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Abstract—We consider the problem of estimating the P(1) = % , while the ordering(vs, v2), wherep = 2,

endpoints (source and destination) of a transmission in a has probability P(2) = %_ Since the orderings are
network based on partial measurement of the transmission defined over distinct sensor sets, we implicitly assume

path. Sensors placed at various points within the network the t . d t le in it th-that i
provide the basis for endpoint estimation by indicating € tansmission Goes Not cycie Iniis pati—=ihat 1S, a

that a specific transmission has been intercepted at their Particular sensor is activated at most once by a single
assigned locations. During a training phase, test transmis- transmission. During a preliminary training phase, the
sions are made between various pairs of endpoints in the network is probed by transmitting data packets between
network and the sensors they activate are noted. Sensor,,ariqus pairs of probing site&u;, = (o, o) i(:ol_lv and

activations corresponding to transmissions with unknown h K,—1 . db h L
endpoints are also observed in a monitoring phase. A the Sensorgy;},.°; " activated by each transmission are

semidefinite programming relaxation is used in conjunction recorded. A monitoring phase also occurs, whereby we
with the measurements and linear prior information to  observe sensor activation seftg. }/_ . for which the
produce likely sample topologies given the data. These endpoints are unknown.

samples are used to generate Monte Carlo approximations The resulting data{xk}i,;l = {up, yk}fﬁfl U

of the posterior distributions of source/destination pairs for K . So=l o _
measurements obtained in the monitoring phase. The poste- 1Yk Jk=x, @nd ordering distributions? (p) for k =

riors allow for maximum a posteriori (MAP) estimation of 1,2, .., K along with some prior information about the
the endpoints along with computation of some resolution network topology is processed by the system shown in
measures. We illustrate the method using simulations of Fig. 2 to produce Monte Carlo estimates of the posterior
random topologies. distributions of possible endpoints of those transmissions
Index Terms—Network tomography and surveillance, observed in the monitoring phase. We allow prior infor-
detection and identification of a.n.o.malous events, channel mation of the foer(A) = b on the logical {0,1})
and network models, data acquisition and sensor models adjacency matrix4 describing connections among sen-
sors and probing sites! is some subset of the elements
l. INTRODUCTION of A, Q is a linear operator, antlis a vector. Thus the
We present a method to estimate the endpoints (soupm®or information is essentially a set of linear equalities
and destination) of a data transmission in a netwotkat the adjacency matrid ought to satisfy. The linear
whose logical topology is unknown. We assume there aoperator() can be expressed as an equivalent matrix if
a number of asynchronous sensors placed on some sulisetelements ofl are organized in a vectar. The linear
of elements (links or nodes) in a network. A sensasrior information is then of the fornQa = b. Given
is activated, and its activation recorded, whenever tlbitrary Q andb the computation of feasible solutions
path of a data transmission is intercepted on the eleméotthe linear equation is no small task, in fact it is
where the sensor is situated. The measurement appar&tuswvn to be an NP-Complete problem [1]. We consider
is illustrated on a sample network in Fig. 1. If multiplethe associated minimum norm problemn ||Qa — b||i
sensors are activated by a single transmission, they malgerea € {0,1}" and||-||, is a quadratic norm with
not capable of providing the precise order in which thesespect to the positive definite matiix It is known that
were activated. In general, a probability distribution ogsombinatorial optimization problems of this type may
the possible orders of activatiaB(p) is provided. For be successfully approximated by ’lifting’ them into a
example, a transmission with endpoints = (o1,0,) higher dimensional matrix space whekg; = a;a,; and
in Fig. 1 might activatey; = {72,73}. The ordering X € {0,1}™*™ [2].
(v2,73), corresponding t@ = 1, might have probability =~ With the advent of polynomial time interior point
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Fig. 1. Diagram of the measurement apparatus on a sample network. Probing sites are Sosr¢es, o2} and destinations
A = {41,62}. A box on a link or node represents a sensor that indicates when a transmission path intercepts that link/node.
We seey; and~, monitor nodes whileys, v4, and~s monitor links.
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Fig. 2. Diagram of the transmission endpoint estimation system, assuming sensors have already been deployed.

methods for linear programming that can be extendedunding method in conjunction with samples from the
to semidefinite programming [3], [4], it is convenient toordering distributions{p;-}¥_, to produce a num-
consider a semidefinite programming (SDP) relaxation ber of network topology adjacency matricéd™ }M_,

the higher dimensional problem. Indeed, SDP relaxatiotisat approximately satisfy the linear prior information
have proven to be powerful tools for approximating)(A) = b. We derive an expression for the expected
hard combinatorial problems [5], [6], [7], [8]. The SDPyalue of the squared erraf [||Qa — b||ﬂ of samples
however, is solved over a continuous domain so it {§yoduced in this way. This expression depends on the
necessary to retrieve a 0-1 solution from the possibly|ytion of the SDP relaxation, but an upper bound on

fractional SDP solution. One possibility is a branch ange error independent of the SDP solution is also given.
bound scheme whereby certain variables are fixed and

the SDP is repeated until a discrete solution is found We wish to produce posterior distributions given
[1], [8]. The branch and bound algorithm can take athe data and prior information of the endpoints
exponential amount of time, depending on how tight thef transmissions observed in the monitoring phase
desired bound is. A randomized rounding scheme wa@¥u;|z1.x,Q(A) = b) for k > K,. The network
developed in [6] for SDP relaxations of the maximum cubpology and sensor ordering samples are used in con-
(MAXCUT) and maximum 2-satisfiability (MAX2SAT) junction with prior distributions on the endpoints of
problems. This scheme is shown to produce solutiomseasurements made during the monitoring phage:)

of expected value at least 0.878 times the optim&r k¥ = K,, K, + 1,...,K to compute Monte Carlo
value in [6]. We develop an SDP relaxation of the Oapproximations of the desired posterior distributions via
1 minimum norm problem and apply the randomizeBayes rule. Bayes formula for this problem essentially



