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Abstract

Self-configuration in wireless sensor networks is a general class of estimation problems which

we study via the Cramér-Rao bound (CRB). Specifically, we consider sensor location estimation

when sensors measure received signal strength (RSS) or time-of-arrival (TOA) between them-

selves and neighboring sensors. A small fraction of sensors in the network have known location

while the remaining locations must be estimated. We derive CRBs and maximum-likelihood

estimators (MLEs) under Gaussian and log-normal models for the TOA and RSS measurements,

respectively. An extensive TOA and RSS measurement campaign in an indoor office area il-

lustrates MLE performance. Finally, relative location estimation algorithms are implemented

in a wireless sensor network testbed and deployed in indoor and outdoor environments. The

measurements and testbed experiments demonstrate 1 m RMS location errors using TOA, and

1 m to 2 m RMS location errors using RSS.

I. Introduction

We consider location estimation in networks in which a small proportion of devices, called

reference devices, have a priori information about their coordinates. All devices, regardless of

their absolute coordinate knowledge, estimate the range between themselves and their neighbor-

ing devices. Such location estimation is called ‘relative location’ because the range estimates

collected are predominantly between pairs of devices of which neither has absolute coordinate

knowledge. These devices without a priori information we call blindfolded devices. In cellular

location estimation [1][2][3] and local positioning systems (LPS) [4][5], location estimates are

made using only ranges between a blindfolded device and reference devices. Relative location

estimation requires simultaneous estimation of multiple device coordinates. Greater location es-

timation accuracy can be achieved as devices are added into the network, even when new devices

have no a priori coordinate information and range to just a few neighbors.

Emerging applications for wireless sensor networks will depend on automatic and accurate

location of thousands of sensors. In environmental sensing applications such as water qual-

ity monitoring, precision agriculture, and indoor air quality monitoring, “sensing data without

knowing the sensor location is meaningless”[6]. In addition, by helping reduce configuration

requirements and device cost, relative location estimation may enable applications such as inven-

tory management [7], intrusion detection [8], traffic monitoring, and locating emergency workers

in buildings.
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To design a relative location system that meets the needs of these applications, several capa-

bilities are necessary. The system requires a network of devices capable of peer-to-peer range

measurement, an ad-hoc networking protocol, and a distributed or centralized location estima-

tion algorithm. For range measurement, using received signal strength (RSS) is attractive from

the point of view of device complexity and cost, but is traditionally seen as a coarse measure of

range. Time-of-arrival (TOA) range measurement can be implemented using inquiry-response

protocols [9][7]. In this article we will show that both RSS and TOA measurements can lead to

accurate location estimates in dense sensor networks.

The recent literature has reflected interest in location estimation algorithms for wireless sensor

networks [8, 10-16]. Distributed location algorithms offer the promise of solving multi-parameter

optimization problems even with constrained resources at each sensor [10]. Devices can begin

with local coordinate systems [11] and then successively refine their location estimates [12][13].

Based on the shortest path from a device to distant reference devices, ranges can be estimated

and then used to triangulate [14]. Distributed algorithms must be carefully implemented to

ensure convergence and to avoid ’error accumulation’, in which errors propagate serially in the

network. Centralized algorithms can be implemented when the application permits deployment

of a central processor to perform location estimation. In [15], device locations are resolved by

convex optimization. Both [8] and [16] provide maximum likelihood estimators (MLEs) for sensor

location estimation, when observations are angle-of-arrival and TOA [8] and when observations

are RSS [16].

In this article, we mention only briefly particular location estimation algorithms. Instead, we

focus on the accuracy possible using any unbiased relative location estimator. The radio channel

is notorious for its impairments [17][18], thus sensor location accuracy is limited. The Cramér-

Rao bounds (CRBs) presented in this article quantify these limits and allow determination if the

accuracies necessary for particular applications are possible.

We begin in Section II by considering CRBs for network self-calibration estimators. Next,

we state the relative location estimation problem and derive CRBs and MLEs in Section III. In

Section IV, measurements of TOA and RSS are used to illustrate estimator performance. Finally,

real-time operation of relative location is demonstrated in Section V. Photos of the experiments

are included in an extended electronic version of this article [19].
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II. Network Estimation Bounds

In network self-calibration problems parameters of all devices in a network must be determined.

Information comes both from measurements made between pairs of devices and a subset of

devices which know a priori their parameters. A network self-calibration estimator estimates the

unknown device parameters. For example, distributed clock synchronization in a network could

be achieved by devices observing pair-wise timing offsets when just a small number of devices

are synchronous.

Specifically, consider a vector of device parameters γ = [γ1, . . . , γn+m]. Each device has one

parameter. Devices 1 . . . n are blindfolded devices and devices n + 1 . . . n + m are reference

devices. The unknown parameter vector is θ = [θ1, . . . , θn] where θi = γi for i = 1 . . . n. Note

{γi, i = n+1 . . . n+m} are known. Devices i and j make pair-wise observations Xi,j with density

fX|(Xi,j |γi, γj). We allow for the case when devices make incomplete observations, since two

devices may be out of range or have limited link capacity. Let H(i) = {j : device j makes pair-

wise observations with device i}. By convention, a device cannot make a pair-wise observation

with itself, so that i /∈ H(i). By symmetry, if j ∈ H(i) then i ∈ H(j).

We assume by reciprocity that Xi,j = Xj,i, thus it is sufficient to consider only the lower

triangle of the observation matrix X = ((Xi,j))i,j when formulating the joint likelihood function.

