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ABSTRACT

Structure discovery in non-linear dynamical systems is an important and challenging problem that arises in
various applications such as computational neuroscience, econometrics, and biological network discovery. Each
of these systems have multiple interacting variables and the key problem is the inference of the underlying
structure of the systems (which variables are connected to which others) based on the output observations (such
as multiple time trajectories of the variables).

Since such applications demand the inference of directed relationships among variables in these non-linear
systems, current methods that have a linear assumption on structure or yield undirected variable dependencies
are insufficient. Hence, in this work, we present a methodology for structure discovery using an information-
theoretic metric called directed time information (DTI). Using both synthetic dynamical systems as well as true
biological datasets (kidney development and T-cell data), we demonstrate the utility of DTI in such problems.

Keywords: Mutual Information; Directed Information; transcription regulatory network.

1. INTRODUCTION

Estimating the structure of dynamical systems is an interesting and well-studied problem. Ranging from pa-
rameter estimation in linear and non-linear dynamical systems to inference of interacting variables over graph-
topologies, the various aspects of structure discovery has several applications. Due to recent interest in areas
like gene regulatory network inference, there is renewed interest to use principled metrics that can aid structure
discovery in these scenarios from multiple realizations of system trajectories.

Consider, for example, a dynamical system with K state variables g = [g1, g2, . . . , gK ]T . g is the state vector
and the time evolution of a simple non-linear system can be written as g

t+1
= A × f(g

t
) + ǫt, where A is a

transition matrix, and f(.) is some non-linear transformation of the state vector, ǫt is the noise term.

As an example, consider the following dynamical system evolution equations:

Further author information: (Send correspondence to Arvind Rao)
Arvind Rao: E-mail: ukarvind@umich.edu



g2,t =
1

2
g1,t−1 +

1

3
g3,t−2 + g7,t−1;

g4,t = g2
2,t−1 + g

1/2
3,t−1;

g5,t = g2,t−2 + g4,t−1;

g6,t = g4,t−1 + g
1/2
2,t−2;

g7,t =
1

2
g
1/3
4,t−1;

g8,t =
1

2
g
1/3
6,t−1 +

1

3
g
1/2
7,t−1;

g9,t =
2

3
g
2/3
4,t−1 +

1

4
g
1/2
7,t−2;

In these equations, both non-linearities and lagged relationships amongst interacting variables are accounted
for. The main question for this work is: given multiple realizations of the individual time trajectories of these nine
variables, can we infer directed network amongst these variables, where each directed link gi → gj represents the
time-level influence of an effector variable gi on the variable gj . This question can be resolved in two directions:

1. Can we come up with a viable influence metric for inference of directed dependence among variables?

2. Can we use this metric for both supervised and unsupervised network inference?

• Unsupervised Network Inference: In this part a directed dependency graph is inferred, using no apriori
information about possible effector variables. Such a procedure explores all G(G− 1), interactions to
build the directed graph (G = 9).

• Supervised Network Inference: In this component, we will find effectors for a variable of interest using
only a restricted subset of variables. This answers a question of the type: “Which variables influence
the variable g7”?

The motivation for the set-up above is the resolution of directed graphs in gene regulatory networks. In com-
putational biology, the problem of network inference among genes has received considerable interest (Rangel,38

Beal5). Using time series expression data, available from microarray experiments, biologists are interested to
discover gene dependencies and their meaning in the context of biological processes such as transcriptional reg-
ulation. Since in these biochemical reactions, the notion of lag and non-linear transcriptional kinetics is closely
related to biological processes, our setup in the equations above closely mimics such scenarios.

Other applications where the use of an information flow metric becomes useful is in computational neuro-
science (Hartemink20) and econometrics (Geweke17). In neuroscience it is useful to determine directed depen-
dencies among various brain regions based on time series data from electrodes embedded in these regions. In
econometrics, there is an interest to recover dependencies among various time series related to an economic
phenomenon (e.g.: relation between economic output (GDP) and inflation over a 10 year time period). We
note that in the case of large time series data (wherein the sampling interval is much shorter compared to the
length of the observation), several metrics have been proposed in the domain of neuroscience, such as directed
transinformation (Williams42). These metrics have been extremely useful in such contexts, though an extension
to short time series with larger time intervals between sampling instants would be very useful. In this work
however, we will focus on applications from computational biology to illustrate our methods for such scenarios.

