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Chapter 1
Introduction

Nonlinear data analysis made remarkable progress in the last decade. At the heart of the
nonlinear analysis techniques is the local neighborhood structures, and differential geometry
arises as a natural foundation to analyze and understand the practice. When random data
from a high dimensional space is sampled, a crucial task is to find a data representation
that reveals intrinsic lower dimensional structure in the data. This thesis explores data
representations using differential geometries that specifically account for the random nature
of the data.

Traditional approaches of representations for high-dimensional data are based on linear
models. For example, principal component analysis assumes the data variation is concen-
trated in some linear subspaces. Nonlinear data analysis extends the idea and assumes the
data lies in some curved non-flat lower dimensional structure, and more geometric ideas
and concepts appear in machine learning studies. ISOMAP (Tenenbaum, de Silva, and
Langford 2000) models the data in isometrically embedded Riemannian manifolds, and
uses the shortest paths in neighborhood graphs to estimate the geodesic distances. Laplacian
Eigenmaps (Belkin and Niyogi 2003) and diffusion maps (Coifman and Lafon 2006) deploy
diffusion processes in manifolds to represent the data by eigenfunctions of the generating
operators.

A main focus of this thesis is to extend the geometric ideas introduced in previous
researches, and integrate statistical analysis and geometric analysis in a unified framework.
When sample points are assumed to follow some unknown probability distribution, one
of the main challenges is to design a metric or proximity measure which incorporates the
statistical aspects of the underlying distribution. Theoretically or ideally one wants to
make decisions based on statistical arguments such as Neyman-Pearson lemma or posterior
probabilities. On the other hand, practical procedures based on finite samples rely on
geometric tools such as nearest neighbor structures or inner products. Machine learning
theories should find a balance in these two aspects. k nearest-neighbor classifier serves as
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a good example. The justification of the classifier is provided by a statistical theory and
its consistency condition is based on density estimation arguments. On the other hand,
the algorithm is distance-based, and its behavior for finite samples depends on geometric
information of the samples.

Machine learning researchers have developed algorithms for classification and cluster-
ing using combinations of deterministic and probabilistic tools of analysis. Deterministic
approaches exploit geometric properties of the data, e.g., smoothness of the data manifold
using inter-feature distances in ISOMAP, while probabilistic tools exploit statistical models
of the data, e.g., assuming that data is generated from an unknown mixture of probability
densities. Few approaches combine the strengths of statistical and geometric approaches to
designmachine learning algorithms. For example, the Gaussianmixturemodel assumes that
the data is generated by some mixture probability distributions, and the optimal parameters
are estimated by algorithms like expectation-maximization. This clustering algorithm is
purely based on a statistical model and does not explicitly incorporate geometry into the de-
sign of the algorithm. On the other hand, the k-means clustering algorithm is motivated by
a purely geometric argument yet it is equivalent to the Gaussian mixture model under some
conditions. Afterwards, some geometric interpretations are provided such as a variation
of the k-means with soft assignments. Thus the two approaches are not mutually exclusive
but rather are dual to each other. For instance, Laplacian Eigenmaps put its emphasis on
geometric aspects and the problem is formulated as a gradient minimization. On the other
hand, diffusion maps put its emphasis on probabilistic aspects and the method analyzes
random walks over the samples.

One of the main purposes of this thesis is to pioneer and investigate examples which
consolidate both approaches. For such purpose, this thesis studies conformally deformed
geometry in Chapter 2 to illustrate how Riemannian geometry may be used to combine both
geometry and statistics. In Chapter 3 the thesis studies the space of probability measures
with infinite-dimensional geometry, and connects information theory, functional analysis,
and differential geometry. In Chapter 4, we propose a cluster analysis framework to define
a random walk based on manifold metrics.

1.1 Short introductions on topics and contributions

1.1.1 Power-weighted shortest paths and conformal deformations

Geodesic curves are essential geometric objects in Riemannian geometry. Their lengths are
direct extensions of Euclidean distances, hence geodesic distance estimation in manifold

2



learning is as fundamental as Euclidean distance computation is in Euclidean geometry.
ISOMAP (Tenenbaum et al. 2000; Bernstein, de Silva, Langford, and Tenenbaum 2000)
shows that the shortest path lengths through random sample points converge to geodesic
distances when the sample points are in an isometrically embedded manifold. However,
as noted in Costa and Hero (2004), the shortest path lengths do not reflect the probability
distribution of the sample.

In Chapter 2, we investigate power-weighted shortest paths through random points in
Riemannian manifolds. The main difference from ISOMAP is that each graph edge weight
is raised to power p > 1. The contribution of the chapter is to prove that the power-weighted
shortest path lengths completely converge to a new Riemannian distance on the manifold
conformally deformed by the underlying probability density function.

This convergence result is an extension of the Beardwood-Halton-Hammersley theorem
(Beardwood, Halton, and Hammersley 1959; Yukich 1998) in Euclidean random graph
theory. We discuss how these conformal deformations can be used in machine learning,
and how the theory provides a new interpretation of spectral methods including anisotropic
diffusion maps (Coifman and Lafon 2006).

1.1.2 Information curve comparison

The relationship between probability and geometry may be studied from a different per-
spective. The collections of the probability measures over a fixed measurable space forms a
space of measures. This measure space is called a statistical manifold, and its connection to
Riemannian theory has been observed for a long time through Fisher information.

In this statistical manifold the concept of entropy and divergence play many important
roles by means of dissimilarity measures between certain classes of probability distributions
(Cover andThomas 2006). For example, Shannon entropy (Shannon 1948) and Kullback-
Leibler divergence (Kullback and Leibler 1951) have many crucial applications in coding
theories and estimation theories. Rényi entropy (Rényi 1961) generalizes Shannon entropy
and it is used in e.g., vector quantizations and binary detection problems. Tsallis entropy
(Tsallis 1988) is another type of information divergence which is useful in thermodynamics
of non-extensive systems.

Information divergence is essentially a distance-like quantity between measures, and
entropy is information divergence from some reference measure. Consider now that the
probability measures are parameterized. For example, suppose that we have probability
measures which vary over time. Information divergence can tell us how close and how far
two chosen snap shots of the time-varying probability measure are. It does not, however, tells

3



Pt

Qt

Figure 1.1: Given flows of the distributions {Pt}, {Qt}, a surface is built in the statistical
manifold.

us how far the overall parameterization is from some probability measure, or more generally,
from another parameterization. The simplest way to tackle this problem would be to add
up the divergence quantity over time. This approach potentially suffers from inadequate
parameterization. To illustrate, suppose that we have a continuous-time Markov system,
e.g., thermodynamic system, and that we have two initial probability distributions P0, Q0 of
the system. The information divergence between the initial distributions measures a certain
dissimilarity but it does not take the Markov system into consideration. A better approach
is to measure the dissimilarity between the induced flow of the distribution {Pt}, {Qt} from
P0, Q0, respectively, as in Rached, Alajaji, and Campbell (2001) and Rached, Alajaji, and
Campbell (2004).

There exist various approaches to the abovementionedmethod. We propose inChapter 3
an approach that defines a distance-like quantity that is invariant over reparameterizations
and is geometrically appealing. Invariance over reparameterizations appears naturally in
geometry. For example, the length of a curve is defined in a way that it does not depend on
the parameterization but only on the image of the parameterization. Our idea is essentially
to consider information geometry, and create a two-dimensional parameterization, or a
surface, which has the one-dimensional parameterizations as boundary. Then we may use
the Riemannian structure to calculate the surface area induced from two parameterizations.
See Figure 1.1 for a visualization.

1.1.3 Quantum cluster analysis

As outlined above, Chapter 2 and Chapter 3 study dissimilarities within random samples.
In Chapter 4, we attempt to establish a connection between the dissimilarities and spectral
methods in a cluster analysis framework. Specifically, we propose an algorithm to transform
dissimilarities into similarities.
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Cluster analysis or data clustering is to partition data into subsets so that the data points
in each subset share some common properties. Spectral methods are strongly related to
spectral clustering (Shi and Malik 2000; Ng, Jordan, and Weiss 2002; von Luxburg 2007),
and it is not surprising that a cluster analysis framework is used to establish a connection
with spectral methods.

Cluster analysis holds practical importance as well. Due to the technological advances
of computer systems, the volume of data is constantly increasing and the dimensionality of
data is also increasing. However, more variables and more features in data do not directly
translate into more information unless adequate processing and interpretations of the data
follow. For instance, the internet is flooded with a huge amount of information but human
users may hardly benefit from it without proper knowledge of addresses or uses of internet
search engines. Cluster analysis aims to find subsets of data so that the user may discover
new structures in the data and to split the problem to adopt divide-and-conquer approaches.

In Chapter 4, we propose quantum cluster framework motivated by quantum mechanics,
and quantum state optimization based on the k-means. This model of cluster analysis uses
quantum states, i.e., linear subspaces of some Hilbert space, which is called the state space.
We discuss why quantum states model and its use of projective geometry would be beneficial
to cluster analysis.

The quantum state optimization transforms dissimilarities into similarities. This is a
dimensionality reduction method based on gradient descent optimization in spheres. We
discuss and explore the issues that appear when a dimensionality reduction method tar-
gets bounded spaces such as spheres or projective spaces rather than unbounded Euclidean
spaces. Another important aspect of the quantum state optimization is that it learns a
transition system over the sample points. The optimization establishes a similarity learn-
ing like semidefinite embedding (Weinberger, Sha, and Saul 2004) and complements the
dissimilarity-based methods presented in the other chapters.

1.2 Presentations, posters, and publications

Sung Jin Hwang, Steven B. Damelin, and Alfred O. Hero III (2012). “Shortest path
through random points.” arXiv: 1202.0045 [math.PR].

Sung Jin Hwang, Steven B. Damelin, and Alfred O. Hero III (2012). “Shortest path
for high-dimensional data representation.” Poster presentation at: 2012 SIAM Annual
Meeting. (Minneapolis, Minnesota, USA. July 9–13, 2012.)
url: http://meetings.siam.org/sess/dsp_talk.cfm?p=51935.
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Student Symposium for Interdisciplinary Statistical Sciences. (Ann Arbor, Michigan, USA.
April 8, 2011.) url: http://sitemaker.umich.edu/mssiss/mssiss_2011.

Sung Jin Hwang, Steven B. Damelin, and Alfred O. Hero (2010). “Comparing
information geometric curves.” Talk at: 13th International Conference on Approximation
Theory. (San Antonio, Texas, USA. March 7–10, 2010.)
url: http://www.math.vanderbilt.edu/~at13/minisymposia.html.

Sung Jin Hwang and Alfred Hero (2009). “Geometric optimization in probability
density space.” Poster presentation at: Engineering Graduate Symposium. (Ann Arbor,
Michigan, USA. November 13, 2009.)
url: http://www.eecs.umich.edu/eecs/graduate/symposium.html.
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Chapter 2
Shortest Paths and Conformal

Deformations

2.1 Introduction

The shortest path problem is of interest both in theory and in applications since it naturally
arises in combinatorial optimization problems, such as optimal routing in communication
networks. It also draws attentions for practical reasons, since efficient algorithms—Dijkstra's,
Bellman-Ford, or Floyd-Warshall—exist to solve the problem (Cormen, Leiserson, Rivest,
and Stein 2009). In this chapter, we are interested in the shortest paths over random sample
points in Euclidean and Riemannian spaces.

Many graph structures over Euclidean sample points have been studied in the context of
the Beardwood-Halton-Hammersley (BHH) theorem and its extensions. The BHH theorem
states that law of large numbers holds for certain spanning graphs over random samples.
Such graph structures include the travelling salesman path (Steele 1981), the minimal span-
ning tree (Yukich 2000), and the minimal matching graphs (Rhee 1993). For thorough
details, we refer the reader to Steele (1997) and Yukich (1998). The theorem applies to
graphs that span all of the points in the random sample. This chapter establishes a BHH-
type theorem for power-weighted shortest paths between any two points.

In the last few years, the BHH theorem for spanning graphs such as theminimal spanning
tree (MST) or the traveling salesman path (TSP) has been extended to Riemannian case,
e.g., Costa and Hero (2004) extended the MST in the context of entropy and intrinsic
dimensionality estimation. More general non-Euclidean extensions have been established
byPenrose andYukich (2011). This chapter extends the BHH theorem in a different direction,
i.e., the power-weighted shortest path between points in a Riemannian manifold.

The shortest path length convergence results are provided in several contexts. Theo-
rem 2.1 claims the convergence in compact manifolds, and Section 2.3 provides the proofs
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in detail. Several extensions of Theorem 2.1 are presented in Section 2.4. We introduce
the concept of super-additive shortest paths which generalizes the power-weighted shortest
paths. The super-additive shortest paths provide the convergence results for sample points
in embedded manifolds as in ISOMAP (Tenenbaum et al. 2000), and for sample points in
statistical manifolds as in FINE (Carter, Raich, and Hero 2009a). We also extend the results
into the domains of complete manifolds rather than compact manifolds.

2.2 Main result

Let (M , д1) be a smooth compact d-dimensional Riemannian manifold without boundary.
Always assume that d > 1. The use of the subscript for д1 will become clear shortly.

Consider a probability distribution Pr over Borel subsets ofM. Assume that the distribu-
tion has a smooth Lebesgue probability density function f with respect to д1. Let X1, X2, . . .
denote an i.i.d. sequence drawn from this density.

For p > 1, called the power parameter, define a new conformal Riemannian metric
дp = f 2(1−p)/d д1. That is, if Zx and Wx are two tangent vectors at a point x ∈ M, then
дp(Zx ,Wx) = f (x)2(1−p)/d д1(Zx ,Wx).

The main result of this chapter, stated asTheorem 2.1, establishes an asymptotic limit
of the lengths of the shortest paths through finite subsets of points Xn = {X1, . . . , Xn} as
n → ∞. If x , y ∈ M, then Ln(x , y) denotes the shortest path length from x to y through
Xn ∪ {x , y}. Here the edge weight between two points u and v is dist1(u, v)p where dist1
denotes the Riemannian distance under д1. The power weighted graph (PWG) is defined as
the complete graph over X ∪ {x , y}.

2.2.1 Convergence of the length of the shortest path

The following states the main result of this chapter.

Theorem 2.1. Assume that infM f > 0. Let x , y ∈ M. Then

(2.1) lim
n→∞

n(p−1)/dLn(x , y) = C(d , p)distp(x , y) c.c.,

where distp denotes the Riemannian distance under дp, and c.c. stands for complete conver-
gence.1 C(d , p) is an explicit positive constant given in Lemma 2.8 that only depends on d and
p.

1Recall that a sequence of random variables, say Yn , converges completely (c.c.) to another random variable,
say Z, if for every ε > 0, the infinite sum∑n Pr{∣Yn − Z∣ > ε} is finite. Complete convergence implies almost
sure convergence by the Borel-Cantelli lemma.
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Figure 2.1: The power-weighted shortest path runs from (−2, 1.5) to (2, 1.5) through 400
Gaussian sample points. The path is bent toward the central region where the
density is high.

Since the Riemannian metric дp is д1 scaled by f 2(1−p)/d , and this scaling is inversely
proportional to the probability density function f , the theorem says that the density f has
the effect of shortening or lengthening paths that pass through high density regions or low
density regions, respectively. See Figure 2.1 for an example.

The induced distance distp has desirable properties for applications such as clustering and
dimensionality reduction. In such applications the distance, called dissimilarity, between
feature points has a central role. There are many properties that a useful dissimilarity should
satisfy (Belkin and Niyogi 2003; Coifman and Lafon 2006). One of them is the density mode
separation property: if one must pass through low density region in order to move from x to
y, then the dissimilarity between x and ymust be large. An electrical circuits analogy is that
if the vertices and edges of the complete graph are circuit nodes and meshes, respectively,
then more current would flow along edges with high conductance between the endpoints.
As conductance increases with free electron density f the analogy is complete.

Another important implication of Theorem 2.1 is that Ln(x , y) shrinks to zero as n
tends to infinity so that every edge in Ln must have small length. This property makes the
shortest paths in the PWG favorable for manifold analysis. Suppose that M is isometrically
embedded in some Euclidean space. The ratio between the Riemannian distance under the
intrinsic Riemannian metric and the Euclidean distance in the ambient space uniformly
approaches one as either distance tends to zero (since M is compact). Therefore the ratio
between the shortest path lengths in both distances converges to one as n tends to infinity,
andTheorem 2.1 is still valid when graph edge lengths are Euclidean distances in the ambient
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space instead of Riemannian distances.
It is important for certain applications to note that graph edge lengths need not be

Euclidean distance but any smooth dissimilarity will do as long as its difference from the
Riemannian distance becomes negligible in small neighborhoods. A notable application is
the use of Bregman divergence in statistical manifolds (Amari and Nagaoka 2000; Banerjee,
Merugu, Dhillon, and Ghosh 2005). Information divergence such as Kullback-Leibler or
Bregman divergence violates the triangle inequality, and this makes geometric interpretation
difficult except for a few special cases. Theorem 2.1 gives the insight that the sum of the
Bregman divergences over shortest paths can be viewed as an estimate of Fisher information
distance deformed by the prior distribution. This intuition is proved in Section 2.4.

From the traveling salesman paths to the shortest paths

The convergence result established in this chapter differs from the previous BHH-type
theorems in two ways. The first difference is that the graph considered in our theorem,
the shortest path, is not a regular graph.2 All the graphs that have been considered so
far are either regular or almost regular. For example, the nearest-neighbor graph and the
minimal matching graph are regular. The TSP and the MST are regular except for a single
node. The second difference is that the shortest path has fixed anchor points, hence it is not
translation-invariant. This is in contrast to BHH theory developed in Penrose and Yukich
(2003) and Penrose and Yukich (2011) where Euclidean functionals are generalized to locally
stable functionals while translation-invariance requirement is maintained.

The essence of the BHH theorem is that the law of large numbers (LLN) holds for
certain graph lengths over random sample. The BHH theorem and its extensions, may be
used to estimate information of the probability distributions and the underlying spaces of
the data (Hero, Ma, Michel, and Gorman 2002; Costa and Hero 2004; Hero 2007). The
information provided such as entropy of the probability measure, is averaged over the space
since the theorem is a variation of the LLN applied for certain graphs. On the contrary, many
applications such as classification or clustering, require quantitative relationships between
points rather than average information over the whole sample. Therefore, one may ask if
such a convergence theorem exists for graphs other than spanning ones, such as shortest
path.

Some observations of the previous works already suggest that a similar result holds for
the shortest path case. The first observation comes from ISOMAP (Tenenbaum et al. 2000),

2Recall that a directed graph is regular if every node has the same number of incident edges. The MST
is usually considered to be undirected, but it may be transformed into a directed graph by, e.g., the Prim's
algorithm.
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which demonstrates that the shortest path length is an estimator of Riemannian distance.
The second observation is that when we begin to adopt Riemannian geometry, the PWG
reflects a conformal deformation in Riemannian metric. To explain the second observation,
note that the BHH theorem holds for subgraphs in power-weighted graph lengths (Steele
1988; Yukich 2000). The theorem states that when normalized properly, the power-weighted
TSP or MST length converges to some constant multiplied by

(2.2) ∫ f (x)(d−p)/d dx

where f is a compactly supported probability density function, d is the dimension of the
Euclidean space, and the integral is over Rd . Suppose that the standard Riemannian metric
is deformed and the volume form dx is replaced with f 1−pdx. Then, the new probability
density function is f p instead of f . If the new deformed Riemannian metric is used to
compute the graph length, without the power-weight effect, the graph lengths converge to
some constant multiplied by

(2.3) ∫ ( f (x)p)(d−1)/d f (x)1−p dx = ∫ f (x)(d−p)/d dx ,

and the same integral is obtained. Roughly speaking, the PWG effect is equivalent to Rieman-
nian metric deformation by f 1−p, as long as graph length is concerned. These observations
lead us to conjecture that the power-weighted shortest path length converges to Riemannian
distance deformed by f 1−p, andTheorem 2.1 claims it to be true.

2.3 Proofs

First we introduce notations and conventions for the proofs. Some notations are already
defined in the previous section, but since the proofs work in Euclidean spaces until the very
last part, it will be convenient to re-introduce notations for Euclidean cases.

The i.i.d. samplesXn = {X1, . . . , Xn}will be assumed to be inRd , d > 1 until Section 2.3.7.
For convenience let Xn = {X1, X2, . . . , Xn}. We assume that the reference metric д1 in the
previous section is the Euclidean metric so that the power-weighted edge weight between
points u, v ∈ Rd is ∣u − v∣p, where ∣⋅∣ denotes the Euclidean norm.

If x ∈ Rd and r > 0, then B(x; r) will denote the open ball in Rd of radius r, centered at
x. When we write (x1, x2) ∈ Rd , the convention will be that x1 ∈ R and x2 ∈ Rd−1.

The number of nodes in the shortest paths is important in the proofs. We abuse the
notation and ∣Ln∣ = ∣Ln(x , y)∣ will denote the number of nodes in the shortest path corre-
sponding to Ln = Ln(x , y). Since the shortest path length is never negative, there will be no
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ambiguity.
The Poisson point process will play a central role in the proofs. We adopt the definitions

and developments introduced in Baddeley (2007). If λ is positive then Hλ denotes the
homogeneous Poisson point process in Rd of intensity λ.

The proofs involve establishing asymptotic properties of the shortest paths through the
points inHλ. To avoid ambiguity, define Lλ(x , y) to be the shortest path length from x to y
inHλ. Often x and y will have the form (s, 0) and (t, 0) for some s, t ∈ R. In that case, we
write Lλ(s, t) instead of Lλ(x , y).

We often restrict shortest paths to neighborhoods of straight line segments between end
points. Define Lλ(x , y;R) for 0 < R ≤ ∞ to be the shortest path length in the PWG from x
to y within the region ⋃u B(u;R) where u is on the straight line segment between x and y.
We define Lλ(s, t;R) similarly.

A brief outline of the proof is as follows. First note that the theory is restricted to the
case that f is a uniform, or locally uniform, density function until Section 2.3.7.

Corollary 2.9 establishes mean convergence of the shortest path lengths for the case of a
homogeneous Poisson point process supported in a finite ball. The mean convergence result
is de-Poissonized to i.i.d. samples in Proposition 2.12. To aid this procedure, Lemma 2.11
uses a percolation argument (Lemma 2.4) to bound the number of nodes in the shortest path.
Lemma 2.11 also plays an important role in Proposition 2.13 where Talagrand's concentra-
tion inequality shows complete convergence over sets of uniform sample points. The theory
is generalized to non-uniform densities inTheorem 2.16, which applies Proposition 2.13
multiple times to show that complete convergence holds in a ball where the density is locally
uniform. Theorem 2.16 shows that there exists buffer zone which isolates the local shortest
paths from the probability distribution outside the buffer zone.

In Section 2.3.7, the locally uniform density condition is relaxed to a smooth density
condition. Lemma 2.18 shows that the normalized shortest path lengths measured by
Riemannian distance are close to the lengths measured by Euclidean distance in sufficiently
small normal charts. Proposition 2.19 shows that if the local convergence Lemma 2.18 holds
in some finite open cover, then global shortest path length Ln converges completely by near
sub- and super-additivity of Ln. Proposition 2.19 implies Theorem 2.1.

Remark 2.2. The shortest path length Lλ satisfies two important properties that will
be used in the proofs. Firstly, Lλ(x , y;R) is monotonically non-increasing in both λ
and R. Adding more paths from x to y cannot increase the minimum path length.
Secondly, ELλ(x , y;R) = λ−p/dEL1(λ1/dx , λ1/d y; λ1/dR). This follows from the facts that
a homogeneous Poisson point process Hλ may be scaled by a factor a > 0, and yield

12



another Poisson point processHa−d λ, and thatLλ(x , y;R) is a sum of Euclidean distances
raised to a p-th power.

Remark 2.3. In general, the endpoints x , y will be indexed by the number n of points,
or the mean number λ of points when Xn are points of a Poisson process. Most of the
lemmas and propositions include conditions of the form lim infn nα ∣xn − yn∣ = +∞ for
some α > 0, to prevent the end points from approaching each other too fast. Such
conditions are essential to the lemmas and propositions. To see why they are essential,
note that the normalization n(p−1)/d in (2.1) increases in n, unlike in the standard BHH
theorem normalization n(p−d)/d for 0 < p < d or the usual LLN normalization n−1.
Theorem 2.1, like many other graph-related theorems, approximates arbitrary shortest
paths by the shortest paths between some finite discrete points. Since the normalization
increases in n, the accuracy of the path approximation must improve as n increases to
keep the same level of error in the overall path lengths. Therefore the points must be
spread in the space more densely as n increases. On the other hand, if the points are too
close to each other then the convergence in (2.1) will not hold since the nearest neighbor
distances shrink at rate n−1/d . To summarize, the proofs must be careful to assure that
the convergence holds for point pairs close enough but at the same time, not too close.

2.3.1 Percolation lemma

We start with a few lemmas which will be useful in the main proofs.
Consider the point 0 ∈ Rd and a homogeneous Poisson point processHλ. Recall that the

probability that the k-th nearest neighbor distance from 0 to any point inHλ to be less than
or equal to u > 0 is proportional to ud . The following lemma shows that the rate becomes
exponential when considering multiple neighborhoods jointly.

Lemma 2.4. Let π be a graph path in a homogeneous Poisson point process Hλ starting at
0 ∈ Rd . Suppose that π has power-weighted path length at most c0λ(1−p)/d and has at least
c1λ1/d nodes for some positive c0, c1. Then there exists a constant ρ0 > 0 such that if c1 > ρ0c0,
the probability that such path π exists is exponentially small in c1λ1/d .