reduces to the expected value of a functional of the perfectly synchronized. At one extreme, the sensors
topology A and sensor ordering; our approximation of are exactly synchronized—in which case the distribution
the endpoint posterior thus becomes an average of tBg(p) reduces to a delta function with all mass con-
values of this functional at each sample topolady* centrated on the known ordering of sensors. In a large
and ordering sep?’x. It is readily apparent that this network with imperfect synchronization, a natural source
functional requires the conditionalB(y|u, p, A)—these of such information would be the geographical locations
path likelihood functions are the conditional probabilitiesf the sensors—although we do not know the logical
of a sensor activation sey given the endpointsu topology of the network of interest, we do know geo-
and activation ordep in a topology A. We propose a graphically where the sensors were placed. For example,
path likelihood model inspired by shortest path routingf we had sensors scattered across a telephone network
whereby the length of a path determines its probabilitthat spanned the United States, any orderinghat
With the endpoint posterior distribution in hand, we caimplied an adjacency between a sensor in Los Angeles
immediately give the MAP estimate af; or an a pos- and one in New York would be highly unlikely. When
teriori confidence region of probable source/destinatidhe network of interest is the Internet with sensors placed
pairs. on routers, the ’traceroute’ command might be used to
The related area of network tomography has recentptain the ordering distributions. Suppose traceroute is
been a subject of substantial research. It refers to the @s®@bled on some routers and disabled on others; one
of traffic measurements over parts of a network to inf&ould then assign zero probability to all orderings of a
characteristics of the complete network. Some charact#ansmission that are not consistent with the traceroute
istics of interest include the following: source/destinatiopath. There is a tremendous amount of flexibility.
traffic rates [9], [10], link-level packet delay distributions Although the monitored network topology is un-
[11], [12], link loss [13], and link topology [14], [15]. known, the linear prior information permits inclusion of
For an overview of relevant tomography problems for theeasonably available information relevant to the topol-
Internet see [16]. In many applications, the tomograptygy. This is a generalization of the frequently used
problem is ill posed since data is insufficient to determingertex degree prior. Vertex degree priors are used quite
a unique topology or delay distribution. often due to the fact that many real world networks are
Our work is related to the internally sensed networkharacterized by specific degree distributions [21]. For
tomography application described in [17], [18]. Thesexample, studies have suggested a power-law distribution
works propose a methodology for estimating the topottescribes vertex degrees in the Internet [22]. Such priors
ogy of a telephone network using the measuremehave recently been applied to research involving models
apparatus illustrated in Fig. 1. The data transmission$ social and biological networks [19], [20], [23]. Since
are of course telephone calls and the asynchronadibe degree of a vertex is equal to the sum over the row
sensors are located on trunk lines. A simple argumeoit the adjacency matrix describing connections to that
in [18] demonstrates that the number of topologiegertex, one can easily construct a linear oper#&oso
consistent with the data measured during the probitigat Q(A) = b expresses the degree prior for a given
phase{xk}kK;fl is exponential in the number of sensorsvector of vertex degreds
Indeed the problem is ill-posed as the data required toThe approach described here might also find utility in
provide a reasonable estimate of the topology will neveystems conveniently modelled by graphs, such as finite
be available in practice. We sidestep the difficulties aftate automata. The problem of machine identification
developing a single topology estimate by averaging oves a classic problem in the theory of automata testing
many probable topologies in computing the endpoiri24], [25]. Here, we are given a black box with an
posterior distribution. automaton inside whose transition function is unknown.
The solution approach we develop is very generdBased on the response of the system to certain input
and we suspect it might have application in all sortsequences, we wish to reconstruct the transition function.
of networks: including telephone networks as describéthe link to the network topology recovery aspect of our
in [17], the Internet, social networks (such as commaruoblem is clear, since a graph provides a convenient
and control structures), or biological networks (such aspresentation for the transition function of interest. The
protein-protein interaction networks) [19], [20]. Sinceprobing sites chosen in the probing phase of our problem
we allow for sensor placement on arbitrary networls analogous to the input sequences to the black box
elements, the method is equally applicable to networksitomaton. Similarly, link sensors correspond to events
where it may be more convenient to monitor nodes (&s the automaton’s observable event set. An exhaustive
in the Internet) or monitor links (as in the telephone neglgorithm for solving this problem is given in [24] and
work of [17]). Also, the ordering distributions allow for shown to have exponential run time. Our methods might
situations involving sensors ranging from asynchronole adapted to provide a polynomial time approximation



algorithm. This would involve partitioning measurementthe endpoints of such a measurement, it is necessary to
with cycles (whereby an observable event occurs mohave some idea of the logical topology of the network.
than once in the same string) to satisfy the direct pathstead of considering the logical adjacencies implied
assumption and selecting a different conditional pathy the actual networkG(V, E, f), we are concerned
likelihood P(y|u,p, A) since the shortest path routingwith adjacency relationships among only those elements
model we suggest might not be appropriate. (vertices and edges) that are either monitored with a
The outline of this paper is as follows. We reviewsensor or used as a probing site. For example, we
the problem, describe in detail each component of tliannot hope to pinpoint the position of a link in
endpoint estimation system (Fig. 2), and analyze itee original network that is not monitored by a sensor.
complexity in Section II. In Section Ill, we provide someWe assume unmonitored elements are essentially 'short-
simulations of random graphs. In Section IV we coreircuited’ in the original networkG. The idea here is to
clude with some extensions of the method presented hassure two elements are logically adjacent even if they
and give directions for future work utilizing feedback forare physically separated by an element (or subgraph of
adaptive probing. elements) that is not monitored. The particular topology
we consider is thel 4 (V4, E4) whereVy =TUXUA
[I. MODEL AND THEORY FORSOURCE-DESTINATION is the set of sensors and probing sites, BhdC Vi x V4
ESTIMATION describes the logical adjacencies among these elements.

Let G(V, E, f) be a simple graph defined by the vertex*a may be undirected or directed depending upon the
setV, edge sef, and incidence relatiofi : E — V xV/  hature of the network:. For computational purposes, we
giving the vertices connected by each edge. We atiow represent 4 by its adjacency matrixd where 4;; = 1
to be either directed or undirected; however, it shouli and only if (i,j) € E4 fori,j € V4 and A;; = 0
be known a priori which is the case. In our applicatiorptherwise. An example logical topology ., is given in
E defines the set of links in the network topology, Fig. 3 for the monitored network: in Fig. 1.

defines the routers or switches connected by these |inkSWe assume independence of measurements (that is,
and f determines the pair of routers/switches connectegdependence over the indéy and utilize a Bayesian

by each link. The grapk- is unknown to us. framework to produce suitable approximations of the
LetI" denote a set of sensors we place in the networéndpoint posterior distribution:

Sensors are placed on some subset of graph elements; -
that is sensors may be placed on vertices, edges, or both.P(“fc'xliK’ Q(A) =b) =
A sensor will indicate whenever a transmission through Ea . [ Pghurp B () | 4 o Q(A) = b}
P X P lupg,A) Py (u)

the network passes the element it is monitoring. Probing Q)
sites are selected from the vertex dét The source We have available linear prior information on some of
vertex setY C V is the set of vertices from which the logical adjacency elementd C A of the form
transmissions may originate, and the destination verté{A) = b where Q is a linear operator and a prior
set A C V are those vertices at which transmissiondistribution on endpointg”; (u). It is assumed the end-
may terminate. A path between probing sitgs € ¥ point pair of a passive measurement is independent of
andd, € A is given byy, C I', wherey; contains the particular topologyA, in other words, the parties
the sensors activated by the transmission frggnto communicating do not know the network topology either.
d,. Because the sensors are in general asynchronddswever, if there is no connection between a given
the paths are unordered sets. However, along with eagidpoint pain in a topologyA, one would expect such a
Yy, a discrete probability distributiorP,(p) is given pair to have probability zero; we shall use a model for the
on possible orderingp of the sety,. We assume a term multiplying P; (u) to ensure the product is zero in
transmission does not cycle in its path from source this case. Here.x = {x;}X | represents all measured
destination, so that only orderings of distinct elementiata ¢, = (ux,yx) if the endpoints of measuremeht
of y;, are considered. It follows that i, has|yy | distinct wuy, are known, otherwise;, = y;), andpy, is the random
elements, thenPy(p) is defined over|yy|! different ordering of the sensors activated in measuremgnt
orderings. Note that the case of perfectly synchronizéithe conditional expectation is therefore taken over all
sensors is easily handled in this framework: simply takegical adjacency matriced and sensor orderings for all
Pi(p) = 6(p—pr) wherepy, is the known order in which measurements; . . We introduce a shortest path routing
the sensorg;, were activated. model for the conditional path probabilitié¥y|u, p, A).

