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ABSTRACT

Many algorithms have been proposed for estimating the intrinsic
dimension of high dimensional data. A phenomenon common to
all of them is a negative bias, perceived to be the result of under-
sampling. We propose improved methods for estimating intrinsic
dimension, taking manifold boundaries into consideration. By es-
timating dimension locally, we are able to analyze and reduce the
effect that sample data depth has on the negative bias. Additionally,
we offer improvements to an existing algorithm for dimension esti-
mation, based on k-nearest neighbor graphs, and offer an algorithm
for adapting any dimension estimation algorithm to operate locally.
Finally, we illustrate the uses of local dimension estimation with data
sets consisting of multiple manifolds, including applications such as
diagnosing anomalies in router networks and image segmentation.

Index Terms— Intrinsic dimension, manifold learning, Rieman-
nian manifold, nearest neighbor graph, geodesics

1. INTRODUCTION

Technological advances in both sensing and media storage have al-
lowed for the generation of massive amounts of high dimensional
data and information. While this data may appear to be very com-
plex, much of the information is often concentrated on lower dimen-
sional subsets – manifolds – which allows for significant dimension
reduction with minor or no loss of information. To perform dimen-
sion reduction, one first needs to know the intrinsic dimensional-
ity of the manifold supporting the data. In contrast to model order
selection methods such as MDL, AIC, or BIC (see [1]), we con-
sider non-parametric methods of dimension estimation. When the
intrinsic dimension is assumed constant over the data set, several al-
gorithms [2–5] have been proposed to estimate the dimensionality
of the manifold. In several problems of practical interest, however,
data will exhibit varying dimensionality. For example, the intrinsic
dimension of a time series data set can vary with time.

To our knowledge, every method of estimating intrinsic dimen-
sion has expressed an issue with a negative bias, due to insufficient
sampling of the manifold. We propose that a significant portion of
the bias is a result of regions on the manifold which may appear to
be low dimensional when sampled. Specifically, samples near the
boundaries or edges of a manifold contribute a strong negative bias
to the global estimate of dimension. In this paper we will show, by
using local dimension estimation and data depth analysis, that we
are able to isolate those regions of the manifold that contribute to the
bias, improving upon global dimension estimation. Furthermore, we
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will present additional novel uses for local dimension estimation, in-
cluding network anomaly detection and image segmentation.

For the purposes of this paper, we will be utilizing an improved
version of the k-nearest neighbor algorithm for dimension estima-
tion; which was originally presented in [4] and applied locally in [6].
While performing competitively with other algorithms, the variance
of the results across simulations on the same data set was high. A
significant source of discrepancy was that the algorithm did not take
data dependencies into account. We now propose algorithm im-
provements by reducing the effects of data dependencies through the
implementation of a block bootstrap resampling method, and solving
only over integer values to improve accuracy.

The organization of the paper is as follows: We give an overview
of the k-NN algorithm and its application to local dimension estima-
tion in Section 2. The problem of bias in dimension estimation and
a de-biasing framework using data depth analysis are introduced in
Section 3. Experimental results and comparisons are presented in
Section 4. Finally, Section 5 presents the conclusions and some pos-
sible directions for future improvements.

2. THE K-NEAREST NEIGHBOR ALGORITHM FOR
DIMENSION ESTIMATION

Let Yn = {Y 1, . . . , Y n} be n independent and identically dis-
tributed (i.i.d.) random vectors with values in a compact subset of
Rd. The (1-)nearest neighbor of Y i in Yn is given by

arg min
Y ∈Yn\{Y i}

|Y − Y i|

where |Y −Y i| is the usual Euclidean (L2) distance in Rd between
vector Y and Y i. For a general integer k ≥ 1, the k-nearest neigh-
bor of a point is defined in a similar way. The k-NN graph assigns
an edge between each point in Yn and its k-nearest neighbors. Let
Nk,i = Nk,i(Yn) be the set of k-nearest neighbors of Y i in Yn.
The total edge length of the k-NN graph is defined as:

Lγ,k(Yn) =

n∑
i=1

∑

Y ∈Nk,i

|Y − Y i|γ , (1)

where γ > 0 is a power weighting constant.
For many data sets of interest, the random vectors Yn are con-

strained to lie on an m-dimensional Riemannian submanifold M of
Rd (m < d). A Riemann manifold has an associated metric g [7],
which endows M with both a notion of distance via geodesics and
also a measure µg via the differential volume element. Under this
framework, the asymptotic behavior of (1) is given by the following
theorem [4]:



Theorem 1. Let (M, g) be a compact Riemann m-dimensional
submanifold of Rd. Suppose Y 1, . . . , Y n are i.i.d. random vec-
tors of M with bounded density f relative to µg . Assume m ≥ 2,
1 ≤ γ < m and define α = (m− γ)/m. Then, with probability 1,

lim
n→∞

Lγ,k(Yn)

n(d′−γ)/d′ = (2)




∞, d′ < m
βm,γ,k

∫
M fα(y) µg(dy), d′ = m

0, d′ > m
,

where βm,γ,k is a constant independent of f and (M, g). Fur-
thermore, the mean length E [Lγ,k(Yn)] /nα converges to the same
limit.

