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are taken on December 22, 2006 from 01:00:56 to 01:01:28 UTC, while
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ABSTRACT

Separable inverse problems, blind deconvolution, and stray light correction for
extreme ultraviolet images

by

Paul Richard Shearer

Co-Chairs: Anna C. Gilbert, Richard A. Frazin, and Alfred O. Hero III

Given a system that maps inputs to outputs, the determination of the unknown

input that gave rise to a known output is called an inverse problem. Most real

systems include noise and other degradations which prevent exact solution of an

inverse problem, but an approximate solution can be obtained by statistical inference.

This thesis considers the special class of separable inverse problems in which the

system is linear but incompletely characterized. The focus is primarily on methods

for image deblurring by blind and semiblind deconvolution, and much of the work

is devoted to a particular scientific problem in solar imaging. However, many of the

ideas and methods are more generally applicable.

In separable inverse problems, the output data b is modeled as a linear trans-

formation A of the unknown input ztrue plus noise ε. The linear transformation A

depends upon unknown side parameters ytrue, so that b = A(ytrue)ztrue + ε where ytrue

and ztrue are to be determined. In blind and semiblind deconvolution problems, b is

a blurry image, ztrue is the unknown sharp image, A represents convolution with the

imaging system’s point spread function (PSF), and ytrue denotes the PSF or some

parameters determining it. A solution is commonly obtained by optimizing a cost

function F (y, z) derived from maximum likelihood or Bayesian estimation theory,

possibly with constraints on y and z.

The first contribution of the thesis is a generalization of the popular variable

elimination technique for optimizing F (y, z). When the optimization problem is of

xv



unconstrained least squares form, the optimal value of z may be expressed in terms

of y using the pseudoinverse of A, and F (y, z) may be expressed in terms of y alone.

Optimizing this reduced cost function over y often leads to a faster, more accurate so-

lution than optimizing F (y, z) directly, particularly when F exhibits ill-conditioning

or other pathologies. However, the pseudoinverse formula for z is not applicable to

problems with nonquadratic likelihoods, inequality constraints on z, or other common

departures from least squares. A new class of semi-reduced optimization methods are

proposed to overcome this limitation. These methods are obtained by modifying

standard optimization methods to behave as though a variable has been eliminated.

Semi-reduced methods encompass several existing variable elimination techniques,

but can be used to solve problems with inequality constraints and nonquadratic like-

lihoods as well. New linear algebra techniques are proposed to enable semi-reduced

methods to share some of the best features of variable elimination methods. Tests

on difficult exponential sum fitting and blind deconvolution problems indicate that

the proposed approach can have significant speed and robustness advantages over

standard methods.

The second contribution is a new method for blind deconvolution of blurry images

corrupted by camera shake. The method first determines the PSF, then performs

nonblind deconvolution of the blurry image. The PSF is determined by exploiting

the fact that strong edges are generally much sparser in a sharp image than in a

blurry one. The PSF and the sharp image’s edge map are determined simultaneously

by an alternating projected gradient optimization, where the edge map is subjected

to an initially stringent sparsity constraint that is slowly relaxed. In experiments on a

standard test set, the proposed method is faster than the state-of-the-art variational

Bayes methods and competitive in deblurring performance.

The third contribution is the determination of PSFs for EUVI-A and EUVI-B, the

two extreme ultraviolet (EUV) solar imaging instruments aboard NASA’s STEREO

mission. The PSFs are determined for all four filter bands (171, 195, 284, and 304 Å)

and are used to correct long-range scattering effects that contaminate the images

with a haze of stray light. The PSFs are modeled using semi-empirical parametric

formulas, and their parameters are determined by semiblind deconvolution of EUVI

images. The EUVI-B PSFs are determined by semiblind deconvolution of lunar transit

data, exploiting the fact that the Moon is not a significant EUV source. The EUVI-A

PSFs are determined by analysis of simultaneous A/B observations from December

2006, when the two EUVIs had nearly identical lines of sight to the Sun. This is

the first EUV stray light correction derived by applying statistical inference to a

xvi



mathematical image formation model that accounts for long-range scatter and noise.

This model-based approach enables the calculation of the first error estimates for

deconvolved EUV images.
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CHAPTER 1

Introduction

Many natural and man-made systems have mathematical models that describe

their output, response, or reaction when a given input, stimulus, or change is applied.

The task of calculating the output from a given input is called a forward problem,

while determining the input from a given output is called an inverse problem.

Inverse problems are generally harder than forward problems for two reasons.

First, few mathematical operations are invertible in closed form, and outside these

cases one must resort to iterative methods with no general guarantee of success.

Second, many operations cause an irreversible loss of information about the input,

and one can only hope to determine a most likely or most reasonable input among

many possible candidates. To do this we take the common approach of defining a

cost function derived from maximum likelihood or Bayesian estimation theory, and

seeking a minimizer of this function over the space of possible inputs [105].

In this thesis we present several contributions to inverse problems from the text

of published or soon-to-be-published journal and conference articles. The status of

these articles and their co-authors are given in a footnote at the beginning of each

chapter. These papers are written as self-contained contributions for specific audi-

ences in mathematics, image processing, and astrophysics, so each uses a different

notation and style. This chapter overviews the type of problems we studied, tech-

nical challenges we encountered, solution methods we found particularly useful, and

our specific contributions.
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1.1 Linear inverse problems

Linear inverse problems are those in which the output is generated by a linear

system. In this case, the output b obeys

b = Aztrue + ε, (1.1)

where A is a linear operator, ztrue is the unknown input, and ε is noise. The associated

optimization typically takes the form

minimize
z∈Z

F (z) , L(Az) +Rz(z), (1.2)

where z represents an estimate of ztrue, Z is the set of admissible values of z, L(Az)

measures the discrepancy between Az and b, and Rz(z) is a penalty function that

takes higher values when z takes on more unlikely or unreasonable characteristics.

The best results are often obtained when L is chosen in accordance with statistical

principles. Given the distribution of ε, one typically sets L to be the negative log-

likelihood L(Az) = − log p(b |Az), where p(b |Az) is the probability of observing b

given the value of Az. The function Rz(z) can be interpreted as the negative logarithm

of a prior distribution on z (the Bayesian maximum a posteriori interpretation), or

simply as a penalty (the penalized likelihood interpretation). In many linear inverse

problems the functions L and Rz are convex, which implies immediately that F (z)

is convex [16]. This means that all local minima are global minima, and if F (z) is

strictly convex the minimum is unique.

Imaging systems are a particularly rich source of linear inverse problems. A cen-

tral problem in this work is image deblurring by deconvolution. In this case b is the

blurry image (an array of pixel intensities), ztrue is the ideal blur-free image, and the

operator A blurs ztrue by convolving it with the system’s point spread function (PSF),

the system’s response to a unit intensity point source. (We assume throughout that

the PSF is the same everywhere in the imaging plane.) Another important problem

is tomography, the creation of a 3D object reconstruction from 2D projections. To-

mography has applications ranging from medical imaging [74] to solar physics [39]. In

tomography the linear operator calculates integrals of object emissions along a given

line of sight.

A perennial challenge of imaging problems is their high dimensionality. Even a

modest 256 × 256 unknown image z contains 65,536 free variables, and most im-

ages are much larger. Optimization at this scale requires special techniques: even
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optimization of a positive definite quadratic function is nontrivial, as it requires the

solution of a large linear system. Direct linear algebra methods such as Gaussian elim-

ination become impractical due to memory requirements, so iterative methods such

as conjugate gradients (CG) must be used. These methods can be very slow when

A is ill-conditioned and can suffer from accumulated roundoff error [101]. Limited

memory optimization methods, such as L-BFGS, truncated Newton, and nonlinear

conjugate gradients, either rely on CG or are closely related to it and thus suffer

from similar limitations [82]. Issues of conditioning may sometimes be alleviated by

a good preconditioner that exploits the structure of A, or by a prudent choice of the

regularizing penalty.

A more recent challenge in imaging inverse problems the treatment of hard con-

straints and nonsmooth penalties. Simply enforcing a nonnegativity constraint on z

can substantially improve performance [8], and nonsmooth penalties such as the `1

or total variation norms are central tools in advanced image processing [36]. Many

classical optimization methods do not adapt well to this case, but projected gradient

and proximal splitting methods, which take advantage of the structure of (1.2), are

among the most successful for such problems [28].

1.2 Separable inverse problems and blind deconvolution

In this work we are concerned with separable inverse problems, a generalization

of linear inverse problems where the linear system itself contains unknowns [45].

Separable problems have the form

b = A(ytrue)ztrue + ε, (1.3)

where, in contrast to the linear case, the system matrix A now depends on unknown

parameters ytrue. These new unknowns create difficulties not seen in linear inverse

problems. The cost function becomes

minimize
y∈Y,z∈Z

F (y, z) , L(A(y)z) +Ry(y) +Rz(z), (1.4)

and is generally no longer convex, introducing the possibility of an iterative method

getting stuck in a poor local minimum. The dependence on y can also introduce severe

ill-conditioning and pathologies that slow down the discovery of even a local minimum.

In some problems A(y) is a linear function of y, but in others the dependence is highly

nonlinear. Various methods for solving this problem are discussed in Chapter 2.
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Despite their difficulty, separable inverse problems receive much attention due to

the breadth and impact of their applications. Spectroscopy, a fundamental measure-

ment technique in chemistry and biology, involves separable problems during data

analysis [79]. When b and z are matrices and A(y) = y, we recover the problem of

matrix factorization, an intensely-researched problem in signal processing and ma-

chine learning [27]. Other applications include motion-blur compensation in PET

imaging [57], Stokes imaging with phase diversity [103], and functional MRI [83].

Many other applications are discussed in [45].

Much of this thesis concerns the problems of blind and semiblind deconvolution

[21]. As with normal deconvolution, b is the blurry image and z the blur-free image.

In blind deconvolution, the PSF is entirely unknown and represented by y, while

in semiblind deconvolution, information about the PSF is available (a parametric

model, for example) and y represents a set of parameters that determine the PSF.

(The precise meanings of these terms vary in the literature.) An actively researched

application of blind deconvolution is the restoration of images corrupted by camera

shake, especially since the work of [38,71]. In this case the PSFs tend to be irregular

and difficult to model, and information about them must be extracted almost entirely

from the blurry images alone. Semiblind deconvolution is more commonly used in

scientific imaging problems where PSF models are available, such as astronomical

imaging with phase diversity [106].

1.3 Extreme ultraviolet solar imaging and the stray light

problem

Much of this thesis was motivated by a single major project: a semiblind de-

convolution problem involving extreme ultraviolet (EUV) images of the Sun. EUV

images are used to study the solar corona, which reaches temperatures in excess of

1 megakelvin (MK), hundreds of times hotter than the underlying photosphere. The

source of coronal heating is still not fully understood [48], and it is hoped that more

and better solar observations will shed light on this question. EUV radiation spans

wavelengths from 100− 1000 Ångströms (Å) and is generated only by extremely hot,

ionized plasma. As a result the solar corona naturally emits EUV radiation, while

the photosphere does not. NASA’s fleet of spaceborne EUV telescopes - SOHO/EIT,

TRACE, STEREO/EUVI, and SDO/AIA - has been observing the corona continu-

ously for nearly two decades. The EUV corona seethes with activity and contains

loop arcades, coronal holes, filaments, plumes, and other exotic structures (Fig. 1.1).
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Coronal holes generate the fast solar wind [65], while filaments play an important role

in coronal mass ejections, which erupt from the corona unpredictably and can cause

expensive havoc in electrical systems on Earth [3].

EUV images carry a great deal of information about the coronal plasma. The

plasma emissivity at a given position in the corona is roughly proportional to the

square of the plasma density, while the temperature largely determines the radiation

spectrum. Inverting this relationship, the plasma temperature, density, and other

diagnostics can be determined from intensity measurements at multiple EUV wave-

lengths. This is typically done through the formalism of differential emission measure

(DEM) analysis [52]. These data provide empirical constraints on the corona’s be-

havior which help to determine the processes heating the corona and generating the

solar wind.

A major difficulty in determining plasma diagnostics from EUV intensities is that

a given pixel’s intensity does not necessarily come from a small, uniform parcel of

plasma. Instead, it is the sum of emissions in a tube around that pixel’s geometric

line of sight through the corona, a tube which may contain plasma of various tem-

peratures and densities. Tomographic techniques can be used to create global 3D

reconstructions of the corona free from line-of-sight contamination [39].

A common assumption of DEM, tomography, and other quantitative EUV anal-

ysis techniques is that solar radiation enters an EUV telescope and follows the ideal

path predicted by geometric optics. In reality, light scatters off the geometric path

and casts a haze of stray light over the image. Images of faint structures in the

corona tend to have the highest stray light contamination. In particular, coronal

holes, filament cavities, and structures far off the limb may be heavily contaminated,

because they are much fainter than their surroundings [94]. Stray light can be cor-

rected by deconvolution with the telescope PSF, which can be estimated by semiblind

deconvolution of informative images. This deconvolution problem is unusual in that

quantitative accuracy of the EUV intensities is the primary objective, not resolution

or visual appeal.

1.4 Contributions of this thesis

In Chapter 2 we propose a generalization of variable elimination for solving sepa-

rable inverse problems beyond least squares. Variable elimination is an optimization

technique for (1.4) in which the optimal value of z in F (y, z) is expressed as a function

zm(y), and the reduced cost function F (y, zm(y)) is optimized in place of F (y, z). This
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Figure 1.1: A composite of extreme ultraviolet images taken by SDO/AIA in three
wavelengths: 171, 211, and 304 Å.
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technique appears most prominently in the variable projection method of Golub and

Pereyra [47]. Existing variable elimination methods require an explicit formula for the

optimal value of the linear variables, so they cannot be used in problems with Poisson

likelihoods, bound constraints, or other important departures from least squares. To

address this limitation, we propose a generalization of variable elimination in which

standard optimization methods are modified to behave as though a variable has been

eliminated. We verify that this approach is a proper generalization by using it to re-

derive several existing variable elimination techniques. We then extend the approach

to bound-constrained and Poissonian problems, showing in the process that many of

the best features of variable elimination methods can be duplicated in our framework.

Tests on difficult exponential sum fitting and blind deconvolution problems indicate

that the proposed approach can have significant speed and robustness advantages

over standard methods.

In Chapter 3 we propose a new method for correcting camera shake based on

incremental sparse approximation of edges. The method first estimates the PSF,

then uses non-blind deconvolution to obtain the sharp image. The PSF is estimated

by solving an ‘edge space’ blind deconvolution problem: b represents the vertical

and horizontal differences in the original blurry image, and z the same differences in

the sharp image. An initial guess for the PSF is obtained by solving (1.4) with the

constraint that z be much sparser than b, and the sparsity constraint is gradually

relaxed to refine the PSF. A simple alternating projected gradient algorithm is used

to perform the optimization. This simple method is shown to compete in deblurring

performance with more sophisticated variational Bayes methods on a standard test

set, while being significantly faster.

In Chapter 4 we determine PSFs that enable correction of stray light in solar im-

ages from all filter bands (171, 195, 284, and 304 Å) of the EUVI instruments aboard

the STEREO-A and B spacecraft. Semi-empirical parametric formulas are proposed

for the PSFs, and their parameters are determined by semiblind deconvolution of

EUVI images. The EUVI-B PSFs were determined from lunar transit data, exploit-

ing the fact that the Moon is not a significant EUV source. The EUVI-A PSFs were

determined by analysis of simultaneous A/B observations from December 2006, when

the instruments had nearly identical lines of sight to the Sun. We provide the first

estimates of systematic error in EUV deconvolved images.
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CHAPTER 2

A Generalization of Variable Elimination for

Separable Inverse Problems Beyond Least Squares

2.1 Introduction

In linear inverse problems we are given a vector of noisy data b ∈ Rm generated

by the linear model b = Az + ε, where A ∈ Rm×c is a known matrix, ε is a zero

mean noise vector, and z ∈ RNz is an unknown vector with Nz = c entries we wish

to estimate. In separable inverse problems, A is not known exactly, but depends on

another set of parameters y ∈ RNy :

b = A(y)z + ε. (2.1)

The problem is now to determine the full set of N = Ny +Nz parameters x , (y, z).

Many scientific inverse problems are separable. In time-resolved spectroscopy and

physical chemistry, data are often modeled as a weighted sum of several (possibly

complex) exponentials with unknown decay rates [79, 111]. Determining the weights

and decay rates simultaneously is a separable inverse problem. Other examples in-

clude image deblurring with an incompletely known blur kernel [21] and tomographic

reconstruction from incomplete geometric information [26]. Many more examples can

be found in [45,53,87].

Separable problems frequently have additional exploitable structure. In this paper,

we will be particularly interested in problems with multiple measurement vectors

generated by applying a single linear transformation to n different vectors of linear

coefficients. In this case, the data and coefficient vectors can be represented by

A version of this chapter has been published in the journal Inverse Problems with Anna C.
Gilbert as co-author [95].
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matrices B ∈ Rm×n and Z ∈ Rc×n, and we have

B = A(y)Z + E. (2.2)

This problem, also known as a multiple right-hand sides or multi-way data problem

[46,61, 78], occurs when a system is repeatedly observed under varying experimental

conditions [79].

An inverse problem is generally solved by seeking parameter values that balance

goodness of fit with conformity to prior expectations. In this paper we focus on con-

strained maximum likelihood problems, where we choose a goodness of fit function

L(A(y)z) measuring discrepancy between A(y)z and b and a set X = Y × Z repre-

senting known constraints on y and z, such as nonnegativity. We seek the parameter

values that minimize the discrepancy subject to the constraints by solving

min
y∈Y z∈Z

{
F (y, z) , L(A(y)z)

}
. (2.3)

Penalty functions such as `p norms on y and z may also be incorporated into F (y, z),

and while our techniques are relevant to this case, it is not specifically addressed

here. For the goodness of fit function we use the negative log-likelihood L(µ) =

− log p(b |µ), where the likelihood function p(b |µ) is the probability that b = µ+ε and

is determined by the distribution of ε. Least squares problems result from assuming

standard Gaussian distributed noise, so that L(µ) = 1
2
‖µ − b‖2, but Poissonian and

other likelihoods frequently arise.

Unconstrained least squares problems are generally easiest to solve, and many

powerful optimization ideas were first developed for this case [82]. However, uncon-

strained least squares solutions are not always satisfactory, and much better solutions

can often be found using nonnegativity constraints, Poisson likelihoods, or other de-

partures from ordinary least squares. Many physical quantities must be nonnegative,

and enforcing this constraint can reduce reconstruction error [8] and help the op-

timizer avoid unphysical answers [96]. A Poisson process is often the best model

for a stream of particles entering a detector, and in the low-count limit the Poisson

and Gaussian distributions are very different. In this case Poissonian optimization

usually gives significantly better parameter estimates than least squares, a fact of

fundamental importance in astronomy [8, 9, 105], analytical chemistry [77], and bio-

chemistry [68, 69], where information must be extracted efficiently from a trickle of

incoming photons. This paper is concerned with advancing the state of the art for
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problems beyond least squares.

2.1.1 Existing optimization methods

We will focus on optimization methods employing Newton-type iterations. While

other powerful methods exist for inverse problems, Newton-type methods enjoy very

general applicability, attractive convergence properties, scalability under favorable

conditions, and robustness against ill-conditioning and nonconvexity [82]. Given a

smooth function f(u), a constraint set U ⊂ RNu , and an initial point u0 ∈ U , a

Newton-type method generates a sequence of iterates u1, u2, . . . which hopefully con-

verge to the minimizer of f(u) in U , or at least a stationary point. Line search

methods, which will be the focus of this paper, generally use the following update

procedure to go from uk to uk+1 [62, 82]:

1. Search direction: A search direction ∆u is calculated by solving a Newton-

type system of the form B∆u = −g, where g is determined from the gradient

∇f(uk) and B is a Hessian model approximating ∇2f(uk). Both g and B may

be modified by information from constraints and previous iterates.

2. Trial point calculation: The step ∆u determines a search path up(s), parametrized

by a step size s > 0, from which a trial point ū is selected. This is generally

a straight-line path modified to maintain feasibility with respect to constraints

or hedge against a bad search direction.

3. Evaluation and decision: If moving to the trial point produces a sufficient de-

crease in the objective, we set uk+1 = ū. Otherwise, another trial point is

constructed, possibly along a new direction ∆u, and the process is repeated.

This update procedure is used in the service of some larger strategy for optimizing

F (y, z). To understand the strategies typically used, it is helpful to first consider

strategies for solving the block-structured system B∆x = −g. This system has the

block expansion [
Byy Byz

Bzy Bzz

][
∆y

∆z

]
= −

[
gy

gz

]
, (2.4)

and is typically solved in one of three ways. (In the following, the product M−1w

should be interpreted as a directive to solve Mv = w for v rather than to compute

M−1 explicitly, and when we speak of inversion we refer to this directive.)
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1. Full matrix, all-at-once. We solve the whole system at once by QR or Cholesky

factorization in medium-scale problems, and by conjugate gradients (CG) in

very large-scale problems.

2. Block Gauss-Seidel. We converge to a solution by iterative updates of the form

∆yj+1 = −B−1
yy (gy −Byz∆z

j) (2.5)

∆zj+1 = −B−1
zz (gz −Bzy∆y

j). (2.6)

Gauss-Seidel is fast provided that Byy and Bzz are much easier to invert than

all of B and a block diagonal approximation of B is reasonably accurate, but

may be arbitrarily slow to converge otherwise [91].

3. Block Gaussian elimination. By solving for ∆z in the bottom row of (2.4) and

substituting the result into the top row equation, we decompose (2.4) as

Bs∆y = −gy +ByzB
−1
zz gz (2.7a)

Bzz∆z = −gz −Bzy∆y, (2.7b)

where Bs , Byy − ByzB
−1
zz Bzy is the Schur complement of Bzz in B [16]. We

construct the matrix Bs explicitly, solve for ∆y in (2.7a), then plug the result

into (2.7b) to solve for ∆z.

Assuming B is positive definite, all three of these linear solvers can be interpreted

as a method for minimizing the quadratic form 1
2
∆xTB∆x + gT∆x. Each of them

can also be generalized to an update strategy for the nonquadratic problem (2.3), as

follows:

1. Full update: We update y and z simultaneously using a step derived from solving

the full system (2.4). Any classical Newton-type method applied directly to

F (y, z) falls into this category [82].

2. Alternating update: We make one or more updates to z with y fixed, then to y

with z fixed, alternating until convergence [11]. Alternating methods now have

well-developed convergence theory even with inexact alternating minimizations,

and their iterations do not necessarily require matrix factorizations [15,51]. As

such, they may be the only tractable choice for certain large-scale and highly

non-parametric problems such as nonnegative matrix factorization. However,
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like Gauss-Seidel, alternating methods can converge slowly [18,90] and are gen-

erally preferable only when full updates are computationally expensive or in-

tractable. In this paper we will focus on problems where full update methods

are tractable, so alternation will not be considered further.

3. Reduced update: We determine the optimal z value given y,

zm(y) = argmin
z∈Z

F (y, z), (2.8)

and substitute it into (2.3), giving an equivalent reduced problem

min
y∈Y

{
Fr(y) , F (y, zm(y))

}
. (2.9)

The Newton-type iteration is then applied to solve this reduced problem instead

of the original. The resulting update has a nested structure: an outer optimizer

computes the search direction ∆y and trial point ȳ to optimize Fr(y), while an

inner optimizer calculates z by solving (2.8) whenever the outer one asks for

the value of Fr(y) or its derivatives.

Most reduced update methods are variations on the variable projection algorithm

of Golub and Pereyra [45, 47], which applies to the case of unconstrained separable

least squares. In this case we have F (y, z) = 1
2
‖A(y)z−b‖2 and zm(y) = A(y)†b, where

X† denotes the Moore-Penrose pseudoinverse. Substituting zm(y) into F (y, z) yields

Fr(y) = 1
2
‖ − P⊥A b‖2, where P⊥X = I −XX† denotes the projection onto range(X)⊥,

and the y in A(y) has been suppressed. Golub and Pereyra proposed using a Gauss-

Newton method to optimize Fr(y). The Gauss-Newton method requires the Jacobian

for the reduced residual −P⊥A b, which they derived by differentiation of pseudoin-

verses. This idea can also be extended to accommodate linear constraints on z.

