ). Thus testing ψ against a threshold

can be seen as a generalized log likelihood ratio test or generalized log posterior ratio test
with a composite alternative hypothesis.

Proposition 6. Under the standard regularity conditions for the log LR statistic or under

the sufficient conditions of the Bernstein-von Mises theorem for the log PDR statistic, ψ

will be asymptotically χ2
P 2−P distributed under the null hypothesis.

Next we show that the statistic ψ in (6.7) is a good estimator of the KL divergence
between the true model at its maximum and the true model at the baseline. And even if the
models are misspecified, the statistic

ψ̂ = −2
T∑
t=1

(
log(M̂k

t (Λ0))− log(M̂k
t (Λ̂))

)
can still be a good estimator for goodness-of-fit, where the k in M̂k(Λ0) and M̂k(Λ̂)

indicates the iteration of the EM algorithm.

Proposition 7. The statistic ψ/T is a consistent estimator for

Ψ = 2 KL (M(Λ∗)||M(Λ0)) ,

the KL divergence between the true model and the true model under the null hypothesis.

The statistic ψ̂/T is a consistent estimator for

2 KL (M(Λ∗)||M(Λ0))− 2
(

KL(M(Λ∗)||M̂k(Λ̂∗))− KL(M(Λ0)||M̂k(Λ0))
)

(6.8)

where M̂k(Λ̂∗) is the closest population local maximum at iteration k.
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The second term in (6.8) can be seen as the difference between the true model misspec-
ification error and the model misspecification error of the null hypothesis. So if conditions
are satisfied so that the EM algorithm converges to the global maximum as the number of
iterations k →∞ or if the model is equally as misspecified under the truth as under the null
hypothesis such that the differences in the second term in (6.8) cancel to 0, then the statistic
ψ̂/T is also a consistent estimator of Ψ. The justification for using misspecified models can
also be geometrically interpreted as follows. Because the models estimated from the EM
algorithm are from the correct parametric family of distributions, the misspecified models
still lie on the same Riemannian manifold as the correct models. Below, we provide an
algorithm for performing hypothesis testing on the statistic ψ̂.

Algorithm 6.1 Anomaly Test

Input: models M̂k
1, . . . ,M̂k

T , critical value c = F−1(α)
where F is χ2

p2−p CDF, α is test level
Solve Λ̂ = arg max

Λ∈R+

∑T
t=1 log(M̂k

t (Λ))

ψ̂ = −2
∑T

t=1

(
log(M̂k

t (Λ0))− log(M̂k
t (Λ̂))

)
if ψ̂ > c then

Reject vec(Λ) = vec(Λ0)
else

Do not reject vec(Λ) = vec(Λ0)
end if
Return: Reject or Not

Algorithm 1 calculates the statistic ψ̂ as a log ratio of the modes of the model under the
null and alternative hypothesis. It then tests ψ̂ against a critical value c, which is related to
the false positive level.

Under the null hypothesis, the statistic ψ̂ can be decomposed as sampling error
−2
∑T

t=1 log M̂k
t (Λ̂

∗)− max
Λ∈R+

log M̂k
t (Λ) plus model error

−2
∑T

t=1 log M̂k
t (Λ0)− log M̂k

t (Λ̂
∗). Thus for the level-α test P(ψ̂ > c|H0) = α, a Type-

I error can occur due to either sampling error or model error or a combination of both.
Since typically the finite sample distribution of the statistic ψ is unknown, the asymptotic
distribution described in Proposition 6 can be used to choose the critical value c of
P(ψ > c|H0) = α. Assuming the model error is small, or small relative to the sampling
error, we can also use Proposition 6 to choose the critical value of a test with a misspecified
statistic P(ψ̂ > c|H0) = α. In the following section, we will show in simulations that the
asymptotic distribution of the correct statistic ψ is adequate for choosing the critical value
of a test using the misspecified statistic ψ̂.
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6.5 Computational Complexity

In Algorithm 2, we present our hierarchical Poisson EM model warm started at the MRE
estimator and analyze its computational complexity.

