Entropic-graphs: Theory

Alfred O. Hero
Dept. EECS, Dept Biomed. Eng., Dept. Statistics
University of Michigan - Ann Arbor
hero@eecs.umich.edu
http://www.eecs.umich.edu/~hero

Collaborators: H. Heemuchwala, J. Costa, B. Ma, O. Michel

- Rényi α-Entropy and Rényi α-Divergence
- Minimal graphs and entropic graphs
- Entropic graphs: asymptotic convergence results
- Extensions to partitioning approximations
- Open problems
Rényi Entropy and Rényi Divergence

- $X \sim f(x)$ a d-dimensional random vector.

- Rényi Entropy of order α

 \[
 H_\alpha(f) = \frac{1}{1-\alpha} \ln \int f^\alpha(x) dx
 \]

- The Rényi α-divergence of fractional order $\alpha \in [0, 1]$ [Rényi:61,70]

 \[
 D_\alpha(f_1 \| f_0) = \frac{1}{\alpha-1} \ln \int f_1 \left(\frac{f_1}{f_0} \right)^\alpha dx
 \]

 \[
 = \frac{1}{\alpha-1} \ln \int f_1^\alpha f_0^{1-\alpha} dx
 \]
- α-Divergence vs α-Entropy

\[
H_\alpha(f_1) = \frac{1}{1 - \alpha} \ln \int f_1^\alpha dx = -D_\alpha(f_1 \mid \mid f_0)|_{f_0=U([0,1]^d)}
\]

- α-Divergence vs. Batthacharyya-Hellinger distance

\[
D_{BH}^2(f_1 \mid \mid f_0) = \int \left(\sqrt{f_1} - \sqrt{f_0} \right)^2 dx
\]

\[
= 2 \left(1 - \exp \left(\frac{1}{2} D_{\frac{1}{2}}(f_1 \mid \mid f_0) \right) \right)
\]

- α-Divergence vs. Kullback-Liebler divergence (Shannon MI)

\[
\lim_{\alpha \to 1} D_\alpha(f_1 \mid \mid f_0) = \int f_1 \ln \frac{f_1}{f_0} dx.
\]
Entropic Graphs

A graph G of degree l consists of vertices and edges

- vertices are subset of $\mathcal{X}_n = \{x_i\}_{i=1}^n$: n points in \mathbb{R}^d
- edges are denoted \{e_{ij}\}
- for any i: $\text{card}\{e_{ij}\}_j \leq l$

Weight (with power exponent γ) of G

$$L^G_\gamma(\mathcal{X}_n) = \sum_{e \in G} \|e\|^\gamma$$
Minimal Spanning Tree (MST)

Let $T_n = T(\mathcal{X}_n)$ denote the possible sets of edges in the class of acyclic graphs spanning \mathcal{X}_n (spanning trees).

The Euclidean Power Weighted MST achieves

$$L_{\gamma}^{\text{MST}}(\mathcal{X}_n) = \min_{T_n} \sum_{e \in T_n} \|e\|^\gamma.$$
Figure 1:
Minimal Euclidean graphs: k-NNG

Example: k-Nearest Neighbors Graph (k-NNG)

Let $\mathcal{N}_{k,i}(\mathcal{X}_n)$ denote the possible sets of k edges connecting point x_i to all other points in \mathcal{X}_n.

The Euclidean Power Weighted k-NNG is

$$L_{\gamma}^{k-NNG}(\mathcal{X}_n) = \sum_{i=1}^{n} \min_{\mathcal{N}_{k,i}(\mathcal{X}_n)} \sum_{e \in \mathcal{N}_{k,i}(\mathcal{X}_n)} |e|^\gamma$$

2-NNG
Large n behavior of MST

Figure: MST and log MST weights as function of the number of samples.
Asymptotics: the BHH Theorem