The efficiency of variable projection in highly ill-conditioned curve fitting and

statistical inference problems is theoretically and empirically well-attested [45,84,90,

97]. Variable projection is also useful for problems with multiple measurement vectors

[46, 61, 78], as in this case A(y) is block diagonal, so necessary pseudoinverses and

derivatives may be efficiently computed blockwise. Other methods based on variable

elimination can speed up the solution of large-scale image and volume reconstruction

problems if the pseudoinverse and derivatives can be computed quickly [26,37,44,106].

Given the efficiency of variable elimination methods in separable least squares

problems, one might hope to derive an extension with similar advantages to problems
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beyond least squares. However, such an extension runs into several difficulties. First,

in problems beyond least squares there is generally no analytical formula for zm(y),

and computing it is often computationally expensive. Second, if inequality constraints

or nonsmooth penalties are imposed on z, then zm(y) will be a nonsmooth function

with unpredictable properties, so that the reduced problem may be even more difficult

than the original. Third, without a formula for zm(y) it is unclear how to compute

Dzm(y), which is needed for a fast-converging second-order method.

2.1.2 Our contribution

Variable elimination does not seem to generalize easily to non-quadratic and con-

strained problems, but there are many efficient and robust full update methods for

such problems [82]. This fact suggests that we might arrive at a generalization more

easily from the other direction, by making existing full update methods resemble

reduced update methods more closely. In this paper we explore the resulting semi-

reduced update methods, explain how they relate to full and reduced update methods,

describe when they are useful, and validate our claims with numerical experiments

on hard inverse problems similar to ones encountered in practice.

In §2.2 we show how to transform a given full update method into a reduced

method without an explicit formula for zm(y). We begin by applying two specific

changes to the full update method: first, use block Gaussian elimination instead of

an all-at-once solver, and second, adjust every new trial point’s z coordinate to a

better value before the trial point is evaluated. This second technique, which we

call block trial point adjustment, is depicted graphically in Fig. 2.1, right. We call

a full update method thus modified a semi-reduced method. Reduced methods are

obtained from semi-reduced methods by requiring that the adjustment be optimal,

which enables us to simplify the method by omitting computations of ∇zF and the

search direction ∆z. We show reduced Newton and variable projection methods can

be derived in this way. In §2.3, we propose and prove convergence of a semi-reduced

method that allows for nonquadratic likelihoods and bound constraints on z, which

has been posed as an open problem by multiple authors [26,79].

The description of reduced and semi-reduced methods as modifications of full

update methods allows one to predict when the former have advantages over the

latter. Block Gaussian elimination is most effective when Bzz is easier to invert than

all of B, for example when Bzz has block diagonal (Fig. 2.1), Toeplitz, banded, or

other efficiently invertible structure. Block trial point adjustment should yield an

efficiency gain when the computational burden of the adjustment subproblems is
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outweighed by an increase in convergence rate. This may occur when the graph of

the objective contains a narrow, curved valley like that shown in Fig. 2.1.

To test these predictions we select problems where we expect semi-reduced meth-

ods to have an advantage, design methods for these problems using the semi-reduced

framework, then compare the semi-reduced methods to standard full update meth-

ods. In §2.4 we derive linear algebra techniques that use block Gaussian elimination

to exploit block structure or spectral properties of B, and in §2.5.1 and §2.5.2 we

study two problems of scientific interest where these techniques have advantages over

standard full-matrix methods. In §2.5.3 we consider a toy blind deconvolution prob-

lem where block trial point adjustment leads to a significant increase in convergence

rate due to a curved valley geometry. We conclude that semi-reduced methods can

have significant advantages over full update methods under the predicted conditions.

2.1.3 Related work

While the relationship between full and reduced update methods has been explored

several times, the relationship established here is a major extension of previous work.

In [90] Ruhe and Wedin developed the connection between full and reduced update

Newton and Gauss-Newton methods, and semi-reduced methods are described by

Smyth as partial Gauss-Seidel or nested methods in [97]. Our work extends theirs

in that we consider general Newton-type methods, nonquadratic likelihoods, and the

effect of globalization strategies, such as line search or trust regions, which ensure con-

vergence to a stationary point from arbitrary initialization. A very general theoretical

analysis of the relationship between the full and reduced problems is given in [86],

but there is little discussion of practical algorithms and no mention of semi-reduced

methods.

Structured linear algebra techniques such as block Gaussian elimination are known

to be useful [22,113], but they are underutilized in practice. This is apparent from the

fact that most optimization codes employ a limited set of broadly applicable linear

algebra techniques [82], and very few are designed to accommodate user-defined linear

solvers such as the ones we propose in §2.4. We contend that significant speed gains

are attainable with special linear solvers, and optimization algorithm implementations

should accommodate user-customized linear algebra by adding appropriate callback

and reverse communication protocols.

Trial point adjustment is a key idea in the two-step line search and trust region

algorithms of [29] and [30]. General convergence results are proven in [1] for ‘acceler-

ated’ line search and trust region methods employing trial point adjustment. These
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Figure 2.1: Situations where block gaussian elimination and trial point adjustment
may be useful. Left: A ‘block arrow’ matrix B containing a block diag-
onal submatrix Bzz is well-suited for inversion by block Gaussian elimi-
nation. This type of matrix arises in separable problems with multiple
measurement vectors. Right: Graph of an objective F (y, z) exhibiting a
narrow, curved valley; the minimum is marked with an X. Superimposed
are a sample iterate (yk, zk) and an initial trial point (ȳk, z̄k) that fails a
sufficient decrease test. By adjusting this point’s z coordinate to the min-
imum of F (ȳk, z), we obtain a new trial point (yk+1, zk+1) that provides
sufficient decrease to be accepted as an update.

works are not concerned with separable inverse problems or the relationship with

reduced methods.

Extensions of variable projection beyond unconstrained least squares have been

proposed, in particular to accommodate bound constraints on z [32, 96]. Their ap-

proach is to apply a Newton-type method to minimize F̃r(y) = F (y, z̃m(y)), an ap-

proximation of Fr(y) = F (y, zm(y)) obtained by computing zm(y) approximately

using a projected gradient or active set method. This approach can work well, but

it has several theoretical and practical downsides. First, it has not been extended to

nonquadratic likelihoods; second, computing zm(y) can be very expensive, and the

precision required is unclear; third, an appropriate Hessian model is not obvious and

must be obtained by ad-hoc heuristics or finite differences; and fourth, there has been

no attempt at global convergence results. In contrast, our approach works on non-

quadratic likelihoods; it provides the option of approximating zm(y) to any desired

precision without danger of sacrificing convergence; one may use the same standard

Hessian models used in full update methods, with exact derivatives if desired; and we

prove a global convergence result for our method.
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2.2 Semi-reduced methods

In this section we show that a full update algorithm may be transformed into a

reduced update (variable elimination) algorithm by introducing block Gaussian elim-

ination and an optimal block trial point adjustment, then simplifying the resulting

algorithm to remove unnecessary computation. Semi-reduced methods are those ob-

tained halfway through this process, after the two block techniques are introduced

but before the simplification. We will describe the transformation process for uncon-

strained Newton-type line search algorithms, but it can be done with other types of

algorithms too.

2.2.1 Simplification in the case of optimal adjustment

We begin the move towards semi-reduced methods by defining a standard un-

constrained line search algorithm, then adding trial point adjustment. Let f(u) be

a twice-differentiable function and B(u) ∈ RNu×Nu the Hessian model, a positive

definite matrix-valued function approximating ∇2f(u).

Given an iterate uk, we obtain the update uk+1 by the following procedure. We

begin by setting g = ∇f(uk), B = B(uk), and determining the search direction ∆u

by solving B∆u = −g. The search direction determines a line up(s) = uk + s∆u of

potential trial points parametrized by step size s, and we set uk+1 by choosing one

that satisfies the sufficient decrease condition

f(up(s))− f(uk) ≤ δgT (up(s)− uk) = δgT (s∆u), (2.10)

for a fixed δ ∈ (0, 1/2). One can generally ensure convergence by picking a step size

that obeys this condition and is not too small. Such a step size can be obtained by

backtracking: we set s = αj and try j = 0, 1, 2, . . . until (2.10) is satisfied.

To incorporate trial point adjustment into this update procedure, we assume we

are given an adjustment operator ud(u) such that f(ud(u)) ≤ f(u) for any input

u. We then replace up(s) with ud(up(s)) on the left hand side of (2.10), obtaining

Alg. 2.1. (Note that the standard full update method may be recovered by setting

ud(u) = u.) Global convergence of Alg. 2.1 to a stationary point is guaranteed by the

following theorem:

Theorem 2.1. Assume that f(u) is bounded below, ∇f(u) is Lipschitz continuous

with bounded Lipschitz constant, the set {u ∈ RNu | f(u) ≤ f(u0)} is compact, and

the matrices B(u) are symmetric positive definite with eigenvalues bounded away
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from zero and infinity. Then

lim
n→∞

∇f(uk) = 0, (2.11)

and any limit point of (uk)∞k=0 is a stationary point.

This theorem is proven in [62] for the standard algorithm without trial point ad-

justment, while an extension for algorithms including trial point adjustment is given

in [1]. The line search condition in [1] is slightly different than the one used here, but

the convergence argument applies without modification to our case. Informally, trial

point adjustment does not harm convergence because convergence requires only that

f(uk) decreases by some minimal amount for each iteration k, and the adjustment

operator can only make the decrease larger.

Algorithm 2.1 Backtracking line search method with trial point adjustment

Require: u0 ∈ RNu , δ ∈ (0, 1/2), α ∈ (0, 1)
1: for k = 0, 1, 2, . . . do
2: g = ∇f(uk), B = B(uk)
3: Solve for ∆u: B∆u = −g
4: up(s) = uk + s∆u
5: Find the smallest j ≥ 0 such that f(ud(up(α

j)))− f(uk) ≤ δgT (up(α
j)− uk)

6: uk+1 = ud(up(α
j))

7: end for

To make Alg. 2.1 into a semi-reduced method for minimizing a function F (x) =

F (y, z), we set f(u) = F (x) and put system B∆x = −g into the block Gaussian

decomposed form (2.7). We then require the trial point adjustment to have the form

xd(y, z) = (y, zd(y, z)), so that only z can change. The result of these changes is

Alg. 2.2.

Algorithm 2.2 Semi-reduced line search method.

Require: x0 = (y0, z0) ∈ RN , δ ∈ (0, 1/2), α ∈ (0, 1)
1: Define xd(y, z) = (y, zd(y))
2: for k = 0, 1, 2, . . . do
3: g = ∇F (xk), B = B(xk)
4: Solve for ∆y: Bs∆y = −gy +ByzB

−1
zz gz

5: Solve for ∆z: Bzz∆z = −gz −Bzy∆y
6: Define xp(s) = (yp(s), zp(s)) = (yk + s∆y, zk + s∆z)
7: Find the smallest j ≥ 0 such that F (xd(xp(α

j)))− F (xk) ≤ δgT (xp(α
j)− xk)

8: xk+1 = xd(xp(α
j))

9: end for

To make Alg. 2.2 into a reduced update method, we assume our trial point
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adjustment is unique and optimal, zd(y, z) = zm(y) = argmin z F (y, z), and ex-

ploit this fact to simplify the algorithm. Optimal adjustments ensure that gz =

∇zF (yk, zm(yk)) = 0 for all k, so terms involving gz disappear. In particular, line 7

reduces to gT (xp(α
j)− xk) = gTy (yp(α

j)− yk). After terms involving gz are removed,

the trial point zp(s) = zk + s∆z appears only within the expression xd(xp(α
j)). But

if we write out xd(xp(s)) = (yk + s∆y, zm(yk + s∆y)), we see that zk + s∆z has been

supplanted by the adjusted point zm(yk + s∆y), so we may skip it by redefining xp

as xp(s) = (yk + s∆y, zm(yk + s∆y)). The disappearance of zk + s∆z renders the

step ∆z unused in any way, so line 5 can be deleted. What is left is Alg. 2.3, a

simplified semi-reduced method. In the next section we show that, when B is chosen

appropriately, versions of this simplified semi-reduced method are identical to several

reduced (variable elimination) methods in the literature.

Algorithm 2.3 Simplified semi-reduced line search method.

Require: x0 = (y0, zm(y0)) ∈ RN , δ ∈ (0, 1/2), α ∈ (0, 1)
1: for k = 0, 1, 2, . . . do
2: gy = ∇yF (xk), B = B(xk)
3: Solve Bs∆y = −gy
4: Define xp(s) = (yp(s), zp(s)) = (yk + s∆y, zm(yk + s∆y))
5: Find the smallest j ≥ 0 such that F (xp(α

j))− F (xk) ≤ δgTy (yp(α
j)− yk)

6: xk+1 = xp(α
j)

7: end for

Reinterpreting variable elimination as a simplified semi-reduced method allows us

to precisely articulate the cost-benefit tradeoff involved in using variable elimination,

as well as the raison d’être for non-simplified semi-reduced methods. The benefit of

variable elimination is that we need not compute gz, ∆z, or quantities dependent on

them, and the trial point adjustments may cause the algorithm to converge faster.

The cost is that we must compute the optimal z value after every y update, while in

semi-reduced updates we only require that the adjustment does not increase the ob-

jective. Variable elimination is preferable only if the adjustment subproblem can be

solved quite quickly and yields a significantly increased convergence rate. While this

condition often holds in unconstrained least squares problems, in general calculating

argmin z F (y, z) is often quite costly and may not be worth the trouble. Semi-reduced

methods permit us to forgo this cost, granting increased flexibility without compro-

mising convergence.
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2.2.2 Equivalence of simplified semi-reduced methods to variable elimi-

nation

Here we show that three popular reduced (variable elimination) methods can all be

interpreted as simplified semi-reduced methods with an appropriate Hessian model. In

other words, reduced methods can be obtained by operations on F (y, z) alone, without

ever forming the objective Fr(y) explicitly. This surprising result is essentially due

to the implicit function theorem and the fact that optimization methods only use

very limited local information about a function to determine iterates. We begin with

a new lemma stating the exact condition required for a reduced and a simplified

semi-reduced method to be equivalent.

Lemma 2.1. Let y0 ∈ RNy be given, and let z0 = zm(y0). Let invertible Hessian

models Br(y) and Bf (y, z) for Fr(y) and F (y, z) be given. Assume that zm(y) is well-

defined: that is, there is a unique solution of minz F (y, z) for any given y. Consider

the following pair of Newton-type algorithms:

1. Reduced method: Alg. 2.1 with f(u) = Fr(y), yd(y) = y, B = Br.

2. Simplified semi-reduced method: Alg. 2.3 with B = Bf .

Let Bs = Byy − ByzB
−1
zz Bzy. These two algorithms generate identical iterates if and

only if, at all points yk visited by each algorithm, the Hessian models Br = Br(y)

and B = Bf (y, zm(y)) obey

Br = Bs. (2.12)

Proof. After the specified substitutions are made, Algs. 2.1 and 2.3 have exactly one

difference: the gradient used in Alg. 2.1 is ∇Fr(y), while in Alg. 2.3 it is ∇yF (y, z).

Thus it suffices to show that ∇Fr(y) = ∇yF (y, z). Letting Dzm denote the Jacobian

of zm(y), we have

∇Fr(y) = ∇yF (y, zm(y)) +Dzm · ∇zF (y, zm(y)) = ∇yF (y, zm(y)), (2.13)

where the second term has vanished because zm(y) is a stationary point of F (y, z),

so ∇zF (y, zm(y)) = 0.

Now we show that the reduced Newton method (i.e. Newton’s method on Fr(y))

can be interpreted as a simplified semi-reduced Newton method on F (y, z). This was

implicitly shown by Richards [89] for the classical, nonglobalized Newton iteration.
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Proposition 2.2. Under the assumptions of Lemma 2.1, the reduced method Alg. 2.1

with Hessian model Br = ∇2Fr is equivalent to the simplified semi-reduced method

Alg. 2.3 with model B = ∇2F .

Proof. We need only verify the Schur complement relation (2.12). Differentiating

(2.13), we have

∇2Fr = ∇2
yyF +∇2

yzF ·Dzm. (2.14)

Dzm can be obtained by implicit differentiation of the stationary point condition

∇zF (y, zm(y)) = 0:

∇2
zyF (y, zm(y)) +∇2

zzF (y, zm(y)) ·Dzm = 0 (2.15)

Dzm = −[∇2
zzF ]−1∇2

zyF. (2.16)

Plugging this expression into (2.14) and setting Br = ∇2Fr and B = ∇2F yields

(2.12) as desired.

Now consider the separable case, where F (y, z) = L(A(y)z), but L(µ) is not

necessarily a least squares functional. We derive two simplified semi-reduced methods

for this objective. In the least squares case, these methods are equivalent to the

Kaufman [60] and Golub-Pereyra [45, 47] variants of variable projection, but they

also apply to general nonquadratic L, a case for which no reduced method existed

before. To derive our methods, we note that the variable projection model Hessians

Br have a closed-form normal decomposition: they can be written as Br = XT
r Xr for

some explicit Xr. Accordingly we will seek Hessian models B such that Bs = XT
s Xs

for some closed-form Xs.

We set some notation and conventions before we begin. Let X:,j the jth column

of a matrix X. For any full column rank matrix X, X† = (XTX)−1XT is the

Moore-Penrose psuedoinverse and P⊥X = I − XX† is the orthogonal projector onto

range(X)⊥. Given a function f(u, v) let Df = [∂uf, ∂vf ] denote its Jacobian. To

simplify our formulas we define the quantities µ(y, z) = A(y)z, W = (∇2L)
1/2
µ , and

Ā = WA. We abuse notation by ignoring the implicit dependence of W on y and z,

which allows us to write W∂yjA as ∂yj Ā.

We begin by decomposing the full Hessian of F into two components: ∇2F = G+

E. The G term is the Gauss-Newton Hessian model, G = JTJ , where J = W (Dµ).

The blocks of J are given by

(Jy):,j = (∂yj Ā)z for j = 1, . . . , Ny, Jz = Ā. (2.17)
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The E component is a residual term given by E =
∑

i(∇L)i∇2µi. Note that Ezz = 0

because ∇2
zzµi = 0 for all i.

The first Hessian model we consider will be G. A closed-form normal decomposi-

tion for Gs can be derived by:

Gs = JTy (I − ĀĀ†)Jy = JTy P
⊥
Ā Jy = (−P⊥Ā Jy)

T (−P⊥Ā Jy) = JTs Js, (2.18)

where the last line uses the fact that orthogonal projection is symmetric and idem-

potent, and the minus sign has been introduced for consistency with the variable

projection convention. By Lemma 2.1 this result yields a pair of equivalent reduced

and simplified semi-reduced methods for any L(µ):

Proposition 2.3. The reduced method Alg. 2.1 with Hessian model Br = Gs is

equivalent to the simplified semi-reduced method Alg. 2.3 with model B = G.

In the least squares case we have z = zm(y) = A†b, so Js = −P⊥A (∂yjA)z =

−P⊥A (∂yjA)A†b, and this Js is precisely the reduced Jacobian Jr proposed by Kauf-

man. Thus we have Gs = Gr and the following result, which was proven by Ruhe

and Wedin in [90] for algorithms without globalization:

Corollary 2.4. Kaufman’s variable projection method is equivalent to a simplified

semi-reduced method for separable least squares using B = G.

Next we express the Golub-Pereyra variable projection method as a simplified

semi-reduced method. To do this we need a Hessian model H such that Hs = KT
s Ks,

where Ks is equal to the Golub-Pereyra reduced Jacobian Kr. This is a challenging

problem because the Golub-Pereyra model Hr = KT
r Kr is a closer approximation to

∇2Fr than the Kaufman model Gr, but there is no obvious normally decomposable

H that approximates ∇2F better than the traditional Gauss-Newton model G.

Fortunately the model may be derived by an ingenious technique due to Ruhe and

Wedin. Essentially, their idea is to apply a block Cholesky factorization to ∇2F and

use the factors to help reduce the discrepancy between G and ∇2F . In our notation

the Cholesky factorization used is the UDUT factorization, which is simply the more

familiar LDLT factorization [82] with the conventional variable order reversed. Given

a matrix X, we write its UDUT factorization as X = UX̂UT , where

X̂ =

[
Xs 0

0 Xzz

]
, U =

[
I XyzX

−1
zz

0 I

]
(2.19)
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and Xs = Xyy − XyzX
−1
zz Xzy. Note that the U factor is determined uniquely by its

yz block. Setting X = ∇2F we have Uyz = (Gyz + Eyz)G
−1
zz .

To derive H, consider the product U−1GU−T , which is positive definite and nor-

mally decomposable because G is. If G were the true Hessian U−1GU−T would be

block diagonal, but in reality

U−1GU−T =

[
Gs + EyzG

−1
zz Ezy −Eyz

−Ezy Gzz

]
. (2.20)

Letting Ĥ denote the block diagonal of U−1GU−T , we can define a new positive

definite and normally decomposable Hessian model by setting H , UĤUT . From

(2.19) it immediately follows that

Hs = Ĥyy = Gs + EyzG
−1
zz Ezy. (2.21)

Now we express Hs in the form Hs = KT
s Ks. We have already decomposed

Gs = JTs Js; a similar formula for the second term, EyzG
−1
zz Ezy, is given by

EyzG
−1
zz Ezy = Eyz(Ā

T Ā)−1Ezy = [(Ā†)TEzy]
T [(Ā†)TEzy] = MTM, (2.22)

where we have used the identity (XTX)−1 = X†(X†)T valid for any matrix X with

full column rank. We now have Hs = JTs Js + MTM , where Js = −P⊥
Ā
Jy and M =

(Ā†)TEzy. Surprisingly we may rewrite this as Hs = (Js +M)T (Js +M) because the

cross terms vanish: JTs M = −JTy P⊥Ā (Ā†)TEzy = 0 for P⊥X (X†)T = 0. Therefore, by

setting Ks = Js +M , we have Hs = KT
s Ks as desired.

All that remains is to compute Ks, which we do column-by-column. The jth

column of Js is (Js):,j = (−P⊥
Ā
Jy):,j = −P⊥

Ā
(∂yj Ā)z, while the jth column of Ezy is

given elementwise by

(Ezy)kj =
∑
i

(∇L)i∂zk∂yj(Az)i =
∑
i

(∇L)i(∂ykA)ik = [(∂yjA)T∇L]k, (2.23)

so we have M:,j = (Ā†)T (∂yjA)T∇L. We write this in terms of Ā by defining the

weighted residual r = W−1∇L, so that M:,j = (Ā†)T (∂yj Ā)T r. Thus the desired

formula for Ks’s columns is

(Ks):,j = (Js):,j +M:,j = −P⊥Ā (∂yj Ā)z + (Ā†)T (∂yj Ā)T r. (2.24)
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Again invoking Lemma 2.1, we have shown that

Proposition 2.5. The reduced method Alg. 2.1 with Hessian model Br = Hs is

equivalent to the simplified semi-reduced method Alg. 2.3 with model B = H.

Specializing this result to the least-squares case L(µ) = 1
2
‖µ − b‖2 as before, we

have r = Az − b = AA†b− b = −P⊥A b, and (Ks):,j simplifies to

(Ks):,j = −
(
P⊥A (∂yjA)A† + (P⊥A (∂yjA)A†)T

)
b, (2.25)

which is precisely the Jacobian Kr of the reduced functional F (y, zm(y)) = 1
2
‖−P⊥A b‖2

derived by Golub and Pereyra [45]. Since Kr = Ks, we have Hr = Hs and the desired

equivalence:

Corollary 2.6. The Golub-Pereyra variable projection method is equivalent to a

simplified semi-reduced method for separable least squares using Hessian model H.

2.2.3 Semi-reduced methods as the natural generalization of variable

elimination

Proposition 2.2 and Corollaries 2.4 and 2.6 show that the reduced Newton’s

method and both variants of variable projection can be interpreted as simplified

semi-reduced methods. In addition, Propositions 2.3 and 2.5 define new simplified

semi-reduced methods that generalize variable projection to nonquadratic L(µ).

Unfortunately these algorithms are of more theoretical than practical use, for the

following reasons. First, we still have not dealt with the problem of computing zm(y).

In general there is no closed form for zm(y), and computing it may be so expensive that

the computational burden outweighs any increase in convergence rate over a simple

full or alternating update method. Second, if the domain of `i(µi) is a bounded subset

of R, as is true for the Poisson and several other log-likelihoods, the bounds often must

be enforced via reparametrization or constrained optimization. This adds still more

complexity and in the latter case makes unconstrained optimization inapplicable.

