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ABSTRACT

The k-nearest neighbor (k-NN) graph conveys local geometry

of points in a sample. This attribute has resulted in a wide vari-

ety of machine learning applications for k-NN graphs, for e.g.,

density estimation, manifold learning and non-parametric clas-

sification. For samples with finite support, our analysis shows

that k-NN density estimators behave differently in the interior

of the support as opposed to near the boundary of the support.

Motivated by our analysis, we propose improving the behav-

ior of k-NN graphs by thinning its edges near the boundary.

We illustrate the advantages of such boundary corrected k-NN
graphs for entropy estimation and classification.

1. INTRODUCTION

The k-nearest neighbor (k-NN) graph conveys local geometry

of points in a random sample. This attribute has resulted in a

variety of applications of k-NN graphs including k-NN based

clustering and classification, entropy estimation [1, 2] and in-

trinsic dimension estimation for manifold learning [3, 4, 5].

This paper introduces a new method to compensate for the bias

that occurs when the support of the underlying multivariate

density function has a finite boundary.

Consider a large random sample from a continuous mul-

tivariate density that is zero outside a bounded region, which

is the support of the density. When one constructs the k-NN
graph on such a sample the local neighborhoods of the graph

behave differently near the boundary of the support. For points

well inside the boundary, the k-NN neighbors will be spread al-

most uniformly around the point. On the other hand, for points

close to the boundary of the support, the k-NN neighbors are

disproportionately distributed away from the boundary. This

phenomenon becomes more striking as the dimension of the

multivariate density increases. As a result, the radius of the k-
NN neighborhoods tend to be disproportionately larger near the

boundary as compared to neighborhoods in the interior. These

ideas will be formalized in Section 2 using analysis of the bias

of k-NN density estimates.

The bias of finite supported density estimator performance

has been previously studied in [6, 7] for kernel density esti-

mates. Corrections have been suggested, primarily for the uni-

variate case. These corrections also assume that the support

is known apriori. We perform an similar analysis and propose
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compensating for the bias of k-NN density estimates for gen-

eral multivariate data without any prior knowledge of the sup-

port of the density.

Motivated by our analysis of k-NN density estimators, we

suggest a corrected version of general k-NN graphs which com-

pensates for k-NN graph behavior near the boundary of the

support. This general k-NN graph compensation method is

applied to several machine learning applications including en-

tropy estimation and k-NN classification.

2. RELATION BETWEEN k-NN DENSITY ESTIMATE

AND k-NN GRAPHS

Let X1, ..,XM denote M i.i.d realizations of the density f .
Consider a k-NN graph constructed on these M samples. Let

dk(Xi) denote the Euclidean distance betweenXi and its k-th
nearest neighbor amongst X1, ..,XM .

The k-NN density estimator [8] is defined below. The

k-NN region is given by Sk(X) = Y : d(X,Y ) ≤ dk(X)
where d(X,Y ) is the Euclidean distance metric between X
and Y . The volume of the k-NN region is then given byVk(X) =
∫

Sk(X)
dZ. The k-NN density estimator is then defined as

f̂k(X) =
k − 1

MVk(X)
. (1)

We therefore have an equivalence relation between a k-NN
graph, and the k-NN density estimates constructed using the

graph. To correct for boundary effects in the graph, we first an-

alyze boundary effects in the k-NN density estimates and then

use this equivalence to specify corrections to the graph.

Throughout the rest of this paper, we focus on the regime

where the radius of the k-NN ball (which isO((k/M)1/d) [9])
is small. This regime is equivalent to having a large number of

samples relative to the dimension d. We note that k-NN meth-

ods will work poorly in high-dimensional spaces under small

sample sizes and the above operating regime is necessary for

k-NN methods to be effective. The consistency of k-NN es-

timation depends on the assumption that the size of the k-NN
neighborhood becomes small relative to the modulus of con-

tinuity of the underlying probability density that generates the

points. Thus one generally requires a large number of samples

before the small estimation error behavior of a consistent es-

timator kicks-in. Specifically, as compared to low dimension

sample space, for high dimensional samples one needs an ex-

ponentially greater number of samples to achieve equivalent



Fig. 1. k-NN balls centered around a subsample of 2D uni-

formly distributed points. Note that the k-NN balls centered at

points close to boundary are truncated by the boundary.

bias. This follows from the fact that k-NN methods [9] require

that (k/M)1/d → 0 and k → ∞ for consistency and that the

optimal rate is obtained by equalizing (k/M)2/d and 1/k.