The purpose of our system is to estimate the sour@de conditional expectation in Eq. (1) is approximated in
and destination:; = (s;, d;) of an activated sensor seta Monte Carlo fashion by summing over the argument
y;, corresponding to a measurement whose endpoints akaluated at a number of adjacency matrix and sensor
unknown (i.e. passive measurement). In order to estimatelering samples. The sensor orderipgse are drawn
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Fig. 3. Example logical topology~ 4 (Va, E4) for the monitored networks in Fig. 1. The vertex set aff 4 consists of sensors
I' = {~v:}5_; and probing site& = {o1,02}, A = {61,d2}, so thatVs = T UX U A. The edges ofi4 summarize logical
adjacencies among sensors and probing sites with any intervening unmonitored elements short-circuited.

independently from available distributionB;(p) for endpoints of the associated transmission are unknown. It
k = 1,2,...,K. These are used in conjunction withis assumed, however, that the endpoints are realizations
the solution to a semidefinite programming relaxationf a random probing site pair described by the known
that incorporates the prior informatio(A) = b to distribution Py (u) defined on¥X x A. We desire to
produce adjacency matrix samplet that are likely estimate the particular probing site pair between which
given both the data and the prior information. Witha transmission was passed resulting in a given passive
the approximate endpoint posterior distribution in hananeasurement. Along with the unordered set of activated
we can provide MAP estimates of the endpoints afensorsy, we are given a distribution on the order
the passive measurement and compute appropriate eirowhich the sensors were activatde.(p) for every
measures. k=1,2,... K (both active and passive measurements).

In the following, we first elaborate on probingThe distributions on ordering come from some absolute
of the network and the characterization of measurerfior information we have about our sensors—such as
ments obtained. Then we describe the distributiogeography or ’traceroute’ paths as discussed earlier.
P(A, p1.x|r1.5, Q(A) = b) and how it may be effi- We will make some independence assumptions about
ciently sampled using the given ordering distributionerdering in the following section.
and a semidefinite programming relaxation. Next we
discuss how the samples are used to approximate the . )
endpoint posterior and produce MAP estimates. Finallf: Generating Topology and Sensor Ordering Samples
we analyze the complexity of our algorithm. In order to produce a Monte Carlo estimate of the
conditional expectation in Eq. (1), we need to specify and
sample from the distributiorP(A, p1.x|71.x, Q(A) =
. b). We first expand this distribution as

The set of all available measuremenfts;}:._ , is -
partitioned into two disjoint sets. The mergsu};gn;ents for P(A prxlrir, Q(A) =b) = _ )
k=1,2,... K, — 1 correspond to a training phase for P(Ajz1x, prux, Q(A) = b)Pp1:x|Q(A) = b)
the probing sites, A. For eachk < K,, we select where the ordering variablgs. are assumed indepen-
a probing pairu;y € ¥ x A and pass a transmissiondent of the particular configurations of sensors activated
between this pair to observe the sensggsactivated. x1.x. As described previously, the distributions over
The measurement data therefore consists of both thelerings are determined by some relatively certain prior
endpoints and the activated sensorsgt= (ug, yi) for information, such as geography. The activated sensor
k < K,. Such a measurement is referred to agetive set simply serves to specify the domain of the ordering
measurement. The remaining measurements provide odlgtribution; for example, if there are three elements in
an activated sensor sety = y, for K, < k < K. 1y, then the distributionP;(p) is defined over3! =
These are referred to gassivemeasurements since thedistinct orderings.

A. Probing the Network and Taking Measurements



An additional independence assumption is made telaxation may be used to find approximate solutions.
simplify the expression in Eq. (2): specifically, we asThe randomized rounding will induce a distribution on
sumeP(p1.x|Q(A) = b) = P(p1.rr). This is similar to P(A|x1.x, p1.x, Q(A) = b), the remaining factor in
a factorization assumption made in variational EM algd=q. (3). The induced distribution will have the desirable
rithms [26]. A can be treated as a parameter set@angd  property that it assigns high probability to samples that
can be treated as hidden variables. The assumptionajpproximately satisfy the linear constraigf A) = b.
variational EM is to consider a factored distribution over ~q.«iqer the matrix equatiaBa = b equivalent to the

these random variableg 4, pr.x) = 44(A)4p(p1:x) = inear prior informationQ(A) = b. Producing vectors
an independence assumption. We will further justify thig i, satisfy this equation amounts to finding several
approximation later by performing some pre—processir&mmns to the problem

on the setd to remove adjacency elements that are likely

to be dependent on some ordering variaple Com- find a € {0,1}" (5)

bining this with the independence over measurements such thatQa = b

assumption, we then have Unfortunately, the problem in Eq. (5) is NP-complete
P(A, pr.x |z, Q(A) = b) = [27]. We consider an equivalent restatement of Eq. (5)

P(Alz1.x, proxc, Q(A) = b) T, Pi(pr) @) minimize (Qa — b)TA(Qa — b) ®)
where P, (py,) are known distributions over the ordering such thaia € {0, 1}"

of sensors in measuremeht The factored form of the where A is a (symmetric) positive definite matrix that
distribution in Eqg. (3) suggests the first thing we shoulchay be chosen to emphasize the relative importance of
do in generating our samples is to select orderipgs the different constraints. Obviously any optimal solution
independently from the distributionB), for eachk = of the problem in Eq. (6) with zero value solves the
1,2,...,K. This is a simple matter since eadh, is feasibility problem in Eq. (5). The problem in Eq. (6)
a discrete distribution defined over a finite number d§ no easier than the original statement, however, it has
orderings. been shown that problems of this type (0-1 quadratic

Consider now what a measurement equipped with Programs) can be approximated quite well using a
an orderingp,, implies about the adjacency matrix. Semidefinite relaxation [7].

