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Abstract

In the manifold learning problem one seeks to dis-
cover a smooth low dimensional surface, i.e., a manifold
embedded in a higher dimensional linear vector space,
based on a set of measured sample points on the surface.
In this paper we consider the closely related problem of
estimating the manifold’s intrinsic dimension and the in-
trinsic entropy of the sample points. Specifically, we view
the sample points as realizations of an unknown multivari-
ate density supported on an unknown smooth manifold. We
present a novel geometrical probability approach, called
the geodesic-minimal-spanning-tree (GMST), to obtaining
asymptotically consistent estimates of the manifold dimen-
sion and the Ŕenyi�-entropy of the sample density on the
manifold. The GMST approach is striking in its simplicity
and does not require reconstructing the manifold or esti-
mating the multivariate density of the samples. The GMST
method simply constructs a minimal spanning tree (MST)
sequence using a geodesic edge matrix and uses the over-
all lengths of the MSTs to simultaneously estimate mani-
fold dimension and entropy. We illustrate the GMST ap-
proach for dimension and entropy estimation of a human
face dataset.

Keywords: Nonlinear dimensionality reduction, geomet-
rical probability, minimal spanning trees, intrinsic alpha-
entropy, global manifold learning, conformal embeddings.

1 Introduction

Consider a class of natural occurring signals, e.g., recorded
speech, audio, images, or videos. Such signals typically
have high extrinsic dimension, e.g., as characterized by the
number of pixels in an image or the number of time sam-
ples in an audio waveform. However, most natural signals

have smooth and regular structure, e.g. piecewise smooth-
ness, that permits substantial dimension reduction with lit-
tle or no loss of content information. For support of this
fact one needs only consider the success of image, video
and audio compression algorithms, e.g. MP3, JPEG and
MPEG, or the widespread use of efficient computational
geometry methods for rendering smooth three dimensional
shapes.

A useful representation of a regular signal class is
to model it as a set of vectors which are constrained to a
smooth low dimensional manifold embedded in a high di-
mensional vector space. This manifold may in some cases
be a linear, i.e., Euclidean, subspace but in general it is a
non-linear curved surface. A problem of substantial recent
interest in machine learning, computer vision, signal pro-
cessing and statistics [34, 14, 27, 16, 26, 35] is the determi-
nation of the so-called intrinsic dimension of the manifold
and the reconstruction of the manifold from a set of sam-
ples from the signal class. This problem falls in the area
of manifold learning which is concerned with discovering
low dimensional structure in high dimensional data.

When the samples are drawn from a large popula-
tion of signals one can interpret them as realizations from
a multivariate distribution supported on the manifold. As
this distribution is singular in the higher dimensional em-
bedding space it has zero entropy as defined by the stan-
dard Lebesgue integral over the embedding space. How-
ever, when defined as a Lebesgue integral restricted to
the lower dimensional manifold the entropy can be finite.
This finite “intrinsic” entropy can be useful for for ex-
ploring data compression over the manifold or, as sug-
gested in [21], clustering of multiple sub-populations on
the manifold. The question that we address in this paper
is: how to simultaneously estimate the intrinsic dimension
and intrinsic entropy on the manifold given a set of random
sample points? We present a novel geometrical probabil-
ity approach to this question which is based on entropic
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graph methods developed by us and reported in publica-
tions [23, 21, 20].

Techniques for manifold learning can be classified
into three categories: linear methods, local methods, and
global methods. Linear methods include principal com-
ponents analysis (PCA) [25] and multidimensional scaling
(MDS) [12]. They are based on analyzing eigenstructure of
empirical covariance matrices, and can be reliably applied
only when the manifold is a linear subspace. Local meth-
ods include linear local imbedding (LLE) [32], locally lin-
ear projections (LLP) [24], Laplacian eigenmaps [4], and
Hessian eigenmaps [16]. They are based on local approxi-
mation of the geometry of the manifold, and are computa-
tionally simple to implement. Global approaches include
ISOMAP [34] and C-ISOMAP [15]. They preserve the
manifold geometry at all scales, and have better stability
than local methods.

We propose a geodesic-minimal-spanning-tree
(GMST) method for manifold learning that is imple-
mented as follows. First a complete geodesic graph
between all pairs of data samples is constructed, e.g. using
ISOMAP or C-ISOMAP. Then a minimal spanning graph,
the GMST, is obtained by pruning the complete geodesic
graph down to a subgraph that still connects all points
but has minimum total geodesic length. The intrinsic
dimension and intrinsic�-entropy is then estimated from
the GMST length functional using a simple linear least
squares (LLS) and method of moments (MOM) procedure.

The GMST method falls in the category of global ap-
proaches to manifold learning but it differs significantly
from the aforementioned methods. First, it has a differ-
ent scope. Indeed, unlike ISOMAP and C-ISOMAP, the
GMST method provides a statistically consistent estimate
of the intrinsic entropy in addition to the intrinsic dimen-
sion of the manifold. To the best of our knowledge no
other such technique has been proposed for learning man-
ifold dimension. Second, unlike local methods that work
on chunks of data in local neighborhoods, GMST works on
chunks of resampled data over the global data set. Third,
for N samples the GMST method hasO(N logN) com-
putational complexity as compared with theO(N3) com-
plexity of an MDS ISOMAP reconstruction. Fourth, the
GMST method is simple and elegant: it estimates intrin-
sic entropy and dimension by detecting the rate of increase
of a GMST as a function of the number of its resampled
vertices.

