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Abstract

Providers of high quality-of-service over telecommunication networks require accurate methods for re-
mote measurement of link-level performance. Recent research in network tomography has demonstrated
that it is possible to estimate internal link characteristics, e.g., link delays and packet losses, using unicast
probing schemes in which probes are exchanged between several pairs of sites in the network. In this paper
we present a new method for estimation of internal link delay distributions using the end-to-end packet de-
lay statistics gathered by such unicast probes. Our method is based on a variant of the penalized maximum
likelihood expectation-maximization (PML-EM) algorithm applied to an additive finite mixture model for
the link delay probability density functions. The mixture model incorporates a combination of discrete and
continuous components and we use a minimum message length (MML) penalty for selection of model order.
We present results ofmatlab andns-2 simulations to illustrate the promise of our network tomography
algorithm for light cross-traffic scenarios.

Keywords: network tomography, additive-convolutive mixture models, EM algorithm, MML penalties, signal
processing in networking.
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1 Introduction

Herein we address the problem of determining internal link-delay distributions from multiple end-to-end unicast

packet probes that are sent across the network from many different edge node pairs. This is a sub-problem of

network tomography [1, 2] which is concerned with reconstruction of unobserved states of a network from a

set of indirect measurements of these states. For example, end-to-end network tomography allows a few agents

at the edge of a network to gain important information on global network behavior without cooperation of

internal nodes. This is especially useful when link parameters are inaccessible or when direct measurement of

data traffic statistics are not supported by internal switches and routers [1, 2, 3, 4, 5]. The unicast tomography

methods we present in this paper are applicable to this situation and are designed to perform well when the

network is lightly loaded. While modification of our methods may also be applicable to wireless networks,

here we focus on the simpler case of wired networks, such as the Internet.

The causes of delays along a packet probe’s path through the network can be separated into the sum of two

types of delays: constant link transmission delays and time-varying link processing delays. Link transmission

delays are due to the propagation delays through the physical medium, e.g., a wire or optical fiber. Link

processing delays are due to a combination of router queueing, buffering and servicing delays that depend on

factors such as: the amount of cross-traffic at the router, the number of retransmits required over the link, and

the integrity of router equipment and associated software. While transmission delays usually remain constant

over a probing interval, processing delays are highly variable and are thus commonly modelled as random

variables. Thus it is generally impossible to recover the actual internal link delays that probes encounter along

their end-to-end path. However, the determination of the statistical distribution of the internal link delays from

multiple end-to-end delay measurements can be formulated as a statistical inverse problem whose solution

yields estimates of the internal delay distribution [2, 6]. These estimates can be used by an autonomous system

(AS), e.g. an Internet service provider (ISP), to evaluate its average quality of service (QoS) or to assess link

performance of other, perhaps competing, AS’s. When acquired over large portions of the network, link delay

estimates can also be used for detecting network anomalies such as imminent link failures or coordinated denial

of service (DoS) attacks.

The problem of empirically characterizing Internet link delay distributions has been looked at by several

groups, see for example [7, 8, 9, 10]. A common observation is that when the link is lightly loaded, such as

in the early morning, link delay scatterplots appear stationary. Furthermore, while much of the scatter appears

spread out over a continuum of delay values, a non-negligable proportion of the delays appear to concentrate

at one or more discrete values, see for example [10, Fig. 4]. This implies the existence of point masses in the
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time-averaged link delay distribution. The positions of these point masses vary according to factors such as:

length of packet; incoming and outgoing queue sizes of routers on the link; router configuration; deployment

of firewalls; and the physical distance between routers [10].

In this paper we propose to capture these empirically observed features by fitting hybrid continuous/discrete

finite mixture models to the link delay distributions. While our algorithms are easily generalizable to multiple

discrete point masses, for simplicity we focus here on the case where the discrete component is a single point

mass. Unlike purely continuous models the hybrid continuous/discrete model is identifiable and is justified

for the lightly loaded scenario. In this scenario there is a non-zero probability that a packet will encounter

an empty queue in which case the packet delay is non-random, being due to fixed propagation and processing

delays. While this is unlikely in a congested network, the model is valid for a number of common monitoring

situations such as service and performance verification and detection of onset congestion. Moreover, we would

like to point out that the delay point mass is implicit in canonical delay trees, used in discrete delay tomography,

for which there is a non-zero probability that a packet traverses each link without any delay (see, e.g., [6]).

Lo Prestiet. al [6] were the first to propose estimating internal delay distributions from end-to-end mea-

surements. These authors uniformly discretized the internal delay distributions and derived an algorithm based

on empirical histogram estimation. Their method uses multicast probes, which requires cooperation of the

network to run a multicast session such as RTP during the probing interval. To overcome this restriction,

Coates and Nowak [5] developed an internal delay histogram estimator based on an alternative unicast probing

scheme in which edge sites exchange a succession of closely spaced packet pairs. Their estimator is based

on a statistical inverse problem formulation and used an iterative maximum likelihood via expectation maxi-

mization (ML-EM) approach. In related work these authors also developed a sequential Monte-Carlo method

for tracking changes in non-stationary networks [11]. The principal restriction of the approaches [5, 6, 11] is

the requirement of discrete link delays. Overly coarse discretization, or binning, of the link delays leads to

excessive model approximation error and causes bias in derived estimates such as delay mean and variance.