Let x,, denote the ordered measurement where;;if ~ We now proceed to derive the SDP relaxation of Eq.
is an active measurement, the source probing site is takel). Our relaxation is similar to the one derived in [6]
as the first element followed by the orderipg of the for MAX2SAT. First note that the optimization in Eq.
activated sensors and the destination probing site is tak@) is equivalent to
as the last element. if;, is a passive measurement,,, .
is simply the ordering;, of the activated sensors.mil'he minimize 6*Da — 2,flTa @)
fact that the transmission passes from tHe element such thata € {0, 1}
of x,,, given byz} . to 7} implies there must be where D = QTAQ andd = QT Ab. This is easily seen
a logical connection betweemfw_ and asf;i Thus if by expanding the objective in Eqg. (6) and dropping the
we select an ordering;, for each measurement (i.e. forconstant term. Now note thaf = a; sincea; € {0,1};
k=1,2,...K), then every adjacency element in the sahis fact this allows Eq. (7) to be re-expressed as
A*P must bel, where A** is defined by minimize 3, . Dijaia; — 23, dja?
a7 = { Ay | 3k (o, o) = ()} @) such thata € {0, 1}"

] ) . We now introduce variables; € {—1,1} for eacha; €

Once we draw orderings;.x as previously described, {0,1} for i = 1...n along with an additionalv,; €

the adjacency matrix elements u*? are immediately {—1,1} so that the change of variables is given by
fixed at unity by these. It remains, however, to select

the remaining adjacency elements. In drawing these, a; = 1 (14 wpy1w;) (9)
we must account for the prior informatioR(A) = b. _ o 2 _

Since @ is a linear operator, we may re-express thighe identities in Eq. (10) follow from this change of
information asQa = b whereQ is now understood to variables.

be a matrix and: € {0,1}" is a vectorized version of aia; =

the adjacency elements. For arbitrary@, finding @ 0-1 1 [(1 + w;w;) + (1 + wp1w;) + (1 + wpprw;) — 2]
vector ¢ that satisfies the equatiaa = b is an NP- —a;a; =

Comple.te problem. [27]. We wiII_ sh(_)rFIy discuss hqw i (1 — wjw;) + (1 — wypqw;) + (1 — wpyiw;) — 4]
randomized rounding of a semidefinite programming (20)

8)



If we introduce a negative sign in the objective, then thie following identities.
optimization in Eq. (8) becomes E[L + wiw;] = 2P (Sign(v;fr) _ sign(vTr))

max § >, ; [Bij (1 +wyw;) + Cij(1 — wyw;) —4Dy] B[l — wyw;] = 2P (sign(v]'r) # Sign(vjrr))
such thatw € {—1, 1} !

(15)

(11) where r is a random vector from the uniform dis-
tribution on S,, as previously defined. We may eval-

wheree is a vector of ones and matricés C are given . . . .
c &4 g uate the probabilities in Eq. (15) quite easily via

by

0  2d the observation in [6]. Note that symmetry of the
B=| 51 o > distribution implies P (sign(v]r) # sign(v]r)) =

D De (12) op (vf'r > 0,077 <0). And if § = arccos(v v;) is
C= (De)T 0 ) the angle between the vectarsandv; then it follows

. I , P (v]r > 0,0Fr < 0) = 4= since the distribution of
In order to obtain a semidefinite program, define thg yniform on,,. A similar argument applies to the case

matrix W = ww?. It is simple to show thatV’ = ww™  of matching sign. The results are summarized below.
for some vectorw if and only if W > 0 (i.e. W is _ - . - . -
positive semidefinite) andank(W) = 1. We drop the P (sign(vir) = Slgn(vjrr)) =1 — + arccos(v; v;)

nonconvex rank-1 constraint to obtain the SDP relaxationl” (sign(v{ r) # sign(v]r)) = + arccos(v] v;)

- (16)
maximizeTr [(B — C)W] If we define the matrixZ such thatZ;; = arccos(W;;)
diag(W) = e (13)  \where ™ is the solution of the SDP relaxation in Eq.
W=0 (13) and note that the objective function in Eq. (11) is
where T'r[-] indicates the trace operation and the corexactly equal tob”Ab — [|Qa — be\, then we may take
straintdiag(W) = e is added to enforcev? = 1. The the expectation of the objective in Eq. (11) and apply
equivalence of the objective functions in Eq. (13) anthe identities in Egs. (15) and (16) to obtain the mean
Eqg. (11) can be seen easily by replacingv; with W,;; squared error as

and dropping constant terms. The SDP in Eq. (13) may R ) ) 1

be solved in polynomial time using a primal-dual path £ [”Qa - b”A} = Qe —bl[y — 5 Tr[(C - B)Z]
following algorithm [4]. The result of this optimization a7

W= will in general be a non-integer symmetric posiwheree is a vector of ones.

tive semidefinite matrix. In [6], a randomized rounding )

methodology is proposed to recover a -1,1 veatdrom Ve may obtain a bound on the expected value of the
the SDP solutioniV*. The strategy is to first perform squared error in Eq. (1_7) independent of the solution to
the Cholesky factorizatiodV* = VTV. A random the SDP. As in [6], define the constamt

hyperplane through the origin with normal vectors . 2 z 18
then chosen by selectingfrom the uniform distribution «= ZZ%?Z}] 71— cosz (18)

on the surface of the unit hypersphefg = {r €
R""!7Tr = 1}. The value ofw; is then determined by

such that

From this definition ofy, the following identities follow

i : immediatel
whether the corresponding column of V' lies above ediately
or below the hyperplane, i.ev; = 1 if v/r > 0 and %a(l +oosz) <1—1z 19
w; = —1 if vI'r < 0. Theit" element of the vectorized sa(l—cosz) < iz

adjacency samplé is then given by We take the expected value of the objective function in

Lo JLif sign(vl'r) = sign(vl, r) 14 E;q. (1(1121/a*r;dt :p?\ll)é the identities in Eq. (19) with; =
i 0 if sign(v]'r) # sign(vl, ir) arccos(W;5) to g

This result can be seen by applying the rounding method” Ab — E {HQ?I - b||ﬂ 2
and then using the change of variable formula given in 1 (Z- [Bij + Cy] + Tr[(B — C)W*]) _ ¢TDe
Eq. (9). 4y (20)

Now suppose the equatioRa = b has at least one
We now proceed to derive the mean squared errfasible solutiona’. Let w° be the corresponding -1,1
E [||Q& — b||3 | of the sample adjacency in Eq. (14) an&ector andW® = w°(w°)T. We then have
thereby quantify how_ close th_e sampl_es _produce_d in this 0— HQGO _ sz — T De+ bTAb—
way come to satisfying the linear prior information on A

(21)
average. First note that the rounding scheme used implies 1 (Zi,,j [Bij + Cij] + T [(B — C)WO])



But sincelV* solves the SDP in Eqg. (13), it follows matrices and orderings follows.

TTT[(B _ C)TW*] > Tr [(B-C)W°] = 22 . ézr;puteP(Aij € A®r) for all A;; € A as in Eq.

deTDe +4bTAb =3 [Biy + Cy « Eliminate {4;; | P(A;; € A*?) > ¢} from A and
We may now combine the inequalities in Egs. (20) and  adjust the systen)(A) = b with these variables
(22) and rearrange to obtain a bound on the expected fixed at 1.
value of the squared error that is independent of the SDP, Solve the SDP corresponding @(A) = b for the
solution optimum W*.

