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Abstract— In this paper we address the problem of topology
discovery in unicast logical tree networks using end-to-end mea-
surements. Without any cooperation from the internal routers,
topology estimation can be formulated as hierarchical clustering
of the leaf nodes based on pair-wise correlations as similarity
metrics. Unlike previous work which first assumes the network
topology is a binary tree and then tries to generalize to a
non-binary tree, we provide a framework which directly deals
with general logical tree topologies. A hierarchical algorithm to
estimate the topology is developed in a recursive manner by
finding the best partitions of the leaf nodes level by level. Our
simulations show that the algorithm is more robust than binary-
tree based methods.

Keywords: network tomography, topology estimation, mixture
models, graph-based clustering.

I. INTRODUCTION

The infrastructure of a packet network is composed of
switching devices (as nodes) and communication channels (as
links). It is constantly changing due to devices going on-line
and offline, and the corresponding routing table updates. The
topology information of the infrastructure can be revealed
by packet routes across the entire network. Tools such as
traceroute trace a packet route by collecting responses
from all the switching devices on the route. This kind of co-
operation from the network has a negative impact on network
performance and security, and such cooperation is likely to
become more difficult in the future. Due to this reason the
problem of discovering the network topology based only on
end-to-end measurements has been of great interest [1], [2],
[3], [4], [5], [6], [7], [8]. This type of problems belongs to the
research category called network tomography.

Ratnasamy et al. [1] and Duffield et al. [2] pioneered
work in discovery of multicast network topologies. They
specifically targeted the identification of the network’s logical
tree structure. By sending multicast probes from the root node
of the tree to a pair of the leaf nodes, one can estimate
the successful transmission rate on the shared portion of the
probe paths, called the shared path, based on end-to-end loss.
Those rate estimates were used by the deterministic binary tree
classification algorithm (DBT) [2], [3] to construct a binary
logical tree in a bottom-up manner. The extension to a general
tree is basically done by pruning the links with loss rates less
than some heuristically selected threshold. The DBT algorithm
has also been extended to use other metrics such as packet
delays [2], [3].
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Topology estimation in unicast networks was investigated
by Castro et al. [4], [5], [6]. They invented a method of
probing, called sandwich probes, to estimate the queueing
delay on the shared path from the root to two of the leaf nodes.
Castro et al. also proposed a binary tree construction algorithm
similar to DBT, called the agglomerative tree algorithm (ALT),
which modifies DBT to account for the variability of the
measurements through the spread of its probability density
function (pdf) [6]. The special case of Gaussian distributed
measurements was previously called the likelihood-based bi-
nary tree algorithm (LBT) [5]. To compensate for the greedy
behavior of the ALT, causing it to reach a local optimum
in many cases, as well as to extend the result to general
trees without using a threshold, they introduced a Monte-
Carlo Markov Chain (MCMC) method to generate a sequence
of tree candidates by birth (node insertion) and death (node
deletion) transitions [6]. The tree candidate which gives the
highest likelihood is adopted as the estimate of the topology.

In this paper we propose a general method for estimation of
unicast network topologies. As in [2] and [6] we focus on the
estimation of logical tree structure of the network. The key to
our approach is a formulation of the problem as a hierarchical
clustering of the leaf nodes based on a set of measured pair-
wise similarities. The similarity of a pair of leaf nodes can
be represented by some metric function associated with the
path from the root to the nearest common ancestor of the two
leaf nodes. We investigate three different types of similarity
metrics that can be estimated from end-to-end measurements:
queueing delay using sandwich probes, delay variance using
packet pairs, and loss rate also using packet pairs. We modify
the likelihood model for the pair-wise similarities in [5], [6]
to include a prior distribution on the nearest common ancestor
node of each pair of the leaf nodes. This results in a finite
mixture model with every mixture component corresponding
to a distinct internal node. A penalized maximum likelihood
(PML) is developed using a minimum message length (MML)
type of penalty for model order selection. An EM algorithm
can be used for unsupervised estimation of the mixture model
parameters by maximizing the PML. Topology estimation is
then performed by a top-down search for the best partitions
of the leaf nodes. The first step is to construct a complete
graph whose edge weights are derived from the mixture model
estimate. Then a partition algorithm is applied to cluster the
vertices based on the edge weights.

Our contribution in this paper includes (1) the use of
hierarchical topology likelihood with finite mixture models
and MML model order penalties; (2) the top-down recursive
partitioning of the leaf nodes which directly yields a general
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logical tree without using thresholds or Monte-Carlo methods;
(3) the estimation of leaf node partitions using graph-based
clustering and unsupervised learning of the finite mixture
models; (4) the intelligent search of the partition likelihood
surface using graph clustering procedures.

The performance of our algorithm is compared with the
DBT and LBT using matlab model simulation under a
wide range of conditions on the magnitudes and variances of
the similarity estimates. The results show that our algorithm
generally achieves a lower error, as measured by tree edit
distance [11] to the true topology, and a higher percentage of
correctly estimated trees. The three candidate probing schemes
are evaluated on a ns-2 [12] simulated network. Monte-Carlo
simulations show the queueing delay metric measured by
sandwich probes have the best performance when the network
load is light. For a moderate load the delay variance metric
measured by packet pair probes provides the most reliable
similarity estimate for the leaf nodes. When the network is
congested with heavy traffic the loss rate metric measured
by packet pair probes generates the most accurate topology
estimates. We also use tree edit distance as a metric to define
distributions of topology estimates. This idea is illustrated by
a network simulated in ns-2 .

This paper is organized as follows. In Section II we set up
the logical tree network model. The probing methods and the
associated similarity metrics are also introduced. In Section III
we derive the finite mixture model for the end-to-end similarity
measurements. Based on this model we define the partition and
hierarchical topology likelihoods. In Section IV we illustrate
the hierarchical topology estimation algorithm (HTE) which
recursively partitions the leaf nodes based on graph connec-
tivity. In Section V we conduct comprehensive simulations
in matlab and ns-2 to evaluate the performance of our
algorithm with different probing methods and under various
network environments. Section VI provides the conclusion and
discusses future work. For more detailed derivations and more
simulation studies than what could be presented in this paper
the reader is referred to [13].

