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Abstract— We consider the problem of estimating the
endpoints (source and destination) of a transmission in a
network based on partial measurement of the transmission
path. Sensors placed at various points within the network
provide the basis for endpoint estimation by indicating
that a specific transmission has been intercepted at their
assigned locations. During a training phase, test transmis-
sions are made between various pairs of endpoints in the
network and the sensors they activate are noted. Sensor
activations corresponding to transmissions with unknown
endpoints are also observed in a monitoring phase. A
semidefinite programming relaxation is used in conjunction
with the measurements and linear prior information to
produce likely sample topologies given the data. These
samples are used to generate Monte Carlo approximations
of the posterior distributions of source/destination pairs for
measurements obtained in the monitoring phase. The poste-
riors allow for maximum a posteriori (MAP) estimation of
the endpoints along with computation of some resolution
measures. We illustrate the method using simulations of
random topologies.

Index Terms— Network tomography and surveillance,
detection and identification of anomalous events, channel
and network models, data acquisition and sensor models

I. I NTRODUCTION

We present a method to estimate the endpoints (source
and destination) of a data transmission in a network
whose logical topology is unknown. We assume there are
a number of asynchronous sensors placed on some subset
of elements (links or nodes) in a network. A sensor
is activated, and its activation recorded, whenever the
path of a data transmission is intercepted on the element
where the sensor is situated. The measurement apparatus
is illustrated on a sample network in Fig. 1. If multiple
sensors are activated by a single transmission, they may
not capable of providing the precise order in which they
were activated. In general, a probability distribution on
the possible orders of activationPk(ρ) is provided. For
example, a transmission with endpointsu1 = (σ1, δ1)
in Fig. 1 might activatey1 = {γ2, γ3}. The ordering
(γ2, γ3), corresponding toρ = 1, might have probability

P (1) = 3
4 , while the ordering(γ3, γ2), whereρ = 2,

has probabilityP (2) = 1
4 . Since the orderings are

defined over distinct sensor sets, we implicitly assume
the transmission does not cycle in its path–that is, a
particular sensor is activated at most once by a single
transmission. During a preliminary training phase, the
network is probed by transmitting data packets between
various pairs of probing sites{uk = (σk, δk)}Ko−1

k=1 , and
the sensors{yk}Ko−1

k=1 activated by each transmission are
recorded. A monitoring phase also occurs, whereby we
observe sensor activation sets{yk}K

k=Ko
for which the

endpoints are unknown.
The resulting data{xk}K

k=1 = {uk, yk}Ko−1
k=1 ∪

{yk}K
k=Ko

and ordering distributionsPk(ρ) for k =
1, 2, . . . ,K along with some prior information about the
network topology is processed by the system shown in
Fig. 2 to produce Monte Carlo estimates of the posterior
distributions of possible endpoints of those transmissions
observed in the monitoring phase. We allow prior infor-
mation of the formQ(Ā) = b on the logical ({0, 1})
adjacency matrixA describing connections among sen-
sors and probing sites.̄A is some subset of the elements
of A, Q is a linear operator, andb is a vector. Thus the
prior information is essentially a set of linear equalities
that the adjacency matrixA ought to satisfy. The linear
operatorQ can be expressed as an equivalent matrix if
the elements of̄A are organized in a vectora. The linear
prior information is then of the formQa = b. Given
arbitraryQ and b the computation of feasible solutions
to the linear equation is no small task, in fact it is
known to be an NP-Complete problem [1]. We consider
the associated minimum norm problemmin ‖Qa− b‖2Λ
wherea ∈ {0, 1}n and ‖·‖Λ is a quadratic norm with
respect to the positive definite matrixΛ. It is known that
combinatorial optimization problems of this type may
be successfully approximated by ’lifting’ them into a
higher dimensional matrix space whereXij = aiaj and
X ∈ {0, 1}n×n [2].

With the advent of polynomial time interior point
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Fig. 1. Diagram of the measurement apparatus on a sample network. Probing sites are sourcesΣ = {σ1, σ2} and destinations
∆ = {δ1, δ2}. A box on a link or node represents a sensor that indicates when a transmission path intercepts that link/node.
We seeγ1 andγ2 monitor nodes whileγ3, γ4, andγ5 monitor links.

Fig. 2. Diagram of the transmission endpoint estimation system, assuming sensors have already been deployed.

methods for linear programming that can be extended
to semidefinite programming [3], [4], it is convenient to
consider a semidefinite programming (SDP) relaxation of
the higher dimensional problem. Indeed, SDP relaxations
have proven to be powerful tools for approximating
hard combinatorial problems [5], [6], [7], [8]. The SDP,
however, is solved over a continuous domain so it is
necessary to retrieve a 0-1 solution from the possibly
fractional SDP solution. One possibility is a branch and
bound scheme whereby certain variables are fixed and
the SDP is repeated until a discrete solution is found
[1], [8]. The branch and bound algorithm can take an
exponential amount of time, depending on how tight the
desired bound is. A randomized rounding scheme was
developed in [6] for SDP relaxations of the maximum cut
(MAXCUT) and maximum 2-satisfiability (MAX2SAT)
problems. This scheme is shown to produce solutions
of expected value at least 0.878 times the optimal
value in [6]. We develop an SDP relaxation of the 0-
1 minimum norm problem and apply the randomized

rounding method in conjunction with samples from the
ordering distributions{ρm

1:K}M
m=1 to produce a num-

ber of network topology adjacency matrices{Am}M
m=1

that approximately satisfy the linear prior information
Q(Ā) = b. We derive an expression for the expected

value of the squared errorE
[
‖Qa− b‖2Λ

]
of samples

produced in this way. This expression depends on the
solution of the SDP relaxation, but an upper bound on
the error independent of the SDP solution is also given.

We wish to produce posterior distributions given
the data and prior information of the endpoints
of transmissions observed in the monitoring phase
P (uk̂|x1:K , Q(Ā) = b) for k̂ ≥ Ko. The network
topology and sensor ordering samples are used in con-
junction with prior distributions on the endpoints of
measurements made during the monitoring phasePk(u)
for k = Ko,Ko + 1, . . . ,K to compute Monte Carlo
approximations of the desired posterior distributions via
Bayes rule. Bayes formula for this problem essentially
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reduces to the expected value of a functional of the
topologyA and sensor orderingρ; our approximation of
the endpoint posterior thus becomes an average of the
values of this functional at each sample topologyAm

and ordering setρm
1:K . It is readily apparent that this

functional requires the conditionalsP (y|u, ρ,A)–these
path likelihood functions are the conditional probabilities
of a sensor activation sety given the endpointsu
and activation orderρ in a topologyA. We propose a
path likelihood model inspired by shortest path routing,
whereby the length of a path determines its probability.
With the endpoint posterior distribution in hand, we can
immediately give the MAP estimate ofuk̂ or an a pos-
teriori confidence region of probable source/destination
pairs.

The related area of network tomography has recently
been a subject of substantial research. It refers to the use
of traffic measurements over parts of a network to infer
characteristics of the complete network. Some character-
istics of interest include the following: source/destination
traffic rates [9], [10], link-level packet delay distributions
[11], [12], link loss [13], and link topology [14], [15].
For an overview of relevant tomography problems for the
Internet see [16]. In many applications, the tomography
problem is ill posed since data is insufficient to determine
a unique topology or delay distribution.

Our work is related to the internally sensed network
tomography application described in [17], [18]. These
works propose a methodology for estimating the topol-
ogy of a telephone network using the measurement
apparatus illustrated in Fig. 1. The data transmissions
are of course telephone calls and the asynchronous
sensors are located on trunk lines. A simple argument
in [18] demonstrates that the number of topologies
consistent with the data measured during the probing
phase{xk}Ko−1

k=1 is exponential in the number of sensors.
Indeed the problem is ill-posed as the data required to
provide a reasonable estimate of the topology will never
be available in practice. We sidestep the difficulties of
developing a single topology estimate by averaging over
many probable topologies in computing the endpoint
posterior distribution.

