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ABSTRACT

In this paper a Maximum Likelihood (ML) method is presented for joint estimation of amplitude,
phase, time delay, and data symbols in a single user direct sequence spread spectrum communication
system. Since maximization of the likelihood function is analytically intractable a novel coordinate
ascent algorithm is used to obtain sequential updates of the data symbols and all unknown nuisance
parameters. The novelty of the algorithm is due to the use of a multi-resolution expansion of the
received signal and the use of polynomial rooting in the complex plane in place of a line search over
the signal delay parameter. The multi-resolution structure of the algorithm is exploited to reduce
sensitivity to impulsive noise via wavelet thresholding. Computer simulations of the single user
system show that the algorithm has fast convergence, and comparison to theoretical lower bounds
establishes that the algorithm achieves nearly optimal error performance.
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1 Introduction

The new technologies of multi-user wireless communication systems, mobile radio, and personal

communication networks require advanced signal processing methods for improved e�ciency and

reliability. The growing computing power and shrinking cost of Digital Signal Processing (DSP)

technology makes sophisticated signal processing algorithms both practical and a�ordable. Wireless

communication systems must frequently operate in harsh environmental conditions that adversely

e�ect the transmitted signal through such phenomena as time varying channel response, multipath

fading, multi-access and co-channel interference, non-Gaussian noise and loss of synchronization.

A parametric model of the received signal typically includes unknown amplitude, phase, and time

delay, which should be accurately estimated to ensure near optimal decoding of the data symbols.

Traditionally, these nuisance parameters are estimated by non-optimal combination of several sub-

systems, each specialized to estimating a particular parameter. For example, carrier phase and time

delay estimation are frequently done with a Phase Locked Loop (PLL) and a Delay Locked Loop

(DLL), respectively [24]. The PLL and DLL techniques are equivalent to the optimal Maximum

Likelihood (ML) or Maximum Aposteriori Probability (MAP) estimators, under the assumptions

that the data symbols are known, and that either the symbol timing is known (PLL) or the carrier

phase is known (DLL). However, the overall estimator is sub optimal and it may unnecessarily

reduce the system's operational threshold. Therefore an optimal receiver which jointly estimates

the nuisance parameters as well as the data symbols is sought in order to achieve better performance.

A considerable amount of research has gone into improving the performance of the basic PLL

and DLL synchronization techniques, e.g. by using decision feedback in a Data-Aided Loop (DAL)

[23, 2], a decision directed receiver [22], or by deriving optimal non data-aided estimation structures

[27]. More recently digital implementations of Pseudo-Noise (PN) code tracking algorithms using

the extended Kalman �lter have been proposed [21]. The problem of maximum likelihood sequence

estimation for the Inter Symbol Interference (ISI) channel has been treated in the classical work [15]

using a whitened matched �lter followed by a Viterbi decoding algorithm. Most of these estimation

techniques critically depend on the Gaussian noise assumption, so they become ine�ective when

the interference contains a dominant impulsive noise component. The joint parameter estimation

and data demodulation problem becomes even more di�cult in a multi-user communication system

such as the Code Division Multiple Access (CDMA) system, which provided the motivation for the

work reported in this paper.
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This paper presents a novel joint ML estimator of the unknown parameters in the context of

a single user receiver. First an ML estimation algorithm for the additive white Gaussian noise

(AWGN) channel is developed, which is subsequently robusti�ed for the non-Gaussian impulsive

noise channel. The ML estimator yields an optimal receiver which generates estimates of the

nuisance parameters that are asymptotically uniform minimum variance unbiased (UMVUE) in

the sense of achieving the CR bound in the limit of large number of observations. The single user

ML algorithm has been adapted to multi-user channels but due to space limitations this is treated

elsewhere [36, 37]. Also, while such extensions have not yet been fully expored, it is probably

straightforward to apply the approach of this paper to the case of fading and ISI channels.

It is well known that direct maximization of the joint likelihood function is analytically in-

tractable due to the unknown delay parameter. Several suboptimal schemes for approximating the

joint maximum likelihood sequence and synchronization parameters have been recently proposed

[5, 34, 33]. Another approach is iterative ML estimation using steepest descent, Newton-Raphson,

or the Expectation-Maximization (EM) algorithm which have been used in similar problems involv-

ing superposition of signals [3, 4, 12, 11, 16]. These algorithms are limited to block processing: all

the unknown parameters, and in particular all the data symbols within a block, must be updated

simultaneously. Furthermore, many of these algorithms are known to su�er from divergence or

very slow convergence. This results in a large processing delay which can only be compensated by

increasing processor speed and receiver power consumption. For the case of known signal delay

(synchronous case) the Viterbi Algorithm performs maximum likelihood sequential decoding in a

single pass over the symbols sequence [15]. However the single pass Viterbi algorithm cannot be

implemented as an ML decoder for the asynchronous case. The iterative ML algorithm proposed

in this paper uses coordinate ascent maximization to jointly estimate amplitude, phase, time delay

and data symbols in a sequential manner. Furthermore, by performing the parameter updates on

the coe�cients of a multi-resolution decomposition of the received signal a single pass algorithm is

obtained.

Coordinate ascent is an iterative maximization technique which cycles over groups (or coordi-

nates) of parameters and guarantees that the likelihood is increased at each iteration. It is related

to a class of EM algorithms known as Space-Alternating Generalized EM (SAGE) algorithms in-

troduced in [13] and applied to the synchronous multi-user synchronous CDMA detection problem

in [30]. Standard EM algorithms have been applied to synchronous sequence estimation in the
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presence of fading [17] and unknown carrier phase [32]. The algorithm in this paper handles both

unknown carrier phase and unknown bit synchronization and is equivalent to a SAGE algorithm

for a special choice of hidden data sets (complete data) which are de�ned as one-to-one transfor-

mations of the observations (incomplete data). As a result, it can be shown that this coordinate

ascent algorithm is a SAGE algorithm which has the fastest possible asymptotic convergence for

this particular parameter cycling strategy. Since for signal superposition problems, such as the

communications application in this paper, the asymptotic convergence speed of SAGE is signi�-

cantly faster than standard EM [13], this coordinate ascent algorithm does not su�er from the slow

convergence inherent to EM algorithms.