2. DTI FORMULATION

As alluded to above, there is a need for a viable influence metric that can find relationships between the “effector”
variable (gi) and the target variable (gj). Several such metrics have been proposed – both generally and in the



context of biological networks, such as correlation, coefficient of determination (CoD), mutual information etc. To
alleviate the challenge of detecting non-linear variable interactions, an information theoretic measure like mutual
information has been used to infer the conditional dependence among variables by exploring the structure of
the joint distribution of the variable expression profiles (Califano et.al30). However, the absence of a directed
dependence metric has hindered the utilization of the full potential of information theory. In this work, we
examine the applicability of one such metric – the directed time information criterion (DTI), for the inference
of non-linear, directed variable influences.

The DTI, which is a measure of the directed dependence between two N -length random processes X ≡ XN

and Y ≡ Y N , is given by Massey32 :

I(XN → Y N ) =
N

∑

n=1

I(Xn; Yn|Y
n−1) (1)

Here, Y n denotes (Y1, Y2, .., Yn), i.e., a segment of the realization of a random process Y and I(XN ; Y N ) is
the Shannon mutual information (Cover & Thomas12).

An interpretation of the above formulation for DTI is in order. To infer the notion of influence between two
time series (mRNA expression data) we find the mutual information between the entire evolution of variable
X (up to the current instant n) and the current instant of Y (Yn), given the evolution of variable Y up to the
previous instant n− 1 (i.e. Y n−1). This is done for every instant, n ∈ (1, 2, . . . , N), in the N - length expression
time series.

As already known, I(XN ; Y N ) = H(XN) − H(XN |Y N ), with H(XN) and H(XN |Y N ) being the entropy
of XN and the conditional entropy of XN given Y N , respectively. Using this definition of mutual information,
the DTI can be expressed in terms of individual and joint entropies of XN and Y N . The task of N -dimensional
entropy estimation is an important one and due to computational complexity and moderate sample size, his-
togram estimation of multivariate density is unviable. However, several methods exist for consistent entropy
estimation of multivariate small sample data (LearnedMiller25 , Nemenman33 , Paninski36 , Wilett50). In the
context of microarray expression data, wherein probe-level and technical/biological replicates are available, we
use the method of Learned-Miller25 for entropy estimation.

From (1), we have,

I(XN → Y N ) =

N
∑

n=1

[H(Xn|Y n−1) − H(Xn|Y n)] =

N
∑

n=1

{[H(Xn, Y n−1) − H(Y n−1)] − [H(Xn, Y n) − H(Y n)]}

(2)

• To evaluate the DTI expression in Eqn.2, we need to estimate the entropy terms H(Xn, Y n−1), H(Y n−1),
H(Xn, Y n) and H(Y n). This involves the estimation of marginal and joint entropies of n random variables,
each of which are R dimensional, R being the number of replicate realizations.

• Though some approaches need the estimation of probability density of the R-dimensional multivariate
data (Xn) prior to entropy estimation, one way to circumvent this is to the use the method proposed in
Learned-Miller25 . This approach uses a Voronoi tessellation of the R-dimensional space to build nearly
uniform partitions (of equal mass) of the density. The set of Voronoi regions (V 1, V 2, . . . , V n) for each of
the n points in R-dimensional space is formed by associating with each point Xk, a set of points V k that
are closer to Xk than any other point Xl, where the subscripts k and l pertain to the kth and lth time
instants of variable expression.

• Thus, the entropy estimator is expressed as : Ĥ(Xn) = 1
n

∑n
i=1 log(nA(V i)), where A(V i) is the R-

dimensional volume of Voronoi region V i. A(V i) is computed as the area of the polygon formed by the
vertices of the convex hull of the Voronoi region V i. This estimate has low variance and is asymptotically
efficient26 .



