
IEEE TRANSACTIONS ON SIGNAL PROCESSING 1

Relative Location Estimation in Wireless

Sensor Networks

Neal Patwari, Alfred O. Hero III,

Matt Perkins, Neiyer S. Correal and Robert J. O’Dea

Neal Patwari and Alfred O. Hero III are with the University of Michigan, Dept. of EECS, Ann Arbor MI,

USA. E-mail: [npatwari, hero]@eecs.umich.edu. Matt Perkins, Neiyer S. Correal, and Robert J. O’Dea are with

Motorola Labs, Plantation, Florida, USA. E-mail: [M.Perkins, N.Correal, Bob.O’Dea]@Motorola.com

October 3, 2002 DRAFT



Abstract

This article explores self-configuration in wireless sensor networks. Self-configuration is

a general class of estimation problems which we explore via the Cramér-Rao bound (CRB).

Specifically, the sensor location estimation problem is explored for sensors that measure range

via received signal strength (RSS) or time-of-arrival (TOA) between themselves and neighboring

sensors. A small fraction of sensors in the network have known location while the remaining

locations must be estimated. We derive CRBs and maximum-likelihood estimators (MLEs)

for sensor location estimation under a Gaussian and log-normal model for the TOA and RSS

measurements, respectively. The variance bounds are calculated for example networks of devices.

Then we report on an extensive TOA and RSS measurement campaign in an indoor office area

which shows MLE performance in a real channel. Finally, relative location estimation algorithms

are implemented in a wireless sensor network testbed. The wireless sensor devices are deployed

in indoor and outdoor environments to demonstrate the accuracy and real-time operation of

the location system. Results from the measurements and testbed experiments demonstrate 1 m

RMS location errors using TOA, and 1 m to 2 m RMS location errors using RSS.

I. Introduction

In this paper, we consider location estimation in networks in which a small proportion of

devices, called reference devices, have a priori information about their coordinates. We assume

that all devices, regardless of their absolute coordinate knowledge, estimate the range between

themselves and their neighboring devices. Such location estimation is termed ’relative location’

because the range estimates collected are predominantly between pairs of devices of which neither

has absolute coordinate knowledge. These devices without a priori information we call blindfolded

devices. Compared to other location estimation systems that have appeared in the literature, eg.,

cellular location estimation [3][22][20] or local positioning systems (LPS) [26] [25], this estimation

problem is complicated by its multi-dimensional nature. Because a device’s location is estimated

based on ranges to other unknown location devices, the problem is not seperable as it is when

each device estimates ranges only to known position devices. However, as will be shown in this

article, relative location estimation enables greater accuracy as more devices are added into the

network, even when new devices range to just a few close neighbors. Greater accuracy in the

network is possible without increasing the burden of installation of more known-location reference

devices.
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To be implemented, relative location systems require a network with devices capable of peer-to-

peer ranging, an ad-hoc networking protocol, and a distributed or centralized location estimation

algorithm. For peer-to-peer ranging, TDOA is usually not considered since ad-hoc devices aren’t

likely to be accurately synchronized. However, TOA ranging has been implemented using two-

way or ’round-trip’ time-of-arrival measurements [12] [8]. Inquiry-response protocols and careful

calibration procedures are presented to allow devices to measure the total delay between an

original inquiry and the returned response. Ranging is also possible using RSS measurement,

which can be measured from reception of any transmission in the network. In a frequency-

hopping radio, RSS measurements can be averaged over frequency to reduce frequency-selective

fading error. RSS is attractive from the point of view of device complexity, but is traditionally

seen as a coarse measure of range. In this article we will show that by using relative location

estimation in dense networks, RSS can lead to accurate location estimates.

The recent literature has seen many distributed [1] [21] [24] and centralized location algorithms

[6] [15] designed for locationing in wireless sensor networks. The distributed methods are similar

in that a particular device’s estimation algorithm depends on the total number of ranges to

known-location devices it has measured. If an insufficient number, the solution to its coordinates

is underdetermined, and the device makes arbitrary assumptions about its blindfolded neighbors,

essentially creating a local coordinate system [24]. If the number of ranges to known-location

devices is equal to the dimension of the coordinates, then geometry can readily be applied to

calculate a location. If the solution is overdetermined, the device can use a residual weighting

algorithm from [3] or least-squared error estimator [21] to reduce the error in the solution. Also,

a residual value can be kept with each location estimate to indicate its reliability [1]. After

obtaining a location solution, a device becomes a known-location device. Devices iteratively

repeat their location estimation protocol as more neighbors estimate and broadcast their location.

The local coordinate systems used to solve the underdetermined solutions are merged with other

local or global coordinate systems as possible. These distributed algorithms offer the promise

of enabling location estimation in networks that have no central processor available. However,

they can require many iterations to converge, adding to the communication requirements of

the network, especially if sensor movement is possible. Also, the convergence of these iterative

methods is not guaranteed [1] [21].

Centralized algorithms assume that the application permits deployment of a central processor
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to perform the location estimation [6] [13] [15]. In [6], each range between devices is represented

a geometric constraint, and the set of all constraints is solved by convex optimization. Both [13]

and [15] provide MLEs for sensor location estimation, when observations are angle-of-arrival [13]

and when observations are RSS [15].

This article focuses on the accuracy possible using such relative location estimation algorithms.

The radio channel is notorious for its impairments [14] [9], thus accurate sensor location is by no

means a given. In wireless sensor networks, “sensing data without knowing the sensor location

is meaningless” [18]. The CRBs presented in this article provide a means to determine if the

location accuracy necessary for a particular application is possible.