As in [28, 19] a well adapted orthogonal signal representation of the measurements is used as

a way to concentrate parameter and symbol information into a low number of coe�cients. These

representations cover the conventional cardinal series basis, the time limited sinusoidal basis func-

tions [20], the Walsh basis, the exponential basis [19], the Karhunen-Loeve basis, and the Slepian

basis [38]. The orthogonal representation is exploited by re-expressing the likelihood function as a

polynomial in a complex variable which is then used to solve for the unknown delay by fast root

�nding methods. Next this is specialized to the Daubechies wavelet basis [7, 41] to obtain a multi-

resolution data recursive implementation of the coordinate ascent ML algorithm. Wavelets have

the advantage of time and scale localization which make them well suited for recursive parameter

update algorithms for which each parameter a�ects the signal at di�erent times and scales. In

the present application, the amplitude and phase parameters are coarse scale parameters in the

sense that changes in these parameters a�ects the signal by a global scale factor over time. On the

other hand the data symbols are �ner scale parameters since they only a�ect the signal locally in

time. The multi-resolution property is important for the implementation of the coordinate ascent

algorithm as it separately encodes coarse scale parameters, e.g. signal amplitude and phase, and

�ner scale parameters, e.g. data symbols and timing, into di�erent sets of wavelet coe�cients.

Wavelet based signal processing techniques have recently seen very rapid growth in related areas.

They have demonstrated their usefulness in seismology, image processing, and data compression

as well as in many other applications. Wavelet bases enjoy a very strong optimality property for

general inverse problems in that their use can achieve accurate and parsimonious representation of

the input signal and simultaneously diagonalize the channel [10]. In addition, wavelet and other

orthogonal modulation schemes have been suggested as a means of attaining reliable communication
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over multiple access, fading, and ISI channels [43, 45, 44]. While such modulation schemes are not

required for implementation of the ML receiver presented here, the receiver is naturally adapted to

them.

Wavelet domain signal processing can also be very e�ective in suppression of impulsive noise

which exists in wireless and optical communications as well as wireline communications such as

digital subscriber lines and cable TV plants. This type of temporally localized noise contaminates

a signi�cant portion of the usable transmission spectrum. The optimum receiver for impulsive

noise is hard to derive, while narrow band noise rejection techniques are not e�ective. Although

the in
uence of impulsive noise can be reduced by the use of additional coding [29], this comes at

a cost of reduced data rate and/or increased delay. The temporal localization of the wavelet basis

can be used to detect and reject impulsive events using a simple thresholding algorithm [1, 10].

The reasoning is that only the largest wavelet coe�cients are likely to be signi�cantly corrupted

by the noise impulses. It will be shown how this thresholding technique can be easily incorporated

within the general framework of iterative ML sequence estimation.

The paper is organized as follows. In Section 2 the single user observation model is de�ned.

In Section 3 the form of the likelihood function is given and simpli�cations of the line search

step are discussed which result in a coordinate ascent algorithm with increasing complexity as a

function of the block size. In Section 4 a �xed complexity algorithm is obtained by using wavelet

representations. In Section 5 the �xed complexity algorithm is robusti�ed against impulsive noise

interference via wavelet thresholding. In Section 6 simulation results are presented and Section 7

concludes the paper.

2 Observation Model

Consider the following single user complex baseband model for the received signal:

Y (t) = s(t) + u(t) 0 � t � T ; (1)

where s(t) is an attenuated and delayed version of the data modulated signal transmitted by the

user,

s(t) = a
N�1X
n=0

bnp(t� nTb � d): (2)

Note that s(t) is a superposition of delayed and scaled versions of the signaling waveform p(t) which

is assumed to be a known PN code. For simplicity it is assumed that the period of the PN code is
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equal to the data symbol time interval Tb. Note that it is not necessary to assume that the support

of p(t) is the same as the symbol interval { this property would be critical for extension of the

algorithm to ISI channels. The noise u(t) will be assumed to be a complex white Gaussian process

with power spectral density N0=2.

The unknown parameters in the model (2) are the complex gain a 2 fR exp(i�) : R > 0; 0 �
� < �g, the data symbols bn 2 f�1g for n = 0; : : : ; N �1, and the time delay d. It is assumed that

d is contained in the interval [�Td=2; Td=2] for some positive Td � T . The n index set notation

IN = f0; : : : ; N � 1g will be used. For simplicity the data symbols bn in (2) are assumed to be

in BPSK modulation format, but with minor modi�cations the cases of M-ary PSK, PAM and

QAM can be treated. The restriction that a lies in the upper half of the complex plane is required

in order to remove the 180 degree phase ambiguity and to enable coherent demodulation of the

transmitted symbols. There are several techniques for resolving phase ambiguity at the expense of

a small decrease in spectral e�ciency [24, chap. 2]. Alternatively, DPSK modulation can be used

to encode the source into phase changes rather than absolute phase of the transmitted signal.

3 Joint Maximum Likelihood Estimation

3.1 Direct Maximization of Likelihood

Let f kg1k=1 be a real orthonormal basis for the space of square integrable function H. Relative

to this basis the continuous time observation Y can be converted to the equivalent discrete time

observation

Yk = hY;  ki k = 1; 2; : : :

where hf; gi denotes the inner product
R
f(t)g�(t)dt. The original observation can be recovered

from the discrete time observation through the reconstruction formula

Y (t) =
X
k

Yk k(t) : (3)

Therefore the coe�cients fYkg are su�cient statistics for the original continuous time observations
Y . Given that the observation noise u(t) is a white complex Gaussian process with spectral level

N0=2, it follows from (1) and (2) that fYkg is a set of independent jointly Gaussian complex random
variables with mean

E
�
Yk
	
= a

N�1X
n=0

bnwk(n; d); k = 1; 2; : : :
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and variance N0=2, where wk(n; d) are the projection coe�cients of the time function fp(t� nTb�
d)gt2[0;T ],

wk(n; d) =

Z 1

�1
p(t� nTb � d) k(t)dt: (4)

In the sequel, the unknown parameters are collectively refered to as the N+2 element parameter

vector � = [a; d; b0; : : : ; bN�1]
T . Thus, up to known additive constants, the log-likelihood function

can be expressed as

log p(Y ; �) =
2

N0

�
a�
X
k

Yk

N�1X
n=0

b�nw
�
k(n; d)

+ a
X
k

Y �
k

N�1X
n=0

bnwk(n; d)

� jaj2
X
k

j
N�1X
n=0

bnwk(n; d)j2
�
:

