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Abstract

As comprehensively illustrated in the classic text on point processes by Donald Snyder [26] and its
revision [27] co-authored with Michael Miller, multi-dimensional Poisson processes are of great interest
in many scienti�c and engineering applications. In many of these applications it is of interest to esti-
mate an underlying parameter of the point process intensity function given �ltered and noise-corrupted
measurements. In this paper we derive lower bounds on a general class of �ltered and Gaussian noise
corrupted multi-dimensional Poisson processes which covers both the linear superposition \shot noise"
model and the multiplicative superposition \coverage" model. The key to the lower bounding technique
is an information theoretic inequality which relates the parameter estimation mean-square-error to the
Shannon capacity of the measurement channel. Application of the data processing theorem to this
inequality reveals SNR regimes of operation where estimator performance is limited by the quantum
Poisson noise vs. by the continuous Gaussian noise. We illustrate these bounds for optical positioning
and porosimetry applications.

I. Introduction

Multi-dimensional �ltered Poisson processes have been used as models in many area of science and
engineering such as: porosimetry and granulometry in materials science and other areas [10], [2], [24];
quantum limited photo-detection and optical-positioning using CCD arrays [1], [19], [25] or crystal
scintillators [6], [16]; and electron microscopy using silver grain emulsions [23]. Frequently it is of
interest to estimate parameters of these models, i.e. parameters of the point process intensity func-
tion. When the Poisson process is observed directly without error, the so-called quantum limited
regime, optimal estimators of intensity parameters can easily be derived. However, practical measure-
ment systems introduce instrumentation degradations due to measurement noise and a spatio-temporal
bandlimited point spread function leading to a noise-contaminated and �ltered Poisson process obser-
vations. For these observations, the posterior likelihood function is not closed form; indeed it does not
even have a �nite dimensional representation, and estimation methods developed for the direct photon
observation regime are not directly applicable. In the absence of optimal estimators it is desirable to
have explicit estimator-independent lower bounds on mean-square-error (MSE) which can be used for
benchmarking, instrument design and instrument evaluation.

This paper presents a uni�ed approach to obtaining lower bounds on MSE which covers both the
linear superposition \shot noise" model and the multiplicative superposition \coverage" model for
the �ltered Poisson process. The key to the lower bounding technique is an information -theoretic
inequality which relates the parameter estimation mean-square-error to the Shannon capacity of the
1This work was supported in part by Air Force OÆce of Scienti�c Research under Grant F49620-99-0028.



measurement channel. Application of the data processing theorem to this inequality reveals a signal-to-
noise ratio (SNR) regime of operation where estimator performance is limited by the directly observed
quantum noise and a regime where performance is limited by the instrumentation noise. After pre-
senting the general bound we treat two special cases: optical position estimation given spatio-temporal
images of an optical beam incident on a continuous CCD array; and porosimetry given an image of a
slice of porous composite material acquired by microtomography.

II. General Measurement Model

Let � = [�1; : : : ;�p]
T be a vector of random variables taking values � = [�1; : : : ; �p]

T in IRp and
having a joint density f�(�). The general goal is to develop a maximum a posteriori (MAP) estimator
of � and to specify lower bounds on the MSE of its components. Estimation of � is based on an
observed image Y = fY (u) : u 2 Ig composed of a signal image S and a noise image W . Here I will
either denote a three-dimensional space-time domain A� [0; T ], for the spatio-temporal application, or
a planar patch A in the space domain, for the microtomography application. The signal S is generated
by a marked point process dM = fdM(u) : u 2 Ig whose distribution depends on �. The process
dM consists of a sequence of point locations fUigN in I and a sequence of real-valued marks fRigNi=1.
Conditioned on � = � and N = n, fUigNi=1 and fRigNi=1 are assumed mutually independent and
individually independent identically distributed (i.i.d.) with marginal densities fU j�(uj�) and fRj�(rj�),
respectively. Here N is a Poisson random variable independent of � with rate E[N ] = � > 0. Under
these assumptions the conditional joint distribution of dM is closed form and estimation of � from
dM is easily studied [15], [27]. This is no longer true when additive noise and blurring are introduced
into the observations giving rise to a model:

Y (u) = S(u) +W (u); u 2 I (1)

where W is assumed to be white zero mean Gaussian noise with spectral power level No=2, and S(u)
is

S(u) = h(u) ? g(u; dM): (2)

where ? denotes convolution, h(u) is the point spread function of the measuring instrument, which we
assume spherically symmetric, and g(u; dM) is a �ltered Poisson process.