Algorithm 6.2 HP-MRE

Input: observations D = {Rt,Ct,F t}Tt=1, test level α
Initialize: Λ̂ as the solution to (6.6)
repeat

E-Step: Calculate N̂ t1
ij , N̂

t2
ij , N̂

t3
ij for all i, j in Theorem 6.3.1

M-Step: Solve for ε̂ k+1
ij and Λ̂k+1

ij for all i, j in Theorem 6.3.1
until convergence
Test: Calculate ψ̂ and reject if it is greater than critical value c
Return: Reject or Not

Warm starting the EM algorithm at the MRE solution (6.6) requires using interior-
point methods, which have polynomial complexity in the number of variables. Since the
MRE objective has P 2 linear variables and 2P 2 second order cone problem variables, the
computational cost is of orderO(#IP iter(3P 2)r) where r is the polynomial degree (often
3) and #IP iter is the number of iterations of the interior point algorithm.

The E-Step consists of calculating the multinomial means using the observed data. As-
sume that the number of flows in the interior nodes are roughly P , so that each of the row
sums, column sums, and interior node flows are the summation of P values. Then for each
independent time instance tτ , there are P summations of P values in denominator and a
multiplication and division operation on each of the P 2 entries in the numerator. The total
computational cost of the E-step is of order O(τTP 2) where τ is the number of different
time points in Proposition 4 (2 + number of interior nodes).

In the M-step, the estimator ε̂ k+1
ij can only be solved numerically because the score

function of the negative binomial distribution is a non-linear equation. Because we can
derive the gradient of the score function, we can use a trust-region method with a Newton
conjugate gradient subproblem (each subproblem has linear complexity in time points).
Given ε̂ k+1

ij , the estimator Λ̂k+1
ij can be solved in closed form (6.3) with scalar operations,

making its complexity linear in time points. Thus the total computational cost of the M-step
is of order O((1 + #CGiter)TP 2) where #CGiter is the number of conjugate gradient
iterations.

Given the final iterations EM estimators, evaluating the models at each i, j entry only
involves scalar operations, and getting the log ratio statistic ψ̂ requires summing over all
i, j entries and the T time points; so the total complexity of the anomaly test statistics
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is of order O(TP 2). Thus, overall Algorithm 2 has computational complexity of order
O(#IP iter(3P 2)r + #EMiter((τ + 1)TP 2 + #CGiterTP 2)). Note that our choice in
algorithms for the numerical optimizations were based more on convenience (using popular
standard packages e.g. CVX, Matlab’s fsolve) than optimal performance, so the computa-
tional complexities listed in this section are certainly not the best case scenarios. Nonethe-
less, even using non-optimal numerical algorithms, we show, in the following section, that
our method can run in a reasonable amount of time in both simulations and large real world
problems.

6.6 Simulation and Data Examples

In this section, we model network traffic in both simulated and real datasets as hierarchical
Poisson posteriors to get estimators of the true network traffic rates. These estimators,
from the hierarchical Poisson posteriors where the EM algorithm is initialized randomly
or at the MRE estimator (Rand-HP or MRE-HP), are tested against baseline rates to detect
anomalous activity in the network, as shown in Algorithm 1. We compare the performance
of our proposed models to the maximum likelihood EM (MLEM) model of [115] (with
the same time independence assumptions of Proposition 4 for feasibility), the Traffic and
Anomaly Map (TA-Map) method of [120], and an “Oracle” that unrealistically observes
the network directly. The “Oracle” estimator is the uniformly minimum variance unbiased
estimator and achieves the Cramer-Rao lower bound [140].

The Traffic and Anomaly Map method is the state-of-the-art for estimating the rates in
networks with traffic anomalies. Specifically for the TA-Map method we use the objective
of (P1) in [120], but with the low rank decomposition of (P4) in [120] whereX = LQ′ and
Q = 1 is a vector of ones because the rates do not change over time. Since the anomalies
also do not change over time, they can be expanded asAQ′ whereA is a P 2 × 1 vector of
rates of anomalous activity. We use Λ0 to form the routing matrix for the vector of nominal
rates L and a full routing matrix for the vector of anomalous ratesA since we do not know
any structural knowledge about them. Additionally, converting the notation of [120] to the
notation of this paper, Y = [C,R,F ], ZΠ are defined as the edges that are observed, and
L+A = vec(Λ), where L andA are solved using CVX on (P1) in [120]. We empirically
choose the penalty parameters λ? = 0.5 and λ1 = 0.1.
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6.6.1 Simulation Results

