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ABSTRACT

Divergence measures find application in many areas of statis-
tics, signal processing and machine learning, thus necessi-
tating the need for good estimators of divergence measures.
While several estimators of divergence measures have been
proposed in literature, the performance of these estimators
is not known. We propose a simplekNN density estima-
tion based plug-in estimator for estimation of divergence mea-
sures. Based on the properties ofkNN density estimates, we
derive the bias, variance and mean square error of the estima-
tor in terms of the sample size, the dimension of the samples
and the underlying probability distribution. Based on these
results, we specify the optimal choice of tuning parameters
for minimum mean square error. We also present results on
convergence in distribution of the proposed estimator. These
results will establish a basis for analyzing the performance of
image registration methods that maximize divergence.

Index Terms— divergence estimation, performance char-
acterization, plug-in estimators,kNN density estimators

1. INTRODUCTION

Nonparametric estimation of divergence from finite number
of samples is an important tool in domains such as statis-
tics, signal processing and machine learning. For example,
the Jensen difference [1] and mutual information [2] are used
as similarity measures in image registration and other pattern
recognition problems.

Several estimators of divergence have been proposed in
literature including estimators based on entropic graphs [1],
gap estimators [3] and nearest neighbor distances [4]. The
estimators proposed by these authors are shown to be asymp-
totically consistent. However, unlike the results provided in
this article, theoretical expressions for bias, variance and con-
fidence intervals are not available.

Theoretical performance approximations are essential for
assessing the quality of different divergence estimators and
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for optimizing these estimators over tuning parameters. Rel-
evant tuning parameters may include kernel width of the den-
sity estimator used to approximate the information divergence,
the choice of divergence parameters, e.g,α in the Rényi diver-
gence, and the partitioned sample size used in cross-validation.

While histogram estimators have been widely used in di-
vergence estimation, they are inadequate when the feature di-
mension exceeds two or three (the standard histogram esti-
mator uses one dimensional features). In many applications
which require divergence estimation, high dimensional fea-
tures have been shown to be advantageous. For example, high
dimensional features have been observed to empirically im-
prove image registration performance [1]. However, if plug-
in divergence estimation is desired, high dimensional density
estimation is necessary. The results of this paper will be use-
ful in these cases.

Our method is in general applicable to all divergence mea-
sures. However, in order to illustrate our method, we restrict
our attention to the Shannon mutual information (MI) mea-
sure. Shannon MI has been widely adopted as a medical im-
age registration criterion [2]. While the primary motivation
of this paper is image registration, here we focus on the es-
timation of the image registration criterion. We derive the
mean square error and asymptotic distribution of the plug-in
estimator of MI. This leads to a central limit theorem (CLT)
that enables us to obtain confidence intervals on the MI esti-
mate. Currently the only known method for obtaining such
confidence intervals is to perform empirical averaging, e.g.,
the bootstrap. However, unlike the analysis performed in this
paper, the bootstrap does not provide analytical expressions
for bias, variance or confidence intervals and is therefore not
useful for general performance prediction.

The rest of this paper is organized as follows. ThekNN
density plug-in estimator for MI estimation is introduced in
Section 2. The mean square error and the asymptotic distri-
bution of these estimators is discussed in Section 3. Based on
the results in Section 3, optimal selection of bandwidth pa-
rameters and optimal partitioning of sample space is shown
in Section 4. We show simulations validating our theory in
Section 5 and give conclusions in Section 6.
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Fig. 1. Partitioning of sample space.

For more detail on the theory developed here, the reader
is referred to the technical report [5]. In this paper, bold face
type will be used to indicate random variables and random
vectors.