The driving technical insight of this paper is the following: if we forgo the simpli-

fications afforded by using optimal block trial point adjustment and use an ordinary

semi-reduced method instead, all of these barriers and difficulties disappear. Trial

point adjustments need not be optimal, so there is no need for the computationally

expensive zm(y), and constraints can be handled by incorporating trial point ad-

justment and block Gaussian elimination into classical full update methods. Thus,
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semi-reduced methods provide a natural way to extend variable elimination methods

beyond least squares.

2.3 A semi-reduced method for bound constrained and non-

quadratic problems

To illustrate this point, in this section we present a classical method for smooth

bound-constrained problems and turn it into a semi-reduced method. The problem

we wish to solve is

minimize f(x) subject to l ≤ x ≤ u, (2.26)

where −∞ ≤ l ≤ u ≤ ∞ are vectors bounding the components of x ∈ RN , and

f(x) is twice differentiable. The method we present is a trial point adjusted variant

of Bertsekas’s projected Newton method [10, 41]. (In our terminology Bertsekas’s

method is better described as a projected Newton-type method, since it allows for ap-

proximate Hessian models.) We choose this method because it is relatively simple,

its convergence is global and potentially superlinear, and similar second-order gra-

dient projection methods are empirically among the state-of-the-art for a variety of

constrained inverse problems [8, 92,98,105].

The update in the projected Newton-type method is of the form

xk+1 = P(xk − Sk∇f(xk)), (2.27)

where Sk is a scaling matrix which we will assume to be positive definite, and P(w)

is the projection of w onto the box B = {w | l ≤ w ≤ u} given componentwise by

P(w)i , median(li, wi, ui). (2.28)

This iteration is a generalization of the projected gradient method, which restricts Sk

to be a multiple of the identity. Bertsekas showed that the naive Newton-type choice

Sk = (Bk)−1 with Bk ≈ ∇2f(xk) can cause convergence failures, but convergence can

be assured by modifying the naive choice using a very simple active set strategy, in

which the Hessian model Bk is modified to be diagonal with respect to the active

indices.

To describe projected Newton-type methods we will use the following notation.

Let [N ] , {1, . . . , N}, and for any J ⊂ [N ], let vJ = (vi)i∈J denote the subvector
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of v ∈ RN indexed by J and XJ,J = [Xij]i,j∈J the indexed submatrix of X ∈ Rn×n.

Given ε ≥ 0 and x ∈ Rn, we define the active set associated with x by

A(x) = {i ∈ [N ] | (∇f(x)i > 0, xi ≤ li + ε) or (∇f(x)i < 0, xi ≥ ui − ε)}, (2.29)

and the inactive set as its complement, I(x) = [N ] − A(x). Using this notation we

present in Alg. 2.4 the projected Newton-type method with trial point adjustment,

where an identity scaling matrix is chosen on the active set for concreteness. As in the

unconstrained case, the only difference between the semi-reduced method Alg. 2.4 and

the original full update method (found in equations (32)–(37) of [10]) is the addition

of the adjustment operator xd(x): specifically, on the left hand side of line 5 and the

right hand side of line 6 of Alg. 2.4, our method has xd(xp(α
j)) while [10] has only

xp(α
j). Careful examination of the global convergence proof, Proposition 2 in [10],

reveals that, with very minor additions, it also establishes convergence of Alg. 2.4.

Here we review the argument very briefly, with just enough detail to describe how to

adapt it to accommodate trial point adjustment.

Algorithm 2.4 Projected Newton-type method with trial point adjustment.

Require: x0 ∈ RN , δ ∈ (0, 1/2), α ∈ (0, 1)
1: for k = 0, 1, 2, . . . do
2: g = ∇f(xk), Bk = B(xk), A = A(xk), I = I(xk)
3: ∆xI = −(Bk

I,I)
−1gI , ∆xA = −gA

4: Define xp(s) = P(xk + s∆x)
5: Find the smallest j ≥ 0 such that

f(xd(xp(α
j)))− f(xk) ≤ δ

{
gTI (αj∆xI) + gTA(xp(α

j)A − xkA)
}

(2.30)

6: xk+1 = xd(xp(α
j))

7: ε← min(ε0, ‖xp(1)− xk‖)
8: end for

Proposition 2.1. Assume that ∇f(x) is Lipschitz continuous on any bounded set

of RN and the eigenvalues of Bk are uniformly bounded away from zero and infinity

for all k. Then every limit point of Alg. 2.4 is a stationary point of Problem (2.26).

Proof. By contradiction: suppose a subsequence (xk)k∈K of (xk)∞k=0 exists such that

limk→∞,k∈K x
k = x̄, where x̄ is not a critical point. Let sk = αjk denote the step size

chosen at iteration k on line 5; the proof of Proposition 2 of [10] first shows that the

monotonicity of the sequence (f(xk))∞k=0, Lipschitz continuity of ∇f(x), eigenvalue

bound on Bk, and the nonpositivity of the terms on the right hand side of (2.30)
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together imply that lim infk→∞,k∈K sk = 0. Since all the required properties still hold

in our case, this conclusion holds for Alg. 2.4 as well. Next it is shown that, for some

s̄ > 0 independent of k, we have

f(xp(s))− f(xk) ≤ δ{gTI (s∆xI) + gTA(xp(s)A − xkA)} for s ≤ s̄. (2.31)

The computation supporting this claim depends only on the properties of f(x), xp(s),

A, and I, so it still holds for Alg. 2.4. But f(xd(x)) ≤ f(x) for all x, so

f(xd(xp(s)))− f(xk) ≤ δ{gTI (s∆xI) + gTA(xp(s)A − xkA)} for s ≤ s̄. (2.32)

It follows that sk ≥ αJ where J is the smallest nonnegative integer such that αJ ≤ s̄,

contradicting lim infk→∞,k∈K sk = 0.

Careful examination of the proofs in [10] indicates that the other properties of the

projected Newton-type method generally continue to hold for the trial point adjusted

version, but the full details are beyond the scope of this paper.

Since B is only required to have eigenvalues bounded away from 0 and∞, Alg. 2.4

can accommodate a wide variety of Hessian models and regularization strategies. In

our numerical experiments we use Alg. 2.5, which is a special case of Alg. 2.4 and

thus inherits its convergence properties. Alg. 2.5 sets B = B(x) + λI, where B(x)

is a Gauss-Newton Hessian, λI is a Levenberg-Marquardt damping term, and λ is

adjusted at every iteration according to a step quality metric ρ. Levenberg-Marquardt

regularization is useful for guarding against rank-deficient Hessian models [82].

While any linear algebra technique may be used to solve the Newton-type systems

in Algs. 2.4 and 2.5, block Gaussian elimination is of particular interest because of

the role it plays in our semi-reduced framework. The block Gaussian elimination

methods used in our numerical experiments are introduced in the next section.

2.4 Using block Gaussian elimination to exploit separable

structure

One of the key advantages of variable elimination methods is their ability to

take advantage of special problem structure, such as multiple measurement vectors

[61]. Block Gaussian elimination can be used to derive linear solvers with similar

structure exploiting properties. Here we describe two such algorithms which we claim

can provide an advantage over standard methods; these claims are tested in our
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Algorithm 2.5 Damped projected Newton-type method with trial point adjustment.

Require: δ ∈ (0, 1/2), α ∈ (0, 1), λmin, λmax ∈ [0,∞), 0 ≤ ρbad < ρgood ≤ 1
Require: τ ∈ (0,∞), ε0 ∈ (0,∞)
1: ε← ε0
2: for k = 0, 1, 2, . . . do
3: B = B(xk) + λI, g = ∇f(xk), A = A(xk), I = I(xk)
4: If ‖P(xk − g)− xk‖ ≤ τ or k ≥ kmax, stop.
5: Solve BI,I∆xI = −gI . Set ∆xA = −gA.
6: Define xp(s) = P(xk + s∆x)
7: Find the smallest j ≥ 0 such that

f(xd(xp(α
j)))− f(xk) ≤ δ

{
gTI (αj∆xI) + gTA(xp(α

j)A − xkA)
}

8: xk+1 = xd(xp(α
j))

9: ρ = (f(xk)− f(xk+1))/(−1
2
gTI ∆xI)

10: if ρ > ρgood then
11: λ← max(λ/2, λmin)
12: else if ρ < ρbad then
13: λ← min(10λ, λmax)
14: end if
15: ε← min(ε0, ‖xp(1)− xk‖)
16: end for

experiments below.

The first method is a QR method for normal equations, and is thus appropri-

ate for methods employing a Gauss-Newton Hessian model. This approach is most

suited for highly ill-conditioned systems, such as those arising from exponential fitting

and other difficult problems traditionally tackled by variable projection. Generalized

Gauss-Newton Hessian models for nonquadratic likelihoods can be handled by this

method [19]. The second method is for problems where z is very high dimensional (a

vectorized image or volume array for example), while y is relatively low-dimensional.

It is similar to the linear algebra algorithms used in the reduced update optimizers

defined in [26, 106]. Unlike these algorithms, which are designed for specific least

squares optimization tasks, our algorithm can be used in any Newton-type optimizer,

including ones that handle Poisson likelihoods or bound constraints.
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2.4.1 Solving normal equations by block decomposed QR factorization

We now present a method for solving normal equations by block Gaussian elimi-

nation and QR factorization. Normal equations are systems of the form

JTJ∆x = −JT r, (2.33)

where J ∈ Rm×N . The Newton-type system B∆x = −g has this form when we use a

Gauss-Newton Hessian model or its generalization for non-quadratic likelihoods [19].

Assuming B = JTJ , the reduced and damped Gauss-Newton system (BI,I+λI)∆xI =

−gI from Alg. 2.5 can also be written in this form by deleting columns from J and

augmenting the result with the scaled identity matrix
√
λI [82].

Cholesky factorization is the fastest way to solve normal equations, but rounding

error can amplify to unacceptable levels when J is highly ill-conditioned, as in some

curve fitting problems. Greater accuracy can be gained at the expense of additional

computation by QR factorizing J . Assuming J is full rank, we will write the (thin)

QR factorization as [Q,R] = qr(J), where Q ∈ Rm×N is an orthogonal matrix and

R ∈ RN×N is an invertible upper triangular matrix. Substituting J = QR into (2.33)

and noting that QTQ = I, we obtain the solution

∆x = −R−1QT r. (2.34)

In our method we solve (2.33) by QR factorizing not the system itself, but its block

decomposed form (2.7). We begin by putting (2.7) in normal equation form. From

(2.18) we have Bs = JTs Js, where Js = P⊥JzJy. Similarly we have −gy + ByzB
−1
zz gz =

−JTs r. From these results we can write (2.7) as a pair of normal equations:

(JTs Js)∆y = −JTs r (2.35a)

(JTz Jz)∆z = −JTz (r + Jy∆y). (2.35b)

To compute Js, we need to compute P⊥Jz . This may be done using the QR factorization

of Jz: if X = QR is the QR factorization of a matrix X with full column rank, we

have

P⊥X = I −QQT . (2.36)

Using this result we can form Js and solve the system as described in Alg. 2.6.

Alg. 2.6 is useful when Jz has structure that makes its QR factorization easier to

compute than that of the full J . As an example, suppose that Jz is a block diagonal
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Algorithm 2.6 Solution of JTJ∆x = −JT r by block decomposed QR.

1: [Qz, Rz] = qr(Jz)
2: [t, T ] = QT

z [r, Jy]
3: Js = Jy −QzT
4: [Qs, Rs] = qr(Js)
5: ∆y = −R−1

s QT
s r

6: ∆z = −R−1
z (t+ T∆y)

matrix with blocks J
(i)
z for i = 1, . . . , n. Such matrices arise in separable problems

with multiple measurement vectors. In this case Qz and Rz are block diagonal and

Alg. 2.6 can be adapted to exploit this, as shown in Alg. 2.7. Note that this algorithm

never generates the large sparse matrix J , but only the nonzero blocks J
(i)
y and J

(i)
z ,

which are computed just when they are needed. We expect this resource economy

to result in reduced memory usage, higher cache efficiency, and ultimately a faster

solution.

Algorithm 2.7 Alg. 2.6 specialized to the case of block diagonal Jz.

1: for i = 1, . . . , n do
2: Compute J

(i)
y , J

(i)
z

3: [Q
(i)
z , R

(i)
z ] = qr(J

(i)
z )

4: [t(i), T (i)] = [Q
(i)
z ]T [r, Jy]

5: J
(i)
s = J

(i)
y −Q(i)

z T (i)

6: end for
7: [Qs, Rs] = qr(Js)
8: ∆y = −R−1

s QT
s r

9: for i = 1, . . . , n do
10: ∆z(i) = −[R

(i)
z ]−1(t(i) + T (i)∆y)

11: end for

2.4.2 Mixed CG/Direct method for systems with one very large block.

In some separable inverse problems, the number of linear variables z is too large

for direct solution by Cholesky or QR factorization. This is particularly true in image

and volume reconstruction problems: if each pixel of a 256×256 pixel image is consid-

ered a free variable, which is very modest by imaging system standards, the relevant

Jacobians and Hessians will be 65536× 63356 and usually impossible to factorize or

even store in memory. In this case conjugate gradients (CG) or other iterative linear

algebra methods must be employed to solve the Newton-type systems B∆x = −g.

These methods only need functions that compute matrix-vector products with B,
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which may be much less memory consuming if B has special structure. Unfortu-

nately the matrix B is often ill-conditioned, which can lead to slow convergence of

CG. In some cases, Bzz is well conditioned, but the additional blocks involving the

nonlinear variables y result in a poorly conditioned B. A method that uses iterative

linear algebra only on the subblock Bzz has the potential to be more efficient.

Such a method may be derived by solving B∆x = −g in the block decomposed

form (2.7). We first solve (2.7a) by forming the small matrix Bs = Byy −ByzB
−1
zz Bzy

column-by-column. We solve for ∆y by Cholesky factorizing this matrix, then solve

(2.7b) by CG to obtain ∆z, as summarized in Algorithm 2.8. To understand when

Alg. 2.8 may be more efficient than full CG, we roughly estimate and compare the

costs of each algorithm. Let t be the total floating point operations (flops) required to

compute a matrix-vector product with B. We split t into t = ty + tz, where tz is the

cost of a matrix-vector product with Bzz, and ty is the cost of computing products

with all three remaining blocks Byy, Byz, and Bzy. Then solving B∆x = −g requires

Tcg = k(ty + tz) flops, where k is the number of iterations required to achieve some

suitable accuracy.

Algorithm 2.8 Mixed CG/Direct solution of B∆x = −g.

Require: Functions that compute matrix-vector products with Byy, Byz, Bzy, Bzz.
Inverse matrix-vector products B−1

zz w are computed by conjugate gradients.
1: for i = 1, . . . , Ny do
2: (Bs):,i = Bsei
3: end for
4: Calculate a Cholesky factorization RTR = Bs

5: gr = gy −ByzB
−1
zz gz

6: ∆y = R−1R−Tgr
7: ∆z = −B−1

zz (gz −Bzy∆y)

In Alg. 2.8, we assume that computing Bs is the dominant cost and the other

computations are negligible, which is reasonable if Ny is significantly greater than 1.

If kz is the number of CG iterations required to solve Bzzu = w to suitable accuracy,

then the cost of computing each column of Bs is ty + kztz, yielding a total cost of

Tmix = Ny(ty + kztz) for all Ny columns. By setting Tmix ≤ Tcg, we see that Alg. 2.8

will outperform full CG when the iterations k required by full CG exceeds a certain

threshold:

k & Ny
ty + kztz
ty + tz

. (2.37)

The right-hand side is smallest when ty is much larger than tz, kz, and Ny is relatively

small; this corresponds to the case where Bzz is relatively well conditioned, products
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with Bzz are cheap, and there are not too many parameters in y. If ty � tz, then

the threshold becomes k & Ny. This is the minimum number of iterations we would

expect from full CG if the eigenvalues of Byy are isolated, so Alg. 2.8 should perform

at least as well as full CG in this limit. However, if the spectrum of Bzz and the other

blocks combines unfavorably, the required iterations k could be much larger, in which

case Alg. 2.8 should be more efficient.

Even when (2.37) does not hold, Alg. 2.8 may still be desirable for other reasons.

For example, if B is much more ill-conditioned than Bzz, round-off error will be less

severe in Alg. 2.8 than in full CG because direct linear algebra is less vulnerable to bad

conditioning. Also, Alg. 2.8 is highly parallelizable because each column of Bs can

be computed completely independently of the others, while full CG is an inherently

sequential algorithm.

2.5 Numerical experiments

In this section we show how semi-reduced methods can help us solve practical

scientific problems faster and more robustly. To this end, we consider two model

inverse problems relevant to scientific applications. In these problems, the use of

Poissonian likelihoods and/or bound constraints greatly increases solution accuracy,

so the unconstrained least squares is not preferable and reduced update methods are

not appropriate. They are also well-suited for the linear algebra methods derived

in §2.4. The first problem is an exponential sum fitting problem involving multiple

measurement vectors, and the second is a semiblind deconvolution problem from solar

astronomy. We also solve a third problem, which is a toy model of the second problem.

Its purpose is to show when trial point adjustment can be useful, since (as discussed

below) we did not find it particularly useful in the first two problems.

For each of the three problems, we selected an appropriate semi-reduced method

and compared it to a standard full update method. In the first two problems, the

full update method was the projected Newton-type method Alg. 2.5 with no block

Gaussian elimination and no block trial point adjustment. This approach was com-

pared with two alternatives: Alg. 2.5 with elimination off and adjustment on, and

Alg. 2.5 with elimination on and adjustment off. (Elimination and adjustment act

independently, so testing a fourth condition with both techniques switched on yields

little additional information.) Block Gaussian elimination was performed using one

of the methods derived in §2.4, while block trial point adjustments were obtained

by performing a few iterations of Alg. 2.5 to approximately solve minz∈Z F (yk, z),
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starting from the current iterate zk. The parameters were set to δ = 10−4, α = 0.2,

λmin = 10−20, λmax = 1020, ε0 = 2.2 · 10−14, ρgood = 0.7, ρbad = 0.01, τ = max(2.2 ·
10−15, ‖P(x0 − ∇F (x0)) − x0‖/108) where x0 is the initial point. All of our experi-

ments were performed in MATLAB R2011a on a MacBook Pro with 2.4 GHz Intel

Core 2 Duo processor.

Our first finding was that trial point adjustment did not help us to solve the

first two problems faster. Adjustment sometimes reduced backtracking and the to-

tal number of outer iterations needed, but not consistently or dramatically enough

to outweigh the cost of solving inner adjustment subproblems at every iteration.

As a result, total function evaluations and total runtime generally increased sig-

nificantly when adjustment was used. For example, over 20 randomly sampled in-

stances of the problem in §2.5.1, we compared a stringent inner solver (kmax = 100,

τ = ‖P(zk −∇zF (yk, zk))− zk‖/108) to no inner solver at all; in the former case the

total function evaluations to solve the problem ranged from 200 − 600, while for no

inner iterations the range was 60−100. We tried various intermediates between these

two extremes—intermediate values of τ , lower values of kmax, stopping early if the

Armijo condition was satisfied before the inner iteration limit—but we always found

that it was most efficient to simply set kmax = 0, meaning no trial point adjustment.

For this reason we do not report any further on the effects of trial point adjustment

in the first two problems. Instead we focus on the effects of block Gaussian elimination

in the first two problems, and consider adjustment’s effects only in the third problem.

Note that since high-precision inner optimizations generally cause inefficiency in the

first two problems, extensions of variable elimination that require them (such as

[32, 96]) would be vulnerable to inefficiency in these problems, even if they could

handle nonquadratic objectives.

2.5.1 Exponential sum fitting

In exponential sum fitting problems, the expected value µ(t) of a physical quantity

at time t is assumed to be the sum of c exponentially decaying components with decay

rates yj and nonnegative weights zj:

µ(t) =
c∑
j=1

zj exp(−yjt). (2.38)

In many cases the decay rates do not vary from experiment to experiment, but the

weights z may vary [80]. Thus, if n experiments are performed, the expected decay
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in the kth experiment is

µk(t) =
c∑
j=1

Zjk exp(−yjt), k = 1, . . . , n. (2.39)

We assume that a set of m Poisson-distributed observations B1k, . . . , Bmk of each

µk(t) are made at t = t1, . . . , tm:

Bik ∼ Poisson(µk(ti)), for
i = 1, . . . ,m

k = 1, . . . , n.
(2.40)

If the columns of B and Z are stacked on top of each other to form vectors b and z,

then the associated maximum likelihood problem is

minimize
y,z

L((In ⊗ A(y))z) subject to z ≥ 0, (2.41)

where A(y)ij = exp(−yjti), ⊗ is the Kronecker product, In is the n × n identity

matrix, and L(µ) is the Poisson negative log-likelihood.

Using this model we generated synthetic data which simulated the problem of

determining several decay rates from a large collection of relatively low-count time

series. Each time series was generated from c = 4 decaying components with rates

(y1, y2, y3, y4) = (1, 2, 3, 4) and m = 1000 uniformly spaced time samples from t = 0

to 5. The number of measurement vectors was n = 100, and the nonnegative weights

were randomly generated according to zjk = 10 exp(1.2Zjk), where the Zjk were ran-

dom numbers from the standard normal distribution. A typical curve generated by

this model is shown in Fig. 2.2. While this simple model does not directly represent

a real physical problem, it generates problems similar in mathematical form, scale,

and difficulty to problems encountered in real data analysis [78, 80]. In particular,

each component has a few measurement vectors in which it dominates, but no com-

ponent is ever observed in complete isolation. The persistent mixture of components

with similar rates and the low signal-to-noise ratio combine to make this problem

formidable.

As we mentioned above, trial point adjustment was not useful in this problem, so

here we compare Alg. 2.5 in two modes: a semi-reduced mode with block Gaussian

elimination, and a full update mode without it. In both cases the Hessian model was

computed using the Gauss-Newton method [19,108], and the resulting Gauss-Newton

system was solved by QR. (Direct Cholesky factorization of the normal equations
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is not sufficiently accurate due to the notoriously poor conditioning of exponential

fitting problems [45].) In the standard mode, the full normal equations were solved

directly using MATLAB’s built-in sparse QR routine, while in the block Gaussian

elimination mode, we used a MATLAB implementation of Alg. 2.7. MATLAB sparse

QR employs the state-of-the-art SuiteSparseQR package [33]. To obtain the best

possible performance from SuiteSparseQR, matrix-vector products with the Q factor

were performed implicitly, and a permutation was applied to switch the blocks Jy

and Jz. (The permutation speeds up the algorithm by an order of magnitude, as

it enables the underlying Householder triangularization method to preserve the ma-

trix’s sparsity pattern.) Note that Alg. 2.7 has a less efficient implementation than

SuiteSparseQR because the loops in Alg. 2.7 run relatively inefficiently in MATLAB,

while SuiteSparseQR is written in C++.

Our main finding was that block Gaussian elimination computed steps several

times faster than sparse QR with no loss of accuracy. In a typical random instance of

the problem described above, step computation by sparse QR factorization of the full

Jacobian required 0.38 seconds (s), while Alg. 2.7 solved the system in 0.10 s, a roughly

4-fold improvement. Since most of the algorithm’s time is spent in step computation,

the minimum was found significantly faster using block Gaussian elimination: in this

instance, the standard mode took 18 s, while using Alg. 2.7 took 6 s. The accuracies

of the two modes were functionally indistinguishable, as the objective values F (yk, zk)

output in each mode were the same to at least 8 significant figures. From this we

infer that the two algorithms do essentially the same mathematical operations, but

the computer finishes the operations faster using Alg. 2.7.

The speed difference can be explained by two factors. First, Alg. 2.7 does not

build the full J matrix, but factorizes of the n diagonal blocks of Jz just as they are

needed. In contrast, the sparse QR algorithm must build all of J first, which takes

60 − 80% of the CPU time required to actually solve the system. In Alg. 2.7 the

blocks of Jz are built and factorized just-in-time, so there is no need to build a large

sparse matrix. Second, Alg. 2.7 solves the overall system by solving a large number

of small and very similar subsystems, which is more CPU and cache-friendly than

operating on a large sparse matrix.

