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ABSTRACT

In this paper we treat the problem of robust entropy estimation given a multidimensional random sample from
an unknown distribution. In particular, we consider estimation of the R�enyi entropy of fractional order which is
insensitive to outliers, e.g. high variance contaminating distributions, using the k-point minimal spanning tree (k-
MST). A greedy algorithm for approximating the NP-hard problem of computing the k-minimal spanning tree is given
which is a generalization of the potential function partitioning method of Ravi etal.1 The basis for our approach
is an asymptotic theorem establishing that the log of the overall length or weight of the greedy approximation is a
strongly consistent estimator of the R�enyi entropy. Quantitative robustness of the estimator to outliers is established
using Hampel's method of inuence functions.2 The structure of the inuence function indicates that the k-MST is
a natural extension of the one dimensional �-trimmed mean for multi-dimensional data.

Keywords: pattern recognition, entropy estimation, random graph theory, spatial processes, mutual information

1. INTRODUCTION

In Hero and Michel3 the asymptotic behavior of a general class of minimal k-point graphs over a set of random points
in IRd was shown to lead to consistent estimates of the R�enyi entropy of the underlying distribution. This paper
provides an overview of these results with emphasis on motivating examples, applications, and simulations. All of the
results presented in Hero and Michel3 are applicable to entropy estimation using the weight function of any minimal
graph which satis�es the so-called quasi-additive property of Redmond and Yukich.4 This includes graphs such as
those arising from the Traveling Salesman Problem, the Steiner Tree, the Minimal Spanning Tree, or the Minimal
Pairwise Matching Problem. Here we concentrate on the the minimal spanning tree (MST) due to its computational
advantages for entropy estimation applications.

Assume that we are given a set Xn = fx1; : : : ; xng of n points in IRd. Fix k and denote by Xn;k a k-point subset
of Xn, 0 < k � n. The elements of the subset Xn;k are distinct and there are

�
n
k

�
possible k-point subsets of Xn.

A spanning tree is connected acyclic graph over Xn de�ned as a set of edges feig that connects all n points such
that there are no paths in the graph that lead back to any given point. For a given edge weight exponent  the
minimal spanning tree (MST) is the spanning tree which minimizes the total edge weight L(Xn) =

P
e jej of the

graph. The MST arises for d = 2 in VLSI circuit layout and network provisioning,5,6 two sample matching,7 pattern
recognition,8 clustering,9 nonparametric regression10 and testing for randomness.11 The MST can be constructed
in time polynomial in n.

The minimal k-point spanning tree (k-MST) problem is to �nd the subset of points Xn;k and the set of edges
connecting these points such that the resultant tree has minimum total weight L(Xn;k). This problem arises in com-
petitive bidding for network routing contracts and other combinatorial optimization problems.1 The planar k-MST
problem was shown to be NP-complete by Zelikovsky and Lozevanu12 and Ravi, Sundaram, Marathe, Rosenkrantz
and Ravi.1 Ravi etal proposed a polynomial time greedy approximation algorithm for the planar k-MST with ap-
proximation ratio O(k1=4). In Hero and Michel3 we gave a polynomial time approximation algorithm for the general

d dimensional problem with approximation ratio O
�
k[(d�1)=d]2

�
.
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Furthermore, as shown in Hero and Michel,3 when the set of points Xn is a random sample from a continuous
density f , the log-length of the k-MST is a robust strongly consistent estimator of the R�enyi entropy R� of of the
density

R�(f) =
1

1� �
log

Z
IRd

f�(x)dx

where the order � 2 (0; 1) of the R�enyi entropy is determined by the edge weight function and the dimension d.

Entropy estimation has been of interest for pattern analysis, process complexity assessment, model identi�cation,
tests of distributions, and other applications where invariance to scale, translation and other invertible transforma-
tions is desired in the discriminant.13{15 Another application is in vector quantization where R�enyi entropy is related
to asymptotic quantizer distortion via the Panter-Dite factor and Bennett's integral.16,17 Among the many other
applications of entropy estimation are: estimation of Lyapounov exponents in non-linear models,18,19 multi-modality
image registration using mutual information matching criteria,20 stopping criteria for regression and classi�cation
trees,21 and other general entropy estimation problems22,13

This paper provides an overview of the k-MST approach to entropy estimation drawing heavily on results es-
tablished in Hero and Michel.3 We start out by illustrating the MST and its relation to entropy estimation and
non-linear cluster analysis in the context of some numerical examples. These examples are used to point out the
nonrobustness of the MST to outliers, and to introduce the k-MST as a robust alternative and the k-dependent
length k-MST curve as a discriminant for selecting the number of outliers to reject. Then we describe the greedy
algorithm for approximating the k-MST in detail and discuss two asymptotic theorems results proven in Hero and
Michel.3 Finally we use inuence functions to establish quantitative robustness of the greedy k-MST to outliers and
draw an analogy to �-trimmed mean estimators for one dimensional problems.

