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ABSTRACT

Rényi entropy is an information-theoretic measure of random-

ness which is fundamental to several applications. Several

estimators of Rényi entropy based on k-nearest neighbor (k-
NN) based distances have been proposed in literature. For

d-dimensional densities f , the variance of these Rényi entropy
estimators of f decay as O(M−1), whereM is the sample size

drawn from f . On the other hand, the bias, because of the curse
of dimensionality, decays as O(M−1/d). As a result the bias

dominates the mean square error (MSE) in high dimensions.

To address this large bias in high dimensions, we propose a

weighted k-NN estimator where the weights serve to lower

the bias to O(M−1/2), which then ensures convergence of the

weighted estimator at the parametric rate of O(M−1/2). These
weights are determined by solving a convex optimization prob-

lem. We subsequently use the weighted estimator to perform

anomaly detection in wireless sensor networks.

Index Terms— Rényi entropy estimation, weighted k-NN
graphs, curse of dimensionality, parametric convergence rate

1. INTRODUCTION

In information theory, Rényi entropy is a generalization of

Shannon entropy and is used to quantify the randomness of

a system. Rényi entropy finds use in several applications in

signal processing and statistical estimation. Entropy based ap-

plications for image matching, image registration and texture

classification are developed in [1]. Entropy functional esti-

mation is fundamental to independent component analysis in

signal processing [2]. Entropy has also been used in Internet

anomaly detection [3] and data and image compression appli-

cations [4]. Several entropy based nonparametric statistical

tests have been developed for testing statistical models includ-

ing uniformity and normality [5]. For further applications, see

Leonenko et.al. [6].

In many of these applications, the entropy has to be empiri-

cally estimated from sample realizations of the underlying den-

sity. Several estimators of Rényi entropy have been proposed,

including the k-NN estimators of Leonenko et.al. [6] and the

entropic graph estimators of Hero et.al. [7].

Formally, the Rényi α entropy of a d-dimensional density

f with support S is defined as Hα(f) = (1 − α)−1Iα where
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Iα =
∫

S
fα(x)dx. We consider the problem of estimating

Iα(f) from M i.i.d realizations {X1, . . . ,XM}. The k-NN

based estimator ÎM,k,α of Leonenko et.al. [6] is given by

ÎM,k,α =
1

M

M
∑

i=1

Ck,k+1−α(cd(M − 1)(r
(i)
k,M−1)

d)1−α,

whereCa,b = Γ(a)/Γ(b) and r
(i)
k,M−1 is the k-th nearest neigh-

bor distance fromXi to some other sampleXj and cd is the unit
ball volume in d dimensions.

Leonenko et.al. showed that the estimator ÎM,k,α is con-

sistent. Liitiäinen et.al. [8] then showed that the bias of this

estimator is of order O(M−1/d) while the variance is of or-

der O(M−1). For moderate to large dimensions d, the con-

tribution of the bias therefore dominates the MSE. To partially

address this problem, Liitiäinen et.al. considered a weighted k-
NN estimator with reduced bias of o(M−1/d) and variance of

O(M−1). In this paper, we extend Liitiäinen et.al.’s work by

determining weights which will reduce the bias of the weighted

estimator to O(M−1/2).
The rest of this paper is organized as follows. In Section

2, we discuss Liitiäinen et.al.’s weighted k-NN estimator. In

Sections [3-4], we analyze bias and variance of the weighted

k-NN estimator and subsequently solve a convex optimization

problem to determine weights which will lower the bias to

O(M−1/2) and thereby equalize the contribution of the bias

and variance to the MSE. In Section 5, we show that the esti-

mator, when suitably normalized, converges asymptotically to

N(0, 1). We show simulation results that illustrate the effec-

tiveness of the proposed method in Section 6. We then apply

our proposed estimator to detection of anomalies in wireless

sensor networks. We give our conclusions in Section 7.

2. LINEARWEIGHTED ESTIMATOR

Define the linear weighted k-NN graph estimator ÎwM,k,α with

weight vector w = {w(l)}, l = {1, . . . , k} as

ÎwM,k,α =
k
∑

l=1

wlÎM,l,α.