II. BACKGROUND

A. Problem Formulation
Our work focuses on the problem of estimating logical

tree network structures given end-to-end statistics measured
by probes sent from the root to the leaf nodes. We assume
there is no information provided by the internal devices of the
network. A directed logical tree T = (V,E) is defined by
two sets of objects: V as the set of nodes, and E as the set
of directed links. We let the root be defined as node 0, Vi

be the set of internal nodes and Vr be the set of leaf nodes.
The root is the only node having a single child node, while
all internal nodes have at least two child nodes. We adopt the
convention to number the links by their child end nodes. The
topology estimation problem is illustrated in Figure 1, where
the topology on the right is an example of a logical tree.

We also define the following useful notation. For a node
v ∈ V \ {0}, let par(v) be the parent node of v. Then c(v) =
{v′ ∈ V : par(v′) = v} denotes the set of children of v. The
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Fig. 1. Illustration of the topology estimation problem.

nodes in c(v) are sibling nodes because they share the same
parent. c(v) can be formulated as the union of two disjoint
sets: the set of leaf node children cr(v) = c(v) ∩ Vr and the
set of internal node children ci(v) = c(v) ∩ Vi. Let Vic =
{v ∈ Vi : ci(v) 6= φ} represent the set of internal nodes whose
children are not all leaf nodes. Let v1 ≺ v2 denote v1 being
a descendant of v2. We define d(v) = {v′ ∈ Vr : v′ ≺ v} be
the set of descendant leaf nodes of v.

Topology estimation can be formulated as hierarchical
clustering of the leaf nodes in which each group of nodes
may be recursively partitioned into subgroups [6], [7]. Each
leaf node itself is also considered as a cluster, called a trivial
cluster. Hierarchical clustering relies on a measure of pair-wise
information to partition the input objects [14]. The objects in
one (sub)cluster must be more similar to each other than to
those in the remaining (sub)clusters. Suppose the similarity
between a pair of leaf nodes (i, j) can be expressed by some
quantitative measure γi,j , called similarity metric. Assume that
γi,j = γj,i and γi,i = ∞. Given a partition of leaf nodes, we
define the intra-cluster similarities as those between two leaf
nodes in the same cluster, and the inter-cluster similarities as
those between two leaf nodes in two different clusters [6].

In general, if the clusters are good, the inter-cluster similar-
ities should be smaller than the intra-cluster ones. Define C

as a hierarchical clustering of the leaf nodes. We propose to
define a similarity clustering tree Ts(C) as follows. The root
node in Ts(C) corresponds to the top-level partition in C,
and is associated with the set of all inter-cluster similarities
for that partition. Each cluster containing two or more leaf
nodes corresponds to a child node of the root and is associated
with the set of all inter-subcluster similarities. This process
is repeated recursively for all the partitions having non-trival
clusters. The set of similarities associated with a node in
Ts(C) is called a similarity set. A similarity set is called trivial
if all the inter-cluster similarities in the set are between two
trivial clusters, otherwise it is non-trivial. All the γi,j’s in the
same set are assumed to be equal, and they always have greater
values than those associated with the parent node in Ts(C).
Figure 2 shows hierarchical clustering C for the leaf nodes in
Figure 1 and the similarity clustering tree Ts(C). It is easy to
verify that Ts(C) is a bijective mapping from C to a tree
graph, which means topology estimation is also equivalent
to hierarchical grouping of the pair-wise similarities. This
property will be the key to the development of our algorithm.

In topology estimation, the concept of Metric-Induced Net-
work Topology (MINT) introduced by Bestavros et al. [10]
provides a framework for defining the similarity metrics.
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Fig. 2. The hierarchical clustering C of the leaf nodes in Figure 1 (left) and
the corresponding similarity clustering tree Ts(C) (right).
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Fig. 3. An example for (a) sandwich probes and (b) packet pair probes. The
probe tree t3,5 is defined by the routes of the probe packets, which consists
of links 3, 5, 6, 8, and 9.

Under the MINT framework a metric is defined which is
used to capture the similarity between all measurement pairs,
e.g., covariance between measured delays. Any pair of leaf
nodes that are connected to the source (root) through common
links will have approximately equal similarity according to
the metric. Different network topologies will usually generate
different clusters of leaf pairs having almost identical similar-
ities. The metric thus induces a virtual network topology that
is associated with the actual topology. Note that each node in
the similarity clustering tree corresponds to a unique internal
node in the topology. This internal node is the nearest common
ancestor shared by each pair of the leaf nodes in the similarity
set. This implies the following connection between the MINT
and the similarities. Define pi,j as the directed path from node
i to j for j ≺ i. To simplify the notation we let pi = p0,i for
i ∈ V \ {0}. Let a(i, j) be the nearest common ancestor of
leaf node i and j. Then each pa(i,j) is uniquely mapped to
a similarity set in Ts(C) which includes γi,j . Hence we can
define γi,j as the metric function for pa(i,j) [5].

B. End-to-end Unicast Probing Schemes
In this section we discuss three possible schemes of unicast

probing and induced similarity metrics that can be used for
topology discovery. We assume the network topology and the
traffic routing remain unchanged during the entire probing ses-
sion. In our modeling we also assume the following statistical
properties on the network environment: (A1) Spatial Indepen-
dence The packet delays over different links are independent;
(A2) Temporal Independence and Stationarity The packet
delays over a link are identically and independently distributed
(i.i.d.). We also define the binary logical tree formed by the
union of path pi and pj , i, j ∈ Vr, as a probe tree and denote

it by ti,j . Note that pa(i,j) is the intersection of pi and pj , and
is called the shared path of ti,j .

Sandwich probes were invented by Castro et al. in [5] for the
similar purpose of topology estimation. Each probe contains
three time-stamped packets: two small packets and one big
packet sandwiched between the two small ones. The small
packets are sent to one of the two leaf nodes, while the large
packet is sent to the other (see Figure 3(a)). The queueing
delay of the second small packet caused by the large packet
can be considered as a metric on the shared path.

