Entropic-graphs: Applications

Alfred O. Hero

Dept. EECS, Dept Biomed. Eng., Dept. Statistics University of Michigan - Ann Arbor hero@eecs.umich.edu http://www.eecs.umich.edu/~hero

Collaborators: Huzefa Heemuchwala, Jose Costa, Bing Ma, Olivier Michel

- Image registration
- Multivariate outlier rejection
- Divergence estimation

Figure 2: Three ultrasound breast scans. From top to bottom are: case 151, case 142 and case 162.

MI Registration of Gray Levels (Viola&Wells:ICCV95)

- X: a $N \times N$ UL image (lexicographically ordered)
- *X*(*k*): image gray level at pixel location *k*
- X_0 and X_1 : primary and secondary images to be registered

Hypothesis: $\{(X_0(k), X_i(k))\}_{k=1}^{N^2}$ are i.i.d. r.v.'s with j.p.d.f

$$f_{0,i}(x_0, x_1), \quad x_0, x_1 \in \{0, 1, \dots, 255\}$$

Mutual Information (MI) criterion: $T = \operatorname{argmax}_{T_i} \hat{MI}$

where MI is an estimate of

$$\mathbf{MI}(f_{0,i}) = \int \int f_{0,i}(x_0, x_1) \ln f_{0,i}(x_0, x_1) / (f_0(x_0) f_i(x_1)) dx_1 dx_0.$$
(1)

Figure 4: Grey level scatterplots. 1st Col: target=reference slice. 2nd Col: target = reference+1 slice.

α -MI Registration of Coincident Features

- X: a $N \times N$ UL image (lexicographically ordered)
- *Z* = *Z*(*X*): a general image feature vector in a *P*-dimensional feature space

Let $\{Z_0(k)\}_{k=1}^K$ and $\{Z_i(k)\}_{k=1}^K$ be features extracted from X_0 and X_i at K identical spatial locations

α -MI coincident-feature criterion

$$\mathbf{T} = \operatorname{argmax}_{\mathbf{T}_i} \hat{\mathbf{M}} \mathbf{I}_{\alpha}$$

where \hat{MI}_{α} is an estimate of

$$\mathrm{MI}_{\alpha}(f_{0,i}) = \frac{1}{\alpha - 1} \log \int \int f_{0,i}^{\alpha}(z_0, z_1) f_0^{1 - \alpha}(z_0) f_i^{1 - \alpha}(z_1) dz_1 dz_0.$$
(2)

Why α -MI?

Special cases:

• α -MI vs. Shannon MI

$$\lim_{\alpha \to 1} \mathrm{MI}_{\alpha}(f_{0,i}) = \int \int f_{0,i} \ln f_{0,i} / (f_0 f_i) dz_1 dz_0.$$

• α -MI vs. Hellinger Mutual Affinity

$$\mathrm{MI}_{\frac{1}{2}}(f_{0,i}) = -\ln\left(\int \int \sqrt{f_{0,i}f_0f_i}\,dz_0dz_1\right)^2$$

• α -MI vs. Batthacharyya-Hellinger information

$$\int \int \left(\sqrt{f_{0,i}} - \sqrt{f_0 f_i}\right)^2 dz_0 dz_1 = 2\left(1 - \exp\{-\mathrm{MI}_{\frac{1}{2}}(f_{0,i})\}\right)$$

α -MI and Decision Theoretic Error Exponents

$$H_0$$
 : $Z_0(k), Z_i(k)$ independent
 H_1 : $Z_0(k), Z_i(k)$ o.w.

Bayes probability of error

$$P_e(n) = \beta(n)P(H_1) + \alpha(n)P(H_0)$$

Chernoff bound

$$\liminf_{n\to\infty}\frac{1}{n}\log P_e(n) = -\sup_{\alpha\in[0,1]}\left\{(1-\alpha)\mathrm{MI}_\alpha(f_{0,i})\right\}.$$

Figure 5: Left: α -Divergence as function of angle. Right: Resolution of α -Divergence as function of alpha

Higher Level Features

Disadvantages of single-pixel features:

- Only depends on histogram of single pixel pairs
- Insensitive to spatial reording of pixels in each image
- Difficult to select out grey level anomalies (shadows, speckle)
- Spatial discriminants fall outside of single pixel domain
- Alternative: Aggregate spatial features

Spatial Relations Between Local Tags

(a) Image I^R

(b) Image I^T

Figure 7: Spatial Relation Coincidences

Feature Coincidence Tree of Local Tags

Figure 8: Part of feature tree data structure.

Figure 9: Leaves of feature tree data structure.