We simulate networks where the baseline rate matrix has 10 exterior nodes and 2 inte-
rior nodes. The probability of an edge between any two nodes in the baseline network
is 0.65, the baseline rates Λ0 ij are drawn from Gamma(1.75, 1) distributions, and each
interior node observes the total flow of a random 7 edges. We consider scenarios where
anomalous activity can take place in either the edges or the nodes. In the first scenario,
the anomalous activity can cause increases in the rates of some of the edges, new edges to
appear or disappear, or both. So, the rates of anomalous activity Λij −Λ0 ij are drawn from
Gamma(0.75, 1) distributions where the probability of anomalous activity between any
two nodes is 0.2. In the second scenario, there is a hidden node that is interacting with the
other nodes, thus affecting the observed total flows of the known nodes. So the entries of
the true rate matrix are drawn from Gamma(1.75, 1) distributions, but the true rate matrix
has 11 exterior nodes and the baseline rate matrix is the 10×10 submatrix of known nodes.
Like in the first scenario, the probability of an edge between the hidden node and another
node is 0.2. All simulations contain 200 trials, with anomalous activity in approximately
half of them.

In Fig. 6.4 we explore the accuracy of correctly identifying anomalous activity as a
function of the percentage of observed edges, where we observe T = 100 time points
(samples). We measure accuracy as #TP+#TN

#Trials
where the number of true positives (TP) and

true negatives (TN) are the number of times a method correctly detects that there is anoma-
lous activity or no anomalous activity respectively. For the probabilistic models (MLEM,
Rand-HP, MRE-HP) , we use the likelihood or posterior density ratio tests described in
Section 6.4 where the critical value is calculated using the inverse cumulative distribution
function of the χ2

P 2−P distribution at 0.05. The Traffic and Anomaly Map method uses a
threshold on the maximum (absolute) value of the anomaly matrixAwhere the threshold is
chosen so that it has 0.05 Type-I error. While the accuracy of all the probabilistic models in-
creases as the percentage of observed edges increases, the MLEM has low accuracy unless
over 80% of the network is observed whereas the two Hierarchical Poisson models have
high accuracy even when no part of the network is directly observed. The TA-Map method
also has poor performance at all percentages of the network observed. This may due to
issues the TA-Map method has at separating L and A into the correct separate matrices
even when the total estimator L+A is accurate.

While the Rand-HP and MRE-HP models have approximately the same accuracy at
detecting anomalies (MRE-HP does slightly better when only a few of the edges are ob-
served), initializing the EM algorithm of the Hierarchical Poisson model at the MRE so-
lution has additional benefits. Fig. 6.5 shows that the EM algorithm in the Hierarchical
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Figure 6.4: The network has 10 exterior nodes, 2 interior nodes, 35% sparsity, and a 0.5
probability of having anomalous activity, where T = 100 samples are observed. The accu-
racy of correctly detecting if the network has anomalous activity increases as the number
of edges observed increases. The proposed Rand-HP, and MRE-HP models outperform the
state-of-the-art TA-Map anomaly detector.

Poisson model with random initialization takes longer to converge than if it is initialized
at the MRE solution. This is because, if the EM algorithm is initialized in a place where
likelihood is very noisy, it may have difficultly deciding on the best of the nearby local
maxima, but the MRE solution is often already close to a good local maximum.