Proof. The strategy of this proof is similar to that of Meester and Roy (1996, Theorem 6.1).
We first define a Galton-Watson process Xn. Let X0 = {x0 = 0 ∈ Rd} be the ancestor

of the family, and associate the parameter r0 > 0. Then define the offsprings X1(r0) to be
Hλ ∩ B(x0; r1/p0 ). X1(r0) is the set of points inHλ that may be reached from x0 with exactly
single edge in the PWG, path length at most r0. Note that E∣X1(r0)∣ = λVdrd/p0 where ∣X1(r0)∣
denote the cardinality of X1(r0), and Vd denotes the volume of B(0; 1).
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For each offspring x1,k ∈ X1(r0), we associate the parameter r1,k = r0 − ∣x1,k − x0∣p. Then
Hλ in the union of B(x1,k; r1/p1,k ) − {x1,k , x0} over k is the set of points that may be reached
from x0 with exactly two edges, while the power-weighted path length is at most r0. Note
that x0 is discarded to prevent loops. Define X2(r0) to be the collection of all the second
generation offsprings, then

∣X2(r0)∣ = ∣ ⋃
x1,k∈X1

Hλ ∩ (B(x1,k; r1/p1,k ) − {x1,k , x0})∣(2.4)

≤ ∑
x1,k∈X1

∣Hλ ∩ (B(x1,k; r1/p1,k ) − {x1,k})∣.(2.5)

Define recursively the n-th generation offsprings Xn(r0). Then Xn(r0) is the set of all
the points that may be reached in n hops from the ancestor x0 within path length r0. See
Figure 2.2. Apply the Campbell-Mecke formula recursively, (Baddeley 2007, Theorem 3.2,
p. 48)

E∣Xn(r0)∣ ≤ λ ∫B(x;r1/p0 )
E∣Xn−1(r0 − ∣x − x0∣p)∣ dx(2.6)

= (λVdrd/p0 )
n Γ(1 + d/p)n
Γ(1 + nd/p)

.(2.7)

If a path starting at x has more than n = c1λ1/d nodes and has path length less than r0 =
c0λ(1−p)/d , then the n-th generation set Xn(r0)must not be empty. The survival probability
is bounded above using the Markov's inequality, and by the Stirling's approximation

(2.8) logE∣Xn(r0)∣ ≤ n log(VdΓ(1 +
d
p
)(

c0
c1
⋅
pe
d
)
d/p
) + o(n)

as n →∞. The claim follows since, if the ratio c1/c0 is sufficiently large, then the logarithm
becomes negative. In that case, the survival probability is exponentially small in n = c1λ1/d .

2.3.2 Path refinement

Let x , y ∈ Rd . Define a function βx ,y∶Rd → R,

(2.9) βx ,y(u) = ∣x − u∣p + ∣y − u∣p − ∣x − y∣p.

If βx ,y(u) < 0, then the path length L(x → u → y) is less than L(x → y), and hence if x , y, u
are nodes in the PWG, then x → y cannot appear in any shortest path, as it may be replaced
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Figure 2.2: A run through the family tree generated by Xn with p = 2. The point x0 is the
ancestor with parameter r0 = 9. This means that all the runs through the family
tree are paths with power-weighted length less than r1/p0 = 3. Here x1,1 ∈ X1 is
among the first generations since it is within B(x0; r1/p0 ), and x2,1 ∈ X2 is among
the second generations since it is within the balls centered at the first generation
offsprings, e.g., x1,1. This particular run ends at x4,1 as there is no point in the
vicinity. In this example, the power-weighted path length is

√
12 + 22 + 1.52 + 12 =√

8.25 < 3. Note that x2,1 is also in the ball centered at x0, so it is also a first
generation offspring. Some other runs through the family tree will have the
point x2,1 as a first generation offspring.

with x → u → y.
Define the set

(2.10) Θ(x , y) = {u ∈ Rd ∶ βx ,y(u) < 0}.

It is clear that the function β is invariant to rotations, and that its sign is invariant to the
scaling. Then there exists θ0 > 0 such that the volume of Θ(x , y) is

(2.11) ∣Θx ,y∣ = θ0∣x − y∣d .

Lemma 2.5. Consider the collection of points z such that Hλ is empty in Θ(0, z). Define
ξ = sup∣z∣. Similarly define ξb for b > 0 where both z andHλ are restricted to the tubular region
Tb = ⋃u B((u, 0); b) over u ∈ R. Then for p > 1,

lim
b→∞

Eξpb = Eξ
p(2.12)
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Figure 2.3: Tb is the region between the upper and the lower horizontal lines. The shaded
region indicates U = ⋃t B(tz; δb). Because δ < 1/4 and t ≤ 3/4, no point in U
may have its second component norm greater than b. Hence U ⊂ Tb. Inside U
there is a cylinder of radius δb and length 2−1r, so the volume of U is at least
Vd−1(δb)d−12−1r.

and

lim
λ1/db→∞

Eξpb
λ(1−p)/db

= 0.(2.13)

Proof. If z ∈ Rd , then Θ(0, z) ⊂ Θ(0, tz) for all t ≥ 1. Therefore if ξ > r then there exists
z with ∣z∣ = r such that Θ(0, z) is empty. The unit sphere---the boundary of B(0; 1)---is
compact, so a finite open cover V1, . . . ,Vn of the unit sphere and open subsets U1, . . . ,Un of
Rd may be selected such that β0,z(y) < 0 for all y ∈ Uk, z ∈ Vk, for each k = 1, . . . , n. Then
for ξ > r,Hλ must contain no point in at least one of rU1, . . . , rUn. Therefore Pr{ξ > r} is
bounded above by n exp(−λArd), where A is the minimum volume of U1, . . . ,Un.

For ξb, suppose that ∣z∣ = r > 0. There exists 0 < δ < 1/4 such that if V = B(z; δb)
and U = ⋃t B(tz; δb) for 1/4 ≤ t ≤ 3/4, then β0,z(y) < 0 for all y ∈ U , z ∈ V . Simple
calculation shows that we may choose δ that works for all r. The intersection of a sphere and
Tb is relatively compact, hence there exists finite open cover V1, . . . ,Vm and corresponding
U1, . . . ,Um. By the same argument for the ξ, if r > b, Pr{ξb > r} ≤ m exp(−λ(δb)d−12−1r).
After an integration,

(2.14) Eξpb ≤
nΓ(1 + p/d)
(λA)p/d

+
m2pΓ(1 + p)
λp(δb)p(d−1)

.

(2.13) follows by a direct substitution. The other claim (2.12) follows from an application
of the dominated convergence theorem.
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The next lemma states similar result for the i.i.d. case. As before, let z ∈ Rd , R2 > 0.
Assume that the density f is uniform in B(z;R2) with f (u) = f0 > 0 for u ∈ B(z;R2).

Lemma 2.6. Fix n and 0 < α < 1. Define the event EF(i , j) for each pair 1 ≤ i , j ≤ n such that
EF(i , j) does not occur if and only if (i) both Xi and X j are inB(z;R2), (ii) ∣Xi−X j∣ > (n f0)(α−1)/d ,
and (iii) the shortest path from Xi to X j contains no sample point Xk other than Xi and X j.
Let EF = ⋂i , j EF(i , j). Then

(2.15) lim sup
n→∞

1
(n f0)α

log(1 − Pr(EF)) ≤ −θ1

for some constant θ1 > 0 which depends only on d and p.

Proof. If X1 and X2 are in B(z;R2), then it is not difficult to show that a certain proportion
of Θ(X1, X2) intersects with B(z;R2), i.e., there exists θ1 > 0 which depends only on the
shape of Θ such that the volume of the intersection is at least θ1∣X1 − X2∣

d . Suppose that
EF(1, 2) does not occur. Then the shortest path from X1 to X2 contains no sample point
other than X1 and X2, and the intersection of Θ(X1, X2) and B(z;R2)must not contain any
of X3, X4, . . . , Xn. Since it is assumed that ∣X1 − X2∣ > (n f0)(α−1)/d , the probability that EF

does not occur is at most (1 − f0θ1(n f0)α−1)n−2. Since there are n(n − 1)/2 ≤ n2 pairs of
sample points, 1 − Pr(EF) ≤ n2(1 − θ1 f α0 nα−1)

n−2 and the claim follows.

2.3.3 Mean convergence for Poisson point processes

We begin the main proof with Poisson point processes. Before we proceed, one should note
that it is not obviousLλ(x , y) for x , y ∈ Rd is well defined. SinceHλ contains infinitely many
points, the set of all paths from x to y is an infinite set. Thus the shortest path from x to
y may not exist. The following proposition shows that this pathological behavior happens
with probability zero.

Proposition 2.7. For every x , y ∈ Rd , the random variables Lλ(x , y) is well-defined with
probability one.

Proof. The point process Hλ is locally finite almost surely. Therefore Lλ(x , y; b) is well
defined for any 0 < b < ∞. Let r1 = Lλ(x , y; 1).

Suppose a path from x to y has path length r < r1 and it is not contained in B(x; b), b > 0.
Then from x, there exists a path π that ends at some point outside B(x; b) and has path
length less than r1. Assume that π has n edges with Euclidean edge lengths a1, a2, . . . , an > 0.
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(0, 0)

γ−

(s, 0) = γ0

γ+

(s + t, 0)

Figure 2.4: An illustration of the path paste procedure. A new path from (0, 0) to (s + t, 0)
is created by removing (s, 0) = γ0 and joining γ− and γ+. Only the end points
are fixed points in the new path.

By the triangle inequality and the Hölder's inequality,

(2.16) bp ≤ (∑
i
ai)

p
≤ (∑

i
ap
i )np−1 < np−1r1.

Hence n > (r−11 bp)1/(p−1). By Lemma 2.4, for b large enough, the probability that such path
π exists is exponentially small in bp/(p−1). By the Borel-Cantelli lemma, with probability one
there exists b∗ > 0 such that no path from x has path length less than r1 and reaches some
point outside B(x; b∗). It follows that Lλ(x , y) is determined by all the paths in B(x; b∗),
and the number of paths in B(x; b∗) is finite with probability one.

Lemma 2.8. The limit

(2.17) C(d , p) = lim
t→∞

1
t
EL1(0, t)

exists. Furthermore if positive bt satisfies bt →∞ as t →∞, then

(2.18) lim
t→∞

1
t
EL1(0, t; bt) = C(d , p).

This lemma defines the convergence value C(d , p). The main body of the subsequent
proofs will be devoted to show that this simple lemma on the mean convergence for Poisson
point processes generalizes to complete convergence in n for a set of i.i.d. samples.

Proof of Lemma 2.8. Let s, t, b > 0. Consider the shortest path for L1(0, s; b), and let γ−
denote the node that directly connects to (s, 0). Similarly consider the path forL1(s, s+ t; b),
and let γ+ denote the node that directly connects to (s, 0). Therefore γ− and γ+ are Poisson
sample points incident to (s, 0). Remove γ0 = (s, 0) in the paths, and join the nodes γ− and
γ+ so that we have a new path connecting (0, 0) and (s + t, 0), and this new path length is
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an upper bound of L1(0, s + t; b), i.e.,

(2.19) L1(0, s + t; b) ≤ L1(0, s; b) + L1(s, s + t; b) + (2p−1 − 1)(∣γ0 − γ−∣p + ∣γ+ − γ0∣p),

by the convex property of the power function for p ≥ 1. See Figure 2.4 for an illustration.
Let ξb(s) be the maximum distance from (s, 0) to the points v where the shortest path
from (s, 0) to v in the tubular region ⋃u B((u, 0); b), u ∈ R, is the direct path. Lemma 2.5
establishes properties of this variable. Both ∣γ0 − γ−∣ and ∣γ+ − γ0∣ are bounded above by
ξb(s), and

(2.20) L1(0, s + t; b) ≤ L1(0, s; b) + L1(s, s + t; b) + 2p−1(ξb(s)p + ξb(s)p).

Add 2p−1(ξb(0)p + ξb(s + t)p) to the both sides of (2.20). By Lemma 2.5, p-th moment
Eξpb = Eξb(0)p is finite. Since the distribution ofHλ is invariant under translations,

(2.21) EL1(0, s + t; b) + 2pEξpb ≤ EL1(0, s; b) + EL1(0, t; b) + 2
p+1Eξpb

Thus EL1(0, t; b) + 2pEξpb is sub-additive in t. Note that L1(0, t; b) ≤ tp, and t ↦ tp is
Lipschitz in compact intervals. Therefore EL1(0, t; b) is continuous for t ≥ 0. A standard
proof for the Fekete's lemma (for example, see Steele 1997, Lemma 1.2.1) may be easily
adapted to continuous sub-additive functions, and since Eξpb is finite, the limit

(2.22) C(d , p; b) = lim
t→∞

1
t
EL1(0, t; b) = inft>0

EL1(0, t; b) + 2pEξpb
t

< ∞

exists. Substitute b with∞, and the first part of the claim is proved.
It remains to prove the second part of the claim. Fix ε > 0. From (2.22) there exists t > 0

such that

(2.23)
EL1(0, t) + 2pEξp∞

t
< C(d , p) + ε.

Since L1(0, t; b)monotonically decreases in b and converges to L1(0, t) almost surely,

(2.24) C(d , p; b) ≤
EL1(0, t; b) + 2pEξpb

t
<
EL1(0, t) + 2pEξp∞

t
+ ε < C(d , p) + 2ε

when b is large enough, by the monotone convergence theorem and Lemma 2.5. This
implies that C(d , p; b)monotonically converges to C(d , p;∞) = C(d , p) as b →∞ since ε
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is arbitrary. On the other hand, when bt →∞ as t →∞,

(2.25) C(d , p) ≤ lim
t→∞

1
t
EL1(0, t; bt) ≤ limt→∞

1
t
EL1(0, t; b) = C(d , p; b)

for all b > 0.

The previous lemma is for a fixed point processH1 and amoving pair of end points (0, 0),
(t, 0). The next step is to restate the lemma for a fixed pair of end points and an increasing
point processHλ.

Let z ∈ Rd , 0 < R1 < R2. Let ν = ν(z, R1, R2)∶Rd → R≥0,

(2.26) ν(u) =
⎧⎪⎪
⎨
⎪⎪⎩

1 when u ∈ B(z;R2),

0 when u ∉ B(z;R2).

ν is an intensity function for Poisson point process, and letPλν denote the non-homogeneous
Poisson point process with intensity λν. Define Lλν and related quantities for Pλν as Lλ is
defined forHλ.

As mentioned earlier, points x = xλ and y = yλ are parameterized by λ and are not fixed.
These assumptions will remain until we carry the results to i.i.d. cases in Lemma 2.11.

Corollary 2.9. Assume that xλ , yλ ∈ B(z;R1) for all λ > 0. If

(2.27) lim inf
λ→∞

λ1/d ∣xλ − yλ∣ = +∞,

then

(2.28) lim
λ→∞

ELλν(xλ , yλ)
λ(1−p)/d ∣xλ − yλ∣

= C(d , p).

Furthermore, if positive bλ satisfies bλ → 0 and λ1/dbλ →∞ as λ →∞, then

(2.29) lim
λ→∞

ELλν(xλ , yλ; bλ)
λ(1−p)/d ∣xλ − yλ∣

= C(d , p).

This proposition hints the local nature of the shortest paths. If the endpoints xλ , yλ are
in B(z;R1) and are away from the boundary of B(z;R2), then the shortest path lengths in
Pλν converge as if they were inHλ.

Proof of Corollary 2.9. The probability space may be configured so thatHλ dominates Pλν

since λν(u) ≤ λ for all u ∈ Rd . Then Lλ(xλ , yλ) ≤ Lλν(xλ , yλ) as every path in Pλν is also a
path inHλ.

20



xλ yλ
z

R1

R2

Figure 2.5: Lλν(xλ , yλ; λ(α−1)/d ∣xλ − yλ∣) is the shortest path that is contained in the shaded
region. The radii of the circles inside the shaded region are λ(α−1)/d ∣xλ − yλ∣. If λ
is large enough so that λ(α−1)/d ∣xλ − yλ∣ ≤ 2R1λ(α−1)/d ≤ R2 − R1, then the shaded
region must be contained in B(z;R2) where the intensity is uniform.

Also for 0 < α < 1, we have Lλν(xλ , yλ) ≤ Lλν(xλ , yλ; λ(α−1)/d ∣xλ − yλ∣α) as restriction
always increases the minimum path length. Note that the last upper bound equals to
Lλ(xλ , yλ; λ(α−1)/d ∣xλ − yλ∣α) when λ is large enough since xλ , yλ ∈ B(z;R1) and the region
searched in the length functional will eventually be contained within B(z;R2) where the
intensity is uniform, and it becomes independent of the point process outside B(z;R2). See
Figure 2.5. To summarize, we have

(2.30) Lλ(xλ , yλ) ≤ Lλν(xλ , yλ) ≤ Lλ(xλ , yλ; λ(α−1)/d ∣xλ − yλ∣α).

We will show that both the upper and the lower bounds have the same limit.
By the invariance ofHλ under translations and rotations, without loss of generality we

may set xλ = (0, 0) and yλ = (tλ , 0) where tλ = ∣xλ − yλ∣, hence ELλ(xλ , yλ) = ELλ(0, tλ).
Then use the scale property ofHλ,

lim
λ→∞

ELλ(0, tλ)
λ(1−p)/d tλ

= lim
λ→∞

EL1(0, λ1/d tλ)
λ1/d tλ

= lim
t→∞

EL1(0, t)
t

(2.31)

and

lim
λ→∞

ELλ(0, tλ; λ(α−1)/d tαλ)
λ(1−p)/d tλ

= lim
λ→∞

EL1(0, λ1/d tλ; (λ1/d tλ)α)
λ1/d tλ

= lim
t→∞

EL1(0, t; tα)
t

(2.32)

when the limits exist. From Lemma 2.8 both limits in (2.31) and (2.32) exist and are equal
to C(d , p), and the claim follows from (2.30).

For Lλν(xλ , yλ; bλ) where bλ → 0, note that it is equal to Lλ(xλ , yλ; bλ) for sufficiently
large λ. Its convergence can be proved similarly, from the second claim of Lemma 2.8.
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2.3.4 Shortest path size

In order to apply the concentration of measure later in the chapter, we must establish that
the shortest paths may not consist of too many sample points.

Lemma 2.10. Let ε > 0 be fixed, and α = (d + 2p − 1)−1. If

lim inf
λ→∞

λα ∣xλ − yλ∣ = +∞,(2.33)

then

lim sup
λ→∞

1
λα ∣xλ − yλ∣

logPr{
Lλν(xλ , yλ)

λ(1−p)/d ∣xλ − yλ∣
≥ C(d , p) + ε} ≤ −min{

θ0
2R1

,
1
8
(
ε
2p
)
2
}(2.34)

where θ0 > 0 is the constant defined in (2.11).

The inequality (2.34) states that the probability Pr{⋅} quantity decays no slower than
exp(−cλα ∣xλ − yλ∣), for some positive constant c, as λ increases to infinity. Note that the
condition (2.33) is stronger than the condition (2.27), and Corollary 2.9 may be applied in
the proof.

Proof. Fix λ. From the inequalities (2.30) it is sufficient to prove (2.34) holds forLλ(xλ , yλ; bλ)
instead of Lλν(xλ , yλ) for positive bλ satisfying bλ → 0 as λ → ∞. Let us choose and fix
b = bλ for the fixed λ.

As in the procedure described by (2.20),Lλ(0, 2b; b)maybe bounded above byLλ(0, b; b)+
Lλ(b, 2b; b) + (2p−1 − 1)(Z p

1 + Y
p
0 ), where Zk and Yk are the first and the last link distances

in Lλ(kb, (k + 1)b; b), respectively. See Figure 2.4.
Note that the shortest path forLλ(kb, kb+b; b) is not the direct path (kb, 0) → (kb+b, 0)

with high probability. If it were the direct path, thenHλ is empty in Θ((kb, 0), (kb + b, 0)),
where Θ is defined in (2.10), and it happens with probability exp(−λθ0bd), where θ0 > 0 is
defined in (2.11). If none of the shortest paths for Lλ(kb, (k + 1)b; b) is a direct path, then
this paste procedure may be repeated,

(2.35) Lλ(0,mb; b) ≤
m−1
∑
k=0
(Lλ(kb, (k + 1)b; b) + (2p−1 − 1)(Z p

k + Y
p
k )),

with probability at least 1 −m exp(−λθ0bd).
If k, l are integers and l − k ≥ 3, then Lλ(kb, (k + 1)b; b) and Lλ(lb, (l + 1)b; b) become

mutually independent, and so are Zk and Zl , as well as Yk and Yl . Then the sum in (2.35)may
split into K ≥ 3 sums of independent variables, and each sum has at most K−1m summands.
Note that each summand is almost surely bounded since Z p

k + Y
p
k ≤ Lλ(kb, kb + b; b) ≤ bp.
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Then apply the Azuma's inequality for K = 4 separate sequences,

(2.36) Pr{
Lλ(0,mb; b)
λ(1−p)/dmb

≥ µb + ε} ≤ me−λθ0bd + 4 exp(− (m − 3)ε2
21+2p(λ1/db)2(p−1)

),

where µb is the expectation ELλ(0, b; b) + (2p−1 − 1)(EZ p
0 + EY

p
0 ) divided by λ(1−p)/db.

Set m = ⌊λ(1−α)/d ∣xλ − yλ∣⌋ and mb = ∣xλ − yλ∣. By the definition, both Zk and Yk are
bounded above by ξb in Lemma 2.5, and λ(p−1)/db−1Eξpb shrinks to zero when λ1/db ≥ λα/d →
∞. Apply Corollary 2.9 and Lemma 2.5 to see that µb converges to C(d , p) as λ →∞. Then
(2.36) becomes

(2.37) Pr{
Lλ(xλ , yλ; b)
λ(1−p)/d ∣x − y∣

≥ C(d , p) + 2ε} ≤ λ(1−α)/d ∣xλ − yλ∣e−θ0λ
α

+ 4 exp(−
λα ∣xλ − yλ∣ε2

21+2p
(1 + o( 1

λα ∣xλ − yλ∣
)))

as λ and λα ∣xλ − yλ∣ tends to infinity. The claim follows since ∣xλ − yλ∣ is bounded above by
2R1.

Now we switch to the case of i.i.d. sequences. Define Ln(s, t;R) for 0 < s < t, R > 0 as in
the case of the Poisson process. Let z ∈ Rd , 0 < R1 < R2. Assume that the probability density
f is uniformly supported in B(z;R2). That is, f (u) = f0 > 0 for all u ∈ B(z;R2) and f (u) = 0
for all u ∉ B(z;R2). Let xn and yn be sequences of points in B(z;R1). These assumptions
will remain in force until Theorem 2.16.

Recall that ∣Ln(xn , yn)∣ is the number of nodes in the shortest path from xn to yn corre-
sponding to Ln(xn , yn).

Lemma 2.11. Let α = (d + 2p − 1)−1, and ρ0 > 0 be the constant introduced in Lemma 2.4. If
C1 > C(d , p)ρ0 and lim infn(n f0)α ∣xn − yn∣ = +∞, then

(2.38) lim sup
n→∞

1
(n f0)α ∣xn − yn∣

logPr{
∣Ln(xn , yn)∣
(n f0)1/d ∣xn − yn∣

> C1} < 0.

Proof. Let N be a Poisson variable with mean na, a > 1. Suppose that N ≥ n. Then a path
in Xn is also a path in XN = Pna f ⊂ Hna f0 since f (u) ≤ f0 for all u ∈ Rd . Choose ε > 0
sufficiently small so that C1 > (C(d , p) + 2ε)ρ0. Suppose that

(2.39) Ln(xn , yn) ≤ (C(d , p) + 2ε)(na f0)(1−p)/d ∣xn − yn∣

and that the number of nodes in the path is at least C1(na f0)1/d ∣xn − yn∣. Then by Lemma 2.4,
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the probability that such path exists decays exponentially in (na f0)1/d ∣xn − yn∣ since C1 >

(C(d , p) + 2ε)ρ0.
Let N ′ be a Poisson variable with mean na′, a′ < 1. Suppose that N ′ ≤ n. Then

Ln(xn , yn) ≤ LN(xn , yn) = Lna′ f (xn , yn), and the probability that

(2.40)
Ln(xn , yn)

(na′ f0)(1−p)/d ∣xn − yn∣
> C(d , p) + ε

is exponentially small in (na′ f0)α ∣xn − yn∣ by Lemma 2.10.
Choose a and a′ so that

(2.41) (C(d , p) + ε)(a′)(1−p)/d < (C(d , p) + 2ε)a(1−p)/d

so that the assumption (2.39) is satisfied when (2.40) is false. In addition, both Pr{N < n}
and Pr{N ′ > n} are exponentially small in n by the Chernoff bound. Then the claim is
proved since the slowest probability decay is determined by Lemma 2.10.

2.3.5 Mean convergence in i.i.d. cases

We show that the mean convergence result in Corollary 2.9 holds for the i.i.d. case as well.

Proposition 2.12. Let α = (d + 2p)−1. If lim infn nα ∣xn − yn∣ = +∞, then

(2.42) lim
n→∞

ELn(xn , yn)
(n f0)(1−p)/d ∣xn − yn∣

= C(d , p).