This article begins by considering the category of network self-calibration estimators, which

includes as a subset location estimation. Section II explores the CRB for unbiased estimators in

this class of problems. We show in particular that the CRB bound decreases as the number of

devices in the network increases. Next, we present models of the radio channel for measured RSS

and TOA. These models will be verified from measurements in Section VI. The models allow

the development of CRBs for location estimation in Section IV. Examples are given for which

the inverse of the Fisher information matrix can be solved analytically. The CRB is shown in

a special case to match results for traditional location systems such as LPS or cellular location

estimation. MLEs are then derived in Section V for relative location estimators. Next, in Section

VI measurements of TOA and RSS in a peer-to-peer network are used to test the MLEs. Finally,

real-time operation of relative location using RSS is demonstrated in Section VII.

II. Network Estimation Bounds

We start by deriving a CRB for a general class of network self-calibration estimators. In this

class of estimation problems, observations made between pairs of devices provide information

about the unknown relative parameters of each device, and a subset of devices know their own

parameters. An estimator is used to determine the state of all of the device paramenters. For

example, distributed clock synchronization in a wireless sensor network could be achieved by

devices observing pair-wise timing offsets with just a small number of synchronous devices. As

another example, parameters of transducers vary in manufacturing, and accurate characterization

of each device is often costly. But with characterization of a fraction of the devices, a network can

self-calibrate if it is able to observe statistics of device parameters. Such a procedure could be
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used to estimate the received signal strength indicator (RSSI) circuit characteristics of wireless

sensors in a network.

In these problems, devices in a network make observations regarding parameters θ that describe

the devices in the network. For simplicity, assume that each device has one parameter, that m

reference devices have known parameters θi, for i = −m + 1 . . . 0 and n blindfolded devices do

not know their parameters θi, for i = 1 . . . n. Devices make pair-wise observations Xij ,

Xi,j ∼ fxi,j |θi,θj
(Xi,j |θi, θj) (1)

li,j = log fxi,j |θi,θj
(Xi,j |θi, θj) (2)

We allow for the case when devices make incomplete observations. For example, two devices

may be out of range, or a limited channel may not allow the capacity needed for each pair of

devices in the network to make observations. Specifically, let H(i) ⊆ {−m + 1, . . . , n} be the set

of devices with which device i makes pair-wise observations. We assume that i /∈ H(i) since a

device cannot make a pair-wise observation with itself. By symmetry, if j ∈ H(i) then i ∈ H(j).

We assume by reciprocity that Xi,j = Xj,i. In practice, if it is possible to make independent

observations on the links from i to j, and from j to i, then we assume that a scalar sufficient

statistic for the two observations can be found and assigned to Xi,j and Xj,i. Finally, we assume

Xi,j are independent for j < i. Then the log of the joint conditional pdf is

l(X|θ) =
n∑

i=−m+1

∑
j∈H(i)

j<i

li,j (3)

The Fisher information matrix (FIM) is defined as,

F = −E
[
∇θ(∇θl(X|θ))T

]
=




f1,1 · · · f1,n

...
. . .

...

fn,1 · · · fn,n


 (4)

The diagonal and off-diagonal elements of F are derived in Appendix A and are given by

fk,l =




∑
j∈H(k) E

[(
∂

∂θk
lkj

)2
]
, k = l

IH(k)(l)E
[(

∂
∂θk

lk,l

)(
∂

∂θl
lk,l

)]
, k �= l

(5)

Here, IH(k)(l) is an indicator function which is one when l ∈ H(k) and zero when it is not.

Equivalently,

fk,l =




∑
j∈H(k) E

[
∂2

∂θ2
k
lkj

]
, k = l

IH(k)(l)E
[

∂2

∂θk∂θl
lk,l

]
, k �= l

(6)
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A. Conditions for a decreasing CRB

Intuitively, we can see that as more devices are used in the location estimator, the accuracy

increases for all of the devices in the network. For n devices in the network, there are O(n)

parameters to estimate, but there are O(n2) ranges to use in their estimation. The analysis

of this section proves that given certain conditions, the CRB decreases as devices are added

to the network. An additional device introduces an additional parameter to be estimated but

allows more observations regarding the parameters of interest. Specifically, consider the Fisher

information matrices, F as given in (4), and G for the network with n + 1 blindfolded devices.

Theorem 1: Let [[G−1]]ul be the upper left n×n block of the inverse of G. The properties:

1) F−1 − [[G−1]]ul ≥ 0 in the positive semi-definite sense, and

2) tr F−1 > tr [[G−1]]ul,

both hold if the following conditions are true:

1) li,j = lj,i,∀i, j ∈ {1 . . . n + 1},
2) ∂

∂θn+1
lk,n+1 = a ∂

∂θk
lk,n+1 for some constant a not a function of X, ∀k ∈ {1 . . . n}, and

3) Device n+1 makes pairwise observations between itself and at least one blindfolded device

and at least two devices, in total.

Condition (2) is held for distributions that depend on parameters θk and θj only as a function

of θk − θj or θk/θj . The Gaussian and log-normal distributions discussed in later sections of this

article will be shown to meet this condition. Property (1) implies that the additional (n + 1)st

device does not impair the estimation of the original n parameters. Furthermore, property (2)

implies that the sum of the CRB variance bounds for the n parameters strictly decreases when

the conditions are met. Thus when a device enters a network and makes pairwise observations

with at least one blindfolded device and at least two devices in total, the bound on the average

variance of the original n devices is reduced. Note that properties (1) and (2) of Theorem 1 are

trivially satisfied by the data processing theorem when the number of parameters is fixed.