Figure 6.5: The number of iterations required for the EM algorithm to converge as the
observation time and number of edges observed vary. By warm-starting the EM algorithm
at the MRE estimator, the number of iteration is much fewer everywhere because it is
already close to a good local maximum.
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Fig. 6.6 shows the mean squared error (MSE) of the estimated rate matrices ||Λ̂−Λ||2F .
The MRE-HP model gains some of the advantages of the MRE estimator making its MSE
much lower than that of the Rand-HP model. As the percentage of observed edges in the
network increases, all estimators’ errors decrease to the Oracle estimator’s error, which
is the lowest possible MSE among all unbiased estimators. However, both the TA-Map
method and the MLEM model do not have good performance except when almost all of the
network is observed, at which point every estimator performs well. Note that estimating the
traffic is not the end goal in the considered anomaly detection problem. We demonstrate
this by comparing Fig. 6.6 to Fig. 6.4, where we can see that estimating the traffic well
(having low MSE) does not guarantee the method high accuracy. Low MSE implies that a
method’s estimates do not have a large difference with the true rates, however depending
on where the differences occur, it can be enough to cause the method to incorrectly detect
anomalous activity.

Figure 6.6: The MSE decreases as the number of edges observed increases. The proposed
MRE, Rand-HP, and MRE-HP models outperform the state-of-the-art TA-Map method.

Fig. 6.7 shows the ROC curves of the anomaly detection performance of the MRE-HP,
MLEM, and TA-Map methods for both the anomalous rates and the hidden node scenarios,
where only 20% of the edges are observed. The accuracy of the MRE-HP model increases
with the total observation time T , and it can detect anomalous activity almost perfectly
with only 100 time points, as evidenced by its area under the curve (AUC) being very close
to 1. The stars over the lines are the FPR vs TPR when using the critical values found by
calculating the inverse cumulative distribution function of the χ2

P 2−P distribution at 0.05.
The ROC curve for testing a misspecified LR test statistic using the MLEM is just the
point at (1, 1) because the Poisson MLE model is so misspecified, it always rejects the null
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hypothesis. The TA-Map method, while it does not always rejects the null hypothesis like
the MLEM model, performs about as bad as random guessing (a diagonal line from (0, 0)

to (1, 1)). These results are consistent with the accuracy results shown in Fig. 6.4.

Figure 6.7: ROC curves where 20% of edges in the network are observed and roughly
half of the networks have anomalous activity. The proposed MRE-HP model can detect
anomalous activity almost perfectly while the TA-Map and MLEM methods have poor
performance.

In Table 6.1, we show the corresponding CPU timings of each method in the two sce-
narios used in Fig. 6.7. The algorithms were run on an Intel Xeon E5-2630 processor at
2.30GHz without any explicit parallelization; however some of the built-in Matlab func-
tions are by default multi-threaded (such as ones that call BLAS or LAPACK libraries).
While the MRE-HP is slower than the competing methods, its computation time is still
very fast and on average less than half a minute. Also, note the significant performance
improvement provided by MRE-HP in the considered anomaly detection problem (see Fig.
6.4 and Fig. 6.7).

Table 6.1: Fig. 6.7 CPU Times (in seconds) over 200 Trials

Increase in Rates Hidden Node

Average Standard Dev. Average Standard Dev.

MRE-HP 18.594 28.611 18.901 30.785

MLEM 0.0398 0.0112 0.0380 0.0119

TA-Map 3.1860 0.1347 3.1861 0.1912
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6.6.2 CTU-13 Dataset

The proposed model was applied to botnet traffic networks from the CTU-13 dataset, which
come from 13 different scenarios of botnets executing malware attacks captured by CTU
University, Czech Republic, in 2011 [98]. The dataset contains real botnet traffic mixed
with normal traffic and background traffic and the authors of [98] processed the captured
traffic into bidirectional NetFlows and manually labeled them. Because the objective is to
detect if there is botnet traffic among the regular users, we will only use the sub-network of
nodes that are being used for normal traffic, but the traffic on this sub-network can be of any
type: normal, background, or botnet. Thus, baseline traffic on the network is either normal
or background traffic and the anomalous traffic is from botnets. And because the botnet
traffic originates and also potentially ceases from nodes that are not the regular users, the
anomalous activity is due to unobserved hidden nodes.

The observations consist of the total ingress and egress of each node along with the
total flows of 10 interior nodes, where each interior node receives flow from 0.7P other
nodes, in addition to observing 20% of the edges in the network. An observation or sample
is all the traffic that occurs in a one-hour time period. For each of the scenarios, we test the
probabilistic models at an alpha level of 0.05 under both regimes where the null hypothesis
is true (no botnet traffic) and not true (botnet traffic). For the TA-Map method of [120],
we use the ROC curves from the simulations to choose the threshold that yields a Type-I
error equal to 0.05. Table 6.2 summarizes the characteristics of each of the 13 difference
scenarios.