(5)

A necessary and su�cient condition for �̂ = [â; d̂; b̂0; : : : ; b̂N�1]
T to jointly maximize the log

likelihood (5) is that the following three equations be satis�ed.

d̂ = arg max
d2[�Td=2;Td=2]

log p(Y ; [â; d; b̂0; : : : ; b̂N�1]) (6)

b̂n = arg max
bn2f�1;1g

log p(Y ; [â; d̂; b̂0; : : : ; bn; : : : ; b̂N�1]); n = 0; : : : ; N � 1 (7)

and

â =

P
k Yk

PN�1
n=0 b̂

�
nw

�
k(n; d̂)P

k j
PN�1
n=0 b̂nwk(n; d̂)j2

(8)

Note that only one of these equations (8) is explicit. The solution of (7) requires searching

over 2N possible symbol values fbn 2 f�1; 1ggN�1n=0 and the solution of (6) requires performing a

line search over d 2 [�Td=2; Td=2]. The high complexity of these latter solutions makes direct

maximization impractical and provides the primary motivation for this work. The �rst step is to

simplify the line search.

3.2 Line Search via Polynomial Rooting

First it will be necessary to transform (5) into a polynomial equation in the complex variable

z = ej!0d by representing the projection coe�cients wk(n; d) in Fourier series in the delay variable
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d. The bene�ts of this transformation will become clear: a computationally intensive line search

for the maximum over d of (5) is eliminated, and the numerical solution can be found by standard

polynomial rooting algorithms which are fast and reliable. Suppose that one is interested in the

inner product wk(n; d) =< p(� � nTb � d;  k > on some interval d 2 [�T0=2; T0=2] which contains

the a priori time delay uncertainty interval [�Td=2; Td=2]. De�ne the Fourier coe�cients

ck;m(n) =
p
T0

Z 1

�1
vT0(t)wk(n; t)e

�jm!0tdt; (9)

where

vT0(t) =

(
1=T0 jtj � T0=2

0 jtj > T0=2 ;

and !0 = 2�=T0. By the convolution property of the Fourier transform

ck;m(n) =

p
T0
2�

Wk(n;!) � VT0(!)j!=m!0 ; (10)

where VT0(!) = sin(!T0=2)=(!T0=2) is the Fourier transform of vT0(t) and Wk(n;!) =R1
�1wk(n; �)e

�j!�d� is the Fourier transform of wk(n; d) with respect to d.

The Fourier series expansion of wk(n; d) over d 2 [�T0=2; T0=2] can be written as a function of

the complex variable z

wk(n; d) =
X
m2Z

ck;m(n)z
m; (11)

with z = ej!0d. Since wk(n; d) is a real function of d the Fourier coe�cients ck;m(n) are conjugate

symmetric in m

ck;m(n) = c�k;�m(n) m 2 Z:

and ck;0(n) is real.

With the series representation (11) the log-likelihood (5) can be approximated to arbitrary

accuracy by a polynomial in the complex variable z. To see this, use conjugate symmetry of the

Fourier coe�cients to rewrite (5) as the double-sided in�nite power series

log p(Y ; �) =
X
m2Z

qmz
m = F (z) + F �(z��1) ; (12)
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where F (z) =
P1
m=1 qmz

m+q0=2 and qm is the coe�cient of ejm!0d in the log likelihood expansion,

that is,

qm =
2

N0

��jaj2 N�1X
n=0

X
k

X
p2Z

ck;p(n)ck;m�p(n)

+ a
N�1X
n=0

bn
X
k

Y �
k ck;m(n) + a�

N�1X
n=0

bn
�
X
k

Ykc
�
k;m(n)

�
:

Note that F (z) depends on the parameter values a and b0; : : : ; bN�1.

Now let � > 0 be arbitrary and de�ne Df as the smallest positive integer such that

1

N

X
m>Df

E[jqmj2] < �=2:

De�ne the order Df polynomial ~F (z) =
PDf

m=1 qmz
m + q0=2. Then

Q(z) = ~F (z) + ~F �(z��1)

is a polynomial approximation to the log likelihood in the mean square sense

1

N
E[j log p(Y ; �)�Q(z)j2] < �:

Note that the degreeDf of ~F (z) is �nite since the observations have �nite power. Df will principally

depend on the bandwidth of the signaling waveform p(t), which for PN sequences is proportional

to the number of chips per symbol interval, i.e. the processing gain, since the Fourier coe�cients

ck;m(n) decay rapidly as m!0 increases beyond the bandwidth of p(t).

In the sequel the notation Q = Qa;b will be used to clarify the fact that Q is a function of the

amplitude a and the symbols b = [b0; : : : ; bN�1]. Note that since Qa;b is a smooth function the

maximum d = dmax of Qa;b(e
j!0d) over d 2 [�T0=2; T0=2] will occur within O(�) of the ML estimate

d̂ and there is a stationary point at this maximum, i.e. @
@dQa;b(e

j!0d)jd=dmax = 0. The idea is to add

a penalty function which will force Qa;b(z) to have a stationary point near z = ej!0dmax and such

that the stationary points can be found by rooting a polynomial. To this aim de�ne the penalized

polynomial

�a;b(z) = Qa;b(z) + log �(z) (13)

where �(z) is a rational function of the form

�(z) =
G(z)G�(z��1)

H(z)H�(z��1)
; (14)
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where G(z) and H(z) are polynomials of degree Dg and Dh, respectively, over C ,

G(z) =

DgX
n=0

gnz
n ; H(z) =

DhX
n=0

hnz
n : (15)

Now assume that �(z) is a function which satis�es: 1) �(z) is positive and reasonably 
at on

the semi-circle fz = ei! : j!j � !0Td=2g; 2) magnitude decays quickly to zero as z deviates from

semi-circle. Then any stationary points of �a;b(z) which are on the unit circle will be close to the

stationary points of Qa;b(e
j!0d) over d 2 [�Td=2; Td=2]. It follows that the line search step (6) of

the joint ML estimator can be approximated by the following steps:

1. Di�erentiate the function �(z) = �a;b(z) (13) with respect to z. This gives a rational function

�0(z) =
Q0(z)�(z) + �0(z)

�(z)
= A(z)=B(z) (16)

where A(z) is a polynomial of degree D = 2(Df +Dg +Dh).