The formidable difficulty of this problem, and the need for a bound-constrained

Poissonian solver, may be appreciated by comparing the accuracy of the Poissonian

method to a popular alternative for Poissonian problems, the variance-weighted least
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Figure 2.2: Left: Sample data from the sum-of-exponentials model. The four de-
caying components (blue dotted lines) have decay rates yj = j for
j = 1, 2, 3, 4, and when summed together with weights zj, these com-
ponents create the expected intensity curve µ(t) (solid black line). The
Poisson-distributed samples bi of µ(t) (red dots) are taken at a spacing
of ∆t = 0.005. The low available counts suggest a Poisson likelihood
should be used. Right: Comparison of fitted and true decay rates yj
for j = 1, 2, 3, 4 using variance-weighted nonnegative least squares and
Poisson likelihood. The bar heights are the median values found by solv-
ing 100 random problem instances, and the error bars represent median
absolute deviations.

squares method. In the variance-weighted least squares method one solves

minimize
y,z

‖W [(In ⊗ A(y))z − b]‖2
2 subject to z ≥ 0, (2.42)

where W is a diagonal matrix with Wii = 1/max(b
1/2
i , ε), and ε = 1 is a small

constant used to avoid division by zero [69]. We generated 100 random instances

of the exponential sum fitting problem described above, and solved each using the

Poissonian approach (2.41) and the weighted least squares approach (2.42), in both

cases using Alg. 2.5. The decay vector y resulting from each experiment was sorted

to account for the problem’s permutation ambiguity, resulting in 100 estimates of

y1, y2, y3, and y4 from each method. We then calculated the median and median

absolute deviation of the 100 estimates of each yi from each method. (We used the

median as a summary statistic because it is invariant to reparametrization of y and

robust to the occasional failures of both methods.) The results are shown in Fig. 2.2,

right, and it is clear that the Poissonian solver’s decay rates are far more accurate.
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2.5.2 Multiframe semiblind deconvolution

Image deconvolution is a linear inverse problem in which we have an image b

degraded by convolution with a known point spread function (PSF) h, and we wish

to undo the degradation to obtain the unknown clean image z. Assuming that each

of these variables are 2D arrays supported on a square Ω ∈ Z2, we can write the

problem as

Az + ε = b, (2.43)

where A : RΩ → RΩ is the convolution operator: Az = h ∗ z, and we assume periodic

boundary conditions for simplicity. In multiframe blind deconvolution, there are

several images and PSFs and the PSFs depend on unknown parameters, so that we

have

A(y(k))z(k) + ε(k) = b(k) for k = 1, . . . , n. (2.44)

If we have a parametric model of the PSFs, the problem is called semiblind.

Here we consider a simplified, synthetic version of a real multiframe semiblind

deconvolution problem from solar imaging, which is described in [94]. In this prob-

lem, a spaceborne telescope observing the Sun in the extreme ultraviolet wavelengths

collects images which are are contaminated by stray light. The stray light effect is

well-modeled by convolution with a single unknown parametric PSF. The telescope

observes n images of the Moon transiting in front of the Sun, and while the Moon

does not emit in the extreme ultraviolet (Fig. 2.3, top middle), stray light from the

Sun spills into the lunar disk (bottom middle). Given the supports M (k) ⊂ Ω of the

lunar disks within each image, our task is to determine the PSF by solving

minimize
y,{z(k)}

n∑
k=1

‖A(y)z(k) − b(k)‖2 subject to
z(k) ≥ 0

z
(k)

M(k) = 0
for k = 1, . . . , n. (2.45)

The PSF is modeled using two components. The PSF core is modeled by a single

pixel with unknown value α ∈ (1/2, 1], while the wings are modeled by a radially

symmetric piecewise power law pβ(r) depending on unknown parameters β:

hy(v) = αδ0(v) + (1− α)pβ(‖v‖2), for v ∈ Ω, (2.46)

where δ0 is the Kronecker delta. To define the piecewise power law, we set pβ(0) = 0,

then for r > 0 we set logarithmically spaced breakpoints (ri)
S
i=0 defining S = 12

subintervals, starting from r0 = 1 and ending at rS =
√

2
2
s where s is the sidelength

of the square Ω. On each subinterval [ri−1, ri), the formula is given by pβ(r) ∝ r−βi ,
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Figure 2.3: Overview of the solar semiblind deconvolution experiment. Top left: The
ground truth PSF profile ptrue(r) in log-log scale, where it is piecewise
linear. Bottom left: The ground truth PSF generated by the profile above.
Top middle: one of the three clean lunar transit images, with lunar disk in
the bottom left corner (logarithmic scale). Bottom middle: the observed
image formed by convolving the top image with the PSF (logarithmic
scale). Right: semilog plot of objective versus iteration (top) and CPU
time (bottom) for the standard mode of Alg. 2.5 and the mode employing
the mixed CG/Direct method.

where βi ≥ 0, and β = (β1, . . . , βS). The proportionality constants are determined

by a continuity constraint between subintervals and the normalization constraint∑
v pβ(‖v‖) = 1. The free parameters of the PSF model hy are then y = (α,β) ∈ RNy ,

where Ny = 1 + S = 13. The true profile pβ(r) was generated using β values similar

to those in [94], and is shown in log-log scale in (Fig. 2.3, top left), with the resulting

PSF directly below.

We used data from the STEREO-EUVI satellite to generate n = 3 synthetic lunar

transit images of size 256× 256. To simulate the Moon’s transit, a disk of pixels was

set to zero in each image. These images were convolved with the ground truth PSF

to create the blurry observations, and no noise was added for simplicity. (Noise is not

a very important issue in this problem because the real data have very little noise at

this resolution, deconvolution with the PSF is well-conditioned for α > 1/2, and the

expected range of α is well above this.)

As before, Alg. 2.5 was run in two modes: a semi-reduced mode employing Gaus-

sian elimination, and a standard one without. In the standard mode of Alg. 2.5, the

search direction was calculated by CG on the full system B∆x = −g. Preliminary

experiments revealed that the full CG algorithm was very slow. However the situation

improved substantially when we used a scalar preconditioner cI on the y block, where
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c = 105 was found to work well. All CG iterations were stopped at a relative residual

tolerance of 10−6 and maximum iteration ceiling 40, as these values worked relatively

well for the full CG algorithm. In the block Gaussian elimination mode, the search

direction was calculated using the mixed CG/Direct algorithm, Alg. 2.8. The mixed

CG/Direct algorithm required no special tuning or preconditioners.

Our main finding was that the block Gaussian elimination mode using Alg. 2.8

converged quite quickly and robustly, while the standard mode experienced a long

period of sluggish convergence after an initially fast descent (Fig. 2.3, right). The

average CPU time per step was about the same in each of the two modes, so we

can attribute the block Gaussian elimination mode’s superior performance to better

search directions, which enabled convergence in far fewer iterations than the full CG

mode.

The better search directions of the block Gaussian elimination mode can be ex-

plained by considering the unusual spectrum of the Gauss-Newton Hessian. It has

two very different components: a large cluster of ≈ Nz near-unity eigenvalues due to

the very well-conditioned Bzz block, and a sprinkling of ≈ Ny eigenvalues contributed

by the other three blocks. The latter are less tame: they can easily spread over 15

orders of magnitude and move unpredictably as the iterations progress.

Naively, we might expect full CG to make short work of such a system. We simply

apply a scalar preconditioner to the badly behaved blocks involving ∆y, pushing the

Ny scattered eigenvalues to lie above the Nz cluster. Then the spectral theory of

CG predicts convergence in Ny + kz iterations, where kz is the number of iterations

required to make the CG spectral polynomial nearly zero on the Nz cluster [101]. We

expect kz to be small because the Nz cluster is very tightly centered around unity.

In practice, however, it is difficult to know in advance where the mobile eigenvalues

will be, and their enormous spread raises issues of rounding error. Thus it is difficult

to get good solutions out of full CG, and the search directions suffer, causing sluggish

convergence. In constrast, the mixed CG/Direct algorithm applies CG to the well-

conditioned Bzz block alone, and deals with the other blocks by direct linear algebra.

Since direct linear algebra is much less susceptible than CG to ill-conditioning and

rounding error, the result is high-quality search directions and quick convergence.

2.5.3 A model semiblind deconvolution problem for block trial point ad-

justment

Given the failure of trial point adjustment to speed up the solution of the previous

two problems, the reader may wonder if it has any application beyond its theoretical
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role in the connection between full and reduced update methods. The literature

suggests that adjustment certainly can increase convergence rate and robustness [44,

67, 84, 90, 97]. However the speed gains relative to standard methods are highly

variable: adjusted methods are slower in our experiments, a factor of 2 or 3 times

faster in certain image processing problems, and multiple orders of magnitude faster

in some difficult curve fitting problems. Clearly adjustments must be adapted to the

problem at hand, but it is difficult to predict when it will be useful. Here we present a

toy semiblind deconvolution problem similar to the one solved in the previous section,

and show that trial point adjustment is valuable for solving this problem in the most

difficult cases.

As in the solar problem, our toy problem involves semiblind deconvolution of

an extended, uniformly bright object which has been convolved with a long-range

kernel. The true image ut and kernel ht are both 1-D signals of length m supported

on {−j, . . . , j}, where m = 2j + 1. They come from single-parameter signal families

given by hy(p) = yδ0(i) + (1 − y) 1
m

1(i) and uz(i) = z · 1S(i), where 1S(i) is the

indicator for the set S = {−`, . . . , `} of size s = 2` + 1, 1(i) is the constant ones

function. Letting (yt, zt) denote the unknown true parameter values, the problem is to

determine (yt, zt) from the blurry observation f = ht ∗ut, where periodic convolution

and no noise is assumed. The values of yt and zt can be found by minimizing the

difference between hy ∗ uz and f with respect to some loss function, which we choose

as the Huber loss

`(µ) =

1
2
µ2 |µ| ≤ θ

θ(|µ| − θ
2
) |µ| > θ

(2.47)

with threshold θ = 0.3. We choose this loss function simply because it is a common

nonquadratic loss and the optimization phenomenon of interest occurs when it is used.

Noting that physically we must have 0 ≤ y ≤ 1 and z ≥ 0, we obtain the optimization

problem

min
0≤y≤1,z≥0

{
F (y, z) ,

∑
i

`((hy ∗ uz − f)i)

}
. (2.48)

A simple formula for F (y, z) can be found by observing that both the prediction hy∗uz
and f take only two values. Letting ρ = s/m be the ratio of the object support to

signal size, q1(y, z) = yz + (1 − yz)ρ the predicted value of the blurry image on the

support, q2(y, z) = (1 − y)zρ the predicted value off the support, and qti = qi(y
t, zt)

for i = 1, 2, we have

F (y, z) =
m

2

(
ρ`(q1(y, z)− qt1) + (1− ρ)`(q2(y, z)− qt2)

)
. (2.49)
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The m/2 scale factor does not affect the location of the minimum nor the path of

any of the optimization algorithms we consider here. Therefore, for our purposes, the

parameter ρ is effectively the only free parameter in the problem family. We use the

values ρ = 10−2, 10−6 to create two objectives whose graphs are depicted in Fig. 2.4,

far left. As ρ→ 0, the term ρ`(q1(y, z)−qt1) vanishes, the (1−ρ)`(q2(y, z)−qt2) becomes

dominant, and the objective landscape becomes a narrow, hyperbolic trench.

We solved this problem at both values of ρ, and for each value we used Alg. 2.5 in

a full update mode (without trial point adjustment) and a semi-reduced mode (with

trial point adjustment). In the latter case, the block trial point adjustment used

was a single iteration of Alg. 2.5 to minimize F (y, z) in z with y fixed. Algorithm

parameters were chosen as in the previous section.

The paths taken by the full and semi-reduced methods are shown in Fig. 2.4,

center left and right. We observe that the methods take nearly identical paths when

ρ = 10−2, but when ρ = 10−6 the full update method is forced to take very small

steps. At far right, the distance to the minimum, ‖(yk, zk) − (yt, zt)‖2, is plotted

versus iteration k for each method. The superior convergence rate of the semi-reduced

method is clear when ρ = 10−6.

The behavior of each algorithm can be understood by considering the geometry of

the steps it takes. The full update method takes steps along straight lines. Straight

lines cannot follow a curved trench for long, so there is an upper bound on the size of

an admissible step. As ρ → 0, the trench tightens and the admissible steps become

very small, so that progress is very slow. The semi-reduced method takes a ‘dogleg’

step as illustrated in Fig. 2.1, which enables it to stay in the valley. (Here dogleg

refers to the appearance of the step alone, with no relation to the dogleg step used in

trust region methods.)

To avoid the small admissible step issue that stymies the full method, it is critical

that adjustment be done before the trial point is evaluated. This is the key feature

distinguishing semi-reduced methods from other methods, such as simple alternation

between a full update and a partial update. Other strategies, such as nonmonotone

line search [114] and greedy two-step methods [30], have a similar step structure

and could also work on this problem; however it is unclear if they can match the

semi-reduced method’s complete insensitivity to the value of ρ.

It is important to note that the phenomenon we have described here does not occur

for all loss functions `(µ). For example, we found that if the Poisson log-likelihood

is used, the objective landscape does not have such a tight curved valley, the full

update method solves the problem quite efficiently, and the semi-reduced method’s

40



0

1

2
objective

z

full semi−reduced

0

2

4
error

0 2 4
0

1

2

y

z

0 2 4

y

0 2 4

y

50 100
0

2

4

iter

Figure 2.4: Comparison of full and semi-reduced methods on a toy blind deconvo-
lution problem. Row 1: Plots of F (y, z) for ρ = 10−2 (top) and 10−6

(bottom), logarithmic greyscale. The white crosses mark the minimum
at (yt, zt) = (0.7, 1), where F = 0. Center left and right: The it-
erates of the full and semi-reduced methods for each ρ value, starting
from (y0, z0) = (0.02, 0.02). Far right: semilogarithmic plot of the error
‖(yk, zk) − (yt, zt)‖2 versus iteration k for the full method (dashed line)
and semi-reduced method (solid line).

inner iterations expend effort without benefit. Curved valleys are thus an occasional

problem with potentially severe efficiency consequences. The semi-reduced framework

seems appropriate for dealing with such a problem, since one has the option to perform

inner descent iterations only when necessary.

2.6 Conclusion

Reduced update optimization methods, which are based on variable elimination,

have been found to be particularly fast and robust in certain difficult separable inverse

problems. Unfortunately, using them in problems beyond unconstrained least squares

presents serious theoretical and practical difficulties, in particular the need for expen-

sive optimal trial point adjustments and complex derivatives of a reduced functional.

We have described a new class of semi-reduced methods which interpolate between

full and reduced methods. Semi-reduced methods share the desirable characteristics

of reduced methods while being flexible enough to avoid their downsides. A key ad-

vantage of the semi-reduced framework is the flexibility to use adjustments where

they are useful and avoid them where they are not, all within a single convergent
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method.

We began by reinterpreting reduced methods as full update methods that have

been modified and simplified. We showed that if block Gaussian elimination and

an optimal block trial point adjustment are used within a full update method, the

adjustment’s optimality renders certain computations unnecessary. Removing these

unnecessary computations yields a simplified method that turns out to be equivalent

to a reduced method. To confirm that this reinterpretation of reduced update methods

is correct and generally applicable, we derived the well-known reduced update Newton

and variable projection methods using our modification and simplification process.

We defined semi-reduced methods by omitting the final simplifications, which frees us

from the need to perform expensive optimal block trial point adjustments. We then

incorporated block Gaussian elimination and trial point adjustment into an algorithm

for general bound constrained problems, and showed that its convergence follows

almost immediately from the convergence theorem for the original method. Finally,

we showed that many of the structure-exploiting properties of variable elimination

can be obtained by using appropriate block Gaussian elimination algorithms.

Block Gaussian elimination is suited for problems where the Hessian model’s Bzz

subblock is block diagonal, circulant, banded, or has other exploitable structure. We

described two situations where we expected block Gaussian elimination to outperform

a standard all-at-once method, and these expectations were borne out in numerical

experiments on realistic problems derived from the scientific inverse problem liter-

ature. It is notable that both of the methods we presented involve the solution of

many independent subproblems and are thus ideal candidates for parallelization.

Block trial point adjustment is appropriate when we expect the graph of F (y, z) to

contain a narrow, curved valley. Trial points from full update methods tend to leave

the valley and thus will be rejected unless a trial point adjustment is used to return

to the valley. In our first two numerical experiments trial point adjustments turned

out to be computationally wasteful, so it was critical that we had the flexibility to

perform suboptimal adjustments or even none at all (which turned out to be the best

option). In our third experiment we presented a reasonable toy inverse problem where

the curved valley effect was significant enough to warrant trial point adjustment, but

the parameter values where this occurred were somewhat extreme. Since the curved

valley effect is important in some real problems [30, 67], a better understanding of

precisely when it occurs would be useful.
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CHAPTER 3

Correcting Camera Shake by Incremental Sparse

Approximation

3.1 Introduction

A fundamental problem in image processing for handheld cameras is the correction

of blur caused by movement of the camera during the exposure. This chapter is

concerned with a new method for blind deblurring of images corrupted by camera

shake.

This problem is very different from the solar imaging problem discussed in the

next chapter, and must be treated with very different signal models and optimization

methods. In the solar problem, motion of the imaging instrument is not an issue

and blur arises from optical imperfections that handheld cameras are not subject to.

Solar blur kernels have a support comparable to the full image, which is far too large

for fully nonparametric modeling. However, they are sufficiently regular and well-

understood to be reasonably approximated by parametric modeling. Information

about the kernel comes from special events where the true image is partially known.

The resulting optimization problems are smooth, but their ill-conditioned and highly

non-diagonal Hessians cause alternating and even full update methods to converge

slowly, making reduced and semi-reduced methods preferable.

Camera shake kernels have a relatively small but highly irregular support and

are generally modeled fully nonparametrically, leading to a much larger set of kernel

parameters than in the solar problem. Information about the kernels is extracted

by assuming that the image contains a collection of objects separated by a sparse

set of sharp edges. The sparse edge assumption is typically modeled mathematically

A version of this chapter has been accepted for publication in ICIP 2013 with co-authors Anna
C. Gilbert and Alfred O. Hero III.
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by a sparsity-promoting `p prior on the edges, leading to nonsmooth optimization

problems. The nonsmoothness, nonconvexity, and large number of kernel parame-

ters make this problem difficult to address by any optimization method other than

alternating update.

A camera generally does not record how it was moved during an exposure, so the

correction of camera shake is a blind deconvolution problem: we are given a blurry

image y and must determine an estimate x of the unknown sharp image xtrue without

knowledge of the blur kernel. In the simplest model of blur, y is formed by convolving

xtrue with a single blur kernel ktrue and adding noise n:

y = ktrue ∗ xtrue + n. (3.1)

This convolution model assumes that ktrue does not change with position, an as-

sumption which is frequently violated due to slight camera rotations and out-of-plane

effects [71]. Still, the uniform model works surprisingly well and methods for it can

be extended to handle nonuniform blur [25,109].

The camera shake blind deconvolution problem is highly underdetermined and

additional assumptions must be made to obtain a solution. These assumptions are

often imposed most conveniently by moving the problem into a filter space. We define

filters {fγ}Lγ=1 and set yγ = fγ ∗ y and xtrue
γ = fγ ∗ xtrue, so that

yγ = ktrue ∗ xtrue
γ + nγ (3.2)

for γ ∈ [L] = {1, . . . , L}. Defining xtrue = {xtrue
γ }Lγ=1, y = {yγ}Lγ=1, and (k ∗ xtrue)γ =

k ∗ xtrue
γ , we can write the filter space problem compactly as

y = ktrue ∗ xtrue + n. (3.3)

The simplest nontrivial filter space is gradient space, where L = 2 and f1 = [1,−1], f2 =

[1,−1]T , but there are many other possibilities. Determining x from a filter space

representation x often does not work well, so typically one obtains an estimate k of

ktrue and deconvolves y with k to get x [71].

Bayesian inference is a convenient framework for imposing prior assumptions to

regularize blind deconvolution [21]. By assuming some distribution of n we obtain a

likelihood function p(y | k ∗x) which gives the probability that the data y arose from

a given pair (k,x). We then choose priors p(k) and p(x) and compute the posterior
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distribution

p(k,x |y) ∝ p(y | k ∗ x)p(x)p(k). (3.4)

Estimates of x and k may be obtained by summary statistics on p(k,x |y). We call

the mode of p(k,x |y) the joint maximum a posteriori (MAP) estimator, while the

mode of the marginal p(k |y) =
∫
p(k,x |y)dx is the kernel MAP estimator. Most

blind deconvolution methods are nominally MAP estimators but do not actually find

a global minimizer, as this is typically intractable and may even be counterproduc-

tive. We refer to any method organized around optimizing a posterior as a MAP

method, while methods that actually find a global minimum will be called ideal

MAP methods. Joint MAP methods typically attempt to minimize the cost func-

tion F (k,x) = − log p(k,x |y), which may be written (up to an irrelevant additive

constant) as the sum of a data misfit and two regularization terms,

F (k,x) = L(k ∗ x) +Rx(x) +Rk(k), (3.5)

where each of these functions may take the value +∞ to represent a hard constraint.

Kernel MAP estimation is more difficult as it involves a high-dimensional marginaliza-

tion, and it is typically approximated by variational Bayes or MCMC sampling [13].

Joint MAP estimation is the oldest, simplest, and most versatile approach to blind

deconvolution [6,23,112], but initial joint MAP efforts on the camera shake problem

met with failure [38], even when `p regularizers for p < 1 were used. In [71], Levin

et al showed that the `p regularizer generally prefers blurry images to sharp ones:

‖y‖pp < ‖xtrue‖pp, so that ideal joint MAP typically gives the trivial no-blur solution

(k, x) = (δ0, y), where δ0 is the Kronecker delta kernel. The non-ideal joint MAP

methods [24,93] somewhat compensate for the defects of ideal joint MAP by dynamic

edge prediction and likelihood weighting, but benchmarking in [71, 72] showed that

these heuristics sometimes fail.

In [38] Fergus et al developed a kernel MAP method with a sparse edge prior which

was very effective for correcting camera shake. In [71] it was noted that marginal-

ization over x seems to immunize ideal kernel MAP against the blur-favoring prior

problem. More refined kernel MAP methods were recently reported in [72] and [7],

and to our knowledge these two methods are the top performers on the benchmark

32 image test set from [71]. While these efforts have made kernel MAP much more

tractable, it remains harder to understand and generalize than joint MAP, so it would

be useful to find a joint MAP method that is competitive with kernel MAP on the

camera shake problem.
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blurred iteration 2 iteration 32 iteration 150 true

Figure 3.1: Kernel estimation on an image from the test set of [71]; a small patch
has been selected and rescaled for clarity. Left: Blurry edge map |y|.
Center left to center right: Evolution of the kernel k (inset) and edge
map magnitude |x| in the final full-resolution stage. As τ increases in
(3.6), the edge map becomes less sparse and the kernel is refined. Right:
ktrue and |xtrue|.

In [66], Krishnan et al addressed the blur-favoring prior problem in joint MAP

by changing the prior, proposing the scale-invariant `1/`2 ratio as a ‘normalized’

sparse edge penalty. The `2 normalization compensates for the way that blur reduces

total `1 edge mass, causing the `1/`2 penalty to prefer sharp images and eliminating

the need for additional heuristics. While their algorithm does not quite match the

performance of [38] on the benchmark test set from [71], it comes fairly close while

being significantly simpler, faster, and in some cases more robust. Other promising

joint MAP methods include [20, 107, 110], but we are not aware of public code with

full benchmark results for these methods.

3.1.1 Our approach

We propose a new approach to joint MAP blind deconvolution in which the kernel

is estimated from a sparse approximation x of the sharp gradient map xtrue. Initially

we constrain x to be very sparse, so it contains only the few strongest edges in the

image, and we determine k such that k ∗ x ≈ y. Because x is so much sparser than

y, the solution k = δ0 is very unlikely. But generally this initial k overestimates ktrue,

so we refine k by letting weaker edges into x.

To present this approach formally, we set f1 = [1,−1], f2 = [1,−1]T , so that

x(p) = (x1(p), x2(p)) is the discrete image gradient vector at each pixel p. We set

L(k,x) = 1
2
‖k ∗ x − y‖2

2 and impose the usual positivity and unit sum constraints

on k. We measure gradient sparsity using the `2,0 norm: |x(p)| is the `2 length of

x(p) and ‖x‖2,0 = ‖|x|‖0 the number of nonzero gradient vectors. The joint MAP
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optimization problem is then

minimize
k,x

1
2
‖k ∗ x− y‖2

2

subject to k ≥ 0, 1Tk = 1, ‖x‖2,0 ≤ τ,
(3.6)

where the expression aT b denotes the dot product of the arrays a and b when consid-

ered as vectors, and the 1 in 1Tk is an all-ones array.