The aims of this paper are limited to introducing

GMST as a novel method for estimating manifold dimen-
sion and entropy of the samples. As in work of others on
dimension estimation [26, 8] we do not here consider the
issue of reconstruction of the complete manifold. Simi-
larly to these authors, we believe that dimension estima-
tion and entropy estimation for non-linear data are of in-
terest in their own right. We also do not consider the effect
of additive noise or outliers on the performance of GMST.
Finally, the consistency results of GMST reported here are
limited to domain manifolds defined by some smooth un-
known mapping. The extension of GMST methodology
to general target manifolds, e.g. those defined by implicit
level set embeddings [29, 28], is a worthwhile topic for
future investigation.

What follows is a brief outline of the paper. We re-
view some necessary background on the mathematics of
domain manifolds in Sec. 2. In Sec. 3 we review the
asymptotic theory of entropic graphs and obtain several
new results required for their extension to embedded man-
ifolds. In Sec. 4 we define the general GMST algorithm.
Finally in Sec. 5 we illustrate the GMST approach to es-
timating intrinsic dimension and entropy of a human face
dataset.

2 Background

2.1 A 3D Example

To illustrate ideas consider a 2D surface embedded in
3D Euclidean space, called the embedding space. Let
fx1;x2; : : :g � U � R

2 be a set of points (samples)
in a subsetU of the plane. Naturally, the shortest path
between any pair(xi;xj) of these points is given by the
straight line inR2 connecting them, with corresponding
distance given by its Euclidean (L2) length, jxi � xj j2.
Now letU be used as a parameterization space to describe
a curved surface inR3 via a mapping' : U ! R

3 .
SurfacesM = '(U) defined in this explicit manner are
called domain manifolds and they inherit the topological
dimension, equal to 2 in this case, of the parameterization
space. When' is non-linear the shortest path onM be-
tween pointsyi = '(xi) andyj = '(xj) is a curve on
the surface called the geodesic curve. In this paper we will
primarily consider domain manifolds defined by confor-
mal mappings'. Such conformal embeddings have the
property that the length of paths on the surface are identi-
cal to lengths of paths in the parameterization space, pos-
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sibly up to a smoothly varying local scale factor. This
property guarantees that, regardless of how the mapping
' “deforms”U ontoM, the geodesic distances inM are
closely related to the Euclidean distances inU . When this
smooth surface representation holds there exist algorithms,
e.g. ISOMAP and C-ISOMAP [34, 15], which can be used
to estimate the Euclidean distances between points inU
from estimates of the geodesic distances between points in
M. If a certain type of minimal spanning graph is con-
structed using these estimates well established results in
geometrical probability [36, 21] allow us to develop sim-
ple estimates of both entropy and dimension of the points
distributed on the surface.

2.2 Differential Geometry Setting

In the following, we recall some facts from differential ge-
ometry needed to formalize and generalize the ideas just
described. We will consider smooth manifolds embedded
in R

d . For the general theory we refer the reader to any
standard book in differential geometry (for example, [9],
[10], [7]). An m-dimensionalsmooth manifoldM � R

d

is a set such that each of its points has a neighborhood
that can be parameterized by an open set ofR

m through
a local change of coordinates. Intuitively, this means that
althoughM is a (hyper) surface inRd , it can be locally
identified withRm .

Let ' : 
 7! M be a mapping between two mani-
folds,
;M. Let be a curve in
. Thetangent mapd'x
assigns each tangent vectorv to 
 at pointx the tangent
vectord'xv toM at point'(x), such that, ifv is the ini-
tial velocity of in 
, thend'xv is the initial velocity of
the curve'() in M. For example, ifx 2 U � 
 � R

m ,
with U an open set ofRm , thend'xv = J'(x)v, where
J' = [@'i=@xj ], i = 1; : : : ; d, j = 1; : : : ;m, is the Jaco-
bian matrix associated with' at pointx 2 
.

The lengthof a smooth curve� : [0; 1] 7! M is de-

fined as`(�) =
R 1
0
j _�(t)jdt. The geodesic distancebe-

tween pointsy0;y1 2 M is the length of the shortest
(piecewise) smooth curve between the two points:

dM(y0;y1) = inf
�
f`(�) : �(0) = y0;�(1) = y1g :

We can now define the following types of embed-
dings.

Definition 1 ' : 
 7! M is called a conformal mapping
if ' is a diffeomorphism (i.e.,' is differentiable, bijective
with differentiable inverse'�1) and, at each pointx 2 
,
' preserves the angles between tangent vectors, i.e.,

(d'xv)
T
(d'xw) = c(x)vTw ; (1)

for all vectorsv andw that are tangent to
 at x, and
c(x) > 0 is a scaling factor that varies smoothly withx.
If for all x 2 
, c(x) = 1, then' is said to be a (global)
isometry. In this case the length of tangent vectors is also
preserved in addition to the angles between them.