The solution approach we develop is very general,
and we suspect it might have application in all sorts
of networks: including telephone networks as described
in [17], the Internet, social networks (such as command
and control structures), or biological networks (such as
protein-protein interaction networks) [19], [20]. Since
we allow for sensor placement on arbitrary network
elements, the method is equally applicable to networks
where it may be more convenient to monitor nodes (as
in the Internet) or monitor links (as in the telephone net-
work of [17]). Also, the ordering distributions allow for
situations involving sensors ranging from asynchronous

to perfectly synchronized. At one extreme, the sensors
are exactly synchronized–in which case the distribution
Pk(ρ) reduces to a delta function with all mass con-
centrated on the known ordering of sensors. In a large
network with imperfect synchronization, a natural source
of such information would be the geographical locations
of the sensors–although we do not know the logical
topology of the network of interest, we do know geo-
graphically where the sensors were placed. For example,
if we had sensors scattered across a telephone network
that spanned the United States, any orderingρ that
implied an adjacency between a sensor in Los Angeles
and one in New York would be highly unlikely. When
the network of interest is the Internet with sensors placed
on routers, the ’traceroute’ command might be used to
obtain the ordering distributions. Suppose traceroute is
enabled on some routers and disabled on others; one
could then assign zero probability to all orderings of a
transmission that are not consistent with the traceroute
path. There is a tremendous amount of flexibility.

Although the monitored network topology is un-
known, the linear prior information permits inclusion of
reasonably available information relevant to the topol-
ogy. This is a generalization of the frequently used
vertex degree prior. Vertex degree priors are used quite
often due to the fact that many real world networks are
characterized by specific degree distributions [21]. For
example, studies have suggested a power-law distribution
describes vertex degrees in the Internet [22]. Such priors
have recently been applied to research involving models
of social and biological networks [19], [20], [23]. Since
the degree of a vertex is equal to the sum over the row
of the adjacency matrix describing connections to that
vertex, one can easily construct a linear operatorQ so
that Q(Ā) = b expresses the degree prior for a given
vector of vertex degreesb.

The approach described here might also find utility in
systems conveniently modelled by graphs, such as finite
state automata. The problem of machine identification
is a classic problem in the theory of automata testing
[24], [25]. Here, we are given a black box with an
automaton inside whose transition function is unknown.
Based on the response of the system to certain input
sequences, we wish to reconstruct the transition function.
The link to the network topology recovery aspect of our
problem is clear, since a graph provides a convenient
representation for the transition function of interest. The
probing sites chosen in the probing phase of our problem
is analogous to the input sequences to the black box
automaton. Similarly, link sensors correspond to events
in the automaton’s observable event set. An exhaustive
algorithm for solving this problem is given in [24] and
shown to have exponential run time. Our methods might
be adapted to provide a polynomial time approximation



4

algorithm. This would involve partitioning measurements
with cycles (whereby an observable event occurs more
than once in the same string) to satisfy the direct path
assumption and selecting a different conditional path
likelihood P (y|u, ρ,A) since the shortest path routing
model we suggest might not be appropriate.

The outline of this paper is as follows. We review
the problem, describe in detail each component of the
endpoint estimation system (Fig. 2), and analyze its
complexity in Section II. In Section III, we provide some
simulations of random graphs. In Section IV we con-
clude with some extensions of the method presented here
and give directions for future work utilizing feedback for
adaptive probing.

II. M ODEL AND THEORY FORSOURCE-DESTINATION

ESTIMATION

Let G(V,E, f) be a simple graph defined by the vertex
setV , edge setE, and incidence relationf : E → V ×V
giving the vertices connected by each edge. We allowG
to be either directed or undirected; however, it should
be known a priori which is the case. In our application,
E defines the set of links in the network topology,V
defines the routers or switches connected by these links,
andf determines the pair of routers/switches connected
by each link. The graphG is unknown to us.

Let Γ denote a set of sensors we place in the network.
Sensors are placed on some subset of graph elements;
that is sensors may be placed on vertices, edges, or both.
A sensor will indicate whenever a transmission through
the network passes the element it is monitoring. Probing
sites are selected from the vertex setV . The source
vertex setΣ ⊆ V is the set of vertices from which
transmissions may originate, and the destination vertex
set ∆ ⊆ V are those vertices at which transmissions
may terminate. A path between probing sitessk ∈ Σ
and dk ∈ ∆ is given by yk ⊆ Γ, where yk contains
the sensors activated by the transmission fromsk to
dk. Because the sensors are in general asynchronous,
the paths are unordered sets. However, along with each
yk, a discrete probability distributionPk(ρ) is given
on possible orderingsρ of the setyk. We assume a
transmission does not cycle in its path from source to
destination, so that only orderings of distinct elements
of yk are considered. It follows that ifyk has|yk| distinct
elements, thenPk(ρ) is defined over|yk|! different
orderings. Note that the case of perfectly synchronized
sensors is easily handled in this framework: simply take
Pk(ρ) = δ(ρ−ρk) whereρk is the known order in which
the sensorsyk were activated.

The purpose of our system is to estimate the source
and destinationuk̂ = (sk̂, dk̂) of an activated sensor set
yk̂ corresponding to a measurement whose endpoints are
unknown (i.e. passive measurement). In order to estimate

the endpoints of such a measurement, it is necessary to
have some idea of the logical topology of the network.
Instead of considering the logical adjacencies implied
by the actual networkG(V,E, f), we are concerned
with adjacency relationships among only those elements
(vertices and edges) that are either monitored with a
sensor or used as a probing site. For example, we
cannot hope to pinpoint the position of a linke in
the original network that is not monitored by a sensor.
We assume unmonitored elements are essentially ’short-
circuited’ in the original networkG. The idea here is to
assure two elements are logically adjacent even if they
are physically separated by an element (or subgraph of
elements) that is not monitored. The particular topology
we consider is thenGA(VA, EA) whereVA = Γ∪Σ∪∆
is the set of sensors and probing sites, andEA ⊆ VA×VA

describes the logical adjacencies among these elements.
GA may be undirected or directed depending upon the
nature of the networkG. For computational purposes, we
representGA by its adjacency matrixA whereAij = 1
if and only if (i, j) ∈ EA for i, j ∈ VA and Aij = 0
otherwise. An example logical topologyGA is given in
Fig. 3 for the monitored networkG in Fig. 1.

