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Abstract

Network security is important for information protection in open, secure or covert wireless communica-
tions. One such requirement is to achieve high rate communications between clients in the network while
hiding information about the transmitted symbols, signal activity, or other sensitive data from an unintended
receiver, e.g. an eavesdropper. For wireless links the single user capacity advantages of deployment of mul-
tiple antennas at the transmitter is well known. One of the principal conclusions of this paper is that proper
exploitation of space-time diversity at the transmitter can also enhance information security and information
hiding capabilities. In particular, we show that signi�cant gains are achievable when the transmitter and
the client receiver are both informed about their channel while the transmitter and eavesdropper receiver are
uniformed about their channel. More generally, we compare capacity limits for both informed and uninformed
transmitter and informed receiver scenarios subject to low probability of intercept (LPI) and low probability of
detection (LPD) constraints. For several general cases we can characterize the LPI- and LPD-optimal trans-
mitted source distributions and compare them to the standard optimal source distribution satisfying a power
constraint. We assume the widespread quasi-static at Rayleigh fading channel model for the transmitter-
receiver pairs. This paper is a step towards answering the fundamental question: what are the qualitative
and quantitative di�erences between the information carrying capabilities of open space-time channels versus
secure space-time channels?
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1 Introduction

Researchers in commercial wireless have primarily focussed on quality of service (QoS) expressed in terms

of deliverable information rates, channel capacity and outage capacity, throughput and delay. While these

are relevant quality measures there is increasing interest in network security both for assurance of data

privacy, reliable user authentication, and protection of information from malicious eavesdroppers intent on

discovering network vulnerabilities. The starting point of this paper is that a well-designed secure link

should have low probability of intercept (LPI) and low probability of detection (LPD) with respect to an

unauthorized eavesdropper. An important question which has motivated the work reported in this paper

is: what is the fundamental impact of implementing link-level security measures on information rates and

channel capacity? This paper describes a theoretical framework for answering such questions which is based

on analyzing the fundamental impact on capacity imposed by di�erent classes of link security constraints.

One cannot hope to ensure security without some cooperation of the transmitter and receiver (client)

to put an eavesdropper at a relative disadvantage [30]. One of the most most common forms of coopera-

tion is the use of a cipher [20] to encrypt each data stream transmitted which can only be deciphered at

the client receiver using a private shared key. We refer to this method as temporal (single-channel) data

encryption, an example of which is the US National Data Encryption Standard (DES) for symmetric data

encryption/decryption. Use of temporal encryption is a very exible measure for preventing unauthorized

interception of private messages which can be applied to any message sequence without considering the phys-

ical layer of the network. Another common form of cooperation is for the transmitter and receiver to adopt

information hiding measures [26] to prevent unauthorized detection of any signaling activity which could

be used, for example, for geolocation of the transmitter. Information hiding is a form of covert encryption

which encodes private messages in a background signal or noise process in such a way that the presence

of the messages is hidden from those without access to the private key. A well known example is spread

spectrum modulation for wireless channels which hides the spectral signature of the signal in the broadband

noise background using a pseudo-random convolution sequence as a private key. Another example is wa-

termarking where a owner-identifying watermark is hidden in an image or video signal [3]. The results of

this paper can be applied to watermarking of space-time signals. The thesis of this paper is that additional

security against detection or interception can be achieved by space-time coding over multiple antennas (or

acoustic transducers) at transmitter and receiver. In particular, when such information is available to the

transmitter, one can design the spatio-temporal modulation/demodulation to exploit known propagation

2



and interference characteristics of the channel available to the client but not to the eavesdropper. For the

memoryless channels considered here, this corresponds to spatial (multi-channel) encryption and information

hiding where the shared channel information plays the role of a shared private key that can be used to unlock

the message.

It is useful to place the contributions of this paper in the background of previous work. Shannon intro-

duced the information theoretic framework for studying secrecy in communications [30]. As secrecy involves

at least three terminals, the tranmsitter, the client and the eavesdropper, the study of achievable information

rates for secure communications is a branch of multi-terminal (more than two) information theory [5]. Wyner

and co-workers [37, 25] developed the concept of the wire-tap channel for wired links and assessed the impact

of secrecy on achievable information rate pairs. This work was extended by Csisz�ar and K�orner to more

general broadcast channels in [4]. The possibility of enhancing secrecy by incorporating common knowledge

of channel impulse response into the data encryption was identi�ed and exploited by Hassan and co-workers

[14] and was applied to single antenna mobile radio links in [9] and [19]. This paper takes a di�erent point

of view from previous work in that we evaluate the fundamental impact of transmission secrecy (LPI and

LPD) on two-terminal channel capacity in the setting of multi-antenna spatio-temporal quasi-static Rayleigh

fading channels.

We investigate the client's channel capacity and the capacity-achieving transmission strategy under LPI

and LPD constraints. For this we consider the multiple-input multiple output (MIMO) case where both

client and eavesdropper access space-time Rayleigh fading channels. For the discrete time and space channels

considered here, the transmitted signals are complex valued T�M matrices whose rows span T time samples

and whose columns span M space samples equal to the number of transmit antennas. We show that when

both the transmitter and client receiver know the channel they can exploit this knowledge to achieve improved

LPI and LPD beyond those achievable by single-channel systems. Such exploitation is possible to a lesser

extent when the transmitter does not know the client's channel. Following the terminology used in [2] we

say that the client and/or transmitter are informed when they know their channel propagation coeÆcients,

while we say that the eavesdropper's link is uniformed, i.e. neither transmitter nor eavesdropper know their

propagation coeÆcients.

The LPI constraint can be imposed by constraining the eavesdropper's channel capacity, cuto� rate, or

decoding error probability. For example, when the eavesdropper's channel capacity is signi�cantly lower

than the client's capacity the converse to Shannon's channel coding theorem implies that, by setting his rate
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between the capacities of the client and the eavesdropper, the transmitter can deprive the eavesdropper of

arbitrarily low probability of decoding error while reliably communicating to the client. Here we show that

when the eavesdropper is uninformed about his channel the transmitter can enforce zero information rate to

the eavesdropper while delivering positive information rate to the client. This LPI condition is equivalent

to the perfect secrecy condition in cryptography [30]. We derive integral expressions for the perfect-secrecy

capacity for the informed receiver and for certain cases characterize the optimal signaling distributions

which achieve it. The LPD constraint is imposed by constraining the eavesdropper's probability of correctly

detecting the presence of any signaling activity by the transmitter. This is closely related to the steganography

problem [26]. We make conservative assumptions on the information possessed by the eavesdropper, e.g. the

eavesdropper knows only the transmitted signal distribution and the received signal-to-noise ratio (SNR). To

obtain tractable expressions for the LPD-constrained capacity we will rely on Cherno� error exponents, large

eavesdropper stando� assumptions, and Edgeworth expansions of the eavesdropper's probability densities.

The Cherno� exponent de�nes the asymptotic rate of decrease of the probability of detection error as the

block-length of the code goes to in�nity. This exponent will be used to de�ne appropriate LPD constraints

on transmitted signals.

Most of the results presented here apply to the case where the eavesdropper is at large stando� from

the clients link. This implies that the eavesdropper has both low received SNR and approximately Gaussian

multi-user interference and noise statistics. In addition, while many of these results can be generalized, we

assume that both the client and the eavesdropper access the transmitted energy through distinct mutually-

independent quasi-static Rayleigh fading channels [1]. As mentioned above, exploiting channel information

known to transmitter and client's receiver can be viewed as a form of spatial encryption where the shared

private key is the set of channel propagation coeÆcients. As a practical matter, a transmitter and receiver

informed link requires that private and possibly encrypted training sequences be transmitted to the client and

the subsequent channel estimates be transmitted back to the transmitter through some feedback mechanism.

