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ABSTRACT

Connectivity measurements, i.e., whether or not two sen-
sors can communicate, can be used to calculate localization
in networks of inexpensive wireless sensors. We show that
a Laplacian Eigenmaps-based algorithm, combined with an
adaptive neighbor weighting method, can provide an ac-
curate, low complexity solution. Laplacian Eigenmaps is
a manifold learning method which optimizes using eigen-
decomposition, thus is non-iterative and finds the global
optimum. Comparatively, the new localization method is
less computationally complex than multi-dimensional scal-
ing (MDS), and we show via simulation that it has lower
variance.

1. INTRODUCTION

Emerging applications of wireless sensor networks will de-
pend on automatic and accurate location of thousands of
sensors. Device cost will be a key factor. By eliminating
the need for additional hardware, such as for GPS, ultra-
sound, or high accuracy RF time-of-arrival (TOA), we can
widen the sensor network application space. In this paper,
we compare localization algorithms which use connectiv-
ity measurements. If a sensor can successfully demodulate
the packets transmitted by another sensor, then the two are
considered to be connected. When received signal strength
(RSS) is too low, packets can’t be demodulated, and sensors
will not be connected.

This paper emphasizes that connectivity is a measure-
ment subject to error due to the unpredictable RF channel.
Noisy measurements lead to noisy coordinate estimates. Lo-
calization algorithms must be chosen to minimize the bias
and variance of the coordinate estimates, and to keep com-
putational complexity low, so that sensor localization will
scale well with the size of the network. This paper in-
troduces a Laplacian Eigenmaps based localization method
which has both lower computational complexity and lower
variance than MDS-based methods.

1.1. Estimation Problem Statement: Formally stated, we
consider a network of n unknown-location sensors, and m
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reference (or anchor) sensors which have a priori knowl-
edge of their coordinates (for a total of N = n + m sen-
sors). The cooperative localization problem we consider in
this paper is the estimation of the unknown-location sensor
coordinates {zi} for i = 1 . . . n, given: (1) Reference coor-
dinates {zi}i=n+1...N , and (2) Pair-wise connectivity mea-
surements {Qi,j}. Connectivity measurements are random
variables, subject to error, and their statistical model is de-
scribed in Section 2. In this paper, we do not consider mea-
surements of TOA, RSS, or AOA; furthermore, references
are assumed to have exact coordinate knowledge. Extension
of these results is future work.

1.2. Relevant Research: Connectivity measurement-based
localization, also called range free localization, has found
considerable application in ad hoc networks and wireless
sensor networks, eg., in [1, 2, 3]. In particular, localization
via MDS was introduced in [2], which demonstrated that
localization can be achieved without resorting to iterative
optimization algorithms that don’t always converge to the
global maxima. The MDS-MAP method in [2] effectively
applies the manifold learning technique called Isomap [4]
to the connectivity-based sensor localization problem. We
compare our new method to the MDS-MAP method in Sec-
tions 3.1 and 5.

2. CONNECTIVITY MEASUREMENT MODEL

The key to developing reliable localization systems is to ac-
curately represent the severely degrading effects of the RF
channel. We do not consider two sensors to be connected
solely based on the distance between them – two sensors are
connected if the receiving sensor can successfully demodu-
late packets transmitted by the other sensor. The receiver
fails to successfully demodulate packets when the received
signal strength (RSS) is too low. Since RSS is a random
variable due to the unpredictability of the fading channel,
and connectivity is a function of RSS, connectivity is also a
random variable.

Specifically, the connectivity measurement of sensors i
and j, Qi,j , is modeled as a binary quantization of RSS,

Qi,j =
{

1, Pi,j ≥ P1

0, Pi,j < P1
(1)



where Pi,j is the received power (dBm) at sensor i transmit-
ted by sensor j, and P1 is the receiver threshold (dBm) un-
der which packets cannot be demodulated. This step func-
tion is an approximation, but is an accurate model for most
digital receivers.