We assume independence of measurements (that is,
independence over the indexk) and utilize a Bayesian
framework to produce suitable approximations of the
endpoint posterior distribution:

P (uk̂|x1:K , Q(Ā) = b) =
EA,ρ1:K

[
P (yk̂|uk̂,ρk̂,A)Pk̂(uk̂)∑

u P (yk̂|u,ρk̂,A)Pk̂(u) | x1:K , Q(Ā) = b
]

(1)
We have available linear prior information on some of
the logical adjacency elements̄A ⊆ A of the form
Q(Ā) = b where Q is a linear operator and a prior
distribution on endpointsPk̂(u). It is assumed the end-
point pair of a passive measurement is independent of
the particular topologyA, in other words, the parties
communicating do not know the network topology either.
However, if there is no connection between a given
endpoint pairu in a topologyA, one would expect such a
pair to have probability zero; we shall use a model for the
term multiplyingPk̂(u) to ensure the product is zero in
this case. Herex1:K ≡ {xk}K

k=1 represents all measured
data (xk = (uk, yk) if the endpoints of measurementk,
uk, are known, otherwisexk = yk), andρk is the random
ordering of the sensors activated in measurementyk.
The conditional expectation is therefore taken over all
logical adjacency matricesA and sensor orderings for all
measurementsρ1:K . We introduce a shortest path routing
model for the conditional path probabilitiesP (y|u, ρ,A).
The conditional expectation in Eq. (1) is approximated in
a Monte Carlo fashion by summing over the argument
evaluated at a number of adjacency matrix and sensor
ordering samples. The sensor orderingsρ1:K are drawn
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Fig. 3. Example logical topologyGA(VA, EA) for the monitored networkG in Fig. 1. The vertex set ofGA consists of sensors
Γ = {γi}5

i=1 and probing sitesΣ = {σ1, σ2}, ∆ = {δ1, δ2}, so thatVA = Γ ∪ Σ ∪ ∆. The edges ofGA summarize logical
adjacencies among sensors and probing sites with any intervening unmonitored elements short-circuited.

independently from available distributionsPk(ρ) for
k = 1, 2, . . . ,K. These are used in conjunction with
the solution to a semidefinite programming relaxation
that incorporates the prior informationQ(Ā) = b to
produce adjacency matrix samplesA that are likely
given both the data and the prior information. With
the approximate endpoint posterior distribution in hand,
we can provide MAP estimates of the endpoints of
the passive measurement and compute appropriate error
measures.

In the following, we first elaborate on probing
of the network and the characterization of measure-
ments obtained. Then we describe the distribution
P (A, ρ1:K |x1:K , Q(Ā) = b) and how it may be effi-
ciently sampled using the given ordering distributions
and a semidefinite programming relaxation. Next we
discuss how the samples are used to approximate the
endpoint posterior and produce MAP estimates. Finally,
we analyze the complexity of our algorithm.

A. Probing the Network and Taking Measurements

The set of all available measurements{xk}K
k=1 is

partitioned into two disjoint sets. The measurements for
k = 1, 2, . . . Ko − 1 correspond to a training phase for
the probing sitesΣ, ∆. For eachk < Ko, we select
a probing pairuk ∈ Σ × ∆ and pass a transmission
between this pair to observe the sensorsyk activated.
The measurement data therefore consists of both the
endpoints and the activated sensor setxk = (uk, yk) for
k < Ko. Such a measurement is referred to as anactive
measurement. The remaining measurements provide only
an activated sensor set:xk = yk for Ko ≤ k ≤ K.
These are referred to aspassivemeasurements since the

endpoints of the associated transmission are unknown. It
is assumed, however, that the endpoints are realizations
of a random probing site pair described by the known
distribution Pk(u) defined onΣ × ∆. We desire to
estimate the particular probing site pair between which
a transmission was passed resulting in a given passive
measurement. Along with the unordered set of activated
sensorsyk we are given a distribution on the order
in which the sensors were activatedPk(ρ) for every
k = 1, 2, . . . K (both active and passive measurements).
The distributions on ordering come from some absolute
prior information we have about our sensors–such as
geography or ’traceroute’ paths as discussed earlier.
We will make some independence assumptions about
ordering in the following section.

B. Generating Topology and Sensor Ordering Samples

In order to produce a Monte Carlo estimate of the
conditional expectation in Eq. (1), we need to specify and
sample from the distributionP (A, ρ1:K |x1:K , Q(Ā) =
b). We first expand this distribution as

P (A, ρ1:K |x1:K , Q(Ā) = b) =
P (A|x1:K , ρ1:K , Q(Ā) = b)P (ρ1:K |Q(Ā) = b) (2)

where the ordering variablesρ1:K are assumed indepen-
dent of the particular configurations of sensors activated
x1:K . As described previously, the distributions over
orderings are determined by some relatively certain prior
information, such as geography. The activated sensor
set simply serves to specify the domain of the ordering
distribution; for example, if there are three elements in
yk, then the distributionPk(ρ) is defined over3! = 6
distinct orderings.
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An additional independence assumption is made to
simplify the expression in Eq. (2): specifically, we as-
sumeP (ρ1:K |Q(Ā) = b) = P (ρ1:K). This is similar to
a factorization assumption made in variational EM algo-
rithms [26].Ā can be treated as a parameter set andρ1:K

can be treated as hidden variables. The assumption in
variational EM is to consider a factored distribution over
these random variablesq(Ā, ρ1:K) = qA(Ā)qρ(ρ1:K) –
an independence assumption. We will further justify this
approximation later by performing some pre-processing
on the setĀ to remove adjacency elements that are likely
to be dependent on some ordering variableρk. Com-
bining this with the independence over measurements
assumption, we then have

P (A, ρ1:K |x1:K , Q(Ā) = b) =
P (A|x1:K , ρ1:K , Q(Ā) = b)

∏K
k=1 Pk(ρk)

(3)

wherePk(ρk) are known distributions over the ordering
of sensors in measurementk. The factored form of the
distribution in Eq. (3) suggests the first thing we should
do in generating our samples is to select orderingsρk

independently from the distributionsPk for eachk =
1, 2, . . . ,K. This is a simple matter since eachPk is
a discrete distribution defined over a finite number of
orderings.

Consider now what a measurementxk equipped with
an orderingρk implies about the adjacency matrixA.
Let xkρk

denote the ordered measurement where, ifxk

is an active measurement, the source probing site is taken
as the first element followed by the orderingρk of the
activated sensors and the destination probing site is taken
as the last element. Ifxk is a passive measurement,xkρk

is simply the orderingρk of the activated sensors. The
fact that the transmission passes from thelth element
of xkρk

, given byxl
kρk

, to xl+1
kρk

implies there must be
a logical connection betweenxl

kρk
and xl+1

kρk
. Thus if

we select an orderingρk for each measurement (i.e. for
k = 1, 2, . . . K), then every adjacency element in the set
Axρ must be1, whereAxρ is defined by

Axρ =
{

Aij | ∃k, l : (xl
kρk

, xl+1
kρk

) = (i, j)
}

(4)

Once we draw orderingsρ1:K as previously described,
the adjacency matrix elements inAxρ are immediately
fixed at unity by these. It remains, however, to select
the remaining adjacency elements. In drawing these,
we must account for the prior informationQ(Ā) = b.
Since Q is a linear operator, we may re-express this
information asQa = b whereQ is now understood to
be a matrix anda ∈ {0, 1}n is a vectorized version of
the adjacency elements̄A. For arbitraryQ, finding a 0-1
vector a that satisfies the equationQa = b is an NP-
Complete problem [27]. We will shortly discuss how
randomized rounding of a semidefinite programming

relaxation may be used to find approximate solutions.
The randomized rounding will induce a distribution on
P (A|x1:K , ρ1:K , Q(Ā) = b), the remaining factor in
Eq. (3). The induced distribution will have the desirable
property that it assigns high probability to samples that
approximately satisfy the linear constraintQ(Ā) = b.

Consider the matrix equationQa = b equivalent to the
linear prior informationQ(Ā) = b. Producing vectors
a that satisfy this equation amounts to finding several
solutions to the problem

find a ∈ {0, 1}n

such thatQa = b
(5)

Unfortunately, the problem in Eq. (5) is NP-complete
[27]. We consider an equivalent restatement of Eq. (5)

minimize (Qa− b)T Λ(Qa− b)
such thata ∈ {0, 1}n (6)

where Λ is a (symmetric) positive definite matrix that
may be chosen to emphasize the relative importance of
the different constraints. Obviously any optimal solution
of the problem in Eq. (6) with zero value solves the
feasibility problem in Eq. (5). The problem in Eq. (6)
is no easier than the original statement, however, it has
been shown that problems of this type (0-1 quadratic
programs) can be approximated quite well using a
semidefinite relaxation [7].