We solve this problem with an iterative optimizer described in §3.2, and slowly

increase τ as the iterations proceed. To initialize τ we use the `1/`2 ratio, a robust

lower bound on a signal’s sparsity [73]. The sharp x should be significantly sparser

than y, so initially we set τ = β0τy, where τy = ‖|y|‖1/‖|y|‖2 and β0 < 1 is a small

constant. After an initial burn-in period of Ib iterations we multiply τ by a constant

growth factor γ > 1, an action we repeat every Is iterations thereafter.

We use a standard multiscale seeding technique to accelerate the kernel estimation

step [38,66]. We begin by solving (3.6) with a heavily downsampled y, giving a cheap,

low-resolution k and x. We then upsample these and use them as an initial guess to

solve (3.6) with a higher resolution y, repeating the upsample-and-seed cycle until we

reach the full resolution y. At each scale we use the same τ increase schedule. After

kernel estimation we use non-blind deconvolution of y with k to get the sharp image

x.

The easiest way to understand how our kernel estimation works is to watch k and

x evolve as the iterations progress. In Fig. 3.1, the state of k and x is shown at

iterations 2, 32, and 150 of the final full-resolution scale, with ktrue and xtrue at far

right. Initially x is quite sparse, so k cannot be a trivial kernel because the parts of

y not in x must be attributed to blur. But this initial approximation is crude, so as

τ increases with iteration, x is allowed to have more and more nonzeros so that k can

be refined.

3.1.2 Novelty and relations with existing methods

Direct `0 optimization is well-established in the compressed sensing community

[14, 42] but we are not aware of any effective `0 approaches to blind deconvolution.

In [66] the `1/`2 ratio was deliberately chosen over `0 because while both have the

desired scale invariance, the graph of `1/`2 is smoother and looks more ‘optimizable’

than `0. We contend that `0 may be difficult to use as a cost function, but very effective

as a constraint. Gradient and kernel thresholding are commonly used [24,93] and these

can be interpreted as `0 projections, but they are typically used as auxiliary heuristics,
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not as the central modeling idea. Our technique of slowly increasing the sparsity

constraint τ is reminiscent of matching pursuit algorithms for sparse approximation

[81,102]. It is also related to the likelihood reweighting technique of [93], which may

be seen by considering the Lagrangian of (3.6). However, our initialization strategy

requires that we use the constrained formulation rather than the Lagrangian.

3.2 Alternating projected gradient method

To solve problem (3.6) at a given scale, we use a standard alternating descent

strategy: starting from some initial k and x, we reduce the cost function by updating x

with k fixed, then k with x fixed, cycling until a stopping criterion is met. Each cycle,

or outer iteration, consists of Ix inner iterations updating x and Ik inner iterations

updating k. All updates are computed with a projected gradient method; given

a smooth function h(u) and a constraint set U , projected gradient methods seek a

solution of minu∈U h(u) by updates of the form u← PU(u−αugu), where gu = ∇h(u),

αu is a step size, and PU(w) = argmin u∈S ‖u − w‖2
2 is the Euclidean projection of

w onto U . Convergence of alternating descent and projected gradient methods to

stationary points is proven in [4] under mild conditions.

We now describe how we compute the projected gradient iterations for the inner

subproblems mink∈K L(k,x) and minx∈X L(k,x), where L(k,x) = 1
2
‖k ∗ x − y‖2

2,

K = {k | k ≥ 0, 1Tk = 1}, and X = {x | ‖x‖2,0 ≤ τ}. Letting r = k ∗ x − y denote

the residual, we have ∇kL =
∑

γ x̄γ ∗ rγ and ∇xL = k̄ ∗ r, where the bar denotes

180◦ rotation about the origin. Assuming the nonzero elements of |x| are distinct,

the projection PX (x) is the top-τ vector thresholding

PX (x)(i) = x(i) · 1 (|x(i)| ≥ θ(|x|, τ)) , (3.7)

where 1(A) is the indicator function for condition A and θ(|x|, τ) is the τ th biggest

element of |x|. The set K is a canonical simplex with projection PK(k) given by

PK(k)(i) = max(0, k(i)− σ), (3.8)

where σ is the unique solution of 1TPK(k) = 1. Both PX and PK can be computed in

linear time using selection algorithms [31,35].

The step sizes αx, αk are chosen by backtracking line search from an initial guess.

48



true blurred Babacan Levin Ours

Figure 3.2: Sample results from our method, [7, 72] on the benchmark set of [71].
True and recovered kernels inset.

In the x subproblem our initial guess is

αx =
(k ∗ gx)T r

(k ∗ gx)T (k ∗ gx)
, (3.9)

which is optimal in the sense that it solves the problem minα L(k,x − αgx). This

aggressive step size was chosen over several alternatives, as it was the most effective

for securing good edge support estimates. In the k subproblem we use the spectral

projected gradient (SPG) method [12]; in the first iteration αk = 1, and in subsequent

iterations we use the Barzilai-Borwein step size

αk =
(gk − goldk )T (gk − goldk )

(gk − goldk )T (k − kold)
(3.10)

where goldk and kold denote the values of gk and k at the previous SPG iteration.

3.3 Implementation

We implemented our method in MATLAB by modifying the code of [66], which

uses a similar strategy of alternating minimization with multiscale seeding. The full-

resolution kernel size was set to 35× 35 for all experiments. The initial stage of the

multiscale algorithm downsamples y by a factor of 5/35 in each direction, so that the

kernel is of size 5 × 5, and each upsample cycle increases the size of k,x, and y by

a factor of roughly
√

2 until full resolution is reached. The parameters of the core

single-scale algorithm from §3.2 were set to β0 = 0.15, γ = 1.10, Ib = 20, Is = 10,
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Ix = 1, Ik = 6. We do 30 iterations of the alternating projected gradient method for

all scales except the final, full-resolution scale, which uses 180 iterations. Non-blind

deconvolution with the estimated kernel was performed using the method of [70],

using the parameter settings chosen in the code for [72].

3.4 Numerical experiments

In [71] a test set of 32 blurry images with known ground truth was created for

benchmarking blind deconvolution methods. Each blurry image was formed by taking

a picture of a sharp image with a camera that shook in-plane, and bright points outside

the image were used to obtain ground truth blur kernels. A total of 32 blurry images

were formed by blurring 4 sharp images on 8 different shake trajectories. This test

set has become the de facto standard for objectively comparing different methods.

We ran our algorithm on this test set and compared its performance against

the methods of [72] and [7]. We compare against these methods because they have

published implementations which match or exceed the performance of the state-of-

the-art methods in [24, 38, 66, 93], and we know of no methods that outperform [72]

and [7] on this test. We use the squared error metric SSE(x) =
∑

i(x(i)−xtrue(i))2 to

measure performance and note that results using the ratio metric of [71] are similar.

Results for [72] were taken from files included with their published implementation,

while results for [7] were generated by running their online test script using the log

prior, which was the best in their experiments.

Our experiments were performed in MATLAB 2011b on an Intel Quad Core Xeon

2.2 GHz Mac Pro. Our method’s kernel estimation step took 45 − 60 seconds per

image, and deconvolution took 15 seconds. The other methods took 45−240 seconds

for kernel estimation, and their computation time depended strongly on kernel size.

The difference is mostly due to our use of cheap SPG iteration rather than quadratic

programming in the k step, and also because PK and PX make k and x sparse,

enabling k ∗ x to be computed faster.

Sample results on the benchmark are shown in Fig. 3.2. Our method and [72]

perform very similarly on both images. On the house image [7] is very sharp and by far

the best, but it suffers from severe artifacts on the boy image. Fig. 3.3 summarizes the

full-benchmark performance of the three methods using cumulative error histograms.

The curves for our method and [72] are largely similar. The curve for [7] is above ours

and [72] for about half of the images, but it flattens out below 85% while the others

plateau at 100%. This is because method [7] struggled on the boy images. We note
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Figure 3.3: Cumulative deblurring performance our method, [72], and [7] on the 32
image test set of [71]. The vertical axis is the percentage of the 32 runs
having at most a given SSE.

that the results reported in [7] for this test set are better than those obtained in our

run of their code, although we ran it without any modification. The authors of [7] state

that their code is a simplification of what was used to generate the reported results.

While there may be a more sophisticated version of their code that outperforms ours,

our method competes with the available state of the art.

3.5 Conclusion

We have proposed a blind deconvolution method in which the blur kernel is esti-

mated by incremental sparse edge approximation. A rough global blur kernel is first

estimated from only the strongest edges in the image, then it is refined as we allow

the image edge map to gradually become less and less sparse. Ours is the first simple,

fast joint MAP method to match the state-of-the-art kernel MAP methods in [7, 72]

on an objective benchmark. The success of the methods in [66] and this paper sug-

gest that the downsides of ideal joint MAP described in [71] can be robustly avoided

without resort to a more complex kernel MAP estimation.

Our method can be improved and extended. The edge sparsity relaxation schedule

we use is conservative, and a more adaptive schedule could make the method faster.

Our initialization of the edge map sparsity does not take noise into account, and may

need to be modified for very noisy images. Extension to nonuniform blur models,

nonquadratic likelihoods, and fast parallel or GPU implementations are possible.

The speed of our kernel estimation may make it useful as an input to high-quality
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non-blind methods such as [7].
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CHAPTER 4

Stray Light Correction for STEREO/EUVI

4.1 Introduction

Extreme ultraviolet (EUV) solar images play a major role in efforts to resolve

long-standing questions about the corona. EUV intensities are directly related to the

coronal plasma temperature and density through the differential emission measure

[17], and can even be used to compute global 3D reconstructions of the corona [39].

These data products provide powerful empirical constraints on the physics of the

corona and solar wind [56,59,104].

A basic assumption of quantitative EUV analysis is that telescopes form an ideal

geometric image: that is, each pixel’s intensity is the sum of plasma emissions along

that pixel’s geometric line of sight through the corona. All existing EUV telescopes

violate this assumption because a significant fraction of incoming light strays from

the path predicted by geometric optics. The principal causes of this stray light are

diffraction by the entrance aperture and scattering off of microrough mirror surfaces.

Stray light is most significant in faint regions of the corona, where it can form a

significant fraction of the observed intensity [34,94]. This paper’s immediate objective

is correction of stray light in the two EUVI instruments aboard the STEREO mission’s

Ahead (A) and Behind (B) spacecraft, which we refer to EUVI-A and B. Its broader

objective is to put EUV stray light correction on the path to becoming a theoretically

justified, empirically rigorous, and scientifically reliable tool applicable to SOHO/EIT,

TRACE, SDO/AIA, and any future spaceborne EUV telescopes.

The distribution of stray light in a telescope is governed by its point spread function

(PSF), which is the image of a unit intensity point source. Most of the PSF’s intensity,

A version of this chapter will be submitted for journal publication with co-authors Richard A.
Frazin, Anna C. Gilbert, and Alfred O. Hero III. Preliminary work on stray light correction for
STEREO-B/EUVI was published with the same co-authors in [94].
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or mass, is concentrated in the core, which has a subpixel width in EUVI [55]. The

remainder is scattered into the wings, which decay slowly and extend hundreds of

pixels from the core. Stray light contamination is modeled by convolution of the ideal

geometric image with the PSF, and the correction process is called deconvolution [99].

When the PSF is unknown or partially known, it must be determined from the images

themselves. This is called blind or semiblind deconvolution and is much more difficult

[21].

Laboratory characterization of EUV PSFs is impossible due to the lack of a suffi-

ciently strong EUV source, but considerable information about them can be extracted

from in-flight observations. Diffraction by the entrance aperture can be characterized

by analyzing the diffraction orders that appear around solar flares [43], but diffuse

scatter due to mirror microroughness is not easily observed in flare images. The best

information about diffuse scatter comes from transiting bodies that emit negligible

EUV radiation, so whatever they appear to emit must have been scattered from the

corona. Stray light levels were estimated in EIT using a transit of Mercury in [5].

The stray light’s subtle anisotropy and its correlation with the pupil geometry were

noted, but a PSF was not determined. DeForest et al used a transit of Venus to de-

termine an isotropic Lorentzian-type PSF model for diffuse scattering in the TRACE

instrument [34]. A similar method was used to obtain PSFs for SDO/AIA in [88].

In [94] the authors performed semiblind deconvolution of a lunar transit to deter-

mine an anisotropic generalized power law PSF for EUVI-B 171 Å. The PSF param-

eters and ideal images were treated as unknowns to be determined simultaneously

from lunar transit images, leading to a multiframe semiblind deconvolution problem.

This was solved by a nonlinear least squares optimization enforcing the constraint of

zero intensity in the lunar disk of each ideal image. The first estimates of systematic

error in stray light corrected images were obtained using a novel empirical analysis.

To date, this is the only work to (1) treat the ideal, scatter-free transit image as

an unknown rather than approximating it by heuristic manipulation of the observed

image; (2) explicitly account for photon and CCD noise during PSF determination;

and (3) provide error bars for the corrected images.

In this work, we obtain PSFs and systematic error estimates for all bands of EUVI-

A and B and present some dramatic and unexpected effects of stray light correction

on EUVI images. To lay a foundation for rigorous future work, we describe the ideal

optical model, compare it with the very approximate model implicit in existing work

(including our own), and suggest steps towards narrowing the gap between the two.

Artifacts in the deconvolved images are traced to possible shortcomings of our model
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Figure 4.1: Cross section of the EUVI instrument from [55].

and suggest directions for future work.

4.2 EUVI Imaging Forward Model

4.2.1 The EUVI instrument

A cross section of each EUVI instrument is shown in Fig. 4.1. The four filter band

telescopes housed by each EUVI have distinct optical paths, but each has the geometry

depicted in Fig. 4.2. Light enters the primary aperture through an aluminum foil

rejection filter which blocks almost all non-EUV light. This filter is supported by an

opaque wire mesh which diffracts incoming light. The light then passes through an

aperture mask slightly above the primary mirror, which is considered the instrument

pupil. Next, the light is focused by primary and secondary mirrors with multilayer

coatings optimized for maximum reflectivity at the selected wavelength. Near the

focal plane the light passes through a backup rejection filter and is detected by a

2048× 2048 back-thinned CCD array with a spatial scale of ∆θp = 1.59 arcsec/pixel.

The wire mesh supporting the backup filter shadows the CCD slightly, modulating

the image by a grid pattern with a 6% peak-to-peak amplitude. The grid pattern can

be corrected by flat fielding, and the EUVI instrument team has provided flat fields

for all bands except EUVI-B 284 Å, where the process is complicated by a stray light

leak (J.-P. Wuelser, private communication).

Scattering in EUVI is primarily due to diffraction through the mesh F1 supporting

the primary rejection filter, and nonspecular reflection due to microirregularities in

the surfaces of the primary and secondary mirrors P1 and P2. The meshes for 171

and 195 Å are coarse and diffract little light, but those for 284 and 304 Å are fine

and diffract much more. The PSF is assumed to be independent of position in the
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Figure 4.2: Schematic optical diagram for each EUVI filter band (not to scale). Light
enters through an aluminum foil filter supported by a wire mesh (F1), is
focused by the primary and secondary mirrors (M1 and M2), then passes
through a second foil supported by another wire mesh (F2) before hitting
the CCD.

plane as the only known source of spatial variance is geometric aberration, which is

only significant within 1-2 pixels of the core (J.-P. Wuelser, personal communication).

Since we are only interested in determining the PSF wings, these variations are ignored

here.

4.2.2 PSF model

Recall that, given functions a(x) and b(x) defined on the plane R2, their convolu-

tion is defined as

(a ∗ b)(x) =

∫
R2

a(x− x′)b(x′)dx′. (4.1)

Our model PSF h is the convolution of two components, hg and hm:

h = hg ∗ hm. (4.2)

The mesh component hg represents scattering by the grid of wires that form the mesh

supporting the primary rejection filter, and is calculated by Fraunhofer diffraction

theory. The empirical component hm represents scattering due to mirror microrough-

ness and other effects, and was obtained by making empirical modifications to a model
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from the EUV mirror scattering literature. The hm component depends on parame-

ters ϕ which are determined by semiblind deconvolution, and we write hmϕ when we

wish to make this dependence explicit. Similar multi-component convolution models

have been proposed for other EUV telescopes [76, Eq. (12)]. This model differs from

the model of [94] in two regards: the formula for hm is changed, and the component

hp representing Fraunhofer diffraction from the quarter annulus pupil is omitted. The

differences are discussed further in §4.2.2.2.

In Appendix 4.7.1 we show that, if the effects of the pupil and Fresnel propagation

between optical elements are neglected, (4.2) can be derived from a reasonable Fourier

optics model of EUVI. The accuracy lost by neglecting these effects is unclear, so the

derivation serves mainly to point out a gap between theory and practice in need of

further study.

4.2.2.1 Mesh component

To derive a functional form for the mesh component PSF hg, we assume that the

mesh is a grid of regularly spaced perpendicular lines of width w and spacing s. Let

x ∈ R2 and x′ ∈ R2 be the coordinates of the focal plane with axes parallel to the

CCD principal axes and the mesh wires respectively, in units of EUVI pixels. These

are related by x = Rθgx
′, where Rθg is a rotation matrix and θg is the rotation angle

of the mesh relative to the CCD. Let ξ′ ∈ R2 denote coordinates of the pupil plane

with axes parallel to the mesh wires. We treat the wire mesh as an infinite, regular

grid composed of wires with transmittance 1 − a(v), where a(v) is the fraction of

light blocked by a given wire as a function of perpendicular distance v from the wire

midpoint. The mesh transmittance function is then

G(ξ′) =
∏
k=1,2

(
1−

∑
jk∈Z

δ(ξ′k − sjk) ∗ a(ξ′k)

)
, (4.3)

where Z denotes the integers. The associated Fraunhofer diffraction pattern is given

by hg(x′) ∝ |Ĝ(τx′)|2, where τ = ∆θp/λ and λ is the peak wavelength for the filter

band (Appendix 4.7.1). The resulting formula for hg is a weighted 2D Dirac comb

with spacing 1/τs:

hg(x′) ∝
∑
j∈Z2

mj1mj2δ(x
′ − j/τs), where (4.4)
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mk =

1− (â(0)/s)2 if k = 0,

|â(k/s)/s|2 if k 6= 0.
(4.5)

The weight mj1mj2 is highest at the origin, where j1 = j2 = 0; second highest on

the two coordinate axes, where one of the two jk = 0; and lowest off the axes, where

both jk 6= 0. In EUVI we generally have |â(k/s)|2 � 1 − |â(0)|2 for k 6= 0, so the

coordinate axis portion of the Dirac comb accounts for most of the diffraction.

In this work we follow [34, 43] and assume a step-function transition between

transparency and opacity of the wires, meaning that a(v) = rect(v/w), where rect(v)

has the value 1 on the interval [−1/2, 1/2] and 0 otherwise. In this case â(v̂) =

w sinc(wv̂), and Dirac comb weights are

mk =

1− (w/s)2 if k = 0,

(w/s)2sinc2(kw/s) if k 6= 0.
(4.6)

Analysis of lunar transit data suggests that this model sometimes overestimates the

higher diffraction orders, particularly in 284 Å. Other forms of â(v) may improve this

situation and will be considered in future work.

The EUVI instrument team has provided values of w/s, 1/τs, and θg for both

spacecraft and all filter bands in SolarSoft. For the 171 and 195 Å bands, the values

are determined from the mesh manufacturer’s specifications, while for 284 and 304 Å

they were estimated from flare images by measuring the spacing and brightness of

diffraction orders. We were unable to improve on the given values so we used them

without modification in our own model.

4.2.2.2 Empirical component

In typical EUV mirror models, only a portion of incident light is scattered, and

the distribution of the scattered light is given up to scaling constants by the power

spectral density (PSD) of the mirror surface height function [64]. The PSD has been

directly measured for some EUV mirrors, and log-log plots of the measured PSD

versus spatial frequency ξ are generally piecewise linear with a rolloff at very low

spatial frequencies. A reasonable model for such a graph is a sum of generalized

Lorentzians: PSD(ξ) ∝
∑

i(ρ
2
i + ξ2)−βi/2, where ρi and βi are constants that control

the rolloff transition and decay rate [76]. Assuming this model holds and the PSF is
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Figure 4.3: Structure of the mesh PSF hg for 171 Å (top row) and 284 Å (bottom row).
All distances are in pixels. Left: Log-scale plot of the kth diffraction
order weight, mk, versus its displacement k/τs from the origin. Right:
Logarithmic colorscale plot of the core of hg.

A

λ w/s 1/τs θg (◦)

171 Å 0.020 0.450 45.00
195 Å 0.020 0.502 45.00
284 Å 0.100 10.18 19.60
304 Å 0.082 10.88 1.09

B

λ w/s 1/τs θg (◦)

171 Å 0.020 0.450 45.00
195 Å 0.020 0.502 45.00
284 Å 0.100 10.18 49.33
304 Å 0.092 10.88 2.21

Table 4.1: SolarSoft values for parameters determining the form of the mesh PSF hg.
The first column, w/s, is the ratio of the mesh wire width to the wire
spacing. The second column, 1/τs, represents the spacing of the Dirac
comb in units of pixels. The third column, θg, is the rotation angle of the
mesh wires relative to the CCD principal axes.
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isotropic, the PSF as a function of distance r from the PSF origin is

p0(r) = αδ(r) + C
∑
i

(ρ2
i + r2)−βi/2, (4.7)

where the ρi are Lorentzian roll-off parameters, α represents the non-scattered light,

r is distance from the origin, C is a normalization constant.

The profile formula we adopt here is a special case of the formula above. We use

one Lorentzian and one constant term, which can be interpreted as a Lorentzian with

infinite ρ value. It is convenient to write the constant term in the form γ/N2, where

N2 is the number of pixels in the discrete PSF, because γ then represents the total

scatter due to the constant component. We then have

p(r) = αδ(r) + C(ρ2 + r2)−β/2 + γ/N2. (4.8)

This model was suggested by our initial work with piecewise power law profile from

[94], which generates a class of profiles similar to (4.7). We observed that the piecewise

power law tended to exhibit a single decay exponent at intermediate values of r, and

rolloffs would sometimes occur at high or low r values. By replacing the piecewise

power law with a generalized Lorentzian plus a constant, similar behavior is obtained

with fewer free parameters.

An isotropic PSF can be generated directly from p(r), but blind deconvolution

of EUVI-B images with an isotropic PSF gives poor results, particularly off the limb

where large sectors of negative intensity appear. A simple way to model anisotropy

is to allow the PSF to have elliptical cross sections. To turn an isotropic PSF into an

elliptical one, we replace the distance r = |x| in the profile with |M−1
s,θ x|, where

Ms,θ =

[
cos(θ) − sin(θ)

sin(θ) cos(θ)

][
s 0

0 1

]
(4.9)

is the 2×2 matrix that dilates the plane by a factor of s along a line rotated θ degrees

counterclockwise from the horizontal axis. The resulting PSF is

hm(x) = p(|M−1
s,θ x|), (4.10)

where the constant C in the definition of p is determined by the normalization con-

straint
∑

x h
m(x) = 1.

In the preliminary work of [94], we left θ as a free parameter to be determined by
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blind deconvolution. Here, however, θ is fixed to a particular value suggested by a

confluence of theoretical and empirical evidence. Calibration roll images reveal that

stray light levels are relatively high on a diagonal axis about 45◦ above the horizontal

in 171 and 195 Å, and −45◦ in 284 and 304 Å (Appendix 4.7.4). These axes coincide

with the scatter expected from Fraunhofer diffraction by an ideal quarter annulus

pupil. In each band, the PSF hp associated with this diffraction has two antipodal

fan-shaped lobes whose axis of symmetry coincides with the axis of heightened stray

light (Appendix 4.7.5). While the contribution of hp is far too small to explain the

observed anisotropy, the coincidence points to some unmodeled physical process that

characteristically scatters light in the directions predicted by hp. For this reason we

set θ = 45◦ in 171 and 195 Å and −45◦ in 284 and 304 Å. This leaves hm with 5 free

parameters ϕ = (α, ρ, β, γ, s) to be determined by semiblind deconvolution, and we

write hmϕ when we wish to make the dependence of hm on ϕ explicit. The profile p(r),

component hm, and full PSF h for 171 and 284 Å are shown in Fig. 4.4.