It is easy to check that if there is an open setU � 
 �
R
m , then the diffeomorphism' is a conformal mapping iff

J'(x)
T J'(x) = c(x) Im, whereIm is them�m identity

matrix. In this case, the geodesic distance inM can be
computed as follows. Any smooth curve� : [0; 1] 7! M
can be represented as�(t) = '((t)), where : [0; 1] 7!

 is a smooth curve inRm . Then, the length̀(�) of the
curve� is given by

`(�) =

Z 1

0

���� ddt'((t))
���� dt

=

Z 1

0

jJ'((t)) _(t)j dt =

Z 1

0

p
c((t)) j _(t)j dt :

As in R
m the shortest path between any two points is

given by the straight line that connects them,(t) =

x0 + t(x1 � x0) minimizes
R 1
0
j _(t)j dt, over all smooth

curves with start and end points atx0 andx1, respectively.
So, if c(x) = c, for all x 2 
, the geodesic distance be-
tweeny0 = '(x0) andy1 = '(x1) is

dM('(x0); '(x1)) = cjx0 � x1j2 : (2)

Whenc = 1, i.e.,' is an isometry, the geodesic distance
in M and the Euclidean distance in the parameterization
spaceRm are the same. Ifc > 1 (c < 1) there is a global
expansion (contraction) in the distances between points.

It is evident from the above discussion that geodesic
distances carry strong information about a non-linear do-
main manifold such asM. However, their computation
requires the knowledge of the analytical form ofM via '
and its Jacobian. In the manifold learning scenario con-
sidered in this paper this analytical form is assumed un-
known and, instead, we are given a finite set of data points
lying on the smoothm-dimensional manifoldM, with m
also considered unknown. In order to reconstruct a domain
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Step 1. Determine a Euclidean neighborhood
graphG of the observed dataYn accord-
ing to the�-rule or thek-rule as defined in
ISOMAP [5].

Step 2. For isometric embeddings compute the
edge matrixE of the ISOMAP graph [34]
and for conformal imbeddings compute the
edge matrixE of the C-ISOMAP graph
[15]. The (i; j) entry of this symmetric
matrix is the sum of the lengths of the
edges inG along the shortest path between
the pair of vertices(Y i;Y j) where the
edge lengths between neighboring points
Y 1, Y 2 in G are defined as Euclidean dis-
tancejY 1-Y 2j in the case of ISOMAP or
jY 1-Y 2j=

p
M(1)M(2) in the case of C-

ISOMAP whereM(i) is the mean distance
of Y i to its immediate nearest neighbors.

Table 1: First two steps of the ISOMAP/C-ISOMAP al-
gorithms to reconstruct Euclidean distances betweenXn
on the embedding parameterization space from pointsYn
over the embedded manifold

manifold along with its parameterization we need to esti-
mate the geodesic distances between pairs of data points
inM and the respective Euclidean distances betweem pre-
images of these data points in the parameterization space
U .

WhenM is an isometric embedding the ISOMAP al-
gorithm [34] obtains such a reconstruction from a finite set
of samples through estimation of the pairwise geodesic dis-
tances. This estimate is computed from a Euclidean graph
G connecting all local neighborhoods of data points inM.
Specifically, ISOMAP proceeds as follows. Two methods,
called the�-rule and thek-rule [34], have been proposed
for contructingG. The first method connects each point
to all points within some fixed radius� and the other con-
nects each point to all itsk-nearest neighbors. The graph
G defining the connectivity of these local neighborhoods
is then used to approximate the geodesic distance between
any pair of points as the shortest path throughG that con-
nects them. This results in an edge matrix whose(i; j) en-
try is the geodesic distance estimate for the(i; j)-th pair of
points. Finally, ISOMAP obtains a smooth reconstruction
of the manifold by applying the classical Multidimensional
Scaling (MDS) method [12] to the edge matrix.

Steps one and two of ISOMAP are motivated by the
fact that locally any smooth manifold is approximately
“flat” and, so, the distances between neighboring points
are well approximated by their Euclidean distances. For
faraway points, the geodesic distance is estimated by sum-
ming the sequence of such local approximations over the
shortest path through the graphG. In [5] it was proved
that, when the data are random samples from a contin-
uous distribution on the manifoldM, the first two steps
of ISOMAP recover the true geodesic distances with high
probability if the data points form a sufficiently “dense”
sampling ofM and ifM is free of “holes.” WhenM is a
global isometric embedding inRd , the estimated geodesic
distances are also an estimate of distances inR

m and the
ISOMAP succeeds in its task of manifold reconstruction.
For other types of embeddings, there is no guarantee that
the ISOMAP will recover the correct parameterization. In
[14], a variant of this algorithm, called C-ISOMAP, was
proposed to deal with the more general class of conformal
embeddings.