On the other hand, a receiver-only informed link requires training but no feedback. In both cases the e�ect of

channel estimation errors and time delays may be signi�cant. While we do investigate the e�ect of erroneous

channel information at the transmitter, we do not focus on the broader channel estimation issues in this

paper.

We present the following results in this paper:

1. Under the aforementioned space-time Rayleigh channel informed/uninformed dichotomy it is possible
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for the transmitter to communicate reliably to the client while depriving the eavesdropper of any trans-

mitted information whatsoever. Thus the transmitter attains perfect secrecy as de�ned by Shannon

[29]. This can be accomplished by restricting the space-time modulation to a class of complex transmit-

ted matrices whose spatial inner product is equal to a constant T � T matrix. Two examples of such

perfect-secrecy constellations are square unitary space-time codes and quaternion space-time codes

[17, 16, 31]. The channel capacity when restricted to these signals is herein called the perfect-secrecy

capacity for which we give integral forms for the case of an informed transmitter and receiver.

2. When the eavesdropper knows both the signal and his channel exactly, constraining the eavesdropper's

Cherno� exponent is equivalent to constraining the mean power over the transmitter antennas, which

we call a mean-power constraint. Thus we conclude that in this case no additional countermeasures

beyond minimizing average transmitter power are required to enhance security of the client's link.

3. When the channel is unknown but the signal is known to the eavesdropper constraining the Cherno�

exponent is equivalent at low SNR to constraining the trace of the fourth moment of the signal matrix.

4. When both channel and signal are unknown (but the signal distribution is known) to the eavesdrop-

per the Cherno� exponent reduces to the sum of two terms: a function of the determinant of the

spatio-temporal receiver covariance matrix and a tensor product of the receiver kurtosis and the signal

covariance. The kurtosis is de�ned as the expectation of a four-fold product of the spatio-temporal sig-

nal amplitudes. The kurtosis tensor product is non-negative and equal to zero when the received signal

is complex Gaussian. As the channel is Gaussian zero kurtosis is only possible when the transmitted

signal is non-random. When the kurtosis tensor product increases from zero, as occurs, for example,

when elements of the received signal matrices obey an increasingly heavy tailed (super-Gaussian) dis-

tribution, the eavesdropper's detection performance degrades. This result is reminiscent of the well

known negative kurtosis condition under which blind equalization is possible for an unknown single

input single output (SISO) channel with memory [28, 32].

5. Under the scenario where channel and signal are unknown to the eavesdropper, at low SNR the con-

straint on the Cherno� exponent reduces to a constraint on the trace of the square of the transmitted

spatio-temporal signal covariance matrix, which we call the mean-squared-power constraint. Unlike

the standard mean-power-constraint this constraint penalizes large spatial power variation of the trans-

mitted signals.
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6. For informed transmitter and client receiver operating under the mean-squared power constraint the

capacity of the client's link is attained by a Gaussian signaling strategy, called the LPD-optimal

strategy. In this signaling strategy the transmitted energy is distributed more evenly over the modes

of the channel as compared to the water-pouring solution, called the power-optimal strategy, which is

optimal under the standard mean-power constraint.

7. For uninformed transmitter but informed client receiver operating under the mean-squared-power con-

straint both the capacity and the capacity attaining signaling strategy are of identical form to the

standard power-optimal capacity obtained under a mean-power constraint. In this case no additional

countermeasures are required to enhance security of the client's link against eavesdropping.

8. The LPD-optimal and power-optimal signaling strategies achieve di�erent information transmission

rates for equal signal power or for equal LPD performance as measured by the Cherno� exponent. For

�xed Cherno� exponent the power-optimal signal achieves lower information rate than the LPD-optimal

signal and conversely. We investigate the relative advantages of power-optimal and LPD-optimal

signaling as a function of spatial diversity at the transmitter and received SNR. In particular, while

LPD-optimal signaling has no advantage over power-optimal signaling for a single transmit antenna

(no diversity), it is shown that almost a factor of two information rate advantage is achievable at low

SNR with 16 transmit antennas.

We provide a brief outline of the paper. In Section 2 the Rayleigh fading measurement model is introduced.

In Section 3 an integral expression is given for the perfect-secrecy capacity. In Section 4 we give Cherno�

error exponents for detection error probability for di�ering levels of channel and signal information available

to the eavesdropper. In Section 5 we provide numerical comparisons illustrating the loss in capacity due to

adoption of the LPD strategy.

2 Background

An M -element transmitter antenna array transmits a T � M signal matrix S over a time interval of T

time samples, called the coherent fade sampling interval (Fig. 1). Let X i denote the signal received by the

client over channel HTR and Y i the signal received by the eavesdropper over a channel HTE (Fig. 2). For

notational simplicity, throughout this paper superscripts and subscripts will be used interchangeably when

no confusion ensues. We will assume that the two receivers have NR and NE receive antennas, respectively.
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Figure 1: Secure Space-Time Link (M = 3, NR = NE = 2)
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Figure 2: A link in a wireless network between a transmitter (T) and a receiver (R) who have cooperated
to learn their channel HTR. Eavesdropper E attempts to detect a message (known signal), detect signaling
activity (known modulation), or intercept data transported by the link HTR without knowing the channel HTE .
The eavesdropper and the client receiver must generally perform these tasks in the presence of multi-user
interference. In this paper, we assume Gaussian interferers with known spatial covariances.
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Similarly to much previously published research on space time coding [33, 7, 15, 21, 34, 10, 12, 13], we will

assume the multi-channel quasi-additive Rayleigh fading models for the received signals. Over L independent

frames of T time samples each the models are

X i =
p
�rS

iH i
TR +W i

R; i = 1; : : : ; L;

Y i =
p
�eS

iH i
TE +W i

E ; i = 1; : : : ; L; (1)

where Si 2 S is the i-th transmitted signal, �r = �r=M , �e = �e=M , are the normalized signal-to-noise

ratios (SNR) with �c; �e > 0 the expected SNR's at each receiver per transmit antenna, H i
TR and H i

TE are

mutually independent M � NR and M � NE matrices of complex channel coeÆcients, and W i
R and W i

E

are mutually uncorrelated T �NR and T �NE matrices of complex circularly symmetric Gaussian noises.

Note that we are assuming that HTR and HTE have coherent fade intervals of identical duration T . When

multi-user interference is present we can account for it in our capacity calculations by assuming the worst

case Gaussian interference scenario. The theory developed here applies to the case where the interferers

have known covariances QR and QE ; speci�cally, QR is known to transmitter and client and QE is known to

transmitter and eavesdropper. In this case the client and eavesdropper models can be reduced to the white

noise models (1) by suitable prewhitening at the receivers. Extension of the theory developed in the sequel

to unknown QR and QE is a diÆcult open problem which we do not consider here. We denote by common

notation N , � the quantities NE, NR and �e, �r when no risk of confusion ensues. The quasi-static Rayleigh

at fading model corresponds to taking the LN(T +M) elements of the matrices fH igLi=1 and fW igLi=1 to

be i.i.d. complex zero mean (circularly symmetric) Gaussian random variables with unit variance.