A packet pair probe consists of two closely-spaced small
packets. Both packets are sent from the root node but routed
to two different leaf nodes (see Figure 3(b)). We need an
additional assumption for packet pair probes: (A3) Delay
Consistency The queueing delays of the packet pair are
identical with probability 1 when they travel along the shared
path. The first type of metric that can be retrieved from the
packet pairs is delay variance [10], [15]. The independence
assumption (A1) implies the (queueing) delay over the shared
path has a variance equal the end-to-end delay covariance of
the two packets. For each probe tree we need Ncov end-to-
end delay measurements to obtain one sample of the delay
variance over the share path. The second type of metric can
be computed from the packet pair probes is packet loss rate.
Here we extend assumption (A1)-(A3) by interpreting packet
losses as infinite delays. Similar to the delay variance metric,
the packet loss rate on the shared path can be estimated by
end-to-end loss rates [2], and one needs Nloss packet pairs to
compute a single metric sample.

Theoretically, the sandwich probes are expected to have
the best performance in a lightly-loaded network environment
because the queueing delay is mainly caused by the large
middle packet [8]. The best situation for packet pair probes
with delay variance metrics is a moderately-loaded network
because the background traffic produces sufficient variation
on packet queueing delays. Lastly, one can expect packet loss
rates provide the most sufficient information to identify the
topology for highly congested networks. Similar comparisons
showing how different types of metrics perform with different
traffic load in multicast networks can be found in [16].

III. HIERARCHICAL TOPOLOGY LIKELIHOOD USING
FINITE MIXTURE MODELS

A. Finite Mixture Model for Similarity Estimation
To establish a simple and unified framework for specifying

metrics based on either packet delay or loss, we adopt the fol-
lowing strategy. Firstly observe that the metric samples γ̂

(i,j)
n

estimated from data along probe tree ti,j are i.i.d according to
(A1) and (A2). If we average every Nnorm samples γ̂

(i,j)
n , the

result will be approximately Gaussian distributed when Nnorm

is large, according to the Central Limit Theorem (C.L.T.).
We call the averaged samples normalized similarity samples,
denoted by γ̄

(i,j)
n . γ̄

(i,j)
n are also i.i.d. for all n.

Secondly, we find if a(i, j) = a(k, l) = v, then γ̄
(i,j)
n and

γ̄
(k,l)
n have the same mean µv = γi,j . As the variances of

γ̄
(i,j)
n and γ̄

(k,l)
n go to 0 linearly as Nnorm → ∞, it is easy to

show that γ̄
(i,j)
n → γi,j , γ̄

(k,l)
n → γi,j , and |γ̄(i,j)

n − γ̄
(k,l)
n | → 0
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in probability (hence in distribution) as Nnorm → ∞. Since√
Nnormγ̄

(i,j)
n and

√
Nnormγ̄

(k,l)
n both converges to Gaussian

when Nnorm → ∞, we make the following approximation
assumption: (A4) Consistency of Similarity Distributions
Let γ̄(i,j) be the average of Nnorm i.i.d. metric samples γ̂(i,j).
As Nnorm → ∞, γ̄(i,j) and γ̄(k,l) are approximately equal in
(Gaussian) distribution if a(i, j) = a(k, l), for i, j, k, l ∈ Vr

and i 6= j, k 6= l.
The magnitude of the variance difference between

γ̂
(i,j)
n and γ̂

(k,l)
n affects the minimum value of

Nnorm to be used. As
∣

∣V ar(γ̄(i,j)) − V ar(γ̄(k,l))
∣

∣ =
∣

∣

∣
V ar(γ̂

(i,j)
n ) − V ar(γ̂

(k,l)
n )

∣

∣

∣
/Nnorm, Nnorm should increase

linearly with
∣

∣

∣
V ar(γ̂

(i,j)
n ) − V ar(γ̂

(k,l)
n )

∣

∣

∣
in order to keep

the approximation valid. According to our simulations (see
Section V), a typical minimum value for Nnorm is around
20 ∼ 25 to achieve accurate topology estimates.

Let the set of normalized similarity samples for γi,j be
Γi,j = {γ̄(i,j)

n }n, and let Γ = {Γi,j}(i,j). We define Ni,j =
|Γi,j | and N =

∑

i<j Ni,j . When v is an internal node we
denote T (v) = {ti,j : a(i, j) = v, i < j, i, j ∈ Vr} as the set
of probe trees whose branches split v and let NT (v) = |T (v)|.
Also let NT =

(|Vr |
2

)

be the total number of probe trees in
tree T . Suppose the set of internal nodes Vi is known and
the cardinality |T (v)| is given for each v ∈ Vi. A reasonable
prior distribution of a(i, j) is α(v) = P (a(i, j) = v) = NT (v)

NT

for v ∈ Vi. Given f(Γi,j |a(i, j) = v) = φ(Γi,j ; θv) where
φ denotes the Gaussian pdf, this induces a finite mixture
model f(Γi,j) =

∑

v∈Vi
α(v)φ(Γi,j ; θv) (see, e.g., [17]).

A finite mixture model f(x) is generally expressed as the
convex combination of probability density functions: f(x) =
∑k

m=1 αmhm(x), where 0 ≤ αm ≤ 1,
∑k

m=1 αm = 1,
and hm is an arbitrary pdf for m = 1, . . . , k. The αm’s are
called the mixing probabilities, and the hm’s are the mixture
components. k is the number of mixture components in the
model, often referred as the model order of f(x). If the
hm’s are all Gaussian (with different parameters) then f(x)
is a Gaussian mixture. Given the mixture models for the
similarities Γi,j the distribution of Γ becomes

fFM (Γ) =
∏

i,j∈Vr

i<j

∑

v∈Vi

α(v)φ(Γi,j ; θv). (1)

Note that the model order in (1) equals the number of the
internal nodes of the tree. Each mixture component φ(·; θv)
corresponds to a unique internal node v and Γi,j is contributed
by φ(·; θv) if a(i, j) = v. The key difference between the
models in [6] and (1) is that in fFM (Γ) the common parent
node a(i, j) is distributed according to some discrete prior
instead of being a deterministic value. This relaxation leaves
the prior, along with other parameters in the model, to be
determined, e.g., by unsupervised estimation of the mixture
model. It can be achieved using the expectation-maximization
(EM) algorithm [18], [19]. To discover the topology, the
similarity sets in Ts(C) are determined by associating each
a(i, j) with the component that contributes Γi,j .