2. ENTROPY ESTIMATION VIA MINIMAL GRAPHS

2.1. A Motivating MST Example

In Figures 1 and 2 we show an example which motivates the use of minimal spanning trees as entropy discriminants
between two di�erent distributions. The two columns of Figure 1 correspond to two di�erent distributions on the unit
square [0; 1]2 { the left column corresponds to a uniform density while the right column corresponds to a triangular
density with a maximum at the point (0:5; 0:5). The top row of Figure 1 presents the results of a single experiment
generating 100 random samples from the uniform and triangular distributions, respectively. The middle row presents
the corresponding MST's for each of these realizations constructed by minimizing the sum of the edge lengths

P
e jej

in the tree. Note that for this experiment the overall length of the MST for the uniform sample is larger than that of
the more concentrated triangular sample. The mean length of the MST for each of the distributions is shown in the
bottom row of Figure 1, computed on the basis of a large number of repeated independent experiments of the type
illustrated in the �rst row. (5% con�dence intervals are shown). Note that for large n the mean length curves appear
to increase with sublinear rates with rate constants that depend on the underlying distribution of the random sample.
The left panel of Figure 2 shows a more direct comparison of these two mean length curves plotted simultaneously
as a function of n. The right panel shows the length curves normalized by

p
n and transformed by 2 log(�). It is

evident that for both the unifom and the triangular distributions the normalized and transformed length of the MST
converges to two di�erent constant levels. Furthermore, the asymptote for the uniform distribution is signi�cantly
larger than that for the triangular distribution. In fact, as was remarked in Hero and Michel,23 the di�erence between
the asymptotes is equal to the di�erence between the R�enyi entropies of order � = (d � )=d = (2 � 1)=2 = 1=2 of
the respective distributions.

2.2. Robusti�cation of the MST via the k-MST

In the previous section we illustrated that the MST provides a consistent estimator of R�enyi entropy. Here we
illustrate the sensitivity of the MST to outlier contamination and introduce a robusti�cation via the k-MST.

Let the underlying density be the mixture

f(x) = (1� �)f1(x) + �f0(x); 0 < � < 1 (1)
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Figure 1. 2D Triangular vs. Uniform sample study.
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Figure 2. MST and log MST weights as function of number of samples for 2D uniform vs. triangular study.

where f1 can be interpreted as a density of interest (generating the signal) and f0 is a contaminating distribution
(generating noise or outliers). In Figure 3 the left panel shows 50 realizations from a density f1 of the form

f1(x) = ce�
1

2
225(kx�[0:4;0:4]k�0:25)2

where c is a normalizing constant, kxk2 = x21 + x22 is the magnitude squared of x = (x1; x2). The constant contours
of this density are circles for which the maximum contour is a circle of radius 0:25 and center [0:4; 0:4] and the
other contours specify an annulus. Hence we call this an annulus density. In the right panel of Figure 3 the same
50 realizations from f1 are shown contaminated with 50 samples from the uniform density f0. This corresponds to
the rather severe case of � = 0:5 in equation (1). The bottom row of Figure 3 shows the MST's for each of these
cases. Notice that while the MST on the left panel captures the shape of the uncontaminated density, and its length
could be used as a reliable entropy estimator, the MST on the right panel is severly inuenced by the addition of the
uniform noise. Thus the MST length function is not robust to outliers.

A solution to this lack of robustness was presented in Banks etal10 in the context of non-parametric non-linear
regression where the authors proposed a robusti�cation obtained by pruning the n� k largest edges from the MST
and reconnecting any remaining isolated subtrees. The resulting tree is not typically an optimal tree passing through
the remaining points. Here we propose a di�erent robusti�cation based on the optimal k point MST which, as will
be shown in the next section, has provable convergence properties and for which quantitative robustness can be
established.

In Figure 4 we illustrate the application of the k-MST to the same experiment as shown in Figure 3 for the MST.
It is evident form the �gure that as the number of points eliminated by the k-MST increases from 1 to 2 to 38
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the k-MST rejects an increasing number of outliers from the contaminating density. Indeed for the case of k = 62
(38 outliers rejected) the k-MST appears to have almost completely recovered the MST for the signal alone annular
distribution. However, as the number of rejected points increases beyond 38 to 25 the k-MST begins eliminating
points which come from the desired annular distribution. The key to a practical k-MST robusti�cation algorithm
will be accurate detection of the correct number of points to reject.
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Figure 4. MST for 2D torus density with and without the addition of uniform \outliers".