3. BIAS OF k-NN DENSITY ESTIMATES

In this section, we analyze the bias of the k-NN density esti-

mates. We show that the bias decays to 0 as k/M → 0 in the

interior of the density. On the other hand, we show that the bias

at the support of the density does not converge to zero.

3.1. Taylor series expansion of coverage probability

The coverage probability is defined asP(X) =
∫

Sk(X)
f(z)dz.

Assume that the density f has continuous partial derivatives of

third order in the k-NN neighborhood Sk(X) of X . Note that

this assumption only needs to hold for points in the interior of

the support region. For small volumes Vk(X) we can then

represent the corresponding coverage function P(X) by ex-

panding the density f in a Taylor series about X [9].

P(X) =

∫

Sk(X)

f(z)dz

≈ f(X)Vk(X) + c(X)Vk
1+2/d(X)

=⇒
1

Vk(X)
≈

f(X)

P(X)
+

c(X)f−2/d(X)

P1−2/d(X)
. (2)

where c(X) = Γ(2/d)(n+2
2

)tr[∇2(f(X))].

3.2. Bias of k-NN density estimator in the interior

It is easy to obtain the bias of k-NN density estimates using

the fact that P(X) has a beta distribution with parameters k,
M − k + 1 [9].

E[f̂k(X)]− f(X) ≈ h(X)

(

k

M

)2/d

. (3)

3.3. Bias of k-NN density estimator near boundary

If a probability density function has bounded support, the k-
NN balls centered at points close to the boundary are often are

truncated at the the boundary as shown in Fig. 1. Let

α(X) =

∫

Sk(X)∩S
dZ

∫

Sk(X)
dZ

(4)

be the fraction of the volume of the k-NN ball inside the bound-

ary of the support. For interior points, α(X) = 1, while for

boundary points α(X) can range between 0 and 1, with α(X)
closer to 0 when the points are closer to the boundary. For

boundary points we then have

E[f̂k(X)]− f(X) ≈ (1− α(X))f(X). (5)

We therefore see that the bias is much higher at the boundary of

the support (O(1)) as compared to the interior (O((k/M)2/d)).
Furthermore, the bias at the support does not decay to 0 as

k/M → 0.

3.4. Variance of k-NN density estimator

The variance in the interior of the density was shown to be

O(1/k) [9]. Identical analysis will reveal that, unlike the bias,
the variance will continue to decay at the same rate O(1/k) at
the boundary as well. This continues to hold for all higher cen-

tral moments. This implies that the correction has to account

only for the discrepancy in bias and does not have to account

for the higher central moments. We suggest a method to correct

for the high bias at the boundaries in the next section.

4. BOUNDARY CORRECTED k-NN DENSITY

ESTIMATES

We formally define boundary points to be the set of points

where the k-NN ball is truncated by the boundary of the sup-

port of the density. In this section, we suggest a simple way to

compensate for this problem. A correction is performed in two

stages: (i) Identification of boundary points and (ii) Correction

of density estimates at these boundary points. We first establish

concentration inequalities on the size of the k-NN ball.

4.1. Concentration inequality for k-NN volume

Consider a binomial random variable with parameters M and

P with distribution function Bi(.|M,P ) and a beta random

variable with parameters k and M − k + 1 with distribution

function Be(.|k,M − k + 1). We have the following identity,

Be(P |k,M − k + 1) = 1−Bi(k − 1|M,P ). (6)



Using standard Chernoff bounds for binomial r.v.’s and the

above relation, the fact that P(X) has a beta distribution and

the relation betweenP(X) andVk(X), we have the following
concentration inequalities on the volume of the k-NN ball: for

some 0 < p < 1/2,

Pr

(∣

∣

∣

∣

Vk(X)−
k − 1

Mf(X)

∣

∣

∣

∣

≤ p
k − 1

Mf(X)

)

≤ e−
p2k
4 . (7)

4.2. Boundary point detection

Denote the set of M i.i.d. realizations {X1, . . . ,XM} from
the density f by X. Denote the set of boundary points by B

and the set of interior points by I. We categorize the boundary

points into two types: (i) Pure boundary points: which define

the boundary and (ii) Implied boundary points: which are de-

fined to be close to the ’pure’ boundary points.

4.2.1. Identification of pure boundary points

We construct the k-NN graph on the set of points X. Using the

k-NN graph, for each sample X ∈ X, we compute the number

of points in X that have X as one their lNN, l = {1, . . . , k}.
Denote this count as count(X).