Proof. Let us fix xn and yn so that Lk denotes Lk(xn , yn) for all k ≥ 0. Let C1 > 0 and suppose
that the number of nodes ∣Ln∣ in the shortest path is less than C1(n f0)1/d ∣xn − yn∣. Suppose
that the event EF in Lemma 2.6 occurred and all the shortest path link distances are at most
(n f0)(α−1)/d . When a sample point in Xn is discarded, Ln−1 remains the same as Ln if the
discarded sample point were not a node in Ln. Furthermore since EF occurred, Ln−1 and Ln

may differ at most by 2p(n f0)(α−1)p/d . Therefore

(2.43) ELn−1 − ELn ≤
C1(n f0)1/d ∣xn − yn∣

n
⋅ 2p(n f0)(α−1)p/d + hnEL0,

where hn denotes the probability that either ∣Ln∣ > C1(n f0)1/d ∣xn − yn∣, or the event EF does
not occur. EL0 in the last term is chosen because ELk ≤ EL0 for all k > 0. By conditioning
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the Poisson process, the difference between ELn and ELn f is at most

(2.44) EL0 Pr{N < 2−1n} + ∑
k≥2−1n
∣ELn − ELk ∣Pr{N = k},

where N is a Poisson random variable with mean n. When N < 2−1n, the mean difference
is simply bounded by EL0. Note that the first term on the right of (2.43) has monotonic
decrease for fixed xn and yn. Therefore if k ≥ 2−1n,

(2.45) ∣ELn − ELk ∣ ≤ 2pC1∣xn − yn∣∣n − k∣(
n
2
)
−1
(
n f0
2
)

1+p(α−1)
d

+ EL0 ∑
l>2−1n

hl ,

and since E∣N − n∣ ≤
√
n and EL0 = ∣xn − yn∣p,

(2.46)
∣ELn − ELn f ∣

(n f0)(1−p)/d ∣xn − yn∣
≤ O((n f0)αp/dn−1/2) +

Pr{N < 2−1n} +∑ hl

(n f0)(1−p)/d ∣xn − yn∣1−p

where the summation∑ hl is still for l > 2−1n. The first term decays to zero since α < d/(2p).
The second term also decays to zero since while the denominator has at most polynomial
decay, the numerator has exponential decay by the Chernoff bound, Lemma 2.11,3 and
Lemma 2.6. Thus the claim follows by Corollary 2.9.

2.3.6 Concentration of measure

Now we are ready to apply Talagrand's inequality to Ln. This concentration inequality
provides a high-probability lower bound on Ln, and gives a complete convergence result
that will be used in the sequel.

Proposition 2.13. Let α = (d + 2p)−1. If lim infn nα ∣xn − yn∣ = +∞, then

(2.47) lim sup
n→∞

1
(n f0)α ∣xn − yn∣

logPr{∣
Ln(xn , yn)

(n f0)(1−p)/d ∣xn − yn∣
− C(d , p)∣ > ε} < 0.

Proof. This proof basically follows the proof outline of Yukich (2000, Theorem 4.1) and
Talagrand (1995, Section 7.1). Let

• ES be the event that ∣Ln(xn , yn)∣ ≤ C1(n f0)1/d ∣xn − yn∣ for some C1 > C(d , p)ρ0,
(Lemma 2.11)

• EF be the event that all the shortest path link distances are atmost (n f0)(α−1)/d , (Lemma2.6)

3Note the slight difference in constant definition of α from Lemma 2.11.
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• EC be the event that at every point u ∈ B(z;R2), at least one of the sample points is in
B(u; (n f0)(α−1)/d).

These events occur with high probability so that their occurrence does not hinder the
convergence rate stated in this proposition. As a check, both Pr(ES) and Pr(EF) approaches
1 exponentially fast in (n f0)α ∣xn − yn∣ by Lemma 2.11 and Lemma 2.6, respectively, since
∣xn − yn∣ ≤ 2R1. The probability Pr(EC)may be shown to approach 1 exponentially fast as
well by a similar proof to Lemma 2.6.

For every a > 0, define E(a) to be the event that Ln = Ln(xn , yn) ≥ a. Let ω and η be
outcomes in the probability space. Assume that ω ∈ ES ∩ EF , and that η ∈ E(a) ∩ EC . Let
π∗(ω) be the shortest path Ln(xn , yn) between xn and yn through realized sample points
X1(ω), . . . , Xn(ω). If π∗(ω) is sequence

(2.48) xn = π0(ω) → π1(ω) → ⋅ ⋅ ⋅ → πk(ω) = yn ,

where k = ∣Ln(ω)∣, then build the path π(η) from xn to yn through X1(η),…,Xn(η) as
follows. For each i ∈ {1, . . . , k − 1}, let j denote the index where X j(ω) = πi(ω). If X j(ω) =
X j(η), then set πi(η) = πi(ω). Otherwise, since it was assumed that η ∈ EC , there exists some
Xl(η) ∈ B(πi(ω); (n f0)(α−1)/d). Set πi(η) = Xl(η). Then it follows that ∣πi(η) − πi(ω)∣ ≤
(n f0)(α−1)/d for all i = 1, . . . , k.

Let I be the set of indices i where πi(ω) ≠ πi(η). Then L(π(η)) ≤ L(π∗(ω)) +
2∣I∣3p(n f0)(α−1)p/d since ω ∈ EF . On the other hand, η ∈ E(a). Therefore

(2.49) L(π∗(ω)) = Ln(ω) ≥ a − 2∣I∣3p(n f0)(α−1)p/d .

Let dc(ω;E(a) ∩ EC) be the convex distance of ω to E(a) ∩ EC (See Talagrand 1995,
Section 4.1). By Talagrand (1995, Lemma 4.1.2), there exists η ∈ E(a) ∩ EC such that
∣I∣ ≤ dc(ω;E(a) ∩ EC)

√
∣Ln(ω)∣, hence

(2.50) Ln(ω) ≥ a − 2 ⋅ 3p ⋅ dc(ω;E(a) ∩ EC)
√
∣Ln(ω)∣(n f0)(α−1)p/d .

In particular, if Ln(ω) ≤ a − u for u > 0,

dc(ω;E(a) ∩ EC(α)) ≥
u

2 ⋅ 3p ⋅
√
∣Ln(ω)∣

(n f0)(1−α)p/d

≥
u

2 ⋅ 3p ⋅
√
C1(n f0)1/d ∣xn − yn∣

(n f0)(1−α)p/d
(2.51)

since ω ∈ ES .
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LetMn be amedian of Ln. If a = Mn, then by (2.51) and Talagrand (1995,Theorem 4.1.1),
for u > 0,

(2.52) Pr{Ln ≤ Mn − u} ≤ 3 exp(−
C2u2

∣xn − yn∣
(n f0)

2p(1−α)−1
d ) + (1 − Pr(EF)) + (1 − Pr(ES))

where C2 = (2432pC1)
−1, since Pr(EC) approaches 1 as n →∞ and Pr(E(Mn)∩ EC(α)) ≥ 3−1

for sufficiently large n. For the upper bound part, let a = Mn + u. Then repeat a similar
procedure,

(2.53) Pr{Ln ≥ Mn + u} ≤ 3 exp(−
C2u2

∣xn − yn∣
(n f0)

2p(1−α)−1
d ) + (1 − Pr(EC))

for sufficiently large n since both Pr(EF) and Pr(ES) converge to 1 as n →∞. Therefore

(2.54) Pr{
∣Ln −Mn∣

(n f0)(1−p)/d ∣xn − yn∣
> u} ≤ 3 exp(−C2u2∣xn − yn∣(n f0)α) + hn ,

where hn = (1 − Pr(EC)) + (1 − Pr(EF)) + (1 − Pr(ES)).
Now we show that the median and the mean are close. By the Jensen's inequality, ∣ELn −

Mn∣ ≤ E∣Ln −Mn∣, and if (2.54) is integrated with respect to u,

(2.55)
∣ELn −Mn∣

(n f0)(1−p)/d ∣xn − yn∣
≤ 3
√

π
C2∣xn − yn∣(n f0)α

+ ((n f0)1/d ∣xn − yn∣)
p−1

hn .

Note that the range of the integral is restricted since Ln ≤ ∣xn − yn∣p. All events EC , EF , and
ES have their probability approach to 1 exponentially fast. Therefore

(2.56) lim
n→∞

∣ELn −Mn∣

(n f0)(p−1)/d ∣xn − yn∣
= 0.

By Proposition 2.12, if n is large enough then

(2.57) Pr{∣
Ln

(n f0)(p−1)/d ∣xn − yn∣
− C(d , p)∣ > ε} ≤ Pr{ ∣Ln −Mn∣

(n f0)(p−1)/d ∣xn − yn∣
>
ε
2
}.

Then the claim follows from (2.54).

Remark 2.14. At this point, the value of (2.47) is worth discussion. From (2.54), the
limit supremum value is determined by the constant C2 = (2432pC1)

−1 and hn = (1 −
Pr(EC)) + (1 − Pr(EF)) + (1 − Pr(ES)).
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From Lemma 2.6, the log limit supremum of 1 − Pr(EF) is −θ1 < 0, dependent only
on d and p. From a similar proof of 1 − Pr(EC), one may conclude that the log limit
supremum of 1 − Pr(EC) is also some value, say −θ2 < 0, dependent only on d and p.

Now the event ES . From Lemma 2.11 which in turn is dependent on Lemma 2.10,
the log limit supremum is

(2.58) −min{
θ0
2R1

,
1
8
(
δ
2p
)

2

} where 2δ < C1

ρ0
− C(d , p).

To summarize, the value of (2.47) is bounded above by

(2.59) −min{
θ0
2R1

, θ1, θ2,
1
8
(
δ
2p
)

2

,C2ε2 =
ε2

2432pC1
}.

In reader will see in the rest of the proofs that R1 will not increase indefinitely and it may
be bounded above. Other values C2 and δ are determined by C1 > C(d , p)ρ0. Note that
ρ0 from Lemma 2.4 depends only on d and p.

Therefore the value of (2.47) is some strictly negative value that depends only on d,
p, and ε. When ε is sufficiently small, the log limit supremum is −C2ε2. Otherwise it is
some saturated value dependent only d and p.

To make the dependencies clear, define ς(d , p),ϖ(d , p) > 0 and function ς(d , p; ε)
of ε > 0 such that (2.47) becomes

lim sup
n→∞

1
(n f0)α ∣xn − yn∣

logPr{∣
Ln(xn , yn)

(n f0)(1−p)/d ∣xn − yn∣
− C(d , p)∣ > ε} ≤ −ς(d , p; ε) < 0

and

(2.60) ς(d , p; ε) =
⎧⎪⎪
⎨
⎪⎪⎩

ς(d , p)ε2 when ε < ϖ(d , p),

ς(d , p)ϖ(d , p)2 otherwise.

We next relax the uniformity condition on the probability density, and instead assume
that it is only locally uniform. That is, the density f is still uniform in B(z;R2) but may
have probability mass outside of B(z;R2). Therefore f (u)may be arbitrary non-negative
function over u ∉ B(z;R2) as long as it integrates to one over the entire space.

The following lemma helps to decouple the local probability distribution from outer
region.

Lemma 2.15. Let x ∈ B(z;R2). Denote by Ln(x; r), r > 0 the minimum power-weighted
path length over all shortest paths from x to all boundary points of B(x; r), i.e., Ln(x; r) =
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inf Ln(x , u) over all u ∈ ∂B(x; r). Choose r so that B(x; r) ⊂ B(z;R2). Then

(2.61) lim sup
n→∞

1
r (n f0)α

logPr{∣
Ln(x; r)
(n f0)(1−p)/dr

− C(d , p)∣ > ε} ≤ −ς(d , p; ε).

Proof. First note that the boundary of B(x; r) may be covered with open balls of radii
(n f0)(α−1)/d , and the number of cover elements m may be chosen less than (2n f0r)d . Let
v1, v2, . . . , vm be the centers of the cover elements. If the event EF in Lemma 2.6 occurs and

(2.62) ∣
Ln(x , vk)
(n f0)(1−p)/dr

− C(d , p)∣ ≤ ε
2
,

for all k = 1, . . . ,m, then ∣(n f0)(p−1)/dr−1Ln(x , u) − C(d , p)∣ < ε for all u on the boundary of
B(x; r) for sufficiently large n. Note that Ln(x; r) is not affected by the probability distribu-
tion outside B(x; r) ⊂ B(z;R2) since the boundary of B(x; r) disconnects the interior and
the exterior. If the shortest path to the boundary were to reach any point outside B(x; r), the
path must have already passed through the boundary, which is a contradiction. Therefore
Proposition 2.13 may be applied to v1, v2, . . . , vm, and (2.61) follows since m ≤ (2n f0r)d is
of polynomial order.

Theorem 2.16. Let 0 < b < 1 and c > 0 be constants. Let α = (d + 2p)−1. Then

(2.63) lim sup
n→∞

1
(n f0)(1−b)α

logPr{sup
x ,y
∣

Ln(x , y)
(n f0)(1−p)/d ∣x − y∣

− C(d , p)∣ > ε} ≤ −ς(d , p; ε)

where the supremum is taken over x and y such that x , y ∈ B(z; 4−1R2) and (n f0)bα ∣x − y∣ ≥ c.

The condition of (n f0)bα ∣x − y∣ ≥ c is to enforce that (n f0)α inf ∣x − y∣ has polynomial
order and to prevent sub-polynomial, e.g., logarithmic, growth. Note that we no longer
have sequences xn and yn but rather we have a supremum over some subset points x , y. This
change in the formulation will turn out to be useful later when we adapt the result to open
covers of compact regions.

Proof of Theorem 2.16. Recall the definition of L(x; r) fromLemma2.15. Let ξi , ξ j ∈ B(z; 4−1R2).
If

(2.64)
Ln(ξi ; 5R2/8)

(n f0)(1−p)/d(5R2/8)
≥ C(d , p) − δ

holds where δ > 0 is chosen so that (C(d , p) + ε)(R2/2) < (C(d , p) − δ)(5R2/8), then

29



5R2
8

5R2
8

z
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Figure 2.6: All ξi 's are within B(z; 4−1R2). Therefore all B(ξi ; 5R2/8) are contained in
B(z;R2). Since ∣ξi − ξ j∣ ≤ 2−1R2, with high probability we have Ln(ξi , ξ j) <
Ln(ξi ; 5R2/8), and Ln(ξi , ξ j) becomes independent of the outside B(ξi ; 5R2/8) ⊂
B(z;R2) due to the annulus buffer region {u∶4−1R2 < ∣z − u∣ < R2}.

whether

(2.65)
Ln(ξi , ξ j)

(n f0)(1−p)/d ∣ξi − ξ j∣
≤ C(d , p) + ε

becomes independent of the sample points—hence the probability distribution—outside
B(z;R2), since ∣x − y∣ ≤ (R2/2) and B(x; (5R2/8)) ⊂ B(z;R2). See Figure 2.6.

Let x , y ∈ B(z; 4−1R2). Again suppose that the event EF occurs, and let {B(ξi ; (n f0)(α−1)/d),
1 ≤ i ≤ m} be an open cover of B(z; 4−1R2) with m ≤ (n f0R2)

d . Then there exists ξi , ξ j such
that ∣x − ξi ∣ < (n f0)(α−1)/d and ∣y − ξ j∣ < (n f0)(α−1)/d , hence

∣∣x − y∣ − ∣ξi − ξ j∣∣ < 2(n f0)(α−1)/d(2.66)

and

∣Ln(x , y) − Ln(ξi , ξ j)∣ ≤ 2p+1(n f0)(α−1)p/d .(2.67)

Since ∣x − y∣ ≥ c(n f0)−αb, it follows that if n is sufficiently large,

(2.68) ∣
Ln(x , y)

∣x − y∣(n f0)(1−p)/d
−

Ln(ξi , ξ j)
∣ξi − ξ j∣(n f0)(1−p)/d

∣ <
ε
2
,
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and

Pr{sup
x ,y
∣

Ln(x , y)
(n f0)(1−p)/d ∣x − y∣

− C(d , p)∣ > ε}(2.69)

≤ ∑
i , j
{∣

Ln(ξi , ξ j)
(n f0)(1−p)/d ∣ξi − ξ j∣

− C(d , p)∣ > ε
2
}(2.70)

+
m
∑
i=1

Pr{
Ln(ξi ; (5R2/8))
(n f0)(1−p)/d(5R2/8)

< C(d , p) − δ},(2.71)

where the first sum is over i and j that ∣ξi − ξ j∣ ≥ c(n f0)−αb − 2(n f0)(α−1)/d . Note that the
probability bound in Proposition 2.13 accounts for EF as well. The claim follows from
Proposition 2.13 and Lemma 2.15 as m ≤ (n f0R2)

d is of polynomial order.

Now we discard the local uniform probability density condition, i.e., f restricted to
B(z;R2) is no longer uniform.

Corollary 2.17. Let f○ > 0. Let α, b, c be defined as in Theorem 2.16. Suppose that f (u) ≥ f○
for all u ∈ B(z;R2). Then

lim sup
n→∞

1
(n f○)(1−b)α

logPr{sup
x ,y

Ln(x , y)
(n f○)(1−p)/d ∣x − y∣

< C(d , p) + ε} ≤ −ς(d , p; ε)

where the supremum is taken over x and y satisfying x , y ∈ B(z; 4−1R2) and (n f○)bα ∣x − y∣ ≥ c.
Similarly, let f ○ > 0. Suppose that f (u) ≤ f ○ for all u ∈ B(z;R2) and ∫B(z;R2) f

○ ≤ 1. Then

lim sup
n→∞

1
(n f ○)(1−b)α

logPr{sup
x ,y

Ln(x , y)
(n f ○)(1−p)/d ∣x − y∣

> C(d , p) − ε} ≤ −ς(d , p; ε)

where the supremum is taken over x and y satisfying x , y ∈ B(z; 4−1R2) and (n f ○)bα ∣x − y∣ ≥ c.

Proof. If a sample point Xi is in B(z;R2), then discard the point with probability f (Xi)
−1 f○.

Let L○(x , y) denote the shortest path length through the filtered sample. Note that Ln(x , y) ≤
L○(x , y) and the filtered sample has uniform density f○ in B(z;R2). The first claim holds by
the inequality

(2.72)
Ln(x , y)

(n f○)(1−p)/d ∣x − y∣
≤

L○(x , y)
(n f○)(1−p)/d ∣x − y∣

< C(d , p) + ε

andTheorem 2.16. Repeat a similar procedure for the second claim with f ○.
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2.3.7 Convergence in Riemannian manifolds

Finally we move to the case when the probability distribution is supported in a Riemannian
manifold. Let (M , д1) be a (smooth) d-dimensional complete connected Riemannian mani-
fold without boundary, where д1 is the base metric. Thus the edge weights of the PWG are
geodesic distances under д1. From now on, the shortest path Ln(x , y) for x , y ∈ M is always
based on д1.

Note that the probability density function is dependent on the Riemannian metric. Let f
denote the probability density function under д1. It will always be assumed that f is smooth
and infM f > 0. For p ≥ 1, define a conformal family of metrics дp = f 2(1−p)/d д1, that is
if x ∈ M and u, v ∈ TxM, then дp(u, v) = f (x)2(1−p)/d д1(u, v). Let distp(x , y) denote the
geodesic distance between x , y ∈ M under the metric дp, p ≥ 1.

Lemma 2.18. Let z ∈ M. Let 0 < b < 1 and c > 0 be constants. Then for every fixed ε > 0, there
exists R > 0 such that
(2.73)

lim sup
n→∞

1
(n f (z))(1−b)/(d+2p)

logPr{sup
x ,y
∣

Ln(x , y)
n(1−p)/d distp(x , y)

− C(d , p)∣ > ε} ≤ −ς(d , p; ε)

where the supremum is taken over x , y ∈ M such that dist1(x , z) < R, dist1(y, z) < R, and
dist1(x , y) ≥ c(n f (z))−b/(d+2p).

Proof. Let φ∶U ⊂ M → V ⊂ Rd be a normal chartmap of z where φ(z) = 0. By the properties
of the normal chart, the push-forward φ∗д1 of the metric д1 over φ is Euclidean at 0 = φ(z).
Choose δ > 0 such that

(2.74)
C(d , p) + 2−1ε
C(d , p) + ε

< (
1 − δ
1 + δ
)

p

and
C(d , p) − ε

C(d , p) − 2−1ε
< (

1 − δ
1 + δ
)

p

.

By continuity there exists R > 0 such that for all x ≠ y ∈ M satisfying the conditions
dist1(x , z) < 4R and dist1(y, z) < 4R, we have

1 − δ < dist1(x , y)
∣φ(x) − φ(y)∣

< 1 + δ(2.75)

and

(1 − δ)d supR f < f (z) < (1 + δ)d infR f(2.76)

where supR f = supdist1(x ,z)<4R f (x), and infR f = infdist1(x ,z)<4R f (x). Shrink U if necessary
so that U = {u ∈ M∶dist1(u, z) < 4R}.

Let Ln(φ(x), φ(y)) denote the shortest path between φ(x), φ(y) ∈ Rd in Euclidean
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metric. Apply Corollary 2.17 for the shortest paths inside V so that

(2.77) C(d , p) − ε
2
≤

Ln(φ(x), φ(y))
(n f (z))(1−p)/d ∣φ(x) − φ(y)∣

≤ C(d , p) + ε
2

holds with high probability. Then by (2.74), (2.75), and (2.76)

(2.78) (C(d , p) − ε)(infR f )(1−p)/d ≤ Ln(x , y)
n(1−p)/d dist1(x , y)

≤ (C(d , p) + ε)(supR f )(1−p)/d

when δ is sufficiently small.
Note that distp(x , y) ≤ dist1(x , y)(infR f )(1−p)/d , and if theminimal geodesic curve from

x to y under дp is contained in U , then

(2.79) distp(x , y) ≥ dist1(x , y)(supR f )(1−p)/d .

If a (piece-wise) smooth curve from x exits outside U , then the curve length under дp must
be at least (3R)(supR f )(1−p)/d since dist1(x , z) < R and by the definition of U . Therefore if
δ is small enough, (2.79) holds for all x and y since dist1(x , y) < 2R and by the assumption
(2.76).⁴

Combining the above results, we obtain that

(2.80) (C(d , p) − ε)distp(x , y) ≤ n(p−1)/dLn(x , y) ≤ (C(d , p) + ε)distp(x , y)

holds with high probability.

The main result of this chapter is finally proved using Lemma 2.18 applied to an open
cover of the manifold.

Proposition 2.19. Assume that M is compact. Let 0 < b < 1 and c > 0 be constants. Then for
every fixed ε > 0,

lim sup
n→∞

(n inf f )(b−1)/(d+2p) Pr{sup
x ,y
∣

Ln(x , y)
n(1−p)/d distp(x , y)

− C(d , p)∣ > ε} < −ς(d , p; ε)

where the supremum is taken over x and y such that dist1(x , y) ≥ c(n inf f )−b/(d+2p).

Proof. The crux of the proof is that the shortest path length Ln has near sub- and super-
additivity with high probability. We will show that if Lemma 2.18 holds in open cover

⁴The exact condition for δ is that ((1 − δ)/(1 + δ))p−1 > 2/3, and the condition is not dependent on the
choice of R. Therefore there is no cycle trap.
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z1

U1

V1

z2

U2

V2

z3

U3

V3

z4

Figure 2.7: Path division procedure described in Proposition 2.19. Here k = 4. Note that
zi ∈ Ui and zi+1 ∈ Vi for i = 1, 2, 3. Shortest path is depicted as a smooth curve
for illustration purpose only and it is actually piece-wise geodesic.

elements, then the local convergences may be assembled together to yield global conver-
gence of the curve length.

For each ξi ∈ M, we may associate positive Ri > 0 such that Lemma 2.18 holds within
the region Vi = {v ∈ M∶dist1(v , ξi) < 3Ri}. Let Ui = {v ∈ M∶dist1(v , ξi) < Ri}. Since M is
assumed to be compact, there is finite m > 0, {ξi ∈ M}mi=1, and corresponding {Ri > 0}mi=1
such that corresponding {Ui} is a finite open cover of M.

Suppose that x , y ∈ M and assume to the contrary that

(2.81) n(p−1)/dLn(x , y) < (C(d , p) − ε)distp(x , y).

Reorder the indices if necessary so that x ∈ U1. Define z1 = x. If Ln(x , y) ever exits V1, then
a point z2 ∈ V1 on the shortest path may be chosen such that z2 ∉ U1. Then dist1(z1, z2) ≥ Ri .
Reorder the indices of the open cover again if necessary so that z2 is in U2. Repeat the
procedure until Ln(x , y) ends in, say Vk. Set zk+1 = y. Then points x = z1, z2, . . . , zk , zk+1 = y
satisfy zi , zi+1 ∈ Vi for i = 1, 2, . . . , k, and dist1(zi , zi+1) ≥ Ri ≥ R for i = 1, 2, . . . , k − 1,
where R =mini Ri . The last link distance dist1(zk , zk+1)may be less than R. However, note
that zk−1 ∈ Uk−1 and y = zk+1 ∉ Vk−1 by the definition, hence dist1(zk−1, zk+1) > 2Rk−1 ≥ 2R.
Therefore zk may be adjusted so that dist1(zk , zk+1) ≥ R as well, and it is easily checked that
zk is still in Vk. See Figure 2.7 for illustration.
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If

(2.82) (C(d , p) − ε)distp(zi , zi+1) ≤ n(p−1)/dLn(zi , zi+1)

for all i = 1, 2, . . . , k, then by the triangle inequality and the property of the power function
that αp + βp ≤ (α + β)p for α, β ≥ 0,

(C(d , p) − ε)distp(x , y) ≤ (C(d , p) − ε)
k
∑
i=1

distp(zi , zi+1)(2.83)

≤
k
∑
i=1

n(p−1)/dLn(zi , zi+1)(2.84)

≤ n(p−1)/dLn(x , y) < (C(d , p) − ε)distp(x , y)(2.85)

and a contradiction is encountered. Therefore (2.82) must not hold for some pair zi and
zi+1. Since m is finite and Lemma 2.18 should hold in V1,V2, . . . ,Vm,

(2.86) lim sup
n→∞

(n inf f )(b−1)/(d+2p) Pr{inf
x ,y

Ln(x , y)
n(1−p)/d distp(x , y)

< C(d , p) − ε} < 0.

