Image Processing and Analysis for Gene Microarrays

A. O. Hero

University of Michigan - Ann Arbor

http://www.eecs.umich.edu/~hero

Collaborators: G. Fleury, A. Swaroop, D. Ghosh

Outline

- 1. Image formation for microarrays
- 2. Filtered Poisson model for spotted cDNA arrays
- 3. Pareto filtering for gene pattern extraction
- 4. Application: development and aging in mouse retina

Scientific Objectives

Establish genetic basis for development, aging, and disease on the basis of genetic probes

Figure 1: Sample gene trajectories over time.

Figure 4: Affymetrix GeneChip microarray.

Figure 5: cDNA spotted array.

Figure 6: cDNA spotted array (left: cy3/cy5 wildtype, right: cy3/cy5 knockout).

Figure 7: Blowup of cDNA spotted array.

<u>Filtered Poisson Measurement Model</u>

Figure 11: Filtered Poisson model for microarray image.

Mathematical Model

$$I(x,y) = g\left(r\int\int h(x-u,y-v)dN(u,v)\right) + w(x,y)$$

- *I*(*x*, *y*): measured intensity
- dN(u,v): inhomogeneous spatial Poisson process with intensity $\lambda_d + \lambda_o$
- h(u,v): point spread function of image scanner
- g: spatially homogeneous non-linear response function
- w(u, v): thermal electronic noise

Figure 12: Spots simulated from filtered Poisson model with Gabor components.

Extraction of Gene Hybridization Levels

Objective: Estimate θ_j , $j = 1, \ldots, \#_{probes}$

$$\lambda(x,y) = \sum_{j=1}^{\#_{probes}} \theta_j \Phi_j (x - u_j, y - v_j)$$

where

Φ_j(u,v): (normalized) intensity of *j*-th spot
Multi-component model for Φ_j

$$\Phi_j(u,v) = \sum_{k=1}^{\#basis} \alpha_{j,k} \phi_k(u,v)$$

• u_j, v_j : position of *j*-th spot

Figure 13: Top: statistical representation of I as the output of channel C with input Θ . Bottom: decomposition of C into Poisson and Gaussian channels C_1 and C_2 , respectively.

Performance Predictions

Let Θ be a random vector of parameters:

$$E[(\Theta - \hat{\Theta}(I))(\Theta - \hat{\Theta}(I))^{T}] \geq E[(\Theta - E[\Theta|I])(\Theta - E[\Theta|I])^{T}]$$

$$= E[(\Theta - E[\Theta|dN]])(\Theta - E[\Theta|dN]])^{T}]$$

quantum-limited cov

$$+ \underbrace{E[(E[\Theta|dN] - E[\Theta|I])(E[\Theta|dN] - E[\Theta|I])^{T}]}_{E[\Theta|dN] - E[\Theta|I])^{T}}$$

Gauss-limited cov

Distortion-Rate Bounds

Define mutual information

$$MI(I;\Theta) = E\left[\ln\frac{f_{I|\Theta}}{f_{I}}\right] = H(I) - H(I|\Theta)$$

Define rate-distortion function (monotone decreasing):

$$R(d) = \inf_{P_{I|\Theta}:MSE \le d} \operatorname{MI}(I;\Theta)$$

Define Shannon channel capacity:

 $C = \sup_{P_{\Theta}} \operatorname{MI}(I; \Theta)$

Shannon's inequality

$$R(d) \leq C$$
 or $d \geq R^{-1}(C)$

Shannon's "Data Processing Theorem"

 $C\leq \min\{C_1,C_2\}.$

Point process channel

 $C_1 = \sup_{P_{\Theta}} \operatorname{MI}(\Theta, dN)$

Continuous process channel

 $C_2 = \sup_{P_{dN}} \mathrm{MI}(dN;I)$

Gabor Superposition - Spot Position MSE

Figure 15: MSE lower bounds on spot position.

Figure 16: Distortion-rate MSE lower bounds on Gabor widths of h(x, y).

Optimal Gene Extraction

Imputed Log-likelihood function (Antoniadis&Hero:SP92):

$$l(\theta, \alpha, u, v) = \int \int \widehat{dN}(x, y) \ln(\lambda(x, y) + \lambda_o) - \int \int \lambda(x, y) dx dy$$

where

$$\widehat{dN}(u,v) = E[dN(u,v)|I; \overline{\Theta}, \overline{\alpha}, \overline{u}, \overline{v}]$$
$$\lambda(x,y) = \sum_{j=1}^{\#_{probes}} \Theta_j \Phi_j(x,y)$$