Let Z = [Z1; : : : ; ZL] and S = [S1; : : : ; SL] denote the sequence of L measurement and signal matrices,

respectively, and H i the channel matrix of either the client or the eavesdropper over the i-th frame. Under

the assumption that the channel matrices are independent over each coherent fade interval, indexed by i,

the joint conditional probability density of the observations factors into a product of marginals

p(ZjS) =
LY
i=1

p(ZijSi);

where, if the channel H = H i is known to the receiver

p(ZjS) = p(ZjS;H) =
exp

��trf[Z � �SH ][Z � �SH ]yg�
�TN

; (2)

while if the channel is unknown to the receiver

p(ZjS) = exp
��trf[IT + �SSy]�1Z(Z)y

�
�TN jIT + �SSyj ; (3)
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where IT is the T � T identity matrix, and jAj = j det(A)j denotes the magnitude determinant of square

matrix A.

2.1 Mean-Power Constrained Capacity

Following the standard random block coding construction of channel capacity, S = [S1; : : : ; SL] is interpreted

as a block code consisting of statistically independent symbols drawn from a source distribution dP (S).

De�ne ~S the concatenation of the T rows of one of these symbols, denoted as T �M matrix S, into a

TM -element row vector. The covariance cov(S) of S is de�ned as the Hermitian symmetric TM � TM

matrix cov(~S) = E[~SH ~S] � E[~SH ]E[~S]. Let Pavg be a speci�ed positive constant. For an informed link

where both transmitter and receiver know the channel, the channel capacity under the mean transmitted

power constraint

trfcov(S)g=(TM) � Pavg; (4)

was derived in [33, 34] as

CTR
pow = E

�
max
P (S)

logP (X jS;H)=P (X jH)

�

= TE
�
ln
��IN + �rH

y�powH
��� (5)

= T
X
i

E
h
(log��i)

+
i

where �i are the eigenvalues of �rHH
y. The capacity is attained by a zero mean circularly symmetric

Gaussian source S with covariance IT
N

�pow where �pow = UDUy, U are the (right) eigenvectors of HHy,

D = diag(�i), �i are given by water-�lling

�i = (�� 1=�i)
+; i = 1; : : : ;M (6)

and � > 0 is a parameter such that M�1
PM

i=1 �i = Pavg. In the sequel we will call CTR
pow the T/R-informed

power-capacity and the informed capacity-achieving spatial signal covariance �pow will be called the T/R-

informed power-optimal signal covariance. Note that the capacity achieving signal matrix has i.i.d. Gaussian

rows each having (spatial) covariance �pow whose eigenvectors are the modes (columns of U) of H . Note

also that the water-�lling strategy allocates transmitter energy only to those channel modes which have the

highest associated SNR. it can be shown that the optimal receiver applies a beamformer which is matched

to the channel H prior to MAP decoding.
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When only the receiver has information about the channel, the transmitter cannot exploit the highest

SNR modes and the average power constrained channel capacity takes the form [33]

CR
pow = max

P (S)
E [logP (X jS;H)=P (X jH)]

We call this capacity the R-informed power-capacity. The capacity achieving source is a T �M matrix with

i.i.d. zero mean circularly symmetric Gaussian elements having identical variances equal to Pavg.

For an uninformed link where neither transmitter and receiver know the channel, the channel capacity

under an average transmitted power constraint was �rst investigated in [21].

C = max
P (S)

E [logP (X jS)=P (X)] :

While approximations have been investigated [21, 38] no closed form expression exists for either the capacity

or the capacity achieving source. However, it was shown in [21] that the capacity achieving source has the

abstract form

S = V �

where V is an isotropically distributed T � T matrix and � is an independent non-negative T �M diagonal

matrix.

3 Low Probability of Intercept: the Perfect-Secrecy Capacity

Here we focus on the LPI strategy of designing transmitter signaling to zero out the channel information

rate available to the eavesdropper while maintaining high information rate communication to the client. We

motivate this section by considering cuto� rates.

3.1 Motivation: Channel cut-o� rate

The channel cut-o� rate Ro is a lower bound on the Shannon channel capacity C. Cut-o� rate analysis has

frequently been adopted to establish practical coding limits [35, 8] as the cut-o� rate speci�es the highest

information rate beyond which sequential decoding becomes impractical [27, 36] and as it is frequently

simpler to calculate than channel capacity. The cuto� rate for an uninformed link with quasi-static Rayleigh

channel was derived in [13, 12].
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3.2 Single-Link Cuto� Rates

For a space-time channel H the cuto� rate has the general expression [13]:

Ro = max
PS

� ln

Z Z
S1;S22Cl T�M

dPS(S1)dPS(S2) e�ND(S1kS2)

where the maximization is over suitably constrained source distributions dPS and D(S1kS2) is a signal

dissimilarity measure between pairs of transmitted signals S1 and S2. The cuto� rate increases as dissimilarity

between pairs of signals increases, i.e. as the average of exp(�ND(S1kS2)) increases. Thus D is directly

related to the information transport and decoding limitations imposed by a particular channel.

The following expressions are easily derived for N receivers and received SNR �

1. Transmitter/receiver informed cuto� rate: H known to both T/R

D(S1kS2) = �

4
tr
�
Hy(S1 � S2)

y(S1 � S2)H
�

2. Receiver informed cuto� rate: H known to R only

D(S1kS2) = ln
���IM +

�

4
(S1 � S2)

y(S1 � S2)
���

3. Uninformed cuto� rate: H unknown to either T/R [13]

D(S1kS2) = ln

���IT + �
2 (S1S

y
1 + S2S

y
2)
���r���IT + �S1S

y
1

��� ���IT + �S2S
y
2

���
Note that in the T/R-informed case the channel cuto� rate depends on the dissimilarity of the signal

pair after they are received, i.e. the di�erence squared between S1H and S2H , while in the R-informed

case the cuto� rate depends on the di�erence squared between the pair of transmitted signals. On the other

hand, in the uninformed case the cuto� rate depends on the di�erence between the determinant of the

arithmetic mean (numerator) and the geometric mean (denominator) of the conditional received covariances

cov(X jS1) = IT + �S1S
y
1 and cov(X jS2) = IT + �S2S

y
2 . Thus only temporal information can be used to

distinguish between di�erent signals. A user or eavesdropper on an uninformed channel cannot use any

spatial information to help decode the symbols since this spatial information is completely unknown to him.

When the source S has constant spatial inner product SSy the uninformed receiver's absolute blindness

to all spatial information can also be deduced directly from the form of the receiver's likelihood function
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l(S) = p(ZjS), given in (3), as this function is constant. This also implies that the channel capacity will be

equal to zero and the minimum probability of decoding error will be equal to one if a source with constant

SSy is transmitted over a uninformed Rayleigh fading link.

3.3 Perfect-Secrecy Signaling

We conclude that if the eavesdropper has an uninformed channel, his information rate can be reduced to zero

if the transmitter adopts a signaling strategy which uses a constellation S = fSg having constant spatial

inner product:

SSy = A; (7)

where A is a prespeci�ed non-random T �T matrix. When A is diagonal, many known signal constellations

fSigi satisfy this perfect-secrecy property.