For the upper bound, we follow a similar strategy to Bernstein et al. (2000). If z1 = x,
zk+1 = y, and zi are points on the minimal geodesic curve from x to y under дp, then
distp(x , y) = ∑k

i=1 distp(zi , zi+1). It has been argued above that the points may be chosen and
indices of the open cover may be rearranged such that zi , zi+1 ∈ Vi and dist1(zi , zi+1) ≥ R for
all i = 1, 2, . . . , k. Note that Lemma 2.18 depends on Proposition 2.13, and Proposition 2.13
includes the event EF in Lemma 2.6. Therefore each paste procedure may incur additional
cost of at most 2pnp(α−1)/d so that

(2.87) Ln(x , y) ≤
k
∑
i=1

Ln(zi , zi+1) + k2pn(α−1)p/d

where α = (d + 2p)−1. Therefore if Lemma 2.18 holds in V1,V2, . . . ,Vm, then

(2.88) n(p−1)/dLn(x , y) ≤ (C(d , p) +
ε
2
)(distp(x , y) + k2pn(αp−1)/d),

and if n is large enough, n(p−1)/dLn(x , y) ≤ (C(d , p) + ε)distp(x , y) since n(αp−1)/dnαb

shrinks to zero as n →∞. Therefore the claim is proved by applications of Lemma 2.18 to
V1,V2, . . . ,Vm.
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Remark 2.20. Proposition 2.19 implies that

(2.89) lim
n→∞

Ln(x , y)
n(1−p)/d distp(x , y)

= C(d , p) c.c.

for every pair x , y ∈ M, and it proves Theorem 2.1. Proposition 2.19 in fact implies a
stronger result. For instance, let Zn be a sequence of finite subsets of M. If ∣Zn∣ grows as
a polynomial in n and if

lim inf
n→∞

nb/(d+2p) min
x ,y∈Zn

dist1(x , y) ≥ c > 0,(2.90)

then

∑
n≥1

Pr{ sup
x ,y∈Zn

∣
Ln(x , y)

n(1−p)/d distp(x , y)
− C(d , p)∣ > ε} < ∞.(2.91)

2.4 Extensions

Some limitations ofTheorem2.1 and Proposition 2.19may be removed and further extended.
This section discusses a few of them.

2.4.1 Super-additive dissimilarity

Many learning methods work with neighborhood graphs to search local geometric infor-
mation (Tenenbaum et al. 2000; Roweis and Saul 2000; Donoho and Grimes 2003; Belkin
and Niyogi 2003; Weinberger et al. 2004). Power-weighted shortest path, however, need
not begin with neighborhood graphs but finds the neighborhood structure automatically.
However, the absence of the neighborhood graph may slow down the convergence rate.
Suppose that p is close to 1. Then the shortest paths are almost straight lines, and a large
number of sample points are required to converge. See Lemma 2.6 to find that the constant
θ1 is near zero when p is nearly 1. See Chapelle and Zien (2005) for similar issues in shortest
path approaches.

Finding the neighborhoods is equivalent to pruning large edges in the complete graph.
If x , y ∈ M pair is far away and should be pruned from the graph, such pair should be
assigned a large weight—larger than ∣x − y∣p—so that the direct path x → y is removed from
consideration in early step. For the purpose, we introduce super-additive dissimilarities.

Let M be a manifold. Let h∶M ×M → R be a continuous function. We say h is super-
additive of order p > 1 if

SPA1 h(x , y) ≥ 0 and h(x , x) = 0 for x , y ∈ M,
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SPA2 for every open neighborhood U of x ∈ M, there exists some ε > 0 such that
h(x , y) ≥ ε for all y ∉ U ,

SPA3 for every δ > 0 and x ∈ M there exists an open neighborhood U of x such that for
every y, z ∈ U ,

1 − δ < h(y, z)
dist1(y, z)p

< 1 + δ.

Let Ln(x , y; h) denote the shortest path length from x to y but measured by h instead of
distp1 . Condition SPA2 prevents some pathological paths. It also implies that h induces the
topology of M. Condition SPA3 determines the decay rate of Ln(x , y; h).

Super-additive dissimilarities may be defined with super-additive functions in R≥0. If
h̃∶R≥0 → R≥0 such that h(0) = 0 and h(r + s) > h(r) + h(s) for all r, s > 0, then h(x , y) =
h̃(dist1(x , y)) is a super-additive dissimilarity. For example, h̃(r) = 2(cosh r−1) = r2+O(r4)
induces a super-additive dissimilarity of order 2.

Remark 2.21. Super-additive dissimilarity is closely related to super-additive Euclidean
functionals. Let R ⊂ Rd be a d-dimensional rectangle and F ⊂ R be a finite subset. If Ap

maps (F , R) into reals and satisfy Ap(∅, R) = 0,

Ap(F + y, R + y) = Ap(F , R) for all y ∈ Rd ,(2.92)

Ap(αF , αR) = αpAp(F , R) for all α > 0,(2.93)

and

Ap(F , R) ≥ Ap(F ∩ R1, R1) + Ap(F ∩ R2, R2)(2.94)

whenever R is partitioned into R1, R2, then Ap is a super-additive Euclidean functional of
order p (Steele 1981; Steele 1988; Yukich 1998, Chapter 3). The condition (2.93) is often
called homogeneity of order p, and SPA3 above is a local relaxation of the homogeneity
requirement. Lemma 2.22 implies that SPA3 implies (2.94) with large number of sample
points.

Lemma 2.22. Let x , y ∈ M. For every ε > 0 there exists a finite sequence x = z0, z1, . . . , zk = y
in M such that

(2.95)
k−1
∑
i=0

h(zi , zi+1) < ε.

Proof. Let x ∈ M. Let U be the neighborhood described by SPA3. Shrink U if necessary so
that U is path-connected. Let y ∈ U and γ∶ [0, 1] → M be a curve in U such that γ(0) = x,
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γ(1) = y. Let 0 = t0 < t1 < ⋅ ⋅ ⋅ < tk = 1 be a finite partition of [0, 1]. Then

(2.96)
k−1
∑
i=0

h(γ(ti), γ(ti+1)) < (1 + δ)
k−1
∑
i=0

dist1(γ(ti), γ(ti+1))p

and the right side converges to zero as the partition refines.⁵
Now suppose y need not be in U . Choose a curve γ∶ [0, 1] → M as before. Since γ

is compact, there exists a finite open cover U1, . . . ,Uk with property SPA3. Repeat the
procedure above in each element.

Lemma 2.6 holds for h in place of power-weighted distance.

Corollary 2.23. Fix n and 0 < α < 1. Let U ⊂ M satisfying SPA3. Define the event EU(h; i , j)
for each pair 1 ≤ i , j ≤ n such that EU(h; i , j) does not occur if and only if (i) both Xi and X j

are in U , (ii) h(Xi , X j) > (n f0)(α−1)/dp, and (iii) the h-shortest path from Xi to X j contains no
sample point Xk other than Xi and X j. Let EU(h) = ⋂i , j EU(h; i , j). Then

(2.97) lim sup
n→∞

1
(n infU f )α

log(1 − Pr(EU(h))) ≤ −θ′1

for some constant θ′1 > 0 which depends only on d and p.

Proof. Since U satisfies the property SPA3, the proof is the same as Lemma 2.6.

Lemma 2.24. Let z ∈ M. Let 0 < b < 1 and c > 0 be constants. Then for every fixed ε > 0, there
exists R > 0 such that

lim sup
n→∞

1
(n f (z))(1−b)/(d+2p)

logPr{sup
x ,y
∣

Ln(x , y; h)
n(1−p)/d distp(x , y)

− C(d , p)∣ > ε} ≤ −ς(d , p; ε)

where the supremum is taken over x , y ∈ M such that dist1(x , z) < R, dist1(y, z) < R, and
dist1(x , y) ≥ c(n f (z))−b/(d+2p).

Recall that ς(d , p; ε) was defined in (2.60).

Proof. The proof is almost the same as Lemma 2.18. Replace the Euclidean distance with
h, and repeat the proof in the opposite direction, i.e., prove the convergence of Ln(x , y; h)
from Ln(x , y) as Lemma 2.18 did for Ln(x , y) from Ln(φ(x), φ(y)).

⁵Take net limit as in Riemann integral.
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Theorem 2.25. Assume that M is compact. Let 0 < b < 1 and c > 0 be constants. Then for
every fixed ε > 0,

lim sup
n→∞

(n inf f )(b−1)/(d+2p) logPr{sup
x ,y
∣

Ln(x , y; h)
n(1−p)/d distp(x , y)

− C(d , p)∣ > ε} < −ς(d , p; ε)

where the supremum is taken over x and y such that dist1(x , y) ≥ c(n inf f )−b/(d+2p).

The proof is the same as Proposition 2.19 except that we use Lemma 2.24 instead of
Lemma 2.18.

Embedded compact manifolds

An important application ofTheorem 2.25 is the embedded compact manifold cases. Tenen-
baum et al. (2000) and Bernstein et al. (2000) showed the shortest path length convergence
with p = 1 when compact manifolds are embedded in Euclidean spaces. The following
extends these results.

Proposition 2.26. Suppose the compact Riemannian manifold M is embedded in Banach
space V . Assume that the embedding is smooth and is a Banach space isometry in every tangent
fiber. Let h be the norm of V . Then hp is super-additive in M of order p > 1, and Ln(x , y; h)
converges as in Theorem 2.25.

Proof. M is compact hence is finite-dimensional, the second fundamental form II at each
point is a continuous bilinear operator. For immersion theory in Banach manifolds, see
Lang (1999, Chapter XIV). For every x ∈ M, lift II from TxM ⊗ TxM to Rd ⊗Rd , i.e.,

(2.98) Rd ⊗Rd Ð→ TxM ⊗ TxM Ð→ TxV ≅ V

so that we have a collection T of continuous linear maps from Rd ⊗Rd to V .⁶ Since M is
compact and II is smooth, for every u ∈ Rd ⊗Rd its set of images under the linear maps in T
is compact, hence bounded. By a corollary of the Banach-Steinhaus theorem (Rudin 1991,
Chapter 2), the linear maps in T is equicontinuous and there exists a global bound K > 0
such that

(2.99) ∣II(X ,Y)∣ ≤ K∣X∣∣Y ∣

for all tangent vectors X ,Y of M.

⁶Choose a frame bundle section of M.
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Note that the difference of distances in M and V is determined by II. If γ is a curve in
M,

(2.100) γ̈ = γ′′ + II(γ′, γ′)

where γ̈ and γ′′ are the acceleration of γ in V and M, respectively (O'Neill 1983, Chapter 4).
Therefore the ratio of geodesic distance in M to norm distance in V is uniformly bounded
for close enough pairs. Therefore h satisfies condition SPA3. SPA2 follows from the fact M
is compact and embedded. SPA1 is easy to verify.

Information geometry

See Chapter 3 for parameter spaces and information geometry.
Let M be a compact manifold without boundary. Let F ∶M × M → R be a smooth

nonnegative function such that F(x , x) = 0 for all x ∈ M. Then dF(x , x) = 0. Let Fx(y) =
F(x , y) and X ,Y be vector fields inM. Define д1(X ,Y)(x) = XYFx(x). Then it is symmetric
and positive semidefinite since

(2.101) 0 = [X ,Y] ⋅ Fx(x) = XYFx(x) − YXFx(x).

Assume that д1 is strictly positive definite everywhere. Then (M , д1) is a Riemannian mani-
fold. If F were an information divergence, say Kullback-Leibler divergence, then д1 is the
Fisher information (Amari and Nagaoka 2000, Chapter 3).

By a lemma of Morse there exists a local coordinate system u = (u1, . . . , ud) in a neigh-
borhood U of x such that u(x) = 0 and (Milnor 1963, Lemma 2.2)

(2.102) F(x , u) = Fx(u) = u2
1 + ⋅ ⋅ ⋅ + u2

d .

In particular, the local expression of д1 is the identity at u(x) = 0. Since F is smooth there
exists a neighborhood V ⊂ U such that д1 deviates from the identity at most by ε > 0 in V ,
and

(2.103) (1 − ε)2 < dist1(x , u)2
F(x , u)

< (1 + ε)2.

Since both dist1 and F are continuous in M ×M, there exists some neighborhoodW of x
such that for all u, v ∈W ,

(2.104) 1 − δ < dist1(u, v)2
F(u, v)

< 1 + δ
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when ε was chosen sufficiently small. Therefore F satisfies the condition SPA3.

Proposition 2.27. Let M be a compact manifold parameter space. Let ζ be an embedding
parameterization, i.e., a smooth embedding map of M into the set of probability measures in
some measurable space. Suppose we have a smooth prior probability density function f with
respect to the Fisher information in M. Let Ln(x , y; F) denote the shortest path length in F
through sampled parameters from f from a parameter x ∈ M to another parameter y ∈ M. If
infM f > 0 then Theorem 2.25 holds with h = F and p = 2.

2.4.2 Non-compact complete manifolds

Consider a non-compact but completemanifoldM. From Proposition 2.19 onemay observe
that Ln(x , y) should be close to the minimizing geodesic curve from x to y under дp. To
prove the convergence, however, every neighborhood of x should be inspected until all
possible paths are eliminated, i.e., one needs to search in large enough region U such that
Ln(x , u) > Ln(x , y) for every u on the boundary of U . It makes Proposition 2.19 difficult
to prove in non-compact manifolds since the convergence of Lemma 2.18 should hold in
infinitely many neighborhoods at once.

Let λ > 0 be a constant satisfying

(2.105) 1 + λ > C(d , p) + ε
C(d , p) − ε

.

Proposition 2.28. Let (M , д1) be a complete Riemannian manifold. Assume that f (u) > 0
for all u ∈ M. Let K ⊂ M be compact and fK = infK f > 0. Let 0 < b < 1 and c > 0 be constant.
Then for every fixed ε > 0,

lim sup
n→∞

(n fK)(b−1)/(d+2p) logPr{sup
x ,y
∣

Ln(x , y)
n(1−p)/d distp(x , y)

− C(d , p)∣ > ε} < −ς(d , p; ε)

where the supremum is taken over x and y in the same connected interior of K such that

(i) dist1(x , y) ≥ c(n fK)−b/(d+2p), and

(ii) for every u ∉ K both distp(x , u) and distp(y, u) are greater than (1 + λ)distp(x , y).

Proof. Since K is compact, there exists a finite open cover with properties in Lemma 2.18.
Then by the arguments in the proof of Proposition 2.19 applied to some finite open cover of
K, with high probability,

(2.106) n(p−1)/dLK
n (x , u) > (C(d , p) − ε)distp(x , u)
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for all x in the interior of K and for all u on the boundary of K. LK
n denotes the shortest path

length when sample points are restricted to K. Since LK
n ≥ Ln, any shortest paths that exits

K from x should have length greater than

(C(d , p) − ε)distp(x , u) ≥ (C(d , p) − ε)(1 + λ)distp(x , y)(2.107)

> (C(d , p) + ε)distp(x , y)(2.108)

for every x , y in consideration by the choice of λ in (2.105).

Corollary 2.29. Let x , y ∈ M. Then for some f0 > 0,

(2.109) lim sup
n→∞

1
(n f0)1/(d+2p)

logPr{∣
Ln(x , y)

n(1−p)/d distp(x , y)
− C(d , p)∣ > ε} < −ς(d , p; ε).

Proof. A bounded and closed subset in M is compact by Hopf and Rinow theorem (do
Carmo 1992, Chapter 7). Choose K = Kx ∪ Ky,

Kx = {u ∈ M∶distp(x , u) ≤ (1 + λ)distp(x , y)},(2.110)

Ky = {u ∈ M∶distp(y, u) ≤ (1 + λ)distp(x , y)}(2.111)

for Proposition 2.28.

2.5 Future works

We describe some preliminary results which needs further study in the future.

2.5.1 Manifolds with boundary

Consider the case when a compact manifold M has boundary.
Go back to Euclidean spaces and let (u1, . . . , ud) denote the coordinates ofRd . Consider

the half Poisson point process H+λ in Rd where no point exists in the region ud < 0. Let
L+λ(0, t) denote the power-weighted shortest path length from (0, 0) to (t, 0) ∈ R×Rd−1 ≅ Rd

for t > 0.

Lemma 2.30.

(2.112) lim
t→∞

1
t
EL+1 (0, t) = Cb(d , p)

for some constant Cb(d , p) > 0 which depends only on d and p.
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The proof is the same as Lemma 2.8. The new constant Cb(d , p) plays the role of C(d , p)
when the paths run on the boundary. Obviously there is inequality C(d , p) ≤ Cb(d , p) but
at this point we do not know whether the inequality is strict or not. We conjecture that
Cb(d , p) = C(d , p), since if otherwise discontinuities of Ln(x , y) between the boundary
and the interior is introduced but Ln(x , y) is continuous for all finite n.

Proofs in Section 2.3 can be reproduced for boundary shortest paths tillTheorem 2.16. In
Poisson processes, replaceHλ withH+λ and keep xλ , yλ on the hyperplane ud = 0. In binomial
processes, replace the uniform distribution in B(z;R2) with the uniform distribution in the
upper hemisphere {ud ≥ 0} ∩ B(z;R2), and keep xn , yn on the hyperplane ud = 0.

Suppose that Cb(d , p) = C(d , p). In that case, the same proofs may be repeated to the
end of Section 2.3 and wemay conclude that Proposition 2.19 holds with compact manifolds
with boundary.

A possible complication occurs if Cb(d , p) > C(d , p). If the inequality were strict, then
the metric дp must be scaled by (Cb(d , p)/C(d , p))

2 in the boundary so that distp reflects
the difference in the constants. Since shortest paths are continuous, the scaling should be
applied to places near the boundary so that continuity holds between C(d , p) and Cb(d , p).
In that case, we may conclude that with exponentially high probability in the sense of
Proposition 2.19,

(2.113) C(d , p) − ε < Ln(x , y)
(n inf f )(1−p)/d distp(x , y)

< Cb(d , p) + ε.

2.5.2 Conformal deformations in anisotropic diffusion maps

In this subsection, we discuss the anisotropic diffusion map (Coifman and Lafon 2006) and
the conformal deformations. Let (M , д1) denote a compact Riemannian manifold.

Define the diffusion kernel in Rd , x , y ∈ Rd ,

(2.114) κt(x , y) = exp(−
∣x − y∣2

4t
)

where t > 0 is the kernel width. For α > 0, anisotropic diffusion map builds a Markov chain
over the sample points with transition probability

(2.115) pi j(t) = bi(t)
κt(Xi , X j)

(∑k κt(Xi , Xk))
α
(∑k κt(X j, Xk))

α

where bi(t) > 0 is a scalar such that∑ j pi j = 1 for i = 1, 2, . . . , n.
When t → 0, the backward infinitesimal generatorH(α)b of the anisotropic diffusion map
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is (Nadler, Lafon, Coifman, and Kevrekidis 2006, Section 4)

(2.116) H
(α)
b ψ = ∆1ψ + 2(1 − α)dψ(∇1 log f ),

where ψ∶M → R is an arbitrary smooth function, d denotes the exterior derivative, ∆1 and
∇1 are the Laplace-Beltrami and the gradient operator with respect to the base metric д1,
respectively. See Morita (2001) for more details. The infinitesimal generator in the limit is
∆1 when α = 1. For Laplacian Eigenmaps, the graph Laplacian converges fH(0)b (Belkin and
Niyogi 2008, Theorem 5.1).

Recall the definition дp = f 2(1−p)/d д1. If ∆p denotes the Laplace-Beltrami operator under
дp where p is allowed to be any real value, (Besse 1987, Theorem 1.159)

(2.117) ∆pψ = f 2(p−1)/d(∆1ψ +
(d − 2)(1 − p)

d
dψ(∇1 log f )).

Then for d > 2, (2.116) and (2.117) are equivalent when

(2.118) p = 1 − 2d(1 − α)
d − 2

.

Therefore the backward generator of the anisotropic diffusion map is conformal to the
generator of the standardWiener process under дp. The same argument may be repeated for
the forward infinitesimal generatorH(α)f inNadler et al.(2006), and theymay be summarized

H
(α)
b ψ = f 4(1−α)/(d−2)∆pψ = f 2(1−p)/d∆pψ,(2.119)

H
(α)
f ψ = f 1−2αH(α)b ( f

2α−1ψ) = f −p∆p( f 2α−1ψ),(2.120)

and the two infinitesimal generators are similar to each other. In other words,

H
(α)
b ∶ψ

∆p7Ð→ ∆pψ
f 2(1−p)/d7ÐÐÐÐ→ f 2(1−p)/d∆pψ,(2.121)

H
(α)
f ∶ψ

f 2α−17ÐÐ→ f 2α−1ψ
H(α)b7ÐÐ→H(α)b ( f

2α−1ψ)
f 1−2α7ÐÐ→ f 1−2αH(α)b ( f

2α−1ψ).(2.122)

Note that if the metric deformation were uniform over the space, i.e., if f were a constant
function, then ∆pψ = f 2(p−1)/dψ. In the context, the multiplicative factor f 2(1−p)/d after ∆p

inH(α)b may be interpreted as a point-wise normalization.
Note that from (2.118), the effective p for anisotropic diffusion map is less than one,

while the power-weighted shortest paths restrict p > 1. Therefore these two methods are, in
some sense, dual to each other, and works in separate regimes: the power-weighted shortest
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paths for дp, p > 1 and the anisotropic diffusion maps for дp, p < 1.
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Chapter 3
Information Geometric Curves

3.1 Introduction

This chapter considers curves in information geometry. Time-parametrized probability
distributions appear frequently in time-series analysis. In information theory, probability
distributions are measured their discrepancy by information divergence such as Kullback-
Leibler divergence. Information divergence is pairwise dissimilarity and it does not extend
naturally when probability distributions are time-parameterized.

We use information geometry, a differential geometric framework, to the space of prob-
ability distributions and parameter spaces. And time-parameterized distributions become
curves in the location parameter space. We propose a novel measure of dissimilarity between
the curves in the information geometry, the surface area of theminimal surface that contains
the two time-parameterized probability distributions. The surface area measure is stable
under re-parameterizations in time since curves in geometry are considered equivalent
when their images are the same.

In information geometry, the Fisher information, a positive definite bilinear form, forms
a Riemannian metric in the parameter space. We examine the immersion maps between the
parameter space and Lp spaces behind the theories of information geometry. We establish
relations between the surface area measure and common curve comparison measures such
Hausdorff distance and Chamfer distance.

3.2 Preliminary

This introductory section provides basic definitions and discussions. Throughout the chapter,
Ω denotes a measurable space and all measures are assumed to be supported in Ω.
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3.2.1 Information divergence

Let µ and ν be probability measures. Lebesgue-Radon-Nikodym theorem states that ν is the
sum of two positive measures νµ and ν⊥ where νµ is absolutely continuous with respect to µ
and ν⊥ is mutually singular to µ (Rudin 1986, Theorem 6.10). Furthermore there exists a
unique function dν/dµ which is integrable with respect to µ and

(3.1) ∫ dν
dµ

1Edµ = νµ(E)

for every measurable E ⊂ Ω, and 1E is the indicator function.
Many studies in information theory assume all probability measures of interest are abso-

lutely continuous to each other. However, non-absolutely continuous probability measures
appear both in theory and in applications. For an example in theory, uniform distributions
in unit intervals are not absolutely continuous to each other unless they are identical to
each other. For an example in application, bag-of-words approach is common in document
retrieval problems (Dhillon and Modha 2001; Teh, Jordan, Beal, and Blei 2006). This model
represents documents by multinomial probability measures of select words, and of course
different documents have different vocabularies in general. See Bag-of-Words data from
UCI repository (Frank and Asuncion 2010). Another example arises in density estimation
problems of high dimensional data. If the number of sample points is few relative to the
dimensionality, probability density estimation can no longer assume a common support
of the measures. For instance, the data may be supported in some embedded manifolds
(Tenenbaum et al. 2000). See Schölkopf, Platt, Shawe-Taylor, Smola, and Williamson (2001)
for support estimation problem in high dimensions. Also see Ledoit and Wolf (2004) and
Chen, Wiesel, and Hero (2011) for degenerate covariance problems.

Example 3.1. Let Ω = [0, 1], µ be the uniform distribution in [0, 1], and ν be the standard
Gaussian distribution in R. Then ν is not absolutely continuous with respect to µ. νµ is the
truncated Gaussian distribution in [0, 1], ν⊥ is the truncated Gaussian distribution outside
[0, 1],

(3.2)
dν
dµ
(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1
√
2π

e− 1
2 x

2 , x ∈ [0, 1],

0, x ∉ [0, 1].
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On the other hand, µ is absolutely continuous with respect to ν,

(3.3)
dµ
dν
(x) =

⎧⎪⎪
⎨
⎪⎪⎩

√
2πe 1

2 x
2 , x ∈ [0, 1],

0, x ∉ [0, 1].

In information theory, Kullback-Leibler (KL) divergence DKL is a common dissimilarity
measure, and the dissimilarity of ν with respect to µ is (Kullback and Leibler 1951; Cover
andThomas 2006)

(3.4) DKL(µ ∥ ν) = ∫ dν
dµ

log
dν
dµ

dµ = ∫ log
dν
dµ

dν.

The base of the logarithm is arbitrary but fixed.
KL divergence derives from Shannon entropy which is defined from several postulates

motivated in communication theory (Shannon 1948; Cover andThomas 2006, Chapter 2).
Define

(3.5) Iα(µ ∥ ν) = ∫ ( dνdµ)
α

dµ.