At the opposite extreme, excessively fine discretization leads to high runtime complexity of these algorithms.

Furthermore, the determination of the appropriate number and size of the bins requires tight bounds on link

delay characteristics which are usually unknown such as maximum and minimum processing delay.

Several alternatives to the fixed and uniform binning scheme of Lo Prestiet. al [6] have been studied.

Duffield et. al considered a variable bin size model, where smaller bins are used to describe probability mass

concentrations for small delays [12]. Tseng, Coates, and Nowak [13] proposed a nonparametric algorithm

where the number of bins for internal link delays is adapted to the number of measurements. They use a
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wavelet-based penalized maximum likelihood estimator to smooth the estimates. A non-parameteric method

was proposed for unicast probing by Shih and Hero [14] in which the statistical inverse problem is formulated

in the cumulant generating function (CGF) domain. By sampling the CGF’s arising from the least squares

solution of the inverse problem, a set of continuous (un-binned) link delay density estimates can be obtained.

Herein we propose a new method for estimation of internal delay distributions from unicast end-to-end mea-

surements which is based on additive mixture models for the internal link delays. As the end-to-end delay

measurements sums the (assumed independent) internal link delays over the probe path, the densities of the

measurements are convolutive mixtures of these additive mixture models. This makes our estimation problem

more challenging than the usual standard mixture model estimation problem which has received much atten-

tion in both the statistical and engineering literature. Additional issues which we address are: 1) the additive

mixture model orders are unknown in practice; and 2) the internal link delay distributions are composed of

a combination of continuous and a discrete components. We handle the convolutive mixture complication by

adopting an iterative ML-EM formulation of the estimation problem using an enlarged complete data space. We

handle the problem of unknown model order by adapting the unsupervised minimum-message-length (MML)

approach used in Figueiredo and Jain [15]. Specifically, we add an information theoretic order selection penalty

to the log-likelihood to which a penalized ML-EM (PML-EM) algorithm is applied. We handle the presence

of both discrete and continuous link delay components by the following simple additive mixture model: the

delay density is a (unknown) convex combination of a point mass positioned at the (unknown) transmission

delay and a (unknown) number of Gaussian components with (unknown) means and variances. We adopted

Gaussian continuous components to simplify the implementation but heavy-tailed densities can also be easily

accommodated in our framework.

The outline of the paper is as follows. In Sec. 2 we give the main assumptions underlying our work. In Sec.

3 we review the continuous and discrete delay models for unicast network delay tomography and discuss model

identifiability. In Sec. 4 we introduce the hybrid mixture models for delays of the internal links and present

the ML-EM algorithm for estimating the parameters of these models from end-to-end delay measurements.

In Sec. 4.3 we present the PML-EM algorithm with MML penalty to control excessive order estimation of

the unpenalized ML-EM algorithm. In Sec. 5 we illustrate the performance of the ML-EM and PML-EM

algorithms on simulated data usingmatlab andns-2 [16] simulators.
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Figure 1: Two-leaf network.

2 Network Model and Main Assumptions

As in [5] we represent the network topology as a directed logical treeT = (V;E) whereV is the set of nodes,

e.g. routers and terminals, andE is the set of links. Let there be a total ofL links in the network and number

them from1 to L. The logical tree representation has a single root node, serving as a source, several internal

nodes having degree at least 2, and several leaf nodes, containing receivers. If there are a total ofR leaf nodes

then there areR possible paths on which the source can send packets to the receivers. The edge of the network

is the set of leaf nodes plus the root node. Each node in the tree has two or more child nodes, except the root

and leaf nodes. A network with three links is shown in Fig. 1 showing a single root node, a single internal

node, and two leaf nodes.

In a unicast probing session a leaf node is (randomly) selected by the source and a time stamped packet,

called a (unicast) probe, is sent to it. The leaf node records the time the packet is received. Subtracting this

number from the packet’s time stamp gives the end-to-end delay of the packet. End-to-end delays on the same

probe path are random variables due to the random ambient cross traffic through links along the path. Unicast

probing is repeated until the session is over or enough packets are received by each leaf node to perform the

next step: network delay tomography. The aim of network delay tomography is to identify the packet delay

distribution for each individual internal link from the end-to-end delays observed by the receivers. Network

tomography is possible since the end-to-end delay is a sum of the internal link delays encountered along the

probe path and all of theR paths cross at common links.

LetXl be the packet delay encountered by a probe at linkl, l = 1; : : : ; L, and letYi be the end-to-end packet

delay along thei-th path,i = 1; : : : ; R. We make the following independence and stationarity assumptions:

(A1) Spatial Independence: packet delays at different links are statistically independent, i.e.,Xi andXj are

independent fori 6= j. (A2) Temporal Independence and Stationarity: for a given link, the delays encountered
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by different packets at that link are statistically independent and identically distributed (i.i.d.). It is important

to point out that while (A1) and (A2) are normally not satisfied in practice (see, e.g., [17]), these are commonly

assumed in order to permit tractable analysis. An example where spatial independence (A1) is violated is

when there is interaction among different data flows along the same path. In (A2) temporal independence fails

when Internet traffic is bursty or the network has a long latency time which correlates different probe delays.