B {HQ@ B bHﬂ <(1-a) (1QelZ +1BI3) @3 . ggr;wpslgtﬁjt%r;gyit.ore the Cholesky factidrof the

In practice, the bound in Eq. (23) tends to exceed the trues FOrm =1,2,... M
expected value in Eq. (17) by a large amount. However, — Draw py, from Py (p) for k=1,2,... K.
it is of theoretical interest since it gives a general idea DetermineA®” as in Eq. (4) and sefl;; = 1
of how close samples produced in this way will come to for all A;; € A*°.
satisfying the linear prior information, given the matrix Draw r from the uniform distribution orf,,.
@ and vectom specifying this information. One must be Take inner products of the Cholesky factors
careful to apply this bound only when all elementpf with r to determined;; ¢ A™ that are
and b are nonnegative (such as when a vertex degree organized in the vectar as shown in Eq. (14).
prior is used). A similar bound can be derived when Set all remaining adjacency elements to 0.
some elements af) or b are negative, but we will omit  We may now write down the conditional distribution
it here. P(A|z1.k, p1.5, Q(A) = b) from which the SDP round-

A naive procedure for generating the necessary saffid method is sampling. First define the $&A;;) as
ples using these procedures would be to first draw thg{(Aij) —
ordering variables;.x then fix the adjacency elements
in A®? corresponding to the draw. One could then reduc
the systenQ(A) = b by eliminating elements inlN A*? o5
and proceed to formulate and solve the SDP for use ir}1 . . (25)
randomized rounding. This approach is computationam/' ere Sn IS the sgrface of the unit hypersphere and
prohibitive, however, because it requires solving a new’ is the approprlate CO'UT“” of the Cholesky f_actor
SDP for every single sample. Instead, we prefer to solve corresponding to the variabld;; as defined earlier.
a single SDP and use its solution to generate all sampl nee the only random elem_enjs Afg';’e” T1:K: PLK
The single SDP is derived from the systepfA) = b and _Q_(A) ~ b. are th_ose_ ind — A%, the desired
where the eliminated variabled;; are those whose conditional distribution is given by
probability of being in the sefi*” exceeds a threshold. _ Vol(Na, eaaee H(Ai))
The probability P(4,; € A®") is computed from the P(Alz1xk, prx, Q(A) =b) = Vol(S,) (26)

ordering distributionsP, (p) as . _ _ ) _
The expression in Eq. (26) is quite complicated since
P(A;j € A®?) = max Z Pr(p) (24) the numerator is an integral over a strange set. This is
P13l =ialt = irrelevant, however, since we do not need to evaluate it.
. . . The crucial point is that samples from this distribution
Note that by fixing the variables that are likely to be approximately satisfy the prior informatio(A) =
in A* and eliminating them from the prior constraints, Indeed, one may use the Markov inequality along with
Q(A) = b, we are removing elements from that giiher the exact mean squared error in Eq. (17) or the
are likely t(_) depend on ordering vanabl;asT_hl_s sort ound in Eq. (23) to determine an upper bound on the
of decoupling serves to strengthen the validity of thgonapijity that the squared error of a sample from this
independence assumption made eathep.x|Q(A) = gistribution will exceed any given tolerance.
b) = P(p1.Kx)-
There may be adjacency matrix elements that are ret APProximating the Endpoint Posterior
in A and have zero probability of being iA®?. Define We use the topology and sensor ordering samples
Ao = {A;; | Aij ¢ A, P(A;; € A*) = 0}; A° then obtained in the previous section to derive an approximate
denotes the adjacency matrix elements that we have exxdpoint posterior distribution of a passive measurement
information about. We adopt the principle of parsimonindexed byk as given in Eq. (1). IffA™}M_ are the
and assume all elements it° are zero. A summary topology samples anflp?, }2/_, are the sensor order-
of our procedure for generating/ sample adjacency ing samples (for each measurement), then the strong law

r €S, | sign(vkr) = sign(vl, r if A;; =1
©j n+1 J
{res,| sign(viTjr) # sign(vl, r)} if A;; =0




of large numbers suggests a Monte Carlo estimate of tetermined individually than are both collectively. These

conditional expectation given by are defined exactly as in Eqg. (30), excepis replaced
- o with s or d throughout (so that the appropriate marginal
?(“k]JfLK];gség’p}bjm_)PE(uE) (27) distribution is considered). It is clear that the ratio in
% Dm=1 . P(y,;|uljp£17A"")P]~c(u) Eq. (30) must lie in the interva{%, 1]. Larger values of

this ratio in a sense indicates more 'confidence’ in the

wherek is a normalization constant inserted to ensure t%:l‘AP estimate since a value of 1 is achieved only when

total mass of t_he .app.roxmate posterlo.r IS unity. Since "I of the mass of the estimated posterior distribution is
are given a distribution on the endpoints of the passive .

: concentrated at the MAP estimate.
measurement; (u), we need only specify a model for

the condlt_lonal path proba_bmty?(y_\u,p,A) in order_ D. Algorithm Complexity
to approximate the posterior as in Eq. (27). Routing )
mechanisms and traffic data might figure prominenty W& now —analyze the complexity of the
into such a model. We propose a simple model whereg@urce/destination  estimation ~ scheme  developed
the length of a path determines its probability (as ihere._ The two fundamental quantities that dete_rmme
shortest path routing). Ify,| denotes the length of the the size of the problem are denoted Byand/; N is
ordered patty,, andy" denotes the shortest orderedhe total number of sensors plus prgblng sites, so that
path between endpoints in topology A, then the IV = [I'l+[XUAJ, while h is the maximum number of

conditional distribution is given by activated sensors in any measurement, so [that< h
_ forall k =1,2,..., K. The maximum number of hops
0 if |yl = lyy | < oo h may be a function ofV, depending upon the type of

P(ylu,p,A) = {1 -0 if [y <yl <oo (28) network considered. For networks that obey #reall

world effect, as many real world networks db, will

remain approximately constant with increasing[28],

The model basically says that the shortest path betwe[q@]. The number of measuremenks and the number

endpointsu in topology A is chosen with probability, of Monte Carlo sampled/ also affect the complexity;

and all other valid paths (that is, paths of finite length)qwever we shall see the complexity dependence on

have probabilityl — ¢. If a path does not connect theihese is always linear.

endpointsu in the given topologyA, then naturally it First note that we must store the ordering distributions

has zero probability. Note that for arbitraly we need p, () for all measurements. Since each distribution

to run Dijkstra’s algorithm (or some other shortest patly gefined overO(h!) orderings, this require®(Kh!)

routing algorithm) for each topology sample” in order  gpace. The adjacency matrik considers all logical

to compute the conditional path probability in Eq. (28}onnections among sensors and probing sites, so that

[1]. This is not necessary, however, in the casethat; 4 has O(N?) elements. In the worst case, the linear

where all valid paths are equally likely. prior informationQ(A) = b will constrain all elements
We may give maximum a posteriori (MAP) estimategf this matrix so thatd = A. It will therefore take

of the endpointsu;, of a passive measurement after (O(K N2h!) time to computeP(A;; € A*r) for all

computing the posterior distribution estimate in Eq. (27)4ij € A. Now in the worst case, thresholding these

0 if [y,| = o0

Indeed, the MAP estimate is simply given by probabilities will produce a negligible reduction in the
~_ p _ A =b ogy Size of the systen)(4) = b, so that we still have
h arginax (ulzvre, Q(4) =) (29) to contend withO(N?) variables in solving the SDP

Recall thatu = (s,d), thus MAP estimates of; relaxation. Typically interior point methods are used

to solve SDP’s to withine of the optimal solution.
These are based on Newton’s method; therefore at each
iteration it is necessary to solve a linear system of
equations for the Newton direction®(n?) for a system
of sizen). An algorithm given in [29] is shown to take
O(]loge|y/n) iterations for a problem of size—this
Au(if) S P(ag|z1.1,.Q(A)=b) _ performance is typical for all interior point algorithms.
P(u,;|.z1:K,Q(A):b)+3;aa); P(ulzr,Q(A)=b) Our problem has dimensio®(N?), thus solving the
(30) SDP takesO((N?)3®) or O(NT) time. A Cholesky
It is also useful to compute the corresponding ratidactorization is then performed on the SDP solution,
associated with the marginalized distributiohg’k) and which takesO((N2)?) or O(N®) time.
Ad(fc), as it may be the case that either the source orAfter solving the SDP, thél/ topology and ordering
destination of a passive measurement is more accurategmples may be produced relatively quickly. For each

or d; individually may be obtained by maximizing
the appropriate marginalP(s|z1.x, Q(A) = b) or
P(d|z1.x, Q(A) = b) respectively.