Table 6.3 shows that the Hierarchical Poisson model initialized at the MRE solution
always correctly rejects the null hypothesis when it is not true. However, the model in-
correctly rejects the null hypothesis in Scenario 3. This scenario has far more nodes than
any of the other scenarios, and as the number of nodes increase, the number of entries that
must be estimated, O(P 2), vastly outweigh the number of observations, O(P ). This gives
rise to a large model misspecification error in this scenario, which would negatively impact
the accuracy of Algorithm I. Like in the simulations, the Poisson MLE model always re-
jects the null hypothesis due to its massive model misspecification error and the TA-Map
method also has poor performance in the scenarios that are computationally feasible for the
method (the ones marked NA are too computationally expensive). Overall MRE-HP has
good performance detecting anomalous activity, especially compared to the other methods.
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Table 6.2: CTU Network Characteristics

Scenario Time # of # of Edges # of # of Edges

T (Hours) Nodes P Normal Traffic Hidden Nodes Botnet Traffic

1 7 510 1566 2280 4428

2 6 114 249 283 337

3 68 333 977 2463 2466

4 5 414 1737 9 27

5 2 246 652 59 67

6 3 200 380 2 5

7 2 93 161 11 14

8 20 3031 8799 57 106

9 6 485 1799 706 3372

10 6 260 1088 25 131

11 1 53 162 7 19

12 2 290 697 861 1829

13 17 272 814 267 345

Table 6.3: CTU Network Test

Scenario WhenH0 is True WhenHA is True

MRE-HP MLE TA-Map MRE-HP MLE TA-Map

1 X × NA X X NA

2 X × × X X X

3 × × NA X X NA

4 X × NA X X NA

5 X × NA X X NA

6 X × NA X X NA

7 X × × X X X

8 X × NA X X NA

9 X × NA X X NA

10 X × NA X X NA

11 X × × X X X

12 X × NA X X NA

13 X × NA X X NA

In Table 6.4, we show the CPU timings of the algorithms for the 13 scenarios in the
CTU-13 dataset under both hypothesis, where the algorithms are run on the same processor
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described in the simulations. Even for scenario 8, the computational times of MRE-HP are
feasible despite running on a rather out-of-date processor with a low clock speed. Again
we mark NA for the scenarios that are computationally infeasible for the TA-Map method
(the memory requirements are above 32GB even for scenario 6). The MRE-HP method
despite being slower than the TA-Map on smaller networks (see Table 6.1), scales much
more efficiently to larger networks.

Table 6.4: CTU Network CPU Times (in seconds)