Stationarity fails when the unicast probing session is long relative to the stationarity time of the network.

However, experiments have shown that the performance of network tomography is remarkably insensitive to

violations of (A1) and (A2) [4, 5, 6, 11, 18].

3 Unicast Network Delay Tomography

3.1 Discrete Delay Model

In the widely adopted discrete link delay model [5, 6, 11] a universal bin sizeq is used to discretize link delays

Xl at each linkl = 1; : : : ; L. The time intervals(iq; (i + 1)q], i = 0; : : : ;D, are called the delay bins. HereD

is a positive integer andD =1 can be used to account for lost probe packets or large delays which are out of

range. Discretization produces the discretized delay valuei whenXl falls in thei-th bin. A probability mass

function (pmf), or histogram,Pl = fpl;d : d = 0; : : : ;Dg is then associated with the discretized delays over

link l, where the probabilitypl;d = P (Xl 2 (dq; (d + 1)q]) is an unknown to be estimated and
PD

d=0 pl;d = 1.

For a probe path containingj links, the discretized end-to-end packet delay varies over the range0; : : : ; j �D �q.

The identifiability of the link delay pmf’s from end-to-end delays is easily studied for the simple case of the

two-leaf tree network shown in Fig.1 when we discretize to only two delay bins (D = 1). We say that the link

pmf’s are not identifiable if the Fisher information matrix (FIM) for the unknown parameters, i.e. the pmf’s

P1; P2 andP3, is singular. This is a local measure of identifiability which is necessary, but not always sufficient

for global identifiability [19].

Let the true delay pmf’s for link 1 to 3 beP1 = fp1; 1 � p1g, P2 = fp2; 1 � p2g, andP3 = fp3; 1 � p3g,
respectively. Define the parameter vector� = [p1; p2; p3]

T . LetY1 = fY 1
1 ; : : : ; Y

n
1 g andY2 = fY 1

2 ; : : : ; Y
n
2 g

be the sets of end-to-end packet delays computed at receivers 1 and 2, respectively, after reception ofn unicast

probes. The joint pmfP (Y1;Y2; �) can be simply expressed as the product of two binomial pmfs. The FIM

A is obtained from the expectation of the Hessian matrix whose elements are the second order partials of the

log-likelihood function:A = �E[r2
� logP (Y1;Y2; �)]. The FIM is easily computed and is given below in
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(1), whereQ1 = p1(1� p2) + p2(1� p1), andQ2 = p1(1� p3) + p3(1� p1).

A(p1; p2; p3) =

n

0
BB@

p2+p3
p1

+ 2�p2�p3
1�p1

+ (1�2p2)2

Q1
+ (1�2p3)2

Q2

1
Q1

1
Q2

1
Q1

p1
p2

+ 1�p1
1�p2

+ (1�2p1)2

Q1
0

1
Q2

0 p1
p3

+ 1�p1
1�p3

+ (1�2p1)2

Q2

1
CCA : (1)

This is non-singular except whenp1 = p2 = p3.

The discrete delay model has two main drawbacks. First, the proper bin size needs to be carefully selected.

Second, a universal bin size may not be suitable due to large variation of packet delay ranges over different

links. Although in [6] it was proposed to adopt different bin sizes for different links, those bin sizes still need

to be chosen in advance.

3.2 Continuous Delay Model

One way to avoid the pitfalls of binning is to use a flexible continuous link delay model. For example, closed

form expressions for the probability density function (pdf) of queueing delay have been derived for simple

queueing models such as M/M/1. These expressions could possibly be extended to a network of queues but

it is well known that the M/M/1 model is an inadequate model for Internet traffic [20]. An alternative is to

approximate each link delay density by a finite mixture which, with sufficiently large number of components,

can describe any continuous density function [21]. Letfl(x) be the link delay pdf at linkl. A finite mixture

model for this pdf is

fl(x) =

klX
m=1

�l;m�(x; �l;m); l = 1; : : : ; L (2)

wherekl denotes the number of components,�l;m, m = 1; : : : ; kl, denotes the mixing parameter for them-th

component
�
0 < �l;m < 1;

Pkl

m=1 �l;m = 1
�

, and�(x; �l;m) is a density function over thex-domain param-

eterized by the parameter vector�l;m. Many different choices for�(x; �) are possible including: Gaussian;

generalized Gaussian; exponential; or uniform. For the case of a Gaussian mixture�l;m = [�l;m; �
2
l;m] is the

vector specifying the position (mean) and width (sqrt(variance)) of them-th mixture component at thel-th link.