The proof of Theorem 1 is shown in Appendix A. Before we can show how this applies

specifically to location estimation, we must describe models for RSS and TOA measurements.

III. Radio Channel Models for RSS and TOA

In this section, we develop models for RSS and TOA observations which are used as mea-

surements of range. We show that for the particular measurement system and testbed devices
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presented in this article, RSS and TOA measurements can be described as log-normal and Gaus-

sian distributed random variables, respectively.

The multipath channel is modeled in the literature by a sum of attenuated, phase-shifted, and

time-delayed impulses [9] [23] [19]. We denote the channel between devices i and j as hi,j(t),

thus

hi,j(t) =
K∑

l=0

αi,j(l)ejφi,j(l)δ(t − τi,j(l)) (7)

where αi,j(l), φi,j(l), and τi,j(l), are the amplitude, phase, and time delay of the lth multipath

component. Here we assume that l = 0 indicates the line-of-sight (LOS) component, regardless

of how attenuated it might be, and τi,j(0) = cdi,j is called the LOS TOA, where c is the speed

of light, and di,j is the straight-line distance between device i and j, given in 2-D by

di,j =
√

(xi − xj)2 + (yi − yj)2. (8)

The direct-sequence spread-spectrum (DS-SS) channel measurement system used in Section

VI is very common in the wideband channel measurement literature [2][5][19]. It uses an un-

modulated pseudo-noise (PN) code to measure the impulse response within a wide but finite

bandwidth. The transmitter (TX) produces a PN signal at chip rate RC and center frequency

fc. The receiver samples a downconverted signal at rate RS and correlates it with a local PN

signal. The norm of the result, called the power-delay profile (PDP), is given by Si,j(k), where

Si,j(k) = |ci,j(k)|2 (9)

ci,j(k) =
K∑

l=0

αi,j(l)ejφi,j(l)RPN

(
k

RS
− τi,j(l)

)
+ n(k).

where RPN (τ) is the autocorrelation of the PN signal, and n(k) is i.i.d. Gaussian noise. RPN(τ)

is close to zero outside of the region −1/RC < τ < 1/RC .

In our measurements, the noise n(k) is not a major factor, since we keep the SNR > 25 dB

for all measurements in our campaign. Nevertheless, estimation of τi,j(0) from measurement of

the PDP is complicated by several factors:

• The finite bandwidth of the measurement system changes multipath impulses in (7) to the

2/RC wide peaks in (9).

• Non-LOS multipath typically do arrive within 2/RC of the LOS TOA, and they jointly with

the LOS component determine the shape of the first peak of the PDP.
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• If the LOS path is attenuated compared to the early-arriving multipath, it can become

indistinquishable.

Due to these early-arriving multipath, we estimate τi,j(0) by template-matching [17], in which

samples of the leading edge of the PDP are compared to an oversampled template of RPN (τ).

The TOA estimate T̃i,j is the delay that minimizes the squared-error between the samples of

the PDP and the template. Due to the fact that the non-LOS multipath are delayed in time

compared to the LOS, T̃i,j usually has a positive bias. In Section VI-B we will estimate and

subtract out the bias to get the unbiased TOA estimator Ti,j. The resulting estimator is shown

experimentally to be a zero mean Gaussian random variable with variance σ2
T .

Received power, Pi,j, is measured by two different methods in this article.

1) During the measurement experiment, Pi,j is estimated from the PDP of (9). It has been

shown that a wideband estimate of received power is obtained by summing the powers of

the multipath in the PDP [19].

2) The testbed devices directly measure received power via an RSS sensor in the receiver. The

devices are frequency-hopping radios and average RSS across each of 8 center frequencies

in a 28 MHz bandwidth, as described in Section VII.

Both methods provide a wideband average RSS that reduce the frequency-selective fading effects.

During the measurements and the testbed, time and reciprocal channel averaging were both used.

Time averaging takes advantage of fading caused by movement in the channel, while reciprocal

channel averaging (averaging the measurement at i from j and the measurement at j from i)

helps to reduce device calibration errors.

However, neither method can reduce shadowing (also called medium-scale fading [9]) effects.

Shadowing is caused by obstructions in the channel between the TX and RX. Shadowing is

random function of placement, since a TX and RX placed the same distance apart in a different

area would have a different shadow fading effect. Shadowing loss is often reported to be a

log-normal random variable [4][9][19], which leads to the log-normal shadowing model,

Pi,j(dBm) = P̄i,j(dBm) + Zi,j(dB) (10)

P̄i,j(dBm) = P0(dBm) − 10n log10

(
di,j

d0

)

where Pi,j is the power received at device i transmitted by device j, P̄i,j(dBm) is the mean

power in dBm, and Zi,j(dB) is the shadowing gain (loss) which is Gaussian when expressed in
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dB. The mean received power is a function of P0(dBm), the received power in dBm at a reference

distance d0, the path loss exponent n, and the distance di,j. We denote the linear power in mW

as Pi,j which is calculated as Pi,j = 10Pi,j(dBm)/10. Because we are able to reduce other types of

fading by averaging but unable to counter shadowing, we lump all of the measured fading effects

into the variable Zi,j(dB), and we show via measurements in Section VI that Zi,j(dB) is still

well-modeled as a Gaussian (in dB) random variable.