Define the MST length functional

$$L_{\gamma}(X_n) = \min_{T_n} \sum_{e \in T_n} \|e\|^{\gamma}.$$

Theorem 1 (Beardwood & etal: Camb59) Let $X_n = \{X_1, \ldots, X_n\}$ be an i.i.d. realization from a Lebesgue density f on $[0, 1]^d$.

$$\lim_{n \to \infty} L_{\gamma}(X_n)/n^{(d-\gamma)/d} = \beta_{L_{\gamma},d} \int f(x)^{(d-\gamma)/d} dx, \quad (a.s.)$$

Or, letting $\alpha = (d - \gamma)/d$

$$\lim_{n \to \infty} L_{\gamma}(X_n)/n^\alpha = \beta_{L_{\gamma},d} \exp((1 - \alpha)H_{\alpha}(f)), \quad (a.s.)$$
Question: What is r.m.s. rate of convergence?

Find constant r such that

$$E^{1/2} \left[\left| L_\gamma(X_n)/n^{(d-\gamma)/d} - \beta_{L_\gamma,d} \int f(x)^{(d-\gamma)/d} dx \right|^2 \right] \leq O(n^{-r})$$

Method: adopt Yukich’s general setting of quasi-additive continuous Euclidean functionals
Quasi-additive continuous Euclidean functionals

L_γ is a Euclidean functional over \mathbb{R}^d if for every finite subset F of $[0, 1]^d$

\[
\forall \ y \in \mathbb{R}^d, \ L_\gamma(F + y) = L_\gamma(F), \quad (\text{translation invariance})
\]
\[
\forall \ c > 0, \ L_\gamma(cF) = c^\gamma L_\gamma(F), \quad (\text{homogeneity})
\]

Figure 2: Translation invariance and homogeneity
Quasi-additive continuous Euclidean functionals

Let L_γ be a Euclidean functional. Define

- **Null Condition:** $L_\gamma(\phi) = 0$, where ϕ is the null set.
- **Subadditivity:** There exists a constant C_1 with the following property:
 For any uniform resolution $1/m$-partition Q^m\

 \[
 L_\gamma(F) \leq m^{-1} \sum_{i=1}^{m^d} L_\gamma(m[(F \cap Q_i) - q_i]) + C_1 m^{d-\gamma}
 \]
• **Superadditivity**: For the same conditions as above, there exists a constant C_2 s.t.

\[
L_\gamma(F) \geq m^{-1} \sum_{i=1}^{m^d} L_\gamma(m[(F \cap Q_i) - q_i]) - C_2 m^{d-\gamma}
\]

• **Continuity**: There exists a constant C_3 such that for all finite subsets F and G of $[0, 1]^d$

\[
|L_\gamma(F \cup G) - L_\gamma(F)| \leq C_3 \left(\text{card}(G)\right)^{(d-\gamma)/d}
\]

![Figure 3: A non-continuous K-MST graph](image)
Definition 1 A continuous subadditive functional L_{γ} is said to be a quasi-additive functional when there exists a continuous superadditive functional L_{γ}^* which satisfies $L_{\gamma}(F) + 1 \geq L_{\gamma}^*(F)$ and the approximation property

$$|E[L_{\gamma}(U_1, \ldots, U_n)] - E[L_{\gamma}^*(U_1, \ldots, U_n)]| \leq C_4 n^{(d-\gamma-1)/d}$$ \hspace{1cm} (2)$$

where U_1, \ldots, U_n are i.i.d. uniform random vectors in $[0, 1]^d$.

Another smoothness condition

Definition 2 \(L_\gamma \) is said to satisfy the add-one bound when

\[
|E[L_\gamma(U_1, \ldots, U_{n+1})] - E[L_\gamma(U_1, \ldots, U_n)]| \leq C_4 n^{-\gamma/d}
\]

(3)

where \(U_1, \ldots, U_{n+1} \) are i.i.d. uniform random vectors in \([0, 1]^d\).
Convergence rate for uniform f

Theorem 2 (Thm 5.2 Yukich:1998) Let L_γ be a quasi-additive continuous Euclidean functional which satisfies the add-one bound. Assume that $f(x)$ is uniform over $[0, 1]^d$. Then for all $d \geq 2$ and $1 \leq \gamma < d$

$$\left| E[L_\gamma(X_n)]/n^{(d-\gamma)/d} - \beta_{L_\gamma,d} \int f(x)^{(d-\gamma)/d} dx \right| \leq O(n^{-1/d})$$
Question: How to extend to non-uniform f?