We use as an error measure the ratig k) below for
the estimated endpoints; .
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sample, we need to draw an ordering for each of kche network for two cases: 100% sensor coverage (in which

measurements, thus requiriig( M K) time to produce all 40 links were monitored by a sensor) and 75% sensor
the ordering samples. Given tti€ orderings for a single coverage (in which 30 of the 40 links were selected at

sample,A*” may be generated i®(Kh) time. Finally, random for hosting a sensor). In the 75% coverage case,
we may draw the vector and take inner products networks were generated in a rejection sampling manner
to determine the remaining elements of the topologso that every measurement (whether passive or active)
sample. Since the time required for each inner produattivated at least one sensor.

is linear, it takes a total 0O(MN? + M Kh) time to In order to probe a network, we randomly selected 18

produce theM topology samples. of the 36 distinct pairs irt x A to serve as endpoints

The final step is to compute the Monte Carlo apfor active measurements. This set of 18 endpoint pairs
proximation of the endpoint posterior distribution of ds denotedl C ¥ x A; the remaining pairs are denoted
passive measurement. A quick inspection of Eq. (2By L¢ = X x A — L. Sensor activations in response to
reveals that we need to determine the conditional pattansmissions between all pairsihx A were observed
probabilities P(y|u, p, A) for every endpoint pairu— in the monitoring phase. All transmissions were routed
there areO(NN?) such pairs. Also, computing each pathhrough the network using shortest path routing, and
probability for a given ordered path), requires tracing activated sensor setg, were observed. Thus for each
this path through the topology, which takesD(h) time. network we hadK = 54 data pointsK, —1 = 18 active
Now, if 6 # i we must takeO(MN?) time to run a measurementsri.is = (u1as,y1.1s) and 36 passive
shortest path algorithm on each sample [1]. Thereformeasurements;g.54 = y19.54. FOr each data point(=
it takesO(M N2h + M N?3) to produce the approximatel, 2, ... K), a distribution on the order in which sensors
endpoint posterior fof # %; this reduces t@ (M N2h) were activatedP, (p) was generated as follows: first the
for 6 = 1. true ordering of sensorg, was noted, then noise(p)

The factors that give some cause for concern in thigas drawn independently from th&mniform]0,0.2]
algorithm are thé:! in considering all possible orderingsdistribution forp = 1,2, ... |yx|!, finally the distribution
and theN7 in the SDP solution complexity. If we are P,(p) was generated by normalizing the corrupted delta
dealing with small world networks, theh might be function distribution as in Eq. (31).
around four or five so thak! is still manageable. And 5(p— pr) + n(p)
if this is not the case, one would hope that the ordering Py(p) = L (31)
distributions P,,(p) are nonzero only over a reasonable > pt1 0(p = pr) +1(p)

number of orderings since we need only consiger The linear prior information was generated from de-
with P;,(p) > 0. In practice, the actual SDP complexitygree information on the logical topology. Indeed ver-

is likely to be significantly less than the worst casgsx degree information is a commonly used special case
bound of O(N) after reducing the system@(A) = b, of the more general linear prior specified B A) = b
especially if the original prior only constrains some smiﬁo]' [23]. The sensor degree, that is the number of
subset of the adjacency elements. Our algorithm woud@nsorg),; to which theit" vertex in the logical topology
still benefit from speedy SDP algorithms as solving thg adjacent, was known for all; € V4. In addition to
relaxation takes the most time in the worst case. Rnowing the sensor degrees of vertices in the logical
parallel implementation of an interior point algorithmtopomgy G4, a random subset consisting of no more
for SDP’s might reduce the time requirements if multiplghan 60% of the sensors not adjacent to a given vertex

processors are available [30]. were also known. For the” vertex, thei" row of the
operatorQ;(A) therefore sums over the elements Af
Ill. SIMULATIONS for which adjacency to vertekis uncertain, and th&”

We performed some numerical simulations to demomlement ofb, b;, is simply the known sensor degree of
strate the utility of the method described in this papevertexi. As an example, consider vertex of the logical
We generated undirected random graphs with 25 nodegpology in Fig. 3. Vertexwy; is adjacent to sensors
to serve as test networks. The number of edges in ealh, 4}, therefore its sensor degree is two. Since there
graph was fixed at 40 by randomly selecting 40 of thare two sensors not adjacenttg |2+x60%| = 1 sensor,
possible 300 vertex pairs and connecting the selectsay~y,, is selected at random from the det,y3}. The
pairs by an edge. The adjacency matrix sparsity pattenusv of the priorQ(A) = b corresponding toys is then
for three example graphs are shown in Fig. 4. Wgiven byzjer_%_% Ay = 2.
randomly chose 12 of the 25 nodes to serve as probingGiven the sensor degree prior information and the
sites—this set was then partitioned in half so that botivdering distributions, we eliminated those adjacency
the source set. and destination sefA each had 6 elements whose probability of being in the sét”
distinct elements. Sensors were placed on links in tlexceeded, from A, whereP(4;; € A*?) was computed
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A B C

Fig. 4. Example sparsity patterns for the adjacency matrices of three undirected random graphs with 25 nodes and 40 randomly
selected links. The method is illustrated by simulating on topologies of this type. 12 of the 25 nodes are selected as probing
sites: 6 of these are taken as sourEeand 6 are taken as destinatioAs We assume in one case that sensors are placed on all

40 links (100% sensor coverage) and in another that sensors are placed on 30 randomly selected links (75% sensor coverage).
Active measurements consist of 18 of the 36 distinct pairs in A randomly selected for use in the probing phase, denoted

L. The remaining 18 pairs are denotéd. Passive measurements consist of sensor activations monitored between all pairs in

¥ x A. Shortest path routing is used to determine the transmission path.

as in Eq. (24). The reduced systepfA) = b was then works with 100% sensor coverage and 30 networks
used to formulate the SDP relaxation in Eq. (13) fowith 75% sensor coverage. Table | demonstrates the
the minimum norm solution with the weight matrix effectiveness of the SDP randomized rounding algo-
taken as the identity. The relaxation was solved with @thm for producing topology samples that approxi-
predictor-corrector path following algorithm given in [4].mately agree with the sensor degree prior information.
A publicly available C implementation of this algorithmlt lists the normalized squared topology sample er-
was used [31]. The SDP solution was used along witor mﬁ Yo @A™ — b||*> averaged over the

the ordering distributiong’; (p) to produceM = 500 M = 500 samples along with the normalized expected
samples of measurerr_\ent orderingsx and adjacency squared EYFOWE [IIQ& _ bnzl as in Eq. (17)
matricesA for computing the Monte Carlo estimates Ofgr each graph. The bound derived in Eq. (23) assures the
the endpoint posteriors. expected squared error can never exceeda ~ 0.12.