However, the use of pure continuous mixture density functions can cause more serious identifiability prob-

lems than the purely discrete model discussed in the previous subsection. To illustrate consider again the simple

two-leaf tree of Fig. 1. Assume that all link delays are Gaussian, i.e.,k1; k2; k3 = 1 (single component mix-

tures)�(x; �) = exp(�(x � �)2=(2�2))=(
p
2��). The end-to-end delaysY1 andY2 are also Gaussian, as

they are sums of independent Gaussian random variables, with joint pdff(Y1; Y2) = �(Y1; �1 + �2; �
2
1 +

�22) �(Y2; �1 + �3; �
2
1 + �23). This joint pdf is completely described by the 4 parametersE[Y1] = �1 + �2,
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(b) Link Delay P.D.F. − Set 2
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Figure 2: Example of two sets (a) and (b) of Gaussian internal link delay densities along the two probe paths
in the network in Fig. 1. The Gaussian end-to-end delay densities shown in (c) are parameterized by only 4
location and width parameters which is insufficient to recover the 6 location and width parameters in (a) and
(b).

E[Y2] = �1 + �3, var(Y1) = �21 + �22 and var(Y2) = �21 + �23. This gives only 4 equations for the 6 unknowns

parameters� = [�1; �2; �3; �
2
1 ; �

2
2 ; �

2
3 ] so the simple Gaussian model is not identifiable for any value of the

parameters. An example is shown in Fig. 2 where (a) and (b) are two different sets of internal link delay

distributions for the network in Fig.1.

One can also consider the packet-pair/stripe schemes suggested in [5] and [22], in which a pair or a stripe

of closely spaced unicast packets with distinct destinations are sent back-to-back from the root node. These

packets encounter virtually the same delays on shared links along their paths. As shown in [18], packet-pair

probing allows identification of higher order moments of internal link delays when the branching ratio is larger

than 2. However, the link delay means cannot be uniquely identified.
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4 Hybrid Finite Mixture Approach

4.1 Hybrid Finite Mixture Model

In analysis of a queueing system, the utilization factor� is an important parameter for describing system

behavior. The parameter� denotes the probability that the system is busy serving customers and, for a stable

system,� must satisfy0 � � < 1 [23]. A lightly loaded link satisfies� << 1, i.e. there is a non-negligible

probability that a packet encounters an empty queue, i.e. an idle router, and passes without delay. This suggests

placing a point mass component with weight1�� in the link delay mixture model. If this point mass is included

in addition to the continuous components the link delay pdf becomes a hybrid discrete/continuous finite mixture

model. Hence, similar to (2), we obtain

fl(x) = �l;0Æ(x � xl;0) +

klX
m=1

�l;m�(x; �l;m): (3)

Here�0 = 1 � �, Æ(x) is a point mass (dirac delta function) at zero andxl;0 is the pure (non-random) trans-

mission delay experienced by the packet. All other parameters are defined as in (2), except now the�’s must

satisfy
Pkl

m=0 �l;m = 1, �l;m � 0. The discrete mass componentÆ(x) not only makes the delay distribution

more precisely model the behavior of a link queue, but as shown below also buys us identifiability of the link

delay distribution parameters.

For any probe path the distributions of the end-to-end probe packet delays will be the convolution of the

link distributions, which are also hybrid mixtures. Now, similarly to the previous section, let’s assume that the

continuous mixture component is a single Gaussian pdf. Due to the point mass in (3) the end-to-end delay

distribution is no longer Gaussian as long as�l;0 6= 0. Indeed, the end-to-end delay distribution includes

shifted versions of each Gaussian component from which one can extract the parameters�l;m by fitting the

density translates, see Fig. 3. It might seem strange that the addition of a point mass allows one to uniquely

identify the set of parameters of the internal link components from a single probe path. However, one still needs

multiple paths to assign these parameters to specific links.

For a general logical tree network topology, if the packets are sent through all theR possible routes, a simple

sufficient condition for identifiability of the hybrid link mixtures is that: (1)�l;0 > 0 for all l; and (2) all the

continuous components in each link delay distribution have distinct parameters.
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Figure 3: Example of hybrid internal link delay mixtures (a) and (b) over a two link probe path. The non-
random minimum delays for both the links are set to 0. End-to-end delay distribution is a hybrid mixture from
which all parameters can be identified. HereB�C denotes convolution of the internal link components labelled
B andC.

4.2 ML-EM Algorithm

Here we present an ML-EM algorithm for approximating the maximum likelihood estimates of the internal

link mixture model parameters from end-to-end measurements. LetU be a finite mixture random variable

with k components and pdf of the formf(U) =
Pk

m=1 �m�m(U) where
Pk

m=1 �m = 1. An example of

a Gaussian mixture with 3 components is given in Fig.4. The solid line depicts the density function and the

dashed line shows each component. There are two different interpretations of finite mixture models which will

be useful. The first one is simply thatf(U) is a multi-component pdf forU . The second interpretation is

thatU is selected at random from a pool of hidden random variablesU1; : : : ; Uk with selection probabilities

�1; : : : ; �k, respectively. Define the binary random selection vectorZ = [Z1; : : : ; Zk]
T whereZm = 1 if

and only if them-th variableUm is selected and assign to this event probability�m. U can be expressed as
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Figure 4: Gaussian mixture example.fU (u) = 0:3N(u; 2; 2) + 0:5N(u; 8; 4) + 0:2N(u; 17; 10)

U =
Pk

m=1 ZmUm. Thus, ifUm has pdf�m(Um) then this is identically the conditional pdff(U jZm = 1).