Forests of Randomized Feature Trees

Figure 10: Forest of randomized trees

Registration criterion:

$$\mathbf{T} = \operatorname{argmax}_{\mathbf{T}_i} \sum_{t=1}^{\# trees} \hat{\mathbf{M}} \mathbf{I}_{\alpha}(t)$$

US Registration Comparisons

	151	142	162
pixel	0.6/0.9	0.6/0.3	0.6/0.3
tag	0.5/3.6	0.5/3.8	0.4/1.4
spatial-tag	0.99/14.6	0.99/8.4	0.6/8.3

Table 1: Numerator =optimal values of α and Denominator = maximum resolution of mutual α -information for registering various images (Cases 151, 142, 162) using various features (pixel, tag, spatial-tag, ICA).

ICA Features

Decomposition of $M \times M$ tag images Y(k) acquired at k = 1, ..., K spatial locations

$$Y(k) = \sum_{p=1}^{P} a_{kp} S_p$$

- $\{S_k\}_{k=1}^P$: statistically independent components
- a_{kp} : projection coefficients of tag Y(k) onto component S_p
- $\{S_k\}_{k=1}^P$ and *P*: selected via MLE and MDL
- Feature vector for coincidence processing:

$$Z(k) = [a_{k1}, \ldots, a_{kP}]^T$$

ICA feature basis for US breast images

Figure 11: Estimated ICA basis set for ultrasound breast image database

Feature-based Indexing: Challenges

- How to best select discriminating features?
 - Require training database of images to learn feature set
 - Apply cross-validation...
 - ...bagging, boosting, or randomized selection?
- How to compute α -MI for multi-dimensional features?
 - Tag space is of high cardinality: $256^{16} \ge 10^{32}$
 - ICA projection-coefficient space is multi-dimensional continuum
 - Soln 1: partition feature space and count coincidences...
 - Soln 2: apply density estimation and ...
 - ... plug into the α -MI
 - Soln 3: estimate α -MI directly

Methods of Entropy/Divergence Estimation

- $Z = (Z^R, Z^T)$: a statistic (feature pair)
- { Z_i }: *n* i.i.d. realizations from f(Z)

Objective: Estimate

$$H_{\alpha}(f) = \frac{1}{1-\alpha} \ln \int f^{\alpha}(x) dx$$

- 1. Parametric density estimation methods
- 2. Non-parametric density estimation "plug-in" methods
- 3. Non-parametric minimal-graph estimation methods

Minimal Graphs: Minimal Spanning Tree (MST)

Figure 12:

Asymptotics of estimators of $H_{\alpha}(f)$

Define $B_p^{\sigma,q}$, the Besov space of $\ell_p(\mathbb{R}^d)$ functions with smoothness given by parameters σ and q.

Proposition 1 Let $p > d \ge 2$ and $\alpha = (d - \gamma)/d \in [1/2, (d - 1)/d]$

$$\sup_{f^{\alpha}\in B_{p}^{1,1}} E^{1/\kappa} \left[\left| \int \widehat{f}^{\alpha}(x) dx - \int f^{\alpha}(x) dx \right|^{\kappa} \right] \geq O\left(n^{-1/(2+d)} \right)$$

while,

$$\sup_{f^{\alpha}\in B_{p}^{1,1}}E^{1/\kappa}\left[\left|\frac{L_{\gamma}(X_{1},\ldots,X_{n})}{n^{\alpha}}-\beta_{L_{\gamma},d}\int f^{\alpha}(x)dx\right|^{\kappa}\right]\leq O\left(n^{-\frac{\alpha\lambda(p)}{1+\alpha\lambda(p)}\frac{1}{d}}\right)$$

where $\lambda(p) = d + 1 - d/p$.

Note: minimal-graph estimator converges faster for all $\alpha \ge 1/2$

Extension: divergence estimation

- g(x): a reference density on \mathbb{R}^d
- Assume $f \ll g$, i.e. for all x such that g(x) = 0 we have f(x) = 0.
- Make measure transformation $dx \rightarrow g(x)dx$ on $[0,1]^d$. Then for $Y_n =$ transformed data

$$\lim_{n\to\infty} L(Y_n)/n^{\alpha} = \beta_{L_{\gamma},d} \exp\left((\alpha-1)D_{\alpha}(f||g)\right), \qquad (a.s.)$$

Proof

1. Make transformation of variables $x = [x^1, \dots, x^d]^T \rightarrow y = [y^1, \dots, y^d]^T$

$$y^{1} = G(x^{1})$$

$$y^{2} = G(x^{2}|x^{1})$$

$$\vdots \qquad \vdots$$

$$y^{d} = G(x^{d}|x^{d-1}, \dots, x^{1})$$
where $G(x^{k}|x^{k-1}, \dots, x^{1}) = \int_{-\infty}^{x^{k}} g(\tilde{x}^{k}|x^{k-1}, \dots, x^{1}) d\tilde{x}^{k}$
(3)