Rényi (1961) showed that a class of information divergences emerges if one of the postulates
is generalized. This class of information divergences, indexed by α > 0, α ≠ 1 is called Rényi's
divergence

(3.6) DR,α(µ ∥ ν) =
1

α − 1
log( ∫ (dν/dµ)

α dµ
I1(µ ∥ ν

).

Another generalization of KL divergence is α-divergence for α > 0, α ≠ 1,1

(3.7) Dα(µ ∥ ν) =
1

α(1 − α)
(I(µ ∥ ν) − ∫ ( dνdµ)

α

dµ).

f -divergence

Themain idea behind information divergence is to measure dissimilarity by the deviation
of dν/dµ from dµ/dµ = 1. KL divergence (3.4) and α divergence (3.7) fall into the class
of f -divergence (Ali and Silvey 1966; Csiszár 1967; Csiszár and Shields 2004; Cover and
Thomas 2006). For a (continuous) convex function f ∶ [0,∞) → R with f (1) = 0, the

1The definition differs from others in the literature, e.g., see Amari and Nagaoka (2000). Also Dα is
sometimes parameterized in a different way from (3.6). The rationale of this choice will become clear in
subsequent discussions.
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f -divergence D f is defined by

(3.8) D f (µ ∥ ν) = ∫ f ( dν
dµ
) dµ.

For KL divergence, f (u) = u logu, and for α divergence,2

(3.9) f (u) = 1
α(1 − α)

(u − uα).

D f is non-negative by Jensen's inequality when ν is absolutely continuous with respect
to µ by the condition f (1) = 0. If ν is not absolutely continuous, the problem becomes
complicated. Ali and Silvey (1966) defines generalized expectation to compensate the
singular part of ν and D f (µ ∥ ν) is assigned infinite value or some correction term is
introduced based on the behavior of f (t) when t →∞.

Our approach is to ignore the singular part, and define f -variation

(3.10) D f (µ ∥ ν) = ∫ f ( dν
dµ
) dµ − f ( ∫ dν

dµ
dµ).

A drawback of D f is that it cannot measure singular differences. If ν is purely singular to µ
and dν/dµ = 0 almost everywhere, thenD f (µ ∥ ν) = 0.

Let us define f -variation versions of divergences,

DKL(µ ∥ ν) = ∫ dν
dµ

log
dν
dµ

dµ − I1(µ ∥ ν) log I1(µ ∥ ν),(3.11)

Dα(µ ∥ ν) = I1(µ ∥ ν)α − ∫ ( dνdµ)
α

dµ,(3.12)

where I1(µ ∥ ν) is defined in (3.5). For KL variation, still f (u) = u logu. For α variation,
f (u) = −uα.

Kullback-Leibler divergence

The definition of DKL varies in literature. Another common definition different from (3.4)
is

(3.13) DKL∗(µ ∥ ν) = − ∫ log
dν
dµ

dµ.

2There are many different ways that f has been defined for α divergence. For example, Zhang (2004) used
f (u) = (1 − α + αu + uα

)/(α(1 − α)).
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Two definitions (3.4) and (3.13) agree when µ and ν are absolutely continuous with respect
to each other.

Suppose ν is not absolutely continuous with respect to µ, i.e., I1(µ ∥ ν) < 1. Then by
Jensen's inequality,

(3.14) DKL(µ ∥ ν) ≥ I1(µ ∥ ν) log I1(µ ∥ ν)

and the equality holds when dν/dµ is constant µ-almost everywhere. Hence a drawback of
definition (3.4) is that it may become negative. This is fixed in (3.11).

Definition (3.13) does not have the problem of being negative. This follows from another
application of Jensen's inequality. However, there is a trade-off. Suppose that there exists
somemeasurable E ⊂ Ω such that µ(E) > 0 and νµ(E) = 0, i.e., µ is not absolutely continuous
with respect to νµ. Then the value of DKL∗(µ ∥ ν) is infinite.

One may prefer (3.13) to (3.4) due to its non-negativity. However, one should note that
Rényi's divergence and α-divergence are closely connected to (3.4). Assume that the integral

(3.15) ∫ ( dνdµ)
α

log(
dν
dµ
)dµ

is finite for α = 1 ± ε, 0 < ε < 1. Note that if 1 − ε < α < 1 + ε,

(3.16) (
dν
dµ
)

α

≤ (
dν
dµ
)

1−ε

+ (
dν
dµ
)

1+ε

.

Then by Lang (1993, Lemma 2.2, p. 226),

(3.17) lim
α→1

I1(µ ∥ ν) − Iα(µ ∥ ν)
1 − α

= DKL(µ ∥ ν).

Note that the limit is (3.4) not (3.13). From definition (3.7)

(3.18) lim
α→1

Dα(µ ∥ ν) = limα→1

I1(µ ∥ ν) − Iα(µ ∥ ν)
α(1 − α)

= DKL(µ ∥ ν).

Similar steps show that

(3.19) lim
α→1

1
1 − α

Dα(µ ∥ ν) = DKL(µ ∥ ν).
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The same holds for Rényi divergence,

(3.20) lim
α→1

DR,α(µ ∥ ν) =
DKL(µ ∥ ν)

I1(µ ∥ ν)

when I1(µ ∥ ν) > 0.

Shannon entropy

Suppose that the measurable space Ω is discrete and finite, hence a probability measure µ
may be expressed by probability masses pi for i = 1, 2, . . . , n,∑i pi = 1. Shannon entropy is
defined as (Shannon 1948)

(3.21) H(µ) = −K
n
∑
i=1

pi log pi

where K is a positive constant.
When Ω is continuous, the Shannon entropy can be defined through differential entropy

when the probability measure is Lebesgue continuous (Cover andThomas 2006, Chapter 8).
Let Ω = Rd for now and let m denote the Lebesgue measure. If µ is absolutely continuous
with respect to m, the differential entropy of µ is

(3.22) Hm(µ) = − ∫ dµ
dm

log
dµ
dm

dm

If K = 1 in (3.21) then Shannon entropy H is differential entropy Hm with m being the
counting measure.

KL divergence—often called relative entropy—is a special case of differential entropy
where the base measure m is always some probability measure, i.e.,

(3.23) DKL(µ ∥ ν) = −Hµ(ν).

The formulation of KL divergence has several advantages over differential entropy. For
example, the maximum entropy distribution is well defined. In Rd , the probability dis-
tribution that maximizes Hm with prescribed covariance is Gaussian distribution (Cover
and Thomas 2006, Theorem 8.6.5). However, this upper bound does not extend to gen-
eral measurable space Ω since the definitions of Gaussian distribution and covariance are
not well defined outside the Euclidean spaces. Futhermore, there is no maximum entropy
distribution without the covariance constraint. On the other hand, if the base measure is
another probability measure, i.e., a finite measure where constant functions are integrable,
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then the maximum entropy distribution exists and it is the base measure itself, possibly with
a normalization. Therefore we may pick a distribution that ismost random in a view.

Remark 3.2. Radon-Nikodym derivative dν/dµ is a real measurable function. Therefore
dν/dµ defines a real-valued non-negative random variable Vν = V µ

ν , the variation of ν
with respect to µ, under the probability law µ. Note that dµ/dµ = 1 almost everywhere,
and the it becomes how to measure the difference of Vν from constant function 1. Then

Iα(µ ∥ ν) = Eµ∣Vν∣
α ,(3.24)

I1(µ ∥ ν) = Eµ∣Vν∣ = ∥νµ∥,(3.25)

DKL(µ ∥ ν) = Eµ(Vν logVν) = −Hµ(Vν),(3.26)

DR,α(µ ∥ ν) =
1

α − 1
log

Eµ∣Vν∣
α

Eµ∣Vν∣
,(3.27)

Dα(µ ∥ ν) =
1

α(1 − α)
(Eµ∣Vν∣ − Eµ∣Vν∣

α
),(3.28)

where Eµ denotes expectation under µ. The right side for DR,α is the definition of Rényi
entropy of Vν (Rényi 1961).

3.2.2 Lp space

This section discusses Banach space and Lp space theory to be used in this chapter.
The space of (finite) signed measuresM is a Banach space with total variation norm,

(3.29) ∥µ∥ = sup
n
∑
i=1
∣µ(Ei)∣ for µ ∈ M

where the supremum runs over all finite partitions {E1, . . . , En} into measurable subsets.
Define its tangent bundle TM=M×M. Each subspace

(3.30) TµM= {(µ,ω) ∈ TM∶ω ∈ M}

is called the (tangent) fiber at µ, and each element (µ,ω) is called a tangent vector at µ. Note
that a fiber is a vector space. A tangent vector (µ,ω) represents the directional derivative at
µ in the direction of ω, i.e., if f ∶M → R is a differentiable function, then the tangent vector
acts on f as

(3.31) (µ,ω) ⋅ f = lim
r→0

f (µ + rω) − f (µ)
r

.
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Often ω is also called a tangent vector. A vector field X∶M → TM is a differentiable
function such that Xµ ∈ TµM. The subscript notation is standard in differential geometry.
For more details and the definitions in manifolds, see Morita (2001, Chapter 1) or Lee (2003,
Chapter 3).

Fix a probabilitymeasure µ ∈ M. Define a collection of real-valuedmeasurable functions

(3.32) Lp = Lp(µ) = { f ∶ ∫ ∣ f ∣p dµ < ∞}
for p > 0. Lp is a Banach space for 1 ≤ p < ∞ (Rudin 1986, Chapter 3).

A probability measure µ induces a Banach space projection by the Radon-Nikodym
derivative, and also induces a sequence of mappings ν ∈ M ↦ νµ ↦ dν/dµ ∈ L1(µ). Recall
that νµ is the absolutely continuous part of ν with respect to µ. This sequence extends for
0 < α ≤ 1,

(3.33) ν z→ νµ z→
dν
dµ
z→ (

dν
dµ
)

α

∈ L1/α(µ).

Since µ is a probability measure, every L1/α(µ)-function f is also integrable, i.e., is a
L1(µ)-function, and the identity map f ∈ L1/α(µ) ↦ f ∈ L1(µ) is linear and injective, but
not necessarily continuous. In particular it is never continuous when α = 0 and f ∈ L∞(µ).

Even though the identity map may be discontinuous, the spaces L1/α(µ), 0 < α ≤ 1 are
homeomorphic to each other. Let 0 < α ≤ 1 and let f ∈ L1(µ). Define Tα ∶ L1(µ) → L1/α(µ),

(3.34) Tα f (x) =
⎧⎪⎪
⎨
⎪⎪⎩

∣ f (x)∣α−1 f (x), if ∣ f (x)∣ ≠ 0,

0, if ∣ f (x)∣ = 0.

A direct computation shows that ∥Tα f ∥ = ∥ f ∥α, hence Tα is continuous. Define the inverse
map T−1α ∶ L1/α(µ) → L1(µ),

(3.35) T−1α д(x) = ∣д(x)∣(1−α)/αд(x).

The inverse relationship ∥T−1α д∥ = ∥д∥1/α shows that T−1α is also continuous.
Note that the transformation Tα, α = 2−1 maps L1(µ)-functions into L2(µ)-functions,

which is a Hilbert space. Of course, the map is not linear thus one cannot endow an inner
product structure to L1(µ). However, it is possible to endow a symmetric bilinear form in
each tangent fiber ofM in TM.

Assume ν ∈ M is a probability measure. Let (ν,ω) be a tangent vector at ν. Note that ω
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Figure 3.1: An example when µ and ν are Gaussian distributions inΩ = R. Radon-Nikodym
derivatives with respect to µ are plotted on the right.

is a signed measure inM. Assume that

(3.36) ∫ ∣dωdν ∣
1/α

dν < ∞,

i.e., dω/dν is in L1/α(ν). This is also called the α−1 variation of ω (Leonard and Sundaresan
1974). Define Tα∗∶M → L1/α(µ) by for every x ∈ Ω,

(3.37) Tα∗ω(x) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

∣
dν
dµ
(x)∣

α dω
dν
(x), if

dν
dµ
(x) ≠ 0,

0, if
dν
dµ
(x) = 0.

Figure 3.1 has an example for dν/dµ. To see it is indeed in L1/α(µ),

∫ ∣Tα∗ω∣1/α dµ = ∫ ∣ dωdνµ ∣
1/α

∣
dν
dµ
∣ dµ

= ∫ ∣ dωdνµ ∣
1/α

dνµ < ∞
(3.38)

by the assumption (3.36) and dν/dµ being nonnegative. Recall that νµ is the absolutely
continuous part of ν with respect to µ. νµ appears instead of ν since Tα∗ω is defined to be
zero where dν/dµ = 0. If ν = µ, or ν were absolutely continuous respect to µ, then νµ may
be replaced with ν.

Note that Tα∗ is linear in each fiber but not injective since Tα∗ω = Tα∗η if two tangent
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measures ω and η different only for x where dν/dµ = 0. Measure theoretically speaking, the
singular part of ω with respect to µ and ν is thrown away. By Hölder's inequality, if ω and η
are two tangent measures at ν, dω/dν ∈ L1/α(ν), dη/dν ∈ L1−α(ν), then the integral

(3.39) ∫ (Tα∗ω)(T(1−α)∗v) dµ = ∫ dω
dνµ

dη
dνµ

dνµ

defines a bilinear form. If α = 2−1, then it is a symmetric bilinear form.
We define the positive semidefinite bilinear form

(3.40) ⟨ω, η⟩ = ∫ dω
dνµ

dη
dνµ

dνµ

for all ω, η satisfy dω/dν, dη/dν in L2(ν).

3.3 Information geometry

This section introduces the theory of information geometry. Amari and Nagaoka (2000)
and Kass and Vos (1997) already provided introductions of fundamentals and discussions
of many related topics in information geometry. This section differs in the that (i) we avoid
the use of a common base measure such as Lebesgue measure, and (ii) we use Lp spaces to
formalize the mathematical concepts. An introduction of Banach space manifolds may be
found in Lang (1999).

3.3.1 Parameterization

The space of signedmeasuresM is too large and inadequate for the techniques in differential
geometry. For instance, suppose that Ω = [0, 1] and µ is uniform distribution in [0, 1]. Fix
0 < ε < 1. If H ∈ M,

(3.41)
dH
dµ
(x) =

⎧⎪⎪
⎨
⎪⎪⎩

ε−1, if x < ε2,

0, otherwise,

then µ + H is not a positive measure any more even though ∥H∥ = ε, an arbitrarily small
value. It makes certain differentiable conditions difficult. For example, the sequence (3.33)
is not smooth in general. The observation above leads to the idea of parameterization.

A parameter space M is a finite-dimensional connected manifold with parameterization
map P∶M →M into probability measures inM. We denote P(θ), θ ∈ M by Pθ . Parameter-
ized probability measures satisfy following condition.
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PAR1 The map P∶M →M is continuous.

PAR2 For every E ⊂ Ω, the map θ ∈ M ↦ Pθ(E) is infinitely many times differentiable.

Example 3.3 (Amari and Nagaoka (2000, Chapter 2)). Consider Gaussian distributions
in Ω = R. Since a Gaussian distribution over R is uniquely characterized by its mean and
variance, a possible parameterization is M = R × (0,∞),

(3.42) P∶ (µ, σ2) ∈ M z→ N(µ, σ 2).

Remark 3.4. Themap θ ∈ M ↦ Pθ(E) is required to be of C∞(M)-class for each E ⊂ Ω
but P∶M →M is not required to be differentiable since the latter condition may exclude
some simple examples. For example, let Ω = R, M = R, and P maps θ ∈ R to the
uniform distribution in [θ , θ + 1]. Then P is not differentiable in total variation norm.
See Hamilton (1982, Part 1) for more examples.

3.3.2 Tangent bundle of parameter space

In addition to PAR1 and PAR2, parameterized measures are assumed to satisfy the following
conditions.

PAR3 For every tangent vector Xθ ∈ TθM, the collection of derivatives {Xθ ⋅ Pθ(E)∶E ⊂
Ω} form a signed measure, i.e., for every disjoint E1, E2, ⋅ ⋅ ⋅ ⊂ Ω, E = ⋃i Ei ,

(3.43) Xθ ⋅ Pθ(E) =
∞
∑
i=1

Xθ ⋅ Pθ(Ei).

XθPθ will denote the signed measure (3.43), and define XP∶ θ ∈ M ↦ XθPθ ∈ M.

PAR4 For every θ ∈ M there exists an open neighborhood U ⊂ M of θ such that if
θ′ ∈ U and Xθ′ ∈ Tθ′M then

(3.44)
dXθ′Pθ′
dPθ

= 0 if and only if Xθ′ = 0.

PAR5 In the neighborhood U above, every differential measure Xθ′Pθ′ satisfy the con-
dition (3.36)

(3.45) sup∑
i
∣
Xθ′Pθ′(Ei)

Pθ′(Ei)
∣

1/α

Pθ′(Ei) < ∞
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where the supremum is taken over all finite partitions {Ei} of Ω.

PAR4 implies that there is no ambiguity in the tangent directions whenU ⊂ M is mapped
into L1(Pθ) by Radon-Nikodym derivative.

Proposition 3.5. Signed measure XθP is absolutely continuous with respect to Pθ . In particular

(3.46) ∫ dXθPθ
dPθ

dPθ = 0 and
dXθPθ
dPθ

dPθ
dPθ′

=
dXθPθ
dPθ′

for any θ′ ∈ M.

Proof. Assume to the contrary that there exists E ⊂ Ω where XθPθ(E) ≠ 0 and Pθ(E) = 0. In
other words, a C∞(M)-function θ ↦ Pθ(E) is zero and it has a non-zero partial derivative
at θ. Then at some point θ′ near θ, Pθ′(E) should map to a negative value. However,
a probability measure must not take a negative value. Therefore XθPθ(E) = 0 for all E
satisfying Pθ(E) = 0.

Define a positive definite bilinear form by (3.40) in each tangent fiber TθM,

(3.47) ⟨Xθ ,Yθ⟩ = ∫ dXθPθ
dPθ

dYθPθ
dPθ

dPθ

for θ ∈ M and Xθ ,Yθ ∈ TθM. The form is strictly positive definite by PAR4. Note that
(3.47) is equal to the Fisher information. If M were an open subset of Rd , θ = (θ1, . . . , θd),
Xθ = ∂/∂θ i , Yθ = ∂/∂θ j, and if Pθ were Lebesgue-continuous so that pθ is a probability
density function with respect to the Lebesgue measure, then we have the familiar expression

(3.48) ⟨
∂ log pθ
∂θ i

,
∂ log pθ
∂θ j

⟩ = Eθ[
∂ log pθ
∂θ i

∂ log pθ
∂θ j

].

3.3.3 Parallel transport

Tangent fibers have inner products by the Fisher information (3.47). The next step is to
construct connections between the fibers. This allows us to measure how curved the space
M is, and we will see the relationship between α connection (Amari and Nagaoka 2000,
Chapter 3) and L1/α(Pθ).

Let X ,Y be vector fields in M. Consider a curve γ∶ [−1, 1] → M such that γ(0) = θ ∈ M
and γ′(0) = Xθ ∈ TθM. It is not possible in general to define the derivative of Y in the
direction Xθ by

(3.49) lim
t→0

Yγ(t) − Yγ(0)

t
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γ
γ(0)

Yγ(0)

γ(t)

Yγ(0)

Tγ(0)M

Tγ(t)M

Figure 3.2: Curve γ runs inM. Given a vector fieldY inM, the tangent vectorsYγ(t) ∈ Tγ(t)M
and Yγ(0) ∈ Tγ(0)M are in different vector spaces, and one cannot be subtracted
from the other unless we define identifications between the tangent fibers.

since the two tangent vectors Yγ(t) ∈ Tγ(t)M and Yγ(0) ∈ Tγ(0)M are in different fibers or
vector spaces. See Figure 3.2 for an illustration. Therefore tangent vectors in different fibers
should be identified to take derivatives of vector fields.

A classic way in information geometry to identify tangent vectors in different fibers
is by α-connections. We review the approach of α-connection first. This is usually done
by specifying Christoffel symbols by third-order derivatives of information divergence.
See Amari and Nagaoka (2000, Chapter 3) and Zhang (2004). Here we illustrate a more
procedural approach. Assume, temporarily, sufficient differentiability and boundedness
conditions assumed in, e.g., Amari and Nagaoka (2000, Chapter 3). Let θ , θ′ ∈ M, and let
X ,Y be vector fields in M. Then Yθ′Pθ′ is mapped into L1/α(Pθ) by Tα∗ in (3.37),

(3.50) Tα∗(Yθ′Pθ′) = ∣
dPθ′
dPθ
∣

α dYθ′Pθ′
dPθ′

.

Since L1/α(Pθ) is a linear space, the differential action

(3.51) Xθ ⋅ Tα∗(YP)∶U → L1/α(Pθ)

of the vector field X is well defined. By the condition PAR4, there exists a unique tangent
vectorWθ ∈ TθM such that

(3.52) Tα∗Wθ = ∣
dPθ
dPθ
∣

α dWθPθ
dPθ

=
dWθPθ
dPθ
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is equal to (3.51). We denote such vectorWθ = ∇
(α)
Xθ

Y , and the operator ∇(α) is called the
α-connection.

Remark 3.6. There may not exist a vector Wθ ∈ TθM such that (3.52) is equal to the
derivative (3.51), and one has to find the closest solutionWθ instead. One cannot simply
use metric projections over Banach space here since linearity must be maintained for
∇(α) to be an affine connection while metric projections are not linear except in simple
cases (Deutsch 1982). A solution is to pull back the derivative (3.51) by T−1α to a unique
signedmeasure in TPθMwhere Fisher information inner product (3.40) is defined. With
Fisher information (3.40), find the least square solutionWθ of

(3.53) ⟨Wθ , Zθ⟩ = ⟨Xθ ⋅ Tα∗(YP), Zθ⟩

for every Zθ ∈ TθM. If everything is locally bounded so that differential and integral
may change their order,

(3.54) Xθ⟨Y , Z⟩ = ∫ Xθ(Tα∗(YP)T(1−α)∗(ZP)) dP = ⟨∇(α)Xθ
Y , Z⟩ + ⟨Y ,∇(1−α)Xθ

Z⟩.

Affine connections ∇(α) and ∇(1−α) are said to form a dualistic structure in M (Amari
and Nagaoka 2000, Chapter 3). The claim also shows that 2−1-connection ∇(1/2) is the
metric connection or Levi-Civita connection for the Fisher information.

We do not use α-connections directly in this chapter for some reasons. First, ∇(α) may
not be well-defined since Tα∗(YP) in (3.51)may not be differentiable. Many differentiability
assumptions are hidden in the definition of ∇(α). Second, it is difficult to find a direct appli-
cation of α-connection. A more useful concept is α-transport, the parallel transportation
rule compatible with the α-connection.

Themain idea of α-transport is to use the parallel transports in the vector space L1/α(Pα).
If Yθ′ ∈ Tθ′M then the transport of Yθ′ is a tangent vectorWθ such that

(3.55) Tα∗(WθPθ) =
dWθPθ
dPθ

= ∣
dPθ′
dPθ
∣

α dYθ′Pθ′
dPθ′

= Tα∗(Yθ′Pθ′)

in least square sense.
Let us discuss the role of α. When α = 1,

(3.56) T1∗(Yθ′Pθ′) =
dPθ′
dPθ

dYθ′Pθ′
dPθ′

=
dYθ′Pθ′
dPθ
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Figure 3.3: In this example, Pθ and Pθ′ are Gaussian distributions in Ω = R with means at
x = 0 and x = 2. Suppose we have a measure derivative Yθ′Pθ′ around x = 2. See
the figure on the left. The derivative amplitude is relatively large in the view of Pθ
while it is relatively small in the view of Pθ′ . On the right we compare α-parallel
transports for α = 0, 1.

by Proposition 3.5. Therefore the perturbation measure Yθ′Pθ′ in Tθ′M is measured in the
view of Pθ only, and the place Tθ′M where the perturbation takes place is ignored. On the
other hand, when α = 0,

(3.57) T0∗(Yθ′Pθ′) =
dYθ′Pθ′
dPθ′

in the support of Pθ . This time the perturbation is measured in the view of Pθ′ only, and
the transport ignores to where the perturbation is sent, Pθ . See Figure 3.3 for an example.
When 0 < α < 1, the transport mixes the measurements. With abuse of notation,

(3.58) Tα∗(Yθ′Pθ′) =
dYθ′Pθ′

(dPθ)α(dPθ′)1−α
.

α-divergence, Bregman divergence, and normal charts

The α-divergence (3.7) and the α-variation (3.12) provide another motivation to localize
the parameter space by L1/α(Pθ). Bregman divergence (Bregman 1967; Banerjee et al. 2005)
is a general class of divergence. Let ψ be a convex function in convex open regionU of some
vector space. For y, z ∈ U the Bregman divergence Bψ is

(3.59) Bψ(z ∥ y) = ψ(y) − ψ(z) − Dψ(z) ⋅ (y − z)
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1 = dPθ/dPθ hyperplane perpendicular to 1

dPθ′/dPθ

curvature of the curve from 1 to dPθ′/dPθ

Figure 3.4: α-divergence measures the curvature of the curve from 1 = dPθ/dPθ to dPθ′/dPθ
in L1/α(Pθ).

where D is Gâteaux differential. If ψ is twice differentiable

(3.60) Bψ(z ∥ y) =
1
2
D2ψ((1 − r)y + rz) ⋅ (y − z, y − z)

by the mean value theorem for some 0 ≤ r ≤ 1. Since ψ is convex, the Hessian D2ψ is positive
semidefinite everywhere and for y near z, Bψ is approximately the Riemannian distance
specified by D2ψ, squared. Bregman divergence induces a (pseudo-)Riemannian structure.