1. Extend to piecewise constant “block densities” over a uniform partition Q^m:

$$f(x) = \sum_{i=1}^{m^d} \phi_i 1_{Q_i}(x)$$

2. Extend to space of densities sufficiently well approximated by block densities.

3. Obtain worst-case bound on rate over this space of densities.
Block densities

For a set of non-negative constants \(\{ \phi_i \}_{i=1}^{m^d} \) satisfying \(\sum_{i=1}^{m^d} \phi_i = m^d \), define

\[
\phi(x) = \sum_{i=1}^{m^d} \phi_i 1_{Q_i}(x)
\]

Figure: Block density over the unit interval.
A rate result for block densities

Proposition 1 Let $d \geq 2$ and $1 \leq \gamma \leq d - 1$. Assume X_1, \ldots, X_n are i.i.d. sample points over $[0, 1]^d$ whose marginal is a block density f with m^d levels and support $S \subset [0, 1]^d$. Then for any continuous quasi-additive Euclidean functional L_γ of order γ which satisfies the add-one bound

$$
\left| E[L_\gamma(X_1, \ldots, X_n)]/n^{(d-\gamma)/d} - \beta_{L_\gamma,d} \int_S f^{(d-\gamma)/d}(x) \, dx \right| \leq O\left((nm^{-d})^{-1/d}\right).
$$
Extension to general densities

Define the resolution-\(m \) block density approximation of \(f \) by

\[
\phi(x) = \sum_{i=1}^{m^d} \phi_i 1_{Q_i}(x),
\]

where \(\phi_i = m^d \int_{Q_i} f(x) \, dx \).

Figure 4: Block density approximation over the unit interval.
Three term bound

By triangle inequality

\[
\left| E[L_\gamma(X_1, \ldots, X_n)] / n^{\frac{d-\gamma}{d}} - \beta_{L_\gamma, d} \int_S f \frac{d-\gamma}{d} (x) \, dx \right|
\leq \left| E[L_\gamma(\tilde{X}_1, \ldots, \tilde{X}_n)] / n^{\frac{d-\gamma}{d}} - \beta_{L_\gamma, d} \int_S \phi \frac{d-\gamma}{d} (x) \, dx \right|
+ \beta_{L_\gamma, d} \left| \int_S \phi \frac{d-\gamma}{d} (x) \, dx - \int_S f \frac{d-\gamma}{d} (x) \, dx \right|
+ \left| E[L_\gamma(X_1, \ldots, X_n)] - E[L_\gamma(\tilde{X}_1, \ldots, \tilde{X}_n)] \right| / n^{\frac{d-\gamma}{d}}
\]

(I)

1. Bound on I directly follows from Proposition 1

2. Bound on II is block density approximation error

3. Bound on III is error due to block realizations instead of true realizations of \(X \)
Sobolev Spaces

Consider the Sobolev space of L^p functions on \mathbb{R}^d

$$W^{1,p}(\mathbb{R}^d) = L^p(\mathbb{R}^d) \cap \{ f : D_{x_j}f \in L^p(\mathbb{R}^d), 1 \leq j \leq d \} .$$

- $D_{x_j}f$ is the x_j-th weak derivative of f which satisfies

$$\int_{\mathbb{R}^d} f(x) \frac{\partial}{\partial x_j} \phi(x) dx = - \int_{\mathbb{R}^d} D_{x_j}f(x) \phi(x) dx$$

for any function ϕ infinitely differentiable with compact support.