Assuming

- g(u) = u
- spot intensities Φ_j don't overlap

•
$$\lambda_o = 0$$

$$\hat{\theta}_j = \int \int_{\text{cell}_j} \widehat{dN}(x, y)$$

Extraction of Differential Hybridization Levels

For d = 1, 2:

$$I_d(x,y) = r_d \int \int h_d(x-u,y-v) dN_d(u,v) + w_d(x,y)$$

Estimate of $\Delta \theta_j = \theta_{1j}/\theta_{2j}$ is

$$\hat{\theta}_{j} = \frac{\int \int_{\text{cell}_{j}} \widehat{dN}_{1}(x, y)}{\int \int_{\text{cell}_{j}} \widehat{dN}_{2}(x, y)} \rho$$

$$\rho = \hat{r}_2 / \hat{r}_1 = \frac{\sum_{j=\text{hskpg}} \int \int_{\text{cell}_j} \widehat{dN}_2(x, y)}{\sum_{j=\text{hskpg}} \int \int_{\text{cell}_j} \widehat{dN}_1(x, y)}$$

Gene Clustering and Filtering

Figure 17: Clustering on the Data Cube.

Objective: Classify time trajectory of gene *i* into one of *K* classes

Figure 18: Gene i is old dominant while gene j is young dominant

Objective: classify gene trajectories from sequence of microarray experiments over time (t) and population (m)

$$\theta_i(m,t), m = 1, ..., M, t = 1, ..., T$$

Trajectory Estimation

• *K* classes C_1, \ldots, C_K of genes with priors π_1, \ldots, π_K

$$f(\theta_i | i \in C) = \phi_C(\theta_i) = \prod_{m=1}^M \prod_{t=1}^T \frac{1}{\sqrt{2\pi\sigma_C^2(t)}} \exp\left(-\frac{1}{2} \left[\theta_i(m, t) - \mu_C(t)\right]^2 / \sigma_C^2(t)\right)$$

• $\mu_C(t)$, $\sigma_C(t)$ piecewise linear to be estimated via EM:

$$\mu_C(t) = \begin{cases} a_{C1}t + b_{C1}, & t = 1, \dots, \tau_C \\ a_{C2}t + b_{C2}, & t = \tau_C + 1, \dots, T \end{cases}$$

• Trajectory pdf is Gaussian mixture:

$$f(\theta_i) = \sum_{k=1}^{\#} classes_{k=1} \phi_k(\theta_i) \pi_k$$

Gene Filtering via Multiobjective Optimization

Gene selection criteria for *i*-th gene $\xi_1(\theta_i), \ldots, \xi_P(\theta_i)$ Examples of $\xi_P(\theta_i)$:

• Mean change from t = 1 to t = T:

$$\xi_1(\theta_i) = |\overline{\theta}_i(*,1) - \overline{\theta}_i(*,T)|^2$$

• Standard deviation at t = 1:

$$\xi_2(\theta_i) = \left(\theta_i(*,1) - \overline{\theta}_i(*,1)\right)^2$$

• Standard deviation at t = T:

$$\xi_3(\theta_i) = \left(\theta_i(*,T) - \overline{\theta}_i(*,T)\right)^2$$

• Mean slope magnitude:

$$\xi_4(\theta_i) = \overline{|\Delta \theta_i(*,*)|}$$

• Mean slope dispersion:

$$\xi_5(\theta_i) = \overline{\left(|\Delta \theta_i(*,*)| - \overline{|\Delta \theta_i(\bullet,\bullet)|} \right)^2}$$

Objective: find genes which maximize or minimize the selection criteria

Aggregated Criteria

Let $\{W_p\}_{p=1}^P$ be experimenter's "preference pattern"

$$\sum_{p=1}^{P} W_p = 1, \ W_i \ge 0$$

Find optimal gene via:

$$\max_{i} \sum_{p=1}^{P} W_p \xi_p(\theta_i), \quad or \quad \max_{i} \prod_{p=1}^{P} (\xi_p(\theta_i))^{W_p}$$

Q. What are the set of optimal genes for all preference patterns?

A. These are non-dominated genes (Pareto optimal)

Defn: Gene *i* is dominated if there is a $j \neq i$ s.t.

$$\xi_p(\theta_i) \leq \xi_p(\theta_j), \ p = 1, \dots, P$$

Example: pairwise comparisons

i-th treatment generates two classes of responses X_i and Y_i :

 $\{X_i(m)\}_{m=1}^{n_1}$ and $\{Y_i(m)\}_{m=1}^{n_2}$

• Pooled within-class dispersion

$$\xi_1(X_i, Y_i) = n_1 \overline{\left(X_i(*) - \overline{X_i(*)}\right)^2} + n_2 \overline{\left(Y_i(*) - \overline{Y_i(*)}\right)^2}$$

• Between class distance

$$\xi_2(X_i) = |\overline{X_i(*)} - \overline{Y_i(*)}|^2$$

Objective: Find *i* which achieves minimum ξ_1 and maximum ξ_2 .

Figure 19: *a*). Non-dominated property, and *b*). Pareto optimal fronts, in dual criteria plane.