To simplify analysis, we assume that the fading errors Zi,j(dB) or the TOA errors Ti,j − τi,j(0)

are i.i.d. random variables on different pair-wise links. However, in [16], it was shown that

some correlations exist in the RSS case. This motivates channel measurements such as those in

Sections VI and VII to verify system performance in real channels.

IV. Cramer-Rao Bound for Co-ordinate Estimation

In this section, we consider the potential performance of sensor network location systems

which use RSS or TOA measurements between pairs of devices. Note that neither Pi,j nor

Ti,j are ergodic random variables. That is, their time averages will not be the same as their

ensemble averages because obstructions in the measured environment do not significantly change

over time. The CRB derived in this section gives a lower bound on the ensemble variance

of unbiased estimators of the coordinates of each device. That is, if the same wireless sensor

network with the same device coordinates is implemented in many different areas, the variance of

each coordinate across implementations will be lower bounded by the CRB. Such a CRB allows

researchers to determine if the performance of relative location estimation can possibly meet a

particular application’s requirements.

Consider a network composed of m reference devices and n blindfolded devices. Here, the

unknown parameter vector θ is the vector of all of the unknown coordinates of the devices. In

the RSS case, Xi,j = Pi,j, the linear power measured at device i transmitted from device j. We

assume that the path loss exponent n, P0, and d0 are known constants. Thus the density of Pi,j

is

fPi,j |θ(Pi,j |θ) =
10√

2πσ2
dB log 10

1
Pi,j

exp


− b

8

(
log

d2
i,j

d̃2
i,j

)2

 (11)

b =
(

10n
σdB log 10

)2

, d̃i,j = d0

(
P0

Pi,j

) 1
n

,

October 3, 2002 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 10

where di,j, given in (8), contains the dependence on the coordinates. We have defined the random

variable d̃i,j to help see the physical meaning behind the measured power. It has units of meters

and is actually the MLE of range di,j given received power Pi,j.

In the TOA case, Xi,j = Ti,j , the time delay measured at device i transmitted from device j.

The density of Ti,j is

fTi,j |θ(Ti,j |θ) =
1√

2πσ2
T

exp

(
−(Ti,j − di,j/c)2

2σ2
T

)
(12)

where c is the speed of light, and di,j is as defined in (8).

A. One-Dimensional TOA Example

x
1

x
2

x0 1 2

x
0

… x
n

n

x
1

1

Fig. 1. An example in Section IV-A in which n blindfolded devices are known to be on a linear track. Devices

−1 and 0 are two of m reference devices in this network.

As an example, consider location estimation using TOA measurements, when the devices are

limited to being located on a 1-D linear track, as shown in Fig. 1. This might have application for

locating products on an assembly line. Consider m reference devices and n blindfolded devices,

with coordinates θ = {x1, . . . , xn}. The distribution of the observations is given by (12) with

di,j = |xj − xi|. The partial derivatives of the log-likelihood of each measurement are given by

∂

∂xj
li,j =

1
σ2

T c
(Ti,j − di,j/c)

∂2

∂x2
j

li,j = − ∂2

∂xj∂xi
li,j =

−1
σ2

T c2

which is a constant w.r.t. the random variable Ti,j . The FIM for the estimation of θ is then

calculated from (6) to be

FT =
1

σ2
T c2




n+m−1 −1 ··· −1

−1 n+m−1 −1

...
. . .

...

−1 −1 ··· n+m−1




. (13)
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For m ≥ 1, the matrix is invertible, and the inverse is

F−1
T = σ2

T c2




m+1
m(n+m)

1
m(n+m) · · · 1

m(n+m)

1
m(n+m)

m+1
m(n+m)

1
m(n+m)

...
. . .

...
1

m(n+m)
1

m(n+m) · · · m+1
m(n+m)




. (14)

Thus the the variance of an unbiased estimator for xi must have variance

σ2
xi

≥ σ2
T c2 m + 1

m(n + m)
. (15)

As we would expect, the variance σ2
xi

is reduced more quickly by adding reference devices than

by adding blindfolded devices. However, for large m, the difference between increasing m and n

is negligible.

B. Two-dimensional Location Estimation

Although one-dimensional examples are interesting because they can lead to analytical expres-

sions, in this article, we are mainly interested in two-dimensional location estimation. The 2-D

unknown parameter vector is

θ = {x1, . . . , xn, y1, . . . , yn}. (16)

Consider the Fisher information matrices for the RSS and TOA cases, FR and FT , respectively.

Each device has two parameters, but the FIM in (4) assumes that each device has one parameter.

From the definition of the FIM in (4) we can see however that the FIM for the 2-D case will have

a similar form if partitioned into blocks,

FR =


 FRxx FRxy

FT
Rxy FRyy


 , FT =


 FTxx FTxy

FT
Txy FTyy


 (17)

where the blocks FRxx and FTxx are given by (5) using only the x parameter vector θ′ =

{x1, . . . , xn}, and the blocks FRyy and FTyy are given by (4) using only the y parameter vector

θ′′ = {y1, . . . , yn}. The off-diagonal blocks FRxy and FTxy have elements defined by,

fk,l =




∑
j∈H(k) E

[(
∂

∂xk
lk,j

) (
∂

∂yk
lk,j

)]
, k = l

IH(k)(l)E
[(

∂
∂xk

lk,l

)(
∂

∂yl
lk,l

)]
, k �= l

(18)
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The elements of the sub-matrices are derived in Appendix C from the distribution of the

measurements given either in (11) or (12). For the RSS case, the elements are given by

((FRxx))k,l =




b
∑

i∈H(k)
(xk−xi)

2

[(xk−xi)2+(yk−yi)2]2 k = l

−b IH(k)(l)
(xk−xl)