To obtain the DTI between any two variables of interest (X and Y ) with N -length expression profiles XN

and Y N respectively, we plug in the entropy estimates computed above into the above expression (2).

From the definition of DTI, we know that 0 ≤ I(XN
i → Y N ) ≤ I(XN

i ; Y N) < ∞. For easy comparison

with other metrics, we use a normalized DTI metric (see Appendix) given by ρDTI =
√

1 − e−2I(XN→Y N ) =
√

1 − e−2
P

N

i=1
I(Xi;Yi|Y i−1). This maps the large range of DTI, ([0,∞]) to lie in [0, 1]. Another point of con-

sideration is to estimate the significance of the ‘true’ DTI value compared to a null distribution on the DTI
value (i.e. what is the chance of finding the DTI value by chance from the series X and Y ). This is done using
empirical p-value estimation after bootstrap resampling (Sec: 3). A threshold p-value of 0.05 is used to estimate
the significance of the true DTI value in conjunction with the the density of a random data permutation, as
outlined below.

3. SIGNIFICANCE ESTIMATION OF DTI

We now outline a procedure to estimate the empirical p-value to ascertain the significance of the normalized
directed information Î(XN → Y N ) between any two N -length time series X ≡ XN = (X1, X2, . . . , XN), and
Y ≡ Y N = (Y1, Y2, . . . , YN ). In our case, the detection statistic is Θ = Î(XN → Y N ) and the chosen acceptable
p-value is α.

The overall bootstrap based test procedure is (Tibshirani et.al15 , Silverman37 , Polland2):

• Repeat the following procedure B(= 1000) times (with index b = 1, . . . , B):

– Generate resampled (with replacement) versions of the times series XN , Y N , denoted by XN
b , Y N

b

respectively.

– Compute the statistic θb = Î(XN
b → Y N

b ).

• Construct an empirical CDF (cumulative distribution function) from these bootstrapped sample statistics,

as FΘ(θ) = P (Θ ≤ θ) = 1
B

∑B
b=1 Ix≥0(x = θ−θb), where I is an indicator random variable on its argument

x.

• Compute the true detection statistic (on the original time series) θ0 = Î(XN → Y N ) and its corresponding
p-value (p0 = 1 − FΘ(θ0)) under the empirical null distribution FΘ(θ).

• If FΘ(θ0) ≥ (1 − α), then we have that the true DTI value is significant at level α, leading to rejection of
null-hypothesis (no directional association).

We now demonstrate some results using the above developed methods for the unsupervised and supervised
network inference problems for a synthetic dynamical system as well as for a true biological problem, below.

4. RESULTS ON SYNTHETIC NETWORK

4.1 Synthetic Network

A synthetic network is constructed in the following fashion: We assume that there are variables g1, g3 and g7

(all of which are modeled as uniform random variables) which drive the remaining variables of a nine variable
network. The evolution equations are as below. The noise term, ǫt, is chosen to have a gaussian distribution
N (0, σ2), with a standard deviation concordant with experimental variation.
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Figure 1. The synthetic network as recovered by (a) DTI and (b) CoD.
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For the purpose of comparison, we study the performance of the Coefficient of Determination (CoD) approach
for directed influence network determination. The CoD allows the determination of association between two
variables via a R2 goodness-of-fit statistic. The methods of (Hashimoto21 , Li27) are implemented on the time
series data. Such a study would be useful to determine the relative merits of each approach. We believe that
no one procedure can work for every application and the choice of an appropriate method would be governed by
the application (here, the biological question) under investigation. Each of these methods use some underlying
assumptions and if these are consistent with the question that we ask, then that method has utility.

As can be seen (Fig. 1), though CoD can detect linear lag influences, the strongly non-linear ones are missed.
DTI detects these influences and exactly reproduces the synthetic network. Given the non-linear nature of
transcriptional kinetics, this is essential for reliable network inference. DTI is also able to resolve loops and
cycles (g3, [g2, g4], g5 and g2, g4, g7, g2). Based on these observations, we examine the networks inferred using
DTI in both the supervised and unsupervised settings.