A natural detection criterion can be constructed on the basis of the k-MST length curve L(Xn;k) plotted as a
function of the number of points rejected n � k. In Figure 5 this curve is plotted for a realization, shown in left
panel, from a uniform density on [0; 15]� [0; 15]. Observe that the curve appears to decrease more or less linearly
as n � k increases. We give theory in the next section that establishes that this is always the case for uniform
densities. On the other hand, in Figure 6 the same curve is plotted based on the noise contaminated sample from
an annulus density. Note that this latter curve appears to separate into two piecewise linear segments with a break
at approximately n� k = 40. If we can reliably detect the breakpoint, or the knee, of the k-MST length curve then
we can reliably implement to k-MST as a robust entropy estimator.
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3. GREEDY ALGORITHM FOR K-MST IN IR
D

The greedy algorithm for approximating the k-MST is implemented in three steps: 0) a positive integerm is speci�ed;
1) the user speci�es a uniform partition Qm of [0; 1]d having md cells Qi of resolution 1=m; 2) the algorithm �nd
the smallest subset Bm

k = [iQi of partition elements containing at least k points; 3) on this smallest subset the
algorithm selects the k points Xn;k out of this subset which minimize L(Xn;k). Stage 3 requires �nding a k-point
minimal graph on a much reduced set of points, which is typically only slightly larger than k if m is suitably chosen,
which can be performed in polynomial time.

The smallest subset mentioned in Stage 2 of the algorithm is not unique. Figures 7 and 8 show an example for
which m = 5, k = 17 for which there are two possible smallest subsets, in this case both contain 18 points.
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Figure 7. A sample of 75 points from the mixture density f(x) = 0:25f1(x) + 0:75fo(x) where fo is a uniform

density over [0; 1]2 and f1 is a bivariate Gaussian density with mean (1=2; 1=2) and diagonal covariance diag(0:01).
A smallest subset Bm

k is the union of the two cross hatched cells shown for the case of m = 5 and k = 17.

Similarly to Ravi etal24,1 we specify a small subset by the following greedy algorithm: i) �nd a reindexing

fQ(i)gmd

i=1 of the cells in [0; 1]d ranked in decreasing order of the number of contained points, card(Xn \Q(1)) � : : : �
card(Xn\Q(md)) (if there are equalities arrange these in lexicographical order); ii) select the subset speci�ed in Stage
2 by the recursion:

Greedy Subset Selection Algorithm

Intialize: B = �, j = 1

Do until cardfXn \ Bg � k

B = B [Q(j)

End j = j + 1

At termination of the algorithm j = ~q � md and we have a minimal subset Bm
b�nc

def
= B = [~q

i=1Q(i) containing at
least k points.

We prove a variant of the following theorem in Hero and Michel.3 Here 1 � � is the proportion of points that
the k-MST rejects, i.e. k = �n.
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Figure 8. Another smallest subset Bm
k containing at least k = 17 points for the mixture sample shown in Fig 7.

Theorem 1. Fix � 2 [0; 1],  2 (0; d). Let f (d�)=d be of bounded variation over [0; 1]d and denote by v its total

variation over [0; 1]d. Then, the total edge weight L(Xn;k) of a k-point graph constructed by the resolution-1=m greedy

algorithm satis�es

lim sup
n!1

�����L(Xn;b�nc)=n
(d�)=d � �L;

Z
Am
�

f (d�)=d(x)dx

����� < Æ; (a:s:); (2)

where Am
� is the minimum volume set formed from the resolution 1=m partition elements satisfying: P (Am

� ) =R
Am
�

f(x)dx � �, and

Æ = (2�L;m
�d + C3m

(�d))v = O(m�d);

for constants �L; and C3 that can be computed without knowledge of f(x).

The signi�cance of the theorem is described in detail in Hero and Michel.3 For the moment we simply want to
draw the reader's attention to the relation between the theorem and entropy estimation.

First we note that as n, m go to in�nity Theorem 1 implies that L(Xn;b�nc)=n
(d�)=d 1=�L; convereges (a.s.) to:

lim
m!1

Z
Am
�

f (d�)=d(x)dx = inf
A2B:P (A)��

Z
A

f (d�)=d(x)dx

= inf
A2B:P (A)=�

Z
A

f (d�)=d(x)dx: (3)

where B is the class of Borel sets.

Next, for any Borel set A in [0; 1]d having P (A) > 0 de�ne the conditional density f(xjA) = f(x)=P (A)IA(x)
where IA(x) is the indicator function of A. The R�enyi entropy of f(xjA) of order � 2 (0; 1) is de�ned as

R�(f jA) = 1

1� �
log

Z
f�(xjA)dx: (4)
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This is also called the conditional R�enyi entropy given A. Let Ao be the probability-at-least-� Borel subset of [0; 1]d

which minimizes R�(f jA)
R�(f jAo) = inf

fA2B:P (A)��g
R�(f jA): (5)

For � = (d� )=d de�ne the following function of L(Xn;b�nc)

R̂�
def
=

1

1� �

�
logL(Xn;b�nc)=(b�nc)� � log�L;

�
(6)

Then we have the following main result:

Theorem 2. Under the assumptions of Theorem 1 R̂� is a strongly consistent estimator of the minimum conditional

R�enyi entropy R�(f jAo) of order � 2 (0; 1) as m;n!1.