Received power Pi,j is strongly affected by shadowing
and multipath fading. For a particular environment of de-
ployment, the walls, furniture, buildings, trees and other
obstructions in the channel between the two devices cause
these deleterious channel effects. Since we can’t predeter-
mine the exact layout of every place of deployment, we have
to consider these effects to be random. Both empirical and
theoretical evidence shows that RSS is well-modeled as a
log-normal random variable [5]. Since Pi,j is expressed in
dB, it is Gaussian distributed, with mean P̄ (di,j) and vari-
ance σ2

dB . The mean received power P̄ is an exponentially
decreasing function of the actual transmitter-receiver sepa-
ration distance di,j = ‖zi − zj‖,

P̄ (di,j) = P0 − 10np log
di,j

d0
(2)

where P0 is the received power (dBm) at a short reference
distance d0, and np is the ‘path-loss exponent’, typically
between 2 and 4. Also, values for σdB are usually between 4
and 12 [5]. The precision possible from connectivity-based
localization is proportional to the ratio σdB/np [6].

Because of (2), we can talk about the distance R at
which the mean received power is equal to the receiver thresh-
old P1.

R = d
P0−P1
10np

0 (3)

We call R the ‘mean communication range’. Two devices
separated by R have a 50% chance of being connected.

In real networks, connectivity is not symmetric. If a pair
of devices don’t have the same transmit power, they will be
connected more often when the device with higher trans-
mit power is transmitting. However, an asymmetric con-
nectivity graph provides more information than a symmetric
graph: devices are ‘in-range’, ‘out-of-range’, or ‘intermed-
iate-range’ (when devices are connected in only one direc-
tion). Essentially, asymmetric connectivity measurements
are equivalent to 3-level quantized received signal strength
(QRSS) [6]. Localization in this paper is limited to less in-
formative, symmetric connectivity measurements.

3. LAPLACIAN EIGENMAPS

The Laplacian Eigenmaps method considers the minimiza-
tion of the cost SLE [7]:

SLE =
∑
i,j

wi,j‖zi − zj‖2 (4)

subject to the translation and scaling constraints,

∑
i

zi = 0 and
∑

i

‖zi‖2 = 1. (5)

The minimum of cost SLE without any constraints would
occur when all the coordinates zi were equal. The con-
straints in (5) remove the translation ambiguity by setting
the origin as the center, and counteract the tendency to put
all points at the origin by mandating a unit norm average
coordinate.

The benefit of the formulation in (4) and (5) is that the
globally optimum solution can be found via eigen-decomp-
osition. We define the N×N weight matrix W = [[wi,j ]]i,j
and its column sums (or row sums, since W is symmetric)
ui =

∑N
j=1 wi,j . Then the graph Laplacian L is defined as

L = diag[u1, . . . , uN ] − W (6)

where diag[u1, . . . , uN ] is the diagonal matrix with {ui}
on its diagonal. The eigen-decomposition of L is the set
of (λk,vk), for eigenvalues λk and eigenvectors vk, k =
1 . . . N . Here, we assume w.l.o.g. that the eigenvectors are
sorted in increasing order by magnitude of eigenvalue. As
presented in detail by Belkin and Niyogi in [7], the vk for
i = 2 . . . d+1 provide the optimal lowest-cost, d-dimensional
solution to (4). Specifically,

zi = [v2(i), . . . ,vd+1(i)], (7)

where vk(i) is the ith element of the kth eigenvector.
Finding the smallest eigenvalues and eigenvectors of a

sparse and symmetric matrix is a problem which has been
studied for decades in physics and chemistry [8, 9], and can
be solved using distributed algorithms for parallel process-
ing. The computational complexity is O(KN2), where K
is the average number of neighbors. Note that MDS requires
decomposition of a full matrix, which is an O(N3) opera-
tion.

1.2. Multi-Dimensional Scaling: Classical MDS finds the
coordinates {zi} which minimize the following cost func-
tion:

SMDS =
∑
i,j

(
δ2
i,j − ‖zi − zj‖2

)2
(8)

where δi,j is a measured distance between sensors i and j.
In MDS-MAP [2], δi,j is set to the shortest-path number
of hops between sensors i and j. Note that the difference in
(8) is not taken between distances, but between squared dis-
tances, in order to linearize the optimization problem. Us-
ing squared distances tends to emphasize the pairs with high
δi,j and magnify their errors.