2. Find the roots of the numerator polynomial A(z) which lie on the unit circle.

3. Evaluate the objective �(z) at each of these roots and select the root which maximizes the

penalized objective (13).

4. The phase of the maximizing root speci�es the estimate of d.

Since the numerator polynomial of (16) has �xed degree D there is a �xed computational com-

plexity per iteration of the delay estimation step. The penalty function �(z) can be implemented

by applying standard �lter design methods [31] to the transfer function G(z)=H(z) in (14). The

degrees Dg and Dh of the penalty polynomials depend on the desired precision of the time delay

estimate which determines the passband ripple and transition bandwidth of �(z). Typically they

are much smaller than Df . The choice of penalty function is analogous to the choice of penalty in

the penalized maximum likelihood algorithm.

3.3 Iterative Penalized Maximum Likelihood (PML)

The penalized ML estimate of a � = [a; d; b0; : : : ; bN�1]
T is de�ned as

�̂ = argmax
�2�

flog p(Y ; �)� P (�)g : (17)
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Here P (�) is a user speci�ed penalty function. Penalties have frequently been introduced to regular-

ize the estimator [40], to promote faster convergence [14], or to take advantage of prior information

[39]. It will be convenient to express the penalty function as the function P (z) = � log �(z) of

the complex variable z = ej!0d de�ned in (13). In this way it can be seen that incorporation of

the aforementioned polynomial rooting estimation procedure for estimation of d is equivalent to

implementing a PML solution to the joint estimation of �.

In cases where direct maximization of the objective (17) is not possible iterative optimization is

often useful. The iterative algorithm developed in this paper is a coordinate ascent type algorithm

that is related to Gauss-Seidel iterations [18] for minimizing quadratic objectives. Fix a coordi-

nate �i to be updated and de�ne the parameter vector ��i as � with the coordinate �i left out:

��i = [�1; : : : ; �i�1; �i+1; : : : ; �N+2]
T . De�ne ji a mapping from the natural numbers 1; 2; : : : to the

parameter index set f1; : : : ; N + 2g which satis�es the property that the sequence ji, i = 1; 2; : : :

cycles through all parameter indices an in�nite number of times. For i = 1; 2; : : : ; the coordinate

ascent algorithm produces a sequence f�(i)g1i=1 by the following iteration

�
(i)
ji

= argmax
�ji

n
log p(Y ; �ji ; �

(i�1)
�ji

)� P (�ji ; �
(i�1)
�ji

)
o
;

�
(i)
�ji

= �
(i�1)
�ji

:

Note that in the i-th iteration only the parameter �ji of � is updated while the other parameters

��ji are held �xed.

For the present application the penalized log likelihood function is of the form log p(Y ; �) +

log �(ej!0d), where log p(Y ; �) is given by (5). The convergence rate of coordinate ascent depends

on the order of parameter updates and the number of consecutive updates of a given parame-

ter. For positive integers k;N denote by [k]N the integer k modulo N . Given initial conditions

a(0), d(0),b
(0)
0 ; : : : ; b

(0)
N�1, the following is an algorithm which updates in the order: d(i) ! d(i+1),

b
(i)
[i�1]N+2

! b
(i+1)
[i�1]N+2

, a(i) ! a(i+1).

Increasing Complexity Single User Algorithm

For i = 0; 1; : : : , update i-th cycle:

1. Find d(i+1) by rooting the polynomial �a(i);b(i)(z) as explained in previous section.
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2. Update the bit b[i�1]N+2
by hard decision

b
(i+1)
[i�1]N+2

= sign
�
Re

(
a(i)

X
k

wk
�
[i� 1]N+2; d

(i)
� h
Y �
k � a(i)�I(i)�k ([i� 1]N+2)

i)�
:
(18)

where

I
(i)
k (n) =

N�1X
n0=0;n0 6=n

b
(i)
n0 wk(n

0; d(i)): (19)

3. Update the amplitude a as follows. De�ne temporary variable

â =

P
k Yk

PN�1
n=0 b

(i)�
n w�

k

�
n; d(i)

�
P
k j
PN�1
n=0 b

(i)
n wk(n; d(i))j2

: (20)

If 0 � arg(â) < � set a(i+1) = â and b
(i+1)
n = b

(i)
n for all n 2 IN , otherwise set a

(i+1) = �â,
and b

(i+1)
n = �b(i)n , for all n 2 IN .

Note that since at each iteration the objective function is maximized over the associated coordinate,

the algorithm ensures a monotone increase in likelihood as it progresses. Use of the temporary

variable â is necessary to ensure that a has non-negative phase. A de�ciency of the algorithm is

the problem of growing memory and computation: it must cycle over an increasingly large set of

symbols as the number N of these increases.

4 Complexity Reduction Via Wavelet Basis

The growing memory and growing complexity problem will be solved by prescribing a single pass

acyclic version of the PML algorithm which updates only those symbols falling within a sliding

time window of �xed length. In this scheme the time localized parameters, i.e. symbols bn, are

only updated a �nite number of times while the global parameters, i.e. a and d, are updated

an in�nite number of times. Recall that in Section 2 a general orthogonal representation for the

received waveform fY (t)gt2[0;T ] was used, whereby projecting it on an orthogonal basis f k(t)gk>0
an equivalent set of measurements Yk =< Y (�);  k(�) >, k = 1; 2; : : : , was obtained. To achieve

decoupling between the localized and non-localized parameter updates it will be convenient to

specialize the basis f kg to one that has the multi-resolution property [25]. This will produce

coe�cients Yk which contain only information speci�c to a particular time and scale component of

fY (t)gt2[0;T ]. In this way a kind of parsimony of the data representation is achieved: information
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needed for a particular local or non-local parameter update is concentrated in only a few coe�cients

Yk.

Figure 1 shows time scale tiling diagrams of three orthonormal bases: the Dirac basis, the

Fourier basis and the wavelet basis. While the Dirac and Fourier bases are localized only in the

time and frequency dimensions, respectively, the wavelet basis has the multi-resolution property:

each basis is localized in both dimensions, with a timing resolution which gets �ner at smaller scales.

The time localized Dirac basis is not parsimonious for updating parameters which are localized in

frequency. On the other hand, the Fourier basis is not parsimonious for updating time localized

parameters such as the symbol sequence. The same de�ciencies would hold for other bases which do

not have the multi-resolution property, e.g., the cardinal series basis, the Slepian (prolate spheroid)

basis, and the Walsh basis.