Liitiäinen et.al. show that the bias of the estimator ÎM,k,α is

given by Bias(ÎM,k,α) = rkM
−1/d + o(M−1/d) where rk =

κC(k+1−α),(k+1−α+1/d) and κ is a constant which depends on

the underlying density f . They then suggest choosing weight



vector wf = {wf (l)}, l = {1, . . . , k} with minimum l2 norm

that satisfies
∑k

l=1 wf (l) = 1 and
∑k

l=1 wf (l)Cl,α = 0. In

theory, the bias of Î
wf

M,k,α for this choice of weights will indeed

reduce to o(M−1/d) while the variance will continue to decay

at the rate O(M−1).

There are two issues with the proposed correction - (i) in

simulations, we found the bias of the weighted estimator to in-

crease for small to moderate sample sizes; and (ii) even though

the bias is reduced to o(M−1/d), this can continue to be much

greater in comparison to the variance. In the next section, we

explain why the bias increases for Liitiäinen et.al.’s weighted

estimator. We then suggest an improvement that will reduce

bias to O(M−1/2).

3. ANALYSIS OF BIAS AND VARIANCE

Using the theory we have developed in [9] on boundary com-

pensated k-NN graphs [10], we can extend the results of Li-

itiäinen et.al. as follows. We can show that for densities which

are strictly bounded away from 0 on their support and are

⌊d/2⌋ + 1 times continuously differentiable, the bias and vari-

ance of ÎM,k,α (defined with respect to boundary compensated

k-NN graphs) are given by

Bias(ÎM,k,α) =
∑

i∈I

ci

(

k

M

)i/d

+ o

(

√

k

M

)

,

V ar(ÎM,k,α) = cv

(

1

M

)

+ o

(

1

M

)

,

where ci, cv are constants that depend on the underlying density

f and I = {1, . . . , (⌊d/2⌋+1)}. Using these results it is easily
shown that the bias of the weighted graph estimator ÎwM,k,α is

given by

Bias(ÎwM,k,α) =
∑

i∈I

ciγw(i)M
−i/d,

where γw(i) =
∑k

l=1 w(l)li/d. We note that for the choice

of weight vector wf of Liitiäinen et.al. , γwf
(1) = 0. If the

magnitude of the weight coefficients {wf (l)} are large, then

the coefficients in the bias expansion γwf
(i), i > 1 will be

quite large as well. This can therefore result in increased bias

for Liitiäinen et.al.’s estimator for moderate sample sizes.

Denote the standard deviation of ÎM,i,α by σi =
√

cv/M+

o(1/
√
M). Also denote the covariance between ÎM,i,α and

ÎM,j,α by σij . We can then bound the variance of the weighted

estimator ÎwM,k,α using Cauchy-Schwartz as follows

V ar(ÎwM,k,α) = V ar(
k
∑

l=1

wlÎM,l,α)

=
k
∑

l=1

w2(l)σ2
l +

k
∑

l,m=1

1{l 6=m}w(l)w(m)σl,m

≤
k
∑

l=1

w2(l)σ2
l +

k
∑

l,m=1

1{l 6=m}|w(l)w(m)|σlσm

=

(

k
∑

l=1

|w(l)|σl

)2

=
||w||21cv

M
+ o

(

1

M

)

. (3.1)

4. OPTIMALWEIGHT SELECTION

Using the results presented in Sec. 3 on the bias and variance,

we seek a weight vector w that (i) ensures that the bias of the

weighted estimator is O(M−1/2) and (ii) has minimum pos-

sible l1 norm ||w||1 in order to reduce the contribution of the

higher order terms in the bias and to reduce the variance of the

weighted estimator. Let wo be the solution to the optimization

problem

minimize
w

||w||1

subject to γw(0) = 1,

|γw(i)M−i/d| ≤ ǫ, i ∈ I.

(4.1)

The optimization problem defined above is convex. Because

we are minimizing the l1 norm of w, for moderately large val-

ues k of the length of the weight vector w, the solution to the

optimization problem will be sparse [11].