B. The MML Penalized Likelihood for The Mixture Model
Likelihood-based estimation of the parameter Θ in the

mixture model

fFM (Γ;Θ) =
∏

i,j∈Vr

i<j

k
∑

m=1

αmφ(Γi,j ; θm), (2)

for Θ = (k, α1, . . . , αk, θ1, . . . , θk) falls in the category of
missing data problems. To avoid the complication of optimiz-
ing the αm’s over discrete values we assume α = (α1, ..., αk)
is continuously distributed over the region 0 ≤ αm ≤ 1,
∑k

m=1 αm = 1. For a given model order k (k also denotes
the number of internal nodes) the unobserved data in our case
is {a(i, j)}, which indicates the contributing component for
each Γi,j . Define the unobserved indicator function Z

(i,j)
m for

m = 1, . . . , k by Z
(i,j)
m = 1 if Γi,j is contributed by the mth

component, and Z
(i,j)
m = 0 otherwise. Along with the observed

data Γ, the set {Γ, {Z(i,j)
m }} is called the complete data. The

maximum likelihood (ML) estimate of Θ with a given k can
be obtained by using the EM algorithm, which generates a
sequence of estimates with nondecreasing likelihoods [18],
[19].

However, when k is unknown this becomes a model se-
lection problem and the ML criterion can cause an overfitting
problem in which a higher model order k generally results in a
higher likelihood. A strategy to balance the model complexity
and the goodness of data fitting is to add model order penalties
to the likelihood [20]. We adopt a criterion called Minimum
Message Length (MML) [20] to derive the penalty function.
MML has been widely used in unsupervised learning of
mixture models [9], [18], [19]. The incomplete data penalized
log-likelihood is expressed as [18]

L̃(Y;Θ)
def
= log f(Θ) + log f(Y|Θ) −

1

2
log |I(Θ)| − c

2
(1 + log κc) (3)

for observed data Y and parameter set Θ, where I(Θ) is the
Fisher information matrix (FIM) associated with Y, |·| denotes
the determinant operator, c is the dimension of Θ, and κc is the
so-called optimal quantizing lattice constant for <c, meaning
the multi-dimensional parameters are assumed to be quantized
using optimal quantizing lattices [19], [20].

For a given model order k our choice for the prior dis-
tributions of the parameters follows the least informative
priors in [19]. The mixing probabilities in α have a uni-
form prior f(α) = (k − 1)! for 0 ≤ αm ≤ 1, ∀m =
1, . . . , k, and

∑k

m=1 αm = 1. For fFM being a Gaussian
mixture, θm = (µm, σ2

m) for m = 1, . . . , k. The prior for
σm is uniform between 0 and σp, where σp is the standard
deviation of the entire population Γ. So we have f(σm) = 1

σp

for 0 ≤ σm ≤ σp. We also take a uniform prior for µm

distributed within one standard deviation σp of µp, where µp

is the mean of the population Γ. Therefore f(µm) = 1
2σp

, for
µp − σp ≤ µm ≤ µp + σp. The prior for the model order
k is assumed uniform between two pre-determined bounds
kmin and kmax. With the assumption that the parameters are
independent, we have f(Θ) = (k−1)!

2kσ2k
p

.
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In general it is difficult to derive a closed form for the
FIM of finite mixture models with more than one component.
The authors of [19] suggested replacing the determinant of
the FIM by the product of the determinant of the FIM for
each component times the FIM determinant for the mixing
probabilities. Hence |IFM (Θ)| ≈ |I0(α)| × ∏k

m=1 |Im(θm)|,
where I0(α) is the FIM for α and Im(θm) is the FIM for the
mth component with parameter θm. Im(θm) can be expressed
as Im(θm) =

∑

i,j∈Vr ,i<j I
(i,j)
m (θm), where I

(i,j)
m (θm) is

the FIM associated with Γi,j for the mth component, i.e.,

I
(i,j)
m (θm) =

[

αmNi,j

σ2
m

0

0
2αmNi,j

σ2
m

]

. Therefore we have

|Im(θm)| =
2α2

mN2

σ4
m

.
To determine the FIM for α one can view the α as being

the parameters of a multinomial distribution which selects NT

a(i, j)’s from k internal nodes with the probability of choosing
the mth internal node being αm, where NT is the total number
of probe trees. Hence |I0(α)| = NT

Q

k
m=1

αm
. As ordering of

the components is irrelevant, the factorial term log(k!) can be
removed from the MML expression (3). We also approximate
κc by the one-dimensional constant κ1 = 1

12 as in [19], [20].
Substituting the terms above into (3) we have

Lp(Γ;Θ) = log fFM (Γ;Θ) + log
(k − 1)!

2kσ2k
p

+ log(k!)

−1

2
log NT − k

(

log
√

2 + log N
)

(4)

−1

2

k
∑

m=1

log αm +

k
∑

m=1

log σ2
m − 3k

2
(1 − log 12).

One can use the EM algorithm to maximize (4) over Θ [8],
[19].

C. The Hierarchical Topology Likelihood
Eqn. (4) is difficult to use directly for topology estimation

due to identifiability problems. Recall that each internal node
in the topology corresponds to a unique component in the
finite mixture model. Consider the example in Figure 1 once
again. If γ1,2 = γ5,6, the estimates γ̄

(1,2)
n and γ̄

(5,6)
n become

indistinguishable and the two mixture components erroneously
merge to a single one. To overcome this problem we propose
a hierarchical definition of the topology likelihood which re-
cursively evaluates each partition likelihood and hierarchically
clusters the leaf node pairs.