We now proceed to derive the SDP relaxation of Eq.
(6). Our relaxation is similar to the one derived in [6]
for MAX2SAT. First note that the optimization in Eq.
(6) is equivalent to

minimize aT Da− 2dT a
such thata ∈ {0, 1}n (7)

whereD = QT ΛQ andd = QT Λb. This is easily seen
by expanding the objective in Eq. (6) and dropping the
constant term. Now note thata2

i = ai sinceai ∈ {0, 1};
this fact this allows Eq. (7) to be re-expressed as

minimize
∑

i,j Dijaiaj − 2
∑

j dja
2
j

such thata ∈ {0, 1}n (8)

We now introduce variableswi ∈ {−1, 1} for eachai ∈
{0, 1} for i = 1 . . . n along with an additionalwn+1 ∈
{−1, 1} so that the change of variables is given by

ai =
1
2

(1 + wn+1wi) (9)

The identities in Eq. (10) follow from this change of
variables.

aiaj =
1
4 [(1 + wiwj) + (1 + wn+1wi) + (1 + wn+1wj)− 2]
−aiaj =
1
4 [(1− wiwj) + (1− wn+1wi) + (1− wn+1wj)− 4]

(10)
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If we introduce a negative sign in the objective, then the
optimization in Eq. (8) becomes

max 1
4

∑
i,j [Bij(1 + wiwj) + Cij(1− wiwj)− 4Dij ]

such thatw ∈ {−1, 1}n+1

(11)
wheree is a vector of ones and matricesB, C are given
by

B =
(

0 2d
2dT 0

)
C =

(
D De

(De)T 0

) (12)

In order to obtain a semidefinite program, define the
matrix W = wwT . It is simple to show thatW = wwT

for some vectorw if and only if W � 0 (i.e. W is
positive semidefinite) andrank(W ) = 1. We drop the
nonconvex rank-1 constraint to obtain the SDP relaxation

maximizeTr [(B − C)W ]

such that
diag(W ) = e
W � 0

(13)

where Tr[·] indicates the trace operation and the con-
straint diag(W ) = e is added to enforcew2

i = 1. The
equivalence of the objective functions in Eq. (13) and
Eq. (11) can be seen easily by replacingwiwj with Wij

and dropping constant terms. The SDP in Eq. (13) may
be solved in polynomial time using a primal-dual path
following algorithm [4]. The result of this optimization
W ∗ will in general be a non-integer symmetric posi-
tive semidefinite matrix. In [6], a randomized rounding
methodology is proposed to recover a -1,1 vectorw from
the SDP solutionW ∗. The strategy is to first perform
the Cholesky factorizationW ∗ = V T V . A random
hyperplane through the origin with normal vectorr is
then chosen by selectingr from the uniform distribution
on the surface of the unit hypersphereSn = {r ∈
Rn+1|rT r = 1}. The value ofwi is then determined by
whether the corresponding columnvi of V lies above
or below the hyperplane, i.e.wi = 1 if vT

i r ≥ 0 and
wi = −1 if vT

i r < 0. The ith element of the vectorized
adjacency samplêa is then given by

âi =

{
1 if sign(vT

i r) = sign(vT
n+1r)

0 if sign(vT
i r) 6= sign(vT

n+1r)
(14)

This result can be seen by applying the rounding method
and then using the change of variable formula given in
Eq. (9).

We now proceed to derive the mean squared error
E

[
‖Qâ− b‖2Λ

]
of the sample adjacency in Eq. (14) and

thereby quantify how close the samples produced in this
way come to satisfying the linear prior information on
average. First note that the rounding scheme used implies

the following identities.

E[1 + wiwj ] = 2P
(
sign(vT

i r) = sign(vT
j r)

)
E[1− wiwj ] = 2P

(
sign(vT

i r) 6= sign(vT
j r)

) (15)

where r is a random vector from the uniform dis-
tribution on Sn as previously defined. We may eval-
uate the probabilities in Eq. (15) quite easily via
the observation in [6]. Note that symmetry of the
distribution implies P

(
sign(vT

i r) 6= sign(vT
j r)

)
=

2P
(
vT

i r ≥ 0, vT
j r < 0

)
. And if θ = arccos(vT

i vj) is
the angle between the vectorsvi andvj then it follows
P

(
vT

i r ≥ 0, vT
j r < 0

)
= θ

2π since the distribution ofr
is uniform onSn. A similar argument applies to the case
of matching sign. The results are summarized below.

P
(
sign(vT

i r) = sign(vT
j r)

)
= 1− 1

π arccos(vT
i vj)

P
(
sign(vT

i r) 6= sign(vT
j r)

)
= 1

π arccos(vT
i vj)

(16)
If we define the matrixZ such thatZij = arccos(W ∗

ij)
whereW ∗ is the solution of the SDP relaxation in Eq.
(13) and note that the objective function in Eq. (11) is
exactly equal tobT Λb − ‖Qâ− b‖2Λ, then we may take
the expectation of the objective in Eq. (11) and apply
the identities in Eqs. (15) and (16) to obtain the mean
squared error as

E
[
‖Qâ− b‖2Λ

]
= ‖Qe− b‖2Λ −

1
2π

Tr [(C −B)Z]
(17)

wheree is a vector of ones.

We may obtain a bound on the expected value of the
squared error in Eq. (17) independent of the solution to
the SDP. As in [6], define the constantα

α = min
z∈[0,π]

2
π

z

1− cos z
(18)

From this definition ofα, the following identities follow
immediately

1
2α(1 + cos z) ≤ 1− 1

π z
1
2α(1− cos z) ≤ 1

π z
(19)

We take the expected value of the objective function in
Eq. (11) and apply the identities in Eq. (19) withZij =
arccos(W ∗

ij) to give

bT Λb− E
[
‖Qâ− b‖2Λ

]
≥

α 1
4

(∑
i,j [Bij + Cij ] + Tr [(B − C)W ∗]

)
− eT De

(20)

Now suppose the equationQa = b has at least one
feasible solutiona0. Let w0 be the corresponding -1,1
vector andW 0 = w0(w0)T . We then have

0 =
∥∥Qa0 − b

∥∥2

Λ
= eT De + bT Λb−

1
4

(∑
i,j [Bij + Cij ] + Tr

[
(B − C)W 0

]) (21)
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But sinceW ∗ solves the SDP in Eq. (13), it follows

Tr [(B − C)W ∗] ≥ Tr
[
(B − C)W 0

]
=

4eT De + 4bT Λb−
∑

i,j [Bij + Cij ]
(22)

We may now combine the inequalities in Eqs. (20) and
(22) and rearrange to obtain a bound on the expected
value of the squared error that is independent of the SDP
solution

E
[
‖Qâ− b‖2Λ

]
≤ (1− α)

(
||Qe||2Λ + ||b||2Λ

)
(23)

In practice, the bound in Eq. (23) tends to exceed the true
expected value in Eq. (17) by a large amount. However,
it is of theoretical interest since it gives a general idea
of how close samples produced in this way will come to
satisfying the linear prior information, given the matrix
Q and vectorb specifying this information. One must be
careful to apply this bound only when all elements ofQ
and b are nonnegative (such as when a vertex degree
prior is used). A similar bound can be derived when
some elements ofQ or b are negative, but we will omit
it here.