Let X ∈ I. For small values of k/M , the size of the k-
NN balls are small (7). This implies that the density f(X)
over the k-NN ball of X is nearly constant. We also know that

with very high probability, the volume of the k-NN ball of X

is (k/M)(f(X) + o(1)). Denote the lNN, l = {1, . . . , k}
of X by N(X). We therefore have that the density for any

Y ∈ N(X) is f(X) + o(1). This implies that the volume

of the k-NN ball of Y is also (k/M)(f(X) + o(1)). This

further implies that for two points X,Y ∈ I, if X ∈ N(Y)
then, with high probability, Y ∈ N(X) and vice versa. We

therefore have that for points X ∈ I, count(X) = k + o(k)
with high probability. On the other hand, for points Z ∈ BP,

count(Z) ≤ k/2 + o(k). This then gives us a simple test to

detect pure boundary points. In theory, we can use any thresh-

old between k/2 and k to detect boundary points. In practice,

we set the threshold to be th = 0.65 ∗ k.

4.2.2. Identification of implied boundary points

”Implied” boundary points are points close to the pure bound-

ary points whose k-NN balls are truncated by the boundary.

Consider the case of k-NN density estimates. Because the pure

boundary points define the boundary, this implies that the im-

plied boundary points should have one or more pure boundary

points among their k-NN. From the analysis described in the

previous section, this in turn is equivalent to the implied bound-

ary points belonging to the k/2-NN set of the pure boundary

points. We then have the following method for detecting im-

plied boundary points. For the k-NN density estimates, for

each X ∈ BP, we obtain its k/2-NN N(X) and add them to

the set of implied boundary points BI.

4.3. Correction of density estimate

The idea for density correction at points close to the boundary

is based on the following idea: To estimate the density at a

Algorithm 1 Detect boundary points B

1. Construct k-NN tree on X

2. Compute count(X)/k for each X ∈ X

3. Detect pure boundary points BP:

for each X ∈ X do

if count(X) < th then

BP ← BP ∪X

else

I← I ∪X

end if

end for

4. Detect implied boundary points BI:

for each X ∈ BP do

BI ← BI ∪ N(X)
end for

5. Output boundary points: B← BP ∪BI

Fig. 2. Detection of boundary points for 2D uniform distribu-

tion.

Fig. 3. Pairing of boundary points with interior points for 2D

uniform distribution.

boundary point X ∈ B, we find a point Y ∈ I that is close to

X. Because of the proximity ofX and Y, f(X) ≈ f(Y). We

can then estimate the density at Y instead and use this as an

estimate of f(Y).



Consider a general multivariate setting with T i.i.d. real-

izations {X1, . . . ,XT } from the density f . First, we detect

all the boundary points B among the total sample set. Then,

for each Xi ∈ B, we identify its nearest neighbor Xn(i) ∈
I, for some n(i) = {1, .., T}. The volume of the region

containing the boundary samples is of order O(k/M). This

guarantees that the maximum distance between any Xi ∈ B,

i = {1, .., N} and its closest neighbor Xn(i) ∈ I, for some

n(i) = {1, .., N}, is of order O((k/M)1/d).
Let Xi be a boundary point. From (5), we see that the

bias is significant for the density estimate f̂(Xi). We suggest

an alternative estimator to correct for the bias. Let Xp(i) =
2Xn(i) −Xi. Defining h = Xn(i) −Xi, it is easy to see that

||h|| = O((k/M)1/d). Define the corrected estimator as

f̂C(Xi) = 2f̂ (Xn(i))− f̂(Xp(i)). (8)

We claim that this estimator has bias of order O(||h||2) =

O((k/M)2/d). This can be shown as follows. Define v =<
h, f ′(Xn(i)) > as the inner product between h and the first

order partial derivatives f ′(Xn(i))

f(Xi) = f(Xn(i))− v +O(||h||2), (9)

f(Xp(i)) = f(Xn(i)) + v +O(||h||2). (10)

(9) and (10) imply

f(Xi) = 2f(Xn(i))− f(Xp(i)) +O(||h||2). (11)

BecauseXn(i) andXp(i) are located in the interior of the den-

sity, by (3),

E[̂f (Xn(i))] = f(Xn(i)) +O(||h||2), (12)

E[̂f (Xp(i))] = f(Xp(i)) +O(||h||2), (13)

and therefore

E[̂fC(Xi)] = E[2f̂ (Xn(i))− f̂ (Xp(i))]

= 2f(Xn(i))− f(Xp(i)) +O(||h||2)

= f(Xi) +O((k/M)2/d). (14)

The corrected density estimate at the boundary therefore has

bias which is of the same order as the bias of the uncorrected

density estimate at any interior point (compare to (3) and (5)).