With regards to estimation of the intrinsic dimension
m several methods have been proposed [25]. Most of these
methods are based on linear projection techniques: a linear
map is explicitly constructed and dimension is estimated
by applying Principal Component Analysis (PCA), factor
analysis, or MDS to analyze the eigenstructure of the data.
These methods rely on the assumption that only a small
number of the eigenvalues of the (processed) data covari-
ance will be significant. Linear methods tend to overesti-
matem as they don’t account for non-linearities in the data.
Both nonlinear PCA [27] methods and the ISOMAP cir-
cumvent this problem but they still rely on unreliable and
costly eigenstructure estimates. Other methods have been
proposed based on local geometric techniques, e.g., esti-
mation of local neighborhoods [35] or fractal dimension
[8], and estimating packing numbers [26] of the manifold.

3 Entropic Graph Estimators on
Embedded Manifolds

Let Yn = Y 1; : : : ;Y n ben independent identically dis-
tributed (i.i.d.) random vectors in[0; 1]d, with multivariate
Lebesgue densityf , which we will also call random ver-
tices. Define the edge matrixE as then�n matrix of edge
lengths (w.r.t. a specified metric) between pairs of vertices.
A spanning graphT overYn is defined as the pairfV;Eg
whereV = Yn andE is a subset of edges fromE which
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connect the verticesV . WhenE is computed from pair-
wise Euclidean distancesT is called a Euclidean spanning
graph.

It has long been known [3] that, when suitably nor-
malized, the sum of the edge weights of certain minimal
Euclidean spanning graphsT over Yn converges almost
surely (a.s.) to the limit�d

R
Rd
f�(y)dy where where the

integral is interpreted in the sense of Lebesgue,� 2 (0; 1)
and�d > 0. This a.s. limit is the integral factor

R
f�

in what we will call theextrinsicRényi �-entropy of the
multivariate Lebesgue densityf :

HR
d

� (f) =
1

1� �
log

Z
Rd

f�(y)dy : (3)

In the limit, when� ! 1 we obtain the usual Shannon
entropy,�

R
Rd
f(y) log f(y)dy. Graph constructions that

converge to the integral in the limit (3) were called continu-
ous quasi-additive (Euclidean) graphs in [36] and entropic
(Euclidean) graphs in [21]. See the monographs by Steele
[33] and Yukich [36] for an excellent introduction to the
theory of such random Euclidean graphs.

The�-entropy has proved to be an important quan-
tity in signal processing, where its applications range from
vector quantization [18, 31] to pattern matching [22] and
image registration [21, 19]. The�-entropy parameterizes
the Chernoff exponent governing the minimum probability
of error [11] making it an important quantity in detection
and classification problems. Like the Shannon entropy, the
�-entropy also has an operational characterization in terms
of source coding rates. In [13] it was shown that the�-
entropy of a source determines the achievable block-code
rates in the sense that the probability of block decoding er-
ror converges to zero at an exponential rate with rate con-

stantHR
d

� (f).

3.1 Beardwood-Halton-Hammersley Theo-
rem in R

d

A remarkable result in geometrical probability was estab-
lished by Beardwood, Halton and Hammersley almost half
a century ago [3]. LetYn = fY 1; : : : ;Y ng be a set of
points inRd . A minimal Euclidean graph spanningYn is
defined as the graph spanningYn having minimal overall
length

LR
d

 (Yn) = min
T2T

X
e2T

jej : (4)

Here the sum is over all edgese in the graphT , jej is the
Euclidean length ofe, and 2 (0; d) is called theedge
exponentor power-weighting constant. For example when
T is the set of spanning trees overYn one obtains the MST.
A minimal Euclidean graph is continuous quasi-additive
when it satisfies several technical conditions specified in
[36] (also see [23]). Continuous quasi-additive Euclidean
graphs include: the minimal spanning tree (MST), thek-
nearest neighbors graph (k-NNG), the minimal matching
graph (MMG), the traveling salesman problem (TSP), and
their power-weighted variants. While all of the results in
this paper apply to this larger class of minimal graphs we
specialize to the MST for concreteness.

Beardwood-Halton-Hammersley (BHH) Theorem
[33, 36]: LetYn be an i.i.d. set of random variables taking
values inRd having common probability distributionP .
Let this distribution have the decompositionP = F + Q
whereF is the Lebesgue continuous component andQ is
the singular component. The Lebesgue continuous compo-
nent has a Lebesgue density (no delta functions) which is

denotedf(x), x 2 R
d . LetLR

d

 (Yn) be the length of the
MST spanningYn and assume thatd � 2 and0 <  < d.
Then

LR
d

 (Yn)=n
� ! �d

Z
Rd

f�(y)dy (a:s:); (5)

where� = (d � )=d and�d is a constant not depend-
ing on the distributionP . Furthermore, the mean length

E[LR
d

 (Yn)]=n
� converges to the same limit.

The limit on the right side of (5) in the BHH theorem
is zero when the distributionP has no Lebesgue continu-
ous component, i.e., whenF � 0. On the other hand, when
P has no singular component, i.e.,Q � 0, a consequence
of the BHH Theorem is that

ĤR
d

� (Yn)
def
=

d



"
log

LR
d

 (Yn)

n(d�)=d
� log�d

#
(6)

is an asymptotically unbiased and strongly consistent esti-

mator of the extrinsic�-entropyHR
d

� (f) defined in (3).