A naive procedure for generating the necessary sam-
ples using these procedures would be to first draw the
ordering variablesρ1:K then fix the adjacency elements
in Axρ corresponding to the draw. One could then reduce
the systemQ(Ā) = b by eliminating elements in̄A∩Axρ

and proceed to formulate and solve the SDP for use in
randomized rounding. This approach is computationally
prohibitive, however, because it requires solving a new
SDP for every single sample. Instead, we prefer to solve
a single SDP and use its solution to generate all samples.
The single SDP is derived from the systemQ(Ā) = b
where the eliminated variablesAij are those whose
probability of being in the setAxρ exceeds a threshold.
The probabilityP (Aij ∈ Axρ) is computed from the
ordering distributionsPk(ρ) as

P (Aij ∈ Axρ) = max
k

∑
ρ | ∃l : xl

kρ=i,xl+1
kρ =j

Pk(ρ) (24)

Note that by fixing the variables that are likely to be
in Axρ and eliminating them from the prior constraints
Q(Ā) = b, we are removing elements from̄A that
are likely to depend on ordering variablesρ. This sort
of decoupling serves to strengthen the validity of the
independence assumption made earlierP (ρ1:K |Q(Ā) =
b) = P (ρ1:K).

There may be adjacency matrix elements that are not
in Ā and have zero probability of being inAxρ. Define
Ao ≡ {Aij | Aij /∈ Ā, P (Aij ∈ Axρ) = 0}; Ao then
denotes the adjacency matrix elements that we have no
information about. We adopt the principle of parsimony
and assume all elements inAo are zero. A summary
of our procedure for generatingM sample adjacency

matrices and orderings follows.
• ComputeP (Aij ∈ Axρ) for all Aij ∈ Ā as in Eq.

(24).
• Eliminate {Aij | P (Aij ∈ Axρ) ≥ δ} from Ā and

adjust the systemQ(Ā) = b with these variables
fixed at 1.

• Solve the SDP corresponding toQ(Ā) = b for the
optimumW ∗.

• Compute and store the Cholesky factorV of the
SDP solutionW ∗.

• For m = 1, 2, . . . M

– Draw ρk from Pk(ρ) for k = 1, 2, . . . ,K.
– DetermineAxρ as in Eq. (4) and setAij = 1

for all Aij ∈ Axρ.
– Draw r from the uniform distribution onSn.
– Take inner products of the Cholesky factors

with r to determineAij /∈ Axρ that are
organized in the vectora as shown in Eq. (14).

– Set all remaining adjacency elements to 0.
We may now write down the conditional distribution

P (A|x1:K , ρ1:K , Q(Ā) = b) from which the SDP round-
ing method is sampling. First define the setH(Aij) as

H(Aij) ={
{r ∈ Sn | sign(vT

ijr) = sign(vT
n+1r)} if Aij = 1

{r ∈ Sn | sign(vT
ijr) 6= sign(vT

n+1r)} if Aij = 0
(25)

where Sn is the surface of the unit hypersphere and
vij is the appropriate column of the Cholesky factor
V corresponding to the variableAij as defined earlier.
Since the only random elements ofA given x1:K , ρ1:K

and Q(Ā) = b are those inĀ − Axρ, the desired
conditional distribution is given by

P (A|x1:K , ρ1:K , Q(Ā) = b) =
V ol

(⋂
Aij∈Ā−Axρ H(Aij)

)
V ol(Sn)

(26)
The expression in Eq. (26) is quite complicated since
the numerator is an integral over a strange set. This is
irrelevant, however, since we do not need to evaluate it.
The crucial point is that samples from this distribution
will approximately satisfy the prior informationQ(Ā) =
b. Indeed, one may use the Markov inequality along with
either the exact mean squared error in Eq. (17) or the
bound in Eq. (23) to determine an upper bound on the
probability that the squared error of a sample from this
distribution will exceed any given tolerance.

C. Approximating the Endpoint Posterior

We use the topology and sensor ordering samples
obtained in the previous section to derive an approximate
endpoint posterior distribution of a passive measurement
indexed byk̂ as given in Eq. (1). If{Am}M

m=1 are the
topology samples and{ρm

1:K}M
m=1 are the sensor order-

ing samples (for each measurement), then the strong law
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of large numbers suggests a Monte Carlo estimate of the
conditional expectation given by

P̂ (uk̂|x1:K , Q(Ā) = b) =
1
κ

∑M
m=1

P (yk̂|uk̂,ρm
k̂

,Am)Pk̂(uk̂)∑
u P (yk̂|u,ρm

k̂
,Am)Pk̂(u)

(27)

whereκ is a normalization constant inserted to ensure the
total mass of the approximate posterior is unity. Since we
are given a distribution on the endpoints of the passive
measurementPk̂(u), we need only specify a model for
the conditional path probabilityP (y|u, ρ,A) in order
to approximate the posterior as in Eq. (27). Routing
mechanisms and traffic data might figure prominently
into such a model. We propose a simple model whereby
the length of a path determines its probability (as in
shortest path routing). If|yρ| denotes the length of the
ordered pathyρ, andyu,A

ρ denotes the shortest ordered
path between endpointsu in topology A, then the
conditional distribution is given by

P (y|u, ρ,A) =


θ if |yρ| = |yu,A

ρ | < ∞
1− θ if |yu,A

ρ | < |yρ| < ∞
0 if |yρ| = ∞

(28)

The model basically says that the shortest path between
endpointsu in topologyA is chosen with probabilityθ,
and all other valid paths (that is, paths of finite length)
have probability1 − θ. If a path does not connect the
endpointsu in the given topologyA, then naturally it
has zero probability. Note that for arbitraryθ, we need
to run Dijkstra’s algorithm (or some other shortest path
routing algorithm) for each topology sampleAm in order
to compute the conditional path probability in Eq. (28)
[1]. This is not necessary, however, in the case thatθ = 1

2
where all valid paths are equally likely.

We may give maximum a posteriori (MAP) estimates
of the endpointsuk̂ of a passive measurementyk̂ after
computing the posterior distribution estimate in Eq. (27).
Indeed, the MAP estimate is simply given by

ûk̂ = arg max
u

P̂ (u|x1:K , Q(Ā) = b) (29)

Recall that u ≡ (s, d), thus MAP estimates ofsk̂
or dk̂ individually may be obtained by maximizing
the appropriate marginal̂P (s|x1:K , Q(Ā) = b) or
P̂ (d|x1:K , Q(Ā) = b) respectively.

We use as an error measure the ratioΛu(k̂) below for
the estimated endpointŝuk̂.

Λu(k̂) = P̂ (ûk̂|x1:K ,Q(Ā)=b)

P̂ (ûk̂|x1:K ,Q(Ā)=b)+ max
u 6=û

k̂

P̂ (u|x1:K ,Q(Ā)=b)

(30)
It is also useful to compute the corresponding ratios
associated with the marginalized distributionsΛs(k̂) and
Λd(k̂), as it may be the case that either the source or
destination of a passive measurement is more accurately

determined individually than are both collectively. These
are defined exactly as in Eq. (30), exceptu is replaced
with s or d throughout (so that the appropriate marginal
distribution is considered). It is clear that the ratio in
Eq. (30) must lie in the interval[ 12 , 1]. Larger values of
this ratio in a sense indicates more ’confidence’ in the
MAP estimate since a value of 1 is achieved only when
all of the mass of the estimated posterior distribution is
concentrated at the MAP estimate.

D. Algorithm Complexity

We now analyze the complexity of the
source/destination estimation scheme developed
here. The two fundamental quantities that determine
the size of the problem are denoted byN and h; N is
the total number of sensors plus probing sites, so that
N = |Γ|+ |Σ∪∆|, while h is the maximum number of
activated sensors in any measurement, so that|yk| ≤ h
for all k = 1, 2, . . . ,K. The maximum number of hops
h may be a function ofN , depending upon the type of
network considered. For networks that obey thesmall
world effect, as many real world networks do,h will
remain approximately constant with increasingN [28],
[19]. The number of measurementsK and the number
of Monte Carlo samplesM also affect the complexity;
however we shall see the complexity dependence on
these is always linear.