Note that there exist nonorthonormal expansions which also have the time-frequency resolution

property. For example Gabor frames [7] o�er more regular tiling of the time frequency plane.

However, non-orthogonality causes leakage across scales and complicates the maximization of the

likelihood function. Among the many wavelet bases which can be used, e.g., the Daubechies

wavelets, Battle-Lemarie wavelets, wavelet packets [8, 42], local cosine bases and bi-orthogonal

wavelets [7], in this paper the Daubechies wavelet basis [6] is adopted. An advantage of this basis

is that the coe�cients can be computed in real time using the discrete time wavelet transform

(DTWT) algorithm [35].

The discrete wavelet basis is de�ned by time scaling and translation of the single function, called

the basic wavelet,  (t) [8] producing the double indexed set of basis elements

 jk(t) = 2�j=2 (2�jt� k) (j; k) 2 Z
2 :

Use of the wavelet basis produces a double indexed set of equivalent measurements Yjk =<

Y (�);  jk(�) >, (j; k) 2 Z2, signaling waveform projections wjk(n; d) =< p(� � nTb � d);  jk(�) >,
and a triple indexed set of Fourier coe�cients cjk;m of the projections, as de�ned in the previous

section.

As only certain subsets of the wavelet coe�cients will be used for each parameter update, it is

convenient to de�ne an increasing sequence of subsets of wavelet indices fW (i)g1i=0 such that

W (i) �W (i+1) i � 0[
i

W (i) = Z
2 :
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The following conditions will be necessary

i. The signaling waveform p(t) and the basic wavelet  (t) are supported on [�Tp=2; Tp=2] and
[�T =2; T =2] respectively for some Tp and T , where Tp � Tb.

ii. A �nite number of scales is used in the wavelet decomposition, so the scale index j satis�es

q0 � j � q, for some q0; q 2 Z.

iii. The wavelet index sets W (i) used in the algorithm are chosen sequentially in such a way that

minf2jk : (j; k) 2W (i+1) �W (i)g �
maxf2jk : (j; k) 2W (i)g

for all i 2 N.

The purpose of these assumptions, which are not restrictive, will now be explained. The �rst

assumption is needed to eliminate all but a small neighborhood of overlapping symbols fbng appear-
ing in the likelihood function. The second assumption is required so that the Fourier coe�cients

cjk;m(n) can be stored in a table of �nite size and that the algorithm have a �nite delay. The small-

est scale q0 can be determined from the bandwidth of the signaling waveform p(t), and the largest

scale q can be determined by the maximum tolerable processing delay, e.g. T . The third condition

means that the wavelet coe�cients are processed over all scales simultaneously and sequentially

in time according to increasing temporal localization variable 2jk. A graphical illustration of the

actual sequence of wavelet indices used in the algorithm is given in Fig. 2.

It is useful to remark that if Tb = r 2q for some rational number r = r1=r0 then it is possible to

store all the Fourier coe�cients cjk;m(n) in a �nite table, because they can all be mapped to those

with symbol indices 0 : : : ; r0 � 1:

cjk;m(n) = cj k�n0r12q�j ;m(n1); 0 � n1 < r0 ;

where n1 = n (mod r0).

Next de�ne the following intermediate variables which will be updated at each iteration of the

algorithm

�(i)m (n) =
X

jk2W (i)

Yjkc
�
jk;m(n) m 2 Z; n 2 IN ;

�(i)m (n1; n2) =
X

jk2W (i)

djk;m(n1; n2) m 2 Z; n1; n2 2 IN ;
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where

djk;m(n1; n2) =
X
p2Z

cjk;p(n1)c
�
jk;p�m(n2): (21)

Similar to the Fourier coe�cients cjk;m(n) the constants djk;m(n1; n2) can be stored in a �nite table.

It is easy to verify that �
(i)
m (n1; n2) satis�es the following symmetry properties

�(i)m (n1; n2) = �(i)m (n2; n1)

�
(i)
�m(n1; n2) = �(i)�m (n1; n2) :

Notice that �
(i)
m (n) is the resultant matched �ltering of fYjkg to the Fourier coe�cients of the

correlation wjk(n; d), while �
(i)
m (n1; n2) is a deterministic quantity.

To reduce the computational complexity of updating the intermediate variables � and � it is

useful to exploit the �nite support property of the basic wavelet. To this aim de�ne the following

quantity

B =

��
Tp + T0

2
+ 2q�1T 

�
=Tb

�
; (22)

where dxe indicates the smallest integer greater or equal to x, and the reader should recall that Tp,

T and T0 are the signaling pulse width, the width of the basic wavelet, and the Fourier analysis

window length de�ning the coe�cients cjk;m, respectively. Also, for a wavelet index set W
(i), de�ne

the indices n
(i)
� and n

(i)
+

n
(i)
� = minfn : n � 2jk

Tb
; for all (j; k) 2W (i); n 2 Zg

n
(i)
+ = maxfn : n � 2jk

Tb
; for some (j; k) 2W (i); m 2 Zg :

(23)

Proposition 1 of the appendix shows that B is a timewidth parameter for �m in the sense

that �
(i)
m (n1; n2) = 0 for all m for jn1 � n2j � 2B. Proposition 2 of the appendix shows that

�
(i)
m (n1; n2) = 0 whenever n1 or n2 exceed n

(i)
� +B and �

(i)
m (n) = 0 whenever n exceeds n

(i)
� +B for

all m 2 Z. The combination of these two propositions speci�es a small region of wavelet indices

for which the summands of �
(i)
m and �

(i)
m are non-zero. Proposition 3 of the appendix shows that

if n1 � n
(i)
+ � B or n2 � n

(i)
+ � B then �

(p)
m (n1; n2) = �

(i)
m (n1; n2) for all p � i and all m 2 Z and

similarly for �
(i)
m . Thus this speci�es a set of indices for which these intermediate variables need

not be updated.
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Once the following update index sets are de�ned a concrete speci�cation of the algorithm can

be given.