4.2 Supervised Network Inference

Fig. 2 presents the results of upstream supervised network inference using DTI. Fig. 2(a) represents the graph
upstream and downstream of g7 based on the evolution equations above. Fig. 2(b) presents the variables that are
found to be upstream of g7 using DTI from the multivariate replicate sample trajectories. As can be observed,
DTI correctly finds the the upstream effectors. Additionally, the DTI value can discriminate the strength of the
various effectors. As shown in Fig. 2(b), the rank ordering of the DTI is g4 > g3 > g2 > g1 which completely
correlates with the separation of the corresponding variable from g7. Thus, DTI enables us to query both strength
and significance for any pairwise variable relationship as opposed to those that are recovered from the data. As
an example, the strength and significance of I(g4 → g7) is shown in Fig. 3.
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Figure 2. (a) The upstream and downstream effectors of g7 from network dynamics (b) upstream effectors of g7 from DTI.
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Figure 3. Cumulative Distribution Function for bootstrapped I(g4 → g7) over all permutations of the time series data.
The true value of I(g4 → g7) = 0.9991.

5. NETWORK DISCOVERY FOR BIOLOGICAL APPLICATIONS

The primary motivation for this work has been the need to infer directed dependencies between genes based
on their expression data from microarray experiments (Beal5 ,Rangel38). Microarrays are chips that can be
used to simultaneously profile the expression of all genes in a cell. Most typically, they profile gene expression
(via mRNA abundance) under various stimuli over time – thereby yielding a time series of expression for each
gene. Using such data, biologists are deeply interested to find inter-dependencies among the genes so as to
generate experimentally testable hypotheses about underlying biological processes. Since one gene might have
role in influencing the behavior of another gene, thereby establishing a directed dependence, the inference of
such directed networks has far reaching implications. In these examples, we will explain the use of DTI to infer
such dependencies in both supervised and unsupervised settings. Further details are given under each head.

5.1 Directed Network Inference:Gata3 regulation in early kidney development

Biologists have an interest in influence networks that might be active during organ development. Advances in
laser capture microdissection coupled with those in microarray methodology have enabled the investigation of
temporal profiles of genes putatively involved in these embryonic processes. Forty seven genes are expressed
differentially between the ureteric bud and metanephric mesenchyme (Potter46) and putatively involved in bud
branching during kidney development. The expression data (Grimmond9) temporally profiles kidney development
from day 10.5 dpc to the neonate stage. The influence network amongst these genes is shown below (Fig. 4).
Several of the presented interactions are biologically validated and there is an interest to confirm the novel ones
pointed out in the network. The annotations of some of these genes are given below (Table. 1).

Some of the interactions that have been experimentally validated include the Rara-Mapk1 3 , Pax2 -Gata3 18

and Agtr -Pax2 52 interactions. We note that this result clarifies the application of DTI for network inference



in an unsupervised manner - i.e. discovering interactions revealed by data rather than examining the strengths
of interactions known a priori. Such a scenario will be explored later (Sec: 5.3). We note that though several
interaction networks are recovered, we only show the largest network including Gata3, because this is the gene
of interest in this study.

Agtrap

Gata3

Scarb2

Lamc2

Pax2

Col18a1 Mapk1

Gata2

Rara

Pgf

Figure 4. Overall Influence network using DTI during early kidney development.

Table 1. Functional annotations (Entrez Gene) of some of the genes co-expressed with Gata2 and Gata3 during nephro-
genesis.

Gene Symbol Gene Name Possible Role in Nephrogenesis (Function)
Rara Retinoic Acid Receptor crucial in early kidney development
Gata2 GATA binding protein 2 several aspects of urogenital development
Gata3 GATA binding protein 3 several aspects of urogenital development
Pax2 Paired Homeobox-2 conversion of MM precursor cells to tubular epithelium
Lamc2 Laminin Cell adhesion molecule
Pgf Placental Growth Factor Arteriogenesis, Growth factor activity during development
Col18a1 collagen, type XV III, alpha 1 extracellular matrix structural constituent, cell adhesion
Agtrap Angiotensin II receptor-associated protein Ureteric bud cell branching

5.2 Directed Network Inference: T-cell Activation

To clarify the validity of the presented approach, we present a similar analysis on another data set - the T-cell
expression data,38 in Fig. 5. This data represents the expression of various genes after T-cell activation using
stimulation with phorbolester PMA and ionomycin. The dataset contains the profiles of about 58 genes over 10
time points with 44 replicate measurements for each time point.