Some important implications of these Theorems are:

1. The k-MST function R̂� has very desirable asymptotic properties as an entropy estimator including unbiasedness
and vanishing variance.

2. The conditional entropy of a mixture f = (1� �)f1 + �f0 is approximately equal to the uncodnitional entropy
of f1 for small �. Thus the k-MST entropy estimator is robust to outliers.

3. The constant �L; does not need to be computed if only relative entropy is of interest, e.g. in signal classi�cation
problems.

4. Given a user-speci�ed maximum tolerated approximation error �, and an upper bound v on the total variation
of the underlying p.d.f.'s f , Theorem 1 can be manipulated to give a selection rule for choosing the required
partition resolution

1=m � �

(2 + C3)v
:

5. It can be argued on the basis of Theorems 1 and 2 (see Hero and Michel3) that estimates of R�enyi entropy of
lower orders (� < 1=d) converge faster than estimates of higher orders.

4. INFLUENCE FUNCTION FOR ENTROPY ESTIMATOR

Inuence functions have long been used to study quantitative robustness of estimators to outliers and other con-
taminating densities.2 These functions provide a quantitative measure of outlier sensitivity of an estimator. An
unbounded inuence curve implies that the e�ect of an outlier on the estimator can be very severe. Robust esti-
mators, such as the trimmed mean estimator which rejects observations which exceed a given sample quantile, have
bounded inuence curves. Here we outline the results of Hero and Michel3 where we established that the inuence
function of the k-MST entropy estimator is bounded.

Let Pn be the empirical distribution function of the n samples Xn = fx1; : : : ; xng

Pn(A)
def
=

1

n

Z
A

Ixi(x)dx

for arbitrary Borel set A. For any statistic Tn = T (Pn) converging a.s. to T = T (P ) the inuence function (called
an inuence curve for one dimensional samples xi) is de�ned as25

IC(xo) = lim
s!0

T( (1� s)P + sÆxo)�T(P)

s
: (7)

where Æxo is a concentrated distribution centered at xo 2 IRd and s 2 [0; 1]. For small s, (1�s)P +sÆxo is interpreted
as a perturbed distribution resulting from exchanging sn of the n samples xi from distribution P with sn samples
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from the concentrated distribution Æxo . Thus IC(xo) can be used to probe the asymptotic sensitivity of the estimator
Tn to localized perturbations of P .

The inuence function for the k-MST weight function is computed in Hero and Michel3 by identifying Tn =
L(Xn;b�nc)=(b�nc)(d�)=d 1=�L; and invoking Theorem 2 which asserts that Tn converges a.s. to the integral
T (P ) =

R
f�(xjAo)dx. After some manipulations we obtain the following form for the inuence function for the

normalized k-MST weight function Tn

(8)

IC =

�
��1
�� �(�) � �

R
f�(xjAo)dx+

�
�f

��1(xojAo); xo 2 Ao
�
�� �(�) � �

R
f�(xjAo)dx; xo 62 Ao

where � is a non-negative function and Ao = fx : f(x) � �g is the entropy mimimizing set of probability �.

Note that when the rejection proportion 1�� is greater than zero and xo is outside of the set Ao: IC is bounded.

We illustrate this in Figure 9 where IC is plotted as a function of xo 2 IR2 for the case of the bivariate Gaussian
distribution. Two cases are shown, the �gure on the left is the inuence function for � = 1, i.e., for the minimal
graph spanning all points (labeled MST), and the �gure on the right is for � = 0:8, i.e. for the minimal k-point graph
(labeled k-MST) spanning only 80% of the n points. Note that, as expected, the inuence function is bounded for
the k-point graph but unbounded for the graph spanning all n points. This suggests that the greedy k-point minimal
graph is a natural multi-dimensional extension of rank order statistical methods such as the trimmed mean. This
complements the comments of Friedman and Rafsky7 in which they proposed the MST as a natural generalization
of one dimensional rank order statistical tests of Smirnov and Wald Wolfowitz.

0

20

40

0

20

40
0

5

10

15

20

25

30

 x 

 IC for MST

 y 

 IC
(x

,y
) 

0

20

40

0

20

40
0

1

2

3

4

 x 

 IC for k−MST: alpha =0.8

 y 

 IC
(x

,y
) 

Figure 9. MST and k-MST inuence curves for bivariate Gaussian density on the plane.
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