� Doubly unitary codes (T �M)

Syi Si = IM ; SiS
y
i =

�
IM O
O O

�

Some instances of such codes are

{ Square unitary codes (T =M) [31]: SiS
y
i = Syi Si = IM

{ Space time QPSK: Quaternion codes [18]: (T =M = 2):

S =

�
�
�
1 0
0 1

�
; �

�
j 0
0 �j

�
; �

�
0 1
�1 0

�
; �

�
0 j
j 0

��

� Constant spatial modulus (CM) codes (T = 1):

Si = STi = [Si1; � � � ; SiM ]

trfSiSyi g = kSik2 = 1

3.4 Perfect-Secrecy Capacity

Of obvious interest is the channel capacity of a T/R-informed link with signaling limited to the class of

signals satisfying the constant spatial inner product condition (7), which we de�ne as the T/R-informed

perfect-secrecy capacity. In Appendix A we give an integral expression for this capacity. The capacity
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achieving source density dP � satis�es an equalization condition that says in essence that the optimal source

should make the instantaneous per-symbol mutual information independent of the particular transmitted

symbol S. In the special case that NR � M and the eigenvalues of HHy are identical, we show that the

optimal source distribution is the uniform codeword distribution dP (S) = dP �(S) = 1=vol(S) supported on

S where S = fS : SSy = Ag is the perfect secrecy constraint set. When A = IT and T �M this set is the

hypersphere SO(Cl TM ) which is also known as the Stiefel manifold. This source distribution is similar to the

isotropically random unitary source introduced in [21] and suggests that if a tesselation of the hypersphere

is possible the equispaced constellation constructed on each lattice point in the tessellation might be close

to optimal.

An integral expression for the R-informed perfect-secrecy capacity is not available. However, we make

the following conjecture: for NR � M and the case of an uninformed transmitter but informed receiver

a uniform dPS is close to optimal for any H for large T and large SNR. The intuition is that in this

limiting regime the transmitter knows that the receiver can accurately estimate the channel and diagonalize

it, thereby converting the channel to HHy = I for which the uniform source distribution dP � is optimal.

Recent techniques such as that of Hassibi and Marzetta [11] for deriving compact integral expressions for

the mutual information for isotropically random unitary transmitted source matrices S may be useful here.

This is an interesting open problem.

4 Low Probability of Detection: Impact on Capacity

In this scenario the eavesdropper attempts to detect the presence of a transmitted signal against noise alone

based on L observations Y = fY igLi=1 of his channel output. Formally, de�ne two hypotheses H0 : Y
i =W i

and H1 : Y
i = SiH i +W i, i = 1; : : : ; L. For any strictly positive prior probabilities P (H0) and P (H1) =

1�P (H0) of these hypotheses, the minimum attainable probability of decision error Pe of the eavesdropper

has the following large sample limiting behavior [6]:

lim inf
L!1

1

L
lnPe = �

� = inf
�2[0;1]

lim inf
L!1

1

L
ln

Z
f1��H1

(Y1; : : : ; YL)f
�
H0
(Y1; : : : ; YL)dY1 : : : dYL

The non-negative constant � is the called the Cherno� error exponent and is the error rate which determines

how quickly the decision error decays exponentially to zero. This error rate is the minimum (unnormalized)

�-divergence between the eavesdropper's densities fH1
(the alternative density) and fH0

(the null density)
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which is a measure of the ease of discrimination between the two statistical distributions. This constant �

must be negative for a patient eavesdropper to be able to correctly detect signal presence with arbitrarily

low probability of error as number of time frames L increases. The objective of LPD-secure modulation is to

design signaling strategies which constrain � to a large value (small negative value near zero if possible) and

achieve highest possible information rates to the client. To this aim, we will compute the informed channel

capacity of the client under such an LPD constraint for low SNR and for several eavesdropper scenarios.

4.1 SH-Informed Eavesdropper

Assume that the eavesdropper knows his channel sequence H = fH i
TEgLi=1 and also knows the matrix

valued amplitudes s = fsigLi=1 of the signals sequence S = fSigLi=1 transmitted over the L frames. The

eavesdropper's null and alternative densities become

fH1
(Y) = f(YjH;S = s); fH0

(Y) = f(YjH;S = 0):

An exact analysis of minimum probability of error Pe is possible in this Gaussian case from which it can be

shown that Pe is monotone decreasing in the detectibility index that is linearly proportional to the magnitude

Cherno� error exponent j�(H; s)j. The �-divergence is simply computed

ln

Z
f1��(YjH;S = s)f�(YjH;S = 0)dY = ��(1� �) lim inf

L!1

LX
i=1

trfsiHiH
y
i s
y
ig

which is minimized over � 2 [0; 1] by the choice � = 1=2. Thus

� = lim inf
L!1

1

L

LX
i=1

�(Hi; si); (8)

where

�(Hi; si) = ��
2
e

4
trfsiHiH

y
i s
y
ig:

Since the eavesdropper would not normally be cooperating with the transmitter to provide feedback of his

channel coeÆcients a reasonable LPD signaling strategy would be to try to constrain the channel-averaged

Cherno� error exponent

�(si) = E[�(Hi; si)jS = s] = ��
2
e

4
trfsyisig:

For example, the transmitter could constrain the magnitude of the channel-averaged Cherno� exponent for

each signal frame

jE[�(Si)jS = s]j � trfsyisig � P 2
peak ; i = 1; : : : ; L

14



where x � y denotes \x linearly proportional to y". We identify the above as an instantaneous power

constraint.

An alternative strategy would be for the transmitter to generate i.i.d. signal matrices Si from a source

S having source distribution dP (S) and satisfying the mean power constraint

jE[�(S)]j=(TM) � tr
n
SyS

o
=(TM) � Pavg (9)

where SyS = E[SyS]. By the strong law of large numbers this is equivalent to constraining the exponent �

(8) under the assumption that fHig and fSigi are i.i.d. sequences of matrices.

Recall that under the mean power constraint trfcov(S)g=(TM) � Pavg the informed channel capacity is

attained by zero mean complex Gaussian S with covariance cov(S) = IT
N
SyS. Hence, (9) is an equivalent

constraint on S and we conclude that when the eavesdropper knows both the channel and the signal, the

standard mean transmit power constraint also ensures a modicum of LPD performance.

4.2 S-Informed Eavesdropper

Assume that the eavesdropper knows the signal amplitudes s = fsigLi=1 but not the channel H = HTE . In

this case the eavesdropper's densities become

fH1
(Y ) = f(YjS = s); fH0

(Y) = f(YjS = 0):

As both densities are multivariate Gaussian the �-divergence is again simply computed

ln

Z
f1��(YjS = s)f�(YjS = 0)dY =

LX
i=1

ln
jIT + �esis

y
i j1��

jIT + �e(1� �) sis
y
i j

A simple asymptotic development gives

ln
jIT + �ess

yj1��
jIT + �e(1� �) ssyj = ��(1� �)�2e

2
trfsyssysg+ o(�2e ):

Thus, after substituting the minimizing value � = 1=2, the Cherno� exponent � has the low SNR represen-

tation

� = ��
2
e

8
lim inf
L!1

1

L

LX
i=1

trfsisyisisyig+ o(�2e ): (10)

We conclude that for the S-informed eavesdropper and low SNR an appropriate \instantaneous LPD"

constraint for the tranmsitter is

trfsyisisyisig � P 4
peak ;
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a constraint which we call the instantaneous fourth moment constraint.

If the transmitted signal matrices fsigLi=1 are i.i.d. realizations of a source S with source distribution

dP (S) then with probability one, from the strong law of large numbers applied to (10), constraining � is

equivalent to constraining the mean fourth moment of the source

1

TM
trfSySSySg � P 4

avg ; (11)

where P 4
avg is a speci�ed constant.

4.3 Uninformed Eavesdropper

In this case the eavesdropper does not know the amplitudes s = fsigLi=1 of the transmitted signals nor the

channel HTE . We will assume that fsig is a realization of an i.i.d. source S for which the source distribution

dP (S) is known to the eavesdropper. This is a conservative assumption { in the absence of such knowledge

the eavesdropper can only have worse detection error rates than predicted below.