T (i) = fn : n
(i�1)
+ �B < n < n

(i)
� +Bg

U (i) = fn : n
(i�1)
+ �B < n � n

(i)
+ �Bg (24)

Notice that the set T (i) is not empty because n
(i)
� � n

(i�1)
+ and B � 1, while the set U (i) may be

empty. Corresponding to the above sets, de�ne the following two dimensional index sets:

R(i) = f(n1; n2) : n1 2 T (i); n1 � 2B < n2 � n1g [
f(n1; n2) : n2 2 T (i); n2 � 2B < n1 � n2g

V (i) = f(n1; n2) : n1 2 U (i); n1 � 2B < n2 � n1g [
f(n1; n2) : n2 2 U (i); n2 � 2B < n1 � n2g:

(25)

With the above, a fourth condition can be speci�ed on the sliding symbol-update window

iv. During the i-th iteration the algorithm only updates the symbols fbn : n 2 T (i)g.

Note that for symbols not in T (i) the intermediate variables do not change as a result of the most

recent multiresolution samples having indices in W (i) � W (i�1). Hence the only change in the

objective of these symbols is a result of updating other parameters, which should have a secondary

e�ect. Consequently, the algorithm no longer will have the cyclic update structure that it had

before in Section 3. The set T (i) can therefore be referred to as the "current symbols" index set,

while the set U (i) corresponds to "past symbols", that is, symbols whose estimates will not be

further updated. The two dimensional sets R(i) and V (i) that de�ne pairs of symbol indices can be

interpreted in a similar manner.

The �xed memory wavelet version of the coordinate ascent algorithm presented in Section 3 is

given below. To simplify the notation, the Fourier index will be omitted, and the corresponding

variables will be typed in boldface, e.g., cjk(n) instead of cjk;m(n).

Fixed Complexity Single User Algorithm

For i = 0; 1; : : : ,

1. Choose the wavelet index set W (i+1).
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2. Update the local variables �(i) and �(i) as follows:

�(i+1)(n) = �(i)(n) +
X

jk2D(i+1)

yjkc
�
jk(n); n 2 T (i+1);

�(i+1)(n1; n2) = �(i)(n1; n2) +
X

jk2D(i+1)

djk(n1; n2);

n1; n2 2 T (i+1); jn1 � n2j < 2B;

(26)

where D(i+1) =W (i+1) �W (i).

3. Update the state variables �(i) and �(i) as follows:

�(i+1) = �(i) +
X

(n1;n2)2V (i)

b(i)n1b
(i)�
n2 �

(i)(n1; n2);

�(i+1) = �(i) +
X

n2U(i)

b(i)�n �(i)(n) :
(27)

4. Update the delay estimate d:

� Compute the following temporary variables:


(i+1) = ja(i)j2��(i+1) +
X

(n1;n2)2R(i+1)

b(i)n1b
(i)�
n2 �

(i+1)(n1; n2)
�
;

�(i+1) = a(i)�
�
�(i+1) +

X
n2T (i+1)

b(i)�n �(i+1)(n)
�
:

(28)

Set up the penalized objective for z = ei!0d:

�(i+1)(z) =
2

N0

X
jmj�Df

(�
(i+1)
�m + �(i+1)�

m � 
(i+1)
m )zm

+ log�(z) :

(29)

� Maximize the penalized objective using polynomial rooting:

z(i+1) = argmax
z=ei!

f�(i+1)(z)g:

5. Update symbol estimates bn, n 2 T (i+1):

� Update the local variable:

�(i+1)(n) = �(i)(n) +
X

n22U(i)

jn�n2j<2B

b(i)�n2 �
(i)(n; n2): (30)
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Next include the most recent data samples:

"(i+1)(n) = a(i)
X

jmj�Df

�
�(i+1)�
m (n)� a(i)�

�
�(i+1)
m (n)

+
X

n22T (i+1)

n2 6=n

b(i)�n2 �
(i+1)
m (n; n2)

��
z(i)m :

(31)

The objective for fbng is (need not compute):

Q(i+1)(bn) =
2

N0
[bn"

(i+1)(n) + b�n"
(i+1)�(n)]: (32)

� Maximize (hard decision):

b(i+1)
n = sign[Re("(i+1)(n))] : (33)

6. Update the amplitude estimate a:

� Compute the following temporary variables:

�(i+1) =
X

jmj�Df

z(i)m
�
�
(i+1)
�m +

X
n2T (i+1)

b(i)�n �
(i+1)
�m (n)

�
;

�(i+1) =
X

jmj�Df

�
�(i+1)
m +

X
(n1;n2)2R(i+1)

b(i)n1b
(i)�
n2 �

(i+1)
m (n1; n2)

�
z(i)m :

(34)

The objective for a is (need not compute):

Q(i+1)(a) = a��(i+1) + a�(i+1)� � jaj2�(i+1): (35)

� Maximize the objective. Let,

â = �(i+1)=�(i+1): (36)

If 0 � arg(â) < � set a(i+1) = â and b
(i+1)
n = b

(i)
n for all n 2 IN , otherwise set a(i+1) = �â,

b
(i+1)
n = �b(i)n for all n 2 IN , and multiply �(i+1); f�(i+1)(n) : n 2 T (i+1)g by �1.

Notice that inversion of the signs of all the symbols, as implied by the last step, can be most easily

done by keeping track of the inversions and performing it just once after the �nal iteration. In this

way multiple writes to memory are avoided.

An implementation of the PML receiver is shown by the block diagram on Figure 3. The

incoming complex baseband signal y(t) is oversampled and digitized. The oversampling should be
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su�ciently high so that the discrete wavelet transform in continuous time is well approximated

by a discrete time wavelet transform. The sampled sequence fyng is wavelet transformed using

the DTWT algorithm [35], which can be e�ciently implemented with an octave-band �lter bank

structure. The fully digital algorithm described above performs ML estimation of the parameters

in a time recursive manner, and passes the estimated symbol sequence b̂n on to further decoding

stages.

5 Impulsive Noise Robusti�cation

In this section a robusti�cation of the algorithm is given for impulsive noise channels. The wavelet

shrinkage method of [10] uses a soft wavelet shrinkage algorithm to optimally reconstruct a signal

from samples contaminated by additive white Gaussian noise. In this method, small wavelet coe�-

cients are set to zero, since they are likely to contain little signal energy, and, to compensate, larger

wavelet coe�cients are scaled down since they are likely to contain greater signal energy. This

method, similarly to [1], eliminates noisy wavelet coe�cients by comparison to a predetermined

high threshold. Wavelet coe�cients larger than the threshold are rejected because they have most

likely been corrupted by the impulsive events. In the method of [1] the rejected wavelet coe�cients

are reconstructed via an FFT based interpolation algorithm. Assuming that the noise is dominated

by the impulsive component while the Gaussian noise is very weak, there is practically no loss of

performance if the noisy coe�cients are rejected along with the signal component. This is because

the residual signal power is still very large compared to the Gaussian noise power. While such an

extension is not pursues in this paper, one could also simultaneously implement soft thresholding

to reduce the e�ect of high power Gaussian noise.