Scenario WhenH0 is True WhenHA is True

MRE-HP MLE TA-Map MRE-HP MLE TA-Map

1 513.72 25.381 NA 1303.2 62.148 NA

2 19.258 5.2586 426.69 206.71 1.0702 683.26

3 790.60 70.706 NA 468.39 55.564 NA

4 2038.0 10.834 NA 3607.5 30.863 NA

5 539.85 2.0568 NA 263.56 3.2602 NA

6 69.452 1.6095 NA 58.427 12.556 NA

7 10.164 0.8487 360.09 17.043 0.6761 366.83

8 62602 8071.2 NA 55591 2087.8 NA

9 5439.3 97.082 NA 903.46 51.762 NA

10 648.88 7.8440 NA 174.66 2.9925 NA

11 4.2550 0.7101 55.126 17.645 0.4735 56.367

12 1864.8 3.6154 NA 514.97 5.5562 NA

13 355.20 17.620 NA 792.81 76.237 NA

6.6.3 Taxi Dataset

The proposed model was applied to a dataset consisting of yellow and green taxicabs rides
from the New York City Taxi and Limousine Commission (NYC TLC) [141] and [142].
For every NYC taxicab ride, the dataset contains the pickup and drop-off locations as ge-
ographic coordinates (latitude and longitude). Green taxicabs are not allowed to pickup
passengers below West 110th Street and East 96th Street in Manhattan, but occasionally
they risk the chance of getting punished and ignore the regulations. In an article on June
10th 2014, the New York Post explains how the city began hiring more TLC inspectors to
catch illegal pickups and enforce the location rules [143]. Thus we are interested in iden-
tifying if there are green taxicabs operating in lower Manhattan when we only know the
yellow taxicab network. We treat the 18 Neighborhood Tabulation Areas (NTA) in lower
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Manhattan as nodes and associate any pickups or drop-offs within an NTA’s boundaries as
traffic entering or leaving the node. We form edges from only frequently occurring routes
of traffic, which we define as having activity at least an average of every 20 minutes for
yellow and twice a month for green taxicabs. For samples, we use the yellow and green
taxicab rides from between January and May of 2014 and aggregate them into daily totals.

Like in the previous example, we indirectly observe samples of the total ingress and
egress of each node, and the total flows of 10 interior nodes that each observe the flows of
0.7P nodes. This creates a total traffic network with P = 18 nodes and 187 non-zero edges
(39% sparsity) where the baseline network (yellow taxicab rides) has 163 of the edges.
There is anomalous activity (green taxicab rides) on 56 of the edges, where 32 of these
edges are also in the baseline network and 24 are not. We observe the network for a total of
T = 150 days. Fig. 6.8 shows the baseline network formed from yellow taxicab rides and
the unknown anomalous activity due to illegal pickups from green taxicabs.

Table 6.5 shows, for different percentages of edges observed, whether the correct de-
cision (reject or not) is made when the null hypothesis is true (no green taxi traffic) and
when it is not true (green taxi traffic). The Hierarchical Poisson model initialized at the
MRE solution always makes the correct decision while the Poisson MLE model, except for
when the network can be directly observed, always rejects the null hypothesis. These two
models are tested at an alpha level of 0.05. The Traffic and Anomaly Map method, which
has a 0.05 Type-I error threshold chosen from the ROC curves of the simulations, also has
poor performance.

Table 6.5: Taxi Network Test

% WhenH0 is True WhenHA is True

Edges MRE-HP MLE TA-Map MRE-HP MLE TA-Map

0 X × X X X ×
10% X × X X X ×
20% X × X X X ×
30% X × X X X ×
40% X × X X X ×
50% X × X X X ×
60% X × × X X ×
70% X × × X X X

80% X × × X X X

90% X × × X X X

100% X X × X X X
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From the results of Table 6.5, we know the Hierarchical Poisson model initialized at
the MRE solution is always able to detect changes in the network at a global scale, but we
are also interested in the recovery of the individual green taxicab routes. When 70% of the
network is observed, the model is able to detect 52 of the 56 edges that contain anomalous
activity with only a 2% false positive rate. The 4 missed edges and 5 false alarms are shown
in Fig. 6.9.

Figure 6.8: A network of taxicab rides in
lower Manhattan where the nodes are the
18 NTAs. The traffic from yellow taxicab
rides (solid purple lines) form the baseline
network and the traffic from green taxicab
rides (dashed green lines) are anomalous
activity in the network.

Figure 6.9: A miss (red line) is an edge that
the MRE-HP model fails to identify as con-
taining anomalous activity and a false alarm
(blue line) is an edges that is incorrectly
identified as containing anomalous activ-
ity. The majority of the misses depart from
MN31 (Lenox Hill and Roosevelt Island),
which may contain legal activity because
green taxis are allowed to pick up passen-
gers from Roosevelt Island.

Out of the 4 misses, 3 of them are from green taxicab pickups from MN31, which
contains the Lenox Hill and Roosevelt Island areas. Green taxicabs are allowed to pick up
passengers from Roosevelt Island, but not from Lenox Hill, so some of the traffic on these
3 routes could be legal and not anomalous activity. The other miss, from MN19 to MN40,
only had 11 rides in 150 days, making it harder to distinguish from just perturbation noise
in the samples.
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6.7 Conclusion

We have developed a framework and a probabilistic model for detecting anomalous activ-
ity in the traffic rates of sparse networks. Our framework is realistic and robust in that, at
minimum, it only requires observing the total egress and ingress of the nodes. Because it
imposes no fixed assumptions of edge structure, our framework allows the estimator to han-
dle noisy observations and anomalous activity. Our simulation results show the advantages
of our model over competing methods in detecting anomalous activity. Through applica-
tion of our models to the CTU-13 botnet datasets, we show that the model is scalable and
robust to various scenarios, and with the NYC taxi dataset, we show an application of our
model and framework to an already identified real-world problem.