2. Induced density h(y), of the vector y, takes the form:

$$h(y) = \frac{f(G^{-1}(y^1), \dots, G^{-1}(y^d | y^{d-1}, \dots, y^1))}{g(G^{-1}(y^1), \dots, G^{-1}(y^d | y^{d-1}, \dots, y^1))}$$
(4)

where G^{-1} is inverse CDF and $x^k = G^{-1}(y^k | x^{k-1}, \dots, x^1)$.

3. Then we know

$$\hat{H}_{\alpha}(Y_n) \to \frac{1}{1-\alpha} \ln \int h^{\alpha}(y) dy \quad (a.s.)$$

4. By Jacobian formula: $dy = \left| \frac{dy}{dx} \right| dx = g(x)dx$ and

$$\frac{1}{1-\alpha}\ln\int h^{\alpha}(y)dy = \frac{1}{1-\alpha}\ln\int \left(\frac{f(x)}{g(x)}\right)^{\alpha}g(x)dx = D(f||g)$$

Figure 13: Top Left: i.i.d. sample from triangular distribution, Top Right: exact transformation, Bottom: after application of exact and empirical transformations.

Application: α-**MI** estimation

Objective: To estimate

$$\mathrm{MI}_{\alpha}(X,Y) = \frac{1}{\alpha - 1} \ln \int f^{\alpha}(X,Y) (f(X)f(Y))^{1 - \alpha} dX dY.$$

Assume that f(X,Y) is such that $f^{\alpha}(X,Y)$ is in the Besov space $B_{p,1}^1(\mathbb{R}^2)$, p > 2 and $\alpha = 1/2$.

Density plug in method: rms convergence rate

$$\mathsf{MSE}^{\frac{1}{2}}(\hat{\mathsf{MI}}) \ge O(n^{-1/4})$$

Measure transformation method: rms convergence rate

$$MSE^{\frac{1}{2}}(\hat{MI}) \le O(n^{-\alpha\lambda(p)/(1+\alpha\lambda(p))1/d}) \to_{p\to\infty} O(n^{-3/10})$$

Alternative depedency measure: α -Jensen difference

1. Extract features from reference and transformed target images:

$$X_m = \{X_i\}_{i=1}^m \text{ and } Y_n = \{Y_i\}_{i=1}^n$$

2. Construct following MST function on X_m and Y_n

$$\Delta L = \ln L_{\gamma}(X_m \cup Y_n)/(n+m)^{\alpha} - \frac{m}{n+m} \ln L_{\gamma}(X_m)/m^{\alpha} - \frac{n}{n+m} \ln L_{\gamma}(Y_n)/n^{\alpha}$$

3. Minimize ΔL_{γ} over transformations producing Y_n .

$$(1 - \alpha)^{-1} \Delta L \rightarrow H_{\alpha} (\varepsilon f_x + (1 - \varepsilon) f_y) - \varepsilon H_{\alpha} (f_x) - (1 - \varepsilon) H_{\alpha} (f_y)$$

where $\varepsilon = \frac{m}{m+n}$

Figure 14: MST demonstration for misaligned images

Figure 15: MST for aligned images. "x" denotes reference while "o" denotes a candidate image in the DEM database.

Figure 16: Scatter plot of MST length for a selection of relative rotation angles between reference DEM image and target radar image.

Experimental results for US Image Registration

Figure 17: Objective function profiles for histogram (L,M) and MST (L,M,R) estimators of α -Jensen difference vs histogram plug-in estimator ($\alpha = 1/2$): Single-pixel (L), 8D ICA (M), 64D ICA (R).

Quantitative Performance Comparisons

Figure 18: Quantitative registration MSE comparisons.

Computational Acceleration of MST

Figure 19: Acceleration of Kruskal's MST algorithm from $n^2 \log n$ to $n \log n$.

Figure 20: Comparison of Kruskal's MST to our nlogn MST algorithm.

Outlier Sensitivity of minimal *n***-point graphs**

Assume f is a mixture density of the form

$$f = (1 - \varepsilon)f_1 + \varepsilon f_o, \tag{5}$$

where

- f_o is a known (uniform) outlier density
- f_1 is an unknown target density
- $\epsilon \in [0,1]$ is unknown mixture parameter

Outlier rejection via K-MST

Figure 21: *k-MST for 2D annulus density.*

k-MST Stopping Rule

Figure 22: Left: *k*-MST curve for 2D annulus density with addition of uniform "outliers" has a knee in the vicinity of n - k = 35. This knee can be detected using residual analysis from a linear regression line fitted to the left-most part of the curve. Right: error residual of linear regression line.