- $W^{1,p}$ is equipped with a norm

$$\|f\|_{1,p} = \|f\|_p + \|Df\|_p .$$
Approximation Lemma

Lemma 1 For $1 \leq p < \infty$, let $f \in W_{1,p}^{1}(\mathbb{R}^d)$ have support $S \subset [0, 1]^d$. Then there exists a constant $C_6 > 0$, independent of m, such that

$$
\int_S |\phi(x) - f(x)| \, dx \leq C_6 m^{-\lambda(p)}(\|Df\|_p + o(1)), \quad (4)
$$

where

$$
\lambda(p) = \begin{cases}
1, & 1 \leq p \leq d \\
 d + 1 - d/p, & d < p < \infty
\end{cases}
$$
An m-dependent bound

Using the Lemma to bound II and III we obtain

$$\left| E[L_\gamma(X_1, \ldots, X_n)]/n^{(d-\gamma)/d} - \beta_{L_\gamma,d} \int_S f(x)^{(d-\gamma)/d} \, dx \right|$$

$$\leq \frac{K_1 + C_4}{(nm^{-d})^{1/d}} \left(\int_S f^{\frac{d-1-\gamma}{d}}(x) \, dx + o(1) \right)$$

$$+ \frac{\beta_{L_\gamma,d}}{(nm^{-d})^{1/2}} \left(\int_S f^{\frac{1}{2}-\frac{\gamma}{d}}(x) \, dx + o(1) \right)$$

$$+ \frac{K_2}{(nm^{-d})^{(d-\gamma)/d}}$$

$$+(\beta_{L_\gamma,d} + C'_3) C'_6 m^{-\lambda(p)(d-\gamma)/d} \left(\|Df\|_{P}^{(d-\gamma)/d} + o(1) \right)$$

$$+ \frac{1}{n^{(d-\gamma)/d}}$$
An m-independent bound

By selecting m as the function of n that minimizes this bound, we obtain

Proposition 2 Let $d \geq 2$ and $1 \leq \gamma \leq d - 1$. Assume X_1, \ldots, X_n are i.i.d. random vectors over $[0, 1]^d$ with density $f \in W^{1,p}(\mathbb{R}^d)$, $1 \leq p < \infty$, having support $S \subset [0, 1]^d$. Assume also that $f^{1/2 - \gamma/d}$ is integrable over S. Then, for any continuous quasi-additive Euclidean functional L_γ of order γ that satisfies the add-one bound

$$
\left| E[L_\gamma(X_1, \ldots, X_n)]/n^{(d-\gamma)/d} - \beta_{L_\gamma,d} \int_S f^{(d-\gamma)/d}(x)dx \right| \leq O(n^{-r_1(d,\gamma,p)}),
$$

where

$$
r_1(d, \gamma, p) = \frac{\alpha \lambda(p)}{\alpha \lambda(p) + 1} \frac{1}{d}
$$

and $\alpha = \frac{d-\gamma}{d}$ and $\lambda(p)$ is defined in Lemma 1.
Concentration inequality

Rhee’s inequality for Euclidean functionals (AnnAppProb:93):

\[P \left(\left| L_\gamma(X_1, \ldots, X_n) - E[L_\gamma(X_1, \ldots, X_n)] \right| > t \right) \leq C \exp \left(\frac{-(t/C_3)^{2d/(d-\gamma)}}{Cn} \right), \]

Hence,

\[E \left[\left| L_\gamma(X_1, \ldots, X_n) - E[L_\gamma(X_1, \ldots, X_n)] \right|^\kappa \right] \]

\[= \int_0^\infty P \left(\left| L_\gamma(X_1, \ldots, X_n) - E[L_\gamma(X_1, \ldots, X_n)] \right| > t^{1/\kappa} \right) dt \]

\[\leq C_3 C \int_0^\infty \exp \left(\frac{-t^{2d/[\kappa(d-\gamma)]}}{Cn} \right) dt \]