In practice, if it is possible to make independent observations on the links from i to j, and from

j to i, then we assume that a scalar sufficient statistic can be found. Finally, we assume {Xi,j}
are statistically independent for j < i. This assumption can be somewhat oversimplified (see [20]

for the RSS case) but necessary for analysis. Using measurements like those in Sections IV and

V remains important to verify true performance. The log of the joint conditional pdf is

l(X|γ) =
m+n∑

i=1

∑
j∈H(i)

j<i

li,j , where li,j = log fX|(Xi,j |γi, γj). (1)

The CRB on the covariance matrix of any unbiased estimator θ̂ is cov(θ̂) ≥ F−1
� , where the

Fisher information matrix (FIM) F� is defined as,

F� = −E∇�(∇�l(X|γ))T =




f1,1 · · · f1,n

...
. . .

...

fn,1 · · · fn,n


 (2)

As derived in Appendix A, the diagonal elements fk,k of F� reduce to a single sum over H(k),

since there are card{H(k)} terms in (1) which depend on θk = γk. The off-diagonal elements
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can be further reduced: when k 6= l, there is at most one summand in (1) which is a function of

both k and l.

fk,l =




−∑

j∈H(k) E
[

∂2

∂θ2
k
lk,j

]
, k = l

−IH(k)(l)E
[

∂2

∂θk∂θl
lk,l

]
, k 6= l

(3)

where IH(k)(l) is an indicator function, 1 if l ∈ H(k) or 0 otherwise.

A. Conditions for a decreasing CRB

Intuitively, as more devices are used for location estimation, the accuracy increases for all of

the devices in the network. For an n device network, there are O(n) parameters, but O(n2)

variables {Xi,j} used for their estimation. The analysis of this section gives sufficient conditions

to ensure the CRB decreases as devices are added to the network. Consider a network of n

blindfolded devices and m reference devices. Now consider adding one additional blindfolded

device. For the n and (n + 1) blindfolded device cases, let F and G be the FIMs defined in (2),

respectively.

Theorem 1: Let [G−1]ul be the upper left n × n block of G−1. If for the (n + 1) blindfolded

device case (1) ∂
∂θn+1

lk,n+1 = ± ∂
∂θk

lk,n+1, ∀k = 1 . . . n and (2) device n + 1 makes pair-wise

observations between itself and at least one blindfolded device and at least two devices, in total;

then two properties hold: (1) F−1 − [G−1]ul ≥ 0 in the positive semi-definite sense, and (2)

tr F−1 > tr [G−1]ul.

Theorem 1 is proven in Appendix B. The Gaussian and log-normal distributions in Section

III meet condition (1). Property (1) implies that the additional unknown parameter introduced

by the (n + 1)st blindfolded device does not impair the estimation of the original n unknown

parameters. Furthermore, property (2) implies that the sum of the CRB variance bounds for

the n unknown parameters strictly decreases. Thus when a blindfolded device enters a network

and makes pair-wise observations with at least one blindfolded device and at least two devices

in total, the bound on the average variance of the original n coordinate estimates is reduced.

Note that properties (1) and (2) of Theorem 1 would be trivially satisfied by the data processing

theorem if adding a device into the network did not increase the number of parameters.

III. Relative Location Estimation

In this section, we specialize for device location estimation using pair-wise RSS or TOA mea-

surements in a wireless network. Specifically, consider a network of m reference and n blind-
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folded devices. The device parameters γ = [z1, . . . , zm+n] where, for a 2-D system, zi = [xi, yi]T

(although extension of these results to 3-D is also possible). The relative location problem

corresponds to the estimation of blindfolded device coordinates, θ = [θx,θy],

θx = [x1, . . . , xn], θy = [y1, . . . , yn] (4)

given the known reference coordinates [xn+1, . . . , xn+m, yn+1, . . . , yn+m]. In the TOA case, Xi,j =

Ti,j is the measured TOA between devices i and j in (s), and in the RSS case, Xi,j = Pi,j is

the measured received power at device i transmitted by device j (in mW). As discussed in

Section II, only a subset H(k) of devices make pair-wise measurements with device k, ((Ti,j))i,j

and ((Pi,j))i,j are taken to be upper triangular matrices, and these measurements are assumed

statistically independent.

In addition assume that Ti,j is Gaussian distributed with mean di,j/c and variance σ2
T , denoted:

Ti,j ∼ N (di,j/c, σ2
T ), di,j = d (zi, zj) = ‖zi − zj‖1/2 (5)

where c is the speed of propagation, and σ2
T is not a function of di,j . We assume that Pi,j is

log-normal, thus the random variable Pi,j(dBm) = 10 log10 Pi,j is Gaussian,

Pi,j(dBm) ∼ N (P̄i,j(dBm), σ2
dB) (6)

P̄ij(dBm) = P0(dBm)− 10np log10(di,j/d0)

where P̄i,j(dBm) is the mean power in decibel milliwatts, σ2
dB is the variance of the shadowing,

and P0(dBm) is the received power at a reference distance d0. Typically d0 = 1 meter, and P0

is calculated from the free space path loss formula [21]. The path loss exponent np is a function

of the environment. For particular environments, np may be known from prior measurements.

Although we derive the CRB assuming np is known, it could have been handled as an unknown

‘nuisance’ parameter.

Given (6), the density of Pi,j is,

fP |(Pi,j |γ) = 10/ log 10√
2πσ2

dB

1
Pi,j

exp

[
− b

8

(
log

d2
i,j

d̃2
i,j

)2
]

where b =
(

10np

σdB log 10

)2
, d̃i,j = d0

(
P0
Pi,j

) 1
np .

(7)

Here d̃i,j is the MLE of range di,j given received power Pi,j .

Neither Pi,j nor Ti,j are assumed to be ergodic random variables – in fact, obstructions in

the measured environment that cause shadowing and TOA errors do not usually change over
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time. The CRB gives a lower bound on the ensemble variance over different random shadowing

environments. If networks with the same relative device coordinates are implemented in many

different areas, the variances of any unbiased coordinate estimator will be lower bounded by the

CRB presented here.

