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Abstract

Min-max simultaneous signal detection and param-

eter estimation requires the solution to a nonlinear op-

timization problem. Under certain conditions, the so-

lution can be obtained by equalizing the probabilities of

correctly estimating the signal parameter over the pa-

rameter range. We present an iterative algorithm based

on Newton's root �nding method to solve the nonlinear

min-max optimization problem through explicit use of

the equalization criterion. The proposed iterative algo-

rithm does not require prior proof of whether an equal-

izer rule exists: convergence of the algorithm implies

existence. A theoretical study of algorithm convergence

is followed by an example which has applications in si-

multaneous detection and power estimation of a signal.

1. Introduction

In practical applications, one frequently needs to
design a signal detector or a signal parameter esti-
mator without complete knowledge of the signal or
noise model. Several approaches to detector and es-
timator design exist in the case of incompletely char-
acterized models. Among these are invariance meth-
ods, Bayesian methods which use non-informative pri-
ors, and min-maxmethods. Min-maxmethods form an
important solution category because they ensure op-
timal detector or estimator performance under worst
case conditions. Furthermore, min-max solutions give
rise to tight performance bounds which can be used
to benchmark sub-optimal or ad hoc algorithms. Min-
max methods have been applied to problems of adap-
tive array processing, harmonic retrieval, CFAR detec-
tion, and distributed detection.

Signal detection and signal parameter estimation are
typically considered as separate problems. In other
words, signal parameter estimation methods assume
that there is no uncertainty about signal presence.
However, there are many applications where signal pa-
rameter estimation has to be done under signal pres-
ence uncertainty, such as fault detection and estima-
tion in dynamical system control and antenna array
processing Such problems are refered to as simultane-

ous detection and estimation problems. A min-max
solution to simultaneous detection and estimation was
recently given in [2]. The problem considered in [2] is
estimation of a discrete parameter under a false alarm
constraint. The statistical decision procedure which
solves the problem is called the constrained min-max

classi�er. The constrained min-maxclassi�er is charac-
terized by a set of optimal weights. In Bayesian termi-
nology, the optimal weights represent a least favorable

distribution on the unknown parameter values. Nu-
merical solutions to min-max detection or estimation
problems involve nonlinear optimization to obtain the
least favorable distribution [3, 1]. On the other hand,
under certain assumptions, it is possible to formulate a
min-max solution by making explicit use of a simplify-
ing su�cient condition for min-max optimality. In the
case of the constrained min-max classi�er, this su�-
cient condition is the equalization of the correct classi-
�cation probabilities. The purpose of the present work
is to present an iterative algorithm for e�ciently com-
puting the constrained min-max classi�er through the
equalization condition. An important attribute of the
proposed iterative algorithm is that it does not require
prior proof of existence of an equalizer rule. Conver-
gence of the algorithm proves existence, i.e. if we ob-
serve convergence, then the associated solution is the
constrained min-max classi�er.

The correct classi�cation probability of the con-

1



strained min-max classi�er provides a tight lower
bound on the correct classi�cation probability of any
similarly constrained detection and classi�cation pro-
cedure. By using the proposed algorithm, we can com-
pute both this lower bound and the classi�cation per-
formance of sub-optimal simultaneous detection and
classi�cation procedures. Comparison of the perfor-
mance of sub-optimal procedures with the lower bound
allows us to assess the performance loss incurred by
employing a sub-optimal approach to simultaneous de-
tection and classi�cation.

2. Problem Formulation

Consider the indexed probability space (
; �; P�),
where � is a parameter that lies in a �nite discrete
parameter space �, � is a sigma algebra over 
 and
P� is a probability measure de�ned on �. Let X be
a random variable taking values in a sample space 
.
Assume thatX has a probability density function f�(x)
with respect to a given measure. We will illustrate
our approach for the case of a location parameter, i.e.
f�(x) = f(x � �) for some �xed probability density
function f . Applications of the location parameter case
include modeling of a signal of unknown amplitude �
in additive noise whose probability density function is
given by f .

De�ne the hypotheses H0;H1; : : : ;Hn by:

Hi : X � f�i (x) = f(x � �i) ; i = 0; : : : ; n (1)

Let R0; R1; : : : ; Rn be the decision regions for hy-
potheses H0;H1; : : : ;Hn, respectively, i.e. the classi�er
declares � = �i if and only if x 2 Ri, i = 0; 1; : : :; n.
The probability of a correct decision under hypothesis
Hi, i = 0; 1; : : : ; n is given by

P�i(decide Hi) = P�i (X 2 Ri) (2)

We will be interested in choosing the decision re-
gions R0; R1; : : : ; Rn such that the worst case correct
classi�cation probability mini P�i(decide Hi) is maxi-
mized subject to a given upper bound � 2 (0; 1] on the
false alarm probability 1�P�0(decide H0). A decision
rule which maximizes the worst case correct classi�ca-
tion probability under a false alarm constraint is called
a constrained min-max classi�er. In [2] it was shown
that the constrained min-max classi�er is a weighted
likelihood ratio test:

max
i>0

�
ci
f�i (x)

f�0 (x)