In our previous work [94] we included hp as a component in the model PSF h.

However, the discussion above suggests that we should interpret our model as con-

taining the effect of the pupil within hm. Additionally, we found that empirically

there was no clear benefit to including hp. For these reasons, hp is not included as a

component of h in this work.

4.2.3 Statistical image formation model

In the next sections we determine the EUVI PSFs by a model fitting process

involving EUVI image data, which are subject to photon and CCD read noise. To

account for the noise, we give a statistical model of EUVI image formation. We

assume the image is uncompressed and has been prepared by debiasing, despiking,

flat fielding, and conversion to units of photons. Assuming these corrections are

accurate, instrumental effects are limited to scatter, photon noise, and CCD noise.

We let utrue denote the ideal geometric image, meaning that utrue(x) is the expected

photon count observed at pixel x by an ideal instrument. The expected photon

count in the actual instrument is 〈fphot〉 = htrue ∗ utrue, where htrue is the band

PSF. The actual photon count, fphot, is a Poisson-distributed stochastic quantity,

and the photon noise is nphot = fphot − 〈fphot〉 = fphot − htrue ∗ utrue. Histograms of

dark images indicate that the CCD noise, nccd, is roughly Gaussian with standard

deviation σccd ≈ 1 digital number (DN). To convert the CCD noise to units of photons,

we divide it by the photoelectric gain constant γ (photons/DN). The observed image
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Figure 4.4: The empirical PSF hm and total PSF h for EUVI-B, 171 and 284 Å. All
distances are in pixels. Left: log-log plot of power-law profile function
p(r). Center: Logarithmic colormap of hm core. Right: core of final PSF
h = hg ∗ hm.

f is then given by

f = htrue ∗ utrue + n, (4.11)

where n = nphot + nccd/γ.

The debiasing and despiking corrections in SolarSoft did not meet the unusually

stringent requirements of stray light correction, and had to be replaced or augmented

by custom preparation steps described in Appendix 4.7.2. After preparation the

images conform to (4.11) well enough for PSF determination, although error analysis

requires consideration of subtler effects to be described later.

Our model ignores Fano noise, dark current, and charge spreading, as these effects

do not impact the stray light distribution at a scale of dozens of pixels. It also ignores

the effects of compression, which is a significant limitation since most EUVI images

are compressed on-board by the wavelet-based ICER algorithm [63]. We use only

uncompressed images for PSF determination, as needed information about the large-

scale properties of low intensity regions is sometimes lost during quantization of low-

pass wavelet coefficients. The PSFs we obtain can be used to correct stray light in

ICER compressed images, but accuracy in faint regions can be degraded.
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4.3 Method

4.3.1 Discrete convolution and deconvolution

Before explaining how the PSFs were determined, we require appropriate com-

putational procedures for convolution and deconvolution of EUVI images and PSFs.

We begin by setting a convenient array indexing notation which places the origin

in the image center. The elements of an N × N array are indexed by the vector

x = (x1, x2) ∈ Z2
N , where

ZN = {−bN/2c,−bN/2c+ 1, . . . ,−bN/2c+N − 1} (4.12)

is the set indexing the rows and columns, and bN/2c is the largest integer less than

or equal to N/2.

Given N ×N arrays h and u, their discrete convolution is obtained by replacing

the convolution integral with a summation:

(h ∗ u)(x) =
∑
x′∈Z2

N

h(x− x′)u(x′). (4.13)

If h is a PSF and u is an image, h ∗ u represents the blurring of u by h. This sum

involves indices x − x′ /∈ Z2
N , so we assume h(x − x′) = 0 in this case, meaning that

the convolution is zero-padded. This assumption is reasonable for EUV PSFs and

images because both take very small values near the array boundary.

Discrete convolutions can be represented by using the discrete Fourier transform

(DFT), which is efficiently computable via the fast Fourier transform (FFT) algo-

rithm. The DFT of an array u will be denoted û or F [u], and within the scope of

this paper will be defined as

û(ξ) =
∑
x∈Z2

N

u(x) exp[−2πi〈x, ξ〉/N ] for ξ ∈ Z2
N , (4.14)

where 〈x, ξ〉 is the dot product. (This formula is related to the standard DFT formula

by a shift of the pixel indices.) The convolution of h and u with periodic boundary

conditions, allowing blur to wrap from one side of the image to the other, can easily

be computed using the formula F−1[ĥ · û], where (ĥ · û)(ξ) = ĥ(ξ)û(ξ) represents

pointwise multiplication. This periodic convolution formula is very commonly used

in the image processing literature, but is unsuitable for EUV images, as the unphysical

wrapping can cause large-scale artifacts off the limb.
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Fortunately, zero-padded convolutions can be computed using a padded FFT.

Given a N × N array a, let apad represent the 2N × 2N array obtained by padding

of a with zeros: for x ∈ Z2
2N ,

apad(x) =

a(x) if x ∈ Z2
N

0 otherwise.
(4.15)

Then h ∗ u is obtained by padding h and u, taking their periodic convolution, and

clipping off the padding:

h ∗ u = Clip
{
F−1

[
ĥpad · ûpad

]}
, (4.16)

where the Clip operator returns the N ×N subarray indexed by Z2
N .

Implementing zero-padded deconvolution with FFTs is slightly more complicated

than convolution because a finitely supported inverse kernel h−1 does not exist in

general. The most accurate deconvolution is obtained by solving the linear system

h ∗ u = f , but there is a convenient and accurate approximation for EUV imag-

ing purposes. We define an approximate inverse kernel h−1 = F−1[1/ĥpad] and its

approximate convolution with f as

h−1 ∗ f ≈ Clip
{
F−1

[
(f̂pad/ĥpad)

]}
. (4.17)

This approximation is most accurate when f and h decay to zero near the image

boundary, which is generally the case for EUVI images and PSFs. When applied

to EUVI images, this formula’s output differed negligibly from the solution of h ∗
u = f obtained by conjugate gradients [101], so (4.17) was adopted as the standard

numerical deconvolution method in this work.

In most deconvolution applications there are spatial frequencies ξ such that ĥpad(ξ)

is either zero or very small, so the division by ĥpad in (4.17) would be either undefined

or greatly amplify the image noise. In our case, however, this problem never occurs

because the PSF core is represented by a single pixel at the origin. This means that

most of the total mass of h is found at the origin, which prevents ĥpad from becoming

too small. In particular, it can be shown mathematically that 1 ≥ |ĥpad(ξ)| ≥ 2h(0)−
1. Eq. (4.6) and Table 4.1 imply that hg(0) > 0.8 for all bands of EUVI-A and B, while

Table 4.2 says that hm(0) = α > 0.8 for all bands of EUVI-A and B. This implies that

the discrete convolution h = hg ∗hm has h(0) > 0.82 = 0.64, so |ĥpad(ξ)| > 0.28 for all

ξ. If we modeled the PSF core realistically, rather than as a single pixel, this would
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no longer be the case and it would be necessary to regularize the deconvolution [99].

4.3.2 Preparations for PSF determination

We determined the EUVI PSFs in two stages. First, the EUVI-B PSFs were

determined using lunar transit data. Second, EUVI-A PSFs were determined using

EUVI-A and EUVI-B images from the early STEREO mission. In both cases the

PSFs were determined by solving semiblind deconvolution problems derived from

(4.11), where the PSF htrue is assumed to come from the model h = hg ∗ hmϕ , and the

image utrue obeys certain side constraints.

Performing maximum likelihood inference with (4.11) is computationally challeng-

ing because of the Poisson-Gaussian noise n = nphot + nccd/γ. In [94] an Anscombe

transform was applied to (4.11) to make the noise more Gaussian, but the nonlinear-

ity of the transform can cause computational troubles and possibly statistical bias. In

this work we take a simpler approach: we first deconvolve hg from the image f using

(4.17), then apply a 4 × 4 binning to the image, reducing the number of pixels by a

factor Nb = 16, and call the resulting image fm. After this operation is completed,

we also apply 4× 4 binning to f , so that

f = htrue ∗ utrue + n (4.18)

fm ≈ hm,true
ϕ ∗ utrue + n, (4.19)

where all arrays are now 512×512. (In the second equation we have implicitly assumed

that (hg)−1 ∗ n is roughly n because the noise amplification from deconvolution with

hg is modest.) The mesh PSF hg is deconvolved from f before binning because, as

a modulated Dirac comb, it has pixel-scale structure. In contrast, hmϕ varies only on

scales of dozens of pixels, so it is not much affected by binning.

To see why 4 × 4 binning makes n roughly Gaussian, note that the CCD noise

variance in the binned image is 〈(nccd/γ)2〉 = Nbσ
2
ccd/γ

2 ≈ 16, since Nb = 16 and

γ, σccd ≈ 1. When 〈f〉 � 16, the photon noise variance 〈n2
phot〉 = 〈f〉 � 16, so the

Gaussian noise nccd is the dominant contribution to n. When 〈f〉 & 16 we enter the

high count regime where Poisson noise becomes roughly Gaussian, which means that

the sum n is the sum of two independent Gaussians. In either case, n reasonably

modeled as Gaussian, and has a variance of 〈n2〉 = 〈f〉+Nbσ
2
ccd/γ

2.

A numerical estimate σ2 of the variance 〈n2〉 is required to define the maximum

likelihood problem that determines the PSFs. Since 〈f〉 is unobservable, use the

approximation 〈f〉 ≈ f and set σ2 = f +Nbσ
2
ccd/γ

2. Since the signal-to-noise ratio is
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Figure 4.5: A lunar transit image from the series of 8 uncompressed images in each
EUVI band (units of log10 ph/sec). The lunar disk moves from lower
left to upper right over the course of 16 hours. Black circles show the
positions of the lunar disk during the transit. In these images, the 6th of
each series, an active region can be seen just south of the lunar disk. The
path is slightly bent due to shifts in pointing during the transit.

〈n2〉1/2/〈f〉 ≈ 〈f〉−1/2, which approaches 0 in the high count limit, this approximation

is good except in the faintest regions of the image. Empirically we have found that

small alterations in σ2, for example doubling or tripling σccd, do not have much impact

on the PSF determined. Thus it seems unlikely that the approximation f ≈ 〈f〉 has

much impact on the result.

To avoid computational difficulties associated with unreasonable PSFs, we require

the variables in ϕ to stay within the bounds defined by the following set:

Φ = {(α, ρ, β, γ, s) : 1
2
≤ α ≤ 1, ρ ≥ 0, 0 ≤ β ≤ 5,

10−8 ≤ γ ≤ 10−1, 1
5
≤ s ≤ 5}.

(4.20)

4.3.3 Determining EUVI-B PSFs from the lunar transit

We determined ϕ for each band using a series of 8 images f1, . . . , f8 from the

Feb. 25, 2007 lunar transit, which is depicted in Fig. 4.5. We constrain the ideal

images ui to be zero on the lunar disk pixels Zi: ui(Zi) = 0 for i = 1, . . . , 8. The

lunar disk was identified by detecting its edge pixels with gradient thresholding, then

fitting a circle to the detected edge pixels. The PSFs are obtained by seeking an

approximate solution to the following nonlinear least squares problem, which itself

approximates the maximum likelihood problem under (4.19):

minimize
ϕ∈Φ, {ui}

8∑
i=1

∑
x∈Sf

(
(hmϕ ∗ ui)(x)− fmi (x)

σfi(x)

)2

subject to ui(Zi) = 0 for all i,

(4.21)
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where σ2
fi

= fi +Nbσ
2
ccd/γ

2 and Sf is the set of unvignetted pixels. Even with the fmi

and ui binned to 512×512, this problem has over 2 million variables. Problems of this

size can be solved directly by quasi-Newton and truncated Newton-type methods [82]

but convergence can be slow due to the problem’s size and ill-conditioned Hessians

[95].

To reduce the problem’s size, we use an approximate variant of the variable elim-

ination technique described in [45]. In the variable elimination technique, a formula

is obtained for the optimal ui in (4.21) given a fixed value of ϕ. This formula for the

minimizer is then substituted in for each ui in (4.21). Each ui appears in only the ith

term of (4.21), and thus can be found by solving

minimize
ui

∑
x∈Sf

(
(hmϕ ∗ ui)(x)− fmi (x)

σfi(x)

)2

subject to ui(Zi) = 0.

(4.22)

To approximate the optimal ui we deconvolve hmϕ from fmi and set the lunar disk to

zero:

ui,ϕ(x) =

((hmϕ )−1 ∗ fmi )(x) if x ∈ Sf and x /∈ Zi,

0 otherwise
(4.23)

Plugging this formula into (4.21) results in an optimization over ϕ alone:

minimize
ϕ∈Φ

8∑
i=1

∑
x∈Sf

(
(hmϕ ∗ ui,ϕ)(x)− fmi (x)

σfi(x)

)2

. (4.24)

In contrast to traditional variable elimination, (4.24) is not precisely equivalent to

(4.21) because ui,ϕ is only an approximation of the optimal ui in (4.22). For our

purposes the approximation seems to work quite well. To avoid boundary effects and

speed up computation we found it convenient to sum over only the lunar disk pixels

Zi, where most of the residual hmϕ ∗ ui,ϕ − fmi is concentrated. The final problem we

sought to solve was then

minimize
ϕ∈Φ

8∑
i=1

∑
x∈Zi

(
(hmϕ ∗ ui,ϕ)(x)− fmi (x)

σfi(x)

)2

. (4.25)

Eq. (4.25) was solved using lsqnonlin, a MATLAB routine for nonlinear least

squares. This method requires only a function that takes an input ϕ and outputs

a vector composed of the residual values ri,ϕ(x) = ((hmϕ ∗ ui,ϕ)(x) − fmi (x))/σfi(x)
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Figure 4.6: Lunar transit images before stray light correction (top row) and after
(middle row), in units of ph/sec. All images are 4 × 4 binned, and tick
marks are given every 20 binned pixels. The color scale has a low upper
limit to make the stray light visible. The lunar disk is outlined, and
a vertical dotted line is drawn through the corrected images. Bottom:
Intensities on the dotted line before stray light correction (squares) and
after (solid line).

for all images i and all x ∈ Zi. Derivatives of the residuals were approximated by

finite differences. A high-precision solution was obtained from a laptop within a few

minutes for each band.

The parameters ϕ determined for each 512 × 512 PSF were slightly modified to

obtain a full 2048× 2048 PSF. Specifically, ρ was multiplied by the binning factor 4,

and α was slightly reduced to ensure that the origin pixel of the 512× 512 PSF has

the same mass as the corresponding 4× 4 square in the 2048× 2048 PSF. The other

parameters are scale-invariant and need no modification. In Table 4.2 we report the

resulting parameter values ϕ for each of the four bands.

To see the effect of stray light correction on lunar transit images, we generated

a PSF for each band using the model h = hg ∗ hmϕ and the values of Table 4.2, and

deconvolved it from the lunar transit images fi. In Fig. 4.6, we examine the lunar

disk from the 6th image before deconvolution (top row) and after (middle row). An

active region immediately south of the lunar disk scatters a large amount of light
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into it, making this image especially challenging for deconvolution. Despite this the

disk is dark in every case. In the bottom row, intensities are plotted along a vertical

line through the original and deconvolved images. The plots show a consistent and

dramatic reduction in lunar disk intensity after deconvolution.

The most noticable deconvolution artifacts are a slight positive bias in the middle

of the 171 Å disk and an overcorrection, resulting in negative intensity, near the

bottom of the disk in 284 Å. The reason for the bias in 171 Å is not clear, but the

overcorrection in 284 Å derives from excessively heavy weights mj1mj2 on the point

masses lying on the principal axes of the Dirac comb for hg (see (4.4)).

4.3.4 Determining EUVI-A PSFs from early mission data

Simultaneous imaging by EUVI-A and B began on December 14, 2006, when the

A and B spacecraft had a separation angle of 0.002◦ relative to the Sun. Separation

increased rapidly in the following months, but remained below 0.05◦ for the rest of

December. A simple calculation shows that at a distance of 1 AU, the change in line

of sight from a 0.05◦ orbital displacement shifts the disk center by 0.5 EUVI pixels,

and this is the largest possible shift on the disk. Up to a subpixel difference, then,

the ideal geometric solar image was the same for EUVI-A and B during December.

To express this fact in terms of the model (4.11), we let fA be the EUVI-A image

and fB the EUVI-B image. The image orientations are subject to pointing differences,

so we coalign fB with fA, meaning we shift and rotate fB so its disk center and solar

North angle match fA. The PSF for the rotated fB is obtained by rotating the B

PSF, htrue
B , by the same angle applied to fB. We then have

fA = htrue
A ∗ utrue + nA (4.26)

fB = htrue
B ∗ utrue + nB. (4.27)

We obtain an estimate u for utrue by deconvolving the estimated EUVI-B PSF hB

from fB, then coaligning u with fA using bilinear interpolation. We then deconvolve

hgA from fA to obtain fmA , and bin both u and fmA down to 512× 512. Substituting u

into (4.19) we obtain

fmA ≈ hmA,ϕ ∗ u+ nA, (4.28)

where ϕ now denotes the parameters for the EUVI-A PSF. These are obtained by
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Figure 4.7: A simultaneous exposure by EUVI-A and B in the 171 Å band on Dec. 14,
2007 UTC 18:10:60 (units of log10 ph/sec). Top row, left to right: The
original images fA and fB, and their relative difference (fA − fB)/fB.
Note that the off-limb in A is up to 30% dimmer than in B. Bottom row,
left to right: Deconvolved images uA and uB, and the relative difference
(uA − uB)/fB. The off-limb discrepancy is greatly reduced.

solving

minimize
ϕ∈Φ

∑
x∈Sf

(
hmA,ϕ ∗ u− fmA

σfA

)2

, (4.29)

where σ2
fA

= fA + Nbσ
2
ccd/γ

2 is the noise variance estimate. The MATLAB utility

lsqnonlin was used to solve this problem exactly as in the previous section, except

the residual vector is now composed of the values of (hmA,ϕ ∗u− fmA )/σfA . The images

used were simultaneous A/B exposures in each band taken on December 14, 2006

from 17:45:00 to 17:46:30 UTC. The ϕ values obtained for each EUVI-A band are

reported in Table 4.2.

In the left and middle columns of Fig. 4.7 coaligned 171 Å images are shown before

stray light correction (top) and after (bottom). In the right column are the relative

differences (fA− fB)/fB and (uA−uB)/fB. Generally fA and fB are within ±10% of

each other on the solar disk, but off the limb fB is up to 30% brighter than fA. In the

deconvolved images uA, uB, the off-limb discrepancy is almost completely eliminated.

Similar changes are observed in the other bands.
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A

λ α ρ β log10 γ s

171 Å 0.856 20.607 2.058 -2.334 1.622
195 Å 0.901 19.989 2.072 -2.028 1.838
284 Å 0.935 114.31 2.991 -2.034 1.641
304 Å 0.952 7.266 2.111 -2.129 2.093

B

λ α ρ β log10 γ s

171 Å 0.832 11.108 1.869 -8.000 1.546
195 Å 0.880 5.613 1.834 -2.471 1.300
284 Å 0.918 0.020 1.821 -2.339 1.163
304 Å 0.907 0.000 2.117 -1.994 1.422

Table 4.2: Parameters determining 2048 × 2048 PSFs of EUVI-A and B in all four
filter bands.

4.4 Error Analysis

Before our error analysis can proceed we must add to the image formation model

an effect that was neglected during PSF determination. In Appendix 4.7.2, an analysis

of pixel values in vignetted image regions reveals that the image bias (the pixel value

in areas of zero intensity) varies on scales of dozens to hundreds of pixels. The bias

variation ranges from 0.03 to 0.2 DN for the images considered in this paper, and its

cause is uncertain. The bias variation is negligible for most purposes, but in very faint

off-limb regions and on large spatial scales it can become a major source of error. We

treat the bias variation as an additive spatially varying function, ∆B(x), and add it

to (4.11) to obtain

f = htrue ∗ utrue + n+ ∆B. (4.30)

Given this formula, the total error u−utrue in a deconvolved image can be decomposed

into three components. We set u = h−1 ∗ f and plug into (4.30) to obtain

u− utrue = h−1 ∗ f − utrue

= ([h−1 ∗ htrue − δ] ∗ utrue) + (h−1 ∗ n) + (h−1 ∗∆B)

= εpsf + εn + εbv.

(4.31)

The εpsf term represents systematic error due to PSF inaccuracy, εn represents random

error due to propagation of noise in the observed image, εbv represents error due to

bias variation.

Our estimates of these errors, σpsf, σn, and σbv, are computed below. These errors

come from very different sources and are expected to be uncorrelated with each other,
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so they may be added in quadrature to estimate the total error σu in the deconvolved

image u:

σ2
u = σ2

bv + σ2
psf + σ2

n. (4.32)

The random error εn has minimal correlations above the pixel scale, but the system-

atic errors εpsf and εbv are spatially correlated on scales of dozens of pixels or more.

Therefore, if filtering or binning are applied to the images, the noise and systematic

errors must be treated differently. For example, εn will be reduced by a factor of

about N
1/2
av if a moving average over Nav pixels is applied, but σbv and σpsf will not

necessarily be reduced.

To calculate σbv we note that since ∆B(x) varies slowly with x, it is minimally

affected by deconvolution, so it is reasonable to use the approximation εbv = h−1 ∗
∆B ≈ ∆B. We then set σbv = σvc, where σvc, defined in (4.48), estimates the

standard deviation of the four vignetted corners’ mean intensities from their grand

mean. The bias variation term is not present in the error model of [94] because we

had not yet discovered it.

The noise estimate σn is determined by calculating 〈(h−1 ∗ n)2〉, the diagonal of

the covariance matrix for h−1 ∗ n. Given the estimate of 〈n2〉 ≈ σ2
f = f + σ2

ccd/γ
2

described in §4.3, covariance propagation can be used to show that

〈(h−1 ∗ n)2〉 = (h−1)2 ∗ 〈n2〉 ≈ (h−1)2 ∗ σ2
f = σ2

n, (4.33)

where (h−1)2(x) = h−1(x)2. Other parts of the covariance matrix for εn can also be

computed, but are not considered here. Deconvolution generally increases the noise

level modestly and introduces mild, pixel-scale spatial noise correlations.

The estimate σpsf of error due to PSF inaccuracy is obtained by an empirical

analysis of lunar transit and early mission images, as detailed in the following sections.

The goal of the analysis is to estimate the distribution of εpsf/f , the PSF error as

a fraction of the observed image intensity. Given this distribution we then take

σpsf = ρf as our systematic error estimate, where the scalar constant ρ is some

statistic measuring the distribution’s spread. This is a similar but more conservative

bound than was used in [94], where it was assumed that error due to PSF inaccuracy

was proportional to the magnitude of the correction: σpsf ∝ |f −u|. Such an estimate

implies that the error is very small when the stray light correction is small, and we

suspect from work with EUVI-A that this may be too optimistic.

The näıve approach of estimating the distribution of εpsf itself is not effective

because (4.31) implies that εpsf is a filtered solar image, and as such its dynamic
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range in a given region depends strongly on the local intensity profile. For example,

εpsf generally has a much larger magnitude on the disk than off the limb, while the

relative error εpsf/f has a much more consistent range.

4.4.1 Reducing noise before estimation of εpsf

The empirical analysis of εpsf below requires that the contribution of noise be

minimized in both the original and deconvolved images. Noise can be reduced at the

cost of resolution by binning and spatial averaging. Reduced resolution is acceptable

to us since we are interested only in the stray light distribution on the scale of dozens

of pixels.

For each EUVI image used in the estimation of εpsf, a full-size deconvolved image

was computed using (4.17). Both observed and deconvolved images were then binned

from 2048× 2048 to 512× 512, which is sufficient to make noise negligible in all but

the faintest regions. These remaining faint regions generally have minimal small-scale

structure, and can be denoised by a spatially adaptive averaging technique known as

wavelet thresholding. This technique smoothes away small local fluctuations due to

noise while preserving large local fluctuations and global trends. We apply a wavelet

thresholding procedure described in Appendix 4.7.3 to all observed and deconvolved

images, and in the following analyses we assume that noise is negligible.