Two special cases are of interest.

A. Spatio-temporal Beam Position Estimation

The problem of localizing the position on a planar detector of one or more optical point sources arises
in applications such as galactic astronomy and astrometry, satellite navigation and telemetry, pulsed
laser radar, optical communications, and star tracking systems for global positioning [1], [19], [25],
[28]. The measurements are obtained by detecting incoherent quasimonochromatic light on an optical
focal plane array of CCD photo-detectors. The measurements are noise and distortion contaminated
by optical di�raction, quantum (photon) noise, and thermal (electronics) noise. Assume a far-�eld
stationary point source generates a symmetric blur function with center of symmetry at detector
position � relative to the center (0; 0) of the detector surface, here assumed to be the planar patch
A = [�a; a]� [�a; a]. The detector produces continuous measurements over the planar patch and over
the time intrval [0; T ] and thus u = (z1; z2; t) 2 A � [0; T ]. In this case the noiseless response of the
detector can be modeled using the following

Linear superposition (shot noise) model:



g(u; dM) =
NX
i=1

Rip(u� Ui); u 2 A� [0; T ]

where Ri is the induced charge (called the gain sequence) deposited in the photo-detector by a given
incident photon at space-time position Ui and p(u) is the spatio-temporal implulse response of the
photo-detector.

In optical position estimation applications it is often reasonable to assume that the random gains
Ri follow a �-independent distribution fR(r) while the intensity depends on � as a spatial translation
parameter. When �ltered and corrupted with additive noise the above photo-detector model is a
spatio-temporal extension of the one-dimensional temporal model developed in [17], [14] for timing
estimation in PET imaging. This one-dimensional model has been experimentally validated for a
photo-detector system consisting of a Burle 8575 photo-multiplier tube (PMT) and BGO scintillator
in [22]. Our measurement model is similar to models proposed in other applications such as neurological
measurement of compound action potentials, seismic measurement of reected oil exploration probes,
acoustic reverberation measurement, and photo-detection in optical �ber communications [5], [20], [8],
[21]. Figure 1 shows the noiseless linear superposition response of a detector under our model as a
function of the intensity of a cylindrical beam.
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Fig. 1. Snapshot of the spatio-temporal photo-detector (shot noise) output which is a random superposition of symmetric Gaussian-shaped
single photon responses in the plane. The rows from top to bottom correspond to 50, 200, and 500 incident photons distributed uniformly
over a disk shaped support.

B. Granulometry/Porosimetry

Granulometry is the science of determining the statistical distribution of granule sizes from images
of a composite material containing granules drawn from a population of grains. An application is



the determination of local transparency of a photographic �lm composed of silver grains of random
diameter [23]. Porosimetry is the science of determining the statistical distribution of pore sizes from
images of a porous material. An application is the determination of local porosity from scanning
electron microscope images of concrete/cement mixtures [10]. A multi-dimensional marked Poisson
process model dM for these images consists of a Boolean superposition of N opaque random spheres
(3D) or random disks (2D) of random radius and position. In the 2D case dM consists of disk spatial
locations Ui 2 I where I = A = [�a; a]� [�a; a] is the image support and the marks Ri are disk radii,
i = 1; : : : ; N . The noiseless and un�ltered 2D image g(u; dM) is a set of partially occluding disks,
where occlusion is caused by mutual overlapping of the opaque disks, which can be represented by the
following

Non-linear superposition (coverage) model:

g(u; dM) = max
i=1;:::;N

D

�
u� Ui

Ri

�
=

NY
i=1

D

�
u� Ui

Ri

�
; u 2 A (3)

where D(u) is the indicator function of a disc of radius 1 centered at the origin u = (0; 0). Note that
g(u; dM) is a binary function which is nonzero only if there exists at least one disc covering the spatial
point u. The Boolean model (3) is also called a \coverage process" model [12] and has been used for
many applications in the life sicences, stereology, and balistics [7]. The above disk superposition model
has also been used in both of the porosimetry and granulometry applications mentioned above. In
these latter applications it is commonly assumed that the disk positions (spatial intensity) are uniform
and independent of �, i.e. fU j�(uj�) = 1=jIj, while the disk radii (mark distribution) have an unknown
�-dependent distribution fRj�(rj�) which is of interest. Three representative images are shown in Fig.
2 for a linear distribution fRj�(rj�) with unknown slope � 2 [�1; 1] supported on r 2 [0; 1] for three
di�erent values of �.