Consider a group of leaf nodes G. Let γ(G) = {γi,j : i <
j, i, j ∈ G} be the set of pair-wise similarity metrics for G,
and Γ(G) = {Γi,j : i < j, i, j ∈ G} be the normalized
samples of γ(G). Let K = {K1, . . . , KD} be a partition
of G where Kd, d = 1, . . . , D are disjoint subsets of G.
Without loss of generality, let K1, . . . , KD′ be the clusters
containing two or more leaf nodes, and KD′+1, . . . , KD be
single-node clusters. According to the monotonicity property
the inter-cluster γi,j’s share the smallest value in γ(G). Hence
the set of all inter-cluster Γi,j ’s, denoted by Γ0(K), obey
a Gaussian distribution which has the smallest mean over
Γ(G). This means for the finite mixture model of Γ(G) the
component with the smallest mean contributes Γ0(K). We call

this component the inter-cluster component of fFM (Γ(G))
and let Θ0(K) denote its parameter set. Let Kl be a cluster
with two or more leaf nodes. The set of intra-cluster Γi,j’s in
Kl, denoted by Γl(K), also follows a finite mixture model. Let
Θl(K) be the mixture parameter set for fFM (Γl(K)). If all
the subclusters in Kl are trivial, fFM (Γl(K)) degenerates to
a single component density function. We define the penalized
partition likelihood as:

Lk(Γ(G);K,Θ(K))
def
=

Lp(Γ0(K);Θ0(K)) +

D′

∑

l=1

Lp(Γl(K);Θl(K)), (5)

where Θ(K) = (Θ0(K), . . . ,ΘD′(K)). This motivates the
following hierarchical topology likelihood for a logical tree
T = (V,E):

LT (Γ; T,Θ(T )) =
∑

v∈Vic

Lk (Γ(d(v));K(v),

Θ(K(v)) | {K(v′) : v ≺ v′, v′ ∈ Vic}) , (6)

where K(v) = {d(v′) : v′ ∈ ci(v)} ∪ cr(v) denotes the parti-
tion specified by the child nodes of v. The evaluation of LT

mimics exactly the construction of the similarity clustering
tree. Each v ∈ Vic corresponding to a unique node in Ts(C)
that is associated with a non-trivial similarity set.

IV. TOPOLOGY ESTIMATION ALGORITHM

A. Hierarchical Topology Estimation Algorithm
We propose a greedy algorithm to estimate the logical tree

topology using a top-down approach that partitions the leaf
nodes recursively. First we use fFM (Γ) to find the most coarse
partition specified by the sibling nodes in c(v) for v being the
root node’s child, then we determine if there exists any finer
subpartition within each cluster. This process is repeated until
no finer partitions are found. Figure 4(a) shows an example
which illustrates how the partition of nodes 6 ∼ 11 identifies
two internal nodes. This iterative procedure is greedy because
in each iteration it focuses on finding the optimal partition
within the current cluster of the leaf nodes without considering
other clusters or any possible subpartitions in the subsequent
iterations.

The key to the hierarchical topology estimation algorithm
is to find the partition of the leaf nodes. Our algorithm
is motivated by the following observation. First we label
the component having the smallest mean in fFM (Γ(G)) by
component 1 for some subset of leaf nodes G ⊆ Vr. Assume
there is no estimation error in the mixture model. In this ideal
case component 1 is the inter-cluster component supported
exactly by all the inter-cluster Γi,j ’s. Then the conditional
mean ω

(i,j)
1 = E

[

Z
(i,j)
1 |Γ(G); Θ̂

]

≈ 1 if (i, j) is an inter-
cluster pair and ω

(i,j)
1 ≈ 0 otherwise, because ω

(i,j)
1 can be

viewed as a conditional mean estimator (CME) of the indicator
function Z

(i,j)
1 . Consider an undirected complete graph H

whose vertices are the leaf nodes in G such that there exists
an edge between every pair of the vertices. If we specify a
weight $i,j = weight(ei,j) = 1 − ω

(i,j)
1 to every edge ei,j ,
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one can easily find that a vertex in H strongly connects only
to its peers in the same cluster. This implies that the partition
of the leaf nodes can be estimated based on the edge weights
of H . The partition in Figure 4(a) estimated using graph edge
weights is depicted in Figure 4(b).

Basically any graph-based clustering algorithm for weighted
graphs could work for our purpose. Here we describe a simple
algorithm proposed in [21], the Highly Connected Subgraph
(HCS) algorithm. Let H = (VH ,EH) be a graph both
undirected and weighted, where VH is the set of vertices and
EH is the set of edges. Every edge e in EH has a nonnegative
real weight $(e). A cut in a graph is defined as a set of
edges whose removal results in a disconnected graph. The
total weight of the edges in a cut S is called the cut weight
of S, denoted by |S|. A minimum cut (mincut) is a cut with
the minimum weight. The weight of a mincut is called the
connectivity of the graph, denoted by conn(H).

The key definition for HCS is the following: A graph H with
n > 1 vertices is called highly connected if conn(H) > n

2 .
In our case a highly connected complete graph always has
an average weight of the edges greater than 1

2 [8]. The HCS
algorithm requires a subroutine MINCUT(H) which accepts
graph H as the input and returns (S, H ′, H̄ ′), where S is a
mincut of H that divides H into two disjoint subgraphs H ′ and
H̄ ′. The problem of finding a mincut for a connected graph
is one of the classical subjects in graph theory [23], [24].
The HCS algorithm recursively applies subroutine MINCUT
to partition the graph until all the connected subgraphs are
highly connected. The details can be found in [21].