� Himax

>
<
H0

 ; (3)

i.e. if the maximum weighted likelihood ratio exceeds
the thresh-
old , then decide Himax , where imax = argmaxi>0

fcif�i (x)=f�0 (x)g; otherwise decide H0. The weights
c1; : : : ; cN are computed as the solution to a nonlinear
optimization problem:

min
c1;:::;cn

nX
i=1

ciP�i (decide Hi) : (4)

The threshold  is determined using the speci�ed
bound �. Solution of the nonlinear optimization prob-
lem (4) could be computationally expensive. We will
outline an alternative solution scheme which charac-
terizes the min-max optimal classi�er by means of a
su�cient condition.

Suppose that the parameterized density f�(x) =
f(x � �) has in�nite support (f(x) > 0 for all x) and
has a monotone likelihood ratio. An important class of
probability densities that satis�es the monotone likeli-
hood property is the single parameter exponential fam-
ily. Furthermore, a su�cient condition for f(x � �)
to have a monotone likelihood ratio is for the function
� log f(x) to be convex in x [4, page 509]. The normal,
the double exponential and the logistic distributions all
satisfy the convexity condition. Under the monotone
likelihood ratio assumption, it can be shown that the
constrained min-max classi�er (3) gives rise to the fol-
lowing decision regions R0; R1; : : : ; Rn:

R0 = (�1; x0];

Ri = (xi�1; xi]; i = 1; : : : ; n� 1; (5)

Rn = (xn�1;1)

The correct decision probabilities are given by:

P�0(X 2 R0) = F (x0 � �0)

P�1(X 2 R1) = F (x1 � �1) � F (x0 � �1)

... (6)

P�n(X 2 Rn) = 1� F (xn�1 � �n)

where F is the cumulative distribution function with
density f . The acceptance region R0 for the null hy-
pothesis H0 can be speci�ed explicitly. For any given
value of � 2 (0; 1], there exists a value of x0 that satis-
�es the false alarm constraint: x0 = F�1(1��) +m0.
The remaining decision boundary values x1; : : : ; xn�1
will be computed by an iterative procedure.

A su�cient condition for min-max optimality is the
equalization of the correct classi�cation probabilities
P�i (decide Hi) for i = 1; : : : ; n [2, Corollary 2]. The
equalization condition is represented by the set of equa-
tions

P�i (decide Hi) = p; i = 1; : : : ; n (7)



where p 2 (0; 1) is the unknown common value
of the correct classi�cation probabilities. Let y =

[x1; : : : ; xn�1; p]T (\T" denotes matrix transpose) and
de�ne the function G(y) as follows.

G(y)
def
=

2
666664

F (x1 � �1)� F (x0 � �1)� p
F (x2 � �2)� F (x1 � �2)� p

...
F (xn�1 � �n�1)� F (xn�2� �n�1)� p

1� F (xn�1 � �n)� p

3
777775 :

(8)

Then the set of equations (7) is equivalent to

G(y) = [0; : : : ; 0]T (9)

We propose to solve (9) iteratively using Newton's root
�nding method. More speci�cally, we consider the se-
quence y(k) generated through the iterations

y(k + 1) = y(k)� J�1(y(k))G(y(k)) ; (10)

where J(y) is the Jacobian of the function G(y), i.e.

[J(y)]ij
def
=

@[G(y)]i

@yj
: (11)

For j = 1; : : : ; n� 1, yj = xj. Therefore, the elements
in the �rst n�1 columns of J(y) are found from (8) to
be:

[J(y)]ij =

8<
:

f(xj � �j) ; if i = j
�f(xj+1 � �j) ; if i = j + 1
0 ; otherwise

(12)

Similarly from (8), since yn = p, the last column of
J(y) is given by all -1's, i.e.

[J(y)]in = �1 ; i = 1; : : : ; n (13)

A few words about the convergence of the iterative
algorithm (10) are in order. Assume that there exists
a solution y� to the equation (9). If

1. J�1(y�) exists (the Jacobian is invertible); and

2. jjJ(y� + �y) � J(y�)jj � jj�yjj for some  > 0
and for all su�ciently small perturbations �y (J is
Lipschitz continuous); and

3. jjJ�1(y�)jj � � for some � > 0 (the norm of the
Jacobian inverse is bounded from above);

then the sequence y(k) generated through (10) is well-
de�ned, converges to y� and has a quadratic rate of
convergence with coe�cient � [5, Theorem 5.2.1].
Next we provide a sketch of the proof that the three
conditions are satis�ed in the present problem.
Condition 1: Since f(x) > 0 for all x, the columns of J
are linearly independent.
Condition 2: The non-zero elements of the di�erence
�J of two Jacobians evaluated at points y + �y and
y, respectively, are of the form �(f(xi + �xi � �j) �
f(xi � �j)). But f(xi + �xi � �j) � f(xi � �j) =R xi+�xi
xi

f 0(t � �j)dt. Assuming that the derivative f 0

of the probability density function f is bounded, i.e.
supx jf(x)j � M for some M > 0, it follows that
jf(xi + �xi � �j) � f(xi � �j)j � M j�xij. It can then
be shown that the Frobenius norm of �J , denoted by
jj�J jjF is bounded above by a multiple of the l2 norm
of the vector �y. Since the l2-induced norm of �J is
smaller than the Frobenius norm of �J [5, Theorem
3.1.3], Lipschitz continuity is satis�ed.
Condition 3: For arbitrary z = [z1; : : : ; zn]