Thus f(U) =
Pk

m=1 �m�m(U), which is the mixture model forU that we started out with. The second

interpretation is critical for development of the ML-EM algorithm which we address below.

Assume that we have prior knowledge of all the link mixture ordersfklgLl=1. We will relax this assumption

in the next section. LetNi be the number of packets sent from the source to receiveri and letMi be the set of

links along that path. DefineX(i;n)
l the delay at linkl encountered by then-th packet sent to receiveri. Let

Z
(i;n)
l =

h
Z
(i;n)
l;0 ; : : : ; Z

(i;n)
l;kl

i
be the selection vector forX(i;n)

l .

With these definitions, maximum likelihood (ML) estimation of the set of internal link mixture densities can

be formulated as a missing data problem. The Expectation Maximization (EM) algorithm has been extensively

applied to approximate ML and penalized ML (PML) estimates for mixture models [15, 29, 30]. LetX =

fX(i;n)
l g andZ = fZ(i;n)

l g for all l; i; n. fX;Zg is calledmissing dataor hidden data. DefineY (i;n) as

the end-to-end delay of then-th packet received by receiveri. The observablesY = fY (i;n)gi;n are called

the incomplete dataand the setfX;Z;Yg is said to be thecomplete data. The EM algorithm generates a

sequence of estimates of the unknown parameters� which have the property that the likelihood sequence

L(�) = f(Yj�) is nondecreasing.

It is easily shown that the likelihood of thecomplete datacan be factorized as

Lc(�)
def
= f(X;Y;Zj�) = f(YjX)f(X;Zj�);

and thus maximization ofLc(�) is equivalent to maximization of the likelihood functionL(�)
def
= f(X;Zj�).

For a specific linkl, Xl is a mixed random variable with density functionfl given by (3) and therefore, up to a

constant, the complete data log-likelihood function is:

logL(�) =

LX
l=1

X
i:l2Mi

NiX
n=1

(
Z
(i;n)
l;0 log�l;0 +

klX
m=1

Z
(i;n)
l;m

�
log�l;m + log �(X

(i;n)
l ; �l;m)

�)
: (4)
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The EM algorithm updates parameter estimates by applying two steps at each iteration. At thet-th iteration,

the E-step computes conditional expectation of complete data log-likelihood given observationsY and current

parameter estimateŝ�(t)

Q(�; �̂(t)) = E
h
logL(�)jY; �̂(t)

i
: (5)

The M-step maximizes theQ function computed in the E step with respect to� to produce

�̂
(t+1) = argmax

�

Q(�; �̂(t)): (6)

Derivation of the E and M steps for the hybrid mixture model is similar to that for a single Gaussian mixture

model [30] and is given in Appendix A.

4.3 PML-EM Algorithm with MML Penalty

When the number of link componentskl’s is unknown the ML-EM algorithm is not guaranteed to converge.

This is due to a fundamental ambiguity of unknown model order. To illustrate, consider the estimation of a

k-component mixture having the form of (2) with parameters� = f�1; : : : ; �k; �1; : : : ; �kg. These parameters

have the same likelihood as thek+1 component mixture�0 = f�1; : : : ; �k�1; (1��)�k; ��k; �1; : : : ; �k; �kg
for any0 < � < 1. One of the most effective ways to eliminate this ambiguity is to add a penalty to the log-

likelihood function which penalizes the addition of more components to the mixture.

Many model order penalties have been proposed including: Akaike Information Criterion(AIC) [24], Min-

imum Description Length(MDL) [25] and Minimum Message Length(MML) [26]. Figueiredo and Jain [15]

applied the MML penalty to finite mixture models by introducing a prior to the parameters and an information

theoretic penalty depending on quantization of parameter space. They developed an unsupervised method for

simultaneously selecting model order and estimating parameters. The incomplete data penalized log-likelihood

is expressed as

~L(�)
def
= log f(�) + log f(Yj�)� 1

2
log jI(�)j � c

2
(1 + log �c); (7)

whereI(�) is the Fisher information matrix associated with the incomplete dataY, jAj denotes the determinant

of square matrixA, c is the dimension of�, and�c is the so-calledoptimal quantizing lattice constant for<c.

To apply the MML algorithm [15] of Figueiredo and Jain to our network delay tomography problem their

method has to be extended to another layer of hidden data. More specifically, while in [15] the realizations

from the mixture model were observed directly, in our application only sums of these realizations (along probe

paths) are observed. In other words, the end-to-end delays are themselves convolutive mixtures of the additive

12



mixtures describing the link delays. In addition to the approximations made in [15], including�c � 1=12,

several other approximations were made to make this extension.

The standard incomplete data Fisher Information matrixI(�) is not closed form, even for a directly observed

finite mixture [27]. Therefore, we replace it by the complete data Fisher information matrix which in the

network tomography setting is

~I(�) = �E �r2
� log f(X;Zj�)

�
= block-diagfnlI1(�l)gLl=1 ;

whereI1(�l) is the Fisher information matrix associated with the complete data at linkl, �l denotes the

parameter set of thel-th link, andnl =
P

i:l2Mi
Ni is the total number of packets passing through thel-th link.