In order to apply the HCS algorithm to our problem we
define a new indicator function as follows. Let A1 and A2

be two clusters in a partition of the leaf node set G ⊆
Vr. Suppose the finite mixture model estimate for Γ(G) is
fFM (Γ(G);Θ) which has k components. Let B ⊆ {1, . . . , k}
be a subset of the components. Define ΓA1,A2

= {Γi,j :
i ∈ A1, j ∈ A2} to be the set of i.i.d. normalized samples
for the inter-cluster similarities between A1 and A2. Let
fB(·) =

∑

m∈B
αmφ(·; θm) denote the composite component

formed by B. Then we define Z
(B,A1,A2)
i,j,n as an indicator

function of γ̄
(i,j)
n ∈ ΓA1,A2

, for n = 1, . . . , Ni,j , i ∈ A1,
j ∈ A2, such that Z

(B,A1,A2)
i,j,n = 1 if γ̄

(i,j)
n is contributed

by the composite component fB, and Z
(B,A1,A2)
i,j,n = 0 oth-

erwise. Then Z
(A1,A2)
B

= {Z(B,A1,A2)
i,j,n }i,j,n is i.i.d. with

mean E[Z
(B,A1,A2)
i,j,n ] = η

(A1,A2)
B

. According to the definitions
above, we define an edge (A1,A2) connecting two clusters
A1, A2 with weight defined by

$
(A1,A2)
B

= 1 − 1

NA1,A2

×

∑

i∈A1

∑

j∈A2

Ni,j
∑

n=1

E
[

Z
(B,A1,A2)
i,j,n | γ̄(i,j)

n ;Θ
]

, (7)

where NA1,A2
=

∑

i∈A1

∑

j∈A2
Ni,j .

B. Pre-cluster Algorithm
The MINCUT procedure in the HCS algorithm can be

computationally demanding when there are many vertices in

1

6 72 3 4 5

8 9 10 11

(a)

6

11

7

8

9

10

(b)

Fig. 4. Illustration of the hierarchical topology estimation. (a) The partition
of nodes 6 ∼ 11 identifies the two shaded internal nodes. (b) Graph-based
partition of nodes 6 ∼ 11. The solid edges have weights ≈ 1, and the dotted
edges have weights ≈ 0.

the complete graph [24]. One way to reduce the complexity
is to pre-cluster the vertices in H into groups which are
obviously in the same cluster. For a set of leaf nodes G ⊆ Vr

and its corresponding finite mixture estimate fFM (Γ(G);Θ),
we assume the inter-cluster component is identified as a
composite component B ⊆ {1, . . . , k}, where k is the mixture
model order. If there is no estimation error, B includes only
the component having the smallest mean, called component
1 for simplicity. A simple way to determine if a leaf node
j resides in a different cluster from i is to check whether
the edge weight between them is less than 1

2 . Define the
set of foreign leaf nodes for node i with respect to B as
FB(i) =

{

j : $
({i},{j})
B

< 1
2 , j ∈ G\{i}

}

, ∀i ∈ G. FB(i)

contains all possible nodes which are not in the same cluster
as i. Then we group nodes i1 and i2 in the same cluster if and
only if FB(i1) = FB(i2).

When there exists significant error in the finite mixture
model estimates, it is possible that component 1 may not
be correctly estimated as the inter-cluster component. Two
possible situations may occur. First, a mixture model estimate
with too fine resolution could decompose the inter-cluster
component into several sub-components. Second, an estimate
with too coarse resolution could merge the inter-cluster com-
ponent with the intra-cluster ones. This would lead to an
unsufficiently rich set of components to accurately reconstruct
the topology resulting in an overly fine clustering (too many
clusters) of the leaf nodes. These two situations are likely to
occur especially when the number of samples are limited.

C. Progressive Search Algorithm
We deal with the first situation by a progressive search

method. Let the estimated components in fFM (Γ(G);Θ)
be sorted by ascending order of their means, i.e., com-
ponent 1 has the smallest mean and component k has
the largest. The search starts with treating B1 = {1}
as the inter-cluster component and estimating a pre-
clustering Kp(B1). Then expand the component subset
to B2 = {1, 2} and estimate another pre-clustering
Kp(B2). Repeat this procedure until Bk = {1, . . . , k}
which includes all the components in fFM (Γ(G);Θ).
Then we select the pre-clusterings with the least num-
ber of clusters as the pre-clustering estimates, i.e., K̂p =
{Kp(Bi) : |Kp(Bi)| ≤ |Kp(Bj)| , ∀i, j ∈ {1, . . . , k},
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TABLE I
HIERARCHICAL TOPOLOGY ESTIMATION (HTE) ALGORITHM.

Input: {0}, Vr , Γ ; Output: T = (V, E)

Initialize T with only one internal node
Finish ← false, I ← the set of internal nodes
while (∼Finish) do {

for all i ∈ I do {
Estimate fFM (Γ(d(i)); Θ̂i)

K̂p ← Pre-clustering/progressive search algorithm.
K̂, B̂← HCS(H(Kp))

if (|K̂| > 1) do {K̂← Post-merge algorithm} }
I← the set of all new found internal nodes
if I = φ do {Finish ← true}
else {update T by inserting the new internal nodes} }

i 6= j}.
A complete graph can be drawn from each pre-clustering

estimate. Now the vertices may represent clusters of leaf
nodes. Let H(Kp(Bi)) be the complete graph whose vertices
represent the clusters in Kp(Bi) and edge weights are com-
puted using Bi. Then the graphs H(Kp(Bi)) for Kp(Bi) ∈
K̂p are used as inputs of the HCS algorithm. The output with
the highest Lk is adopted as the HCS clustering estimate,
denoted by K̂. It is possible that multiple Bi’s derive the
same K̂. We specify the smallest set as B̂ and use it in the
following post-merge algorithm.

D. Post-merge Algorithm
To address the second situation described at the end of

Section IV-B we propose a post-merge algorithm to deal with
overly fine clusters. Given the optimal HCS clustering K̂

we form the complete graph H(K̂) using B̂ as the inter-
cluster component set. Let vA denote the vertex for cluster
A. For each cluster A we define its closest cluster c(A) such
that vc(A) has the strongest connection to vA, i.e., c(A) =

argmax
A′∈K̂\A $

(A,A′)

B̂
. Then for each A ∈ K̂ we get a new

partition by merging A and c(A). If the highest likelihood
obtained by merging a pair of clusters is greater than that
of K̂, we update K̂ by the corresponding new partition. This
process is repeated until no improvement is made by any pair-
wise merge.