The eavesdropper's densities are

fH1
(Y) = f(YjS 6= 0) =

Z
s6=0

f(YjS = s)dP (ds)

fH0
(Y) = f(YjS = 0):

The �-divergence is not closed form for the uninformed eavesdropper since it involves the diÆcult

marginalization over S required for computation of fH1
. However, we can apply the method of Edge-

worth expansion to develop f(Y jS 6= 0) about a Gaussian density to obtain the low SNR approximation (see

Appendix B):

ln

Z
f1��(Y jS 6= 0)f�(Y jS = 0)dY

= ln

 
jITM + �ecov(S)j1��

jITM + �e(1� �)cov(S)j

!
+
�(1� �)2�4e

8
�t;u�

t;u;v;w�v;w + o(�4e ) (12)

where cov(S) = ((�t;u))
TM
t;u=1 is the TM � TM covariance matrix associated with the T �M source matrix

S, �r;s;t;u = �r;s;t;u(SHTE) is the TNE � TNE � TNE � TNE fourth order kurtosis tensor of the T �NE

matrix SHTE and Einstein summation notation is used for the tensor product in the second term of (12).

For a more precise de�nition of �r;s;t;u see Appendix B.

As the additive eavesdropper noise WTE is Gaussian the kurtosis of the eavesdropper's received signal

Y satis�es �(Y ) = �(
p
�eSHTE +WTE) = �2e�(SHTE). If an element of �(Y ) is negative then the received

16



signal matrix has a sub-Gaussian (light-tailed) component while if an element of �(Y ) is positive this matrix

has a super-Gaussian (heavy-tailed) component. The kurtosis tensor product in (12) can be explicitly

expressed as a function of the moments of the transmitted signal matrix S using the fact that the entries of

H are i.i.d. complex Gaussian

�t;u�
t;u;v;w(SHTE)�v;w = �2e2NE

TX
k=1

MX
t;u;v;w=1

cov(skt; sku)cov(sktsku; skvskw)cov(skv ; skw):

As for �xed k

cov(sktsku; skvskw) = E[(skts
�
ku �E[skts

�
ku]) (skvs

�
kw]�E[skvs

�
kw])

�] (13)

is a non-negative de�nite function in the pairs of indices (t; u) and (v; w), the kurtosis tensor product is non-

negative and increases in the centralized 4th moment cov(sktsku; skvskw) of the source. This reects the

fact that under the assumption of a random Gaussian channel, the received signal is always super-Gaussian,

i.e. it's kurtosis is greater than zero, unless the signal has zero variance.

Note that the �-divergence (12), and hence the error rate �, is an increasing function of the received

kurtosis tensor �(Y ) for all � 2 [0; 1]. We conclude that the best countermeasure to thwart eavesdropper

signal detection is for the transmitter to transmit signals leading to as high positive kurtosis of Y as possible.

In particular, for �xed non-zero transmitted power, an e�ective LPD signaling scheme would transmit signals

S having large centralized fourth moment tensor (13). This strategy may be closely related to diminishing

the ability of the eavesdropper to perform blind equalization which, for the case of a scalar channel with

memory, is known to be possible only when the source's fourth moment is suÆciently small to make the

kurtosis negative valued [32]. The choice of a signal distribution dP (S) which minimizes the �-divergence

(12) or maximizes the O(�4e ) tensor product therein is an interesting open problem.

Considerable simpli�cation occurs when the SNR is very low and terms of order �4e can be neglected. In

this case the Cherno� error exponent, i.e. the minimum of the �-divergence (12), becomes

� = ��
2
e

8
trfcov2(S)g+ o(�2e ) (14)

5 LPD-Constrained Capacity

Here we use the asymptotic error rate (14) to motivate an LPD constraint under which we derive the channel

capacity CTR
lpd for the case where both transmitter and receiver know their channel (T/R-informed) and CR

lpd

for the case that only the receiver knows the channel (R-informed).
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The asymptotic LPD constraint (14) is equivalent to the mean squared power constraint

1

TM

TMX
i=1

�2i � Plpd; (15)

where Plpd is a prespeci�ed maximum tolerable mean squared power and �i are the eigenvalues of the

TM � TM matrix cov(S).

5.1 T/R-Informed LPD-Capacity

In Proposition 3 in Appendix C we give the following expression for mean-square-power constrained capacity

where, �i are the eigenvalues of �rHTRH
y
TR and U is aM�M unitary matrix whose columns are the (right)

eigenvectors of HTRH
y
TR

CTR
lpd = TE

h
ln
���IN + �rH

y
TR�lpdHTR

���i (16)

= TE

"
log

 p
1 + ��2i
2

!#
:

Capacity is attained by a zero mean Gaussian source S with covariance cov(S) = IT
N

�lpd where �lpd =

UDUy, D = diag(�i),

�i =

p
1=�2i + �� 1=�i

2
; (17)

and � > 0 is a parameter such that M�1
PM

i=1 �
2
i = Plpd. In the sequel we will call CTR

lpd the T/R-informed

LPD-capacity and the capacity-achieving signal covariance will be called the T/R-informed LPD-optimal

signal covariance.

Observe the following

1. Like the power-optimal source (6) which achieves T/R-informed power-capacityCTR
pow, the LPD-optimal

source S has i.i.d. Gaussian rows and each row has (spatial) covariance �lpd whose eigenstructure is

matched to the eigenstructure (modes) of the channel.

2. In contrast to the water�lling strategy, distributing transmitted energy only to the highest SNR channel

modes is not optimal for attaining the LPD-capacity.

3. The mean-squared-power and mean-power constraints can be related to each other by the Schwarz

inequality q
M tr fE[SyS]E[SyS]g � tr

�
E[SyS]
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Thus the mean-squared-power constrains the mean-power of the transmitted signal. However the two

constraints produce qualitatively di�erent optimal source covariances.

4. The eavesdropper's Cherno� exponent (14) only depends on his NE antennas through his received

SNR �e. Hence, if the eavesdropper's Cherno� exponent is to be controlled via the mean-square-power

constraint (15), the transmitter's LPD-optimal signaling strategy depends on NE only through the

mean-square power constraint level Plpd. In particular, if the transmitter knows that NE has increased

he will only need reduce his transmit power to ensure the same eavesdropper Cherno� exponent.

5.2 R-informed LPD Capacity

In Proposition 4 of Appendix C we establish that when the transmitter does not know the channel but the

receiver does know the channel the mean-squared-power constraint (15) and the mean power constraint (4)

produce the same optimal signaling strategy and result in identical forms for the channel capacity. Thus we

conclude that when the eavesdropper has low received SNR his Cherno� exponent is controlled by average

transmitter power and no special countermeasures are required to enhance security of the client's link.

6 Numerical Comparisons

here we compare the T/R-informed power-capacities and LPD-capacities derived in the previous section.

Simulations of a Rayleigh fading channel were performed and the T/R-informed capacities under both Pavg

and Plpd constraints were computed empirically. The number NR of transmit antennas was chosen equal

to the number M of the client's receive antennas. In Fig. 3 we show the eigenvalues (diagonal entries)

of the optimal signal covariance matrices which acheive each one of the capacities. These eigenvalues are

indexed by the modes of the channel and are denoted as such in the �gure. Both signal covariances are

power normalized, i.e. they have the same trace. The LPD-optimal eigenvalue distribution is atter and

its peaks are much less prominent than the standard power-optimal eigenvalue distribution. This reects

the intuitive fact that an eavesdropper can less easily detect the presence of a at signal eigenvalue pro�le

and hence the LPD-optimal signaling strategy better hides the signal information than the power-optimal

signaling strategy.