Several of these interactions are confirmed in earlier studies (Rangel38 , Ezzat16 , Zhang53 , Rogoff40) and
again point to the strength of DTI in recovering known interactions. The annotation of some of these genes are
given in Table. 2. We note that the network of Fig. 5 shows the largest influence network (containing Gata3 )
that can be recovered. Gata3 is involved in T-cell development as well as kidney development and hence it is
interesting to see networks relevant to each context in Figs. 4 and 5. Also, these 58 genes relevant to T-cell
activation are very different from those for kidney development, with fairly low overlap. For example this list
does not include Pax2 (which is relevant in the kidney development data).

5.3 Supervised Network Discovery

Based on apriori biological knowledge (such as literature) several molecules can be implicated in the regulation
of a target gene (Kreiman24 , Fraenkel28 ). Biologists are interested to explore this restricted space of possible
effectors for possible influences on the target gene. An influence metric like DTI, if useful, would be invaluable
to query any gene-gene relationship based on expression data.

For the kidney development case, we study the Pax2 -Gata3 interaction, and show the cumulative distribution
function of the bootstrapped detection statistic (Fig. 3) as well as the position of the true DTI estimate in relation
to the overall histogram. With the obtained density estimate of the Pax2 -Gata3 interaction, shown in Fig. 6,
we can find significance values of the true DTI estimate in relation to the bootstrapped null distribution.
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Figure 5. DTI based T-cell network.

Table 2. Functional annotations of some of the genes following T-cell activation.

Gene Symbol Gene Name Possible Role in T-cell activation (Function)
Casp7 Caspase 7 Involved in apoptosis
JunD Jun D proto-oncogene regulatory role of in T lymphocyte proliferation

and Th cell differentiation
CKR1 Chemokine Receptor 1 negative regulator of the antiviral CD8+ T cell response
Il4r Interleukin 4 receptor inhibits IL4 -mediated cell proliferation
Mapk4 Mitogen activated kinase 4 Signal transduction
AML1 acute myeloid leukemia 1; aml1 oncogene CD4 silencing during T-cell differentiation
Rb1 Retinoblastoma 1 Cell cycle control

An experimental validation of this is presented in (Dressler14 , Bouchard18), thereby indicating that DTI
produces results that are consistent with experimental results.

6. SUMMARY OF ALGORITHM

We now present two versions of the DTI algorithm, one which involves an inference of general influence network
between all variables of interest (unsupervised-DTI ) and another, a focused search for effector variables which
influence one particular variable of interest (supervised-DTI ).

Our proposed approach using (supervised-DTI ) for determining the effectors for variable B is as follows:

• Identify the G variables (A1, A2, . . . , AG), based on required phenotypical characteristic using fold change
studies. Preprocess the variable expression profiles by normalization and interpolation, if necessary. As-
suming that there are N points for each variable, entropy estimation is used to compute the terms in the
DTI expression (Eqn. 2).

• For each pair of variables Ai and B among these G variables :
{

– Find DTI(Ai, B) = I(AN
i → BN ), and the normalized DTI from Ai to B, ρDTI(Ai, B) =

√

1 − e−2I(AN

i
→BN ).

– Bootstrap resampling over the data points of Ai and B yields a null distribution for DTI(Ai, B). If
the true DTI(Ai, B) is greater than the 95% upper limit of the confidence interval (CI) from this null
histogram, infer a potential influence from Ai to B.

– The value of the normalized DTI from Ai to B gives the putative strength of interaction/influence.

– Every variable Ai which is potentially influencing B is an ‘effector’. This search is done for each
variable Ai among these G variables ((A1, A2, . . . , AG)).