The model assumptions made in this section will justified by experiment in Section IV. In

the next sections, we use these models to derive the CRB and MLE for both RSS and TOA

measurements.

A. One-Dimensional TOA Example

Consider using TOA measurements to locate devices that are limited to a one-dimensional

linear track. This could, for example, be applied to location estimation on an assembly line.

Consider n blindfolded devices and m reference devices with combined parameter vector γ =

[x1, . . . , xn+m]. The unknown coordinate vector is θ = [x1, . . . , xn]. Assume all devices make

pair-wise measurements with every other device, ie., H(k) = {1, . . . , k − 1, k + 1, . . . , m + n}.
The distribution of the observations is given by (5) with di,j = |xj − xi|. The second partials

of li,j are, ∂2

∂x2
j
li,j = − ∂2

∂xj∂xi
li,j = −1

σ2
T c2

, ∀i 6= j, which are constant with respect to the random

variables Ti,j . Thus the FIM, calculated using (3), is FT = [(n + m)In − 11T ]/(σT c)2, where In

is the n×n identity matrix, and 1 is a n by 1 vector of ones. For m ≥ 1, the matrix is invertible,

F−1
T =

σ2
T c2

m(n + m)
[
mIn + 11T

]
.

The CRB on the variance of an unbiased estimator for xi is,

σ2
xi
≥ σ2

T c2 m + 1
m(n + m)

. (8)

Expression (8) implies that the variance σ2
xi

is reduced more quickly by adding reference (m)

than blindfolded (n) devices. However, if m is large, the difference between increasing m and n

is negligible.

B. Two-Dimensional Location Estimation

In the remainder of this article, we focus on 2-D location estimation of (4). We denote by

FR and FT the FIMs for the RSS and TOA measurements, respectively. Each device has two

parameters, and we can see that the FIM will have a similar form to (2) if partitioned into blocks,

FR =


 FRxx FRxy

FT
Rxy FRyy


 , FT =


 FTxx FTxy

FT
Txy FTyy


 (9)
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where FRxx and FTxx are given by (2) using only the x parameter vector θ = θx, and FRyy and

FTyy are given by (2) using only θ = θy. The off-diagonal blocks FRxy and FTxy are similarly

derived. The elements of the sub-matrices of (9) are derived in Appendix C. For the case of RSS

measurements, the elements are given by,

[
FRxx

]
k,l

=





b
∑

i∈H(k)
(xk−xi)

2

[(xk−xi)2+(yk−yi)2]2
k = l

−b IH(k)(l)
(xk−xl)

2

[(xk−xl)2+(yk−yl)2]2
k 6= l

[
FRxy

]
k,l

=





b
∑

i∈H(k)
(xk−xi)(yk−yi)

[(xk−xi)2+(yk−yi)2]2
k = l

−b IH(k)(l)
(xk−xl)(yk−yl)

[(xk−xl)2+(yk−yl)2]2
k 6= l

[
FRyy

]
k,l

=





b
∑

i∈H(k)
(yk−yi)

2

[(xk−xi)2+(yk−yi)2]2
k = l

−b IH(k)(l)
(yk−yl)

2

[(xk−xl)2+(yk−yl)2]2
k 6= l

(10)

For the case of TOA measurements, the elements are,

[
FTxx

]
k,l

=





1
c2σ2

T

∑
i∈H(k)

(xk−xi)
2

(xk−xi)2+(yk−yi)2
k = l

− 1
c2σ2

T
IH(k)(l)

(xk−xl)
2

(xk−xl)2+(yk−yl)2
k 6= l

[
FTxy

]
k,l

=





1
c2σ2

T

∑
i∈H(k)

(xk−xi)(yk−yi)
(xk−xi)2+(yk−yi)2

k = l

− 1
c2σ2

T
IH(k)(l)

(xk−xl)(yk−yl)
(xk−xl)2+(yk−yl)2

k 6= l

[
FTyy

]
k,l

=





1
c2σ2

T

∑
i∈H(k)

(yk−yi)
2

(xk−xi)2+(yk−yi)2
k = l

− 1
c2σ2

T
IH(k)(l)

(yk−yl)
2

(xk−xl)2+(yk−yl)2
k 6= l

(11)

Note FR ∝ n2
p/σ2

dB while FT ∝ 1/(c2σ2
T ). These SNR quantities directly affect the CRB. For

TOA measurements, the dependence on the device coordinates is in unit-less distance ratios,

indicating that the size of the system can be scaled without changing the CRB as long as the

geometry is kept the same. However, in the case of RSS measurements, the variance bound scales

with the size of the system even if the geometry is kept the same due to the d4 terms in the

denominator of each term of FR. These scaling characteristics indicate that TOA measurements

would be preferred for sparse networks, but for sufficiently high density, RSS can perform as well

as TOA.

Let x̂i and ŷi be unbiased estimators of xi and yi. For the case of TOA measurements, the

trace of the covariance of the ith location estimate satisfies

σ2
i , tr {cov�(x̂i, ŷi)} = Var�(x̂i) + Var�(ŷi)

≥
([

FTxx − FTxyF−1
TyyF

T
Txy

]−1
)

i,i
+

([
FTyy − FTxyF−1

TxxF
T
Txy

]−1
)

i,i
(12)
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For RSS measurements, replace FT in (12) with FR. For the case of one blindfolded device, a

simple expression can be derived for both RSS and TOA measurements.