Thus the compensation has reduced the bias of the estimator

fromO(1) toO((k/M)2/d). From our earlier observation that

all central moments have the same rate behavior at both the

interior and the boundary of the support, it trivially follows

that the central moments of the boundary corrected estimator

have the same rate behavior as the original density estimator.

4.4. Boundary point detection example

Fig. 2 depicts the detection of boundary points in the case of

2 dimensional uniform distribution. Fig. 3 depicts the pairing

of boundary points with interior points. Clearly, the algorithm

identifies the boundary points in this example.

We note that a small fraction points in the interior of the

support have also been detected as boundary points. From the

figure, it is clear that this is the result of the particular instantia-

tion of data samples, wherein certain locations in the interior of

the density are sparsely populated by samples, thereby creating

the illusion of a boundary within the support. The method of

compensation of density estimates in (8) ensures that the cor-

rected density estimate at these incorrectly categorized points

will closely resemble the original density estimate. Thus, the

only drawback of such incorrect classification of interior points

as boundary points is the additional computation needed to de-

termine the corrected density estimate for these points.

5. THINNING k-NN GRAPHS

Using the corrected k-NN density estimates and the equiva-

lence relation between density estimates and graphs, we pro-

pose corrected k-NN graphs as follows.

For the interior points, we retain the original neighborhood

and the corresponding distances. For the boundary points, the

corrected k-NN ball radius d̂k(Xi) is determined as

f̂C(Xi) = 2f̂ (Xn(i))− f̂(2Xn(i) −Xi)

⇒
1

(d̂k(Xi))d
=

2

(dk(Xn(i)))d
−

1

(dk(Xp(i))d
.(15)

For each boundary point Xi in the graph, we now remove the

edges from the graph whose length exceeds the corrected k-
NN ball radii d̂k(Xi). We call this process thinning the k-
NN graph. After thinning the number of nearest neighbors in

the thinned graph will be less than k. For instance, the pure

boundary points should have around k/2-NN in the corrected

graph.

6. SIMULATIONS

We apply our thinned k-NN graphs to two problems: (i) en-

tropy estimation and (ii) classification. Our simulations show

that while the method does indeed breakdown for small sample

sizes, we obtain significant performance gains for moderate to

large samples sizes that arise in practical problems.

6.1. Entropy estimation

We consider the problem of Shannon entropy estimation for a

2 dimensional distribution. The Shannon entropy of density f
is defined to be H(f) = −

∫

f log fdµ. We analyze simple

partition based plug-in estimators of entropy in [4]. These esti-

mators partition the available T i.i.d realizations from density

f intoN andM disjoint samples N +M = T . The estimator

is then defined as

Ĥ(f) =

(

1

N

N
∑

i=1

− log(f̂(Xi))

)

. (16)

where f̂ (Xi) is the k-NN density estimate. When the support

of the density has no boundaries, the bias of this estimator is



Fig. 4. Variation of bias of estimated entropy with varying k.

given by [4]

E[Ĥ(f)]−H(f) = ρ

(

k

M

)2/d

+

(

1

2k

)

+ o

(

1

k
+

(

k

M

)2/d
)

, (17)

where ρ = E[f−(d+2)/d(Y)c(Y)] where the random variable

Y has density f .
We consider two different types of densities: (a) 2 dimen-

sional uniform distribution and (b) 2 dimensional beta density

with parameters a=4,b=4. For a fixed partition of N = 1000
and M = 9000, we vary the bandwidth parameter k and plot

the variation of bias of the entropy estimator using (a) un-

corrected and (b) boundary corrected k-NN density estimates.

This is shown in Fig. 4.

From the figure, it is clear that the bias corrected entropy

estimator agrees well with the theoretical prediction for the

uniform distribution. On the other hand, the observed bias for

the uncorrected estimator is significantly higher than the pre-

dicted bias, as should be expected because of our prediction

of boundary effects. For the mixture density, both the uncor-

rected and corrected estimators agree well with the theoretical

prediction. This can be attributed to the fact that for the mixture

density, the fraction of boundary points is very small, thereby

minimizing the influence of the boundary regions on the en-

tropy estimate.