From (2), we can make a large n approximation for the total
graph length as follows:

Lγ,k(Yn) = nαc + εn (3)

where

c = βm,γ,k

∫

M
fα(y) µg(dy) (4)

The estimate of the intrinsic dimension m̂ can be found using a
non-linear least squares solution, by calculating graph lengths over
varying values of n. Since c is dependent on m, it is necessary to
solve for the minimum mean squared error by minimizing over both
c and integer values of m ∈ Z (5). We solve over integer values of
m as we do not consider fractal dimensions for this algorithm. This
improves accuracy by constraining the estimation space to discrete
values, rather than discretizing estimates in a continuous space.

m̂ = arg min
m∈Z

{min
c

∑
n

(Ln − nα(m)c)2} (5)

In order to calculate graph lengths for differing sample sizes on
the manifold, we randomly subsample from the full set. Using an
i.i.d. bootstrap - randomly selecting individual points - is sufficient
when the data is independent. However, when dependencies lie in
the data the i.i.d. bootstrap breaks down, as the random subsampling
can remove all temporal and/or spatial correlation between the data
points. In these cases, a better subsampling method is the block
bootstrap for dependent data, many types of which are described
in [8]. This leads to more consistent results in the k-NN algorithm.

For our purposes, we will utilize the non-overlapping block boot-
strapping method on the data setYn = {Y 1, . . . , Y n}. Specifically,
let p1, . . . , pQ, 1 ≤ p1 < . . . , < pQ ≤ n, be Q integers and let w
be an integer satisfying w < n/Q. Let Y ′n = {Y (1), . . . , Y (n)}
be a spatially or temporally sorted version of Yn. Define the blocks
Bi = (Y (i−1)w+1, . . . , Y iw), i = 1, . . . , n/w. For each value of
p ∈ {p1, . . . , pQ} randomly draw N bootstrap datasets Bj

p, j =
1, . . . , N , without replacement, where the p data points within each
Bj

p are chosen from the entire data set Bn independently.

2.1. Local Dimension Estimation

The k-NN algorithm in itself is a global dimension estimator.
We are able to adopt it (and any other dimension estimation algo-
rithm) as a local dimension estimator by running the algorithm over a
smaller neighborhood about each sample point. Intuitively, if an m-
dimensional manifold, M, has a uniform distribution over n points,
Yn = {Y 1 . . . Y n}, then any small sphere or data cluster S ⊆ M,
centered at point Y i will also have uniform distribution over n′ ≤ n

Algorithm 1 Local dimension estimation
Input: Data set Y = {Y 1, Y 2, . . . , Y n}

1: for i = 1 to n do
2: Initialize cluster C = Y i

3: for k = 1 to n′ do
4: Find the k-th NN, Y k,i, of Y i

5: C ← C ∪ Y k,i

6: end for
7: m̂(Y i) = dimension(C)
8: end for

Output: Local dimension estimates m̂

data points. As such, we can use the global dimension estimation
algorithm on a local subset of the data to estimate the local intrinsic
dimension of each sample point. This can be performed as described
in Algorithm 1, where ‘dimension(C)’ refers to applying any method
of dimension estimation (such as the k-NN algorithm) to the data set
C.

One of the keys to local dimension estimation is defining a value
of n′. There must be a significant number of samples in order to
obtain a proper estimate, but it is also important to keep a small
sample size as to (ideally) only include samples which lie on the
same manifold. Currently we arbitrarily choose n′ based on the size
of the data set. However, a more definitive method of choosing n′ is
grounds for future work.

3. DATA DEPTH AND DIMENSION ESTIMATION

To our knowledge, a phenomenon common to all algorithms of in-
trinsic dimension estimation is a negative bias in the dimension es-
timate. It is believed that this is an effect of undersampling the high
dimensional manifold. While the bias due to lack of sufficient sam-
ples is inherent, we offer that the sample size is not the only source
of bias; a significant portion is related to the depth of the data.

Specifically, as data samples approach the boundaries of the man-
ifold, they exhibit a lower intrinsic dimension. Consider the m-
dimensional unit hypercube A = [0, 1]m. One can define the in-
terior as the set I = {x | ε

2
≤ xi ≤ 1 − ε

2
}. The ε-boundary is

therefore ∂A = A/I. The following statement can be made:

Proposition 1. With probability of at least 1 − δ, a uniformly se-
lected x from A is contained in the boundary ∂A, i.e., x ∈ ∂A and
ε = log(1/δ)

m
.