I1 itself has block-diagonal structure

I1(�l) = block-diagfAl; �l;1I2(�l;1); : : : ; �l;kl
I2(�l;kl

)g ;

whereI2(�l;m) is the Fisher information matrix associated with the hiddenm-th component delay variable

Xl;m on link l, andAl = diag
n
��1
l;m

okl

m=0
. If any one of the�l;m’s is zero, it is removed fromAl andkl is

decreased by 1.

The prior on the parameter set was taken as

f(�) =

LY
l=1

(
f(�l;0; : : : ; �l;kl

)

klY
m=1

f(�l;m)

)
:

wheref(�l;0; : : : ; �l;kl
) andf(�l;m) are the non-informative Jeffreys’ priors [28],

f(�l;0; : : : ; �l;kl
) /

p
jAj = (�l;0�l;1 : : : �l;kl

)�1=2

f(�l;m) /
q
jI2(�l;m)j

for
Pkl

m=0 �l;m = 1 and0 < �l;m < 1. This yields the MML penalized likelihood function

~L(�) = log f(Yj�)� d

2

LX
l=1

klX
m=1

log�l;m �
LX
l=1

kl(d+ 1) + 1

2

�
log

nl
12

+ 1
�
; (8)

whered is the dimension of�l;m, e.g.,d = 2 for a Gaussian component mixture.

To derive the E step of the EM algorithm applied to maximizing (8) we adopt the same complete data as in

the previous section. With this it is easy to see that the E step is a modification of (5) whereQ(�; �̂(t)) now

has an additional penalty given by the second and third additive terms on the RHS of (8). The modified M-step

gives the following updates for the mixing parameters

�
(t+1)
l;m =

max
n�P

i:l2Mi

PNi

n=1 !
(i;n)
l;m

�
� d

2 ; 0
o

Pkl

m=1max
n�P

i:l2Mi

PNi

n=1 !
(i;n)
l;m

�
� d

2 ; 0
o
+
P

i:l2Mi

PNi

n=1 !
(i;n)
l;0

m = 1; : : : ; kl: (9)

13



The M-step for the remaining parameters depends on the specific form of the mixture density components.

The algorithm uses the following strategy to select the numberkl of components at thel-th link. It starts

with all thekl set to same user-specified upper bound and annihilates components as follows. If�
(t+1)
l;m = 0,

componentm is removed fromfl and its probability mass is redistributed over the other non-zero-probability

components at the next iteration. Note this procedure is myopic since it does not allow components to come

back to life and therefore the estimate is not guaranteed to converge to the MML estimate. However, we restrict

our implementation to this myopic strategy due to implementation complexity constraints.

5 Experimental Results

5.1 Model Simulation: ML-EM for Known Model Order

We simulated a small network with the simple virtual tree topology shown in Fig.5. Throughout this experiment

the number of componentskl’s are known to the estimator. We specialized the EM algorithm to a Gaussian

continuous component mixture (see Appendix). 2 or 3 Gaussian components were assigned to each link in

addition to a point mass. These simulations were implemented inmatlab and we generated 15000 i.i.d.

end-to-end probe delays for each of the four probe paths. The ML-EM algorithm was applied to estimate the

Gaussian components, their mixing parameters and the weight of the point mass at zero. Convergence was

achieved after 4000 iterations, or approximately 90 iterations per parameter. Table 5.1 lists the number of

Gaussian mixture components for each link and the true/estimated probabilities�l;0 of the probe encountering

empty queue on linkl. Fig. 6 compares the estimated Gaussian mixture components to true Gaussian mixture

components. These results illustrate high accuracy for this simulation where there is no model error and the

number of components is known.

2 3

1

4 5 6 7

root

Figure 5: Network topology used in simulations.
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Link(l) 1 2 3 4 5 6 7
kl 3 2 2 2 2 2 2
�l;0 0.25 0.3 0.1 0.2 0.15 0.3 0.2
�̂l;0 0.253 0.304 0.099 0.199 0.152 0.313 0.201

Table 1: List of numbers of Gaussian mixture components and true/estimated�l;0 for matlab simulation in
Sec. 5.1

5.2 NS Simulation: MML for Unknown Model Order

For a more realistic simulation we usedns-2 [16] to simulate the network shown in Fig.5 with a variety of

cross traffic types and router configurations. The links were assigned 4Mb bandwidth and 50ms latency. Thens

parameters for each link were set to a Drop-Tail queue (FIFO queue with finite buffer). The queue buffer sizes

were 50 packets long. Probe packets were defined as 40 byte UDP packets. They are generated independently

and sent along each of the 4 paths according to a Poisson process with mean interarrival time 16ms and rate

20Kb/sec. Cross traffic was also generated in each link byns and consisted of 11 Pareto On-Off UDP streams

and 11 Exponential On-Off TCP flows. A total ofN = 20000 probe packets are collected at each receiver

node. We estimated each probe queueing delay by subtracting the minimum probe delay over theN samples

for the same path.