Furthermore, the norm of the solution wo monotonically

decreases with increasing ǫ. We therefore seek to choose ǫ to
be as large as possible while ensuring that the squared bias of

the optimized weighted k-NN graph estimator Îwo
M,k,α will be

of the same order O(M−1) as the variance. Thus we choose

ǫ =
√

c0/M where c0 is a bound on cv/c
2
i , i ∈ I.

5. CLT

In this section, we prove that, for any choice of weight vectorw,

the weighted estimator of Section 2 converges in distribution to

N(0, 1) when suitably normalized. In Appendix E, [9] we show

that if the interchangeable processes {Yi}, i = {1, . . . ,M}
satisfies the conditions (i) E[Yi] = 0; (ii) V ar[Yi] = 1; (iii)
Cov[Yi,Yj ] = o(1), and (iv) Cov[Y2

i ,Y
2
j ] = o(1), then

(1/
√
M)

∑M
i=1 Yi converges in distribution to N(0, 1). Define

Zi =
k
∑

l=1

w(l)Cl,(l+1−α)(cd(M − 1)(r
(i)
l,M−1)

d)1−α,

and let Yi = (Zi − E[Zi])/
√

V ar[Zi]. We see that Yi is

indeed an interchangeable process which trivially satisfies con-

ditions (i) and (ii). Condition (iii) follows directly from (3.1). It



is similarly possible to establish (iv) using the moment proper-

ties of ÎM,k,α [9] and the Cauchy-Schwartz inequality. We then

have

lim
M→∞

Pr

(

ÎwM,k,α − E[Z1]
√

V ar[Z1]/M
≤ α

)

= Pr(Z ≤ α),

where Z is a standard normal random variable. The above re-

sult can be used to specify confidence intervals on Iα using the

estimate ÎwM,k,α.

6. SIMULATIONS

We will compare the MSE for four different choices of weight

vectors: The nearest neighbor estimator of Leonenko et.al. with

weightws = [1, 0, . . . , 0], the uniform weighted estimator with

weight wu = (1/k)[1, . . . , 1], the first-order correction estima-

tor of Liitiäinen et.al. with weight wf , and finally the optimized

weighted estimator with weight wo. We estimate entropy for

the following class of densities: 6 dimensional mixture density

fm(p, a, b) = pfβ(a, b)+(1−p)fu; fβ : Beta density with pa-
rameters a,b; fu: Uniform density; Mixing ratio p. In particular,
we show representative results obtained by simulating samples

from two densities - (i) fm(.8, 2, 2) and (ii) fm(0.8, 1.5, 1.5).
The MSE error performances for these densities are shown in

Fig. 1(a) and Fig. 1(b) respectively.

The observed MSE performance can be explained as fol-

lows. The performance of Liitiäinen et.al.’s first-order correc-

tion estimator is worse than Leonenko’s estimator for small

sample sizes, which is in agreement with our theory in Sec-

tion 3.

For the density fm(.8, 2, 2), we note that the higher order

co-efficients in the bias expansion ci, i > 2 are identically 0.
In this case, the MSE performance for the optimized weighted

entropy estimator is better than Liitiäinen et.al.’s first-order cor-

rection estimator for small sample sizes because the first-order

correction estimator does not account for second order terms in

the bias.

However, with increasing sample size, the contribution of

the second order bias terms become negligible in comparison to

the first order terms. For large sample sizes, the bias is there-

fore dominated by the first order terms. Because the first order

bias term is explicitly set to 0 in the first-order correction esti-

mator as compared to ǫ > 0 in the optimized estimator case, the

first-order correction estimator performs better with increasing

sample size M as compared to the optimized weighted estima-

tor.

On the other hand, for the density fm(.8, 1.5, 1.5), higher
order co-efficients are non-zero and therefore contribute to bias.

The optimized weighted estimator with higher order bias cor-

rection and lower norm therefore works better in this case for

all sample sizes.