2

[(xk−xl)2+(yk−yl)2]2
k �= l

(19)

((FRxy))k,l =




b
∑

i∈H(k)
(xk−xi)(yk−yi)

[(xk−xi)2+(yk−yi)2]2 k = l

−b IH(k)(l)
(xk−xl)(yk−yl)

[(xk−xl)2+(yk−yl)2]2
k �= l

((FRyy))k,l =




b
∑

i∈H(k)
(yk−yi)

2

[(xk−xi)2+(yk−yi)2]2 k = l

−b IH(k)(l)
(yk−yl)

2

[(xk−xl)2+(yk−yl)2]2 k �= l

Compared to elements of FR, which have d4 terms in the denominator, elements of FT have

d2 terms in the denominator. This is shown explicitly in the results for the elements of the

sub-matrices,

((FTxx))k,l =




1
c2σ2

T

∑
i∈H(k)

(xk−xi)
2

(xk−xi)2+(yk−yi)2
k = l

− 1
c2σ2

T
IH(k)(l)

(xk−xl)
2

(xk−xl)2+(yk−yl)2
k �= l

(20)

((FTxy))k,l =




1
c2σ2

T

∑
i∈H(k)

(xk−xi)(yk−yi)
(xk−xi)2+(yk−yi)2

k = l

− 1
c2σ2

T
IH(k)(l)

(xk−xl)(yk−yl)
(xk−xl)2+(yk−yl)2

k �= l

((FTyy))k,l =




1
c2σ2

T

∑
i∈H(k)

(yk−yi)2

(xk−xi)2+(yk−yi)2
k = l

− 1
c2σ2

T
IH(k)(l)

(yk−yl)
2

(xk−xl)2+(yk−yl)2
k �= l

The CRBs for the RSS and TOA cases are F−1
R and F−1

T , respectively. If we define x̂i and ŷi

as estimators of the two unknowns for device i, xi and yi, then we can write the bound on the

variance of the location estimate for device i as

σ2
i ≤ Var(x̂1) + Var(ŷ1). (21)

Although we do not have an analytical form for the matrix inverse in general for n blindfolded

devices, we can for n = 1 show and verify the result.

C. Traditional Location System Example

Consider the simple case when device 1 is a blindfolded device and devices −m + 1 . . . 0 are

reference devices. Assume that device 1 makes pairwise measurements with all m reference

devices. This example is the same as non-relative location systems (eg. cellular or LPS) that
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have been studied in the literature, and a bound for the variance of the location estimator has

been derived in the TOA case [22]. In the RSS case,

E
[
(x̂1 − x1)2 + (ŷ1 − y1)2

]
≥ σ2

1 =
FRxx + FRyy

FRxxFRyy − F 2
Rxy

(22)

from which we get the result that

σ2
1 =

1
b

∑0
i=−m+1 d−2

1,i∑−1
i=−m+1

∑0
j=i+1

(
d1⊥i,jdi,j

d2
1,id

2
1,j

)2 (23)

where the distance d1⊥i,j is the shortest distance from the point (x1, y1) to the line between

device i and device j. For the TOA case, the result is,

σ2
1 = c2σ2

T m


 −1∑

i=−m+1

0∑
j=i+1

(
d1⊥i,jdi,j

d1,id1,j

)2


−1

(24)

The ratio d1⊥i,jdi,j/(d1,id1,j) has been called the geometric conditioning Ai,j of device 1 with

respect to references i and j [22]. Ai,j is the area of the parallelogram formed by the vectors

from device 1 to reference i and from device 1 to reference j, normalized by the lengths of the

two vectors. Thus the geometric dilution of precision (GDOP), defined as σ1/σT , can be written

as

GDOP =
√

m∑−1
i=−m+1

∑0
j=i+1 A2

i,j

(25)

which matches the result in [22] and verifies our analysis for the TOA case.

Note that if the distance between reference devices is increased without changing the geometric

conditioning, and we assume σ2
T is constant with range, then the TOA bound remains constant.

In the RSS case, however, the CRB scales proportionally with distance between reference devices

when the geometry is the same and σ2
dB is constant with range. This difference between TOA

and RSS is also true for n > 1. As a result, TOA is a good measurement method even for large,

sparse networks. However, if a network is scaled down to make a small, dense network of devices,

at some density, RSS can perform as well as TOA.

Contour plots of the CRB for both the RSS and the TOA cases are shown in Fig. 2. The

minimum value in Fig. 2(a) is 0.27. Since the CRB scales with size in the RSS case, the stan-

dard deviation of location estimates in a traditional RSS system operating in a channel with

σdB/n = 1.7 is limited to about 27% of the distance between reference devices. This performance

has prevented use of RSS in many existing location systems, but Section VII will demonstrate
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reasonable error performance for relative location systems using RSS. The TOA CRB result in

Fig. 2(b) does not scale with distance between reference devices. However, it does scale with

cσT , and cσT = 1 was chosen for ease of calculation.
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Fig. 2. σ1 in meters with four reference devices in the corners of a 1m by 1m area plotted as a function of the

coordinates of the single blindfolded device, with (a) RSS with log-normal errors with σdB/n = 1.7, or (b) TOA

with Gaussian errors and cσT = 1.

V. Maximum Likelihood Relative Location Estimation

We now present maximum likelihood estimators for the relative location estimation system.