Proof. Since x is uniform in A, its components are i.i.d. uniform
random variables U [0, 1]. The probability of x being in the interior
I is therefore given by the product

P (x ∈ I) =

m∏
i=1

P
( ε

2
≤ xi ≤ 1− ε

2

)
= (1− ε)m.

Therefore, the probability of x ∈ ∂A is

P (x ∈ ∂A) = 1− (1− ε)m

= 1− exp(m log(1− ε)).

Since log(1 + t) ≤ t, we have exp(m log(1 − ε)) ≤ exp(−mε)
and therefore

P (x ∈ ∂A) ≥ 1− exp(−mε).
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Fig. 1. The probability of randomly selecting a point on the bound-
ary of an m-dimensional hypercube for ε = 0.2 (×), ε = 0.1 (◦),
and ε = 0.05 (¦).

For ε = log(1/δ)
m

, we have

P (x ∈ ∂A) ≥ 1− exp

(
−m

log(1/δ)

m

)
= 1− δ.

This result suggests that at least 1− δ of the entire points in the
hypercube are concentrated in a boundary with ε → 0 as m → ∞.
Alternatively, for large m most points in a hypercube will concen-
trate on its boundary (see Fig. 1).

We proceed by suggesting that the boundary of the m-dimensional
hypercube can be approximated as an (m − 1)-dimensional mani-
fold and hence should produce a lower dimension estimate. Clearly,
a simple average of the dimension estimate over the manifold will
consider many more points (1 − δ) on the boundary with a lower
dimension as compared with the number of points in the interior of
the hypercube (δ), leading to a lower dimension estimate.

We are able to further justify the effect of data depth on dimen-
sion estimation by calculating the depth of each sample and analyz-
ing the relationship between depth and dimension. We utilize the
L1-data depth algorithm developed in [9], which calculates depth as
the sum of all the unit vectors between the interested sample y ∈ X
and the rest of the data set, X = {x1, . . . , xn}. Specifically,

Dn(y) = 1−max
(
0,

∥∥∥
∑

xi 6=y

e(xi − y)/n
∥∥∥−

∑
xi=y

1

n

)
(6)

where e(xi − y) = (xi − y)/‖xi − y‖ is the unit vector in the
direction of (xi − y). This depth metric assigns the most interior
points in the data set a depth value approaching 1, while samples
along the boundaries approach a depth of 0.

Using this metric, we illustrate the effect of data depth on di-
mensional estimation in Fig. 2. The data set of use was of 3000
points uniformly sampled on a 6-dimensional hyperplane. We uti-
lize the maximum likelihood method for dimension estimation [5]
to demonstrate that the negative bias is inherent to dimension esti-
mation, and not specific to a given algorithm. Figure 2 illustrates
the distribution of data depths for samples that estimate at different
dimensions. It is clear that the samples with more depth estimate at
a high dimension, while the points closer to the boundaries estimate
at lower dimensions. When developing a global dimension estimate,
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Fig. 2. Analysis of the effect of data depth on local dimension esti-
mation. Points with less depth estimate at a lower dimension, con-
tributing to the overall negative bias.
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Fig. 3. Developing a de-biased global dimension estimate by aver-
aging over the 50% of points with the greatest depth on the manifold

these points will contribute heavily to the negative bias. As such,
when estimating the global dimension of a data set, one can substan-
tially reduce the negative bias by considering the local dimension
of those points away from the boundaries, as these points are more
indicative of the true dimension of the manifold. This is illustrated
in Fig. 3, in which we estimated the global dimension (by averaging
local dimension estimates) of the 6-dimensional hypercube over 200
unique trials. Figure 3(a) shows the histogram of biased dimension
estimates obtained by using the entire set for dimension estimation,
while Fig. 3(b) obtains correct dimension estimate each trial by using
our de-biasing method. It is clear that our method has a strong ef-
fect on removing the bias. While we only averaged over the deepest
50% of the samples for this example, the optimal depth at which to
consider samples for a dimension estimate is still an open problem.

4. SIMULATION RESULTS

4.1. Algorithm Comparison

To illustrate the improvements to the k-NN algorithm for dimension
estimation, we compare the versions on a data set consisting of two
distinct manifolds; 300 points uniformly sampled on a “swiss roll”,
which has an intrinsic dimension of 2, and 150 points uniformly sam-
pled on a hyper-sphere with intrinsic dimension of 3. Both manifolds
were embedded into the same 5-dimensional space. We estimated
the local dimension of each sample in the data set, and calculated
the probability of error (Pe). This experiment was run 10 times,
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Fig. 4. The k-NN Algorithm applied to network traffic data

with different points sampled on the manifolds in each run, and we
show the mean and variance of Pe in Table 1. It is clearly shown that
the methods discussed in this paper have a significant improvement
on both the probability of error and the variance of estimation results
across simulations.