It has been shown that α-divergence is a Bregman divergence for finite measurable space
Ω when all probability measures are absolutely continuous to each other (Amari 2009).
We show that α-variation Dα(Pθ ∥ Pθ′) is a Bregman divergence for fixed Pθ in general
measurable space Ω and relate it to Lp spaces.

If 0 < α < 1, the norm of L1/α(P) is Gâteaux differentiable except at 0. If ψ( f ) = ∥ f ∥ for
f ∈ L1/α(P), f ≠ 0, then (for example, see Leonard and Sundaresan 1974, Theorem 3.1)

(3.61) Dψ( f ) ⋅ u = ∥ f ∥(α−1)/α ∫ ∣ f (x)∣(1−2α)/α f (x)u(x) dPθ(x)
for u ∈ L1/α(Pθ), and the integral is over the region where f (x) ≠ 0.

Choose the convex function ψ in convex open regionU = L1/α(Pθ)−{0}. Map θ , θ′ ∈ M
to (dPθ/dPθ)α = 1 and (dPθ′/dPθ)α, respectively, then

Bψ(Pθ ∥ Pθ′) = ( ∫ dPθ′
dPθ

dPθ)
α

− ( ∫ dPθ
dPθ

dPθ)
α

− ∫ ((dPθ′dPθ
)

α

− (
dPθ
dPθ
)

α

) dPθ(3.62)

= ( ∫ dPθ′
dPθ

dPθ)
α

− ∫ (dPθ′dPθ
)

α

dPθ(3.63)

= Dα(Pθ ∥ Pθ′)(3.64)
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from (3.12). Therefore Dα(Pθ ∥ Pθ′) is a Bregman divergence for fixed Pθ . KL variation
(3.11) may be understood as the norm curvature limit of {L1/α(Pθ)} as α → 1. See Figure 3.4.

The observation above implies that the Radon-Nikodym derivative plays the role of
normal charts in Riemannian geometry. Recall that if M is a Riemannian manifold and
θ ∈ M, then there exists a local coordinate system (θ1, . . . , θd) in a neighborhood U of θ
such that for all θ′ ∈ U ,

(3.65) dist(θ , θ′)2 =
d
∑
i=1
∣θ i − θ′i ∣

2

where dist denotes the geodesic distance. Such coordinate system is called the normal
coordinates. In general, the explicit expression for normal coordinates is intractable. In
the case of information divergences, the right side of (3.65) is replaced with Bψ. Then
Radon-Nikodym derivative map Pθ′ ↦ dPθ′/dPθ induces a normal coordinate system in
L1(Pθ),

(3.66) Dα(Pθ ∥ Pθ′) = Bψ(Pθ ∥ Pθ′).

Therefore we obtain a method—Radon-Nikodym derivative—to compute the normal coor-
dinate system. The trade-off is that norm expression on the right side of (3.65) is replaced
by more complicated Bψ.

3.4 Parameter space interpolation

Let P0,Q0 be two probability measures. We consider the problem how to construct a
“minimal” curve that connects P0 and Q0 along probability measures. We have Fisher-
Riemann metric and α-parallel transports. Therefore the minimal curves should be auto-
parallel curves with respect to the α-transport rules, i.e., they should be re-parameterized
to geodesics in L1/α(P).

Let γ∶ [0, 1] → L1/α(P0) be a curve such that γ(0) = (dP0/dP0)α and γ(1) = (dQ0/dP0)α.
LetMP0 ⊂ M denote the linear subspace ofM consists of absolutely continuous signed
measures with respect to P0. Let γ̃∶ [0, 1] →M is a lift of γ such that the sequence

(3.67) [0, 1]
γ̃
Ð→MÐ→MP Ð→ L1(P0) Ð→ L1/α(P0)

is equal to γ. γ̃ is an interpolation between P0 and Q0.
Suppose that γ is a straight line. In general, the lift γ̃ is not uniquely determined. Since
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spheres in L1/α(P) are strictly convex, ∥γ(s)∥ < 1 for 0 < s < 1 and there are infinitely
many probability measures that differ in singular parts to P0 and map into γ(s) by (3.67). If
Q0 = Q∥ +Q⊥ where Q∥ and Q⊥ denote the absolutely continuous and singular components
of Q0 respectively, and Q⊥ ≠ 0, then the singular part Q⊥ may remove the ambiguity,

(3.68) γ̃(s) = Qs + rQ⊥

where Qs is the absolutely continuous measure determined by γ(s) and r > 0 ensures the
condition ∥γ̃(s)∥ = 1. This is a reasonable interpolation since (dQ0/dP0)α is inside the unit
sphere of L1/α(P0) and a continuous curve γ must enter inside the sphere anyway.

On the other hand, suppose that Q0 = Q∥ and there is no singular component. In
this case, a straight line γ cannot determine the interpolating probability measures at all.
Therefore if Q0 = Q∥ then we consider a geodesic curve γ in the unit sphere of L1/α(P0).
From (3.61), this condition may be stated as

(3.69) ∫ γ(s)(1−α)/αγ′(s) dP0 = 0,

and we may always construct the interpolation γ such that γ(s) is nonnegative function for
all s ∈ [0, 1].

From now on, we restrict our attention to the case α = 2−1. There are several reasons
to do this. Recall that the interpolation is inM by γ̃. The purpose of γ is only to compute
parallel transportations. SinceM is equipped Fisher information metric, for each curve γ̃,
parallel vector fields along γ̃ is determined. These parallel vector fields are transformed to
vector fields along γ by α-representation. The question is if the transformed vector fields
are also parallel along γ. From (3.54) the answer is negative unless α = 2−1.

Another reasons comes from information divergence. As mentioned before, KL diver-
gences DKL does not accurately measure the difference when two probability measures are
mutually singular. Therefore one needs to consider Fisher-Riemann distance by

(3.70) inf
n−1
∑
i=0

√
2DKL(Pi ∥ Pi+1)

over all finite sequences with Pn = Q0. This Fisher-Riemann metric is isometric to L1/α(P0)
only when α = 2−1. See Carter et al. (2009a) and Carter, Raich, Finn, and Hero (2011) for an
application in dimensionality reduction.
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∂2

Figure 3.5: An example of M = [0, 1] × I. Top horizontal line at s = 0 is equal to Pt, and
bottomhorizontal line at s = 1 is equal toQt . Each vertical linemaps to a geodesic
curve in the unit sphere of L2(Pt).

3.4.1 Interpolation parameter space

Let us go back to one-dimensional parameterizations. Let I ⊂ R be an open interval which
contains 0, and I will be the domain of one-dimensional parameterization. Suppose that
we are given two parameterizations Pt ,Qt ∈ M, t ∈ I. As planned, Pt and Qt are connected
through geodesic curves, and create a new two-dimensional parameterization S∶M = [0, 1]×
I →M such that S(0, t) = Pt, S(1, t) = Qt, and the curve s ↦ S(s, t) is geodesic for all t ∈ I.
See Figure 3.5. We assume Qt is absolutely continuous with respect to Pt for each t, hence
dQt/dPt integrates to one. We look for the area of the immersed surface M, and

(3.71) Area = ∫I ∫
1

0

√

det(Fi j) ds dt,

where (Fi j) is the Fisher-Riemann metric. In the next subsection, we fix t and focus on the
inner integral, the growth rate of area.

3.4.2 Transversal vector field

Let ∂1 and ∂2 be vector fields of M = [0, 1] × I:

(3.72) ∂1 =
∂
∂s

and ∂2 =
∂
∂t

.

Let us fix t = 0 and let P = P0. Let γ be the vertical curve into L2(P0),

(3.73) γ∶M ⊃ [0, 1] × {0} Ð→MÐ→ L2(P0).
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We restrict ∂1 and ∂2 on γ, and ∂1(s), ∂2(s) are vector fields along the curve γ(s).
Let us introduce notations for Fisher information along γ:

F11(s) = ⟨∂1(s), ∂1(s)⟩,(3.74)

F12(s) = ⟨∂1(s), ∂2(s)⟩,(3.75)

F22(s) = ⟨∂2(s), ∂2(s)⟩.(3.76)

Since γ is a geodesic curve, F11(s) is constant over s. We simply write it as F11.
Note that ∂1(s) = γ′(s), and ∂1(s) is completely determined by the end points γ(0)

and γ(1). For the other vector field ∂2, note that the two-dimensional parameterization ζ
is a variation of a geodesic curve, γ, through geodesics. Such variation is well studied in
Riemannian geometry and it is solution to the Jacobi equation (Lang 1999, Chapter IX)

(3.77) ∇∂1∇∂1∂2 = R(∂1, ∂2)∂1,

where R is the Riemannian curvature. Since the unit sphere in L2(P0) has constant sectional
curvature 1, the Jacobi equation translates to

(3.78) ∇∂1∇∂1∂2 = ⟨∂1, ∂2⟩∂1 − ⟨∂1, ∂1⟩∂2.

Jacobi equation is a linear second-order differential equation with initial values: ∂2(0) and
∇∂1∂2(0). It may be verified that the solution to the equation takes the form

(3.79) ∂2(s) = (c1 + c2s)∂1(s) +
X(s)
ω

cos(ωs) + Y(s)
ω

sin(ωs),

where c1, c2 are constants, ω =
√
F11, and X ,Y are parallel vector fields along γ that are

perpendicular to ∂1. The term c1∂1(s) + ω−1X(s) cos(ωs) is determined by the initial condi-
tion ∂2(0), and the term c2s∂1(s) + ω−1Y(s) sin(ωs) is determined by the initial condition
∇∂1∂2(0). Since X and Y are perpendicular to ∂1,

X(s)
ω

cos(ωs) + Y(s)
ω

sin(ωs) = ∂2(s) −
⟨∂1(s), ∂2(s)⟩
⟨∂1(s), ∂1(s)⟩

∂1(3.80)

= ∂2(s) −
F12(s)
F11

∂1(s),(3.81)

and hence

(3.82) ∥X(s) cos(ωs) + Y(s) sin(ωs)∥2 = F11F22(s) − F12(s)2.
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Therefore the inner integral in (3.71) becomes

(3.83) J = ∫ 1

0
∥X(s) cos(ωs) + Y(s) sin(ωs)∥ ds.

and let J denote the inner integral, or the growth rate of area. Again, ω =
√
F11.

3.4.3 Area growth rate calculation from Fisher information

The surfaceM and the parameterization S are produced from given one-dimensional param-
eterizations Pt and Qt . Therefore it is a reasonable assumption that we have some knowledge
of Pt andQt . In this subsection, we seek to find expressions for the integrand (3.82) in (3.83)
in terms of Fisher information values evaluated on two parameterizations: Fi j(0) and Fi j(1)
for i , j = 1, 2.

Let us expand the above expression,

(3.84) ∥X(s) cos(ωs) + Y(s) sin(ωs)∥2

= ⟨X , X⟩ cos(ωs)2 + ⟨X ,Y⟩ sin(2ωs) + ⟨Y ,Y⟩ sin(ωs)2.

Therefore the key part is to calculate the inner products ⟨X , X⟩, ⟨X ,Y⟩, and ⟨Y ,Y⟩.
From (3.82), when s = 0 and s = 1, we have

(3.85) ⟨X , X⟩ = F11F22(0) − F12(0)2,

and

(3.86) ⟨X , X⟩(cosω)2 + ⟨Y ,Y⟩(sinω)2 + ⟨X ,Y⟩ sin(2ω) = F11F22(1) − F12(1)2.

The equations above are linear in terms of the inner product values, and we have two linear
equations for three unknowns. Therefore we need one more linear equation to solve the
problem.

To derive the third equation, we calculate the parallel transports of ∂2 along the geodesic
curves in the unit sphere. The following proposition can be verified with direct computation.

Proposition 3.7. Let A be a point on the unit sphere of L2(P0), and γ be a geodesic curve
in the sphere passing through A: γ(0) = A. If X is a parallel vector field along γ and X(s) is
perpendicular to γ′(s), then X(s) is equal to the parallel transport of X(0) along the straight
line between γ(0) and γ(s) in L2(P0). That is, L2(P0) expression of an orthogonal parallel
vector field X(s) is constant for all s.
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From the proposition above, we compare the values of ∂2 in (3.79) at s = 0, 1 in L2(P0),

⟨∂2(0), ∂2(1)⟩(3.87)

= ⟨c1∂1(0) +
X(0)
ω

, (c1 + c2)∂1(1) + X(1)
cosω
ω
+ Y(1)sinω

ω
⟩(3.88)

= c1(c1 + c2)⟨∂1(0), ∂1(1)⟩ +
⟨X , X⟩
F11

cosω + ⟨X ,Y⟩
F11

sinω.(3.89)

By taking inner products of (3.79) with ∂1,

(3.90) c1 =
F12(0)
F11

and c1 + c2 =
F12(1)
F11

.

Therefore the equation above becomes

(3.91) F11⟨∂2(0), ∂2(1)⟩ − cosωF12(0)F12(1) = ⟨X , X⟩ cosω + ⟨X ,Y⟩ sinω.

Combine (3.85), (3.86), and (3.91) to have a linear system of equations

(3.92)
⎛
⎜
⎜
⎜
⎝

1 0 0
cosω sinω 0
(cosω)2 sin(2ω) (sinω)2

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

⟨X , X⟩
⟨X ,Y⟩
⟨Y ,Y⟩

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎝

F11F22(0) − F12(0)2

F11⟨∂2(0), ∂2(1)⟩ − cosωF12(0)F12(1)
F11F22(1) − F12(1)2

⎞
⎟
⎟
⎟
⎠

.

Invert the matrix on the left-hand side, and the solution (⟨X , X⟩, ⟨X ,Y⟩, ⟨Y ,Y⟩) is

(3.93)
⎛
⎜
⎜
⎜
⎝

1 0 0
− cotω cscω 0
(cotω)2 −2 cscω cotω (cscω)2

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

F11F22(0) − F12(0)2

F11⟨∂2(0), ∂2(1)⟩ − cosωF12(0)F12(1)
F11F22(1) − F12(1)2

⎞
⎟
⎟
⎟
⎠

.

3.4.4 Fisher information calculation

Calculation for sampled densities

Fisher information definition involves differentiations. Since parameterization values are
at prescribed only at s = 0, 1, the interpolation curve γ should be computed and numeri-
cal differentiation should be done in general. However, numerical differentiation may be
avoided with sphere geometry.
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Since γ is a geodesic curve in the unit sphere of L2(P0),

(3.94) F11 = F11(0) =
⎛

⎝
arccos ∫

√
dQ0

dP0
dP0
⎞

⎠

2

.

This formula works for F12 and F22 as well. In practice, no continuum of Pt and Qt are
known, but rather the parameterizations are specified only at some discrete values of t. That
is we know Pt and Qt for some sequence⋯ < T−1 < T0 = 0 < T1 < ⋯. Therefore it works the
same as before except that Q0 is replaced with PT . Then

(3.95) F22(0) =
1
T2
1

⎛

⎝
arccos ∫

√
dPT1
dP0

dP0
⎞

⎠

2

and

(3.96) F12(0) = ⟨∂1(0), ∂2(0)⟩ =
arccos(A) arccos(B)
T1
√
(1 − A2)(1 − B2)

(C − AB)

where

(3.97) A = ∫
√

dPT1
dP0

dP0, B = ∫
√

dQ0

dP0
dP0, C = ∫

√
dPT1
dP0

dQ0

dP0
dP0,

3.5 Approximations

3.5.1 Triangulation approximation

The exact area growth J in (3.83) requires numerical integration. However, there are
cases where the solution becomes simpler. Let us consider the case where one of the one-
dimensional parameterizations is constant. Say Pt = P0 = P for all valid t. In other words,
the image of M is no longer rectangular-like but it now has sector-like shape. In this case,
∂2(0) = 0 and X(s) = 0 for all s ∈ [0, 1]. Therefore ⟨X , X⟩ = 0 and ⟨X ,Y⟩ = 0. Then by (3.82)

(3.98) F11F22(1) − F12(1)2 = ⟨Y ,Y⟩(sinω)2

and

(3.99) ∥X(s) cos(ωs) + Y(s) sin(ωs)∥2 = ⟨Y ,Y⟩ sin(ωs)2
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Pt
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t = 0
t = ∆t

(a) Visualization of M.

Pt

Qt

t = 0
t = ∆t

(b) Visualization of N .

Figure 3.6: Vertical lines in (a) represent the geodesics used in M. In triangulation approx-
imation, vertical lines are replaced by diagonal lines. See red lines in (b). The
red lines on the right side of t = 0 represents JQ where Pt is fixed at P0 and Qt
proceeds. The red lines on the left side of t = 0 represents JP where Qt is fixed at
Q0 and Pt proceeds.

for all s ∈ [0, 1]. Note that the sine value here is always nonnegative. Therefore J in (3.83)
becomes

(3.100) ∥Y∥ ∫ 1

0
sin(ωs) ds = ∥Y∥

ω
(1 − cosω) =

√
1 − cosω
1 + cosω

√

F22(1) −
F12(1)2
F11

,

or

(3.101) tan(
ω
2
)

√

F22(1) −
F12(1)2
F11

.

Previously the area growth J is calculated while Pt and Qt evolve simultaneously. Now
let us alter the problem slightly and break the surface increment into two pieces. Qt is
incremented while Pt is fixed at P0 from t = 0 till t = ∆t > 0. Then the roles are switched and
Pt is incremented from P0 to P∆t whileQt is fixed atQ∆t . Let JP and JQ denote the increments
while Qt and Pt are fixed, respectively. Define JT = JP + JQ ,

(3.102) JT = JP + JQ = tan(
ω
2
)
⎛

⎝

√

F22(0) −
F12(0)2
F11

+

√

F22(1) −
F12(1)2
F11
⎞

⎠
.

JT is a heuristic approximate solution to J, and we will refer to it as triangular approximation.
To break a problem with multiple dependent factors into mulptiple stages and to solve in

one factor at a time with the others fixed is a common approach. For example, Gauss-Seidel
method separates a matrix into super-diagonal component and sub-diagonal component,
and then updates the solution with each factor fixed at a time.
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Let us visualize and see what JT represents. Let ∆ > 0, and consider the surface spanned
by Pt and Qt. Let M be the immersed surface discussed so far, therefore the vertical line
segments map into geodesic curves in L2(P). Let N be another immersed surface such that

(1) the immersion images of curves {r ↦ (r, (rs + n)∆)∶0 ≤ r ≤ 1, 0 ≤ s ≤ 1, n ∈ Z} are
geodesic curves,

(2) the immersion images of curves {r ↦ (r, (r(1−s)+s+n)∆)∶0 ≤ r ≤ 1, 0 ≤ s ≤ 1, n ∈ Z}
are geodesic curves.

See Figure 3.6 for an illustration of N . Therefore N is another surface construction slightly
different from M. While N has computational advantage, its drawback is that it depends on
increment unit ∆.

3.5.2 Surface energy

Another approximate solution or another concept of dissimilarity between the curves is the
energy of the surface spanned by the parameterizations. That is, rather than to integrate the
square root of the Fisher information determinant, integrate the determinant first and take
the square root after. Define surface energy by

(3.103) Energy = ∫I Et dt

where

(3.104) Et = ∫ 1

0
(F11(s, t)F22(s, t) − F12(s, t)2) ds.

From (3.82),

E0 = ∫ 1

0
∥X(s) cos(ωs) + Y(s) sin(ωs)∥2 ds(3.105)

= ∥X∥2 ∫ 1

0
cos(ωs)2 ds + ∥Y∥2 sin(ωs)2 ds + ⟨X ,Y⟩ ∫ 1

0
sin(2ωs) ds(3.106)

= (
1
2
+
sin(2ω)

4ω
)∥X∥2 + ( 1

2
−
sin(2ω)

4ω
)∥Y∥2 + (sinω)

2

ω
⟨X ,Y⟩(3.107)

and the inner product values may be obtained from (3.92). Compared to J, the computation
of E0 avoids the numerical integral part.

The natural concern will be the relation between J and E. By the Jensen's inequality,

(3.108)
√
E0 ≥ ∫ 1

0

√
F11(s, 0)F22(s, 0) − F12(s, 0)2 ds = J ,
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and the equality holds if and only if F11(s, 0)F22(s, 0) − F12(s, 0)2 is constant over s ∈ [0, 1]
since square root is strictly concave. Unlike curves, a non-flat surface cannot have a local
isometry to any flat surface. Since the curvature is intrinsic and does not depend on the
choice of the charts, the integrand in general cannot bemanipulated into constant. Therefore
E0 and J will have certain difference depending on the intrinsic geometry imposed by the
parameterization. We will see the empirical difference in Section 3.7.1.

3.6 Comparison to other curve distances

The surface area, denoted as dA, as a curve dissimilaritymeasure is comparedwith traditional
curve distances. We consider Hausdorff distance dH and Chamfer distance dC . The curves
are functions of some fixed interval I into some fixed metrizable vector space with metric
dX . Given two curves f and д, define

dH( f → д) = sup
t∈I

inf
x∈I

dX( f (t), д(x))(3.109)

dH( f , д) =max{dH( f → д), dH(д → f )}(3.110)

and

dC( f → д) = ∫I infs∈I
dX( f (t), д(s)) dt(3.111)

dC( f , д) =
1
2
(dC( f → д) + dC(д → f )).(3.112)

Clearly the surface area dA is a geometric generalization of Chamfer distance dC , and
we may expect some similarities between them.

Perhaps the most important difference between the surface area and traditional curve
distances like Hausdorff or Chamfer distance is that both traditional curve distances require
global knowledge of the curves for distance computation whereas surface area requires only
local knowledge and is additive. To be more specific, Hausdorff and Chamfer distances
require the computation of closest point. For each f (t), the infimum over the whole curve
domain

(3.113) inf
x∈I

dX( f (t), д(x))

is required. Therefore the distance cannot be computed until the whole curve is retrieved.
On the other hand, surface area computation may be carried out locally. That is, if I1, . . . , In
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is a partition of the curve domain I,

(3.114) dA( f , д) =
n
∑
k=1

dA( f ∣Ik , д∣Ik),

and each summand computation is independent from the others.
This property is largely beneficial when we have long sequences. For example, suppose

that we have video sequences to compare. As the video sequences become longer, the global
knowledge requirement becomes more demanding. As mentioned above, we need to find
out the closest point for each frame. For the closest point computation in (3.113), we need to
search over the whole video sequences and the time complexity grows with the video length.
And such large search set must be contained in the workspace hence the space complexity
grows as well. In the case of surface area, however, there is no need to sweep over the whole
set, and the time complexity of the area growth J is fixed with respect to the video length.
Therefore the time complexity of surface area grows linearly with respect to the video length
while it grows quadratically for Hausdorff and Chamfer distances.

This advantage comes with a cost when compared to Hausdorff distance. Note that
Hausdorff distance is not restricted to curves but is a general metric between any kinds of
subsets. In particular, it does not depend on the parameterizations of the curves. Surface area
measure is also invariant under re-parameterizations of the curves. It does, however, depend
on the synchronizations of the curves. To illustrate, let α∶ I → I be a re-parameterization,
and compare f and д ○ α instead. Then the surface spanned by the new curves is different
from the old one since the vertical geodesic curves are connecting f (t) and д(α(t)) instead
of f (t) and д(t), and the surface areamust have changed. However, this cost is inevitable for
local computation. Suppose that one would like tomodify Hausdorff or Chamfer distance so
that its computation becomes local. A simple option would be to partition the curve domain
I as (3.114) and to compute the distances within each segment. The choice of partition
correspond to synchronization.

3.6.1 Sensitivity analysis

Consider the Gâteaux derivative

(3.115)
d
dr

dA( f + rh, д)∣
r=0

and similar derivatives for dH and dC . Here h is another curve.
Let us fall back to a simple case where the curves map into R2. Let д(t) is a straight line

segment. Without loss of generality, we may assume that д(t) = (t, 0). Assume that f (t) is
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the graph of a function F ∶ I → R, i.e., f (t) = (t, F(t)). Then

(3.116) dA( f , д) = ∫I ∣F(t)∣ dt
and the sensitivity sA is

(3.117) sA =
d
dr

dA( f + rh, д) = ∫I sign(F(t))H(t) dt
where H is defined from h in the same way F was from f .

For Hausdorff distance, note that for fixed t ∈ I,

(3.118) inf
x∈I
∥ f (t) − д(x)∥ = inf

x∈I
∥(t, F(t)) − (x , 0)∥ = ∥(t, F(t)) − (t, 0)∥ = ∥ f (t) − д(t)∥,

from the convexity of the axis {(x , 0)}. From the obvious inequality inf x∈I∥ f (x) − д(t)∥ ≤
∥ f (t) − д(t)∥,

(3.119) dH( f , д) = sup
t∈I
∣F(t)∣.

Restrict our attention to compact intervals and let T ∈ I be the place where the supremum
occurs. Then the sensitivity sH is

(3.120) sH =
d
dr

dH( f + rh, д)∣
r=0
= sign(F(T))H(T).

When comparedwith sH , sA takes average of the function sign(F(t))H(t) over t while sH
evaluates the same function at fixed point T . Therefore the sensitivity of Hausdorff distance
is determined by the perturbation at some determined place. Note that f (T) is where f is
farthest from д. Suppose that the curves are noisy so that there are some outliers. Then it
is likely that the point f (T) is an outlier and the sensitivity sH becomes dependent on the
perturbation at the outlier point. In this kind of scenario, both dH and sH are controlled by
an exceptional point, and are less robust.

For Chamfer distance, the analysis is more complicated. From Hausdorff distance cal-
culation, we know dC( f → д) is equal to ∫I ∣F(t)∣ dt. The coincidence of dC( f → д) and
dA here is due to the parameterization assumed for f . Chamfer distance is variant under
re-parameterizations, and dC( f → д)may be expressed as a Stieltjes integral ∫I ∣F(t)∣ dβ(t)
where β is a re-parameterization function. We ignore re-parameterizations for simplicity.
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Figure 3.7: Illustrations of inf t∈I∥ f (x) − д(t)∥. Red lines denote the nearest neighbor pairs
for f (x). Except for case Figure 3.7d, dC(д → f ) depends on some small por-
tions of f .