For the TOA case, the MLE of θ is given by

θ̂T = arg min
n∑

i=−m+2

∑
j∈H(i)

j<i

(c Ti,j − di,j)
2 (26)

The maximum likelihood estimator for the two-dimensional RSS case is shown in [15] to be,

θ̂R̃ = arg min
n∑

i=−m+2

∑
j∈H(i)

(
ln

d̃2
i,j

d2
i,j

)2

(27)
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Unlike in the TOA case, the RSS MLE is readily shown to be biased. Consider that for n = 1

and m = 1, the range between the two devices will be estimated to be equal to d̃i,j. Using the

pdf in (11), the mean of d̃i,j is given by

E[d̃i,j ] = C di,j , where C = exp

[
1
2

(
ln(10)

10
σdB

n

)2
]

. (28)

A bias-reduced MLE,

θ̂R = arg min
n∑

i=−m+2

∑
j∈H(i)

(
ln

d̃2
i,j

C2d2
i,j

)2

(29)

is preferred. The bias reduction has been shown to improve estimator performance in simulations

and in the testbed experiments presented in Section VII.

However, even with the reduction there is bias in the coordinate estimates. Consider m = 4

and n = 1. Place the reference devices at the corners of a 1 m by 1 m square and the blindfolded

device within the square. This is the case for which we calculated the CRB in Fig. 2. We

calculate via simulation the bias norm of x̂1 and display it in Fig. 3. The bias is high near the

edges of the square area.

The gradient of the bias can be used to calculate the achievable variance of the biased estimator

[10]. Fig. 3 shows that the bias is changing sharply at the corners of the square, and in fact, the

simulated bias gradient norm is almost equal to 1 at the corners. Intuitively, this matches the

multiplicative nature of the MLE in (29), which has a cost proportional to [ln(d̃2
i,j/C

2/d2
i,j)]

2.

For example, the cost of positioning the devices such that d2
i,j = 2d̃2

i,j is the same whether d̃i,j is

very small or very large. But if d̃i,j is very small, then the estimator has very little freedom (in

terms of area) to position device i with respect to device j. In the limit, as blindfolded device

1 approaches reference device i, d̃1,i → 0, and the MLE will locate device 1 on top of device j.

In this case, we expect the variance of the MLE to approach zero, even though the CRB for an

unbiased estimator is greater than zero (as shown in Fig. 2(a)). This is the effect of the high

(close to 1) bias gradient norm at the corners of Fig. 3.

Note that the bias of the MLE is zero near the center of the square. As a rule of thumb for

n > 1, the MLE generally has low bias for blindfolded devices near the center of their neighbors.

VI. Channel Measurement Experiment

Multipoint-to-multipoint (M2M) wideband channel measurements are conducted at the Mo-

torola facility in Plantation, Florida in order to provide an example of the errors that the MLEs
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Fig. 3. Simulated bias gradient norm of x̂1 calculated from (29) for the RSS case with n = 1 and m = 4 with

reference devices placed in the corner of a 1m by 1m square area.

Fig. 4. Photo of measurement area looking above cubicle walls.

presented in the previous section would see in an indoor office environment. The measurement

area is a 14m by 13m area partitioned by 1.8m high cubicle walls, with hard partitioned of-

fices, external glass windows and cement walls on the outside of the area. There are also metal

and concrete support beams within and outside of the area. Offices are occupied with desks,

bookcases, metal and wooden filing cabinets, computers, and test & measurement equipment.

Forty-four device locations are identified and marked with tape.

The measurement system uses a wideband direct-sequence spread-spectrum (DS-SS) transmit-

ter (TX) and receiver (RX) (Sigtek model ST-515). They are operated synchronously using two

Datum ExacTime GPS and rubidium-based oscillators. The transmitter and receiver equipment

are battery-powered and are placed on carts. The TX outputs an unmodulated pseudo-noise

(PN) code signal with a 40 MHz chip rate and code length 1024. The center frequency fc is 2443
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MHz, and the transmit power Pt is 10 mW. The RX records I and Q samples at a rate of 120

MHz (for a total of 240 MSamples / sec) and forwards the samples into a PC for processing.

The TX and RX are triggered by a 1 pulse per second signal from the Datum oscillators. Both

use 2.4 GHz sleeve dipole antennas kept at a height of 1m above the floor. The antennas have

an omnidirectional pattern in the horizontal plane and a measured antenna gain of 1.1 dBi.

A. Measurement Procedure

The Datum oscillators at the TX and RX are carefully synchronized throughout each mea-

surement day. After an initial GPS synch, GPS is disconnected and the rubidium oscillators

provide very stable 1 pps signals. The frequencies of the two rubidium oscillators are off very

slightly, thus the 1PPS signals drift linearly with time. The actual rate of change is on the order

of nanoseconds per hour and is accurately determined with periodic time calibration measure-

ments. The result of the linear behavior of the rubidium oscillators and the time calibration

measurements is that, given the time-of-day of any particular RX measurement, the effect of the

oscillator drift can be cancelled. A time base with accuracy of approximately 1-2 ns is achieved.

For the M2M measurements, the channel between each pair of device locations is measured.

First, the TX is placed at location 1 while the RX is moved and measurements are made at

locations 2 through 44. Then the TX is moved to location 2, as the RX is moved to locations 1

and 3 through 44. At each combination of TX and RX locations, the RX records five wideband

channel measurements for averaging purposes. A total of 44*43*5 = 9460 wideband channels

are measured. Both TOA and RSS are estimated as described in Section III. In post-processing,

the calibration corrections are made. Then, averaging is done using the five measurements taken

with the RX at i and the TX at j. Due to reciprocity, these are averaged with the five measured

with the RX at j and the TX at i. The TOA measurements Ti,j are thus the arithmetic mean of

the 10 measured TOAs. Due to the log-normal distribution of the RSS measurements, Pi,j and

Pj,i are set to the geometric mean of the 10 wideband received power measurements.