Appendix

Proof of Proposition 4. By Jensen’s inequality, log (P(D|Λ))

= log
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)
+ H

(
q(N tτ )

)
and P(Rt1|N t1,Λ) = P(Ct2|N t2,Λ) = P(F t3|N t3,Λ) = 1. The inequality is tight (by KL
divergence) when q(N t1) = P(N t1 |Rt1,Λ), q(N t2) = P(N t2|Ct2,Λ), and q(N t3) =

P(N t3 |F t3,Λ) are multinomial distributions.

Proof of Theorem 6.3.1. Define N = {N tτ : ∀tτ = 1, . . . , T and τ = 1, . . . , 3} as the set
of all network traffic at different time points tτ for the entire sample window 1, . . . , T . So
∩N is the intersection of the set and P(∩N ) is its joint probability. By Jensen’s inequality,
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log P(Λ|D) = log
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where this bound is tight (by KL divergence) when q = P(∩N|D,Λ, ε) =∏3
τ=1
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for any distributions of q(N t1), q(N t2), q(N t3).
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) is the negative binomial distribution and
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and given estimates of the hyperparameters ε̂ij , estimators for the rates Λ̂ij
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Thus when Eqt1 (N t
ij) = E(N t1

ij |Rt1 , Λ̂k) where Λ̂k are the previous iterations’ estima-
tors for the rate matrix, the lower bound will push up against the observed log posterior
log P(Λ|D). This makes the E-step just the means of the independent Multinomial dis-
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tributions
∏P

i=1Multi(Rt1
i ,

Λ̂ki1∑P
j=1 Λ̂kij

, . . . ,
Λ̂kiP∑P
j=1 Λ̂kij

) like in the previous models. The same

holds when given the column sums Ct2 or flows F t3 .

Proof of Proposition 5. The positive estimator Λ̂ that maximizes the MRE distribution is
the solution to arg max
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where LMij = ρi + γj +
∑

h φhAhiBj .
The Lagrangian of the loss function in (6.6) is ||Λ−Λ0||1

+ ρ′(Λ1 − R̄) + γ ′(1′Λ − C̄) + φ′(AΛB − F̄ ) with optimal Lagrange multipliers that
are the solution to dual problem
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because f ∗(−ρi − γj −
∑

h φhAhiBj) are the convex conjugates defined as

= max
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∑
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∑
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The dual can be relaxed with log barrier terms to an unconstrained problem that is equiv-
alent to (6.7) making minimizing the Lagrangian of (6.6) for Λ equivalent to maximizing
the MRE distribution.

Proof of Proposition 6. Using Remark 1.7 of [144], then for regular models, the MAP es-
timator will have the same asymptotic properties as the MLE. Thus, the standard proof for
the asymptotic distribution for the log likelihood ratio [145] applies to the log posterior
density ratio.

Proof of Proposition 7. LetM(Λ∗) be the true model, then the test statistic ψ
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t (Λ̂
∗))− 2 min

Λ∈R+

T∑
t=1

log(M̂k
t (Λ̂

∗))− log(M̂k
t (Λ))
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and as T →∞,

ψ̂/T → 2 KL (M(Λ∗)||M(Λ0)) + 2 KL
(
M(Λ0)||M̂k(Λ0)

)
− 2 KL

(
M(Λ∗)||M̂k(Λ̂∗)

)
− 2 min

Λ∈R+
KL
(
M̂k(Λ̂∗)||M̂k(Λ)

)
= Ψ− 2

(
KL
(
M(Λ∗)||M̂k(Λ̂∗)

)
− KL

(
M(Λ0)||M̂k(Λ0)

))
where Ψ = 2 KL (M(Λ∗||M(Λ0))) and M̂k(Λ̂∗) is the closest population local maximum
at iteration k. If as k → ∞, the EM model M̂k converges to the true model M , then
ψ̂/T → Ψ
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CHAPTER 7

Conclusion and Future Work

In conclusion, real data is complex and contains many intricacies such as partial labels,
latent variables, and anomalies. This thesis developed methods to deal with the compli-
cations that arise in real data. This thesis also address the very contemporary problem of
updating models when data is being continuously collected.