First note that we must store the ordering distributions
Pk(ρ) for all measurements. Since each distribution
is defined overO(h!) orderings, this requiresO(Kh!)
space. The adjacency matrixA considers all logical
connections among sensors and probing sites, so that
A has O(N2) elements. In the worst case, the linear
prior informationQ(Ā) = b will constrain all elements
of this matrix so thatĀ = A. It will therefore take
O(KN2h!) time to computeP (Aij ∈ Axρ) for all
Aij ∈ Ā. Now in the worst case, thresholding these
probabilities will produce a negligible reduction in the
size of the systemQ(Ā) = b, so that we still have
to contend withO(N2) variables in solving the SDP
relaxation. Typically interior point methods are used
to solve SDP’s to withinε of the optimal solution.
These are based on Newton’s method; therefore at each
iteration it is necessary to solve a linear system of
equations for the Newton directions (O(n3) for a system
of sizen). An algorithm given in [29] is shown to take
O(| log ε|

√
n) iterations for a problem of sizen–this

performance is typical for all interior point algorithms.
Our problem has dimensionO(N2), thus solving the
SDP takesO((N2)3.5) or O(N7) time. A Cholesky
factorization is then performed on the SDP solution,
which takesO((N2)3) or O(N6) time.

After solving the SDP, theM topology and ordering
samples may be produced relatively quickly. For each
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sample, we need to draw an ordering for each of theK
measurements, thus requiringO(MK) time to produce
the ordering samples. Given theK orderings for a single
sample,Axρ may be generated inO(Kh) time. Finally,
we may draw the vectorr and take inner products
to determine the remaining elements of the topology
sample. Since the time required for each inner product
is linear, it takes a total ofO(MN2 + MKh) time to
produce theM topology samples.

The final step is to compute the Monte Carlo ap-
proximation of the endpoint posterior distribution of a
passive measurement. A quick inspection of Eq. (27)
reveals that we need to determine the conditional path
probabilities P (y|u, ρ,A) for every endpoint pairu–
there areO(N2) such pairs. Also, computing each path
probability for a given ordered pathyρ requires tracing
this path through the topologyA, which takesO(h) time.
Now, if θ 6= 1

2 we must takeO(MN3) time to run a
shortest path algorithm on each sample [1]. Therefore,
it takesO(MN2h + MN3) to produce the approximate
endpoint posterior forθ 6= 1

2 ; this reduces toO(MN2h)
for θ = 1

2 .
The factors that give some cause for concern in this

algorithm are theh! in considering all possible orderings
and theN7 in the SDP solution complexity. If we are
dealing with small world networks, thenh might be
around four or five so thath! is still manageable. And
if this is not the case, one would hope that the ordering
distributionsPk(ρ) are nonzero only over a reasonable
number of orderings since we need only considerρ
with Pk(ρ) > 0. In practice, the actual SDP complexity
is likely to be significantly less than the worst case
bound ofO(N7) after reducing the systemQ(Ā) = b,
especially if the original prior only constrains some small
subset of the adjacency elements. Our algorithm would
still benefit from speedy SDP algorithms as solving the
relaxation takes the most time in the worst case. A
parallel implementation of an interior point algorithm
for SDP’s might reduce the time requirements if multiple
processors are available [30].

III. S IMULATIONS

We performed some numerical simulations to demon-
strate the utility of the method described in this paper.
We generated undirected random graphs with 25 nodes
to serve as test networks. The number of edges in each
graph was fixed at 40 by randomly selecting 40 of the
possible 300 vertex pairs and connecting the selected
pairs by an edge. The adjacency matrix sparsity patterns
for three example graphs are shown in Fig. 4. We
randomly chose 12 of the 25 nodes to serve as probing
sites–this set was then partitioned in half so that both
the source setΣ and destination set∆ each had 6
distinct elements. Sensors were placed on links in the

network for two cases: 100% sensor coverage (in which
all 40 links were monitored by a sensor) and 75% sensor
coverage (in which 30 of the 40 links were selected at
random for hosting a sensor). In the 75% coverage case,
networks were generated in a rejection sampling manner
so that every measurement (whether passive or active)
activated at least one sensor.

In order to probe a network, we randomly selected 18
of the 36 distinct pairs inΣ ×∆ to serve as endpoints
for active measurements. This set of 18 endpoint pairs
is denotedL ⊂ Σ×∆; the remaining pairs are denoted
by Lc ≡ Σ ×∆ − L. Sensor activations in response to
transmissions between all pairs inΣ×∆ were observed
in the monitoring phase. All transmissions were routed
through the network using shortest path routing, and
activated sensor setsyk were observed. Thus for each
network we hadK = 54 data points:Ko−1 = 18 active
measurementsx1:18 ≡ (u1:18, y1:18) and 36 passive
measurementsx19:54 ≡ y19:54. For each data point (k =
1, 2, . . . K), a distribution on the order in which sensors
were activatedPk(ρ) was generated as follows: first the
true ordering of sensorsρk was noted, then noisen(ρ)
was drawn independently from theUniform[0, 0.2]
distribution forρ = 1, 2, . . . |yk|!, finally the distribution
Pk(ρ) was generated by normalizing the corrupted delta
function distribution as in Eq. (31).

Pk(ρ) =
δ(ρ− ρk) + n(ρ)∑|yk|!

ρ=1 δ(ρ− ρk) + n(ρ)
(31)

The linear prior information was generated from de-
gree information on the logical topologyA. Indeed ver-
tex degree information is a commonly used special case
of the more general linear prior specified byQ(Ā) = b
[20], [23]. The sensor degree, that is the number of
sensorsbi to which theith vertex in the logical topology
is adjacent, was known for allvi ∈ VA. In addition to
knowing the sensor degrees of vertices in the logical
topology GA, a random subset consisting of no more
than 60% of the sensors not adjacent to a given vertex
were also known. For theith vertex, theith row of the
operatorQi(Ā) therefore sums over the elements ofA
for which adjacency to vertexi is uncertain, and theith

element ofb, bi, is simply the known sensor degree of
vertexi. As an example, consider vertexγ5 of the logical
topology in Fig. 3. Vertexγ5 is adjacent to sensors
{γ2, γ4}, therefore its sensor degree is two. Since there
are two sensors not adjacent toγ5, b2∗60%c = 1 sensor,
sayγx, is selected at random from the set{γ1, γ3}. The
row of the priorQ(Ā) = b corresponding toγ5 is then
given by

∑
j∈Γ−γ5−γx

Aγ5j = 2.
Given the sensor degree prior information and the

ordering distributions, we eliminated those adjacency
elements whose probability of being in the setAxρ

exceeded12 from Ā, whereP (Aij ∈ Axρ) was computed
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A B C

Fig. 4. Example sparsity patterns for the adjacency matrices of three undirected random graphs with 25 nodes and 40 randomly
selected links. The method is illustrated by simulating on topologies of this type. 12 of the 25 nodes are selected as probing
sites: 6 of these are taken as sourcesΣ and 6 are taken as destinations∆. We assume in one case that sensors are placed on all
40 links (100% sensor coverage) and in another that sensors are placed on 30 randomly selected links (75% sensor coverage).
Active measurements consist of 18 of the 36 distinct pairs inΣ × ∆ randomly selected for use in the probing phase, denoted
L. The remaining 18 pairs are denotedLc. Passive measurements consist of sensor activations monitored between all pairs in
Σ×∆. Shortest path routing is used to determine the transmission path.

as in Eq. (24). The reduced systemQ(Ā) = b was then
used to formulate the SDP relaxation in Eq. (13) for
the minimum norm solution with the weight matrixΛ
taken as the identity. The relaxation was solved with a
predictor-corrector path following algorithm given in [4].
A publicly available C implementation of this algorithm
was used [31]. The SDP solution was used along with
the ordering distributionsPk(ρ) to produceM = 500
samples of measurement orderingsρ1:K and adjacency
matricesA for computing the Monte Carlo estimates of
the endpoint posteriors.