C. Single Unknown Location Example

Consider the network having blindfolded device 1 and reference devices 2 . . . m + 1. This

example, with a single pair of unknowns x1 and y1, is equivalent to many existing location

systems, and a bound for the variance of the location estimator has already been derived in for

TOA measurements [2]. In the case of RSS measurements,

σ2
1 , E

[
(x̂1 − x1)2 + (ŷ1 − y1)2

] ≥ FRxx + FRyy

FRxxFRyy − F 2
Rxy

,

from which we obtain

σ2
1 =

1
b

∑m+1
i=2 d−2

1,i

∑m
i=2

∑m+1
j=i+1

(
d1⊥i,jdi,j

d2
1,id

2
1,j

)2 ,

where the distance d1⊥i,j is the shortest distance from the point (x1, y1) to the line segment

connecting device i and device j. For the case of TOA measurements, we obtain

σ2
1 = c2σ2

T m




m∑

i=2

m+1∑

j=i+1

(
d1⊥i,jdi,j

d1,id1,j

)2


−1

(13)

The ratio d1⊥i,jdi,j/(d1,id1,j) has been called the geometric conditioning Ai,j of device 1 w.r.t. ref-

erences i and j [2]. Ai,j is the area of the parallelogram specified by the vectors from device 1 to

i and from device 1 to j, normalized by the lengths of the two vectors. The geometric dilution

of precision (GDOP), defined as σ1/(cσT ), is

GDOP =
√

m∑m
i=2

∑m+1
j=i+1A2

i,j

which matches the result in [2]. The CRBs are shown in Fig. 1 when there are four reference

devices located in the corners of a 1m by 1m square. The minimum of Fig. 1(a) is 0.27. Since

the CRB scales with size in the RSS case, the standard deviation of unbiased location estimates

in a traditional RSS system operating in a channel with σdB/np = 1.7 is limited to about 27%

of the distance between reference devices. This performance has prevented use of RSS in many

existing location systems and motivates having many blindfolded devices in the network. Note

in the TOA case, σ1 is proportional to cσT , thus cσT = 1 was chosen in Fig. 1(b).
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Fig. 1. σ1 (m) for the example system vs. the coordinates of the single blindfolded device, for (a) RSS with

σdB/n = 1.7, or (b) TOA with c σT = 1m.

D. Maximum Likelihood Relative Location Estimation

For general n and m, we calculate the MLE of θ. In the case of TOA measurements, the MLE

is

θ̂T = arg min
{zi}

m+n∑

i=1

∑
j∈H(i)

j<i

(c Ti,j − d(zi, zj))
2 , (14)

where zi = [xi, yi]T . The MLE for the RSS case is [16],

θ̂R̃ = arg min
{zi}

m+n∑

i=1

∑
j∈H(i)

j<i

(
ln

d̃2
i,j

d2(zi, zj)

)2

(15)

Unlike the MLE based on TOA measurements, the RSS MLE is readily shown to be biased.

Specifically, for a single reference and single blindfolded device, the range estimate between the
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two devices is d̃1,2. Using (7), the mean of d̃1,2 is given by

E[d̃1,2] = C d1,2, where C = exp

[
1
2

(
ln 10
10

σdB

np

)2
]

For typical channels [21], C ≈ 1.2, adding 20% bias to the range. Motivated by (16), a bias-

reduced MLE can be defined,

θ̂R = arg min
{zi}

m+n∑

i=1

∑
j∈H(i)

j<i

(
ln

d̃2
i,j/C2

d2(zi, zj)

)2

(16)

However, there remains residual bias. Consider m = 4 and n = 1. Place the reference devices

at the corners of a 1 m by 1 m square and the blindfolded device within the square, the same as

the case plotted in Fig. 1. We calculate via simulation [22] the bias gradient norm of x̂1 given

by (16) and display it in Fig. 2.

The gradient of the bias can be used in the uniform CRB to calculate the achievable variance

of the biased estimator [22] as compared to all other estimators with same or less bias gradi-

ent norm. Fig. 2 shows that the bias gradient is high (with norm ≈ 1) at the corners of the

square. Expression (16) shows that the MLE tries to force the ratio d̃2
1,j/(C2d2

1,j) close to 1. If

the blindfolded device is very close to one reference device and far away from the others, then

measurements from the other three reference devices provide relatively little information regard-

ing the placement of the blindfolded device. In the limit as the blindfolded device approaches

a reference device, it can only be localized to a circle around that reference. Thus no unbiased

estimator is possible. The MLE in (16) approaches a constant in the limit, and thus the bias

gradient norm approaches 1.

IV. Channel Measurement Experiment

In this section, we describe the measurement system and experiment and validate the channel

model assumptions made at the beginning of Section III. A set of multipoint-to-multipoint

(M2M) wideband channel measurements were conducted at the Motorola facility in Plantation,

Florida. The measurement environment is an office area partitioned by 1.8m high cubicle walls,

with hard partitioned offices, external glass windows and cement walls on the outside of the area.

There are also metal and concrete support beams within and outside of the area. Offices are

occupied with desks, bookcases, metal and wooden filing cabinets, computers and equipment.

Forty-four device locations are identified within a 14m by 13m area and marked with tape.
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The measurement system uses a wideband direct-sequence spread-spectrum (DS-SS) transmit-

ter (TX) and receiver (RX) (Sigtek model ST-515). The TX and RX are battery-powered and

are placed on carts. The TX outputs an unmodulated pseudo-noise (PN) code signal with a 40

MHz chip rate and code length 1024. The center frequency is 2443 MHz, and the transmit power

is 10 mW. Both TX and RX use 2.4 GHz sleeve dipole antennas kept 1m above the floor. The

antennas have an omnidirectional pattern in the horizontal plane and a measured antenna gain

of 1.1 dBi. The RX records I and Q samples at a rate of 120 MHz, downconverts, and correlates

them with the known PN signal and outputs a power-delay profile (PDP). An example PDP is

shown in Fig. 4. We ensure that noise and ISM-band interference is not an issue by maintaining

an SNR > 25 dB throughout the campaign.

For TOA, wireless sensors will likely make two-way (round-trip) measurements due to the im-

practicality of accurately synchronizing all devices in wireless sensor networks [9]. Two-way TOA

measurements do not require synchronized devices since the round-trip delay can be measured at

a single device and then divided by two to estimate the time-of-flight between the two devices.