We assumed the endpoint prioFs (u) were uniform e see that graphs with 75% sensor coverage tend to
over ¥ x A for all 36 passive measuremenis = have lower error values.

19,20,...,54. Also, the parametef in the conditional
path probabilities of Eq. (28) was taken ésso that Plots of proportion of passive measurement endpoint
it was not necessary to run a shortest path routirggtimates correct for a given seLl (or L°) versus
algorithm on every sample topology. THE0 ordering the resolution ratio from Eq. (30) averaged over the
and topology samples were then used to compute tberresponding set are given in Fig. 7. Plots are shown for
approximate endpoint posteriors for all passive measujeint estimates of.;, via the joint distribution as well as
ments as given in Eq. (27). These were used to produice individual estimates of; andd;, from the marginals.
joint MAP estimates of the transmission endpoints and/e observe an approximately linear relation between the
to compute the resolution measume?s(fc). An example proportion of correct estimates and the appropriate
endpoint posterior is given in Fig. 5, for which theratio when theA ratio exceeds 0.68. In this regime, the
correct endpoint pair is source no. 6 and destination nd.ratio might be used as a measure of confidence in the
3. It is clear that the MAP estimate will result in theendpoint estimates. Also note that transmissions irset
correct pair in this case. Also indicated in the Figure iend to have higheh ratios (and are correct more often)
the second most likely pait = (6,5); this is used in than those in sef.c because it is the transmissions in
computing the resolution measurg, as in Eq. (30)— setL that are used in training the probing sites. We see
A (k) = 0.60 for this case. Marginal distributions ofthat marginalized MAP estimates are often better than
the approximate posterior are given in Fig. 6. Thegeint MAP estimates. Marginalization certainly blurs the
were used in individual MAP estimation of source anéinear relation in the higher confidence regime. We also
destination. It is clear that the individual estimates wilbbserve some degradation in the quality of the estimates
match the joint estimate for this case; the resolutiomhen only 75% of the links are equipped with sensors;
measures were a bit lower though wmg(l%) = 0.58 and this is to be expected though. Recall that these results are
Ad(l%) = 0.59. This completes the simulation process foobtained with completely random placement of sensors
a single graph. and random choices for thgs,d) pairs to use in the
We repeated the simulation procedure for 30 neprobing phase. These two factors will clearly affect
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0.2 T T : T T 0.2 . |
—(6 33 - 6
018} u=63—>§ | 018 u=(6.3) ]
016+ B 0.16¢ B
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Fig. 5. Example endpoint posterior distributioﬁ(u,;,|:r1:K,Q(A) = b) for a passive measuremehtwith endpointsu =

(s,d) = (6,3). In plot A, the probabilities are grouped by source, with each of 6 bars in a group corresponding to a different
destination (noted above the individual bar). Plot B displays the same information except probabilities are grouped by destination
with source number noted above each individual bar. The largest and second largest values of the posterior are indicated-it is
these values that are used in computing the resolution ratiof Eq. (30), calculated ad. (k) = 0.60. It is clear in this

example that the endpoints of this transmission will be correctly estimated by the joint MAP estimate.

0.5 \ \ \ \ \ \ 0.5
0.45 1 0.45 1
0.4 1 0.4 1
0.35 0.35 1
d=5
0.3 0.3 1
0.25 0.25 1
0.2 0.2 1
0.15 0.15 1
0.1 0.1 1
0.05 0.05 1
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Source Number B Destination Number

Fig. 6. Marginal distributions P(s;|z1.x, Q(A) = b) in A and P(d;|=1.x, Q(A) = b) in B) associated with the example
endpoint posterior distribution shown in Fig. 5. The largest and second largest values of the marginal posteriors are indicated-it
is these values that are used in computing the resolution raticsnd A4, calculated as\ (k) = 0.58 and Aq(k) = 0.59. It

is clear in this example that the endpoints of this transmission (source number 6 and destination number 3) will be correctly
estimated by the individual MAP estimates as well.

the estimates of passive measurement endpoints, dramework. A semidefinite programming relaxation is
therefore provide an interesting direction for future workused to generate logical network topology samples that
approximately agree with linear prior information. It is
possible to envision applications of the method in all
sorts of networks, or systems with key features modeled

In this paper, we have developed a methodology fdy networks. We have displayed simulations of its utility
estimating the endpoints of a transmission in a netwotf some random networks. We now discuss some exten-
using link-level transmission interceptions. The estimaions of the theory presented here and possibilities for
tion is done using Monte Carlo simulation in a Bayesian

IV. SUMMARY AND EXTENSIONS
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Plots of proportion of endpoint estimates correct for a given gebr( L) versus the resolution ratios of Eq. (30)

averaged over the corresponding set for the two simulation cases: 100% sensor coverage in the first column and 75% sensor
coverage in the second. Circles indicate averages over paths fromea® pentagrams indicate averages over paths from set

L°. The first row () is for joint MAP estimation ofu; = (s;,d;) from joint distribution P(u;
second row 4) is for individual estimation ofs; from marginal dlstrlbutlonP(
for individual estimation ofd; from marginal dlstrlbutlonP(d |15, Q(A) =

Q(A) = b). The
Q(A) = b). The third row (\q) is
b). Some reference lines are also plotted. The

chance line for randomly selectlng endpoints is drawn in each plot (1/36 for joint estimation and 1/6 for individual estimation).
Note that above\(k) = 0.68, an approximately linear behavior is observed. This behavior is somewhat washed out for the
marginalized estimates, however marginalizing tends to increase the percent of correct estimates. It is not surprising that there
appears to be some degradation in the quality of the estimates when only 75% of the links are equipped with sensors.
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100% Avg | 100% Exp| 75% Avg | 75% Exp
0.0211 0.0208 | 0.0142 | 0.0145
0.0229 0.0214 | 0.0110 | 0.0113
0.0195 0.0200 | 0.0108 | 0.0111
0.0247 0.0241 | 0.0119 | 0.0117
0.0178 0.0170 | 0.0146 | 0.0146
0.0247 0.0257 | 0.0152 | 0.0156
0.0189 0.0200 | 0.0139 | 0.0133
0.0247 0.0236 | 0.0154 | 0.0155
0.0230 0.0221 | 0.0143 | 0.0138
0.0222 0.0221 | 0.0121 | 0.0123
0.0243 0.0244 | 0.0135 | 0.0141
0.0241 0.0229 | 0.0118 | 0.0117
0.0217 0.0209 | 0.0139 | 0.0136
0.0190 0.0182 | 0.0125 | 0.0125
0.0248 0.0235 | 0.0127 | 0.0125
0.0195 0.0198 | 0.0131 | 0.0140
0.0257 0.0261 | 0.0133 | 0.0138
0.0180 0.0182 | 0.0147 | 0.0143
0.0236 0.0237 | 0.0137 | 0.0131
0.0214 0.0213 | 0.0122 | 0.0113
0.0250 0.0237 | 0.0112 | 0.0117
0.0253 0.0255 | 0.0128 | 0.0119
0.0191 0.0207 | 0.0135 | 0.0139
0.0186 0.0196 | 0.0150 | 0.0142
0.0200 0.0219 | 0.0142 | 0.0140
0.0272 0.0245 | 0.0119 | 0.0122
0.0212 0.0221 | 0.0110 | 0.0109
0.0188 0.0188 | 0.0112 | 0.0114
0.0244 0.0249 | 0.0128 | 0.0130
0.0269 0.0269 | 0.0116 | 0.0110