4.4.2 Estimating εpsf in EUVI-B

We estimate εpsf for EUVI-B by examining lunar disk pixel values in deconvolved

transit images. Since the lunar disk does not emit EUV radiation, these values rep-

resent observable errors in the deconvolved images. Underlying our analysis is the

assumption that the observable errors are representative of the unobservable errors

occurring in general usage of the deconvolution. While the accuracy of this assump-

tion cannot be checked directly, the diversity of positions taken by the lunar disk

during the transit (within the disk, off the limb, cutting through the limb) help to

ensure that it holds.

Before proceeding, we note that all 8 uncompressed lunar transit images in each

band were used to determine each band’s PSF, so there is no separate data on which

to perform the error analysis. An error analysis performed on the same data used to

fit a model tends to underestimate the error incurred in the model’s general usage, a

phenomenon known as overfitting [54]. The risk of overfitting is greatest for complex

models with many parameters. While our PSF model has only a few parameters,
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some risk may still remain.

To mitigate the risk, we instead consider images u?i derived from the following

cross-validation (CV) procedure. For each of the 8 images fi, we determined a PSF

hi by solving (4.25) with fi removed from the dataset. We then calculated the stray

light corrected CV image u?i = h−1
i ∗ fi. Since fi was not used to fit hi, the values of

u?i on the lunar disk represent an independent check on the correction’s effectiveness.

For each of the 8 lunar transit images fi we know that utrue
i = 0 on the lunar disk Zi,

so deviations of the denoised u?i from zero are due to PSF and bias variation error:

u?i (x) = εpsf,i(x) + εbv,i(x) for x ∈ Zi. (4.34)

We have no way to remove εbv,i so that εpsf,i can be estimated in isolation, so we

must be careful not to consider areas where the two quantities may be comparable.

The value of εbv,i is on the order of Nbσbv,i per binned pixel, while εpsf,i is assumed to

be proportional to fi. Thus, in regions where fi ≈ Nbσbv,i, we cannot safely assume

that εpsf,i dominates. We found that excluding pixels where fi(x) < 2Nbσbv,i was

sufficient to prevent pathologies in the analysis, and the exclusion only affected a

small fraction of pixels.

For the remaining pixels x it was assumed that PSF inaccuracy was responsible

for the observed error: u?i (x) ≈ εpsf,i(x). For each image i, the ratio u?i (x)/fi(x)

was computed for all lunar disk pixels x such that fi(x) ≥ 2Nbσbv, and the resulting

collection of ratios was collected into a single vector, RB. Histograms of RB were

used to estimate the distribution of εpsf/f for a generic image f .

In Fig. 4.8, top row, we show the relative error map u?i /fi on a lunar transit image

from each filter band. The disks shown have among the highest ratios due to an active

region just south of the lunar disk. Despite this, the ratio’s value (as a percentage) is

generally less than 10% in each band, and less than 20% in 284 Å. The largest errors

occur in a ring of four negative (blue) regions around the lower edge of the lunar disk

in 284 Å. These regions are caused by overcorrection of grid diffraction associated

with an active region just below the lunar disk. The PSF hg for 284 Å implies more

scatter from this active region than is actually observed, so the deconvolved image

has pockets of negative values. Similar, less prominent pockets can be seen in the

other bands. The overcorrection associated with hg derives from excessively heavy

weights mj1mj2 on the point masses lying on the principal axes of the Dirac comb for

hg (see (4.4)). Adjustment of these weights to improve the deconvolution’s accuracy

will be considered in future work.
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Figure 4.8: Empirical estimation of relative PSF error in EUVI-B from the lunar
transit. Top row: Map of u?i /fi ratios on the lunar disk in one of the 8
transit images. Bottom row: Histogram of the vector RB containing the
values of the ratios u?i /fi on each of the eight lunar disks. The bar height
represents the fraction of pixels within 0.015 of a given u?i /fi ratio value.

68th 95th 99.7th

171 Å 0.06 0.11 0.16
195 Å 0.05 0.10 0.16
284 Å 0.07 0.14 0.23
304 Å 0.04 0.09 0.14

Table 4.3: The 68th, 95th, and 99.7th percentile values of the relative error vector |RB|
for each filter band of EUVI-B.

The histogram of RB is shown in the bottom row of Fig. 4.8. The histograms for

171, 195, and 304 Å all have similar shapes, but the 284 Å histogram is somewhat

wider, indicating a tendency towards larger errors. The wider 284 Å histogram is due

to the uncorrected shadowing by the backup filter in 284 Å, and the artifacts caused

by hg as discussed above. We measure the spread of RB using percentiles of |RB|,
which are reported in Table 4.3. We report the 68th, 95th, and 99.7th percentiles,

which correspond to the first three standard deviations of a Gaussian. Note that the

values of |RB| at these percentiles increase by a roughly constant amount with each

standard deviation, as is expected of a Gaussian error. In 171 Å, for example, the

percentile values are 0.06, 0.11, and 0.16, increasing by about 0.05 with each standard

deviation. This suggests that εpsf/f can be reasonably modeled as a Gaussian with

standard deviation given by the 68th percentile.
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Figure 4.9: Relative discrepancy between simultaneous exposure EUVI-A and B im-
ages from the early mission. For 171, 284, and 304 Å the images are
taken on December 22, 2006 from 01:00:56 to 01:01:28 UTC, while for
195 Å they were taken on December 14 at 18:45:00 UTC. Rows 1 and 3:
The relative difference map (uA − uB)/fA. Rows 2 and 4: Histograms of
(uA − uB)/fA.
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68th 95th 99.7th

171 Å 0.02 0.08 0.16
195 Å 0.02 0.09 0.20
284 Å 0.05 0.17 0.28
304 Å 0.01 0.08 0.20

Table 4.4: The 68th, 95th, and 99.7th percentile values of |(uA−uB)/fB| for each EUVI
filter band.

68th 95th 99.7th

171 Å 0.07 0.12 0.23
195 Å 0.07 0.12 0.22
284 Å 0.12 0.20 0.32
304 Å 0.07 0.13 0.24

Table 4.5: The 68th, 95th, and 99.7th percentile values of the relative error map |RA|
for each filter band of EUVI-A.

4.4.3 Estimating εpsf in EUVI-A

Since EUVI-A has not observed a transit, we lack information about the ideal

EUVI-A image utrue
A and cannot directly estimate error in the deconvolved EUVI-A

images uA. However, we can obtain an indirect estimate from early mission images:

the ideal image utrue is the same for EUVI-A and B, so the corrected EUVI-B image

uB provides an estimate of utrue.

Formally, suppose we are given two simultaneous early mission observations fA

and fB. We have from (4.31) that

uA = utrue + εpsf,A + εbv,A

uB = utrue + εpsf,B + εbv,B.
(4.35)

Subtracting uB from uA gives

uA − uB = (εpsf,A − εpsf,B) + (εbv,A − εbv,B), (4.36)

a sum of errors due to PSF inaccuracy and bias variation. As in the EUVI-B analysis,

we must identify and ignore those pixels where εpsf,A−εpsf,B cannot be safely assumed

to dominate εbv,A − εbv,B. The estimated magnitude of εbv,A − εbv,B, which we call

∆σbv, is calculated by adapting (4.48) to estimate the bias variation in a difference

of two images:

∆σ2
bv =

1

4− 1

4∑
i=1

((ci,A − ci,B)− (cA − cB))2, (4.37)
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where ci,A and ci,B are the means of the vignetted corners of fA and fB, and cA =
1
4

∑4
i=1 ci,A and cB = 1

4

∑4
i=1 ci,B are the grand means. We ignore the pixels x where

|fA(x)−fB(x)| ≤ 2Nb∆σbv, and outside of these pixels we assume uA−uB is roughly

εpsf,A − εpsf,B and write εpsf,A as the sum of two errors:

εpsf,A = (uA − uB) + εpsf,B. (4.38)

We then calculate an estimate σ̃2
psf,A of εpsf,A by adding uA − uB in quadrature with

the previously calculated estimate σpsf,B = ρBfB of PSF error in uB:

σ̃2
psf,A = (uA − uB)2 + (ρBfB)2, (4.39)

where ρB is a constant measuring the spread of εpsf,B/fB determined in the previous

section. We set ρB to the 68th percentile in Table 4.3.

Our estimates of εpsf,A/fA are derived from the distribution of RA = σ̃psf,A/fA,

which is treated as a surrogate for the more direct error measurements RB provided

by the lunar transit. Percentiles of RA are used to obtain a value ρA analogous to ρB.

To guard against overfitting, we apply the error analysis to early mission images

as dissimilar as possible from the images used to determine the PSF. For 171, 284,

and 304 Å we used images from simultaneous A/B exposures on December 22, 2006

from 01:00:56 to 01:01:28 UTC, almost a week after the exposures used to fit the

PSF. This series did not include 195 Å so in its case we used a simultaneous exposure

from December 14 at 18:45:00 UTC, one hour after the exposure used to find the

PSF. The ratio (uA − uB)/fA is shown for each band in Fig. 4.9, top row. Choosing

ρB as the 68th percentile from Table 4.3, we computed for RA the percentiles listed

in Table 4.5.

4.5 Results

The contribution of stray light is generally greatest in faint regions that appear

near bright regions. Thus areas off the limb, coronal holes, filaments, and filament

cavities are expected to receive the largest downward revisions when deconvolution is

applied. Here we present EUVI images of such features before deconvolution (f) and

after (u). The ratio map u/f is presented to illustrate where the correction is large,

and line plots with error bars are given. Error bars σu for the deconvolved image u

are computed using (4.32), and the component terms are computed as described in

§4.4. The values of ρA and ρB used to compute σpsf are set to the 95th percentile in
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Figure 4.10: The global corona as seen by EUVI-A on Jan. 19, 2007 (UTC 01:00:56
to 01:01:28). A 16× 16 moving average has been applied for noise sup-
pression. Rows 1 and 2: The observed data f and corrected data u
(log10 ph/sec). A white line has been drawn between the plumes below
the South pole. Row 3: The ratio image u/f . Row 4: Intensities of f
(dotted line) and u (solid line) along the white line segment as a function
of distance from solar center (units of R�). Error bars are given every
50 pixels.

Tables 4.5 and 4.3 respectively.

In Figs. 4.10 and 4.11 we examine the global corona as seen by EUVI-A and B

on January 19, 2007, focusing on the intensity profile versus height above the limb.

The exposures were not ICER compressed and thus provide the most reliable off-limb

intensity information. Near the limb deconvolution generally has little effect, but as

we move away from the limb the ratio u/f rapidly drops to less than 50%, with many

regions dropping to 10% or lower. This implies that at least 50% of the apparent

off-limb intensity is stray light, and in some areas it may rise to 90% or more. We

plot the observed and deconvolved image intensity on a line above the North pole,

and find that the intensities decay much faster in the deconvolved images.

Figs. 4.12 and 4.13 shows a coronal hole seen by EUVI-A on October 3, 2008 and
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Figure 4.11: The global corona as seen by EUVI-B on Jan. 19, 2007 (UTC 01:00:56 to
01:01:28). A 16× 16 moving average has been applied for noise suppres-
sion. Rows 1 and 2: The observed data f and corrected data u (log10

ph/sec). A white line has been drawn between the plumes below the
South pole. Row 3: The ratio image u/f . Row 4: Intensities in ph/sec
of f (dotted line) and u (solid line) along the white line segment as a
function of distance from solar center (units of R�). Error bars are given
every 50 pixels.
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Figure 4.12: Stray light correction of an on-disk coronal hole observed by EUVI-A on
Nov. 20, 2008. A 3× 3 moving average has been applied to the 195 and
284 Å images for noise suppression. Rows 1 and 2: The observed data f
and corrected data u (log10 ph/sec). A white line has been drawn over
the middle of the coronal hole. Row 3: The ratio image u/f . Row 4:
Intensities in ph/sec of f (dotted line) and u (solid line) versus image
pixel index along the white line segment. Error bars are given every 20
pixels.

EUVI-B on November 21, 2008. In all bands except 304 Å, the stray light corrected

coronal holes are significantly dimmer: the ratio u/f ranges from 30% to 60% in the

deepest parts of the coronal holes, implying that 40-70% of the apparent coronal hole

emissions are stray light.

The effect of stray light correction can be highly dependent on the filter band.

To illustrate this, a filament cavity observed on the limb by EUVI-B is shown in

Fig. 4.14. The ratio images show that up to 60% of the cavity is stray light in 171

and 304 Å, but in 195 and 284 Å the stray light levels are much lower. Stray light

levels in a given region depend on the PSF and the brightness of neighboring features,

both of which vary considerably with the region’s location and the band.
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Figure 4.13: Stray light correction of an on-disk coronal hole observed by EUVI-B on
Nov. 20, 2008. A 3× 3 moving average has been applied to the 195 and
284 Å images for noise suppression. Rows 1 and 2: The observed data f
and corrected data u (log10 ph/sec). A white line has been drawn over
the middle of the coronal hole. Row 3: The ratio image u/f . Row 4:
Intensities in ph/sec of f (dotted line) and u (solid line) versus image
pixel index along the white line segment (units of ph/sec). Error bars
are given every 20 pixels.
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Figure 4.14: Stray light correction of a filament cavity observed by EUVI-B on
Feb. 25, 2007. A 3 × 3 moving average has been applied to the 284
and 304 Å images for noise suppression. Rows 1 and 2: The observed
data f and corrected data u (ph/sec). A white line has been drawn over
the middle of the filament cavity. Row 3: The ratio image u/f . Row 4:
Intensities of f (dotted line) and u (solid line) versus image pixel index
along the white line segment. Error bars are given every 15 pixels.
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4.6 Conclusion

We have determined PSFs for all filter bands of the EUVI instruments aboard

STEREO-A and B via a maximum likelihood-type method. The method is based

on a model of EUV image formation that accounts for long-range scatter, photon

noise, and CCD noise. Scatter was assumed to arise from a spatially invariant PSF h,

which was represented as the convolution of a mesh component hg and an empirical

component hm. The mesh component represents diffraction by the mesh over the

entrance aperture, while the empirical component represents scattering by mirror

microroughness and other effects. It was shown that if the effects of Fresnel diffraction

and the pupil are neglected, this model can be derived from a Fourier optics model

of EUVI. Whether these effects are in fact negligible is unclear, and we suspect that

our PSFs could be improved substantially with a more complete instrument model.

The mesh component was determined using Fraunhofer diffraction theory. The

empirical component was modeled using a generalized Lorentzian formula found in

the EUV mirror literature, but this model required some modification to obtain an

empirically workable stray light correction. Accounting for the stray light anisotropy

was found to be essential for a high quality correction, particularly off the limb.

Anisotropy was accounted for by allowing hm to have an elliptical shape with an

orientation determined by analysis of calibration roll data.

A consistent correlation was observed between the direction of anisotropic scatter

and the scatter predicted from hp, the PSF resulting from Fraunhofer diffraction by

an ideal quarter annulus pupil. A similar correlation was observed in SOHO/EIT [5].

We showed that the long-range wings of hp do not contain enough mass to explain

the observed stray light distribution, but it is possible that hp underestimates scatter

due to the pupil: for example, Fresnel diffraction effects between the optical elements

or a non-ideal pupil with rough edges could make the wings of hp heavier. These

possibilities can and should be explored quantitatively via computational models

developed in collaboration with optical engineers.

We determined the PSF for each EUVI-B band by applying semiblind deconvolu-

tion to lunar transit data, which solves for the stray light corrected image and PSF

simultaneously. Thanks to a variable elimination technique, our method is no more

computationally demanding than previous methods, which rely on a predetermined

heuristic approximation of the corrected image to obtain the PSF. For EUVI-A we

exploited the fact that A and B observed the Sun from the same position in Decem-

ber 2006. We deconvolved the B image with its estimated PSF to approximate the
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corrected image, which enabled determination of the A PSFs.

The determined PSFs enable quick correction of any EUVI image for stray light,

and our error analysis enables quick estimates of both systematic and random error

to be calculated for any deconvolved image. While we have considered only uncom-

pressed images in this paper, stray light correction can also be usefully applied to

ICER compressed images, which comprise the vast majority of the EUVI database.

Care must be taken with these images as they have more artifacts and degraded ac-

curacy, particularly off the limb. The suitability of stray light correction for ICER

images will be addressed in an upcoming publication.

We have shown the effects of stray light correction on various solar features. The

large downward corrections to faint regions have major impacts on the plasma diag-

nostics available from EUV images. A downward correction of the observed intensity

causes a proportional reduction of the estimated value of n2
e and analysis of the 171,

195 and 284 Å intensities show a downward revision of the coronal hole column density

[
∫

LOS
dl n2

e(l)]
1/2 of up to 40%. The effect on the estimated Te is more complex. The

removal of stray light from the off-limb causes a dramatic steepening of the profile

function ne(h) (where h is the height above the photosphere). The specific impact of

stray light correction, including constraints on solar wind models from the corrected

profiles ne(h), Te(h), is currently under investigation. Obvious consequences include

reduction of the plasma β, electron-ion collision rates, and the mass of solar wind

plasma requiring acceleration.

Similar methods may be applied to treat the stray light problems in the other so-

lar EUV imaging instruments (SOHO/EIT, TRACE, STEREO-A/EUVI, SDO/AIA).

This work and its heliophysical implications will be reported in more detail in up-

coming publications.

4.7 Appendix

4.7.1 Optical modeling

Scalar diffraction theory can be used to mathematically model scattering in EUVI

and determine a PSF. In Fig. 4.15, we propose a model in which the mirrors are

represented by thin lenses and random phase screens, and the wire meshes and aper-

ture masks are represented by amplitude screens. The model consists of four planes

representing the entrance aperture, primary mirror, secondary mirror, and CCD re-

spectively. The incident field propagates between these planes by Fresnel diffraction.

When the field encounters a plane, it is perturbed by any screens or lenses present in
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Figure 4.15: Schematic diagram illustrating the mathematical model of the EUVI
optical system expressed in (4.41). The instrument is treated a series of
four planes - entrance aperture plane, primary mirror plane, secondary
mirror plane, and focal plane - separated by distances d0, d1, and d2. The
entrance aperture plane contains an amplitude screen G representing
the wire mesh at F1. The primary mirror plane contains an amplitude
screen P representing the quarter annulus pupil, a random phase screen
S1 representing mirror microroughness, and a thin lens L1 representing
the phase shift imposed by an ideal mirror surface. The secondary mirror
plane is similar but the amplitude screen is omitted for simplicity. The
backup rejection filter F2 in front of the focal plane is pictured here but
omitted from the PSF modeling because it causes shadowing and not
scatter.
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that plane. The final plane is the focal plane. The backup rejection filter F2 near the

focal plane does not scatter light, but only shadows the CCD, so it is not considered

in the PSF determination. For simplicity we ignore the finite extent of the aperture in

all planes except the primary mirror plane, which contains a quarter annulus screen

representing the aperture mask in front of the primary mirror [55]. The finite extent

of the entrance aperture and secondary mirror could be represented by adding quarter

annulus amplitude screens to their planes.

The electric field in the focal plane can be expressed compactly by applying a

series of linear operators to the field at the entrance aperture plane. This idea is

presented by Goodman in [49, Chapter 5.4], and a variant of his operator notation

is adopted here. We let MV [U ](w) = V (w)U(w) denote pointwise multiplication of

the input field U(w) by the screen V (w), where V (w) may be complex-valued and

include both phase and amplitude components. The operation of Fresnel propagation

of U over a distance d between two parallel planes is given by

Rd[U ](w) =
eikd

iλd

∫
U(w′)ei

k
2d
|w′−w|2dw′, (4.40)

where k = 2π/λ, |w| =
√
〈w,w〉 is the length of the vector w in the plane R2, and the

integration is over the plane [49, Chapter 4.2]. We give the pupil plane and focal plane

physical coordinates ξ ∈ R2 and X ∈ R2 aligned with the CCD primary axes, with

origins determined by intersecting each plane with the path of a normally incident

geometric ray. Letting Up(ξ) denote the pupil plane field, Uf (X) the focal plane field,

we have

Uf = (Rd2 · MS2L2 · Rd1 · MPS1L1 · Rd0 · MG)[Up], (4.41)

where the dot denotes composition of operators. Radiation from the solar surface

is spatially incoherent, so the focal plane PSF is proportional to the field intensity

|Uf |2 produced by a plane wave Up [49, Chapter 6]. This model is expected to gen-

erate a PSF that varies with position in the focal plane, which would present serious

computational challenges. Even if this variation is negligible, as we have assumed in

this paper, the presence of multiple Fresnel integrals makes the PSF difficult to com-

pute. However, the fractional Fourier transform can be used to approximate Fresnel

integrals numerically [85], which may enable future work within this model.

In the present work, we obtain a simpler model (at the expense of physical ac-

curacy) by removing Rd0 and P , then moving the remaining amplitude and phase
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screens G,S1, S2 to the plane containing the first lens:

Uf ≈ (Rd2 · ML2 · Rd1 · ML1) · MGS1S2 [Up]. (4.42)

The term in the parentheses represents an optical system free of scattering by diffrac-

tion and mirror microroughness. The system is still subject to geometric aberrations,

but these are significant only on a scale of 1-2 pixels (J.-P. Wuelser, personal com-

munication). Above this scale the system may be considered geometrically ideal, and

the term in parentheses may be represented as a scaled Fourier transform:

Uf ≈ (S1/Zλ ·F ) · MGS1S2 [Up], (4.43)

where S1/Zλ[U ](X) = U(X/Zλ) and Z = 1750 mm is the EUVI effective focal length.

Setting Up(ξ) to be a normally incident plane wave (U(ξ) = 1 for all ξ) and setting

S = S1S2, we obtain a formula for the instrument PSF h0 in physical units X and

pixel units x:

h0 ∝ |Uf (X/Zλ)|2 ≈ |F [GS](X/Zλ)|2 = |F [GS](τx)|2. (4.44)

In the second line we have used the plate scale relation ∆θpx = (X/Z) and the

constant τ = ∆θp/λ.

The screen S(ξ) ∝ exp(−2πiφ(ξ)) represents the net phase error accumulated by

the incoming wavefronts after reflection off the primary and secondary mirrors. The

phase function φ(ξ) is far too complex to be modeled deterministically, so it is typically

treated as a Gaussian random field. Under this model there is no simple formula for

the specific PSF h0 realized in the instrument, but the expected PSF h = 〈h0〉,
averaged over all realizations of the random field φ(ξ), has a simple form which we

adopt as our PSF model. In [50, Chapter 8.1] a general calculation applicable to this

model gives

h = 〈h0〉 = hg ∗ hm, (4.45)

where hg(x) ∝ |Ĝ(τx)|2 and hm ∝ 〈|Ŝ(τx)|2〉 will be called the grid and the empirical

PSF respectively. The two proportionality constants are determined by the constraint

that the PSF must integrate to unity (or sum to unity in the discrete case).

It is unclear how much error is incurred by the heuristic simplifications used to

obtain this model. Even if it is justifiable in some sense to move the screens, they may

need to be modified to compensate for neglecting the effects of Fresnel propagation. It

seems likely that the effects we have neglected contribute to the empirical anisotropy
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of the PSF and our deconvolution’s systematic error.

4.7.2 Image preparation

The purpose of this appendix is to describe the known effects in a raw EUVI

image, fraw, and the steps required to obtain an image that conforms to this model

well enough for the purposes of PSF determination and error analysis. We begin

by recalling that, before shadowing by the mesh F2 supporting the backup rejection

filter, the expected image in the focal plane is htrue ∗ utrue. Letting F (x) denote

the fraction of light admitted by the mesh at pixel x, the expected image after F2

is F (htrue ∗ utrue), and the number of photons actually captured in an exposure is

fphot = F (htrue ∗ utrue) + nphot, and the digital number (DN) readout of the detector

is γfphot, where γ is the photoelectric gain constant (DN/photon). The raw images

also have additive CCD noise nccd, impulse noise nspike due to cosmic rays, and bias

B, so the raw image in DN is given by

fraw = γfphot + nccd + nspike +B. (4.46)

The prepared image f is obtained by removing the bias, despiking, and dividing by

γF . Assuming these corrections are accurate we have

f =
1

γF
(fraw −B − nspike), (4.47)

which leads to (4.11), the model used to determine the PSFs.

The EUVI image preparation procedure euvi prep.pro used in SolarSoft is re-

sponsible for removing B, while the despiking utility despike gen.pro is used to

remove nspike. For most purposes these corrections are entirely satisfactory. However,

the demands of stray light correction are unusual, particularly in the highly infor-

mative but very faint regions far off the limb. Here we describe a custom procedure

for estimating and removing bias and spikes. We also show that the bias exhibits

large-scale systematic variation, meaning that B is not constant but varies slowly

with position in the image. This variation is estimated and included in our analysis

of error in deconvolved images.