We would like to point out that all the pre-clustering,
progressive search and post-merge algorithms are heuristic.
But unlike the thresholds used in [2], [3] they are based on
the probability model and likelihood function. Furthermore,
our algorithms are all deterministic instead of Monte-Carlo,
so the convergence problem of simulated methods can be
avoided. The complete hierarchical topology estimation (HTE)
algorithm is summarized in Table I.

E. Asymptotic Performance of The HTE Algorithm
We discuss the asymptotic performance of our algorithm as

the estimated similarity samples tend to the true similarities.
Under the assumption of i.i.d. {γ̂(i,j)

n }, one scenario to in-
crease the accuracy of the normalized samples is to collect

more measurements. As Nnorm → ∞ we have γ̄(i,j) →
γi,j in probability, according to the Strong Law of Large
Numbers (SLLN). Let γmin = min(i,j) γi,j be the inter-cluster
similarity. As Nnorm → ∞ the indicator function Z

(i,j)
1 also

converges in probability to a random variable whose value
is 1 if Γi,j = γmin, and is 0 otherwise. Hence ω

(i,j)
1 =

E
[

Z
(i,j)
1 |Γi,j

]

→ 1 in probability if leaf nodes i and j are in
different clusters, otherwise ω

(i,j)
1 → 0. This also indicates the

complete graph converges in probability to a graph in which
vertices i and j are connected with a unity edge weight if and
only if leaf nodes i and j are in the same cluster, otherwise
they are not connected at all (edge weight is 0). Furthermore,
in this limiting graph a subgraph formed by leaf nodes in the
same cluster is always highly connected. Then the partition
output by the HCS algorithm will converge to the correct
one in probability without applying the progressive search and
the post-merge algorithms. Finally all the above implies the
topology estimated by the HTE algorithm converges to the
correct topology in probability as Nnorm → ∞.

V. COMPUTER SIMULATIONS

A. MATLAB Model Simulation
First we simulated a small network with the simple non-

binary virtual topology shown in Figure 5. The simulations
were implemented in matlab and for each pair of leaf nodes
we generated 200 similarity samples as follows. Given a pair
of leaf nodes (i, j), a similarity sample γ̂

(i,j)
n was obtained

by the sum of randomly generated metric samples over all
the links in the path pa(i,j). Each metric sample for a link
was generated according to a Gaussian distribution with a
randomly generated mean γl and a standard deviation σl

proportional to the mean. Note that the true link metric was
specified by γl. γl was generated according to a uniform
distribution over a region centered at η with width equal to
β. The standard deviation σl was obtained by multiplying γl

with a positive factor ρ.
We implemented the proposed HTE algorithm with an

averaging factor Nnorm = 20 to compute the normalized
similarity samples, which means for each probe tree there
were 10 samples of γ̄(i,j). We also implemented two other
topology discovery algorithms: the LBT algorithm [5], [6] and
the DBT algorithm [2], [3]. The latter was originally designed
for multicast networks, but can also be directly applied to
unicast networks. Both algorithms estimated a binary tree
given the similarity samples. A second stage was applied to
generalize the binary tree by pruning the links whose metric
estimates were smaller than a threshold δ. Defining µ̂link and
σ̂link be the empirical mean and standard deviation of the
estimated link metrics from the DBT or LBT over all the links,
respectively, we set δ to be µ̂link − σ̂link .

The performance of the algorithms was evaluated in terms
of the tree edit distance [11] between the estimated tree and
the true topology. The tree edit distance is analogous to the
edit distance between two strings. A mapping from logical tree
T1 to T2 is defined as a set of basic editing operations which
allows to transform T1 to T2. The basic editing operations are:
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Fig. 5. The logical tree topology for the network used in computer
simulations.

Replacement – relabel a node; Insertion – insert a node; and
Deletion – delete a non-root node. If a mapping includes R
replacements, I insertions, and D deletions, then the cost of
the mapping is given by rR+iI+dD, where r is the cost of a
replacement, i is the cost of an insertion, and d is the cost of a
deletion. The set of costs is called unit cost if r = i = d = 1,
which is adopted here. The tree edit distance between T1 and
T2 is then defined as the cost of a minimum-cost mapping
between them.

In the model experiment we tested the proposed HTE
algorithm, along with the DBT and LBT. We fixed the range
of the uniform distribution for each link metric to the region
[2, 6]. The scale factor ρ for sample standard deviation varied
from 1 to 10 for link 16 and 17, and was fixed at 1√

2
for the

others. The result is illustrated in Figure 6. Each data point
was averaged from the outcomes of 1000 independent simula-
tions. As the accuracy of topology estimation decreased with
increasing ρ, HTE exhibited a minor loss in its performance
while DBT and LBT both suffered from a serious degradation
in their estimation capability.

Although all the three algorithms are greedy in the sense that
they depend on local information to construct the topology, the
DBT and LBT are both agglomerative algorithms which repeat
clustering the two most similar leaf nodes in each iteration
[2], [6]. This indicates they depend on a small region of the
parameter space to make local decisions on the topology. On
the other hand, the HTE algorithm finds a local optimum over
a larger region of the parameter space which specifies the
partition of a (sub)set of the leaf nodes. Therefore the HTE
estimates are generally closer to the global optimal topology
than the other two algorithms.