3.2 Generalization of BHH Thm. to Embed-
ded Manifolds

If the verticesYn = fY 1; : : : ;Y ng are constrained to
lie on a smoothm-dimensional manifoldM � [0; 1]d,
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the distribution ofY i is singular with respect to Lebesgue
measure,F � 0, and, as previously mentioned, the limit
(5) in the BHH Theorem is zero. However, as shown be-
low, if M is defined by an isometric embedding from the
parameterization spaceRm , if Y i has a continuous den-
sity f onM, and if ISOMAP is used to approximate the
geodesic edge matrix, then the length of an MST con-
structed from the geodesic edge matrix can be made to
converge, after suitable normalization and transformation,
to theintrinsic�-entropyHM� (f) onM defined by

HM� (f) =
m


log

Z
M

f�(y)�M(dy); (7)

where�M(dy) denotes the differential volume element
overM.

More generally, assume thatM is embedded in[0; 1]d

through the diffeomorphism'. AsXi = '�1(Y i) lives
in Rm , letT be the Euclidean minimal graph spanningXn
and having length functionLR

m

 (Xn) = LR
m



�
'�1(Yn)

�
according to definition (4). We have the following exten-
sion of the BHH Theorem.

Theorem 1 LetM be a smooth compactm-dimensional
manifold embedded in[0; 1]d through the diffeomorphism
' : Rm 7! M. Assume2 � m � d and0 <  < m. Sup-
pose thatY 1;Y 2; : : : are i.i.d. random vectors onM hav-
ing common densityf with respect to Lebesgue measure
�M onM. Then, the length functionalLR

m

 ('�1(Yn)) of
the MST spanning'�1(Yn) satisfies

lim
n!1

LR
m

 ('�1(Yn))=n
(d
0

�)=d
0

! (8)8>>>>><
>>>>>:

1; d
0

< m

�m
R
M

�
det

�
JT' J'

����1

2 f�(y)�M(dy); d
0

= m

0; d
0

> m

(a.s.) where� = (m � )=m. Furthermore, the

mean E[LR
m

 ('�1(Yn))]=n
(d
0

�)=d
0

converges to the
same limit.

This theorem is a simple consequence of the relation
(5) in the BHH Theorem and properties of integrals over
manifolds.

Proof of Thm. 1:By the BHH Theorem, with probability

one

LR
m

 (Xn) = n(m�)=m�m

Z
Rm

f�X(x) dx+ o(n(m�)=m); (9)

wherefX is the density ofXi = '�1(Y i). Therefore the
limits claimed in (8) ford

0

< m andd
0

> m are obvious.
Ford

0

= m the relation (9) implies

lim
n!1

LR
m

 (Xn)=n
(m�)=m = �m

Z
Rm

f�X(x) dx; (10)

and it remains to show that this limit is identical to the limit
asserted in (8).

For an integrable functionF defined on a domain
manifoldM defined by the diffeomorphism' : Rm 7!
M, the integral ofF overM satisfies the relation [10]:Z

M

F (y)�M(dy) =

Z
Rm

F ('(x)) g(x) dx ; (11)

whereg(x) =
q

det
�
JT' J'

�
. SpecializingF to the in-

dicator function of a small volume centered at a pointy

(11) implies the following relation between volume ele-
ments inM andRm : �M(dy) = g(x) dx: Furthermore,
specializing toF (y) = f(y) it is clear from (11) that
fX(x) = f('(x))g(x). ThereforeZ
Rm

f�X(x)dx =

Z
Rm

(f('(x))g(x))�dx

=

Z
Rm

f�('(x))g��1(x)) g(x)dx;

which, after the change of variablex 7! '(x), is equiva-
lent to the integral in the limit (8). �

Our goal is to learn the entropy of non-linear data on
a domain manifold together with its intrinsic dimension,
given only the data setYn of n samples in the embedding
spaceRd , and without knowledge of its embedding func-
tion '. If ' is an isometric or conformal embedding then
it has been shown that for sufficiently dense sampling over
M, i.e., for largen, the ISOMAP or the C-ISOMAP al-
gorithm summarized in Table 1 will approximate the ma-
trix of pairwise Euclidean distances between the points
Xn = '�1(Yn) in the domain spaceRm without explicit
knowledge of'. Thus if one uses this edge matrix to con-
struct a MST overYn its length function will approximate
LR

m

 ('�1(Yn)) and we can invoke Thm. 1 to characterize
its asymptotic convergence properties. As the edge matrix
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will contain approximations to the geodesic distances be-
tween pairs of points(Yi;Yj) this graph will be called a
geodesicMST (GMST).

More specifically, assume that the embedding ofM is
isometric (conformal) and denote byEM the edge matrix
EM over the pointsYn constructed by the ISOMAP (C-
ISOMAP) algorithm [5, 15] as described in Table 1. Define
thegeodesicMST T as the minimal graph overYn whose
length is:

LM (Yn) = min
T2Tn

X
e2T

jej
M
; (12)

wherejejM ranges over then2 entriesjeij jM of the edge
matrixEM computed by ISOMAP (C-ISOMAP).