Back to the sensitivity analysis, the sensitivity sC of Chamfer distance is

(3.121) sC =
1
2 ∫I sign(F(t))H(t) dt +

d
2dr

dC(д → f + rh)∣
r=0

.

The second term on the right side often depends only on small parts of f . See Figure 3.7.
Lastly, we note the difference that the sensitivity of Hausdorff distance is determined by

the points that are far away from the other curve while the sensitivity of Chamfer distance
is determined by the points that are close to the other curve.

3.7 Simulations

3.7.1 Jeffreys' prior

For general parameter space M, its volume may be defined through Fisher information.
This volume is called (unnormalized) Jeffreys' prior in Bayesian statistics. Assume that this
volume is finite. Then after normalization, the volume form transforms into a probability
measure form, and this is defined purely by the parameterization. One of the difficulties
in Bayesian approach is to determine the prior. When no prior knowledge exists, Jeffreys'
prior serves as a candidate.
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Themain purpose of this experiment is to examine the effect of approximation schemes
from Section 3.5, surface energy and triangulation. To establish ground truth, we use a
simple model. Let

pt(x) =
1
√
2π

exp(−
(x − t)2

2
)(3.122)

and

qt(x) =
1

√
2πσ2

exp(−
(x − t)2
2σ 2 ) ,(3.123)

where x , t ∈ R, so pt, qt are parameterizations of Gaussian distributions in R running
through mean shifts. pt has fixed variance 1, and qt has variance σ 2 ≠ 1.

To calculate the theoretical expectation, note that a translation on real line is a measure-
preserving isomorphism. Therefore F11(s, t) is constant over t as well as s. If m denotes
Lebesgue measure,

(3.124) cosω = ∫R
√
ptqt dm =

√
2σ

1 + σ 2 .

For F22,

(3.125) F22(0) =
1
4

and F22(1) =
1

4σ2 .

For F12,

F12(0) =
1

sincω ∫R
√qt

∂
∂t
√
pt dm = 0,(3.126)

F12(1) =
1

sincω ∫R
√
p(t) ∂

∂t
√qt dm = 0.(3.127)

For F22x ,

(3.128) F22x = ∫R
∂√pt
∂t

∂√qt
∂t

dm =
√

σ
2(1 + σ 2)3

Then we have a system of linear equations from (3.92)

(3.129)
⎛
⎜
⎜
⎜
⎝

1 0 0
cosω sinω 0
(cosω)2 sin(2ω) (sinω)2

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

⟨X , X⟩
⟨X ,Y⟩
⟨Y ,Y⟩

⎞
⎟
⎟
⎟
⎠

= F11
⎛
⎜
⎜
⎜
⎝

4−1
√
σ(2(1 + σ2))−3

(4σ2)−1

⎞
⎟
⎟
⎟
⎠

.
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Figure 3.8: Plot of numerical integral J ( ), triangulation approximation JT ( ), and
square root surface energy
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0 2 4 6 8 10

0

0.2

0.4

0.6

µ

numerical integraltion
surface energy
triangulartion

(a) When µ > 0.

0 2 4 6 8 10

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

µ

√

E − J

(b)
√

E − J.

Figure 3.9: Plot of numerical integral J ( ), triangulation approximation JT ( ), and
square root surface energy

√
E ( ) against µ. In (a), J is difficult to notice

since
√
E overlaps. The difference of J and

√
E is shown in (b).

From the linear equation, we have inner product values. We compute the area increment

(3.130) ∫ 1

0
∥X cos(ωs) + Y sin(ωs)∥ ds

through numerical integration, and this quantity must be close to the true value. Then we
compare the numerical integral with approximation values: triangular approximation and
square root of surface energy:

(3.131)

√

∫ 1

0
∥X cos(ωs) + Y sin(ωs)∥2 ds.

Figure 3.8 shows plots the comparisons with varying σ2 in qt.
On the other hand, we can change the parameterization, so that curve evolves in the

76



direction of variance σ2 rather than mean, so the new parameterization becomes

(3.132) ut(x) =
1
√
2πt

exp(−
x2
2t
) and vt(x) =

1
√
2πt

exp(−
(x − µ)2

2t
) ,

where µ ≠ 0. Figure 3.9 compares the quantities in interest.

3.7.2 Action recognition

Although this chapter is motivated by the applications of time-parameterized probability
measures, the surface area computation methods proposed in this chapter apply to broader
class of time-parameterized objects. Note that the only mathematical property used in
Section 3.4.3 is the constant sectional curvature property of spheres in finite or infinite-
dimensional Hilbert spaces. Therefore the area computation approach in this chapter is
valid for any curves in unit spheres of Hilbert spaces, whether they are L2 spaces or not.
Examples of curves not in an L2 space include quantum state trajectories in quantum state
space. See Chapter 4 for more discussion.

In this subsection we illustrate the surface are approach for action recognition. We will
compare surface area, Hausdorff distance, and Chamfer distance in terms of classification
error performance.

Surface area is computed by triangulation approximation JT instead of numerical inte-
gration as it has much faster run time. From now on, by surface area we mean triangulation
approximated area. As defined, surface area needs to be slightly modified for application
to streaming data like video since the surface area monotonically increases as more frames
are added to the action sequences. For this reason, the surface area is normalized by the
product of two curve lengths L, where

(3.133) L = ∫I
√
F22(t) dt.

We apply the normalized surface area to the problem of classification of PGM Kinnect
action data.3 The data contains three actions: clap, high kick, low kick. There are 30 sequences
for each action type, thus 90 sequences in total. Action sequences have at minimum 11
frames and at maximum 24 frames. Each frame has xy-coordinates and orientations of ten
human body parts: torso, head, left arm, left forearm, right arm, right forearm, left thigh, left
leg, right thigh, right leg.

We extracted relative orientations of body parts from each frame. For example, if the
coordinates of the endpoints of the left forearm are x , y ∈ R2, then the unit orientation vector

3https://www.coursera.org/course/pgm
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Figure 3.10: Confusionmatrix of PGMdata. 5-fold cross-validation. Average over 100 runs.

(x − y)/∥x − y∥ is one feature. Therefore each feature represents the relative orientation
of a body part, and such orientation features are collected for all body parts listed above.
Since there are ten body parts in the dataset, the features are in (S1)10, ten-fold Cartesian
product of circles. After normalization in (S1)10 ⊂ (R2)10 ≅ R20, each action sequence is
now a discretely sampled curve in S19. Therefore the action sequences are in a sphere, and
we are able to apply the surface area computation method from Section 3.4.3.

A Nearest-neighbor classifier was employed on the relative orientation data. Figure 3.10
has confusionmatrices created by 5-fold cross-validation. The cross-validation error rates are
11.84%, 26.29%, and 16.99% for surface area, Hausdorff, and Chamfer distance, respectively.
Therefore, for this experiment the surface area significantly improves upon the Hausdorff
and Chamfer distances in terms of classification performance.

We repeated the experiment on the MSR-Action3D data described in Li, Zhang, and
Liu (2010) and Wang, Liu, Wu, and Yuan (2012). The data contains twenty human actions:
high arm wave, horizontal arm wave, hammer, hand catch, forward punch, high throw, draw x,
draw tick, draw circle, hand clap, two hand wave, side-boxing, bend, forward kick, side kick,
jogging, tennis swing, tennis serve, golf swing, pick up and throw. These actions were collected
by depth cameras. Each frame in MSR data has 20 joints of human body in R3. Figure 3.11
has sample frames of the data set.

As in PGM data, we use body part orientations as features. Since there are 20 joints
in R3, each frame is represented by S56. Figure 3.12 shows confusion matrices created by
5-fold cross-validation. The median cross-validation error rates across the 20 classes are
8.50%, 10.82%, and 4.96% for surface area, Hausdorff, and Chamfer distance, respectively.

While it outperforms Hausdorff in this MSR experiment, the surface area does not out-
perform the Chamfer distance in terms of average classification performance. Figure 3.12a
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Figure 3.11: Sample skeleton images fromMSR-Action3D data.

shows that the most significant factor is bend action class. Compared to Hausdorff and
Chamfer distances, surface area misclassifies bend action sequences to jogging actions.

It turns out that the MSR-Action3D data has defects in several action classes including
bend and pickup and throw. The depth camera and the human skeleton tracking algorithm
fail when the camera cannot see the whole subject body. For instance, when a human subject
bends in the scene, the head, the torso, and many other body parts overlap in the depth
camera view. Therefore the camera cannot track the body parts effectively, and many frames
of the corresponding actions have degenerate data.

If bend and pickup and throw classes are discarded from the data, the 5-fold cross-
validation error rates have the medians 6.93%, 9.28%, and 4.71% for surface area, Hausdorff,
and Chamfer distances. Further investigation is needed to better understand these differ-
ences in classification performance.
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(c) Chamfer. Error: 4.96%
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Figure 3.12: Confusion matrix of MSR-Action3D data. 5-fold cross-validation. Average
over 100 runs.
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Chapter 4
Quantum Cluster Analysis

4.1 Introduction

In Chapter 2 and Chapter 3, we proposed novel dissimilarity measures that enjoyed good
properties for random samples. Dissimilarity measures are frequently used in spectral
clustering, in which one performs dimensionality reduction by eigen-decomposition on
the Gram matrix of a transformed version of these dissimilarities. For example, Gaussian
kernel and Markov diffusion transition probabilities are common in manifold learning and
spectral clustering (Belkin and Niyogi 2003; Coifman and Lafon 2006; Ng et al. 2002). In
this chapter, we develop a new framework for dimensionality reduction and clustering based
on a quantum mechanical interpretation of the latent variables, called states, that identify
cluster membership. Similar to other “soft clustering” methods, e.g., fuzzy k-means (Duda,
Hart, and Stork 2000, Chapter 10.4.4) and probabilistic mixtures of experts (Tipping and
Bishop 1999), the quantum mechanical framework results in replacing a binary valued
membership function with a probability valued membership function. However, in the
quantum mechanical framework it is a cluster equivalence class indicator function that is
relaxed to a probability.

The quantum mechanical framework for cluster analysis based on quantum states.1 In
quantum mechanics, dynamics of systems are described by the quantum states associated
to a system, and each state is a unit vector (or a unit operator) in some Hilbert space H.
The main idea behind quantum cluster analysis is to establish a mapping from the sample
space to the state space H, and to study the interactions between the subsystems by the
interactions between its state vectors.

1This should not be confused with Horn and Gottlieb (2002) which is based on the Schrödinger's equation.
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4.2 Mixture models and k-means

Mixture model is a probabilistic approach of cluster analysis. In (finite) mixture models,
sample points follow a probability density function of the form

(4.1)
m
∑
k=1

ak fk

where∑k ak = 1, ak ≥ 0, and fk is a probability density function inRd for k = 1, 2, . . . ,m. The
density functions fk are called the mixture density functions, and they are often chosen to
be Gaussian density functions. Each sample point Xi , drawn from (4.1), has a latent variable
Yi , which takes value k with probability ak, k = 1, 2, . . . ,m. The latent variable Yi controls
the distribution of Xi such that the conditional density function of Xi conditioned by Yi = k
is fk.

The outcome of the latent variable Yi determines what mixture density function fk the
sample point Xi belongs to. Therefore in mixture model, the cluster analysis attempts to
estimate the latent variable Yi given the point Xi . A typical approach is maximum-likelihood
estimation. If Ŷi is the estimation of Yi , then

(4.2) Ŷi = argmax
k

fk(Xi).

This choice of cluster assignment is similar to the k-means algorithm, which is probably
the most prevalent geometric approach of cluster analysis. In its greedy implementation,
the k-means algorithm assumes that there are finite m clusters with centroids at µk ∈ Rd ,
k = 1, 2, . . . ,m (Lloyd 1982). Then each sample point Xi belongs to the cluster with the
nearest centroid. If the mixture model had Gaussian mixture functions fk with means at
µk and the identity covariance Id , then the maximum-likelihood estimation Ŷi in (4.2) is
equivalent to the k-means,

(4.3) argmax
k

fk(Xi) = argmin
k
∣Xi − µk ∣.

Themixture model and k-means have interpretations in terms of geometric and statis-
tical models. The mixture models provide a statistical interpretation but do not actively
consider the underlying geometric structure of the data space. On the other hand, the
k-means and its extensions such as fuzzy k-means do not assume a probabilistic model, and
their designs are motivated by geometric interpretations.

In the next subsection, we show how quantum mechanical model can provide a frame-
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work that can account for geometry and statistical models simultaneously. In soft-clustering,
fuzzy clustering, and probabilistic latent variable mixture models, the indicator function
of the event “Xi belongs to cluster Yj” is replaced with a continuous valued membership
function in the interval [0, 1]. In contrast, in the proposed quantum clustering approach a
different indicator function is relaxed to [0, 1]: the indicator of the equivalence relation “Xi

is in the same cluster as X j”. In Section 4.3, we show a connection between the proposed
quantum mechanical clustering method and mixture models using the spectral theory of
Hilbert-Schmidt operators.

4.2.1 Quantummechanical generalization

Suppose that we have n sample points X1, X2, . . . , Xn. Like latent variables in the mixture
model, define cluster labels Y1,Y2, . . . ,Yn associated to the sample points.

We design the algorithm so that the geometry learning process and the data partition
process are separated. In this chapter, we focus on the latter. Therefore the sample points
X1, . . . , Xn are not used directly. In fact, we do not even specify in what space these sample
points are. Instead it is assumed that some black-box geometry learning process provides a
dissimilarity matrix Di j, 1 ≤ i < j ≤ n.

The dissimilarity D may be any real function. However, for the cluster analysis to make
sense, we require D to have the following properties.

1. D is topologically compatible. For example, D(x , x) ≤ D(x , y) for all x , y.

2. D is symmetric, i.e., D(x , y) = D(y, x).

The state optimization problem ismotivated by the k-means algorithm (MacQueen 1967;
Hastie, Tibshirani, and Friedman 2009, Chapter 14). The k-means algorithm minimizes the
within-point scatter defined as

(4.4) W(Y) = 1
2∑k

Di j1{Yi=Yj}

where the index k runs through all values of Yi , i = 1, 2, . . . , n. Our approach is to express
(4.4) with pairwise probability pi j,

(4.5) pi j = Pr{Yi = Yj ∣ Xi = xi , X j = x j}.

The cluster analysis no longer provides deterministic output of the cluster prediction Yi .
Rather the cluster predictions are randomized and cluster analysis provides the probability
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pi j instead. If the predictions are random, then the expected within-point scatter (4.4) is

(4.6) EW(Y) = 1
2∑i≠ j

Di jE1{Yi=Yj}
=
1
2∑i≠ j

Di jpi j.

Themean scatter (4.6) may be interpreted as half the sum of the mean cluster dispersions
∑ j Di jpi j for all 1 ≤ i ≤ n.

We call the minimization of (4.6) quantum state optimization. While the k-means—the
base method—is purely geometric and make hard cluster memberships of the data points,
the quantum state optimization is a soft cluster analysis, and the cluster memberships are
expressed in probability. Some examples of previous soft cluster analysis methods are the
fuzzy k-means, the expectation-maximization (EM), or latent Dirichlet allocation (Blei, Ng,
and Jordan 2003). The key difference of the quantum state optimization from the examples
is the bivariate membership, i.e., the previous examples estimate the distribution of cluster
labels Yi , i = 1, 2, . . . , n, whereas the quantum state optimization answers the probability
that Yi = Yj, for all i ≠ j.

Note that theminimization of (4.6) is currently notwell defined yet since a trivial solution
pi j = 0 for all i ≠ j would attain a minimum. The next section provides a statistical cluster
analysis framework for the quantum state optimization, and an optimization constraint for
the minimization of (4.6).

4.3 Quantum cluster analysis

We introduce the proposed quantum cluster analysis framework, then provide arguments
on how to apply the framework to cluster analysis.

4.3.1 Quantummechanical background

This subsection is a brief introduction to the mathematical background and basic postulates
in quantum mechanics (Shankar 1994, Chapter 4; Sakurai 1993, Chapter 1). Bear in mind
that the purpose of this short introduction is to borrow some concepts and mathematical
utilities from quantummechanics, not to discuss and develop theories of physics in depth.
For that reason, the introduction below is modified and tuned for the purpose of the thesis,
and one may observe some differences from the formal definitions in quantum mechanics.
For example, the Hilbert space H is usually chosen to be a complex linear space in quantum
physics but in this chapter, H is always chosen to be a real vector space. Lastly, the bra-ket
notation is very common in quantummechanics literature. That notation is not used in this
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thesis.
A (pure) quantum state Ψ of a system is a one-dimensional subspace in some Hilbert

space H. Therefore the set of pures states is the projection space of H,

(4.7) {span(x)∶ x ∈ H}.

It is convenient to represent a state Ψ by a normalized vector in the subspace. We will use
ψ to denote a unit vector in the subspace Ψ. A (normalized) quantum state is also called a
wave function, a probability amplitude, or an ensemble.

A measurement or an observable Ω in quantum mechanics is a self-adjoint operator of
H. Ω is self-adjoint, hence it admits a spectral decomposition2

(4.8) Ω = ∑
j
λ jω jω∗j

where λ j ∈ R is an eigenvalue, ω j ∈ H is a unit eigenvector corresponding to λ j, and ω∗j ∈ H∗

is the linear functional

(4.9) ω∗j (x) = ⟨ω j, x⟩

for all x ∈ H.
Suppose that a system is in quantum state ψ. When an observable Ω is measured, then

the possible outcomes of the measurement are λ j's,

(4.10) Pr{observation is λ j} = ∣⟨ω j,ψ⟩∣2.

Note that it is possible λ j = λk for j ≠ k. When the observation outcome is λ j, the state of
the system transits from ψ to ω j. We say the state ψ collapsed into ω j. By the Parseval's
theorem, the probability is invariant over different choices of the orthonormal bases for the
eigenspaces.

4.3.2 Quantum states for cluster analysis

Assume n sample points X1, . . . , Xn in some measurable space. Each point Xi is associated a
normalized state variable ψi in some Hilbert space H. In the language of physics, the system
consists of n subsystems and each subsystem Xi has state ψi , i = 1, 2, . . . , n. We estimate the
cluster label Yi for Xi . If Yi = Yj for some indicies i , j, then Xi and X j are observed to be in

2An operator may have continuous spectra in general H. We assume the spectra are always discrete.
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the same cluster. In quantum mechanics the notion of observation is somewhat different
from the classical statistical notion.

Define a partition operator as an observable, i.e., a self-adjoint operator Ω of H. If
Ω = ∑ j λ jω jω∗j , then

(4.11) Yi = λ j

with probability ∣⟨ω j,ψi⟩∣
2. We define the cluster labels to be the outcome eigenvalues,

and clusters to be the corresponding eigenspaces of the partition. Note that the cluster
label values have no specific meanings and their sole purpose is identification of cluster
membership of each sample point. When comparing clusters from different partitions,
clusters are represented by the eigenspaces rather than the eigenvalues.

The strength of this framework is that a partition operator Ωmay be any operator we
wish to be.

Example 4.1. Suppose that there are two input variables X1 and X2, and associate the states
ψ1 = (1, 0) and ψ2 = (

√
1/3,
√
2/3) ∈ R2 = H, respectively. Choose a partition operator

Ω = λ1ω1ω∗1 + λ2ω2ω∗2 ,

λ1 = 1, ω1 = (1, 0) ∈ R2,(4.12)

λ2 = 2, ω2 = (0, 1) ∈ R2.(4.13)

Then X1 has probability one to collapse into cluster λ1 = 1 since ∣⟨ω1,ψ1⟩∣
2
= 1, and has

probability zero to collapse into cluster λ2 = 2 as ∣⟨ω2,ψ1⟩∣
2
= 0. For X2, it has probabilities

1/3 and 2/3 to collapse into cluster 1 and 2, respectively. See Figure 4.1 for a visualization.
Now pick another partition operator Ω′ = λ3ω3ω∗3 + λ4ω4ω∗4 and choose

λ3 = 3, ω3 =
⎛

⎝

√
1
2
,
√

1
2
⎞

⎠
∈ R2,(4.14)

λ4 = 4, ω4 =
⎛

⎝

√
1
2
,−
√

1
2
⎞

⎠
∈ R2.(4.15)
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⎛
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Figure 4.1: Quantum states are ψ1 and ψ2. Any partition operator may applied to the states.

Then

Pr{Y1 = k} =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
2 , k = 3,
1
2 , k = 4,

(4.16)

Pr{Y2 = k} =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

1
2 +

√
2
3 , k = 3,

1
2 −

√
2
3 , k = 4.

(4.17)

4.3.3 Mixture models in quantum cluster analysis

In this subsection, we compare quantum cluster analysis with the finite mixture model
described in Section 4.2. Inmixturemodels, each sample point Xi has a latent variableYi , and
the probability distribution of the latent variable is determined by the maximum-likelihood
estimation (4.2).

Quantum cluster analysis provides a dual to the mixture models. Let H be the L2 space
in Rd . Associate a normalized quantum state or wave function ψ ∈ H to each sample point,
which is like a particle in quantum physics. Then the squared magnitude ∣ψ∣2 is a probability
density function governing where the particle may be observed. Of course a sensible wave
function should have its mean at the sample point it is associated to. We design the partition
operator based on position operators. Let µ1, . . . , µk ∈ Rd be mean vectors of the mixtures.
Choose a small neighborhood U of 0 ∈ Rd such that the collection {µ j +U}kj=1 are disjoint.

87



Then define the partition operator Ω,

(4.18) Ωψ(x) =
k
∑
j=1

1{x∈µ j+U} ∫µ j+U
ψ(u) du

where 1{x∈µ j+U}
is one if x ∈ µ j +U and is zero otherwise. Since

(4.19) ∣ ∫µ j+U
ψ(u) du∣

2

≤ ∫µ j+U
∣ψ(u)∣2 du ≤ ∫Rd

∣ψ(u)∣2 du,

Ω is bounded, hence is a continuous operator. The eigenfunctions of Ω are 1{x∈µ j+U}
,

j = 1, . . . , k. Then the probability that a sample point Xi collapses into the cluster µ j is
proportional to

(4.20)
1
∣U ∣
∣ ∫µ j+U

ψi(u) du∣
2

≈ ∣ψi(µ j)∣
2
∣U ∣

where ∣U ∣ denotes the volume of U . The approximation holds whenU is small enough. In
that case, (4.20) matches the likelihood function used by the maximum-likelihood estima-
tion (4.2) in the mixture models.3

4.4 State space dimensionality

Quantum states model the dependency between sample points. Let H be a Hilbert state
space, and let ψi ∈ H be the normalized quantum state for the sample point Xi , i = 1, 2, . . . , n
where ⟨ψi ,ψ j⟩ = 1. If ψ1,ψ2, . . . ,ψn are orthonormal then there exists a non-trivial partition
operator

(4.21) Ω =
n
∑
i=1

iψiψ∗i

which assigns every Xi to a singleton cluster with probability one. On the other hand, if
ψ1 = ψ2 = ⋅ ⋅ ⋅ = ψn are identical then for any partition operator, the cluster observation
process is independent and identically distributed, i.e., Y1,Y2, . . . ,Yn are i.i.d.

3One may have noticed that (4.20) does not sum to one over j = 1, 2, . . . , k. This is because there is the
cluster which corresponds to the zero eigenvalue, i.e., the null space of Ω. There may be multiple ways to
handle or interpret the null space cluster. One way is to consider the null space cluster as the (k + 1)-th
cluster. Another way to handle it is to restrict the wave functions ψ i to the domain⋃ j(µ j +U). Other possible
approach is the update the partition operator and add another cluster with a mean µk+1, as in the Dirichlet
process (Rasmussen 2000; Blei et al. 2003).
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Apply the partition operator

(4.22) Ψi = ψiψ∗i ,

then the i-th class label Yi = 1 with probability one. In addition, if the state of Xi collapses
into some cluster η with probability one, then ψi must be in the subspace of η. In that sense,
we say the one-dimensional subspace spanned by ψi is the smallest cluster that contains
Xi almost surely. Define pi j as the probability that X j collapses into the smallest cluster
prototypical to Xi , i.e.,

(4.23) pi j = ∣⟨ψi ,ψ j⟩∣
2.

Note the symmetry pi j = p ji .
The minimization may be rewritten as

(4.24) argmin
{ψ i}

1
2∑i≠ j

Di jpi j =
1
2∑i≠ j

Di j∣⟨ψi ,ψ j⟩∣
2

for unit vectors ψ1, . . . ,ψn ∈ H.
The dimensionality of finite-dimensional Hilbert space H = Rm plays the role of the opti-

mization constraint. Ifm ≥ n, then the statesψ1, . . . ,ψn may be chosen to be an orthonormal
sequence. In that case, pi j = 0 for all i ≠ j,

(4.25)
1
2∑i≠ j

Di jpi j = 0

regardless of the given dissimilarity matrix Di j. On the other hand, if m = 1, then pi j = 1 for
all i , j and the optimization problem is trivial since there is no degree of freedom for the
quantum states.