The MML algorithm was implemented with Gaussian continuous mixtures and the number of mixture com-

ponents at each link was initialized tokl = 10. The convergence curve of the penalized likelihood function is

shown in Fig.7. The vertical lines indicate the iterations when at least one component is annihilated and the

numbers above them show the corresponding links. Link delay pdf estimates are shown in Fig.8 for 4 repre-

sentative links. The true internal link delay distributions are estimated empirically from thens simulated data.

They are also assumed to be mixed distributions with an atom at origin and a continuous portion. The mass

of the atom, which is denoted as “True�l;0” in the figure, is the empirically estimated probability of an empty

queue at linkl calculated from sample averages. The continuous portion of the true distribution is estimated

by the histogram of non-zero link delay samples and normalized to have mass1 � (True�l;0). The estimated

Gaussian mixtures are shown along with the normalized histogram for comparison. Note that the probability

mass of the mixture is1� �̂l;0 for delays at linkl. For link 1,2,4, and 5, the Gaussian mixture components cap-

ture the profile of the empirical continuous portion of the density and form a good estimate. However, for some

other links, especially for link 7 as shown in Fig.9, the Gaussian mixture with a single point mass does a poor

job at capturing the spike in the internal link histogram. This error is probably due to the limitation of the 10

Gaussian + 1 point mass component model. For a better fit to the internal delay histograms it may be necessary

to assign more point masses and other flatter density models. This is a topic for future study. Other sources

of error might include: violation of the spatial or temporal independence assumptions; insufficient number of
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Figure 6: True(solid) and estimated(dotted) Gaussian mixture components for model simulation. The horizon-
tal axes denote link packet delays. Here the EM algorithm is used to estimate the mixed Gaussian mixture
parameters in addition to the empty queue probabilitiesf�l;0g for simulated measurements obeying a true
mixed Gaussian mixture with known numbers of components.

probe samples to resolve link densities; insufficient number of iterations of the MML algorithm; existence of

local maxima in the likelihood function; and burstiness (non-stationarity) of the traffic. These are topics worthy

of additional investigation.

6 Conclusion and Future Work

This paper focuses on the estimation of internal link delay distributions from end-to-end unicast packet delay

measurements when there is a positive probability of zero queueing delay. We proposed a new hybrid discrete-

continuous finite mixture model which circumvents the difficulties of link delay discretization. For the case
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Figure 7: Convergence curve of the unsupervised MML penalized likelihood function obtained during thens
simulation. The horizontal axis shows the number of iterations and the vertical lines denote the iteration number
where the number of Gaussian mixture components (initialized at 10 for each link) is reduced. Numbers at the
top of the graph denote the particular link affected by this reduction.

that mixture model orders are known, we derived an EM algorithm for approximating the ML estimates. Model

simulation showed that when all the assumptions hold the EM algorithm can accurately estimate the delay

distributions for each internal link. When the model orders are unknown, we implemented an MML order

selection penalty and derived an unsupervised algorithm for estimating both the number of mixture components

and the continuous density parameters. Although the estimates obtained at the convergence of this algorithm

are not necessarily MML estimates, results ofns-2 simulation showed that reasonably accurate estimates of

link delay distributions are possible.

Future work includes finding ways to accelerate convergence of the ML-EM and PML-EM algorithms so

that real network data can be applied. Thematlab implementations are quite slow and this makes it difficult

to perform extensive comparisons. Another direction is extension of our model to include spatial dependencies

of link delays among different links, especially the links along the same path. For time-varying scenarios

adaptive schemes need to be developed in order to capture possible changes in the traffic statistics and the

network environment. Another direction is to apply these methods to detecting abnormal changes in link delay

distributions. This may help early detection of possible network failures and/or malicious network activities.
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Figure 8: Normalized ns-derived histograms for non-zero link delays and estimated Gaussian mixture density
for indicated links. The horizontal axes denote link packet delays in milliseconds. Here the MML algorithm
was initialized with 10 Gaussian components for each link, and these plots show estimated mixture densities
after 3000 iterations.

A Derivation of EM algorithm

Throughout the derivation, we assume the point mass is located at zero delay for all the links. Before showing

the details, we define some additional notations as follows.

1. gi(y;�) denotes the end-to-end packet delay pdf from root node to receiveri. gi(y;�) is the convolution

of fl’s for l 2Mi, which is also a hybrid mixture. The discrete component aty = 0 has mass
Q

l2Mi
�l;0.

2. gi;(l;m)(y;�) is similar to gi(y;�), except in the convolutionfl is replaced by itsm-th component,

which is�l;0 whenm = 0 or �l;m�(y; �l;m) whenm 6= 0. This is the likelihood of an end-to-end delay

along pathi being equal toy when the delay at linkl is contributed by the hidden component random

variableXl;m.
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Figure 9: Same as in Fig.8 except that a poor fit occurs for link 7 which has a large point mass near 1.6ms delay.
It is mismatched to the single point mass (at zero delay) model used for this experiment.

3. hi;l(y;�) is similar togi(y;�), except thel-th link is removed from the convolution.