2. kNN PLUG-IN ESTIMATORS

Let µ be the standard Lebesgue measure. The Shannon en-
tropy of a random vectorX with density functionfX is given
by

H(X) = −
∫

fX log(fX)dµ. (1)

The joint entropy of random vectorsX andY is given by

H(X,Y) = −
∫

fXY log(fXY )dµ, (2)

wherefXY is the joint density ofX andY. The Shannon MI
between two random vectorsX andY is then given by

I(X;Y) = H(X) + H(Y) − H(X,Y). (3)

We use a classic plug-in estimator to estimate MI from
N+M d-dimensional i.i.d samples{(Xi,Yi); i = 1, . . . , N+
M} of the underlying joint densityfXY . We estimate the
Shannon MI by estimating the individual entropies. We esti-
mate the joint Shannon entropyH(X,Y) from samples using
theplug-in estimate

Ĥ(X,Y) =
1

N

N
∑

i=1

− log(̂fXY(Xi,Yi)), (4)

where f̂XY is a k nearest neighbor density estimate (kNN)
estimated using the remainingM samples.

ThekNN density estimate [6] is given by

f̂XY(X, Y ) =
k − 1

MVk(X, Y )
, (5)

whereVk(X, Y ) is the volume corresponding to thekth near-
est neighbor distance between the point of density estima-
tion (X, Y ) and theM i.i.d samples{(Xi,Yi); i = N +
1, . . . , N +M}. This partitioning of the samples is illustrated
in Fig. 1.

We estimate the marginal entropies by first obtaining esti-
mates of the marginal density usingkNN density estimates

f̂X(X) =
k − 1

MVk(X)
, (6)

whereVk(X) is the volume corresponding to thekth nearest
neighbor distance between the point of density estimationX
and theM i.i.d samples{Xi; i = N + 1, . . . , N + M}, and
then plugging the estimated marginals into Eq. 7.

Ĥ(X) =
1

N

N
∑

i=1

− log(̂fX(Xi)). (7)

Denote the estimated MI bŷI.

Î = Ĥ(X) + Ĥ(Y) − Ĥ(X,Y). (8)

3. PROPERTIES OFkNN PLUG-IN ESTIMATORS

We make the assumption thatfXY is two times continuously
differentiable and is bounded away from0. Under this as-
sumption, we have established the following theorems [5]
concerningkNN plug-in estimates :

3.1. Mean square error

Theorem 3.1. The bias of the plug-in estimator Î is given by

Bias(̂I) = cb1

(

k

M

)2/d

+ cb2

(

1

k

)

+ o

(

(

k

M

)2/d

+
1

k

)

,

where

cb1 = E

[

−cdf
−(d+2)/d
XY (X,Y)tr[∇2(fXY (X,Y))]

]

,

cb2 = 0.5,

are constants which depend on the underlying density fXY

and the constant cd = (Γ(2/d)((d + 2)/2))/(π(d + 2)).

Theorem 3.2.The variance of the plug-in estimator Î is given
by

Var(̂I) = cv

(

1

N

)

+ o

(

1

M
+

1

N

)

,

where

cv = V ar

[

log

(

fX(X)fY (Y)

fXY (X,Y)

)]

,

is a constant which depends on the underlying density.fXY .



The mean square error (ignoring the higher order terms)
is then given by

MSE(̂I) =

(

cb1

(

k

M

)2/d

+ cb2

(

1

k

)

)2

+ cv

(

1

N

)

. (9)

3.2. Central Limit Theorem

Theorem 3.3. Let Z be a standard normal random variable.
Then,

lim
N,M→∞

Pr

(√
N (̂I − E[̂I])√

cv
≤ α

)

= Pr(Z ≤ α).

4. OPTIMIZATION OF PARAMETERS

Using these theorems, we can tune the kernel widthk for a
given sample sizeN + M and select the optimal partitioning
of the sample space for minimum mean square error.

4.1. Optimization of kernel width k

Minimizing the M.S.E. overk is equivalent to minimizing
the square of the bias (and equivalently, the absolute value
of the bias) overk. We observe that the constantscb1 andcb2

can possibly have opposite signs and therefore optimizing the
value ofk w.r.t the absolute value of bias will require higher
order terms. Instead, we optimize the upper bound on the ab-
solute value of the bias. This upper bound is given by

|Bias|(̂I) ≤ |cb1|
(

k

M

)2/d

+ |cb2|
(

1

k

)

. (10)

The optimal value ofk w.r.t this bound is then given by

kopt = ⌊k0M
2

2+d ⌋. (11)

where⌊x⌋ is the closest integer tox and the constantk0 =

(|cb2|d/2|cb1|)
d

d+2 .