k-NN Version Mean(Pe) Var(Pe)
New k-NN 0.014 0.0001
Old k-NN 0.092 0.0025

Table 1. Comparison of k-NN algorithm versions

4.2. Abilene Network Data

The Abilene network is the set of routers which is the backbone
of the ‘.edu’ network. When an anomaly occurs on the network,
there are changes in the correlation between traffic traces at different
points in the system, imposing nonlinear constraints on the observed
data. We believe that during an anomaly the intrinsic dimension of
the data will change. This was discussed with respect to analysis
of individual routers in [10]. We apply the theory to the network
as a whole. Specifically, we hypothesize that when only a few of
the routers contribute disproportionately large amounts of traffic, the
intrinsic dimension of the entire network should decrease.

The data set used in Fig. 4 is the number of packets counted
during 5 minute intervals on each of the 11 Abilene routers. Using
d = 11 as the extrinsic dimension, we applied the k-NN algorithm
to estimate the intrinsic dimension of the network at each time sam-
ple. The results of the algorithm illustrate that our hypothesis was
correct. In the time instances in which routers displayed increased
and disproportional contributions to the overall network traffic, the
intrinsic dimension decreased. Figure 4 shows that we are able to de-
tect the anomalous activity, such as at the visually obvious n = 148.
Moreover, the k-NN algorithm is able to pick out the non-obvious
complexity changes as well. This is illustrated with the change in
dimension at the time instance n = 244. A detailed investigation re-
veals that the Sunnyvale router showed increased contribution from a
single IP address. Large percentages (over half) of the overall pack-
ets had both source and destination IP 128.223.216.xxx within port
119. The same port showed increased activity on the Atlanta router
during this time period as well. Without a tool such as the k-NN
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3

Fig. 5. Satellite image of New York City; three regions of differing
complexity are noted

algorithm, these changes in the network topology would most likely
go unnoticed by strictly viewing the plot of actual data in Fig. 4.

4.3. Image Segmentation

There are many problems in which knowing the exact intrinsic di-
mension is unnecessary, as there may be no real life interpretation of
the value. Instead, a measure of complexity is desired to distinguish
between data. In these situations, dimension estimation is can be
used as a means of differentiation by complexity. As an illustration,
let us consider an image which contains regions of varying textures.
It is desirable to segment this image into the various regions, based
on some measure of complexity. We will briefly demonstrate this
ability with dimension estimation.

Consider Fig. 5, which is a satellite image of New York City1.
We have identified three regions with varying complexities, and we
will illustrate the uses of dimension estimation for distinguishing
between them. We hypothesize that as the complexity increases, so
will the estimate of the dimension. For our purposes, we segmented
each region into 3x3 pixel blocks, and considered each block as a 9-
dimensional vector. Each region is described as Xi = {x1, . . . , xn}
where xj ∈ R9 and n is the number of blocks in the region. We
then used the maximum likelihood method [5] to estimate the local
dimension of each block. In Fig. 6 we plot the histogram results of
the local dimension estimates of each block, for each region. As we
expected, the histogram of the dimension estimates increases from
the region with the least visual complexity (region 1) to the region
with the most visual complexity (region 3). This type of analysis
could be used to segment the entire image into different regions.

5. CONCLUSIONS

We have shown that the negative bias in dimension estimation is
strongly influenced by the data depth of the samples on the man-
ifold. As samples approach the boundaries of the manifold, they
perceive the local intrinsic dimension to be lower than that of the
entire manifold, contributing to a negative bias on the global dimen-
sion estimate. While this issue is somewhat alleviated with increased

1http://newsdesk.si.edu/photos/sites_earth_from_
space.htm
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Fig. 6. Dimension estimation can be used for image segmentation by observing the difference in estimates of region complexity

sampling, that is usually not a legitimate option. As such, we pro-
pose de-biasing the dimension estimate of a manifold by consider-
ing the local dimension of those points significantly ‘deep’ into the
manifold. We point out that as the dimension increases, the number
of interior point decreases (holding total number of points constant).
As such, using only the interior points in averaging over local dimen-
sions may result in large variance of the dimension estimate due to
a small sample size. The bias-variance trade-off and its optimization
is of great importance, and should be considered an area for future
work.

Additionally, we proposed improvements to the algorithm de-
scribed in [6], better distinguishing disjoint manifolds in a global
space. The new k-NN algorithm offers a dramatic improvement over
the previous work on real and synthetic data sets. Dimension esti-
mation has many uses, and we have shown practical applications
using intrinsic dimension in the analysis of network traffic and im-
age segmentation. Future improvements include adaptively building
the k-NN graphs by adjusting the sample neighborhoods according
to properties of the data set, as well as continued use of local di-
mension estimation as an anomaly detection method for use in time-
series analysis.
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