We assumed the endpoint priorsPk(u) were uniform
over Σ × ∆ for all 36 passive measurementsk =
19, 20, . . . , 54. Also, the parameterθ in the conditional
path probabilities of Eq. (28) was taken as1

2 so that
it was not necessary to run a shortest path routing
algorithm on every sample topology. The500 ordering
and topology samples were then used to compute the
approximate endpoint posteriors for all passive measure-
ments as given in Eq. (27). These were used to produce
joint MAP estimates of the transmission endpoints and
to compute the resolution measuresΛu(k̂). An example
endpoint posterior is given in Fig. 5, for which the
correct endpoint pair is source no. 6 and destination no.
3. It is clear that the MAP estimate will result in the
correct pair in this case. Also indicated in the Figure is
the second most likely pairu = (6, 5); this is used in
computing the resolution measureΛu as in Eq. (30)–
Λu(k̂) = 0.60 for this case. Marginal distributions of
the approximate posterior are given in Fig. 6. These
were used in individual MAP estimation of source and
destination. It is clear that the individual estimates will
match the joint estimate for this case; the resolution
measures were a bit lower though withΛs(k̂) = 0.58 and
Λd(k̂) = 0.59. This completes the simulation process for
a single graph.

We repeated the simulation procedure for 30 net-

works with 100% sensor coverage and 30 networks
with 75% sensor coverage. Table I demonstrates the
effectiveness of the SDP randomized rounding algo-
rithm for producing topology samples that approxi-
mately agree with the sensor degree prior information.
It lists the normalized squared topology sample er-
ror 1

||Qe||2+||b||2
1
M

∑
m ‖Qâm − b‖2 averaged over the

M = 500 samples along with the normalized expected
squared error 1

||Qe||2+||b||2 E
[
‖Qâ− b‖2

]
as in Eq. (17)

for each graph. The bound derived in Eq. (23) assures the
expected squared error can never exceed1− α ≈ 0.12.
We see that graphs with 75% sensor coverage tend to
have lower error values.

Plots of proportion of passive measurement endpoint
estimates correct for a given set (L or Lc) versus
the resolution ratio from Eq. (30) averaged over the
corresponding set are given in Fig. 7. Plots are shown for
joint estimates ofuk̂ via the joint distribution as well as
for individual estimates ofsk̂ anddk̂ from the marginals.
We observe an approximately linear relation between the
proportion of correct estimates and the appropriateΛ
ratio when theΛ ratio exceeds 0.68. In this regime, the
Λ ratio might be used as a measure of confidence in the
endpoint estimates. Also note that transmissions in setL
tend to have higherΛ ratios (and are correct more often)
than those in setLc because it is the transmissions in
setL that are used in training the probing sites. We see
that marginalized MAP estimates are often better than
joint MAP estimates. Marginalization certainly blurs the
linear relation in the higher confidence regime. We also
observe some degradation in the quality of the estimates
when only 75% of the links are equipped with sensors;
this is to be expected though. Recall that these results are
obtained with completely random placement of sensors
and random choices for the(s, d) pairs to use in the
probing phase. These two factors will clearly affect
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A B

Fig. 5. Example endpoint posterior distribution̂P (uk̂|x1:K , Q(Ā) = b) for a passive measurementk̂ with endpointsu =
(s, d) = (6, 3). In plot A, the probabilities are grouped by source, with each of 6 bars in a group corresponding to a different
destination (noted above the individual bar). Plot B displays the same information except probabilities are grouped by destination
with source number noted above each individual bar. The largest and second largest values of the posterior are indicated–it is
these values that are used in computing the resolution ratioΛu of Eq. (30), calculated asΛu(k̂) = 0.60. It is clear in this
example that the endpoints of this transmission will be correctly estimated by the joint MAP estimate.

A B

Fig. 6. Marginal distributions (̂P (sk̂|x1:K , Q(Ā) = b) in A and P̂ (dk̂|x1:K , Q(Ā) = b) in B) associated with the example
endpoint posterior distribution shown in Fig. 5. The largest and second largest values of the marginal posteriors are indicated–it
is these values that are used in computing the resolution ratiosΛs andΛd, calculated asΛs(k̂) = 0.58 andΛd(k̂) = 0.59. It
is clear in this example that the endpoints of this transmission (source number 6 and destination number 3) will be correctly
estimated by the individual MAP estimates as well.

the estimates of passive measurement endpoints, and
therefore provide an interesting direction for future work.

IV. SUMMARY AND EXTENSIONS

In this paper, we have developed a methodology for
estimating the endpoints of a transmission in a network
using link-level transmission interceptions. The estima-
tion is done using Monte Carlo simulation in a Bayesian

framework. A semidefinite programming relaxation is
used to generate logical network topology samples that
approximately agree with linear prior information. It is
possible to envision applications of the method in all
sorts of networks, or systems with key features modeled
by networks. We have displayed simulations of its utility
on some random networks. We now discuss some exten-
sions of the theory presented here and possibilities for
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Λu, 100% coverage Λu, 75% coverage

Λs, 100% coverage Λs, 75% coverage

Λd, 100% coverage Λd, 75% coverage

Fig. 7. Plots of proportion of endpoint estimates correct for a given set (L or Lc) versus the resolution ratios of Eq. (30)
averaged over the corresponding set for the two simulation cases: 100% sensor coverage in the first column and 75% sensor
coverage in the second. Circles indicate averages over paths from setL and pentagrams indicate averages over paths from set
Lc. The first row (Λu) is for joint MAP estimation ofuk̂ = (sk̂, dk̂) from joint distribution P̂ (uk̂|x1:K , Q(Ā) = b). The
second row (Λs) is for individual estimation ofsk̂ from marginal distributionP̂ (sk̂|x1:K , Q(Ā) = b). The third row (Λd) is
for individual estimation ofdk̂ from marginal distributionP̂ (dk̂|x1:K , Q(Ā) = b). Some reference lines are also plotted. The
chance line for randomly selecting endpoints is drawn in each plot (1/36 for joint estimation and 1/6 for individual estimation).
Note that aboveΛ(k̂) = 0.68, an approximately linear behavior is observed. This behavior is somewhat washed out for the
marginalized estimates, however marginalizing tends to increase the percent of correct estimates. It is not surprising that there
appears to be some degradation in the quality of the estimates when only 75% of the links are equipped with sensors.
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100% Avg 100% Exp 75% Avg 75% Exp
0.0211 0.0208 0.0142 0.0145
0.0229 0.0214 0.0110 0.0113
0.0195 0.0200 0.0108 0.0111
0.0247 0.0241 0.0119 0.0117
0.0178 0.0170 0.0146 0.0146
0.0247 0.0257 0.0152 0.0156
0.0189 0.0200 0.0139 0.0133
0.0247 0.0236 0.0154 0.0155
0.0230 0.0221 0.0143 0.0138
0.0222 0.0221 0.0121 0.0123
0.0243 0.0244 0.0135 0.0141
0.0241 0.0229 0.0118 0.0117
0.0217 0.0209 0.0139 0.0136
0.0190 0.0182 0.0125 0.0125
0.0248 0.0235 0.0127 0.0125
0.0195 0.0198 0.0131 0.0140
0.0257 0.0261 0.0133 0.0138
0.0180 0.0182 0.0147 0.0143
0.0236 0.0237 0.0137 0.0131
0.0214 0.0213 0.0122 0.0113
0.0250 0.0237 0.0112 0.0117
0.0253 0.0255 0.0128 0.0119
0.0191 0.0207 0.0135 0.0139
0.0186 0.0196 0.0150 0.0142
0.0200 0.0219 0.0142 0.0140
0.0272 0.0245 0.0119 0.0122
0.0212 0.0221 0.0110 0.0109
0.0188 0.0188 0.0112 0.0114
0.0244 0.0249 0.0128 0.0130
0.0269 0.0269 0.0116 0.0110