4.2. Optimal partitioning of sample space

The M.S.E at the optimal value ofk is then given by

MSE(̂I) = b2
0M

−4
2+d + cv

(

1

N

)

. (12)

Under the constarint that the total number of samplesT =
N + M is fixed, the optimal choice ofN as a function ofM
is then given by

Nopt = ⌊N0M
6+d

2(2+d) ⌋, (13)

where the constantN0 =

√
cv(2+d)

2b0
.

For the optimal choices ofk andN , the M.S.E in terms of
M is given by

MSE(̂I) = b2
0M

−4
2+d +

cv

N0
M

−(6+d)
2(2+d) . (14)

4.3. Discussion

1. Choice of partition: The optimal choice ofN (the num-
ber of samples used for estimating entropy) grows at a smaller
rate as compared toM (the number of samples used for den-
sity estimation). This agrees with our intuition that in higher
dimensions, density estimation is the more difficult problem
as compared to the problem of entropy estimation when the
density is known, and therefore a greater fraction of the to-
tal realizations available should be used for estimation ofthe
density.

2. Choice of kernel width parameter: The optimalk grows
at a smaller rate as compared to the total number of samples
M used for density estimation and this rate decreases as the
dimensiond increases. This can be explained by observing
that the choice ofk primarily controls the bias of the entropy
estimator. For a fixed choice ofk andM (k < M), we expect
the bias in the density estimates (and correspondingly in the
entropy estimates) to increase as the dimension increases.For
fixed M , to ensure optimal bias, we would therefore require
that the density estimates are based on realizations which lie
in smaller neighborhoods as the dimension increases. This in
turn corresponds to choosing a smallerk relative toM as the
dimensiond grows.

5. SIMULATIONS

We estimated the Shannon MI of a 2 dimensional beta dis-
tribution with parametersα = 2, β = 2 and compared our
theoretical predictions with the observed bias and variance.
In the first experiment, we fixedN to be1000 and variedM .
For each value ofM , we optimized the kernel widthk ac-
cording to Eq.11. The variation of the bias of the estimator
with changingM is shown in Fig. 2. In the next experiment,
we fixed M to be 10000, chose the corresponding optimal
value ofk and variedN . The variation of the variance of
the estimator againstN is shown in Fig. 3. The proximity
of the theoretical and emperical curves in these experiments
validates our theory.

We performed the Kolmogorov-Smirnov test on the esti-
mated MI, which resulted in the null hypothesis that the MI
estimate could have the normal distribution. We generated a
Q-Q plot of the MI estimate against the normal distribution.
The resulting plot shown in Fig. 4 is linear, validating our
theory on the asymptotic normal distribution of the plug-in
estimates.

In the final experiment, we consider a mixture density
fm = pfβ + (1 − p)fu, wherefβ is a beta distribution with
parametersα = 2, β = 2, fu is a uniform density andp is
the mixing ratio. We vary the mixing ratiop and evaluate the
MI. The variation of the true MI and estimated MI withp is
shown in Fig. 5 along with the95% confidence intervals us-
ing Theorem 3.3. We find the estimated MI to lie within the
confidence interval predicted by our theory.
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Fig. 2. Variation of bias of estimated MI vs M for fixed N =
1000 with±95% confidence envelopes.
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Fig. 3. Variation of variance of estimated MI vs N for fixed
M = 10000 and bandwidth k = 411 with±95% confidence
envelopes.

6. CONCLUSION

We have obtained analytic approximations to the mean square
error of the MI estimatêI and have shown that the estima-
tor has an asymptotic normal distribution. The development
and analysis of thesekNN plug-in estimates facilitate charac-
terization of error involved in divergence estimation in terms
of the bandwidth parameters, sample size and the underlying
densities (in the form of the constants{cb1, cb2, cv}). As a
consequence, we can specify the necessary sample size re-
quired to obtain requisite accuracy. This is not possible using
current divergence estimation methods and underlines the sig-
nificance of the results established in this work.
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Fig. 4. Q-Q plot of normalized MI estimate and standard nor-
mal distribution.
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