However, for the purpose of these measurements, two-way TOA measurements are not necessary.

Instead, we carefully synchronize our TX and RX using off-the-shelf time-synchronization equip-

ment. Errors due to multipath are the predominant source of variance in TOA estimates: for the

two-way TOA case this has been reported in [9], and for these measurements this is demonstrated

below. One-way synchronized and two-way TOA measurements are equally affected by the mul-
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Fig. 2. Bias gradient norm of the RSS MLE of x1 from (16) for the example system of Section III-C.
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Fig. 3. Photo of measurement area looking above cubicle walls.

tipath channel, thus this one-way measurement experiment closely approximates the TOAs that

would be measured in a sensor network.

Both TX and RX are synchronized by 1 pulse per second (1PPS) signals from two Datum

ExacTime GPS and rubidium-based oscillators. On each of the eight days of the campaign, a

procedure is followed to ensure a stable time base. After an initial GPS synch of the ExacTimes,

GPS is disconnected and the rubidium oscillators provide stable 1PPS signals. The frequencies

of the two rubidium oscillators are off very slightly, thus the 1PPS signals drift linearly, on the

order of ns per hour. By periodically measuring and recording the offset between the two 1PPS

signals using an oscilloscope, the effect of the linear drift can be cancelled. A time base with a

standard deviation of between 1-2 ns is achieved. The variance of the time base (≤ 4ns2) is thus

a small source of error in the measured TOA variance (37ns2) reported in Section IV-A.

The M2M measurements are conducted by first placing the TX at location 1 while the RX

is moved and measurements are made at locations 2 through 44. Then the TX is placed at

location 2, as the RX is moved to locations 1 and 3 through 44. At each combination of TX

and RX locations, the RX records five PDPs. Since we expect reciprocity, there are a total of 10

measurements for each link. All devices are in range of all other devices. Over the course of the

8-day campaign, a total of 44*43*5 = 9460 measurements are taken.

A. Estimating TOA and RSS

The wideband radio channel impulse response (CIR) is modeled as a sum of attenuated,

phase-shifted, and time-delayed multipath impulses [18][21]. The PDP output of the Sigtek
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Fig. 4. (a) Measured PDP with TX at 1 and RX at 24 and threshold (- - -) above which received power is

integrated to calculate RSS. (b) Leading edge of same PDP showing LOS TOA = d1,24/c (· − · − ·) and estimated

TOA (- - -). (c) Autocorrelation of PN signal RPN (τ) used in template-matching [23].

measurement system, due to its finite bandwidth, replaces each impulse of the CIR with the

autocorrelation function of the PN signal RPN (τ) shown in Fig. 4(c), an approximately triangular

peak 2/RC = 50ns wide. In high SNR, low multipath cases, TOA estimates can be more accurate

than 2/RC . However, a wider peak permits more multipath errors since the line-of-sight (LOS)

component, with TOA di,j/c, can be obscured by non-LOS multipath that arrive < 2/RC seconds

after the LOS TOA. If the LOS component is attenuated, it can be difficult to distinguish the

LOS TOA. In Fig. 4(a), the PDP is seen to contain several multipath within the first 200ns.

Inspecting the PDP immediately after τ = 0, as shown in Fig. 4(b), the LOS path at 42ns is

visible but attenuated compared to a later multipath which appears to arrive at 80ns.

The template-matching method [23] provides a TOA estimation algorithm which is robust to

such attenuated-LOS multipath channels. In template-matching, samples of the leading edge of

the PDP are compared to a normalized and oversampled template of RPN (τ) shown in Fig. 4(c).

The TOA estimate t̃i,j is the delay that minimizes the squared-error between the samples of the

PDP and the template. In Fig. 4(b), the template-matching TOA estimate t̃1,24 = 51ns is in

error by +9ns. If a local maximum was necessary to identify the LOS path, the error would have

been much greater.

Since non-LOS multipath are delayed in time, t̃i,j usually has a positive bias. We estimate the
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Fig. 6. Q-Q plot of (a) Pi,j(dBm)− P̄i,j(dBm) for RSS data, and (b) Ti,j − di,j/c for TOA data, compared to a

Gaussian quantile.

bias to be the average of t̃i,j − di,j/c, ∀i, j which in these measurements is 10.9 ns. In this paper

we assume this bias is known for environments of interest, however, and, similarly to np, this bias

could be estimated as a ‘nuisance’ parameter. Subtracting out the bias from our measurements,

we get the unbiased TOA estimator ti,j . Finally, the average of the 10 ti,j measurements for the

link between i and j we call Ti,j . The measured standard deviation, σT , is 6.1 ns.

It has been shown that a wideband estimate of received power, pi,j , can be obtained by sum-

ming the powers of the multipath in the PDP [21]. To distinguish between noise and multipath,

only power above a noise threshold is summed, as shown in Fig. 4(a). This wideband method
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reduces the frequency-selective fading effects. The geometric mean of the 10 pi,j measurements

for the link between i and j, which we call Pi,j , reduces fading due to motion of objects in

the channel. Shadowing effects, caused by permanent obstructions in the channel, remain pre-

dominant in Pi,j since the TX and RX are stationary. Shadowing loss is often reported to be

a log-normal random variable [24][18][21], which lead us to propose the log-normal shadowing

model in (6). As shown in Fig. 5, The measured Pi,j match the log-normal shadowing model in

(6) with n = 2.30 and σdB = 3.92 dB, using d0 = 1m. The low variance may be due to the wide

bandwidth, averaging, and homogeneity of the measured cubicle area.