}



Figure 6. Cumulative Distribution Function for bootstrapped I(Pax2 → Gata3). The true value of I(Pax2 → Gata3) =
0.9911.

Note: We note that, in supervised-DTI, the choice of potential effectors for a target variable (gene) is based
on only those variables (TFs) that have a suspected dependence (such as a binding site at the target gene’s
promoter, Kreiman24 , Fraenkel28). In this sense, supervised-DTI aims to reduce the overall search space based
on biological prior knowledge.

For unsupervised DTI, we adapt the above approach for every pair of variables (Ai, B) in the list, noting that
DTI(Ai, B) 6= DTI(B, Ai). In this case we are not looking at any interaction in particular, but are interested
in the entire influence network that can be potentially inferred from the given time series expression data. The
network adjacency matrix has entries depending on the direction of influence and is related to the strength of
influence as well as control of false discovery rate (FDR). The Benjamini-Hochberg procedure6 is used to screen
each of the M(= G(G − 1)) hypotheses (both directions) during network discovery amongst G variables.

Briefly, the FDR procedure controls the expected proportion of false positives among the total number of
rejections rather than just the chance of false positives44 . It tolerates more false positives, and allows fewer false
negatives.

• The p-values of the various edges (1, 2, . . . , M) are ranked from lowest to highest, all satisfying the original
significance cut-off of p = 0.05. The ranked p-values are designated as p(1), p(2), . . . , p(M).

• For j = 1, 2, . . . , M , the null hypothesis (no edge) Hj is rejected at level α if p(j) ≤
j
M α.

• All the edges with p-value ≤ p(j) are retained in the final network.

In Table. 6, we compare the various contemporary methods of directed network inference. Recent literature
has introduced several interesting approaches such as graphical gaussian models (GGMs), coefficient of determi-
nation (CoD), state space models (SSMs) for directed network inference. This comparison is based primarily on
expectations from such inference procedures - that we would like any such metric/procedure to:

• Resolve cycles in recovered interactions.

• Be capable of resolving directional and potentially non-linear interactions. This is because interactions
amongst genes involve non-linear kinetics.

• Be a non-parametric procedure to avoid distributional assumptions (noise etc).

• Be capable of recovering interactions that the application requires. Rather than use a method that discovers
interactions underlying the data purely, the biologist should be able to use prior knowledge. For example,
a biologist can examine the strength and significance of a known interaction and use this as a basis for
finding other such interactions.

From the above comparisons, we see that DTI is one metric which can recover interactions under all these
considerations.



Table 3. Comparison of various network inference methods.

Method Resolve Non Search Non
Cycles -linear for -parametric

framework interaction framework
SSM (Beal5 , Rangel38) Y Y N Y
CoD (Hashimoto21) N N Y N
GGM (Strimmer35) N Y N N
DTI (Rao39) Y Y Y Y

7. CONCLUSIONS

In this work, we have proposed a principled methodology, using information theory for the discovery of influences
among variables of a dynamical system based on replicated multivariate time series data. This has applications
in biological networks, econometrics and neuroscience.

The proposed metric, directed time information (DTI) generalizes the partial correlation measure and can be
used for influence discovery in both supervised and unsupervised settings. Using the biological networks as an
example, we have shown the superiority of the DTI metric to other competitive metrics. We note that multiple
realizations for the system trajectories are necessary for DTI to be viable for these applications. Also, DTI is able
to resolve variable influences for very short time series data (such as those generated in microarray experiments)
wherein the interval between sampling instants is much higher than in other applications (such as event-related
time profiles in neuroscience).

Additionally, several other modifications can be introduced in this framework in the future. Since DTI
computation is expensive (marginal and joint entropies have to be estimated for each n variable subset), we
can use mutual information as a prior to reduce the search space to only those variables that have strong MI.
Additionally, DTI can also be used to obtain edge priors for other network learning paradigms like bayesian
networks (Woolf51). Another extension of this work is the comparison of DTI with other recent metrics like
directed transinformation (Williams43 ,42) or predictive information (Bialek4) on such evolving time series to
understand the particular scenarios wherein one method might be more useful than another.