\[= A_\kappa n^{\kappa(d-\gamma)/(2d)} \]
Main convergence result

Corollary 1 Let \(d \geq 2 \) and \(1 \leq \gamma \leq d - 1 \). Assume \(X_1, \ldots, X_n \) are i.i.d.
random vectors over \([0, 1]^d\) with density \(f \in W^{1,p}(\mathbb{R}^d), 1 \leq p < \infty\), having
support \(S \subset [0, 1]^d\). Assume also that \(f^{\frac{1}{2} - \frac{\gamma}{d}} \) is integrable over \(S \). Then,
for any continuous quasi-additive Euclidean functional \(L_\gamma \) of order \(\gamma \) that
satisfies the add-one bound

\[
E \left[\left| L_\gamma(X_1, \ldots, X_n)/n^{(d-\gamma)/d} - \beta_{L_\gamma,d} \int_S f^{(d-\gamma)/d}(x)dx \right|^\kappa \right]^{1/\kappa} \leq O \left(n^{-r_1(d,\gamma,p)} \right),
\]

where

\[
r_1(d, \gamma, p) = \begin{cases} \frac{\alpha}{d(\alpha+1)} & , \ 1 \leq p \leq d \\ \frac{\alpha}{d(\alpha+\frac{1}{d}+d/p)} & , \ d < p < \infty \end{cases}
\]

where \(\alpha = \frac{d-\gamma}{d} \).
Extension to partition approximations

\[L_m^{d}(X_n) = \sum_{i=1}^{m^d} L_\gamma(X_n \cap Q_i) + b(m), \]

Figure 5: Partition approximation.
Pointwise closeness bound

Two Euclidean functionals L_γ and L_γ^* are said to satisfy the pointwise closeness bound if

$$|L_\gamma(F) - L_\gamma^*(F)| \leq \begin{cases}
C[\text{card}(F)]^{(d-\gamma-1)/(d-1)}, & 1 \leq \gamma < d - 1 \\
C \log \text{card}(F), & \gamma = d - 1 \neq 1 \\
C, & d - 1 < \gamma < d
\end{cases}$$

for any finite $F \subset [0, 1]^d$. This condition is satisfied by the MST, TSP and minimal matching function (Lemma 3.7 Yukich:98).
Corollary 2 Let \(d \geq 2 \) and \(1 \leq \gamma < d - 1 \). Assume that the Lebesgue density \(f \in W^{1,p}(\mathbb{R}^d) \), \(1 \leq p < \infty \) has support \(S \subset [0, 1]^d \). Assume also that \(f^{1/2-\gamma/d} \) is integrable over \(S \). Let \(L^m_\gamma(X_n) \) be a partition approximation to \(L_\gamma(X_n) \) where \(L_\gamma \) is a continuous quasi-additive functional of order \(\gamma \) which satisfies the pointwise closeness bound and the add-one bound. Then if \(b(m) = O(m^{d-\gamma}) \)

\[
E \left[\left| L^m_\gamma(X_1, \ldots, X_n)/n^{(d-\gamma)/d} - \beta_{L_\gamma,d} \int_S f^{(d-\gamma)/d}(x) \, dx \right| \right] \leq O\left(n^{-r_2(d,\gamma,p)}\right),
\]

where

\[
r_2(d,\gamma,p) = \frac{\alpha \lambda(p)}{d-1-\gamma} + \frac{1}{d},
\]

where \(\alpha = \frac{d-\gamma}{d} \) and \(\lambda(p) \) is defined in Lemma 1. This rate is attained by choosing the progressive-resolution sequence

\[
m = m(n) = n^{1/[d(d-1-\gamma) \alpha \lambda(p)+1)]}.
\]
Application to Entropy Estimation

Consider entropy estimates

\[\hat{H}_\alpha = (1 - \alpha)^{-1} \log \hat{I}_\alpha, \]

where \(\hat{I}_\alpha \) is a consistent estimator of the integral

\[I_\alpha(f) = \int f^\alpha(x)dx \]