In Figs. 4 and 5 are plotted the T/R-informed standard power-capacity and LPD-capacity as a function

of SNR � = �r for various numbers of antenna elements (NR =M).
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Figure 5: T/R informed LPD-capacity CTR
lpd (NR =M)

Next we investigated tradeo�s between the T/R-informed LPD-optimal signaling strategy and the stan-

dard power-optimal water�lling signaling strategy. De�ne

Ic(�) = TE
h
ln
���IN + �rH

y
TR�HTR

���i

the average information rate attained by a zero mean Gaussian source S with covariance matrix cov(S) =

IT
N

� satisfying the constraint denoted by c. The notation means that if c = Pavg then � satis�es

trf�g=(TM) � Pavg and if c = Plpd then it satis�es trf�2g(TM) � Plpd. Thus the standard power-capacity

is CTR
pow = IPavg(�pow) where the power-optimal signal covariance �pow is speci�ed by (6) and the LPD-

capacity is CTR
lpd = IPlpd(�lpd) where LPD-optimal signal covariance �lpd is speci�ed by (17).

The loss in power-capacity due to using the LPD-optimal signal covariance structure �lpd is de�ned as

IPavg (�lpd)=IPavg(�pow) (18)

while the loss in LPD-capacity due to using the power-optimal signal covariance structure �pow is

IPlpd (�pow)=IPlpd(�lpd) (19)

In (18) both the LPD-optimal and the power-optimal covariances are forced to satisfy the same mean-power

constraint while in (19) they both satisfy the same mean-squared-power constraint. Figures 6 and 7 plot

the capacity losses as a function of mean-power and mean-squared-power, respectively. Notice that the
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loss increases as more antennas M = NR are deployed by transmitter and client. This is because a higher

proportion of the signal covariance eigenspectrum is attened out by the LPD-optimal signaling strategy as

compared to the power-optimal strategy. Also note that as the client's SNR �r increases the relative capacity

loss becomes negligible while as �r decreases to -20 dB the losses atten out. This is because at very low

�r the power-optimal water�lling strategy requires the transmitter to use only a single transmit antenna

while the LPD-optimal signal applies energy to all antennas no matter how low �r gets. Finally for a single

transmitter antenna element (M = 1) there is no loss in capacity since in this case the average power and

the mean-squared-power constraints are equivalent up to a scale factor.
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Figure 6: Loss in power-capacity due to mean-squared power (LPD) constraint (NR =M)

Finally, we investigated the sensitivity of the T/R-informed power-capacity and LPD-capacity due to

errors in the transmitter's channel estimate. The receiver is assumed to have decode symbols with zero

channel estimation error. This asymmetric channel error scenario is an idealization of the situation where

channel estimation errors occur during training which are then fedback to the transmitter. While we o�er

no proof, we believe that the e�ect on capacity of using erroneous channel information at the transmitter is

greater than using equivalent error estimates at the receiver and therefore these results should approximate

actual information rate reductions due to training. This would have to veri�ed by doing more extensive

simulations to determine the mutual information loss due to training errors at both transmitter and receiver.

In our simulation the total number of samples in a coherent fade was T = 1024 and 128 of these samples
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Figure 7: Loss in LPD-capacity due to mean-power constraint (NR =M)

were used for estimating the channel at the receiver. 500 realizations of di�erent Gaussian channels were

generated for various numbers of antennas and SNRs. Over each frame the channel was estimated at the

receiver via the exact least squares estimator based on 128 NR-element snapshots generated by transmitted

zero mean i.i.d. Gaussian training symbols. These channel estimates were then substituted into the power-

optimal and LPD-optimal covariances �pow and �lpd and substituted into the capacity equations (5) and

(16), respectively. Figs. 8 and 9 shows the resultant degradation in these two capacities. Observe that for

the example simulated here, for moderate to large SNR the relative loss due to transmitter-channel mismatch

is signi�cantly less than the loss due to not accounting for the eavesdropper LPD constraint (compare Fig.

9 to Fig. 7).

7 Conclusions

This paper has presented a study of capacity under link security constraints corresponding to low probability

of intercept (LPI) and low probability of detect (LPD). We have established that optimal signaling for LPD-

and LPI- constrained secure channels is qualitatively di�erent from open channels. We have also shown that

constraining moment quantites, such as trace of 4th moment matrix, are relevant for eluding detection by

eavesdroppers who have only limited knowledge about the channel and transmitter modulation. A smart

eavesdropper with info on data or training sequences can be handled similarly by constraining the fourth
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Figure 8: T/R informed power-capacity loss due to transmitter-channel mismatch (NR =M)
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Figure 9: T/R informed LPD-capacity loss due to transmitter-channel mismatch (NR =M)
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moment of the transmitted signal matrices. The analysis in this paper holds only for doubly informed links

for which the receiver and transmitter know their channel exactly. Extensions of these results to the case of

network-wide QoS metrics such as min- and sum- capacity are of interest. This paper has treated the case of

Gaussian noise and known receiver noise covariance matrices. Generalizations to the case of non-Gaussian

multi-user interference (MUI) would be worthwhile for answering questions such as: to what extent are LPD

and MUI resistance compatible goals in wireless networks. Finally, another interesting avenue for exploring

the information hiding capabilities of space-time channels would be the information theoretic framework of

Moulin [24, 23].

25



Appendix A

Proposition 1 Assume that H is an M �N matrix of i.i.d. zero mean and unit variance circularly sym-

metric Gaussian elements. If the density dP � de�ned below exists, the T/R-informed perfect-secrecy capacity

is E[CTR
perfsec(H)] where

CTR
perfsec(H) = �

Z
dXNTN(SH �X) ln

Z
S

dP �(S
0

)NTN (S
0

H �X)� TN ln�e (20)

where

� NTN (X) is the probability density of a standard zero mean and identity covariance T � N complex

normal matrix.

� dP �S is a probability density over the perfect secrecy constraint set S = fS : SSy = Ag, A a nonrandom

matrix, which makes the RHS of (21) functionally independent of S over S

If N �M then, with H = U [� O]V the SVD of H

CTR
perfsec(H) = �

Z
dX1NTM (SU��X1) ln

Z
S

dP �S(S
0

)NTM (S
0

U��X1)� TM ln�e (21)

where the T �M matrix X1 is de�ned by the following column partition of the matrix XV : [X1; X2] = XV .

Furthermore, if � = �IM for � > 0 then dP �(S) = 1=SO(Cl TM ) is the uniform density over S.

Proof:

For �xed H the T/R-informed perfect secrecy capacity is de�ned as CTR
perfsec(H) = supdP (S) I(X;SjH)

where the maximization is over distributions supported on S. As I(X;SjH) = H(X jH) � H(X jS;H) =

H(X jH)� TN log�e we focus on the entropy function H(X jH)

H(X jH) = �
Z
X

dXf(X jH) log f(X jH)

= �
Z
X

dX

Z
S

f(X jS;H)dP (S) log

Z
S

f(X jS;H)dP (S)

where X = Cl TN . As H(X jH) is concave as a function of dP (S) a standard calculus of variations argument

can be used to derive a suÆcient condition for the maximum of H(X jH). De�ne the Lagrangian

L(dP (S)) = H(X jH)� 

Z
S

dP (S)
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where  is an undetermined positive multiplier which enforces the constraint that
R
S
dP (S) = 1. The

stationary point condition on the maximizing dP (S) = dP �(S) follows from considering

L(dP �(S) + d�(S))� L(dP �(S)) =

Z
S

d�(S)

�Z
X

dXf(X jS;H) ln

Z
S

f(X jS;H)dP �(S)� 

�
:

For the above to be zero for all d�(S) such that dP �(S) + d�(S) remains a valid distribution over S we

require Z
X

dXf(X jS;H) ln

Z
S

f(X jS;H)dP �(S) = ; 8 S 2 S

which, upon substituting f(X jS;H) = NTN (SH �X), gives the expression (20) of the Proposition.