The following is the principal theoretical result of this
paper and is a simple consequences of Thm. 1.

Theorem 2 LetM be a smoothm-dimensional manifold
embedded in[0; 1]d through a conformal map' : Rm 7!
M. Let 2 � m � d and 0 <  < m. Suppose that
Y 1; : : : ;Y n are i.i.d. random vectors onM with common
densityf w.r.t. Lebesgue measure�M onM. Assume that
each of the edge lengthsjeij jM in the edge matrixEM
converge a.s. toj'�1(Y i)�'

�1(Y j)j2 asn!1. Then,
the length functional of the GMST satisfies

lim
n!1

LM (Yn)=n
(d
0

�)=d
0

! (13)8>>>><
>>>>:

1; d
0

< m

�m
R
M

f�(y) g�=d('�1(y))�M(dy); d
0

= m

0; d
0

> m

(a.s.) where� = (m�)=m andg(x)
def
=
q

det
�
JT' J'

�
.

Furthermore, the meanE[LM (Yn)]=n
(d
0

�)=d
0

converges
to the same limit.

Proof of Thm. 2:

First express the normalized length functional

LM (Yn)=n
(d
0

�)=d
0

as

LM (Yn)=n
(d
0

�)=d
0

= LR
m

 ('�1(Yn))=n
(d
0

�)=d
0

�
h
LM (Yn)=L

R
m

 ('�1(Yn))
i
:

By Thm. 1 the first factor on the right converges (a.s.)
to the the limit (8). Since the edges lengths used to con-
structLM (Yn) converge a.s. to the edge lengths used

to constructLR
m

 ('�1(Yn)) the term in brackets con-
verges (a.s.) to 1. Hence the normalized length func-

tionalLM (Yn)=n
(d
0

�)=d
0

converges (a.s.) to the the limit
(8). By identifying(� � 1) = �=d, x = '�1(y) and
det

�
JT' J'

�
= g('�1(y)), for d

0

= m the integrand on
the right of the limit (8) is equivalent to:

f�(y)
�
det

�
J
T
' J'

����1

2 = f�(y)
�
g('�1(y))

�� 
2d :

�

If m > 2, as the parameterd
0

is increased from2 to
1 the limit (13) in Thm. 2 transitions from infinity to a
finite limit and finally to zero over three consecutive steps
d
0

= m � 1;m;m + 1. As d
0

indexes the rate constant

n(d
0

�)=d
0

of the length functionalLM (Yn), this abrupt
transition suggests that the intrinsic dimensionm and the
intrinsic entropy might be easily estimated by investigat-
ing the convergence rate of the GMST’s length functional.
This observation is the basis for the estimation algorithm
introduced in the next section.

We now specialize Theorem 2 to the following cases
of interest.

3.2.1 Isometric Imbeddings

In the case that' defines an isometric imbedding the
ISOMAP algorithm is asymptotically able to recover the
true Euclidean distances between the points inXn =
'�1(Yn). Thus the assumption of Thm. 2 is satisfied. Fur-
thermore,JT' J' = Im. Thus, for example, whenLM (Yn)
is the length of the geodesic MST constructed on the edge
matrix generated by the ISOMAP algorithm, the limit (13)
holds with thed

0

= m limit replaced by

�m

Z
M

f�(y)�M(dy):

Furthermore, m= log
�
L̂M (Yn)=n

(m�)=m � log�m

�
converges a.s. to the intrinsic entropy (7).

7



3.2.2 Isometric Imbeddings with Contrac-
tion/Expansion

In the case that' defines an isometric imbedding with con-
traction or expansion the C-ISOMAP algorithm is able to
recover the true Euclidean distances between points inXn.
Furthermore,JT' J' = c Im wherec is a constant. Thus,

whenLM (Yn) is the length of the geodesic MST con-
structed on the edge matrix generated by the C-ISOMAP
algorithm the limit (13) holds with thed

0

= m limit re-
placed by

�mc
�=2

Z
M

f�(y)�M(dy):

Now m= log
�
L̂M (Yn)=n

(m�)=m � log�m

�
con-

verges a.s. up to an unknown additive constant�=2 log c
to the intrinsic entropy (7). We point out that in many
signal processing applications (e.g. image registration)
a constant bias on the entropy estimate does not pose a
problem since an estimate of the relative magnitude of the
entropy functional is all that is required.