B. NS Simulation
For a more practical environment we used ns-2 to simulate

the network in Figure 5. Two types of links were used: the
links attached to the leaf nodes were assigned with bandwidth
1Mbps and latency 1ms and the others were assigned with
bandwidth 2Mbps and latency 2ms. Each link was modelled
by a FIFO queue with buffer size being 50 packets long.
Cross traffic was also generated by ns-2 to simulate various
network conditions. The cross traffic comprises 10% UDP
streams and 90% TCP flows in terms of the bandwith utiliza-
tion. The UDP streams had constant bit rates but a random
noise was added to the scheduled packet departure time. The
TCP flows were bursty processes with Pareto On-Off models.
We tested the three probing schemes described in Section II:
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Fig. 6. Average tree edit distance (a) and percentage of correctly identified
trees (b) versus the proportional factor ρ for link 16 and 17 in the Matlab
simulation.

queueing delay using sandwich probes, delay variance using
packet pairs, and loss rate also using packet pairs. The packet
size in a packet pair probe was set to 10 bytes. The sizes
of the large and the small packets in a sandwich probe were
500 bytes and 10 bytes respectively. The probes were sent by
UDP streams with Poisson departure. The departure interval
had a mean equal to 8 times the transmission delay on the
outgoing link of the root node. The destination was randomly
selected for each probe. The parameters specifying the number
of probes used in ns simulation can be found in Table II,
where Ncov = Nloss = N1 for packet pair probes, and N2 is
the total number of normalized similarity samples.

We compared the three probing schemes under three dif-
ferent network conditions. Each was averaged over 30 in-
dependent simulations using the HTE algorithm. Figure 7
shows the performance in a lightly-loaded, moderately-loaded,
and heavily-loaded network respectively. The horizontal axes
denote the number N1Nnorm of similarity estimates used in
each simulation. The notation (a/b/c) in the titles denotes
the average condition for the whole network, where a is the
average packet delay, b is the packet delay variance, and c
is the packet drop rate over all the links. The legends for
queueing delay, delay variance, and loss rate similarity metrics
were marked by ’Sandwich’, ’Cov’, and ’Loss’, respectively.

As predicted in Section II the sandwich probes provided the
most reliable topology estimate in a lightly-loaded network.
We found some of the links had very small packet delay
variances and hence could not be identified using delay
variance metrics. A similar situation occured for loss rate
similarities since packet drop is rare. In a moderately-loaded
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TABLE II
THE PARAMETERS SPECIFYING THE NUMBER OF PROBES USED IN ns SIMULATION.

N1 5 7 9 11 13 15 15 15 15 15 15 15 15 15 15 15 25 25 25 25
Nnorm 5 5 5 5 5 5 7 9 11 13 15 15 15 15 15 15 10 15 20 25

N2 10 10 10 10 10 10 10 10 10 10 10 12 14 16 18 20 20 20 20 20

N1 25 25 25 25 25
Nnorm 30 35 40 45 50

N2 20 20 20 20 20

network each link queue provided enough delay variation to
perform topology estimation using packet pair delay variances.
Figure 7(b) shows the packet pair delay variances achieved
the best performance. The error distance still converged to
zero for sandwich probes, but the convergence rate was slower
due to the noise introduced by background traffic. However,
the packet drop rates for some links were still too low for
loss rate estimates to converge. For a heavily-loaded network,
each link had a substantial packet drop probability which made
the loss rate the most reliable similarity metric. Although the
link delay variances were large, the performance of the delay
variance suffered since the number of successfully received
probes was significantly reduced. The sandwich probes had the
worst performance due to both high packet drop rate and high
delay variance. Note that some data points in the ’Sandwich’
and ’Cov’ curves were missing because in those cases most
of the probes were lost and there were not sufficient samples
to estimate the topology.

The tree edit distance provides a way to describe the
distribution of the topology estimates. To illustrate, we sim-
ulated a larger network in ns-2, whose topology is shown
in Figure 8(a). The bandwidth and latency for the internal
links which are not attached to the leaf nodes were assigned
5Mbps and 5ms, respectively. The edge links at the leaf nodes
had bandwidth set to 1Mbps or 2Mbps, and latency set to
1ms or 2ms. Similar cross traffic as before was generated to
establish a light load condition. Here we used sandwich probes
to collect similarity estimates via delay differences. For each
probe tree 200 similarity estimates were collected and we set
Nnorm = 10 to obtain 20 normalized samples for the HTE
algorithm.

For a total of M independent simulations we defined the
median topology as the topology estimate obtained from the
median of the similarity samples over all the simulations. Then
the distribution of the topology estimates can be described
by the one-sided pmf of the tree edit distance between the
estimate and the median topology. We obtained a median
topology identical to the true network from 30 independent
simulations. We say that this topology estimate is median
unbiased. The topology estimate distribution is shown in
Figure 8(b) as the pmf of the edit distance to the median
topology.

Finally we would like to address the effect on the per-
formance of our model when the spatio and temporal inde-
pendence assumptions in (A1) and (A2) are violated in the
ns-2 simulations. Recall that link packet loss is considered
as infinite packet queueing delay over the link. The spatial
and temporal independence assumptions of delays were vi-

olated since ns-2 was configured to simulate bursty TCP
background flows that cross multiple links. Our experimental
results demonstrate that the proposed HTE algorithm is rela-
tively insensitive to such violations. Indeed, the proposed finite
mixture models for the normalized similarity samples are able
to accurately cluster end-to-end delay samples even though the
similarity estimates are computed under assumptions (A1) and
(A2).

VI. CONCLUSION AND FUTURE WORK

Estimation of the logical tree topology from end-to-end
unicast measurements of the network was investigated. We
formulated the problem as hierarchical clustering of the leaf
nodes based on pair-wise similarities. A new finite mix-
ture model was proposed for the similarity estimates and a
penalized likelihood using MML-type penalty was derived
for model selection. Topology estimation was achieved by
recursively finding the best partitions of the leaf nodes to
expose internal node structure. We derived from the finite
mixture estimate a complete graph whose vertices are the leaf
nodes. A simple clustering algorithm based on the graph edge
weights was then applied to partition the leaf nodes. We used
matlab and ns simulations to demonstrate the performance
of the proposed algorithm.

Future work could focus on the use of hybrid probing
schemes which consist of multiple types of probes. Our work
could also be extended to include multiple probing sources,
such as in [25]. Extensive real network experiments should
be implemented in the future to compare to real network
topologies.
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