Greedy partioning approximation to K-MST

Figure 23: A sample of 75 points from the mixture density $f(x) = 0.25f_1(x) + 0.75f_0(x)$ where f_0 is a uniform density over $[0,1]^2$ and f_1 is a bivariate Gaussian density with mean (1/2, 1/2) and diagonal covariance diag(0.01). A smallest subset B_k^m is the union of the two cross hatched cells shown for the case of m = 5 and k = 17.

Extended BHH Theorem for Greedy K-MST

Fix $\rho \in [0, 1]$ and assume that the *k*-minimal graph is *tightly coverable*. If $k = \lfloor \rho n \rfloor$, as $n \to \infty$ we have (Hero&Michel:IT99)

$$L_{\gamma}(X_{n,k}^{*})/(\lfloor \rho n \rfloor)^{\alpha} \to \beta_{L_{\gamma},d} \min_{A:P(A) \ge \rho} \int f^{\alpha}(x|x \in A) dx \qquad (a.s.)$$

or, alternatively, with

$$H_{\alpha}(f|x \in A) = \frac{1}{1-\alpha} \ln \int f^{\alpha}(x|x \in A) dx$$

$$L_{\gamma}(X_{n,k}^{*})/(\lfloor \rho n \rfloor)^{\alpha} \to \beta_{L_{\gamma},d} \exp\left((1-\alpha)\min_{A:P(A) \ge \rho} H_{\alpha}(f|x \in A)\right) \qquad (a.s.)$$

Figure 24: Waterpouring contruction of minimum entropy density.

k-MST Influence Function for Gaussian Feature Density

Figure 25: MST and k-MST influence curves for Gaussian density on the plane.

Application: testing distributions

Non-parametric density classification problem: decide between

$$H_0$$
 : $f(x) = f_0(x)$
 H_1 : $f(x) \neq f_0(x)$

Step 1: Perform uniformizing transformation on X_n (under H_0) Step 2: Construct MST on transformed variables Y_n <u>Classification rule:</u>

$$\hat{D}_{\alpha}(f||f_0) \stackrel{\text{def}}{=} L_{\gamma}(Y_n)/n^{\alpha} \stackrel{>}{\underset{H_0}{>}} \eta$$

Application: Robust density estimation

Estimate $f_1(x)$ given sample from mixture

$$f(x) = (1 - \varepsilon)f_1(x) + \varepsilon f_0(x)$$

- $f_0(x)$ = known contaminating density
- Step 1: Perform transformation on X_n to uniformize f_0 component Step 2: Construct *k*-MST on transformed variables Y_n

$$L_{\gamma}(Y_{n,k}^{*})/(\lfloor \rho n \rfloor)^{\alpha} \to \beta_{L_{\gamma},d} \min_{A:P(A) \ge \rho} \int_{A} \left(\frac{f(x)}{f_{0}(x)}\right)^{\alpha} f_{0}(x) dx$$

<u>Robust Density Estimator</u>: kernel estimator applied to $X_{i_1}, \ldots, X_{i_{|ON|}}$

Classification Example

To test:

$$H_0$$
 : $f(x) = triangular$
 H_1 : $f(x) \neq triangular$

Ground Truth:

- $f(x) = (1 \varepsilon)f_1(x) + \varepsilon f_0(x)$: mixture density
- $f_1(x)$ is uniform density on $[0,1]^2$
- $f_0(x)$ is triangular density on $[0,1]^2$

Test statistic: $\hat{D}_{\alpha}(f||f_0) \stackrel{H_1}{\underset{H_0}{\geq}} \eta$

ROC curves

Figure 26: Left: A sample from triangle-uniform mixture density with $\varepsilon = 0.9$ in the transformed domain Y_n . Right: ROC curves of thresholded K-MST. Curves are increasing in ε over the range $\varepsilon \in \{0.1, 0.3, 0.5, 0.7, 0.9\}$

Outlier rejection example

Figure 27: Left: the k-MST implemented on the transformed scatterplot Y_n with k = 230. Right: same k-MST displayed in the original data domain.

Conclusions

- 1. α -divergence can be justified via decision theory
- 2. Applicable to feature-based image registration
- 3. Non-parametric estimation is possible even for very high dimensions via MST
- 4. MST outperforms plug-in estimation when latter is feasible
- 5. Robustified MST can be defined via optimal pruning of MST: k-MST
- 6. Divergence can be estimated by preprocessing with measure tranformation