Figure 20: ξ_1 = mean change vs ξ_2 = pooled standard deviation for 8826 mouse retina genes. Superimposed are T-test boundaries

Figure 21: First (circle) second (square) and third (hexagon) Pareto optimal fronts.

Application: Development and Aging in Mouse Retina

Mouse Retina Experiment:

- Retinas of 24 transgenic mice sampled and hybridized
- 6 time points: Pn2, Pn10, M2, M6, M16, M21
- 4 mice per time sample
- Affymetrix GeneChip layout with 12422 poly-nucleotides
- Affymetrix attribute analyzed: "AvgDiff"
- Used Affymetrix filter to eliminate all genes labeled "A"

Objective: Find interesting gene trajectories within the set of remaining 8826 genes

Figure 22: Trajectories.

Figure 23: Trajectories.

Pairs of Trajectories for Replicated Segments

Figure 24: Pairs of trajectories for replicated gene polynucleotide sequence.

Non-Parametric Pareto Filter

Define *trend vector*: $\psi_i = [b_1, ..., b_6], b_i \in \{0, 1\}$

- Old dominant filtering criteria:
 - high mean slope from t = Pn1 to t = M21

$$\xi_1(\mathbf{\psi}_i) = \overline{b_i(*,*)}$$

 high consistency over 6⁴ = 4096 possible combinations of trajectories

$$\xi_2(\psi_i) = \frac{\# \text{ trajectories having } \psi_i = [1, \dots, 1]}{4096}$$

Figure 25: Pareto fronts for old dominant genes.

Old Dominant Genes in First Pareto Front

Unigene #	Affymetrix description
1186	Mouse Carbonic Anhydrase II cDNA
4263	Cystatin 3
16224	Guanylate cyclase activator 1a (retina)
16763	Mouse mRNA for aldolase A
16771	Mus musculus H-2K
18625	Aquaporin 1
28405	Mus musculus cDNA 3'end
42102	Mus musculus tubby like protein 1 mRNA
69061	Guanine binding protein α transducing 1
86632	Mus musculus 5'end cDNA

Table 1: First Pareto Front gene description.

Resistant Old Dominant Genes in first Three Fronts

• Leave-one-out cross validation

Let ψ_i^{-m} denote one possible set of $T \times (M-1) = 6 \times 3$ samples Cross-validation Algorithm:

```
Do m = 1, ..., 4^6:
```

Compute $(\xi_1(\psi_i^{-m}), \xi_2(\psi_i^{-m}))$ Find Genes in First 3 Pareto fronts: G^{-m} End Resistant Genes = $\bigcap_{m=1}^{4^6} G^{-m}$

Unigene #	Affymetrix description
1186	Mouse Carbonic Anhydrase II cDNA
1276	Retinal S-antigen
2965	Mouse opsin gene
3918	ATP-binding casette 10
16224	Guanylate cyclase activator 1a (retina)
16763	Mouse mRNA for aldolase A
16771	Mus musculus H-2K
39200	CGMP phosphodiesterase gamma
42102	Mus musculus tubby like protein 1 mRNA
69061	Guanine binding protein α transducing 1
86632	Mus musculus 5'end cDNA

Table 2: Resistant genes remaining in first three Pareto fronts

Young Dominant Filtering Criteria

• low mean slope from t = Pn1 to t = M21

$$\xi_1(\mathbf{\psi}_i) = \overline{b_i(*,*)}$$

• high consistency over 6⁴ = 4096 possible combinations of trajectories

$$\xi_2(\psi_i) = \frac{\text{\# trajectories having } \psi_i = [0, \dots, 0]}{4096}$$

Young Dominant Pareto Fronts

Figure 26: Pareto fronts for young dominant genes.

Three-objective Pareto Filtering

Objective Extract "aging genes"

- Strictly increasing filtering criteria:
 - persistent positive trend

$$\xi_1(\Psi_i) = \overline{\min_t b_i(*,t)} = \max$$

 high consistency over 6⁴ = 4096 possible combinations of trajectories

$$\xi_2(\psi_i) == \frac{\# \text{ trajectories having } \psi_i = [1, \dots, 1]}{4096} = \max$$

• no plateau

$$\xi_3(\theta_i) = \overline{[\theta_i(*,t+1) - 2\theta_i(*,t) + \theta_i(*,t-1)]^2} = \min$$

Pareto Optimal Aging Gene Trajectories

Figure 27: *Mus musculus* 5['] end cDNA (Unigene 86632) is sole-survivor resistant aging gene

Conclusions

- 1. Filtered Poisson modeling of spotted cDNA microarrays
- 2. Lower bounds can be used to set image formation parameters
- 3. Iterative estimation in Poisson model is applicable
- 4. Pareto filtering performs robust and flexible gene data mining
- 5. Joint intensity extraction and gene filtering?
- 6. Evolutionary optimization algorithms for large data sets?
- 7. Large sample theory of Pareto fronts?