III. Channel Decomposition and a MSE Lower Bound

Surprisingly, even though the likelihood function is intractible, at least for the linear superposition
shot noise model the �-conditional characteristic function for the �ltered and noise corrupted mea-
surement Y has a simple representation, e.g. see books by Snyder and Miller [27] or O'Reilly [21].
To contend with the intractibility of the likelihood function of Y we use a channel decomposition to
derive lower bounds on the MSE of an estimator �̂.

The measurements Y are related to the parameters � through the conditional density fY j� =
ffY j�(yj�)gy;� or equivalently through the log-likelihood function l(�) = ln fY j�(yj�). Since � is a
random vector of parameters we can associate fY j� with transition probabilities of a measurement
channel C. Let X be an arbitrary random variable. Then from the Bayes identity: fY j�(yj�) =R
X
fY jX;�(yjx; �)fXj�(xj�)dx. When X is a random variable such that fY jX;�(yjx; �) is independent

of �, the Bayes identity aÆrms that C is decomposable into a cascade of two channels C1 and C2

whose transition probabilities are, respectively, fXj� and fY jX . In the language of the expectation
maximization EM algorithm, X is a complete data set that carries more information about � than
does Y [18]. Now, in the context of the model (1) a natural choice for X is the marked point process
dM which gives the decomposition illustrated in Figure 3.
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Fig. 2. � dependency of empirical grain distribution in a granulometry/porosimetry model. The density of disk radii is piecewise linear,
with slope controlled by � 2 [�1; 1], shown at left while at right is shown a realization of the noiseless Boolean process g(u; dM) for three
di�erent values of �.
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Fig. 3. Top: statistical representation of Y as the output of channel C with input �. Bottom: decomposition of C into Poisson and Gaussian
channels C1 and C2, respectively.



A. A Tight MSE Lower Bound via Channel Decomposition

De�ne the conditional mean estimator g(dM) = E[�jdM ] of � given the direct observations dM

and let �̂(Y ) denote an arbitrary estimator of � given Y . Then it is easily shown that the covariance
of the estimator error satis�es the matrix bound

E[(�� �̂(Y ))(�� �̂(Y ))T ] � E[(�� E[�jY ])(�� E[�jY ])T ] (4)

= E[(�� g(dM)])(�� g(dM)])T ]| {z }
quantum�limited cov

+E[(g(dM)� E[g(dM)jY ])(g(dM)� E[g(dM)jY ])T ]| {z }
Gauss�limited cov

with \=" when �̂(Y ) = E[�jY ]. This lower bound splits the covariance into two additive components,
a quantum noise limited covariance and a Gaussian noise limited covariance. As a function of SNR it
can be expected that one of these two terms will dominate the other so we can talk about a quantum-
limited regime of operation when the �rst term dominates and a Gauss-limited regime of operation
when the second term dominates. An immediate consequence of the above bound is

E[(�� �̂(Y ))(�� �̂(Y ))T ] � E[(�� g(dM))(�� g(dM))T ]

which can be expected to be tight in the quantum-limited regime. Since in this regime the conditional
mean can often be derived in closed form, at least in principle the lower bound can be computed
exactly. Alternatively, a number of techniques exist that can be applied to lower bound the MSE
components, i.e. the diagonal elements of E[(�� g(dM)])(�� g(dM)])T ]: Schwarz-inequality bounds
such as the Cram�er-Rao bound (inapplicable to �nite � however), the Bobrovsky-Zakai bound, and the
Weiss-Weinstein bound; Tchebychev-inequality bounds such as the Ziv-Zakai bound and the Cherno�
bound; or Shannon-inequality bounds such as the distortion-rate bound and the data processing bound.
This paper deals with the latter class of bounds.

B. Distortion-Rate Bound

For an estimator �̂ = [�̂1; : : : ; �̂p]
T de�ne the total MSE to be

Pp
j=1E[(�i � �̂i)

2]; which is the
trace of the left hand side of (4). Let V and Z be two random variables, vectors or processes with mu-
tual information I(V ;Z) = E[lnPZjV (ZjV )=PZ(Z)]. Let �(V; Z) be the squared distance (distortion)

between the source V and an estimate V̂ (Z) based on Z. Shannon theory [3], [4] gives the following
bounds

inf
PZjV :E[�(V;Z)]�d

I(V ;Z) =: R�(d) � C := sup
PV

I(V; Z); (5)

where C is the channel capacity and R�(d) is the rate-distortion function. For general discrete source
distribution PV and discrete channel transition probability PZjV the rate-distortion function and the
channel capacity are computable using iterative algorithms [3], [4]. For continuous sources and channels
these functions are given by parametric formulas but are more diÆcult to determine.