Therefore it is important to choose an intermediate value for the dimensionality m of H
between 1 and n. If the dimensionalitym is strictly less than n, then it is impossible to reach
the trivial solution pi j = 0 for all i ≠ j. The trivial solution is achieved when ψ1,ψ2, . . . ,ψn

are orthonormal vectors, and it is impossible to have such configuration when m < n. A
basic rule is that m should indicate the maximal number of clusters allowed for the point
configuration. In diffusion terms, the dimensionality determines the approximate number
of neighborhoods in the space.
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4.5 Quantum state optimization: implementation

In this section, we propose a general strategy to minimize (4.24). As discussed above, the
dimensionality of the state space H must be less than the number of sample points n to
avoid trivial solutions. Since finite-dimensional Hilbert spaces are isomorphic to Euclidean
spaces, without loss of generality, we can assume that the normalized state variables in
(4.24) are on the unit sphere Sm in Rm+1. Standard optimization techniques operate over
Euclidean domains. Therefore to apply the already developed optimization methods, we use
chart maps of the smooth manifold Sm. This section describes the details and the related
computations.

Let J denote the objective function in (4.24), where the normalized state variables are
denoted by ψ1,ψ2, . . . ,ψn ∈ Sm. We use stereographic projections to settle the variable points
in Euclidean domains. We review stereographic projections in the next subsections.

4.5.1 Stereographic projection

Previous dimensionality reduction methods such as spherical multidimensional scaling
(Cox and Cox 2001) or spherical Laplacian information maps (Carter, Raich, and Hero
2009b) use spherical coordinates to represent vectors on the unit spheres for its nonlinear
optimization. Spherical coordinates, however, are not local homeomorphisms at the poles,
and they often lead to optimization instabilities.

A more systematic approach is to use chart maps. In quantum state optimization, stereo-
graphic projection chart maps are used. Stereographic projections have some advantages for
gradient descent methods. For instance, single stereographic chart covers all but one point
on the sphere, and two stereographic charts are sufficient to cover the entire Sm. Compare
it with gnomonic projections where 2(m + 1) charts are required to cover the entire Sm.

Let U = Sm − (1, 0, 0, . . . , 0), and φ−1∶U → Rm be the stereographic projection with its
projection focal point at (1, 0, . . . , 0),

(4.26) φ−1 ∶ ψ ∈ U z→ ξ = π2ψ
1 − π1ψ

,

where π1∶Rm+1 → R is the projection onto the first coordinate, and π2∶Rm+1 → Rm is the
projection onto the last m coordinates. And its projection inverse φ∶Rm → U ,

(4.27) φ∶ ξ z→ ψ = (1 − 2
1 + ∣ξ∣2

,
2ξ

1 + ∣ξ∣2
).
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Rm

e1 = (1, 0, . . . , 0)

ξ1

ψ1 = φ(ξ1)

ξ2
ψ2

ξ3

ψ3

Figure 4.2: Examples of a stereographic projection. The normalized state variables ψ1,ψ2,ψ3
on Sm are mapped onto ξ1, ξ2, ξ3 ∈ Rm, respectively. The focal point is e1 =
(1, 0, . . . , 0) ∈ Rm+1. When ψi approaches and is close to the focal point e1 for
some i, the state variable ψi is replaced by −ψi .

See Figure 4.2 for a visualization.
The stereographic projection map φ−1 cannot map its focal point (1, 0, . . . , 0) ∈ Sm into

Rm. Note that two normalized vectors ψ and −ψ represent the same quantum state. Indeed,
the objective function (4.24) is invariant when ψi is replaced with −ψi , for i = 1, 2, . . . , n.
Therefore when a normalized state variable ψ is near the focal point, we replace it with −ψ
to avoid the singularity of the stereographic projection.

Let ξ+ = φ−1(ψ) and ξ− = φ−1(−ψ). One may check that

(4.28) ξ+ = −
ξ−
∣ξ−∣2

and ξ− = −
ξ+
∣ξ+∣2

.

We describe an optimization strategy for quantum state optimization. Choose a thresh-
old R > 1.

Step 1 Initialize ψ1,ψ2, . . . ,ψn ∈ Sm, and compute ξ1, . . . , ξn ∈ Rm using (4.26).

Step 2 Update ξ1, ξ2, . . . , ξn using a preferred iterative descentmethodon J(φ(ξ1), . . . , φ(ξn)).
A broad class of iterative methods may be adopted here. For example, Newton's
method, gradient descent, interior point method, etc.

Step 3 After an update, check if any variable needs to be flipped to avoid the singularity
of the stereographic projection. For i = 1, 2, . . . , n, if ∣ξi ∣ > R, then replace ξi by
−ξi/∣ξi ∣2, as in (4.28).

Step 4 Repeat Step 2 and Step 3 until ξ1, . . . , ξn converge.

4.5.2 Derivatives under stereographic projections

Many iterative optimization methods that may be adopted in Step 2 require the knowledge
of the optimization objective gradient, and sometime the Hessian of the objective function
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J. This subsection provides computation results for the iterative updates.
For the first-order partial derivatives of J,

(4.29)
∂J
∂ξi
=
1
2∑j≠i

Di j
∂
∂ξi
∣⟨ψ j,ψi⟩∣

2
= ∑

j≠i
Di j⟨ψ j,ψi⟩⟨ψ j,

dψi

dξi
⟩,

and from (4.27),

(4.30)
dψi

dξi
= (

2(2ξi)∗

(1 + ∣ξi ∣2)2
,
2 ⋅ Im
1 + ∣ξi ∣2

−
(2ξi)(2ξi)∗

(1 + ∣ξi ∣2)2
)

where Im∶Rm → Rm is the identity operator, and ξ∗ denotes the dual functional ξ∗(⋅) = ⟨ξ, ⋅⟩.
One can check that its representation in terms of ψi is

(4.31)
dψi

dξi
= ((1 − π1ψi)π2ψ∗i , (1 − π1ψi)Im − π2ψiπ2ψ∗i ).

One can check that if we map u ∈ Rm into (0, u) ∈ R ×Rm ≅ Rm+1, then at each ξi , the
derivative (4.31) is the Householder transformation incorporating a scaling by 1 − π1(ψi).
The Householder transformation maps ψi to (1, 0, . . . , 0). Note that a Householder trans-
formation is orthonormal. Therefore a stereographic projection chart maps each tangent
space orthogonally. Use of Householder transformations to results in a numerically stable
implementation of the gradient computation.

For the second derivatives of J, by the chain rule,

(4.32)
∂2J

∂ξi∂ξ j
=

∂2J
∂ψi∂ψ j

(
∂ψi

∂ξi
,
∂ψ j

∂ξ j
) +

n
∑
i=1

∂J
∂ψi
⋅
∂2ψi

∂ξ2i
,

therefore we need to know ∂2ψi/∂ξ2i and ∂2J/∂ψi∂ψ j.
For ∂2ψi/∂ξ2i , a direct computation shows that

(4.33)
d2ψi

dξ2i
= (−(1 − π1ψi)(2π2ψ∗i ⊗ π2ψ∗i − (1 − π1ψi)⟨⋅, ⋅⟩),

(2π2ψ∗i ⊗ π2ψ∗i − (1 − π1ψi)⟨⋅, ⋅⟩)π2ψi

−(1 − π1ψi)(Im ⊗ π2ψ∗i + π2ψ∗i ⊗ Im)),

where ⟨⋅, ⋅⟩ is dot product in bilinear form.
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Now we compute ∂2J/∂ψi∂ψ j. For the block-diagonal components, i.e., when i = j,

(4.34)
∂2J
∂ψ2

i
= ∑

j≠i
Di j⟨⋅,ψ j⟩⟨⋅,ψ j⟩.

For the off-diagonal components, i.e., when i ≠ j,

∂2J
∂ψi∂ψ j

=
∂
∂ψ j
∑
k≠i

Dik⟨ψi ,ψk⟩⟨⋅,ψk⟩(4.35)

= Di j(⟨ψi ,ψ j⟩⟨⋅, ⋅⟩ + ⟨⋅,ψ j⟩⟨ψi , ⋅⟩).(4.36)

4.5.3 Switching stereographic projections

A stereographic projection has a singularity at its focal point, i.e., the projection is not well-
defined at the focal point. We circumvented the problem above by flipping the normalized
quantum state variablesψ that are close to the focal point into−ψ. See (4.28) for the formulae
for ξ.

An alternative way to handle the singularity is to use another stereographic projection
map, and switch between the projections as needed. Let φ−1s denote the stereographic pro-
jection with the focal point at (−1, 0, . . . , 0). If Us = Sm − {(−1, 0, . . . , 0)}, then

(4.37) φ−1s ∶ ψ ∈ Us z→ ξs =
π2ψ

1 + π1ψ
,

and its projection inverse φs∶Rm → Us,

(4.38) φs∶ ξs z→ ψ = (−1 + 2
1 + ∣ξs∣2

,
2ξs

1 + ∣ξs∣2
).

Note that the domain of φ and φs are U and Us, respectively, and

(4.39) U ∪Us = (Sm − {(1, 0, . . . , 0)}) ∪ (Sm − {(−1, 0, . . . , 0)}) = Sm ,

hence these two projections φ and φs can map every point in Sm into Rm. One may check
that

(4.40) ξ = ξs
∣ξs∣2

and ξs =
ξ
∣ξ∣2

.

Asmentioned, wemay choose to switch between the projections to avoid the singularities,
instead of to flip the state vectors. Then Step 3 may be modified as follows.
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Step 3' After an update, check if any state variable needs to change its projection. For
i = 1, 2, . . . , n, if ∣ξi ∣ > R, then replace ξi by ξi/∣ξi ∣2. Use φs for ξi instead of φ, or vice
versa if ξi were using φs.

4.6 Experiments

Thefigures in this section use color to denote different clusters and classes in the visulization.
Please see the electronic version for the color information in the figures.

4.6.1 Three circles dataset

We apply quantum state optimization to synthetic three circles data. A similar dataset used
in Grikschat, Costa, Hero, and Michel (2006).

The data in its original feature space is shown in Figure 4.3a. It contains three thin layers
of concentric circles. Each circle has 65 data points and the total number of points is 195.
This data is difficult to split with spectral clustering. For instance, see Laplacian Eigenmaps
result in Figure 4.3b. The inner circle points ( ) are separated from the others but the middle
circle points ( ) and the outer circle points ( ) are not separated.

We use power-weighted shortest path lengths from Chapter 2 to measure the dissim-
ilarities in this data. The graph weights were given by w(x , y) = cosh(20∣x − y∣) − 1. See
Section 2.4.1 for super-additive power-weighted shortest paths.

In Figure 4.4, the state vectors ψi and the associate probabilities pi j are plotted when
H = R3. The color code agrees with that used in Figure 4.3a. The probability matrix is
nearly block-diagonal and is close to a perfect split. In Figure 4.4a the state vectors form an
orthonormal basis of H = R3.

In Figure 4.5, the state vectors ψi and the associate probabilities pi j are plotted when
H = R2. The color code still agrees with that used in Figure 4.3a. Since the dimensionality is
less than the number of circles, some correlation is introduced across the points in different
circles. In Figure 4.5b the most inter-class correlations occur between the first 65 points
(inner circle ) and the second 65 points (middle circle ), while the least inter-class correla-
tions occur between the first 65 points (inner circle ) and the last 65 points (outer circle ).
This is as expected since the inner circle has the smallest scatter and the outer circle has the
largest scatter, in terms of summands in Equation 4.4.

If the dimension becomes greater than three, the state vectors begin to spread. The
increase in the state space dimensionality allows state vectors in single cluster to span more
than one-dimensional subspaces while maintaining orthogonality against the state vectors
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(a) Original feature space in R2.
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Figure 4.3: Three circles data. (a) is the raw form of the data. (b) is Laplacian Eigenmaps
with three eigenvectors. (c) is the Gaussian heat kernel matrix used as the weight
matrix for the Laplacian Eigenmaps result in (b). Unlike Figure 4.4b, the cluster
structure is not obvious from (c).
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(b) Probability matrix pi j.

Figure 4.4: Three-dimensional states, H = R3. Quantum states and association probability
matrix of the three circles data. Blue arrows for the first 65 points (inner circle in
Figure 4.3a), red arrows for the second 65 points (middle circle in Figure 4.3a),
and teal arrows for the last 65 points (outer circle in Figure 4.3a). Unlike Fig-
ure 4.3b, the data points from different circles are well separated in terms of
their state vectors. (a) shows that the state vectors from different circles are
nearly orthogonal. (b) confirms the near orthogonality of the state vectors by
the block-diagonal structure of the probability matrix. The diagonal blocks have
the association probability pi j ≈ 1 while the off-diagonal blocks have pi j ≈ 0.
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(b) Probability matrix pi j.

Figure 4.5: Two-dimensional states, H = R2. Quantum states and association probability
matrix of the three circles data. Blue arrows for the first 65 points, red arrows
for the second 65 points, and teal arrows for the last 65 points.

in other clusters. That is, one of the clusters among the three become a two-dimensional
cluster in the Hilbert space.

4.6.2 Other datasets

The quantum state optimization was introduced as a relaxed version of the k-means in
Section 4.2.1. We examine its coherence and differences from the conventional centroid
approach to the k-means. There are many ways to quantitatively evaluate cluster analysis
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results. Here we use Rand index (Rand 1971),

(4.41) Rand(Y , Ŷ) = A+ D
A+ B + C + D

where Y and Ŷ are two cluster labels,

• A is the number of pairs i , j such that Yi = Yj and Ŷi = Ŷj,

• B is the number of pairs i , j such that Yi = Yj and Ŷi ≠ Ŷj,

• C is the number of pairs i , j such that Yi ≠ Yj and Ŷi = Ŷj,

• D is the number of pairs i , j such that Yi ≠ Yj and Ŷi ≠ Ŷj.

Firstwe compare the difference between the quantumstate optimization and the k-means
with conventional centroid-based implementation. For the implementation of the conven-
tional k-means, we use the kmeans function from MATLAB statistics toolbox. For the
partition operator in the proposed quantum cluster analysis, we use the mean projection
operator,

(4.42) Ω =
1
n

n
∑
i=1

ψiψ∗i .

We pick iris datasets fromUCI machine learning repository.⁴ The data has 150 instances
of four continuous variables, and has three classes where each class refers to a type of iris
plant. One class is linearly separable from the others, while the other two classes are not
easily separable. Figure 4.6 shows a comparison and visualization. Euclidean distance is
used for the both methods. Note that the quantum state optimization improved slightly
over the centroid approach in terms of the Rand index, from 0.8797 to 0.8923.

We also carry out the same comparison for Wisconsin diagnostic breast cancer dataset
from UCI machine learning repository. This dataset has 569 instances and 32 variables.
Each instance is either malignant or benign. Euclidean distance is used again for the both
methods. See Figure 4.7 for visualization and a comparison. Like iris dataset comparison,
the quantum state optimization improves over the centroid approach. The Rand index rises
to 0.8308 from 0.7504. The improvement is much more significant for this dataset.

For the two datasets from UCI repository, Euclidean distances were used. However, the
quantum state optimizationmayworkwith a broad general class of dissimilarities of its input
data, hence a quantum cluster analysis may benefit from a careful choice of dissimilarity.

⁴http://archive.ics.uci.edu/ml/ (Frank and Asuncion 2010)
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Rand index is 0.8923.
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(c) Labels from the k-means.
The Rand index is 0.8797.

Figure 4.6: Cluster analysis comparison for iris dataset from UCI repository. The employed
dissimilarity measure is the Euclidean metric. For IRIS dataset, the quantum
state optimization performs slightly better than the conventional centroid-based
k-means. The data is projected onto the plane byMDS for visualization purpose.
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state optimization. The
Rand index is 0.8308.

−1,000 0 1,000 2,000 3,000 4,000

−2,000

−1,000

0

1,000

2,000

(c) Labels from the k-means.
The Rand index is 0.7504.

Figure 4.7: Cluster analysis comparison forWisconsin diagnostic breast cancer dataset from
UCI repository. The employed dissimilarity measure is the Euclidean metric.
The quantum state optimization significantly improved the cluster analysis result.
The data is projected onto the plane by MDS for visualization purpose.
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Figure 4.8: Quantum cluster analysis results for two-moons data. (a) and (b) are the op-
timized quantum states and partition result based on Euclidean distance. The
Rand index score is 0.5047. (c) and (d) are the optimized quantum states and
partition result based on super-additive shortest path distance. The Rand index
score is 1, which indicates the perfect partition.

Figure 4.8 illustrates an example. The data shown in the figure is often called two-moons
or half-circles data. This dataset has been used to demonstrate non-convex point distri-
bution in machine learning methods. The figures on the top row visualize the optimized
state vectors {ψi}i based on Euclidean distance, and a partition result based on the state
vectors. The cluster analysis result is not different from the k-means partition with Euclidean
distance. This is as anticipated since the quantum state optimization is a relaxed version of
the k-means.

When the Euclidean distance is replaced by super-additive shortest path lengths, Fig-
ure 4.8c and Figure 4.8d shows an improved partition result, and in fact, the perfect partition
is achieved.
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4.7 Further discussions

4.7.1 Connections to spectral clustering

We compare our clustering scheme with spectral clustering (Shi and Malik 2000; Ng et al.
2002; von Luxburg 2007). Spectral clustering finds the eigenvalues and the eigenvectors
of the graph Laplacian matrix. Similarity weights ai j = a ji ≥ 0 for i ≠ j are provided. The
(unnormalized) graph Laplacian L—having i j-th element Li j—is

(4.43) Li j =

⎧⎪⎪
⎨
⎪⎪⎩

di , i = j,

−ai j, i ≠ j,

where di = ∑ j≠i ai j.
Let e1, e2, . . . , en ∈ Rn be the standard orthonormal sequence. Choose

(4.44) ψi =
1
√
di
ei ∧∑

j≠i
e j
√ai j

in Rd ∧Rd for i = 1, 2, . . . , n. The factor
√
di is introduced to normalize the state vector ψi .

Then

(4.45) L′i j = ⟨ψi ,ψ j⟩ =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

1, i = j,

−
ai j
√
did j

, i ≠ j.

This Gram matrix L′—having i j-th element L′i j—of the normalized quantum state vectors
{ψi}i is known as the normalized graph Laplacian.

Choose L′ as the partition operator. Let λα > 0 be an eigenvalue of L′ and let α =
(α1, . . . , αn) ∈ Rn denote the corresponding eigenvector. Note that α∗L′α = λαα∗α, where
α∗ denotes the transpose of α. Then the probability that a state vector ψi collapses into the
cluster α is

(4.46)
1
λα
∣⟨∑

j
α jψ j,ψi⟩∣

2
=

1
λα
∣⟨∑

j
α je j, L′ei⟩∣

2
= λα ∣αi ∣

2

where the inner product in Rd is the Euclidean dot product.
Spectral clustering manifests in many different forms (Shi andMalik 2000; Ng et al.2002;

Zelnik-Manor and Perona 2005; von Luxburg 2007). One form of spectral clustering is to
look at the sign of eigenvector elements (von Luxburg, Belkin, and Bousquet 2008). That is,

100



an eigenvector α induces two clusters, and the cluster into which Xi falls is determined by
the sign of αi for each i = 1, 2, . . . , n. Since λα > 0, the sign of αi is the same as the sign of
λααi . Therefore the cluster assignment is determined by the sign of

(4.47) λααi = ⟨∑
j
α je j, L′ei⟩ = ⟨∑

j
α jψ j,ψi⟩.

(4.46) and (4.47) illustrate themain difference between quantumcluster analysis and spectral
clustering. The former puts emphasis on the squared magnitude of the inner product values
(projective geometry), while the latter discriminates by the simple inner product without
magnitude squaring.

4.7.2 Quantum state optimization and couplings

In this subsection, we connect quantum cluster analysis to a coupling problem. For a general
introduction to the coupling problems, we refer the reader to Villani (2009).

Let X0,X1 be measurable spaces, µ0, µ1 be positive measures in X0,X1, respectively. A
coupling of µ0 and µ1 is a positive measure π in X0 × X1 such that

(4.48) π(A× X1) = µ0(A) and π(X0 × B) = µ1(B)

for all measurable A ⊂ X0, B ⊂ X1. If X0, X1 are random variables with probability law µ0, µ1,
respectively, then a coupling is a joint probability law of X0 and X1. If there exists a map
T ∶ X0 → X1 such that T(X0) = X1, then the coupling is said to be deterministic.

Set X0 = X1 = X and µ0 = µ1 = µ. We will call this special case as an auto-coupling
problem. If an auto-coupling is deterministic, it is a measure-preserving transformation
in the ergodic theory. The problem may be phrased as follows. Suppose X0 is a random
variable in X . An auto-coupling is to generate another random variable X1 dependent on
X0 so that the marginal probability law of X1 is identical to that of X0.

This auto-coupling problem has both practical and theoretical deficiencies.

1. In practice, the probability law µ of X0 is unknown.

2. There are at least two trivial solutions. One is the independent sampling, i.e., X0

and X1 are independent and identically distributed. Another is the identity solution
X1 = X0.

We need more constraints or structure in the coupling model to remove these deficiencies.
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The first deficiency of unknown probability law is not difficult to remove. Suppose that
the coupling π is symmetric, i.e.,

(4.49) π(A× B) = π(B × A)

for all measurable subsets A, B ⊂ X . Substitute X for B. Then the marginal probability law
of X0 and X1 are identical.

For the second deficiency of trivial solutions, the approach of quantum cluster analysis
is to use the state space H. Assume H is a separable Hilbert space. Suppose there exists
a measurable function from X to H, and let ψi ∈ H be the unit state vector associated to
xi ∈ X . If Ω is a quantum observation, i.e., a self-adjoint operator of H and ω1,ω2, ⋅ ⋅ ⋅ ∈ H is
a countable orthonormal basis of eigenvectors of Ω, then the probability that X0 and X1 are
observed to be in the same cluster conditioned on that Xi = xi in quantum cluster analysis is

(4.50) ∣⟨ψ0,ψ1⟩∣
2
= ∣∑

j
⟨ψ0,ω j⟩⟨ψ1,ω j⟩∣

2
.

Note that if X0, X1 were independent, then the probability that X0 and X1 collapse to the
same observation would have been

(4.51) ∑
j
∣⟨ψ0,ω j⟩∣

2
∣⟨ψ1,ω j⟩∣

2

and the quantum state model imposes dependency between points.
Quantum state optimization determines the mapping into the state space H. It is a

variation of the optimal transport problem, which is defined as follows. Suppose there exists
a cost function D∶ X × X → (−∞,+∞]. Then the optimal transport problem is to find a
joint measure π which minimizes

(4.52) EπD(X0, X1)

where Eπ denote the expectation under the probability law π. The minimal expectation
EπD(X0, X1) is also called the earth mover's distance. If D satisfies a regularity condition
D(x0, x0) ≤ D(x0, x1) for all x0, x1 ∈ X , then the optimal transport problem is trivial by
setting X1 = X0. In terms of the state space map, the trivial minimization occurs when
⟨ψ0,ψ1⟩ = 0 for all x0 ≠ x1. If X were an open subset of some real or complex vector space,
then X is uncountable and any map of X into a separable Hilbert space H must have pairs
of points x0 ≠ x1 in X such that ⟨ψ0,ψ1⟩ ≠ 0 since H has at most countable orthonormal
sequences.
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Chapter 5
Conclusion

Differential geometrymay serve as a theoretical ground for a large class of statistical inference
problems which emphasize the local neighborhoods. This thesis provides several examples
in manifold learning, information theory, cluster analysis, and diffusion dynamics.

In Chapter 2, we proved the convergence properties of power-weighted and super-
additive shortest path lengths. The path lengths converged to Riemannian distances under
a class of conformal deformations of the manifold where the data points were sampled. The
conformal deformation provided a hybrid measure of geometry and statistics. The conver-
gence proofs were provided in several domains e.g., compact manifolds, complete manifolds,
and embedded manifolds. The results from the chapter holds theoretical importance in
random graph theory as an extension of the Beardwood-Halton-Hammersley theorem.

In Chapter 3, a formal theory of information geometry was developed. The main object
of study in information theory is the space of probability measures. Information geometry
presents a differential geometric view for themeasure space. We focused on L2 interpretation
of the measures through Radon-Nikodym derivatives and exponentiations. The theory also
provided a link between parameterizations and non-parametrics.

One of major theories where probability measures have L2 representations is quantum
mechanics. This motivates and leads to the topic of the quantum cluster analysis.

In Chapter 4, we proposed quantum cluster analysis framework. The framework used
projective spaces as the state space to model the dependencies between the data points. The
presented framework provides physical interpretations of data clustering procedures, and
the quantum state optimization algorithm bridges the notion of dissimilarities or metrics
to the notion of similarities or random walk transition probabilities. The optimization
algorithm also provides a general strategy for the gradient descent methods over spherical
domains.

There are many related and open problems for future work. A natural conjecture which
follows from the convergence result developed in Chapter 2, is that some other minimal
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graph problems such as minimal cuts in power-weighted graphs may satisfy similar asymp-
totic convergence to certain geometric quantities in Riemannian geometry. A successful
development of the theoretical connection between graphs and deformations will lead to a
better understanding of graphs on manifolds.

Chapter 4 posed the unsupervised clustering problem in quantum mechanics. However,
we have not yet introduced the Schrödinger's equation into the context of the quantum clus-
ter analysis, which is the central equation is quantum physics. Nadler et al. (2006) explains
the relationship of the diffusion map with the Schrödinger operator. And indeed the quan-
tum state association probabilities pi j presented are similar to the Markov chain transition
probabilities in the diffusion maps. By a connection between the quantum state optimiza-
tion and the Schrödinger's equation, the quantum cluster framework may be reinforced as a
unified framework which integrates cluster analysis and spectral analysis.

Another area for future work is a connection of quantum cluster framework with the
optimal transports. The optimal transport problem is one of mathematical theories in active
research with many practical applications. In Section 4.7.2, the quantum state optimization
was presented as an alternative problem to the optimal transport. A successful future work
in this perspective may bring the theories already developed in the context of coupling
problems to machine learning, in a different perspective from the earth-mover distance.
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