A general block diagram of the wavelet based impulsive noise receiver is shown in Figure 4. This

receiver is very similar to the optimum receiver for the AWGN channel described in Section 4. The

additional blocks in the diagram perform the threshold estimation algorithm proposed in [1] and

the wavelet thresholding operation. In the threshold estimation algorithm the coe�cient sequence

in each wavelet band is divided into segments, whose length is determined by the length of the

time interval where the signal is assumed locally stationary. In each signal segment the standard

deviation of the signal is estimated by the square root of the sample variance. The threshold at

scale index j, Thj , is set to a �xed multiple of the standard deviation estimate in that band. At

the �ner scales the impulsive events are isolated, i.e. no two impulses are captured by a single
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wavelet coe�cient. In the coarser scales the impulses are no longer isolated, so the threshold

should be decreased in order to e�ectively detect the corrupted coe�cients. This can be done by

multiplying the threshold with a slowly decreasing function of scale. The wavelet thresholding

operator generates a new wavelet coe�cient sequence, fY 0
jkg, as follows:

Y 0
jk =

(
Yjk jYjkj < Thj

0 jYjkj � Thj :
(37)

The rest of the algorithm remains as before.

6 Simulations

The algorithm of Section 4 has been evaluated by means of a simulation program written in MAT-

LAB. Several system parameters can be varied in order to examine their e�ect on the receiver's

performance, e.g. choice of wavelet family, number of scales, step size, extent of ISI, choice of PN

codes, and number of data symbols. The performance criteria of interest were the symbol error

probability, and root mean squared (RMS) error of the time delay and phase estimates.

In this paper only a small subset of all possible variations of system parameters will be presented.

We have restricted our attention to an uncoded single-user system at the low SNR range of -1dB to

8dB. The bit error probability results were obtained from simulation runs on contiguous data blocks

of 2048 or 4096 bits each. The gain and time delay estimates converged within the �rst 90 bits of

each data block. Afterwards, no further updates of these parameters were necessary. The phase

and synchronization error performance results were obtained from 100 Monte-Carlo simulations on

32 bit long data blocks. The signal parameters were chosen randomly and independently of each

other. The data bits fbng were selected as either +1 or �1, and the time delay d was uniformly

distributed in [�Tb=2; Tb=2].
A 7 chip PN code was used for the spreading sequence. The transmitted signal was passed

through a band limited AWGN channel, jf j � 1=2Tc, where Tc is the chip time. The Daubechies

wavelets [6] of length 4, which are the shortest continuous compactly supported wavelets, were

used in the wavelet decomposition of the received signal. The decomposition was done on 6 scales

in order to capture a large percentage of the signal energy, close to 90% on the average. The

number of new wavelet coe�cients added per cycle, i.e. the size of W (i+1) �W (i), was 11, and

the number of wavelet samples per bit interval was approximately 63. The time delay penalty

�(z) was designed using a sixth order Chebychev equiripple �lter. The simulations focus on aided
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acquisition or tracking performance as opposed to general acquisition performance to reduce the

additional complications of local maxima in the likelihood function. Hence the time delay estimate

was initialized close to the true parameter by adjusting the delay penalty function so that the

maximum with respect to d is sought within 70% of Tc from the true time delay. Similar procedure

was adopted to ensure proper phase initialization during the �rst 4 symbols of each transmission.

The issue of global phase and synchronization acquisition should be addressed in a future study.

Figure 5 shows the bit error probability for the AWGN channel. The results were obtained

from approximately 8000 simulated bits at the highest SNR value, to 2000 bits at the lowest SNR.

We observe that the simulation results closely match the theoretical lower bound on probability

of error for a BPSK decoder [24]. The performance of a phase coherent DLL with comparable

response time is also shown. The parameter � = 2=WLT is the normalized response time of the

DLL, whereWL is the two-sided loop bandwidth, and T is the signaling period, so a value of � = 31

was used. The loop damping of the equivalent PLL was taken as � = 0:707, and zero detuning

was assumed. The DLL error probability was found by numerical integration of the conditional

PSK bit error probability with respect to the solution of a stochastic PDE of the steady state

synchronization error [24]. Notice that the DLL performance has degraded by more than 1dB with

respect to the ideal PSK error bound, while the performance of the coordinate ascent algorithm is

essentially optimal. Figure 6 shows the normalized synchronization performance of the coordinate

ascent algorithm (Tb = 1). The coordinate ascent algorithm achieves an RMS synchronization error

that is much smaller than the chip time of Tc � 0:14, which explains its nearly optimal symbol

estimation performance. The synchronization error of the DLL is seen to be much larger. The

Cramer-Rao (CR) bound on time delay estimation is also shown for reference. Figure 7 compares

the RMS phase error of the coordinate ascent algorithm with that of a Data Aided Loop (DAL).

The CR bound on phase error is shown for reference [36]. The DAL performance was calculated

with the same value of � as above, for the case of a suppressed carrier with NRZ data (m = 0, see

[23]). The two systems have a similar performance, but it should be noted that the DAL relies on

a perfectly synchronized reference.

Finally, impulse noise channel results are shown on Figure 8. The impulses arrived according

to a Poisson process with an average inter arrival time of approximately 1:5Tb. The impulse

amplitudes were generated according to an i.i.d. complex Gaussian process, and the width of each

impulsive event was equal to the chip time Tc, thus e�ectively covering the signal spectrum. Also,
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a weak background AWGN process whose power was 18dB below signal power was present. The

thresholds were computed by the following simple iterative algorithm. First the standard deviation

� of each scale is estimated, then coe�cients whose magnitude is larger than 3� are removed, and

the process is repeated using the remaining coe�cients until convergence. The thresholds were

scaled by dividing by
p
j where the scale index j ranged between 1 to 6. The simulations compared

bit error probability estimates of the conventional receiver with those of the wavelet thresholding

receiver over a range of Signal to Impulse ratio (SIR). The �gure shows that a marked improvement

in bit error probability has been achieved by using the wavelet thresholding technique coupled with

the coordinate ascent algorithm.