More fundamentally, (8) is based on distance rather than
connectivity. Equation (8) asserts that the distance between
zi and zj should be equal to δi,j . In comparison, the Lapla-
cian Eigenmaps cost in (4) simply asserts that the distance
between sensors i and j is low.

4. WEIGHT SELECTION

The selection of weights wi,j for neighboring sensors is
critical to localization performance. In the original Lapla-
cian Eigenmaps method [7], weights are selected by look-
ing at the local geometric structure of neighboring high-



dimensional data points. This paper presents multiple meth-
ods of weight selection, and then compares them via simu-
lation in Section 5.

First, in the Equal Weights method, we set wi,j = Qi,j ,
i.e., wi,j = 1 if i and j are connected and 0 if not. As will be
shown in Section 5, this is a poor weight selection method,
because sensors with the most neighbors will tend to have
too much ‘pull’, and will bias their neighbors’ coordinate
estimates too close to their own.

To counteract this tendency, we offer two alternatives
which both affect the column sums of W , i.e., ui =

∑N
j=1 wi,j .

Note that ui is analagous to the ‘pull’ of sensor i. In both al-
ternative methods, we first set wi,j using the equal weights
method. Then,

Equal Sum-of-Weights : Adjust the weights such that the
new column sums ũi = µu for all i = 1 . . . N , where
µu is the average of the original column sums, µu =
1
N

∑N
i=1 ui.

Linear Sum-of-Weights : Adjust the weights such that the
new column sums ũi are linearly related to ui. Specif-
ically, let ũi = µu + β(ui − µu)/σu where σu is the
standard deviation of {ui}N

i=1. In this paper, slope
β = 0.1 is used throughout.

Adjustment of weights to achieve desired column sums is
described in Section 4.1. The W output by any neighbor
weight selection method is then used to calculate coordinate
estimates {z̃i} via the Laplacian Eigenmaps algorithm in
Section 3.

4.1. Symmetric Adjustment of Weights: Matrix W must
remain symmetric after any weight adjustment, since it de-
scribes a symmetric graph. If we just scaled the weights in
column i by ũi/ui, column i would have the desired sum
ũi, but W would not remain symmetric. In this weight-
adjustment algorithm, we iteratively adjust wi,j (or equiv-
alently wj,i) until ũi = ui. The inputs to the algorithm
are: the original weights {wi,j}; the desired sum of weights
{ũi} for i = 1 . . . N ; and a convergence threshold ε (here
ε = 0.01). The algorithm outputs the modified weight ma-
trix. The steps are:

1. Calculate ui =
∑N

j=1 wi,j for i = 1 . . . N .

2. Define γi =
√

ũi/ui, for i = 1 . . . N .

3. Assign wi,j = wj,i := γiwi,jγj ∀ neighbors i, j.

4. If ∀i, 1 − ε < γi < 1 + ε, stop. Else go to 1.

The algorithm requires O(KN) multiplies, where K is the
average number of neighbors. We do not address the con-
vergence of this algorithm here, except to note that in simu-
lations, it typically converges in 5-10 iterations.

4.2. Two-Stage Weight Selection: In [10], it was shown
that localization estimates can be greatly improved by using
a two-stage neighbor selection method. We consider the
following two-stage algorithm for weight selection:

1. Using the linear sum-of-weights method to set W ,
calculate the Laplacian Eigenmaps coordinate esti-
mates {z̃i}.

2. For the 2nd round, let the desired column sums ˜̃ui be

˜̃ui = ũi

√
Ki/K̃i (9)

where K̃i is the number of its neighbors j for which
‖z̃i − z̃j‖ < R, and R is the radius of coverage. Ad-
just W to meet {˜̃ui}, and then calculate final coordi-
nate estimates {ẑi}i=1...N .