In chapter 2, we proposed a penalized ensemble Kalman filter that is designed for supe-
rior performance in non-linear high dimensional systems. We give theoretical results that
prove that the Kalman gain matrix used in our algorithm will converge to the population
Kalman gain matrix under the non-simplistic asymptotic case of high-dimensional scaling,
where the sample size and the dimensionality increase to infinity. We show the perfor-
mance of our filter in data generated from fluid dynamics simulators, which are know to be
strongly non-linear and chaotic.

In chapter 3, we proposed a framework, using minimum constrained relative entropy,
to generate and update regression models. This framework can be used to build an optimal
non-linear filter and also an approximation to it that is computationally efficient. For sta-
tionary systems, we can bound the performance between our proposed sparse approximate
model and a model trained on the entire batch of data.

In chapter 4, we proposed recursive versions of supervised and semi-supervised max-
imum margin classifiers in the minimum entropy discrimination classification framework.
Our proposed models perform nearly as well as a much more computationally expensive
batch model and significantly better than a model that cannot incorporate previous data.

In chapter 5, we proposed a method for detecting anomalous points that are of high
utility by exploiting the key idea that high-utility points are also anomalous. The method
simultaneously uses semi-supervised utility labels and incorporates anomaly information
through the EM algorithm. We show in simulations, that the performance increases with
EM iterations because using previous label information helps identify anomalies and vice
versa. We applied our method to the Reddit and CTU-13 botnet datasets to show its appli-
cability in real life situations.
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In chapter 6, we developed a framework and probabilistic model for detecting anoma-
lous activity in the traffic rates of sparse networks where, in the most restrictive case, only
the total egress and ingress of the nodes are observed. We show real-world applicability of
our models to datasets containing botnet and taxi traffic.

7.1 Future Work

One area I would like to further explore is the connection between the exponential family
and information projections with Kullback-Leibler divergence. While the geometry of ex-
ponential family likelihoods and their duality with maximum entropy has been well studied
[146]; the intuition is less clear for posteriors. Much of the work in this thesis uses the prin-
ciple of minimum relative entropy to building models and while it presents some geometric
intuition, I am interested in further studying the relationship between Bayes rule and pro-
jecting with relative entropy. Understanding this could have significant impact on how to
design models. Many of the most popular algorithms explicitly or implicitly use exponen-
tial family distributions and every exponential family induces a Bregman divergence [147].
However, some loss functions, do not correspond to a Bregman divergence associated with
a distribution. I believe that the framework discussed in chapters 3 through 5 can be used
to build a class of posterior models that have all the benefits of the exponential family,
but can induce a much larger class of loss functions. In contrast to directly optimizing the
loss function, these models would also have the advantages of generative models such as
filtering and being solvable with the EM algorithm.

Another area I am interested in is misspecified models; specifically the kind described
in the famous quote by George Box, All models are wrong but some are useful. Parametric
models, particularly ones from the exponential family, are useful because they are gener-
ally easier to solve, but data from the real world is usually not generated from such simple
distributions. Even when we model the generating process as multi-layered hierarchal dis-
tributions or with complicated non-linear functions, these models are often not feasible to
solve, especially not quickly. This need for fast computational complexity has lead to the
development of algorithms that approximate not the true generating process, but other more
complex models. This is inspired by the work of chapter 3, where we present a sparse ap-
proximation to an optimal model, which is computationally much faster. I am interested
in studying essentially the model equivalent to the trade-off between bias and variance, the
trade-off between wrong-ness and usefulness. My goal is to develop a framework for de-
signing less computationally intensive models that are close to their complex counterparts,
but useful in that they preserve the all the necessary aspects such as the mean, mode, and
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standard deviation.
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