4.7.2.1 Bias estimation and removal

The euvi prep.pro debiasing procedure corrects CCD bias, which accounts for

almost all of the bias B. The CCD bias estimate it subtracts is obtained from the
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FITS header (keyword BIASMEAN). The BIASMEAN estimate is obtained by sampling

values from the overscan, a collection of pixel values read from the CCD electronics

without collecting any electrons from the physical CCD pixels. These measure the

contribution of the on-chip amplifier to the readout [58]. Depending on the image,

up to 128 overscan rows and 64 overscan columns are collected, enlarging the image

from 2048 × 2048 to 2176 × 2112. The FITS header estimate for B uses only one

column of the overscan, and in some images we have observed this column’s mean to

differ from the mean value over the whole overscan by up to 0.5 DN. This is enough

to complicate our error analysis, so we initially estimate B by taking the mean of the

whole overscan instead of using the FITS header value.

Even after this constant is removed, the mean values of the rows of the overscan

exhibit variability. This is typically between 0.2 and 0.5 DN peak-to-peak, and occurs

mostly in first few dozen rows. Assuming that the variability is constant along each

row (i.e. it does not change with column index), the variability can be somewhat

compensated by forming a vector v of the mean values of each overscan row, then

subtracting vi from the ith row of the image. To reduce noise, v is smoothed by

applying a moving average of length 20.

Initial difficulties in getting EUVI-A and B deconvolutions to agree off the limb led

us to suspect that there may be contributions to the bias beyond what is represented

in the overscan. To test for this we examined vignetted pixels near the four corners of

each EUVI image. Vignetting occurs because there is a circular filter wheel in front

of the CCD, and the CCD diagonal is slightly longer than the filter wheel diameter.

We visually identified the boundary between vignetted and unvignetted pixels in each

EUVI-A and B image, confirming that it is composed of four circular arcs formed by

the intersection of the square CCD array with the circular filter wheel shadow. We

then selected about a dozen pixels deep in the vignetted region for each image and fit

a circle to these pixels. The pixels outside the fitted circle formed four disjoint sets,

one for each corner of the square, and were assumed to be fully vignetted.

We computed the mean readouts c1, . . . , c4 of each corner, the grand mean c =
1
4

∑4
i=1 ci, and the unbiased variance estimate

σ2
vc =

1

4− 1

4∑
i=1

(ci − c)2 (4.48)

The quantity σvc represents large-scale variations in the bias which cause the four

corner means to differ. In Fig. 4.16 the values of c and σvc are shown for the 8
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Figure 4.16: Grand mean c and RMS deviation from the grand mean σvc for the
vignetted corner means c1, . . . , c4 over the 8 lunar transit images in each
EUVI band.

uncompressed images (in each band) from the Feb. 25, 2007 lunar transit. The

average values of c̄ for each wavelength are 0.9, 0.3, 0.25, and 0.5 DN for 171, 195,

284, and 304 Å respectively.

The computed values of c and σc are far too large and regular to be attributed to

normal statistical variability in nccd. Each of the selected corner regions contain over

16, 000 pixels and each corner set has a total of at least 160, 000 pixels, so the expected

standard deviation of c due to CCD noise is
√
〈σ2

c 〉 ≤ σccd/
√

160000 = 0.0025 DN.

The computed values of c are highly stable and much larger than this value. The

expected value of σvc can be estimated by adding in quadrature the standard errors

in the means of the four corners: 〈σ2
vc〉 =

∑4
i=1 σ

2
ci

=
∑4

i=1 σ
2
ccd/ni, where ni is the

number of pixels in each corner. From this we compute a value of 〈σ2
vc〉1/2 = 0.006 DN

in each band. The computed values of c and σvc are quite stable and much larger than

the expectations, so they must be due to some additional bias beyond that measured

by overscans.

Dark current undoubtedly contributes some of this bias, but cannot fully explain

some features of it. For example, dark current is a function of exposure time and

detector temperature, but not of wavelength, since it is not generated by EUV pho-

tons. But the two bands 171 and 195 Å both used 20 second exposures during the

transit and have c values around 0.9 and 0.3 DN respectively. Thus the cause of the

unexpectedly high c and σvc values is unclear, and may involve subtle CCD behavior,

low-level stray light leaks, or scattering by the backup filter mesh F2. Whatever the

cause, we subtract the constant c from the image as part of our preparation.
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4.7.2.2 Despiking

The SolarSoft utility despike gen.pro is normally used for despiking EUVI im-

ages. It is works well for many applications, but has difficulty removing spikes that

span many pixels. Uncorrected cosmic ray impacts off the limb can create errors

hundreds of sigmas above the nominal noise level from §4.3, which are large enough

to degrade the PSF parameter estimates.

To eliminate these we augment the standard procedure with a rather aggressive

second step, which is applied only to the faintest areas off the solar limb where there is

minimal structure capable of causing false positives. For each image to be processed,

we first formed a mask by identifying the fraction p = 1−π(fsR�)2/Nf of pixels with

lowest intensity, where Nf is the number of unvignetted pixels, R� is the solar radius

in pixels, and fs = 1.15, 1.05, 1.03, 1.15 in 171, 195, 284, and 304 Å respectively.

On-disk pixels were excluded from the mask. The mask was then enlarged to fill in

‘gaps’ caused by noise: any pixel within a box of side-length 32 pixels around a mask

pixel was added to the mask. Empirically, we found that the resulting mask was

composed of the pixels in areas far off the limb, where there is minimal small-scale

structure. We then calculated a 11 × 11 median filtered image and identified any

pixels that were in the mask and more than 3σf above the median as spikes. Here, σf

denotes the estimate of photon and CCD noise in the original image defined in §4.3.

The identified spikes were replaced with values from the median filtered image. After

careful examination of the images used in PSF fitting and error analysis, we concluded

that this procedure removed almost all spikes, and no correlation of identified spikes

with solar structure was observed.

4.7.3 Wavelet denoising

Here we describe the procedure used to reduce noise in the EUVI images that

form the basis of the systematic error analysis of §4.4. In the images we analyze,

noise is generally significant only in very faint areas off the limb. In these areas,

however, the images tend to be fairly noisy even after the 4×4 binning applied before

error analysis. To smooth off-limb noise away without disturbing solar structure, we

performed wavelet denoising on all analyzed images.

The wavelet transform uses a pair of filters to decompose an image into a low-pass

component containing large scale structure and a high-pass component containing

small-scale details [75], and can be inverted by filtering and summing these com-

ponents together. In the standard transform, both components are subsampled to
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maintain the original signal dimension, but there is also a translation invariant ver-

sion which omits the subsampling. The decomposition step is repeated J−1 times on

the low-pass component to obtain a multi-scale transform having J + 1 components:

J detail components containing local fluctuations at progressively larger scales, and

a final low-pass component containing the global behavior. Lifting schemes are used

for the technical implementation of more recent wavelet transforms [100].

Wavelet high-pass filters are generally designed to have vanishing moments of some

order d, meaning (roughly) that the filter has no response to a polynomial trend of

degree d − 1 or less. In general, the decomposition and reconstruction filters have

different vanishing moments d1 and d2, and a wavelet transform with such vanishing

moments is called a d1/d2 transform. Vanishing moments help to ensure that large-

scale signal trends are held in the low-pass coefficients alone. For example, if a wavelet

transform is applied to a signal composed of a linear trend and additive noise, the

detail components receive most of the noise and almost none of the linear trend, while

the final low-pass component holds a denoised version of the linear trend.

Wavelet denoising works by applying a wavelet transform to the image, setting

small detail transform coefficients to zero, then transforming back. We used a trans-

lation invariant 5/3 lifting transform with J = 5 levels and applied thresholding only

to detail coefficients below a threshold of 2σccd. Denoising generally does not affect

features on-disk and near the limb because their wavelet coefficients are too large.

Off the limb, noise is removed without disturbing the large scale structure, which is

contained almost entirely in the low-pass coefficients.

4.7.4 Calibration rolls and stray light anisotropy

We examine STEREO calibration roll images to reveal the anisotropic stray light

distribution and test our deconvolution’s ability to correct it. On November 29, 2011,

STEREO-A executed a 360◦ calibration roll, and in each band it acquired 9 solar

images at roll angles of θ = 0, 60, 90, 120, 180, 240, 270, 300, and 360◦ relative

to the pre-roll position. STEREO-B performed an identical roll on November 8,

2011. Images for each band were acquired at a cadence of 20 minutes. Since the

PSF is determined by the instrument optics, it rotates with the instrument, so the

distribution of stray light rotates with respect to the pre-roll image coordinate system.

To track this rotation we coaligned all images to the coordinates of the pre-roll

image, giving a series of 9 images f0, f90, . . . , f360 for each band, and examined the

difference images ∆fθ = fθ − f0. The 90◦ difference image ∆f90 = f90− f0 was found

to contain most of the information about the anisotropy, so we restrict our attention
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to this image alone. The ∆f90 images for each band of EUVI-A and B are shown in

Rows 1 and 3 of Fig. 4.17. The base differences ∆u90 = u90−u0 for the corresponding

deconvolved images are shown in Rows 2 and 4.

The Sun changes considerably during the 40 minutes between acquisition of f0 and

f90, and most of the on-disk values of ∆f90 are due to temporal variation. Regions

far off the limb, however, are much less variable, and there the effects of stray light

manifest as antipodal pairs of positive and negative regions forming an X-shaped pat-

tern. In 171 and 195 Å the negative (blue) regions are found on the diagonal line 45◦

above the horizontal, and positive regions (red) are found on the line perpendicular.

In 284 and 304 Å the pattern is reversed. The negative regions represent areas where

the base image f0 has more stray light than f90, while the positive regions have less.

A simple interpretation of these observations is that the PSF wings have higher

values along the axis defining the blue region, and lower values along the axis defining

the red one. This observation prompted us to give the PSF elliptical cross sections

with primary axes along the observed diagonals, as described in §4.2.2.2. The effec-

tiveness of this model can be seen in the deconvolved differences ∆u90, where the

X-shaped pattern is generally greatly reduced, although some artifacts remain. Note

that the calibration roll data was not used to fit the PSF, and was acquired over four

years after the early mission and lunar transit data that was used.

4.7.5 Pupil diffraction

Each EUVI instrument has four quarter annulus-shaped pupils, one for each filter

band telescope, as shown in Fig. 4.18 (J.-P. Wuelser, private communication). It is

shown below that Fraunhofer diffraction through each quarter annulus pupil has a

PSF hp with long-range anisotropic wings. Thus hp could contribute significantly to

the overall stray light distribution and possibly explain the anisotropy observed in

calibration rolls. To test this hypothesis we compute hp numerically and deconvolve

it from the calibration rolls, finding that hp by itself cannot account for the stray

light anisotropy.

To describe the quarter annulus pupil shape mathematically, let R1 = 32.5 mm

and R2 = 49.0 mm be the inner and outer radii of the annulus and 2b = 23.7 mm the

horizontal distance between both the left and right annuli and the top and bottom

annuli. Ignoring the mesh over the pupil, the pupil’s transmittance function is

P (ξ) =

1 if R1 ≤ |ξ| ≤ R2 and ξ1, ξ2 ≥ b

0 otherwise.
(4.49)
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Figure 4.17: Analysis of calibration roll difference images in EUVI-A (top two rows)
and B (bottom two rows) before and after stray light correction. All
images are in units of DN, 4 × 4 binned, and an 8 × 8 moving average
has been applied. Each roll image f90 has been rotated and shifted so the
Sun’s position matches the pre-roll image f0. Rows 1 and 3: Difference
f90 − f0 of the pre-roll and 90◦ rolled images. Rows 2 and 4: Difference
u90 − u0 of deconvolved images.
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The continuous PSF associated to Fraunhofer diffraction by this pupil is given by

Hp(x) ∝ |P̂ (τx)|2, where τ = ∆θp/λ. The corresponding discrete PSF hp(x) is

obtained by integrating Hp(x) over the area of a CCD pixel: for each pixel x in the

image array,

hp(x) = C

∫
[−1/2,1/2]2

Hp(x+ x′)dx′, (4.50)

where C is a normalization constant. Given samples Hp(j/Qs) for j ∈ Z2, where Qs

is a positive odd number, we approximate hp(x) by discretizing the integral:

hp(x) ≈ C
∑

−bQs/2c≤j1,j2≤bQs/2c

Hp(x+ j/Qs) · 1/Q2
s, (4.51)

where bQs/2c represents the largest integer less than Qs/2. As we will see, Hp(x) is

highly oscillatory, and a large value of Qs must be chosen to resolve the oscillations

clearly and obtain an accurate integral approximation. We set Qs = 199 in our

computations.

We obtain the desired samples of Hp using the DFT. We define a square [0, R]2

in the pupil plane with R ≥ R2 containing the full support of P (ξ) and a sample

spacing ∆ξ = R/Ns, and approximate the integral

P̂ (τx) =

∫
P (ξ) exp(−2πiτ〈x, ξ〉)dξ (4.52)

by the discrete sum

η(x) =
∑
k∈A

P (k∆ξ) exp(−2πi〈τx, k∆ξ〉)∆ξ2 (4.53)

where A = {0, . . . , Ns − 1}2. By sampling η at a spacing of 1/Qs we obtain a DFT

sum which can be calculated using the FFT algorithm:

η(j/Qs) =
∑
k∈A

P (k∆ξ) exp(−2πi(τ∆ξ/Qs)〈j, k〉)∆ξ2 for j ∈ Z2
Ns
. (4.54)

The definition of the DFT requires that τ∆ξ/Qs = 1/Ns, which simplifies to R =

Qs/τ . Setting Ns = NpQs, where Np = 2048 is the number of EUVI pixels, we

substitute |η|2 in for Hp in (4.51) to obtain

hp(x) ≈ C
∑

−bQs/2c≤j1,j2≤bQs/2c

|η(x+ j/Qs)|2 · 1/Q2
s for x ∈ Z2

Np
, (4.55)
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where C is set by the sum-to-unity constraint,
∑

x∈Z2
Np
hp(x) = 1. Put simply, the

discrete pupil PSF hp is approximated by binning down the array of samples of |η|2

by a factor of Qs in each dimension, then normalizing to unity.

The structure of the pupil diffraction pattern is clearest in the array |η|2, before

it is binned to form hp. Views of the central portion of |η|2 are shown in Fig. 4.18,

middle and right for EUVI-A and B, 171 Å. It is symmetric with respect to 180◦

rotation, has two arms along the coordinate axes, and a fan-shaped component with

a span from 15◦ to 75◦ above the horizontal axis in the first quadrant. The PSF hp

obtained after binning |η|2 has the same features, but in a much lower resolution, and

is not shown. The PSFs for the other bands are similar, except that those for 195

and 284 Å are obtained by reflection through the horizontal axis.

There are two sources of error in our calculation of hp: error in discretizing the

pixel integral and error due to aliasing in DFT approximation of the Fourier transform

in (4.53). The high sampling rate of |η|2 (nearly 40,000 samples per EUVI pixel)

ensures the diffraction pattern is clearly resolved, and error in approximating the

pixel integral to compute hp is negligible. The contribution of aliasing can be bounded

conservatively by calculating the PSF mass found outside a 1024×1024 square around

the origin. Most aliasing will occur in this region, so if most of the mass is within the

central region then aliasing must be minimal. In 171 Å this mass is 3.0 · 10−5, a very

small amount, and the other bands are similar.

To determine whether the fan-shaped component of hp can explain the observed

anisotropy in EUVI images, we deconvolve it from the calibration roll images for

EUVI-B 171 Å. To ensure that the small amount of aliased energy in hp cannot

confound the results, we set to zero all pixels that are (1) outside the angles of 15◦

and 75◦ bounding the fan and (2) more than 5 pixels from the origin. This results in

the purely fan-shaped PSF shown in Fig. 4.19, right. We then take the roll images f0

and f90 and deconvolve them with hp to obtain up0 and up90. Finally, the differences

f90 − f0 and up90 − u
p
0 are computed as in the previous section. These differences are

shown in Fig. 4.19, middle and right respectively. It is clear that deconvolution with

hp has had no effect at all on the X-shaped pattern of anisotropy. However, the two

antipodal fan shapes in hp correspond quite well with the blue regions in f90 − f0,

which represent regions of heightened scatter. This correspondence is seen in all of

the other bands as well (Fig. 4.17).

This analysis seems to rule out Fraunhofer diffraction by an ideal pupil as the

cause of EUVI PSF anisotropy. However, there is a close correlation between the

fan-shaped lobes of hp and the observed anisotropy in calibration rolls. It is possible
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Figure 4.18: Left: The aperture mask over the EUVI primary mirror as seen from
the Sun (J.-P. Wuelser, private communication). This mask defines
the EUVI pupil. Ecliptic North is up on STEREO-A, and down on
STEREO-B. Middle: Central portion of the array |η|2 for EUVI-B 171
Å, logarithmic color scale. The values are normalized relative to the
maximum at the core. White dotted lines are overlaid to show the scale
of the EUVI pixel. Right: Enlarged view of the core of |η|2.

that departures from the ideal quarter annulus shape, such as rough edges, could

enhance the amount of scatter due to the pupil. Frensel propagation between the

pupil, primary, and secondary mirrors, which we have neglected, may also enhance

the scatter level.
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Figure 4.19: An experiment to determine whether pupil diffraction can account for
the anisotropy observed in the EUVI-B 171 Å calibration roll data. The
results are similar in other bands. Left: The full 2048 × 2048 pupil
PSF hp after all pixel values outside of the fan shape are set to zero
(logarithmic color scale). Middle: The difference f90 − f0 of coaligned
calibration roll images. Right: The difference up90 − up0 of images that
have been deconvolved with the fan-shaped PSF at left.
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CHAPTER 5

Conclusion

This thesis presented three self-contained contributions to the theory and appli-

cations of separable inverse problems, with a focus on the correction of image blur

via blind or semiblind deconvolution. Here we summarize the most essential ideas of

the thesis, potential impacts, and future directions.

5.1 Variable elimination, algorithms, and linear algebra

Chapter 2 describes how variable elimination may be generalized to solve op-

timization problems beyond least squares. Recall that variable elimination replaces

the problem of minimizing a full cost function F (y, z) with the problem of minimizing

the reduced cost Fr(y) = F (y, zm(y)), where zm(y) is the value of z that minimizes

F (y, z) given a fixed y value. Conventionally, variable elimination is viewed as a

preliminary algebraic manipulation, reformulating the problem before any particular

iterative method is applied to solve it. This chapter’s key idea is that variable elimi-

nation can be accomplished through algorithmic manipulation, without ever requiring

an expression for zm(y). This viewpoint enabled us to generalize variable elimination

by formulating a semi-reduced method that accommodated bound constraints on z.

More importantly, it enabled us to describe the precise algorithmic differences be-

tween full, semi-reduced, and reduced update methods, and predict when each would

be most useful.

Surprisingly, most of the practical benefits came from using block Gaussian elim-

ination to compute steps, while the utility of trial point adjustment seemed limited

in our experiments. We have found that custom linear algebra routines can deliver

substantial performance benefits in optimization, but few research or commercial

codes provide a protocol for integrating novel linear algebra routines into their oper-
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ation. The only code we have found to provide this functionality is [2], an interior

point method for cone programming. But separable inverse problems are not cone

programs and must be solved general nonlinear programming methods.

An object-oriented approach to implementing custom linear algebra routines in

MATLAB optimization codes would be to define a linear operator class and overload

the backslash operator to work with such linear operators. The method used to invert

the operator would be specified by the user as part of a given operator. The SPOT

toolbox [40] defines such a linear operator class and would provide a natural base for

this development.

5.2 Camera shake correction by blind deconvolution

Chapter 3 describes a novel method for correcting camera shake by incremental

sparse approximation. This method competes with the state of the art in deblur-

ring performance on a standard test set, and learns blur kernels up to several times

faster than state of the art methods. The main appeal of our method is its unity

and simplicity of principle. Existing state-of-the-art methods tend to fall into two

camps: joint MAP methods augmented with ad-hoc edge-finding heuristics, and ker-

nel MAP methods which use an (approximate) variational Bayes technique to deal

with a very difficult high-dimensional statistical inference problem. In contrast, our

approach involves little more than an alternating projected gradient optimization

with a gradually relaxed edge sparsity constraint.

The essential assumption of our method is that the most useful information about

the blur kernel is contained near the strongest edges in the blurry image. This as-

sumption works well for many images, but not all. Consider, for example, an image

of a single strong edge blurred by a bimodal kernel. The bimodal kernel will cause

the blurry image to have two edges of equal strength, our method will have difficulty

determining which one is in the sharp image. This type of problem does sometimes

occur in real images and blur kernels, and it can cause the method to fail. Addressing

this issue seems to be an important direction for future work.

5.3 Stray light correction for extreme ultraviolet solar im-

ages

Chapter 4 proposes a solution to the stray light problem for the extreme ultraviolet

imagers (EUVI) aboard the STEREO Ahead (A) and Behind (B) spacecraft, which
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are denoted EUVI-A and B. Extreme ultraviolet (EUV) images provide information

about the coronal plasma and can be used to infer its density, temperature, and other

characteristics via differential emission measure (DEM) analysis. Some of the most

interesting structures, such as coronal holes and filament cavities, are much fainter

than their surroundings and are heavily contaminated with stray light. These struc-

tures are involved in the generation of the solar wind and coronal mass ejections, and

stray light correction is needed to study their governing physical processes. The PSFs

we determined enable correction of stray light by a simple deconvolution procedure,

and will become part of the SolarSoft preparation tools for EUVI images.

Variable elimination was the key mathematical tool enabling us to perform semi-

blind deconvolution of the EUVI-B lunar transit images. We tried many methods to

solve this problem, and the variable elimination method was by far the fastest and

most robust. Some intuition for why variable elimination works so well is provided

in the last two numerical examples of Chapter 2, where we study synthetic and toy

variants of the solar stray light correction problem.

A major outstanding issue is the effect of compression. The wavelet-based ICER

algorithm is used to compress EUVI images. In the brighter areas of an image, ICER

has a benign and even useful denoising effect. In fainter regions, however, ICER can

compromise accuracy because the low-pass wavelet coefficients containing large-scale

intensity information may be quantized. In these cases, stray light correction can

result in large negative regions off the limb. In the future we hope to quantify the

uncertainties introduced by ICER and add them into the error analysis.

Substantial improvement of our PSFs may also be possible. In each band, there are

artifacts in the deconvolved lunar transit images that are likely due to PSF inaccuracy.

We expect that a more comprehensive physical modeling of the EUVI telescopes could

yield a substantially improved PSF. An understanding of the physical origin of the

PSF anisotropy would be a key milestone for such an effort.

Alternatively, one could posit a nonparametric model for the PSF in the hopes of

identifying features that cannot be represented by our proposed parametric model.

In fact, many of our preliminary efforts involved nonparametric modeling, and it was

through these efforts that we first discovered the PSF anisotropy. Nonparametric

modeling gives rise to much more challenging optimization problems and can be de-

graded by non-PSF effects such as bias variation. It is also possible that the PSF

is spatially variant, even at large scales. If this is the case, a spatially variant non-

parametric blind deconvolution would be required, and given the very large support

of the PSF, this problem would be extremely difficult. We believe that future efforts
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to improve the PSF should rely on optical modeling as much as possible, invoking

nonparametric elements only where there is very little basis to assume a parametric

PSF model.

103



BIBLIOGRAPHY

[1] P. A. Absil and K. A. Gallivan. Accelerated line-search and trust-region meth-
ods. SIAM Journal on Numerical Analysis, 47(2):997–1018, 2009.

[2] M. Andersen, J. Dahl, Z. Liu, and L. Vandenberghe. Interior-point methods for
large-scale cone programming. In Optimization for Machine Learning, pages
55–83. MIT Press, 2011.

[3] M. J. Aschwanden. Physics of the Solar Corona. An Introduction with Problems
and Solutions. Springer, 2nd edition, 2006.

[4] H. Attouch, J. Bolte, and B. Svaiter. Convergence of descent methods for semi-
algebraic and tame problems: proximal algorithms, forward–backward splitting,
and regularized gauss–seidel methods. Mathematical Programming, pages 1–39,
2011.
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