3.2.3 Non-isometric Imbeddings Defined by Confor-
mal Mappings

In the case that' is a general (non-isometric) conformal
mapping the C-ISOMAP algorithm is once again able to
recover the true Euclidean distances between points inXn.
Furthermore,JT' J' = c(x) Im. Thus, whenLM (Yn) is
the length of the geodesic MST constructed on the edge
matrix generated by the C-ISOMAP algorithm, the limit
(13) holds with thed

0

= m limit replaced by

�m

Z
M

f�(y) c�=2('�1(y))�M(dy):

In this case m= log
�
L̂M (Yn)=n

(m�)=m � log�m

�
converges a.s. up to an additive constant to the weighted
intrinsic entropy

1

1� �
log

Z
M

f�(y) c�=2('�1(y))�M(y) :

The weighted�-entropy is a “version” of the standard un-
weighted�-entropyHM� (f) which is “tilted” by the space-
varying volume element ofM. This unknown weighting
makes it impossible to estimate the intrinsic unweighted

Initialize: Using entire database of
signals Yn construct geodesic distance
matrix EM using ISOMAP or C-ISOMAP.
Select parameters:
p0, p1 (p0 < p1 � n), and N (N > 0)

for p = p1; : : : ; pQ
L = 0
for N 0 = 1; : : : ; N

Randomly select a subset of p signals Yp fr o
Compute geodesic MST length Lp over Yp
L = L+ Lp

end for
Compute sample average geodesic MST length
Ê[LM (Yp)] = L=N

end for
Estimate m and HM� (f) from fÊ[LM (Yp)]g

pQ
p=p1

Table 2: GMST resampling algorithm for estimating in-
trinsic dimensionm and intrinsic entropyHM� .

�-entropy. However, as can be seen from the discussion in
the next section, as the rate exponent of the GMST length
depends onm we can still perform dimension estimation
in this case.

3.2.4 Non-conformal Diffeomorphic Imbeddings

When' defines a general diffeomorphic embedding a re-
sult analogous to Thm. 1 easily follows giving an identi-

cal limiting relation to (8) except thatLM (Yn)=n
(d
0

�)=d
0

converges to

�m

Z
M

f�(y)
�
det

�
J
T
' J'

���=2d
�M(dy);

whend
0

= m. However, without an extension of the C-
ISOMAP algorithm that can provably learn the Euclidean
distances between the pointsXn in the parametrization
space, Thm. 2 is not applicable. To the best of our knowl-
edge such an extension of C-ISOMAP does not yet exist.

4 GMST Algorithm

Now that we have characterized the asymptotic limit (13)
of the length function of the GMST we here apply this the-

8



ory to jointly estimate entropy and dimension. The key is
to notice that the rate of convergence is strongly depen-
dent onm while the rate constant in the convergent limit
is equal to the intrinsic�-entropy. We use this strong rate
dependence as a motivation for a simple estimator ofm.
Throughout we assume that the geodesic minimal graph
lengthLM (Yn) is determined from an edge matrixEM
that satisfies the assumption of Thm. 2, e.g., obtained using
ISOMAP or C-ISOMAP. We set the edge power weighting
in LM (Yn) to  = 1 and assume thatm � 2. This guar-

antees thatLM (Yn)=n
(d
0

�)=d
0

has a non-zero finite con-

vergent limit ford
0

= m. Next defineln = logLM (Yn).
According to (13)ln has the following approximation

ln = a log n+ b+ �n; (14)

where

a = (m� )=m;

b = log�m + =m HM� (f); (15)

� = (m � )=m and�n is an error residual that goes to
zero a.s. asn!1.

The additive model (14) could be the basis for many
different methods for estimation ofm andH . For exam-
ple, we could invoke a central limit theorem on the MST
length functional [1] to motivate a Gaussian approximate
to �n and apply maximum likelihood principles. How-
ever, in this paper we adopt a simpler non-parametric least
squares strategy which is based on resampling from the
populationYn of available points inM. The algorithm
is summarized in Table 2. Specifically, letp1; : : : ; pQ,
1 � p1 < : : : ; < pQ � n, be Q integers and let
N be an integer that satisfiesN=n = � for some fixed
� 2 (0; 1]. For each value ofp 2 fp1; : : : ; pQg gener-
ateN independent samplesYjp , j = 1; : : : ; N and from
these samples compute the empirical mean of the GMST
length functionalsLp = N�1

PN
j=1 L

M
 (Yjp). Defining

l = [logLp1 ; : : : ; logLp1 ]
T , and motivated by (14) we

write down the linear vector model

l = A

�
a
b

�
+ � (16)

where

A =

�
log p1 : : : log pQ

1 : : : 1

�T
:

Expressinga and b explicitly as functions ofm andH�

via (15), the dimension and entropy quantities could be

estimated using a combination of non-linear least squares
(NLLS) and integer programming. Instead we take a sim-
pler method-of-moments (MOM) approach in which we
use (16) to solve for the linear least squares (LLS) esti-
matesâ; b̂ of a; b followed by inversion of the relations
(15). After making a simple largen approximation, this
approach yields the following estimates:

m̂ = b=(1� â)c

ĤM� =
m̂



�
b̂� log�m̂

�
:

It is easily shown that the law of large numbers and Thm.
2 imply that this estimator is consistent asn ! 1. We
omit the details.

A word about determination of the sequence of con-
stantsf�mgm is in order. First of all, in the largen regime
for which the above estimates were derived,�m is not re-
quired for the dimension estimator.�m is the limit of the
normalized length functional of the Euclidean MST for a
uniform distribution on the unit cube[0; 1]m. Closed form
expressions are not available but several approximations
and bounds can be used in various regimes ofm [36, 2].
Another possibility is to determine�m by simulation of
the Euclidean MST length on them-dimensional cube for
uniform random samples. In our simulations, described be-
low, we have used the largem approximation of Bertsimas
and van Ryzin [6]:log�m � =2 log(m=2�e).