We verify the log-normal and Gaussian distributions of the RSS and TOA measurements

by examining the residuals rR
i,j , Pi,j(dBm) − P̄i,j(dBm) and rT

i,j , Ti,j − di,j/c via quantile-

quantile (Normal probability) plots in Fig. 6. Both RSS and TOA data fit the models well

between the -2 and +2 quantiles. Using a Kolmogorov-Smirnov (KS) test, we test the hypothesis:

H0 : rR
i,j ∼ N (r̄R, S2

R) vs. H1 : rR
i,j is not Gaussian, where r̄R is the sample mean of rR

i,j and S2
R

is the sample variance. An identical test is conducted on rT
i,j for the TOA measurements. For

the RSS and TOA residuals, the KS tests yield p-values of 0.09 and 0.50, respectively. In both

cases, we would decide to accept H0 at a level of significance of α = 0.05.

However, the low p-value for the RSS data indicates that log-normal shadowing model in (6)

may not fully characterize the data. In fact, if we use in H0 a 2-component Gaussian mixture

distribution (with parameters estimated from rR
i,j via the MLE), the KS test yields a p-value of

0.88. A topic for future research is to investigate whether the potential benefits of using a mixture

distribution in the channel model would justify its additional complexity. The experimental

results reported in the next sections use only the MLE derived under the log-normal shadowing

model; these results nevertheless demonstrate good location accuracy.

B. Location Estimates from Measurements

Four devices near the corners are chosen as reference devices. The remaining 40 devices

are blindfolded devices. The four reference device coordinates and either the RSS or TOA

measurements, Pi,j or Ti,j , are input to the MLE in (16) or (14). The minimum in each case

is found via a conjugate gradient algorithm. Then,the estimated device locations are compared

to the actual locations in Fig. 7(a) and (b). To generalize the results, the RMS location error

of all 40 unknown-location devices is 2.18m in the RSS case and 1.23m in the TOA case. Since

shadowing and non-LOS errors are not ergodic, as discussed in Section IV-A, experimentally
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determining the MLE variances would require several measurement campaigns with the same

device geometry but in different office areas. This was not possible due to resource and time

limitations. Nevertheless, it is instructive to report the CRB for the measured network. We use

the measured channel parameters, σdB/np = 1.70 and σT = 6.1 ns, the four reference devices

used above, and the actual coordinates of all of the devices to calculate the CRB for σ2
i given in

(12) for i = 1 . . . n and for both TOA and RSS measurements. The quantity
(∑40

i=1 σ2
i /40

)1/2 is

lower bounded by 0.76m for the RSS and 0.69m for the TOA cases.

We also notice that the devices close to the center are located more accurately than the

devices on the edges, particularly in the RSS case. Poor performance at the edges is expected

since devices have fewer nearby neighbors to benefit their location estimate.

V. Testbed Experimentation

To provide an easy means for M2M radio channel measurement and location estimation testing,

we developed and fabricated at Motorola Labs a testbed of 12 prototype peer-to-peer wireless

sensor devices with RSS measurement capability. The devices have FSK transceivers with a 50

kHz data rate which operate in the 900-928 MHz band at one of 8 center frequencies separated by

4 MHz, which is approximately the coherence bandwidth of the channel. Devices hop between

center frequencies so that RSS measurements can be taken at each center frequency. While

one device transmits, other devices measure its RSS. Packet transmissions are infrequent and

packets are short, thus the channel is almost always silent. Devices are asynchronous and use

a carrier-sense multiple access (CSMA) protocol. Thus RX measurements are not subject to

multi-user interference. Every two seconds, each device creates a packet of measured RSS data

and transmits it to a central ‘listening’ device, which uploads data to a laptop computer. The

laptop has access to the known coordinates of the reference devices and the TX power and the

RSS characteristic of the devices as measured prior to deployment. The laptop stores the RSS

for each pair of devices, each frequency, and each measurement over time.

First, we use the testbed as an easy way to estimate the path loss exponent np. When all of

the device locations are known, the laptop uses the path loss vs. path length data to estimate the

path loss exponent, np [25]. After estimating np, the blindfolded device coordinates are removed

from the laptop and we operate the relative location estimation algorithm using the estimated

np.
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Fig. 7. True (•#T) and estimated (H#E) location using (a) RSS and (b) TOA data for measured network with

4 reference devices (X#). Higher errors are indicated by darker text.
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Next, the relative location estimation algorithm averages the measurements over time (using

the most recent four RSS measurements), frequency (across 8 center frequencies), and the recip-

rocal channel, resulting in the averaged measurement Pi,j . The maximum of the MLE in (16)

is found using a conjugate gradient algorithm, which takes less than one second on the Pentium

laptop. Each second an updated location is calculated and displayed on a map in a Visual Basic

GUI. Real time tracking of slow movement (eg., people walking) is possible.

A. Parking Lot Area

Fig. 8. Parking lot testbed experiment. Devices are located on top of 16 upside-down recycling bins.

Testbed devices are placed in a 9 m by 9 m area in a 3 m grid in an empty parking lot area at

the Motorola facility, as seen in Fig. 8. Devices are kept at a height of 0.35 m. Using the testbed,

we estimate np to be 3.2. Then, we place reference devices at the four corners of the area and

blindfolded devices at 7 of the remaining 12 spots in the grid (for 11 devices total). Devices

record RSS and send packets as described above. The blindfolded devices are then moved to

different positions in the grid for a new trial. 16 trials are run. The RMS location errors for the

individual trials range from 0.9 m to 2.4 m. However, by moving 7 blindfolded devices around

between positions, we record enough point-to-point ranges to see what would happen if there

were 12 blindfolded devices, one in each spot on the grid. We use the recorded range data off-

line to calculate that the RMS error would have been 1.46 m. Furthermore, if we extended the

duration of the time averaging from 4 to 32 ranges, we would see the location estimates shown

in Fig. 11(a), and the RMS error would reduce to 1.02 m. Since shadow fading is not severe in

this environment, time averaging is effective at improving location estimates.