7 Conclusions

This paper introduces a new grouped coordinate ascent method for joint timing and phase syn-

chronization and optimal ML detection of transmitted symbols in a single user receiver. Wavelet

thresholding can also be incorporated to adapt the receiver to impulsive noise interference chan-

nels. Fourier series and polynomial rooting were used to simplify the delay parameter line search,

and a multiresolution wavelet representation of the received signal was used to e�ciently match

parameter updates to data coe�cients. The 
exibility in choosing several system parameters such

as the wavelet basis, the step size of the algorithm, and the penalty functions, makes the algorithm

suitable for a variety of applications depending on technological feasibility and cost considerations.

It should be pointed out that the problem of selecting an optimal wavelet basis has not been con-

sidered in this work but that several optimal selection algorithms have been proposed elsewhere

such as best basis [42, chap. 8] or the matching pursuit [26] which could be implemented for this

purpose. Finally, space limitations prevented presentation of asynchronous multi-user detection

results. Similarly to the bene�ts of using the SAGE algorithm for synchronous multi-user detection

reported in [30], the grouped coordinate ascent algorithm can be used to accelerate convergence,

and to simplify implementation, of iterative ML multi-user detection by decoupling the updates of

the parameters of each user. The interested reader can refer to [36, 37] for details of this extension.
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Appendix

The following proposition follows from the de�nition of B in (22) and assumption (i) in that

section :

Proposition 1: If jn1 � n2j � 2B then �
(i)
m (n1; n2) = 0 for all m 2 Z and index sets W (i) �

f(j; k) : j � q; k 2 Zg.
proof: The claim will be proved by showing that djk;m(n1; n2) are identically zero. In view of the

de�nition (21) it su�ces to show that either cjk;m(n1) or cjk;m(n2) are identically zero.

Suppose that n2 > n1 and the pair (j; k) is chosen such that the lower end of the supporting

interval of  jk(t) overlaps with that of the n1-th symbol, i.e.

2jk � 2j�1T � n1Tb +
Tp + T0

2
:
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This implies that wjk(n1; t) is possibly non-zero, so its Fourier coe�cients cjk;m(n1) are not iden-

tically zero. Now consider the right endpoint of the supporting interval of  jk(t)

2jk + 2j�1T � n1Tb +
Tp + T0

2
+ 2 � 2j�1T 

� n1Tb +
Tp + T0

2
+ 2qT 

� n2Tb � 2BTb +
Tp + T0

2
+ 2qT 

� n2Tb � 2 (
Tp + T0

2
+ 2q�1T ) +

Tp + T0
2

+ 2qT 

� n2Tb � Tp + T0
2

:

(38)

The third inequality above follows from the assumption n1 � n2 � 2B, and the fourth one follows

from (22). This implies that wjk(n2; d) is identically zero because  jk(t) and p(t� n2Tb � d) have

non-overlapping supporting intervals. Therefore cjk;m(n2) are identically zero, and it follows that

djk;m(n1; n2) are also zero as claimed. A similar proof applies to the case where n1 > n2.

Next we show that �
(i)
m (n1; n2) is zero if the most recent sample in the wavelet index set W (i) is

localized at the nth symbol and n is su�ciently smaller than either n1 or n2. For a set of wavelet

indices W (i) recall the de�nitions of n
(i)
� and n

(i)
+ in (23).

Proposition 2: If n1 � n
(i)
� + B or n2 � n

(i)
� + B then �

(i)
m (n1; n2) = 0 for all m 2 Z. If

n � n
(i)
� +B then �

(i)
m (n) = 0 for all m 2 Z.

proof: To show the �rst part, assume n1 � n
(i)
� +B, then for all (j; k) 2W (i)

2jk + 2j�1T � 2jk + 2q�1T 

� n
(i)
� Tb + 2q�1T 

� (n1 �B)Tb + 2q�1T 

� n1Tb � Tp + T0
2

;

where the second inequality follows from the de�nition of n
(i)
� and the third from the assumption

on n1. It follows that cjk;m(n1) = 0 for all m 2 Z, which implies �
(i)
m (n1; n2) = 0. The rest of the

claim follows similarly.

The next proposition states conditions under which �
(i)
m (n) and �

(i)
m (n1; n2) do not change for

an increasing sequence of wavelet index sets W (i).

Proposition 3: If n1 � n
(i)
+ � B or n2 � n

(i)
+ � B for some index set W (i) then �

(p)
m (n1; n2) =
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�
(i)
m (n1; n2) for all p � i and m 2 Z. If n � n

(i)
+ � B for some wavelet index set W (i) then

�
(p)
m (n) = �

(i)
m (n) for all p � i and m 2 Z.

proof: From the de�nition (21) we have

�(p)m (n1; n2) =�
(i)
m (n1; n2) +X
jk2W (p)�W (i)

djk;m(n1; n2):

Consider djk;m(n1; n2) for all (j; k) 2 W (p) �W (i) and assume that p > i and the di�erence set is

not empty. Then, the left endpoint of the supporting interval of  jk(t) satis�es

2jk � 2j�1T � 2jk � 2q�1T 

� n
(i)
+ Tb � 2q�1T 

� n1Tb +B Tb � 2q�1T 

� n1Tb +
Tp + T0

2
;

where the second inequality follows from the de�nition of n
(i)
+ and assumption (iii), and the third

from the assumption on n1. The last inequality shows that the right endpoint of p(t � n1Tb � d)

is smaller or equal to the left endpoint of  jk(t) whenever jdj � T0=2. Consequently, cjk;m(n1) is

zero for all m 2 Z, which implies that djk;m(n1; n2) is zero for (j; k) 2 W (p) �W (i). This proves

the claim. The proofs for the other cases are similar.

29



6

- -

6

-

6

t

f

t

f

t

f

(a) (b) (c)

Figure 1: Tiling of the time-frequency plane, (a) Dirac basis, (b) Fourier basis, and (c) wavelet
basis.
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Figure 2: Wavelet index sets.
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Figure 4: Block diagram of wavelet thresholding receiver.
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Figure 5: Bit error probability vs. SNR, stars: simulation results; solid: DLL performance; dotted:
PSK error bound.
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Figure 7: RMS phase error, stars: simulation results; solid: DAL performance; dashed: CR bound.
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