T , consider
the linear equation

J(y(k))y(k + 1) = z : (14)

For notational simplicity, we will write the Jacobian
as J and suppress its dependence on y. After Gaus-
sian elimination, the equation (14) can be re-written in
terms of an upper triangular matrix ~J : ~Jy(k + 1) = ~z.

The matrices ~J and J are related by a non-singular
transformation T , i.e. ~J = TJ . It su�ces to establish
an upper bound on the Frobenius norm jj ~J�1jjF of ~J�1

because jjJ�1jjF and jj ~J�1jjF are related by jjJ�1jjF �
jjT jjF jj ~J�1jjF and jjT jjF is bounded. Suppose that
the last column of ~J is the vector [�a1; : : : ;�an]T ,
i.e. [ ~J]in = �ai; i = 1; : : : ; n. It can be shown that

a1 = 1 and ai = 1+ai�1
f(xi�1��i)

f(xi�1��i�1) ; i = 2; : : : ; n. The

Frobenius norm of ~J�1 can be expressed as: jj ~J�1jjF =
[tr(( ~J�1)T ~J�1)]1=2, where \tr" denotes matrix trace.
After some algebra, we obtain an upper bound:

jj ~J�1jjF =

 
n�1X
i=1

(1 +
a2i
a2n

)
1

f2(xi � �i)
+

1

a2n

!1=2

� ((n � 1)L + 1)1=2 ; (15)

where L = maxif(a2i +a2n)=f
2(xi��i)g; i = 1; : : : ; n�

1. In �nite dimensional spaces all norms are equivalent,
therefore there exists some � > 0 such that jjJ jj � �.



3. Applications on Simultaneous Detec-

tion and Classi�cation in Gaussian

Noise

We will illustrate the iterative algorithm (10) for the

case of normal densities. Let f(x) = 1p
2��2

exp(� x2

2�2 )

and �i = i for i = 0; 1; : : : ; n. We consider three di�er-
ent simultaneous detection and estimation rules. One
of the rules is the constrained min-max classi�er de-
scribed earlier, which maximizes the worst case clas-
si�cation performance under a given false alarm con-
straint. One can also perform simultaneous detection
and estimation by combining a classi�er with a sepa-
rately designed detector. With this strategy, the data
are not presented to the classi�er unless the detector
declares \signal present". In other words, the classi�er
is gated by the detector.

We consider two gated classi�ers and compare their
performance to the performance of the constrained
min-max classi�er. Both of the gated classi�ers use
a min-max optimal detector for detection, but they
di�er in the design of their classi�er structures. One
of them uses an unconstrained min-max classi�er de-
signed independently of any detection objective. An
unconstrained min-max classi�er maximizes the worst
case correct classi�cation probability as if signal pres-
ence is certain. This classi�er is obtained by remov-
ing the false alarm constraint (� = 1) in the con-
strained min-max classi�er. The other gated classi�er
uses a conditionally min-max classi�er designed with
explicit knowledge of the detector decision regions.
A conditionally min-max optimal classi�er maximizes
the worst case correct classi�cation probability condi-
tioned on the detector having declared signal present.
The conditionally min-max classi�er is obtained by re-
placing all the densities f�i(x) under the alternative
hypotheses H1; : : : ;Hn with the conditional densities
f�i (xjX 62 R0) in the analysis of Section 2. Since we
are using the min-max detector, R0 = (�1; x0] as be-
fore, and x0 is speci�ed by the false alarm probability
�.

Figure 1 shows the variation of the worst case cor-
rect classi�cation probability mini P�i (decide Hi) for
the three simultaneous detection and estimation rules
as a function of the false alarm probability �. In this
example � = 0:6, and there are �ve alternative hy-
potheses (n = 5). In general, the constrained min-
max classi�er (solid line) performs best, while the un-
constrained min-max classi�er gated by the min-max
detector (dashed line) gives rise to the lowest perfor-
mance. The conditionally min-max classi�er gated by
the min-max detector (dashdot line), although bet-
ter than the unconstrained min-max classi�er, still
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Figure 1. Worst case correct classi�cation

probability as a function of �.

falls signi�cantly short of the performance of the con-
strained min-max classi�er for small �. On the other
hand, as � increases all three curves come together as
expected. This is because for high �, the three simul-
taneous detection and estimation rules degenerate to
an unconstrained min-max classi�er for the alternative
hypotheses H1; : : : ;Hn.
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