- \(\hat{I}_\alpha = L_\gamma(X_1, \ldots, X_n)/(\beta_{L_\gamma, d\alpha}) \) is a strongly consistent estimator of \(I_\alpha(f) \);
- indirect estimator: given non-parametric function estimates \(\hat{f} \) of \(f \) define the function plug-in estimator \(\hat{I}_\alpha = I_\alpha(\hat{f}) \).
Convergence rate comparisons

Question: How fast is

$$|E[\hat{H}_\alpha] - H_\alpha(f)| \to 0, \text{ when } n \to \infty?$$

Find $r > 0$ such that

$$|E[\hat{H}_\alpha] - H_\alpha(f)| = O(n^{-r})$$

For both cases

$$|\hat{H}_\alpha - H_\alpha(f)| = \frac{1}{1 - \alpha} \frac{|\hat{I}_\alpha - I_\alpha(f)|}{I_\alpha(f)} + o(|\hat{I}_\alpha - I_\alpha(f)|)$$

⇒ convergence rate of $|E[\hat{H}_\alpha] - H_\alpha(f)|$ is identical to that of $|E[\hat{I}_\alpha] - I_\alpha(f)|$.

32
Multivariate Besov function space

Definition 3 (Nikolskii:75) Let $1 \leq p, q < \infty$, $\sigma > 0$ and k, ρ be nonnegative integers satisfying the inequalities $k > \sigma - \rho > 0$. The function f belongs to the class $B_{p,q}^\sigma(\mathbb{R}^d)$ if $f \in L_p(\mathbb{R}^d)$ and there exist partial weak derivatives $D^{(s)} f = \frac{\partial^\rho f}{\partial x_1^{s_1} \ldots \partial x_d^{s_d}}$ of order $s = (s_1, \ldots, s_d)$ ($|s| = s_1 + \ldots + s_d = \rho$) such that the following seminorm is finite:

$$
\|f\|_{B_{p,q}^\sigma} = \sum_{|s|=\rho} \left\{ \int_{\mathbb{R}^d} \left(\frac{\|\Delta_k^\tau D^{(s)} f\|_p}{|\tau|^{\sigma-\rho}} \right)^q \frac{d\tau}{|\tau|^d} \right\},
$$

where Δ_k^τ is an operator which takes the k-th order finite difference in the direction of τ.
Lemma 2 (Besov&etal:79) Let $p > d$ and let σ be a positive integer. Then

$$B_{p,1}^\sigma(\mathbb{R}^d) \subset W^{\sigma,p}(\mathbb{R}^d)$$
Asymptotic convergence of entropy estimators

Proposition 3 Let \(p > d \geq 2 \) and \(\alpha = (d - \gamma)/d \in [1/2, (d - 1)/d] \)

\[
\sup_{f^\alpha \in B_p^{1,1}} E^{1/\kappa} \left[\left\| \int \hat{f}^\alpha(x) dx - \int f^\alpha(x) dx \right\| \kappa \right] \geq O \left(n^{-1/(2+d)} \right)
\]

while,

\[
\sup_{f^\alpha \in B_p^{1,1}} E^{1/\kappa} \left[\left\| \frac{L_\gamma(X_1, \ldots, X_n)}{n^{\alpha}} - \beta L_\gamma, d \int f^\alpha(x) dx \right\| \kappa \right] \leq O \left(n^{-\frac{\alpha \lambda(p)}{1 + \alpha \lambda(p)} \frac{1}{d}} \right)
\]

where \(\lambda(p) = d + 1 - d/p \).

Note: minimal-graph estimator converges faster for

\[
\alpha \geq \frac{1}{2} \frac{d}{d + 1 - d/p}
\]
Open problems

▷ Extend convergence rates to:
 – smoother densities, e.g. in $W^{\sigma,p}(\mathbb{R}^d)$
 – densities with unbounded support.
 – weaker quasi-additive continuity conditions

▷ Analysis of clustering algorithms in entropic graph setting.

▷ Analysis of distributional properties of entropic graphs.