B. Residential Home

Next, we test the system in the Perkins home, a single-family, ranch-style house in Sunrise,

Florida (Figs. 9 and 10). An identical 9 m by 9 m grid is used in this test, which spanned across
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Fig. 9. Map of the grid of sensors in the Perkins home.

Fig. 10. Residential home testbed experiment, with 3 devices shown (one is hidden between the couch and the

table).

many interior rooms and an outdoor patio. The obstructions include indoor walls, furnishings,

appliances, and exterior walls & windows, and np is estimated to be 4.0. Here, there are 4

reference devices in the corners of the grid and 8 other blindfolded devices. In 16 individual

trials, the RMS location errors range from 1.0 m to 2.7 m. If all device ranges are used together,

as described previously, we see the results in Fig. 11(b), in which the RMS error is 2.1 m. This

error doesn’t reduce significantly when the duration of time-averaging is increased from 4 to 32

ranges. Much of the error is due to device #15, which has an error of 4.5 m. As seen in Fig. 9,

d14,15 = 3 m, but significant shadowing is caused by the office closet and master bedroom closet
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that both lie directly in between the two devices (P14,15(dBm) − P̄14,15(dBm) = −22), and as

a result the range estimate between the two is 10.5 m. Unfortunately, this shadowing can’t be

countered by time or frequency averaging.
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Fig. 11. True (•#T) and estimated (H#E) location for the (a) parking lot and (b) residential home tests, using

4 reference devices (X#). Higher errors are indicated by darker text.

VI. Conclusions

The motivation of this article has been to show the accuracy with which wireless sensor net-

works can estimate the relative sensor locations. The results should help researchers determine if

the accuracy possible from relative location estimation can meet their application requirements.

This article began by proving that location estimation variance bounds (CRB) decrease as more

devices are added to the network. Next, it was shown that CRBs can be readily calculated

for arbitrary numbers and geometries of devices, and several examples were presented. Sensor

location estimation with approximately 1 m RMS error has been demonstrated using TOA mea-

surements. However, despite the reputation of RSS as a coarse means to estimate range, it can

nevertheless achieve an accuracy of about 1 m RMS in a testbed experiment. Fading outliers can

still impair the RSS relative location system, implying the need for a robust estimator. Future

experimentation is needed to verify the variance of location estimators due to the non-ergodic

nature of shadowing. Analysis can quantify the effect of ‘nuisance’ channel parameters, and can

be extended to consider the effects of multi-user interference on sensor location estimation.
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Appendix

A. CRB for Network Self-Calibration

The diagonal elements, fk,k, of F given in (2) are,

fk,k = E
(

∂
∂θk

l(X|θ)
)2

= E
( ∑

j∈H(k)

∂
∂θk

lk,j

)2

fk,k =
∑

j∈H(k)

∑

p∈H(k)

E
(

∂
∂θk

lk,j

)(
∂

∂θk
lk,p

)

Since Xk,j and Xk,p are independent random variables, and E[ ∂
∂θk

lk,j ] = 0, the expectation of the

product is only nonzero for p = j. Thus fk,k simplifies to the k = l result in (3). The off-diagonal

elements similarly simplify,

fk,l =
∑

j∈H(k)

∑

p∈H(l)

E
(

∂
∂θk

lk,j

) (
∂

∂θl
ll,p

)

Here, due to independence and zero mean of the two terms, the expectation of the product will

be zero unless both p = k and j = l. Thus the k 6= l result in (3).

B. Proof of Theorem 1

Compare F, the FIM for the n blindfolded device problem, to G, the FIM for the n + 1

blindfolded device case. Partition G into blocks,

G =


 Gul gur

gll glr




where Gul is an n × n matrix, glr is the scalar Fisher information for θn+1, and gur = gT
ll are

n× 1 vectors with kth element,

gur(k) = IH(n+1)(k) E
(

∂
∂θk

ln+1
k,n+1

)(
∂

∂θn+1
ln+1
k,n+1

)
,

glr =
∑

j∈H(n+1)

E
(

∂
∂θn+1

ln+1
n+1,j

)2
.

Here, we denote the log-likelihood of the observation between devices i and j in (1) as lni,j and

ln+1
i,j for the n and (n + 1) blindfolded device cases, respectively. Similarly, let ln(X|γn) and

ln+1(X|γn+1) be the joint log-likelihood function in (1) for the n and n + 1 blindfolded device

cases, respectively. Then

ln+1(X|γn+1) =
m+n+1∑

i=1

∑
j∈H(i)

j<i

ln+1
i,j = ln(X|γn) +

∑
j∈

H(n+1)

ln+1
n+1,j .
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Since ln+1
n+1,j is a function only of parameters γn+1 = θn+1 and γj ,

∂2

∂θk∂θl

∑
j∈

H(n+1)

ln+1
n+1,j =





IH(n+1)(k) ∂2

∂θ2
k
ln+1
n+1,k, l = k

0, l 6= k

Thus Gul = F + diag(h), where h = {h1, . . . , hn} and hk = IH(n+1)(k)E( ∂
∂θk

ln+1
n+1,k)

2. Compare

the CRB for the covariance matrix of the first n devices in the n and n + 1 device cases, given

by F−1 and [G−1]ul, respectively. Here, [G−1]ul is the upper left n× n submatrix of G−1,

[G−1]ul =
{
Gul − gurg

−1
lr gll

}−1 = {F + J}−1

where J = diag(h)− gurgT
ur

glr

Both F and J are Hermitian. We know that F is positive semidefinite. Let λk(F), k = 1 . . . n

be the eigenvalues of F and λk(F + J), k = 1 . . . n be the eigenvalues of the sum, both listed in

increasing order, then if we can show that J is positive semidefinite, then it is known [26] that:

0 ≤ λk(F) ≤ λk(F + J), ∀k = 1 . . . n (17)

Since the eigenvalues of a matrix inverse are the inverses of the eigenvalues of the matrix,

λk

({F + J}−1
) ≤ λk(F−1), ∀k = 1 . . . n, (18)

which proves property 1 of Theorem 1. If in addition, we can show that tr(J) > 0, then tr(F+J) >

tr(F), and therefore
∑n

k=1 λk(F + J) >
∑n

k=1 λk(F). This with (17) implies that λj(F + J) >

λj(F) for at least one j ∈ 1 . . . n. Thus in addition to (18),

λj

({F + J}−1
)

< λj(F−1), for some j ∈ 1 . . . n

which implies that tr
({F + J}−1

)
< tr(F−1), which proves property 2 of Theorem 1.