E-step

To compute the conditional expectation of complete data log-likelihood in (5) in thet-th iteration, let

!
(i;n)
l;m = E

h
Z
(i;n)
l;m jY (i;n); �̂(t)

i

=
P (Z

(i;n)
l;m = 1; Y (i;n); �̂(t))

P (Y (i;n); �̂(t))

=
gi;(l;m)(y

(i;n); �̂(t))

gi(y(i;n); �̂(t))

for m = 0; : : : ; kl andl = 1; : : : ; L. Note that!(i;n)
l;m =

�
1; m = 0
0; m 6= 0

whenY (i;n) = 0 since all the internal

link delays must be zero (contributed by the discrete component) when there is no path delay. Also let

Q
(i;n)
l;m (�l;m) = E

h
Z
(i;n)
l;m log�(X

(i;n)
l ; �l;m)jY (i;n); �̂(t)

i

=

Z
log �(x; �l;m) �

�̂
(t)
l;m�(x; �̂

(t)
l;m)hi;l(y

(i;n) � x; �̂(t))

gi(y(i;n); �̂(t))
dx

for m = 1; : : : ; kl andl = 1; : : : ; L. Q(i;n)
l;m (�l;m) = 0 whenY (i;n) = 0. The expected log likelihood function

in (5) becomes

Q(�; �̂(t)) =
LX
l=1

X
i:l2Mi

NiX
n=1

(
klX

m=0

!
(i;n)
l;m log�l;m +

klX
m=1

Q
(i;n)
l;m (�l;m)

)
(10)
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The conditional expectation in (10) holds for any choices of�. If Gaussian density functions are used as mixture

components (as in our simulations),Q
(i;n)
l;m (�l;m) can be further elaborated as

Q
(i;n)
l;m (�l;m) =

Z "
�1

2
log 2� � log �l;m �

(x� �l;m)2

2�2l;m

#
�
�̂
(t)
l;m�(x; �̂

(t)
l;m)hi;l(y

(i;n) � x; �̂(t))

gi(Y (i;n); �̂(t))
dx

= �!(i;n)
l;m

�
log 2�

2
+ log �l;m + �2l;m

�
�
R
(x2 � 2�l;mx)�̂

(t)
l;m�(x; �̂

(t)
l;m)hi;l(y

(i;n) � x; �̂(t))dx

2�2l;mgi(y
(i;n); �̂(t))

:

To evaluate the integral terms inQ(i;n)
l;m , first let� =

Q
fl02Mi;l0 6=lg

(kl0 + 1) be the model order ofhi;l(y; �̂(t)).

Also define�̂j , �̂j and
̂2j (j = 1; : : : ; �� 1) the mixing probability, mean and variance of thej-th component,

respectively. Note that the 0-th component is the atom at zero delay with weight�̂0 =
Q

fl02Mi;l0 6=lg
�̂
(t)
l0;0. Then

hi;l(y; �̂
(t)) = �̂0Æ(y) +

P��1
j=1 �̂j�(y; �̂j ; 
̂

2
j ) and it is straight forward to compute the integrals

Z
x2�̂

(t)
l;m�(x; �̂

(t)
l;m)hi;l(y

(i;n) � x; �̂(t))dx = �̂0 � (y(i;n))2 � �(y(i;n); �̂(t)l;m) +

��1X
j=1

�
�̂2j + �̂2j

�
gi;(l;m)(y

(i;n); �̂(t))

Z
x � �̂(t)l;m�(x; �̂(t)l;m)hi;l(y

(i;n) � x; �̂(t))dx = �̂0 � y(i;n) � �(y(i;n); �̂(t)l;m) +

��1X
j=1

�̂jgi;(l;m)(y
(i;n); �̂(t))

where�̂j = (
̂2j � �̂(t)l;m + �̂
2(t)
l;m (y(i;n) � �̂j))=(�̂

2(t)
l;m + 
̂2j ) and�̂2j = (�̂

2(t)
l;m � 
̂2j )=(�̂2(t)l;m + 
̂2j ).

M-step

To update the parameter estimatesQ(�; �̂(t)) is to be maximized over� as shown in (6). The updated

estimates are

�̂
(t+1)
l;m =

P
i:l2Mi

PNi

n=1 !
(i;n)
l;mP

i:l2Mi
Ni

m = 0; : : : ; kl

�̂
(t+1)
l;m = argmax

�

X
i:l2Mi

NiX
n=1

Q
(i;n)
l;m (�) m = 1; : : : ; kl;

In the case of�’s being Gaussian,̂� = (�̂; �̂2) and

�̂
(t+1)
l;m =

1P
i:l2Mi

PNi

n=1 !
(i;n)
l;m

�
X
i:l2Mi

NiX
n=1

R
x � �̂(t)l;m�(x; �̂(t)l;m)hi;l(y

(i;n) � x; �̂(t))dx

gi(y(i;n); �̂(t))

�̂
2 (t+1)
l;m =

1P
i:l2Mi

PNi

n=1 !
(i;n)
l;m

�
X
i:l2Mi

NiX
n=1

R
(x� �̂

(t+1)
l;m )2�̂

(t)
l;m�(x; �̂

(t)
l;m)hi;l(y

(i;n) � x; �̂(t))dx

gi(y(i;n); �̂(t))
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