B. Measurement Results

First, the assumption about the log-normal distribution of the RSS error is verified. As shown

in Fig. 5, the RSS measurements matched the model in (10) with n = 2.30, and σdB = 3.92

dB. The reference distance d0 was assumed to be 1m. The low path loss exponent is attributed

to the fact that many measured channels were obstructed only by cubicle partitions, which do
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not cause much shadowing loss. In addition, reflections from the ceiling see few obstructions

since cubicle walls are only 1.8m high. The low variance seems to predominantly be a result of

the homogeneity and small size of the measured cubicle area. The results are similar to some

reported in [19]. The quantile-quantile plot in Fig. 6(a) compares the empirical distribution of

Zi,j (dB) with a Gaussian distribution. It shows a close fit between the -2 and +2 quantiles,

although at the tails it is heavier than the Gaussian distribution.

The RSS measurements are input to the MLE in (29) and the estimated device locations are

compared to the actual locations in Fig. 8(a). The RMS location error over all 40 blindfolded

devices is 2.30m. Notice that the devices close to the center are located more accurately than the

devices on the edges. Devices 11 and 12 have especially high error because they are estimated

to be far away from the deployment area. This is expected, due to devices at the edges having

fewer neighbors to aid in their location estimate. To show that the devices close to the center

of the network have the best location estimates, we plot in Fig. 7(a) the average location error

vs. distance from a device to its nearest reference device. The devices in the center will have the

furthest distance to the nearest reference device. Thus Fig. 7 shows that the error decreases as

distance from the nearest reference device increases.

The empirical distribution of TOA estimation error, T̂i,j − Ti,j (ns), is also compared to the

Gaussian distribution and found to be heavy-tailed, as shown in Fig. 6(b). The estimation error

has a mean of 10.9 ns and a σT = 6.1 ns. The mean is subtracted out, and the resulting unbiased

estimated TOA is input to the MLE in (26). The location estimates are shown in Fig. 8(b). The

performance using TOA ranging is better than with RSS ranging - the RMS location error in

this case is 1.15m.

To verify the CRB, we would need several measurement campaigns in different office areas

but with the same device geometry, as discussed in Section IV. Due to resources and time,

such a verification could not be conducted. Nevertheless, it is interesting to report the CRB for

the measured network. For the RSS and TOA cases, the square root of the trace of the CRBs,(∑40
i=1 σ2

i

)1/2
, are 0.76m and 0.69m, respectively.

VII. Testbed Experimentation

For further testing of relative location estimation and to provide an easy means for M2M radio

channel data collection, we developed and fabricated at Motorola Labs a testbed of 12 prototype

wireless sensor devices. These devices operate in a peer-to-peer mode and measure received
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measurements. Data from 40 blindfolded devices are grouped into 4 bins.
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Fig. 8. True (•#T) and estimated (∇#E) location using (a) RSS and (b) TOA measurements for 40 blindfolded

devices. High and low errors are indicated by dark and light gray text, respectively. Four reference devices (X)

are near the corners of the area.

power as described in Section III. Each device’s TX power level and RSS sensor characteristic

was measured before deployment of the testbed. The devices operate in the 900-928 MHz band

(allocated for ISM use in the US) and can be set to one of eight center frequencies within

the band. The separation between the 8 frequencies is approximately equal to the coherence

bandwidth of the channel (∼ 4 MHz). The devices are narrowband using FSK with a 50 kHz data

rate. While one device transmits a packet, its neighbors measure the RSS. Packet transmissions

are infrequent and packets are short, thus the channel is almost always silent. Devices are

asynchronous and use a carrier-sense multiple access (CSMA) protocol to prevent collisions.
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Thus receiver measurements are not affected by multi-user interference in this testbed. Every two

seconds, each device creates a packet of measured RSS data and transmits it to a central ’listening’

device. The listening device uploads the data to a processing algorithm running on a laptop

computer. The algorithm has access to the measured transmit power and receiver characteristic

of each device in the network and thus can determine the path loss values accurately. The

algorithm stores the ranges for each pair of devices, each frequency that was measured, and each

measurement over time.

The algorithm first averages the measurements. Time averaging is set to average the most

recent four RSS measurements. Frequency averaging across the 8 center frequencies reduces the

small-scale (frequency selective) fading effects. Reciprocal channel averaging helps to reduce

any device calibration errors that might exist. When the locations of the reference devices are

input into the computer, the algorithm uses the averaged RSS measurements as input to the

bias-reduced MLE of (29). The maximum of the likelihood equation is found using a conjugate

gradient algorithm, which takes less than one second on the Pentium laptop. More than 60

pair-wise ranges are received by the laptop each second, and an updated location estimate is

calculated each second. The location estimates for the blindfolded devices are displayed in real

time on a map using a Visual Basic GUI. Thus real time tracking of slow movement (eg., walking)

is possible.

Note that an estimate of the path loss exponent must be entered into the algorithm. However,

the testbed of wireless devices can also serve as a quick and accurate channel characterization

system. When all of the device locations are known and entered into the computer, the algo-

rithm uses the path loss vs. path length data to estimate the path loss exponent, npl [7]. With

12 devices doing pair-wise path loss measurements across 8 frequencies, the algorithm uses 880

measurements to characterize the channel in the area of deployment. During the testbed experi-

ments, we first use the testbed to estimate the path loss exponent, then remove the coordinates of

the blindfolded devices from the computer and operate the relative location estimation algorithm

using the estimated npl. In the next sections, the results of two such experiments are presented.