6.2. k-NN classification

We describe the basic k-NN classification algorithm. An unla-

belled vector (a query or test point) is classified by assigning

the label which is most frequent among the k training samples

nearest to that query point. To account for boundary effects,

we determine the modified k-NN neighborhood using (15), re-

move the neighbors which exceed the modified neighborhood

size, and assign the label most frequent among the surviving

training samples. We will call this the boundary compensated

classifier.

Fig. 5. Concentric circle data.

1 2 3 4

1 400/400 0/0 0/0 0/0

2 88/88 312/312 0/0 0/0

3 0/0 55/55 341/341 4/4

4 0/0 0/0 148/82 252/318

Table 2. Confusion matrix for concentric circle data (Black:

Standard k-NN graph; Blue: Boundary compensated k-NN
graph).

6.2.1. A simple example

We consider a simple example where 4 concentric 2D rings

constitute 4 different classes of data. Each class consists of

400 samples. The confusion matrix (using the leave-one-out

criteria) for the uncompensated and the compensated classifier

(k = 100) is shown in Table 2.

We note that for the original classifier, while the inner rings

(classes 1, 2 and 3) were well classified, the classification per-

formance for the outermost ring (class 4) was relatively worse.
This can be attributed to the fact that the boundary points in

this data set belong to the outermost ring. From the confusion

matrix, we can see that the boundary compensated classifier

performs significantly better w.r.t. class 4.

6.2.2. Optical digit recognition

The ’Optical Recognition of Handwritten Digits Data Set’ [10]

consists of normalized bitmaps of handwritten digits from a

preprinted form. This data set has 562 instances of each digit

from 0 − 9. Each instance is characterized by 64 dimensional

pixel intensity values. As a first step, we use standard PCA

embedding to reduce the dimension to 10. We then normalize

these 10 dimensional vectors to unit length. We treat the first

9 dimensions of each normalized vector as our feature vectors

fi. We note that the feature vectors fi live in a unit hyper-

cube inR9. A significant fraction of the feature vectors fi will



0 1 2 3 4 5 6 7 8 9

0 551/551 0/0 0/0 0/0 2/2 0/0 0/0 0/0 0/0 1/1

1 0/0 558/563 5/4 0/0 1/0 0/0 2/1 1/1 1/0 3/2

2 0/0 3/1 537/549 0/0 0/0 0/0 0/0 4/1 12/5 1/1

3 0/0 3/3 9/6 537/546 0/0 3/3 1/1 4/3 7/4 8/6

4 1/1 1/0 1/1 0/0 555/558 0/0 2/2 1/1 0/0 7/5

5 13/8 2/2 0/0 7/7 0/0 508/519 7/7 0/0 0/0 21/15

6 2/2 2/2 0/0 0/0 1/1 0/0 552/552 0/0 1/1 0/0

7 0/0 0/0 1/0 1/2 1/1 0/0 0/0 549/555 7/3 7/5

8 5/2 18/15 17/18 2/1 3/1 1/1 5/6 1/1 497/505 5/4

9 2/2 6/5 5/5 7/5 1/1 5/7 1/1 11/9 6/7 518/520

Table 1. Confusion matrix for ’Handwritten Digits’ dataset (Black: Standard k-NN graph; Blue: Boundary compensated k-NN
graph).

lie close to the surface of the hypercube, thereby behaving as

boundary points. We apply the standard and boundary com-

pensated k-NN classifiers (k = 25) to this data. The confusion
matrix for the uncompensated and the compensated classifier

is shown in Table 1. The leave-one-out classification error for

the uncompensated classifier was found to be 4.59% and im-

proved to 3.59% for the compensated classifier. Using a paired

t-test, the p-value for this result was found to be well within

a siginificance level of 1%, implying that the improvement in

performance is indeed statistically significant.

7. CONCLUSION

We showed that for samples on a finite support, the behavior

of the k-NN neighborhoods is different in the interior of the

support and the boundary. To resolve this issue, we analyzed

and compensated the bias of k-NN density estimates close to

the boundary. This in turn helped us define a modified k-NN
graph with smaller k-NN neighborhoods for points close to the

boundary.

Given the large body of work on boundary compensated

kernel density estimates, a particularly important outcome of

our work is bias compensated k-NN density estimates. The

basic idea for boundary correction introduced in this paper can

be extended to kernel density estimates.

Our boundary corrected k-NN graphs can be used in place

of standard k-NN graphs whenever the data is suspected to

lie on a bounded region. We compared the performance of

standard and our modified k-NN graphs in the context of en-

tropy estimation and classification and showed that the modi-

fied k-NN graph can significantly outperform the standard k-
NN graph.
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