TABLE I

SQUARED ERROR VALUES FOR COMPLIANCE OF SAMPLES

WITH LINEAR PRIOR INFORMATION Q(Ā) = b. SAMPLE

TOPOLOGY ERRORS(AVG) AVERAGED OVER THE500
SAMPLES PRODUCED FOR EACH OF THE THIRTY GRAPHS IN

THE TWO SIMULATION CASES(100%COVERAGE AND 75%
COVERAGE) ARE GIVEN ALONG WITH THE THEORETICAL

EXPECTED VALUE OF THE ERROR(EXP). ONCE THE

ELEMENTS OFĀ ARE ORGANIZED IN THE VECTORa, THE

NORMALIZED AVERAGE SAMPLE ERROR(AVG) IS SIMPLY
1

||Qe||2+||b||2
1
M

∑
m ‖Qâm − b‖2

FOR THEmth SAMPLE âm

PRODUCED BY THESDPROUNDING METHOD. THE

NORMALIZED EXPECTED ERROR(EXP)
1

||Qe||2+||b||2 E
[
‖Qâ− b‖2]

AS DERIVED IN EQ. (17) IS

ALSO GIVEN. NOTE THAT THE BOUND IN EQ. (23) ASSURES

(EXP) NEVER EXCEEDS1− α ≈ 0.12. WE SEE ALSO THAT

THE GRAPHS WITH75% SENSOR COVERAGE TYPICALLY

HAVE LOWER SQUARED ERROR VALUES.

future work on this problem.

It is possible to extend our algorithm for
source/destination estimation to the cases of noisy
sensors and sensor excitation due to multiple
transmissions without much trouble. Consider first
when the sensors are noisy: then the observed set of
activated sensorsy may not match the true set of sensors
ỹ passed by a particular transmission. Suppose that
each sensorγ ∈ Γ has an associated miss probability
αm(γ) = P (γ /∈ y|γ ∈ ỹ) and false alarm probability
αf (γ) = P (γ ∈ y|γ /∈ ỹ). The probing mechanism then
repeats the data transmission fromσk to δk N times for
eachk. TheseN measurements are used to construct
a maximum likelihood estimatêyk of each pathỹk

according to the following model. Along the lines of
a generalized likelihood approach, the measurement
mechanism passes along the maximum likelihood path
estimates for each̃yk for use in approximating the
endpoint posterior. Note that we will likely have to
settle forN = 1 for passive measurements.

Define the path indicator vectorν whose elements
are given byν(j) = Iy(γj) for all j = 1, 2, . . . |Γ|
where IA : A → {0, 1} is the usual indicator func-
tion. If we assume sensor errors are independent across
paths and measurements, then the joint probability mass
function of the N observed path vectors for a given
source/destination pairνi is

P (ν1, ν2, . . . νN |ν̃) =∏N
k=1

∏|Γ|
j=1 αm(γj)(1−νk(j))ν̃(j)βm(γj)νk(j)ν̃(j)

αf (γj)νk(j)(1−ν̃(j))βf (γj)(1−νk(j))(1−ν̃(j))

(32)
whereβm(γ) ≡ 1− αm(γ) andβf (γ) ≡ 1− αf (γ). If
we define the likelihood functionL(ν̃) as the logarithm
of the expression in Eq. (32), then it may be written
explicitly as

L(ν̃) =∑|Γ|
j=1

(
N log βf (γj) +

∑N
k=1 νk(γj) log αf (γj)

βf (γj)

)
+∑|Γ|

j=1

(
N log αm(γj)

βf (γj)
+

∑N
k=1 νk(γj) log βe(γj)

αe(γj)

)
ν̃(γj)
(33)

whereαe(γ) ≡ αm(γ)αf (γ) andβe(γ) ≡ βm(γ)βf (γ).
Since only the second term in Eq. (33) depends onν̃
andν̃ ∈ {0, 1}|Γ|, the maximum likelihood path estimate
may be written quite compactly as

ŷ ={
γj ∈ Γ |N log αm(γj)

βf (γj)
+

∑N
k=1 νk(j) log βe(γj)

αe(γj)
≥ 0

}
(34)

As another extension, suppose that for passive mea-
surements the activated sensor setyk is due to transmis-
sions passed betweenn source/destination pairsuki for
i = 1, 2, . . . , n instead of just a single pair. The strategy
here is to introduce a random variableηk for each passive
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measurement that represents a partition of the activated
sensor setyk into setsyki for i = 1, 2, . . . , n, where the
sensors in eachyki are activated in response to a single
transmission. We may then split the single measurement
yk into n different passive measurementsyki according
to the value of the partition variableηk and proceed with
the previous theoretical development. In this case, the
endpoint posterior of Eq. (1) becomes

P (uk̂|x1:K , Q(Ā) = b) =
EA,ρ1:K ,ηKo:K

[
P (yk̂|uk̂,ρk̂,A)Pk̂(uk̂)∑

u P (yk̂|u,ρk̂,A)Pk̂(u) |x1:K , Q(Ā) = b
]

(35)
where we must now also take the expectation over
partition variablesηKo:K of all passive measurements.
The first step of the Monte Carlo sampling would then be
to draw a partition variable for each passive measurement
from some (presumably available) distributionPk(η).
Given the partition variable, appropriate orderings may
be drawn and so on as before.

One can similarly account for the case of random
linear prior informationQ(Ā) = b. Suppose that instead
of being given a fixed operatorQ and vectorb, we are
given a distribution on theseP (Q, b). This might occur,
for example, when we know that the vertex degrees
follow a power-law distribution [22]– in which case a
distribution onb is induced. We must now also take the
expectation overQ andb, so that the endpoint posterior
becomes

P (uk̂|x1:K) =
EA,ρ1:K ,Q,b

[
P (yk̂|uk̂,ρk̂,A)Pk̂(uk̂)∑

u P (yk̂|u,ρk̂,A)Pk̂(u) | x1:K

] (36)

A Monte Carlo approximation of Eq. (36) would there-
fore require drawingQ andb then proceeding as before.
Unfortunately, a new SDP must be solved for everyQ
and b in order to produce topology samplesA. If the
SDP relaxation is not too large, this might be reasonable.
If the size is prohibitive, one might approximate the
expectation by selecting only a few of the most likely
realizations of(Q, b) and solving the SDP for these.
The distributionP (Q, b) is then restricted to be nonzero
only at elements of this preselected dictionary so that the
Monte Carlo simulation selects those only those values
for which we have already solved the SDP.

An interesting direction for future work would be to
develop an adaptive probing scheme. It is obvious that
the quality of endpoint estimates for suspect transmis-
sions will depend on which endpoints were used in the
probing phase. The idea here is to use the approximate
endpoint posterior distributions to suggest additional
active measurements that should be made in order to
improve the estimates. The diagram for such a system
is shown in Fig. 8. One can hypothesize criteria for
determining the new probing pairs. For example, nodes
that tend to have similar posterior probabilities over

several suspect paths might be selected for probing so
as to distinguish them more explicitly in the constraints.
The question of efficient online implementation naturally
arises in this context. A forgetting factor could be used in
conjunction with existing topology and ordering samples
so that an entirely new batch would not be required at
each probing cycle.
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