Intuitively, if few of the neighbors of sensor i are estimated
to be within its communication range, then we can guess
that sensor i’s weights should be increased. The presented
choices are by no means optimal, and other iterative algo-
rithms or updates are certainly possible. We simply show
that the performance of this ad hoc method does in fact dra-
matically improve localization performance.

5. SIMULATION RESULTS

In this section we test the localization performance using
different estimators in multiple sensor geometries. For each
test, we run 200 independent simulation trials in order to
determine the mean coordinate estimate z̄i for i = 1 . . . n,
and the covariance matrix C. In each simulation, the statis-
tical model in Section 2 is used to randomly generate con-
nectivity measurements in the sensor network. Each plot in
Fig. 1 shows z̄i (�) and the 1-σ covariance ellipse (—-) for
each sensor. For comparison, we always plot in gray (or
red in the electronic version) the actual sensor coordinate
(•) and the Cramér-Rao bound (CRB) for the 1-σ covari-
ance ellipse (- - - -) [6]. For each test, we summarize the
mean bias b̄ = 1

n

∑n
i=1 ‖zi − z̄i‖ and the standard devia-

tion, σ̄ =
√

1
n tr C, of the localization estimator. Note all

distances are in terms of L, the chosen scale of the network.

5.1. MDS-MAP

We first test MDS-MAP in a 7 by 7 grid network, in which
the four corner sensors are reference sensors, and the other
45 are unknown-location sensors. For a communication ra-
dius R = 0.5, the MDS method has standard deviation of
location error σ̄ = 0.218 and a bias of b̄ = 0.087, as shown
in Fig. 1(a). At R = 0.5, almost all pairs of sensors are
within 1 or 2 hops from each other. At lower radii R, the
MDS-MAP achieves very low bias, as shown in Table 5,
but the standard deviation of error is largely constant, con-
sistently about twice the lower bound of the CRB.

5.2. Laplacian Eigenmaps One-Stage

Equal Weights: Next, we test Laplacian Eigenmaps using
the equal weights method (as described in Section 4). The
simulation results show a heavily biased estimator. For R =
0.5, the results are shown in Fig. 1(b), in which the mean



Location MDS- LE Eql. LE Eql. LE Lin.
Estimator MAP Wts.

∑
-Wts.

∑
-Wts. LE 2-Stage Linear Sum-of-Weights

Geometry 7 by 7 Grid Grid+Z/4 Grid+Z/2 Unif. Rand

R = 0.3 b̄ = 0.026 b̄ = 0.106 b̄ = 0.056 b̄ = 0.048 b̄ = 0.039 b̄ = 0.046 b̄ = 0.062 b̄ = 0.069

σ̄ = 0.205 σ̄ = 0.191 σ̄ = 0.153 σ̄ = 0.153 σ̄ = 0.133 σ̄ = 0.142 σ̄ = 0.155 σ̄ = 0.126

R = 0.4 b̄ = 0.022 b̄ = 0.154 b̄ = 0.059 b̄ = 0.035 b̄ = 0.033 b̄ = 0.037 b̄ = 0.055 b̄ = 0.048

σ̄ = 0.205 σ̄ = 0.188 σ̄ = 0.143 σ̄ = 0.144 σ̄ = 0.136 σ̄ = 0.139 σ̄ = 0.141 σ̄ = 0.127

R = 0.5 b̄ = 0.087 b̄ = 0.186 b̄ = 0.040 b̄ = 0.036 b̄ = 0.026 b̄ = 0.027 b̄ = 0.040 b̄ = 0.031

σ̄ = 0.218 σ̄ = 0.189 σ̄ = 0.149 σ̄ = 0.146 σ̄ = 0.144 σ̄ = 0.147 σ̄ = 0.149 σ̄ = 0.140

Figure 1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 1(h)

Table 1. Simulated performance of MDS-MAP and Laplacian Eigenmaps (LE) using equal weights, equal sum-of-weights,
linear sum-of-weights, and two-stage linear sum-of-weights. The sensor geometries are the 7 by 7 grid, grid plus noise (c = 2
and c = 4), and uniform random.
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Fig. 1. Estimator mean (�) and 1-σ uncertainty ellipse (—-) for each blindfolded sensor compared to the true location (•)
and CRB on the 1-σ uncertainty ellipse (- - - -), when reference sensors are located at each ×. All cases are R = 0.5 tests
described in Section 5 and in Table 1.



bias b̄ = 0.186 and the standard deviation of location error
σ̄ = 0.189. At R = 0.3 and R = 0.4, the biases b̄ listed in
Table 5 are lower but still very high.