Specializing to the case that N � M , and using the given SVD of H and de�nitions of X1 and X2,

observe that

NTN (SH �X) =
1

�TN
exp

��trf[SH �X ][SH �X ]yg�
=

1

�TN
exp

�
�trf[SU��X1][SU��X1]

yg � trfX2X
y
2g
�

= NTM (SU��X1) NT (N�M)(X2)

Plugging this back into the expression for I(X;SjH) and using simple algebra this establishes (21).

Finally, assuming � = �IM , from expression (21) we must show that

g(S)
def
=

Z
dX1NTM (SU �X1=�) ln

Z
S

dS
0NTM (S

0

U �X1=�)

is equal to a constant over S independent of S. Note that NTM (SU �X1) = NTM (S �X1U
y) and observe

that, by change of variable in the integrals above, for any M �M unitary matrix �: g(S�) = g(S). Hence,

by Vinograd's theorem, g only depends on S through SSy. Since SSy = A over S, g(S) must in fact be

constant over S and the optimality of the uniform distribution dP � is established. 2

Appendix B

As in Section 2 let Y =
p
�SH + W , be an T � N matrix of complex amplitudes measured at N

antennas over T time samples at the output of an i.i.d. zero mean complex GaussianM �N channel H with

additive complex Gaussian noise W and input signal (source) with T �M complex amplitudes S. While

cooperation between client and transmitter may lead to dependency between S and H , we assume there is

no such cooperation between eavesdropper and transmitter. Thus, as the results below are applied to the

eavesdropper, we assume here that S is independent of W and H .
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Let Y = YR+ jYI be a complex valued T �N matrix where YR and YI are real matrices. De�ne the real

valued 2TN -element vector ~Y as the concatenation of the 2N columns of the matrix [YR; YI ]. Following the

notation of [22], for zero mean Y , de�ne the tensors �r;s, �r;s;t and �r;s;t;u as the variance, skewness, and

kurtosis of Y (~Y ):

�r;s(Y ) = E[~Yr~Ys]

�r;s;t(Y ) = E[~Yr~Ys~Yr]

�r;s;t;u(Y ) = E[~Yr~Ys~Yr~Ys]�E[~Yr~Ys]E[~Yr~Ys] [3]:

Note that as W is Gaussian �r;s;t;u(Y ) = �r;s;t;u(SHTE) = O(�2). Further, de�ne �rs the rs element of the

inverse of the covariance matrix �t;s(Y ) and �ts the positive de�nite square root factor of �ts, i.e., using the

Einstein summation convention �rs�s;t = Ært, the kronecker delta function, and �
tu�us = �ts.

Proposition 2 Assume that S is independent of W and H and that W and H are mutually independent

zero mean complex Gaussian matrices. The (normalized) �-divergence between f(Y jS 6= 0) and f(Y jS = 0)

has the asymptotic expression

ln

Z
f1��(Y jS 6= 0)f�(Y jS = 0)dY (22)

= ln

���IT + �SSy
���1�����IT + �(1� �)SSy

��� +
�(1� �)2�2

8
~�t;u~�t;u;v;w~�v;w + o(�2~�t;u;v;w) (23)

Where SSy = E[SSy], ~�t;u;v;w is the kurtosis of the whitened and variance normalized measurement �st~Yt

and ~�t;u is the variance of the prewhitened signal �st~St.

Proof

Using the expression in [22] for the Edgeworth expansion of a zero mean multivariate density about a

Gaussian multivariate density with zero mean and covariance �r;s = �r;s(Y ) we have the representation

f(Y jS 6= 0) = N2TN (Y ; 0; �r;s)

�
1 +

1

6
�r;s;thrst(Y; �) +

1

72

�
3�r;s;t;uhrstu(Y; �) + �r;s;t�u;v;whrstuvw(Y; �)

��
+o(�r;s;t;u)

where N2TN (x; 0; �r;s) is the 2TN -variate Gaussian density with zero mean and covariance �r;s, and hrst,

hrstu, etc, are Hermite tensors given in [22]. As Y =
p
�SH +W and H;W are independent zero mean

Gaussian random matrices, and S is independent ofH andW : �u;v;w = �u;v;w(Y ) = 0 and the representation

reduces to

f(Y jS 6= 0) = N (Y ; 0; ��1)

�
1 +

1

24
�r;s;t;uhrstu(Y; �)

�
+ o(�r;s;t;u(Y ))
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Using f(Y jS 6= 0) = N2TN (Y ; 0; Ærs), after some algebra the substitution of the Edgeworth expansion

into the �-divergence expression gives

ln

Z
f1��(Y jS 6= 0)f�(Y jS = 0)dY (24)

ln

Z
N (Y ; 0; �rt1���t;s)

�
1 +

1

24
�r;s;t;uhrstu(Y; �)

��
dY +R(�)

where �rs1�� is the matrix inverse of �r;s1�� = Ær;s + (1� �)�r;s and

R(�) = ln

���IT + �SSy
���1�����IT + �(1� �)SSy

���
Apply the small argument formula (1 + x)� � 1 + �x to perform the integration (24)

ln

Z
N (Y ; 0; �rt1���ts)

�
1 +

1

24
�r;s;t;uhrstu(Y; �)

��
dY

=
��r;s;t;u

24

Z
N (Y ; 0; �rt1���ts)hrstu(Y; �) + o(�2e ~�r;s;t;u)

Next we use the Hermite tensor expression [22]

hrstu(Y; �) = ~Y
0

r
~Y
0

s
~Y
0

t
~Y
0

u � ~Y
0

r
~Y
0

s�tu[6] + �rs�tu[3];

where ~Y
0

r = �rs~Ys:Z
N (Y ; 0; �vw1���wx)hrstu(Y; �) = �rv�sw�tx�uy

�
�v;z11���

w;z2
1���z1;z2�

x;y[3]� �v;z11���z1;w�
xy[6] + �vw�xy[3]

�
= (1� �)2�rv�sw�tx�uy�vz1�xz2�

z1;w�z2;y[3]:

Substituting this back into (24) and noting that, as tensors �rs; �rs; �rs have the same eigenvectors they

commute,

�r;s;t;u�rv�sw�tx�uy�vz1�xz2�
z1;w�z2;y[3] = �r;s;t;u�rv�sw�tx�uy �

rz1�z1s�
tz2�z2u

= ~�r;s;t;u~�rs~�tu[3]

This establishes (23). 2

Noting that ~�r;s;t;u(Y ) = �2�r;s;t;u(SH) + o(�2) and ~�vw = �vw + o(�) so that

Corollary 1

ln

Z
f1��(Y jS 6= 0)f�(Y jS = 0)dY

= ln

���IT + �SSy
���1�����IT + �(1� �)SSy

��� +
�(1� �)2�4

8
�tu�

t;u;v;w�vw + o(�4) (25)

where �t;u;v;w = �t;u;v;w(SH) is the kurtosis tensor of the T �N matrix SH.
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Appendix C

De�ne I(S;X jH) = E[ln f(X jS;H)=f(X jH)jH ] the mutual information for a T/R informed link over a

M �N quasi-static Rayleigh channel which is constant over the coherent fade interval of T time samples.