R�(d) is continuous and strictly decreasing over d < dmax where dmax is the the a priori variance of
V in the scalar case, and the sum of the components variances in the vector case. Thus, de�ning the
inverse R�1

� (�) we have the lower bound
d = MSE � minfdmax; R

�1
� (C)g (6)

The function R�1
� (C) is often called the distortion-rate function [11]. As previously mentioned, the

right hand side of this lower bound is often diÆcult to compute and this bound is seldom useful. When
there exists a natural decomposition of the channel C into a cascade of two independent channels C1



and C2 a general and computable MSE bound can be obtained by applying the Shannon bound to
lower bound the rate-distortion function and Shannon's data processing theorem to upper bound the
channel capacity. The Shannon bound on rate-distortion is

R�(d) � H(V )� 1

2
ln(2�de);

where H(V ) = E[� lnPV (V )] is the source entropy. The Shannon data processing theorem asserts
that [9]

C � minfC1; C2g;
where C1 and C2 are the capacities of cascaded channels C1 and C2 composing the channel C. Applying
these two bounds to (5) we obtain

H(V )� 1

2
ln(2�de) � minfC1; C2g

or, equating d with MSE,

MSE � max fRDLB1;RDLB2g (7)

where

RDLB1 =
1

2�e
e2H(V ) e�2C1 (8)

RDLB2 =
1

2�e
e2H(V ) e�2C2 : (9)

Finally, identifying the �ltered Poisson process data Y = Z and the parameters � = V in (7) and
using the channel decomposition C = C1C2 illustrated in Fig. 3 we can evaluate (7) once expressions for
the capacities C1 and C2 are available. The corresponding rate-distortion bounds (8) and (9) now apply
to the quantum-limited and Gaussian-limited regimes of operation, respectively. The lower bound (6)
is attained when the transition probability PY j� of the actual channel is equal to the rate-distortion
achieving transition probability PZjV in (5) and when the actual prior probability P� is equal to the
capacity achieving prior PV in (5). The data processing bound is tight when one of the capacities
C1; C2 dominates the other and Shannon's rate distortion bound is tight when the channel is close to
Gaussian.

IV. Granulometry/Porosimetry Application

For this application we assume the linear form of the conditional radii density fRj� shown in Fig. 2
and a uniform scalar parameter � over the range [�1; 1]. In this case the Cram�er-Rao CR bound is
not valid since the support of f� is �nite. The bounds RDLB1 and RDLB2 can be obtained, however,
by determining the channel capacities C1 and C2. These can be upper bounded by using maximum
entropy arguments to produce lower bounds on RDLB1 and RDLB2.

A. Point Process Channel C1

Using the fact that among all point processes dM with the same intensity the Poisson process has
highest entropy we obtain a bound on C1 similar to the expression obtained in [15, Lemma 4]

C1 � C�
1 = � sup

f�

Z
f�(�)

Z
dr fRj�(rj�) ln

fRj�(rj�)
fR(r)

d�

fR(r)
def
=

Z
f�(�)fRj�(rj�)d�;



C�
1 is simply the capacity of a purely Poisson channel which is equal to the maximum mean Kullback

distance between the conditional density fRj�(rj�) and the marginal fR(r). Thus C1 = 0 when fRj�(rj�)
is constant in � and is consequently identical to fR(r). In this case neither dM nor Y carry any
information about �. For the case of a linear radial density fRj�(rj�), � 2 [�1; 1], the source density f�
which attains capacity C�

1 is easily determined and has an approximately quadratic form, as indicated
in Figure 4. The resulting capacity is the linearly increasing function of �: C�

1 = �a where a � 0:0698.

Fig. 4. The density f�
�
that maximises the mutual information I(�; dM) and attains capacity for the case of linear fRj� as shown in Figure

2.

B. Continuous Process Channel C2

Using the fact that among all continuous processes Y with �xed covariance function the Gaussian
process has highest entropy we obtain the following bound under the assumption of large detector area
jAj � 1 [13]

C2 � C�
2 =

jIj
2

Z 1

�1

Z 1

�1

ln

�
1 +

�S(!)

No=2

�
d! (10)

where �S(!) is the power spectral density of the signal component S.