Equal Sum-of-Weights: The performance of Laplacian Eig-
enmaps, when weights are determined by the equal sum-of-
weights method, is dramatically better than the equal weights
method, as shown in Table 5. For R = 0.5, the results
shown in Fig. 1(c) show that the edge nodes seem to have
weights too high compared to the interior nodes, the oppo-
site bias pattern compared to Fig. 1(b).

Linear Sum-of-Weights: The Laplacian Eigenmaps with
adjusted sum-of-weights reduces the bias compared to equal
sum-of-weights. As shown in Table 5 and in Fig. 1(d), the
bias has been reduced, especially at R = 0.4, even though
the values of σ̄ are largely unchanged.

5.3. Laplacian Eigenmaps Two-Stage

Using the two-stage weight adjustment described in Section
4.2, bias is further reduced. Furthermore, as shown in Table
5, the variance for R = 0.3 and 0.4 is dramatically lower
than the one-stage linear sum-of-weights method. These
variances in the grid geometry are about 30-35% higher than
the Cramér-Rao lower bound, so even an efficient estimator
would not reduce σ̄ dramatically further.

However, we certainly don’t expect that sensors will be
arranged in a perfect grid. The true test of sensor local-
ization is performance sensor placement is random, which
is presented next. Each test shows the performance of the
Laplacian Eigenmaps two-stage weight selection method.

Grid Plus Noise: First, we add a Gaussian random vec-
tor to each unknown grid coordinate, i.e., for i = 1 . . . n,
zi = żi + Zi/c, where żi is the original coordinate on the
7 by 7 grid, and {Zi} are independent Gaussian-distributed
with mean zero and covariance (1/6)2I2, and c = 2 or 4.
Essentially, the standard deviation of the random addition
is either one-fourth or one-half of the distance between grid
nodes. We generate two geometries from this model for
c = 2 and c = 4, and show simulation results in Table 5 and
in Fig. 1(f-g). For R = 0.4 and 0.5, the bias and standard
deviation of location error increase only slowly. However,
for R = 0.3, the bias and variance do increase consider-
ably. We note that sensors actually located outside of the
unit square [0, 1]2 have noticeably higher bias and variance.

Uniform Random: Next, for i = 1 . . . N , zi are inde-
pendently chosen from a uniform distribution over the unit
square area, [0, 1]2. The sensors closest to each corner are
selected as the 4 references, so in this test, even the refer-
ences are randomly deployed. The resulting σ̄ are lower
than in the 7 by 7 grid or the grid plus noise geometries.
We note that the CRB for σ̄ is also about 15% lower for this
deployment compared to the 7 by 7 grid, so it is legitimate
to expect lower σ̄. Essentially, sensors very close together
can provide increased information about their relative loca-
tion. However, the biases b̄ are higher than the 7 by 7 grid,
especially for R = 0.3.

6. DISCUSSION AND CONCLUSION

For random deployments, a low communication radius like
R = 0.3 may cause some sensors to have very few neigh-
bors, and localization performance will suffer. System de-
signers should plan for the tendency of sensors outside of
the convex hull of the reference nodes to experience higher
localization errors.

Using a realistic statistical model for connectivity, simu-
lations show the potential of the Laplacian Eigenmaps method
to be a robust, low-bias and low-variance sensor location es-
timator. It does not suffer from local optima and it has low
computational complexity compared to MDS-based estima-
tors. The presented two-stage weight-selection method is
used to achieve low bias and standard deviation within 35%
of the lower bound. However, general analysis of weight se-
lection methods has not been attempted. Finally, distributed
algorithms have not yet been presented for the proposed
methods. These issues remain open for future research.
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