6.1. Anomaly detection

We apply our theory to the problem of anomaly detection in

wireless sensor networks. The experiment was set up on a

Mica2 platform, which consists of 14 sensor nodes randomly

deployed inside and outside a lab room. Wireless sensors com-

municate with each other by broadcasting and the received
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(a) MSE comparison for density fm(.8, 2, 2). A lower order bias correc-
tion suffices for this density. The optimized weighted estimator outperforms
other estimators for small sample sizes, while the first-order correction esti-
mator of Liitiäinen et.al. works better for larger sample sizes.
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(b) MSE comparison for density fm(.8, 1.5, 1.5). This density requires
higher order bias correction. The optimized weighted entropy estimator
therefore has superior MSE performance for all sample size regimes.

Fig. 1. Comparison of MSE of weighted estimators for different

choices of weight vectors.

signal strength (RSS), defined as the voltage measured by a

receiver’s received signal strength indicator circuit (RSSI), was

recorded for each pair of transmitting and receiving nodes.

There were 14 × 13 = 182 pairs of RSSI measurements over

a 30 minute period, and each sample was acquired every 0.5

sec. During the measuring period, students walked into and out

of lab at random times, which caused anomaly patterns in the

RSSI measurements. Finally, a web camera was employed to

record activity for ground truth.

The mission of this experiment is to use the 182 RSS se-

quences to detect any intruders (anomalies). To capture the tem-

poral dependency between successive measurements, for each

time point we form a temporal dependency discriminant by con-

sidering vectors of d = 3 successive time samples at each sen-

sor and estimating the entropy by averaging overM = 182 spa-
tial samples. We note that the ground truth indicator is only for
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Fig. 2. Comparison of ROC curves for anomaly detection.

The optimized weighted entropy estimator outperforms Li-

itiäinen et.al.’s first-order correction estimator.

evaluating the detecting performance and the detection scheme

presented here is conducted in a completely unsupervised man-

ner.

In order to detect anomalies, we form a running estimate of

the Rényi α-entropy with α = 0.95, of the 3-dimensional time

sequence using weighted k-NN estimators with first order cor-

rection weight wf and optimized correction weight wo. With

the choice of k = 5, the first order correction weight wf was

found to be [9.4907,−1.9047,−11.0134,−7.8171, 12.2444]
and the optimized correction weight wo was found to be

[0.9568, 1.1795, 0.7278,−0.2381,−1.6261]. In accordance

with our theory, the l1 norm ofwf (||wf ||1 = 42.47) was found
to be much higher than the l1 norm of wo (||wo||1 = 4.728).

We perform anomaly detection by thresholding the entropy

estimate. A time sample is regarded to be anomalous if the en-

tropy estimate exceeds a specified threshold. ROC curves cor-

responding to first-order correction weight wf and optimized

correction weight wo are shown in Fig. 2. The Area under the

ROC curve (AUC) was found to be 0.9538 and 0.9821 for the

first-order correction estimator and the optimized weighted es-

timator respectively. It is clear that the detection performance

using the optimized weight wo is superior to the performance

using Liitiäinen et.al.’s first-order correction weight wf .

7. CONCLUSION

When implemented in high dimension, k-NN based estimators

of Rényi entropy suffer from large bias. To address this issue,

we have proposed a weighted k-NN graph estimator with an

optimized weight vector determined by solving a convex op-

timization problem. The resulting weighted estimator has re-

duced bias of order O(M−1/2) and converges at the parametric

rate ofO(M−1/2). We have also established weak convergence

of the suitably normalized weighted estimator to a normal ran-

dom variable.

Our weighted estimator is an improvement over the estima-

tor of Liitiäinen et.al. in that our selection of the weight vector

has a smaller norm while simultaneously providing for better

bias correction. The smaller norm ensures that the variance of

the weighted estimator is lower and the contribution of higher

order terms in the bias is negligible even for small sample sizes.

We illustrate superior performance of our weighted estima-

tor via simulations. We also apply our proposed estimator to

the problem of anomaly detection in sensor networks. Exper-

imental results show that our proposed estimator outperforms

Liitiäinen et.al.’s first-order correction estimator.
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