De�ne the function p(u) = (1�kuk=2)2+� and its Fourier transform P (k!k). By making a rectangular
to polar coordinate transformation in (10) we obtain the simpli�cation

C�
2 = �jIj

Z 1

0

� ln

�
1 + �

jH(�)j2P (�)
No=2

�
d� (11)

where, M�(t) = E[et�] is the characteristic function of f� and

� = e���=3
�
M�(���=3)�M2

� (���=6)e���=3
�
:

V. Beam Position Estimation Application

For this application we assume the following. The position � of the beam on the planar detector
is uniformly distributed over the detector surface A. Conditioned on � = � the space-time Poisson
process has an intensity of Gaussian form

�(z; t) =
�

2��2�
e
�
kz��k2

2�2
� ; (z; t) 2 A� [0; T ]

p(z; t) =
1

2��2p
e
�
kzk2

2�2p
1

Tp
e�t=Tp (z; t) 2 A� [0; T ]

and the random gain sequence Ri has Gaussian density

fR(r) = N (�R; �
2
R)

Then, under the assumption �2� � jAj, it can be shown [16] using analogous arguments as were used
above to derive the upper bound C�

1 for the granulometry/porosimetry example

C�
1 = � ln

� jAj
2�e�2�

�



and, under the assumptions that �2R � �2R, Tp � T , �2p � jAj,

C�
2 =

jAj
4�Tp�2p

�p
1 + � + 1

2
ln

�
4(
p
1 + � � 1)

�(
p
1 + � + 1)

��

where

� = �

�
�2R + �2R
N0=2

�

Furthermore, the direct detection (quantum-limited) CR Bound can be derived under the large
detector size assumption: MSE � CRB1 = �2�=�

VI. Results
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Fig. 5. Bounds as function of � = �=jIj for granulometry/porosimetry example (range of MSE axis is 0.2 to 0.24).

We �rst consider the granulometry/porosimetry example. In Figure 5, the pair of quantum-limited
and Gauss-limited rate-distortion-bounds (labeled RDB1 and RDB2) are plotted as a function of the
uniform spatial intensity � = �=jAj for uniform density f�(�) over [�1; 1] and the same values for A
and �p as used in Figure 2. The SNR is equal to 0dB. Recall that it is the maximum of these two
bounds that determine the Shannon bound (7). Notice that RDLB1 decreases monotonically in �:
estimation � from direct measurements dM always bene�ts from an increase in the number of points
N . On the other hand, RDLB2 takes a minimum value and subsequently increases as � becomes large:
estimates of the disk radii distribution parameter � based on degraded measurements Y su�ers from
an increasing number of occlusions that must occur as the number of disks become large.

The bound illustrated in Fig. 5 thus separates estimator performance into two operating regions:
the quantum-limited region RDLB1 > RDLB2 and the Gaussian-limited region RDLB2 > RDLB1.
In particular there are three distinct regions � 2 [0; 0:1], � 2 (0:1; 0:65] and � > 0:65 where dominance
occurs. The only region where quantum-limited operation is attainable from measurements Y is for
moderate values of �: � 2 (0:1; 0:65]. In general the boundaries of the � regions depend on detector
area jAj, noise level No, point spread function � and prior f�.

The degradation in performance for large � is to be contrasted with the case of the position estimation
example shown in Fig. 6. In this �gure three bounds RDLB1, RDLB2 and the CR bound (CRB1) are
plotted. For the choice of operating parameters �p, Tp, No chosen there is a region of � where one of
each bound dominates the others. The decrease in achievable MSE occurs in this example since, as
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Fig. 6. Bounds as function of � = �=jIj for beam positioning example. The Greatest lower bound is given by the envelope tracing out the
maximum of the two curves.

there is no mutual occlusion of the superimposed impluse responses, the SNR monotonically increases
as � increases.

VII. Conclusions

We have derived lower bounds on MSE for estimation of random parameters of the intensity of �ltered
multidimensional conditionally Poisson processes. These bounds were obtained using information
theoretic inequalities. We established that for the position estimation problem achievable accuracy
improves as photon count rate increases. On the other hand, for the granulometry problem achievable
accuracy is not monotone in particle count rate. The bounds are tight for low SNR for which the
minimum achievable MSE is close to the a priori variance of the parameter. Approximations to the
MAP estimator have been derived elsewhere for the granulometry example [13] and for the beam
position estimation example [16]. We are currently performing comparisons between the experimental
MSE of these estimators and the lower bounds presented here.
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