The LPD-capacity CTR
lpd of this link is de�ned as

E[max
f(S)

I(S;X jH)]

where the expectation is over H and the maximization is over source distributions dP (S) which satisfy the

mean-squared-power constraint

1

TM
trfcov2(S)g � Plpd (26)

where cov(S) = E[~Sy ~S] � E[~Sy]E[~S] is the source's TM � TM covariance matrix and ~S is a TM -element

row vector constructed by concatenating the T rows of S.

Let �HHy have eigendecomposition �HHy = U�Uy where � = diag(�i).

Proposition 3 Let H be a M�N channel matrix with zero mean and unit variance i.i.d. complex circularly

symmetric Gaussian entries. For the case that both transmitter and receiver know H the channel capacity

under the mean-squared power constraint (26) is

CTR
lpd = TE

�
ln
��IN + �Hy�lpdH

���
= TE

"
log

 p
1 + ��2i
2

!#
(27)

which is attained by a zero mean Gaussian source S with covariance cov(S) = IT
N

�lpd where �lpd =

UDUy, D = diag(�i),

�i =

p
1=�2i + �� 1=�i

2
;

and � > 0 is a parameter such that
PM

i=1 �
2
i =M = Plpd.

Proof

The argument is similar to that used in [33] in proving optimality of the water-�lling solution for the case

of informed transmitter and receiver under a mean-power constraint. The matrix observation model over a

single frame X =
p
�SH +W has the equivalent vectorized form

~X =
p
�~SH+W (28)
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where ~X = [X1�; : : : ; XN�] is a TN -element row vector from concatenating rows fXi�gTi=1 of X and similarly

for W , ~S = [S1�; : : : ; SM�] is a similarly de�ned TM -element row vector, and H = IT
N
H is a block

diagonal MT �NT matrix with identical diagonal blocks H . Invoking the maximum entropy property of

the Gaussian distribution for ~S having �xed covariance cov(~S) = Q, we have the following inequality

I(S;X jH) = H(X jH)�H(X jS;H) � log
��ITN + �HyQH

�� (29)

with equality when S is a zero mean complex Gaussian vector with TM �TM covariance matrix cov(S). It

remains to maximize the right hand side of this inequality over non-negative de�nite symmetric matrices Q

subject to trfQ2g=(MT ) � Plpd.

With the eigendecomposition �HHy = U�U y the eigendecomposition of �HHy is simply

�HHy = (IT
O

U)(IT
O

�)(IT
O

U)y

Let � = (IT
NU)yQ(IT

NU) have diagonal elements f�igTMi=1 . Then, by Hadamard's inequality:

log
��ITN + �Hycov(S)H

�� = log jITN +��j

� log

TMY
i=1

(1 + �i�i%M )

=
TX
j=1

MX
i=1

log(1 + �(j�1)T+i�i) (30)

with equality when � = diag(�i). Note that trf�2g = trfQ2g =PMT

i=1 �
2
i . The maximizer of the right hand

side of the above equation subject to the inequality constraint
PTM

i=1 �
2
i =(MT ) � Plpd achieves the constraint

with equality as the expression (30) is increasing in �i. The Lagrangian for this constrained optimization

problem is

L(�) =

TX
j=1

MX
i=1

log(1 + �(j�1)T+i�i)� 

TX
j=1

MX
i=1

�2(j�1)T+i

where  > 0 is an undetermined multiplier. This concave function has a unique unconstrained maximum

which occurs when 0 = @L=@�(j�1)T+i = 1=(1 + �i�(j�1)T+i) � 2�(j�1)T+i, or equivalently �i�
2
(j�1)T+i +

�(j�1)T+i� 1=(2) = 0. There is one positive root �(j�1)T+i = (�1+p1 + �i�)=(2�i) where � = 2=. Thus

� = IT
N

�lpd, the optimum source covariance is Q = IT
N
(Uy�lpdU), and plugging this into (30), the

capacity is (27) as claimed. 2

Proposition 4 Let H be a M�N channel matrix with zero mean and unit variance i.i.d. complex circularly

symmetric Gaussian entries. For the case that the only the receiver knows H the channel capacity under
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the mean-squared power constraint (26) is identical to the standard mean power constrained capacity for this

case

CR
lpd = TE

h
ln
���IN +

p
Plpd�H

yH
���i (31)

which is attained by a T �M source matrix S whose elements are zero mean i.i.d. circularly symmetric

Gaussian random variables with variances
p
Plpd.

Proof

The proof parallels the proof of the mean-power constrained capacity in [33]. The capacity for the case

that only the receiver knows the channel H is de�ned as supdP (S)E[I(S;X jH)]. Using the vectorized signal

representation (28) and (29) obtained in the proof of Proposition 3 we have:

E[I(S;X jH)] � E
�
log
��ITN + �Hycov(S)H

��� (32)

where equality is achieved when S is zero mean circularly symmetric complex Gaussian with TM�TM covari-

ance matrix cov(S). As in [33], for any TM � TM matrix Q the function 	(Q) = E
�
log
��ITN + �HyQH

���
is concave and for any MT � MT unitary matrix U ,  (UyQU) =  (Q). Thus, specializing U to the

eigenvector matrix in the eigendecomposition cov(S) = UDU y, we have  (cov(S)) =  (D) so that, as

trfcov2(S)g = trfD2g, without loss of generality we can assume that the capacity achieving covariance

cov(S) is a non-negative diagonal matrix D. Next specializing U to �, a TM � TM permutation matrix,

	(�yD�) = 	(D). Thus by Jensen's inequality, summing over all (TM)! permutation matrices

	(D) =
1

(TM)!

X
�

	(�yD�) � 	( ~D)

where ~D = 1
(TM)!

P
��

yD� which is a scaled TM�TM identity matrix. It follows from the inequality below

that the constraints trfD2g=(TM) � Plpd and trf ~D2g=(TM) � Plpd are equivalent so that ~D =
p
PlpdITM

is the optimal source covariance.

trf ~D2g =

TMX
k=1

�
1

(TM)!

�2X
�

X
~�

��(k)�~�(k)

=

TMX
k=1

 
1

(TM)!

X
�

��(k)

!2

=
TMX
k=1

 
1

TM

TMX
i=1

�i

!2

�
TMX
k=1

�2k = trfD2g:
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Where the last line follows from Jensen's inequality. This establishes the proposition 2
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Figure Captions

1. Secure Space-Time Link (M = 3, NR = NE = 2)

2. A link in a wireless network between a transmitter (T) and a receiver (R) who have cooperated to

learn their channel HTR. Eavesdropper E attempt to detect a message (known signal), detect signaling

activity (known modulation), or intercept data transported by the link HTR without knowing the

channel HTE . The eavesdropper and the client receiver must generally perform these tasks in the

presence of multi-user interference. In this paper, we assume Gaussian interferers with known spatial

covariances.

3. Spectra of optimal source covariance matrices under T/R-informed LPD (mean-squared-power) and

mean-power constraints: SNR = 20dB;M = NR = 32.

4. T/R informed power-capacity CTR
pow (NR =M)

5. T/R informed LPD-capacity CTR
lpd (NR =M)

6. Loss in LPD-capacity due to mean-squared power (LPD) constraint (NR =M)

7. Loss in LPD-capacity due to mean-power constraint (NR =M)

8. T/R informed power-capacity loss due to transmitter-channel mismatch (NR =M = 32).

9. T/R informed LPD-capacity loss due to transmitter-channel mismatch (NR =M = 32).
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