Before turning to the application we briefly discuss
computational issues. We have developed a custom im-
plementation of the MST algorithm which is a modifica-
tion of Kruskal’s algorithm [30]. This implementation im-
plements an efficient disk radius algorithm to restrict the
search space yielding substantial runtime speedup. This
has allowed us to routinely implement the MST on tens of
thousands of points.

5 Application

We performed several preliminary validation tests of the
GMST estimator on simulated data including: a linear
manifold and the swiss roll manifold investigated in [34].
Due to space limitations we will not present results from
these validation tests. Rather we will present a very simple
example to illustrate the applicability of GMST intrinsic
dimension and entropy estimates. For this purpose we in-
vestigated a set of black-and-white images of several indi-
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viduals taken from the Yale Face Database B [17]. This
is a publicly available database containing face images
of 10 subjects with 585 different viewing conditions for
each subject. These consist of 9 poses and 65 illumination
conditions (including ambient lighting). The images were
taken against a fixed background which we did not bother
to segment out. We think this is justified since any fixed
structures throughout the images would not change the in-
trinsic dimension or the intrinsic entropy of the dataset. We
randomly selected 3 individuals from this data base and
subsampled each person’s face images down to a64 � 64
pixel image. The pixels in each of the images were lexi-
cographically reordered into vectors residing in a 4096 di-
mensional space.

We studied the dimension and entropy of each per-
son’s face as follows. We first generated the Euclidean
nearest neighbor graphG used by ISOMAP in Step 1 (see
Table 1) for each of the three sets of 585 images. We then
investigated the trajectory of the mean GMST as a func-
tion ofn for each person’s face folio. Specifically26� 25
random samples (with replacement) were selected to form
26 resampled face subsets of sizes ranging from100 to
585, respectively. Step 2 of the ISOMAP algorithm was
then implemented on each sample to generate 650 differ-
ent edge matrices. Subsequently the GMST was computed
from each of these edge matrices and for each of the 26
folio sizes the 25 resampled GMST length functions were
averaged to obtain 3 average GMST length sequences over
n. In the GMST implementation the edge exponent was
fixed at a value of 1.

In Fig. 1 the sequence of average GMST length func-
tionals is plotted for each of the three faces. The symbols
denote the locations of the 26 values ofn chosen for study
and the corresponding values of the average GMST length.
Note that the average GMST length sequences appear to
increase almost linearly overn for each of the three per-
sons, albeit with different rate constants. However, after
a log-log transformation, shown in Fig. 2, it becomes evi-
dent that the linear model for the of the mean GMST length
functional is not valid for smalln. Fig. 3 is a blowup of
Fig. 2 forn � 500 and experimentally confirms the large-
n linear behavior predicted by Thm. 2 and supports the
validity of the linear model (14).

Using the average GMST length sequences we next
estimated slope and intercept parametersa; b of the linear
model and implemented the MOM estimator of dimension
and entropy as described in the previous section. Only the
rangen > 500 was used in fitting the linear model. The
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Figure 1: The average geodesic MST growth rates for three
different face images in the Yale face database B.
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Figure 2: Log-log plot of Fig. 1.
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Figure 3: Blowup of Fig. 2 showing linearity of geodesic
MST growth rates for largen.

Face1 Face2 Face3

m̂ 6 5 6
Ĥ (bits) 70.4 68.8 73.8

Table 3: Dimension estimateŝm and entropy estimateŝH
for three faces in the Yale Face Database B.

MOM estimator ofm was rounded to the nearest integer
and the parameter�m was estimated by the largem ap-
proximation [6]. The results are summarized in Table 3.
As a result of this procedure the estimated face dimension
m was observed to vary between 5 and 6 for each of the
individuals. The intrinsic entropy estimate expressed in
log base 2 was concentrated around 70 bits. Note that as
� = (m� 1)=m is close to one for these estimated values
of m the estimates of�-entropy are expected to be close to
the Shannon entropy. These entropy estimates suggest that
one should be able to get away with a model incorporating
at most 6 parameters to describe the range 585 poses and
illuminations of any of the three faces. An MDS ISOMAP
analysis of the same three faces gave slightly higher esti-
mates of dimension, varying between 6 and 7.

6 Conclusion

We have presented a novel method for intrinsic dimension
estimation and entropy estimation on smooth domain man-
ifolds. With regards to intrinsic dimension estimation, the

method proposed has two main advantages. First, it is
global in the sense that tyhe MST is constructed over the
entire and we thus avoid local linearizations. Second, un-
like previous methods it simple to implement and does not
require tuning any user-defined parameters such as eigen-
value thresholds or sizes of local neighborhoods. The
GMST methods described in this paper are currently be-
ing applied to a large number of dimension reduction and
entropy characterization problems including: gene cluster-
ing in bioinformatics, Internet traffic analysis, lung nodule
classification, and radar signature analysis.
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