APPENDIX: A NORMALIZED DTI MEASURE

In this section, an expression for a ‘normalized DTI coefficient’ is derived. This is useful for a meaningful
comparison across different criteria during network inference. The purpose of this section is to establish some
connections between quantities like MI, DTI, and correlation. In this section, we use X , Y , Z for XN , Y N and
ZN interchangeably, i.e X ≡ XN , Y ≡ Y N , and Z ≡ ZN .

By the definition of DTI, we can see that 0 ≤ I(XN → Y N ) ≤ I(XN ; Y N ) < ∞. The normalized mea-
sure ρDTI should be able to map this large range ([0,∞]) to [0, 1]. We recall that the multivariate canoni-

cal correlation is given by Gubner19 : ρXN ;Y N = Σ
−1/2
XN ΣXN Y N Σ

−1/2
Y N and this is normalized having eigenval-

ues between 0 and 1. We also recall that, under a Gaussian distribution on XN and Y N , the joint entropy
H(XN ; Y N ) = − 1

2 ln(2πe)2N |ΣXN Y N |, where |A| is the determinant of matrix A, ΣXN Y N denotes the covari-
ance matrix, computed as ΣXN Y N = 1

R−1XT Y , indicating that there are R replicates of the X, Y time series,
each of length N .

Thus, for I(XN ; Y N ) = H(XN)+H(Y N )−H(XN , Y N ), the expression for mutual information, under jointly

Gaussian assumptions on XN and Y N , becomes, I(X ; Y ) = − 1
2 ln(

|Σ
XN Y N |2

|Σ
XN |.|Σ

Y N | ) = − 1
2 ln(1− ρ2

XN ;Y N ). Hence, a

straightforward transformation is normalized MI, ρMI =
√

1 − e−2I(XN ;Y N ) =
√

1 − e−2
P

N

i=1
I(XN ;Yi|Y i−1) . A

connection with Joe23 , can thus be immediately seen.

With this, ρMI is normalized between [0, 1] and gives a better absolute definition of dependency that does
not depend on the unnormalized MI. We will use this definition of normalized information coefficients in the
present set of simulation studies.



For constructing a normalized version of the DTI, we can extend this approach, from Geweke17 . Consider
three random vectors X, Y and Z, each of which are identically distributed as N (µX , ΣXX), N (µY , ΣY Y ), and
N (µZ , ΣZZ) respectively. We also have,

(X,Y,Z) ∼ N









µX

µY

µZ



 ,





ΣXX ΣXY ΣXZ

ΣY X ΣY Y ΣY Z

ΣZX ΣZY ΣZZ









Their partial correlation δY X|Z is then given by, δY X|Z =
√

a2

2

a1a3

with, a1 = ΣY Y − ΣY ZΣ−1
ZZΣZY , a2 =

ΣY X − ΣY ZΣ−1
ZZΣZX , a3 = ΣXX − ΣXZΣ−1

ZZΣZX .

Recalling results from conditional Gaussian distributions, these can be denoted by: a1 = ΣY |Z , a2 = ΣXY |Z

and a3 = ΣX|Z . Thus, δY X|Z = Σ
−1/2
Y |Z ΣXY |ZΣ

−1/2
X|Z . Extending the above result from the mutual information to

the directed information case, we have, ρDTI =
√

1 − e−2
P

N

i=1
I(Xi;Yi|Y i−1).

We recall the primary difference between MI and DTI, (note the superscript on X):

MI: I(XN ; Y N ) =
∑N

i=1 I(XN ; Yi|Y i−1).

DTI: I(XN → Y N ) =
∑N

i=1 I(X i; Yi|Y i−1).

Having found the normalized DTI, we ask if the obtained DTI estimate is significant with respect to a ‘null
DTI distribution’ obtained by random chance. This is addressed in Section 3.

We note that though the normality assumption was used to show the connection between information and
correlation, this distributional assumption is not used anywhere in the original DTI metric formulation and
computation during its application to network inference.
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