1) Showing positive semidefiniteness and positive trace of J : The diagonal elements of J,

[J]k,k are,

[J]k,k = hk − g2
ur(k)/glr. (19)

If k /∈ H(n + 1) then hk = 0 and gur(k) = 0, thus [J]k,k = 0. Otherwise, if k ∈ H(n + 1),

[J]k,k = E
(

∂ln+1
n+1,k

∂θk

)2

−

[
E

(
∂ln+1

n+1,k

∂θk

)(
∂ln+1

n+1,k

∂θn+1

)]2

∑
j∈H(n+1) E

(
∂ln+1

n+1,j

∂θn+1

)2 .
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Because of reciprocity, the numerator is equal to the square of the j = k term in the sum in the

denominator. Thus

[J]k,k ≥ E
(

∂ln+1
n+1,k

∂θk

)2

− E
(

∂ln+1
n+1,k

∂θk

∂ln+1
n+1,k

∂θn+1

)
= 0.

The equality will hold if k is the only member of the set H(n + 1). When condition (2) of

Theorem 1 holds, [J]k,k will be strictly greater than zero. Thus trJ > 0.

Next, we show that J is diagonally dominant [26], i.e.,

[J]k,k ≥
n∑

j=1
j 6=k

|[J]k,j | =
n∑

j=1
j 6=k

|gll(k)gll(j)|
glr

,

where [J]k,k is given in (19). Since H(n + 1) 6= ∅, thus glr > 0, and an equivalent condition is,

glrhk ≥ |gur(k)|
n∑

j=1

|gur(j)|. (20)

If k /∈ H(n + 1) then hk = 0 and gur(k) = 0, and the equality holds. If k ∈ H(n + 1), then

glrhk = E
(

∂ln+1
k,n+1

∂θk

)2 ∑

j∈H(n+1)

E
(

∂ln+1
n+1,j

∂θn+1

)2

.

Because of condition (1) of Theorem 1,

E
(

∂ln+1
k,n+1

∂θk

)2

=
∣∣∣∣E

(
∂ln+1

k,n+1

∂θn+1

∂ln+1
k,n+1

∂θk

)∣∣∣∣

Thus

glrhk = |gur(k)|
[ ∑

j≥1
j∈H(n+1)

|gur(j)|+
∑
j≤0

j∈H(n+1)

∣∣∣∣E
(

∂ln+1
j,n+1

∂θn+1

∂ln+1
j,n+1

∂θj

)∣∣∣∣
]

Since gur(j) = 0 if j /∈ H(n+1) we can include in the first sum all j ∈ 1 . . . n. Since the 2nd sum

is ≥ 0, (20) is true.

Diagonal dominance implies J is positive semidefinite, which proves (18). Note that if H(n+1)

includes ≥ 1 reference device, the 2nd sum is > 0 and the inequality in (20) is strictly > 0,which

implies positive definiteness of J and assures that the CRB will strictly decrease.

C. CRB for Location Estimation

For the elements of FR, using (7) and (1),

li,j = log


 10 log 10√

2πσ2
dB

1
Pi,j


− b

8

(
log

d2
i,j

d̂2
i,j

)2

.
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Recall di,j =
√

(xi − xj)2 + (yi − yj)2. Thus,

∂

∂xj
li,j = − b

2

(
log

d2
i,j

d̃2
i,j

)
xj − xi

d2
i,j

.

Note that ∂
∂xj

li,j = − ∂
∂xi

li,j , thus the log-normal distribution of RSS measurements meets con-

dition (1) of Theorem 1. The 2nd partials differ based on whether or not i = j and if the partial

is taken w.r.t. yi or xi. For example,

∂2li,j
∂xj∂yj

= −b
(xi − xj)(yi − yj)

d4
i,j

[
− log

(
d2

i,j

d̃2
i,j

)
+ 1

]

∂2li,j
∂xj∂yi

= −b
(xi − xj)(yi − yj)

d4
i,j

[
log

(
d2

i,j

d̃2
i,j

)
− 1

]

Note that E[log(d2
i,j/d̃2

i,j)] = 0. Thus the FIM simplifies to take the form in (10). For the TOA

case,

li,j =
(
− log

√
2πσ2

T −
(Ti,j − di,j/c)2

2σ2
T

)
(21)

taking the partial w.r.t. xj

∂

∂xj
li,j = − 1

σ2
T

(
c Ti,j

di,j
− 1

)
(xj − xi), (22)

Note that in the TOA case we also have ∂
∂xj

li,j = − ∂
∂xi

li,j , meeting condition (1) of Theorem 1.

Two examples of the second partial derivatives are given by,

∂2

∂xj∂yj
= − 1

σ2
T c2

cTi,j

di,j

(xi − xj)(yi − yj)
(xi − xj)2 + (yi − yj)2

∂2

∂xj∂xi
= − 1

σ2
T c2

[
cTi,j

di,j
− 1− cTi,j

di,j

(xi − xj)2

d2
i,j

]

The 2nd partial derivatives depend on the term, cTi,j/di,j , which has an expected value of 1, and

the terms of FR take the form in (11).
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