TABLE |

SQUARED ERROR VALUES FOR COMPLIANCE OF SAMPLES
WITH LINEAR PRIOR INFORMATION Q(A) = b. SAMPLE
TOPOLOGY ERRORYAVG) AVERAGED OVER THE500
SAMPLES PRODUCED FOR EACH OF THE THIRTY GRAPHS IN
THE TWO SIMULATION CASES(100%COVERAGE AND 75%
COVERAGE) ARE GIVEN ALONG WITH THE THEORETICAL
EXPECTED VALUE OF THE ERROR[EXP). ONCE THE
ELEMENTS OF A ARE ORGANIZED IN THE VECTORa, THE
NORMALIZED AVERAGE SAMPLE ERROR(AVG) IS SIMPLY
(TGP 37 o |QA™ — bl|” FOR THEM'™ SAMPLE &™
PRODUCED BY THESDPROUNDING METHOD. THE
NORMALIZED EXPECTED ERROR(EXP)
m]ﬂ [lQa — b||*] As DERIVED IN EQ. (17)1s
ALSO GIVEN. NOTE THAT THE BOUND IN EQ. (23) ASSURES
(EXP) NEVER EXCEEDS] — « = 0.12. WE SEE ALSO THAT
THE GRAPHS WITH75% SENSOR COVERAGE TYPICALLY
HAVE LOWER SQUARED ERROR VALUES

future work on this problem.

It is possible to extend our algorithm for
source/destination estimation to the cases of noisy
sensors and sensor excitation due to multiple
transmissions without much trouble. Consider first
when the sensors are noisy: then the observed set of
activated sensorg may not match the true set of sensors
7 passed by a particular transmission. Suppose that
each sensoty € I has an associated miss probability
am(y) = P(y ¢ y|y € §) and false alarm probability
af(y) = P(y € ylv ¢ §). The probing mechanism then
repeats the data transmission fremto 65 N times for
eachk. These N measurements are used to construct
a maximum likelihood estimatgj, of each pathg
according to the following model. Along the lines of
a generalized likelihood approach, the measurement
mechanism passes along the maximum likelihood path
estimates for eachy, for use in approximating the
endpoint posterior. Note that we will likely have to
settle for NV = 1 for passive measurements.

Define the path indicator vectar whose elements
are given byv(j) = I,(vy;) for all j = 1,2,...|T
wherel, : A — {0,1} is the usual indicator func-
tion. If we assume sensor errors are independent across
paths and measurements, then the joint probability mass
function of the N observed path vectors for a given
source/destination pair; is

P(Vl,ug, ...UN|P) =
TTo T () E=20070) 6, () DG
as(y )Vk(])(l V(]))ﬁ (v )(1 ve(9))(1=2(5))

(32)
where S, (v) = 1 — o (y) and B¢ (y) = 1 — ay(y). If
we define the likelihood functiof.(7) as the logarithm
of the expression in Eqg. (32), then it may be written
explicitly as

L(v) =
S (N log By (1) + i, ve () log 5509 ) +
E\FI Nlog am(%) + Zk L k() log 52((1% ()
(33)
whereae (v) = am (7)o () andBe(v) = B (7)Br (7)-

Since only the second term in Eg. (33) dependsvon
andi € {0, 1}/T1, the maximum likelihood path estimate
may be written quite compactly as

O, ('YJ )

€F|N10g

r—’H©>

D S0 k() log 242 > o}
(34)

As another extension, suppose that for passive mea-
surements the activated sensorgets due to transmis-
sions passed betweensource/destination pairs,; for
1=1,2,...,ninstead of just a single pair. The strategy
here is to introduce a random variablgfor each passive
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measurement that represents a partition of the activatsel/eral suspect paths might be selected for probing so
sensor sey;. into setsyy; for i =1,2,...,n, where the as to distinguish them more explicitly in the constraints.
sensors in each; are activated in response to a singl@he question of efficient online implementation naturally
transmission. We may then split the single measuremeanrises in this context. A forgetting factor could be used in
yi into n different passive measuremenys according conjunction with existing topology and ordering samples
to the value of the partition variablg, and proceed with so that an entirely new batch would not be required at

the previous theoretical development. In this case, tleach probing cycle.

endpoint posterior of Eq. (1) becomes

P(”LL]”JLCLK, Q(A) = b) =

Biprinn |5 Bty o Q(A) 3
where we must now also take the expectation ov
partition variablesyg,.x of all passive measurements.
The first step of the Monte Carlo sampling would then be
to draw a partition variable for each passive measurement
from some (presumably available) distributid®.(n).  [1]
Given the partition variable, appropriate orderings may
be drawn and so on as before. 2]

One can similarly account for the case of random

linear prior information@(A) = b. Suppose that instead 3
of being given a fixed operata@p and vectorb, we are
given a distribution on thes®(Q, b). This might occur, [4]
for example, when we know that the vertex degrees
follow a power-law distribution [22]— in which case a [5]
distribution onb is induced. We must now also take the
expectation ovef) andb, so that the endpoint posterior [6]
becomes

P('LLI;|£U1;K) =
Pyglug.pi,A) Py (ug)
> Plyglu,pp,A) Pr(u)

A Monte Carlo approximation of Eq. (36) would there-
fore require drawing) andb then proceeding as before. [g]
Unfortunately, a new SDP must be solved for evéry
and b in order to produce topology samples If the
SDP relaxation is not too large, this might be reasonable.
If the size is prohibitive, one might approximate the
expectation by selecting only a few of the most IikeI)Llo]
realizations of(Q,b) and solving the SDP for these.
The distributionP(Q, b) is then restricted to be nonzerol11]
only at elements of this preselected dictionary so that the
Monte Carlo simulation selects those only those values
for which we have already solved the SDP. [12]
An interesting direction for future work would be to
develop an adaptive probing scheme. It is obvious thag]
the quality of endpoint estimates for suspect transmis-
sions will depend on which endpoints were used in the
probing phase. The idea here is to use the approximgte]
endpoint posterior distributions to suggest additional
active measurements that should be made in order {g
improve the estimates. The diagram for such a system
is shown in Fig. 8. One can hypothesize criteria fo
determining the new probing pairs. For example, nod
that tend to have similar posterior probabilities over

(36)

Eapi.xc,Qb | xl:K}
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