A. Parking Lot Area

Testbed devices are placed in a 9 m by 9 m area in a 3 m grid in an empty area of the parking

lot at the Motorola facility in Plantation, Florida, as seen in Fig. 9. The devices are kept at a

height of 0.35 m above the ground, to keep the devices both above the ground plane and visible

October 3, 2002 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 22

Fig. 9. Parking lot testbed experiment. Devices are located on top of 16 upside-down recycling bins.
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Fig. 10. Actual blindfolded device locations (T) and relative location estimates (R) for the parking lot test,

showing a 1.02 meter RMS location error. Reference device locations are indicated with an ’x’.

to drivers. One side of the test area borders a wooded area. The path loss exponent is estimated

to be 3.2. Four reference devices are placed at the corners of the area, and 7 blindfolded devices

are placed in the grid. Devices record pair-wise ranges and transmit them back to a laptop

computer, which estimates their location coordinates. The blindfolded devices are then moved

to different positions in the grid for a new trial. 16 trials are run. The RMS location errors for the

individual trials range from 0.9 m to 2.4 m. Overall, the RMS location error is 1.70 m. However,

by moving 7 blindfolded devices around between positions, we record enough spot-to-spot ranges

to see what would happen if there were 12 blindfolded devices, one in each spot on the grid. In

an off-line calculation, we use the recorded range data to calculate what would have happened
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in this case, and we find that the RMS location error would have been 1.46 m. Similarly, if

we extended the duration of the time averaging from 4 ranges to 32 ranges, we would see the

location estimates shown in Fig. 10, and we would reduce the RMS location error to 1.02 m.

We can see that in this environment, where we expect that shadow fading is not severe, time

averaging is effective at improving location estimates.

B. Residential Home

Fig. 11. Map of the Perkins home which shows how the grid of devices span several rooms.

Fig. 12. Residential home testbed experiment. Three devices are shown (one is hidden between the couch and

the table). Neiyer supervises the operation of the location algorithm on the laptop.

The performance of the system is tested in the Perkins home, a single-family, ranch-style house

in Sunrise, Florida (Fig. 11). An identical 9 m by 9 m grid is used in this test, however, the

area spanned across several rooms: office, bedroom, kitchen, dining area, living room, outdoor

patio, and Gator room. The obstructions, some shown in Fig. 12, include the indoor walls,

furnishings, and appliances, and exterior walls and windows. Here, there are four devices used
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Fig. 13. Actual blindfolded device locations (T) and relative location estimates (R) for the in-house location

test. Reference device locations are indicated with an ’x’.

as reference devices in the corners of the grid and 8 other devices used as blindfolded devices. In

this environment, the estimated path loss exponent is 4.0. In the 16 individual trials, the RMS

location errors range from 1.0 m to 2.7 m, and the overall RMS error is 1.9 m. If all device

ranges are used together, as described in the previous section, we see the results shown in Fig.

13, in which the RMS error is 2.1 m. This error doesn’t reduce significantly when the duration of

time-averaging is increased from 4 to 32 ranges. The error is predominantly due to device #15,

which had an error of 4.5 m. As shown in Fig. 11, device #15 is actually 3 m away from device

#14. There is significant shadowing caused by three interior walls that form the office closet

and master bedroom closet that lie in between two devices (fading of Z14,15 = −22 dB in (10)),

and as a result the range estimate between the two is found to be 10.5 m. Unfortunately, this

shadowing can’t be countered by time or frequency averaging. To its credit, even though a 22

dB channel modeling error existed in the network, the location error of device #15 was limited

to 4.5 m.

VIII. Conclusions

The motivation of this article has been to show with what accuracy wireless sensor networks

can estimate sensor locations. The results have been promising. First, location estimation

variances in ad hoc networks are shown to decrease as more devices are added to the network.

Next, CRBs can be derived for simple examples, and readily calculated for arbitrary numbers

and geometries of devices. MLEs have been presented and used in several real channels, both
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for TOA and RSS measurements. Sensor location estimation with about 1 m RMS error has

been demonstrated using TOA measurements. However, despite the reputation of RSS as a

coarse means to estimate range, it is also able to achieve an accuracy of about 1 m RMS in a

testbed experiment. Fading outliers can still impair the RSS relative location system, implying

the need for a robust estimator. The results presented in this article should help wireless sensor

networking researchers determine if the accuracy possible in relative location estimation can meet

the requirements of their application.
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Appendix

A. CRB for Network Self-Calibration

The diagonal elements, fk,k, of F given in (4) are given by

fk,k = E

[(
∂

∂θk
l(X|θ)

)2
]

= E




 ∑

j∈H(k)

∂

∂θk
lk,j




2



fk,k =
∑

j∈H(k)

∑
p∈H(k)

E

[(
∂

∂θk
lk,j

)(
∂

∂θk
lk,p

)]

Since Xk,j and Xk,p are independent random variables, and

E

[
∂

∂θk
lk,j

]
= 0, (30)

the expectation of the product is only nonzero for p = j. Thus fk,k simplifies to the k = l result

in (5). The off-diagonal elements similarly simplify,

fk,l = E




 ∑

j∈H(k)

∂

∂θk
lk,j




 ∑

p∈H(l)

∂

∂θl
ll,p






fk,l =
∑

j∈H(k)

∑
p∈H(l)

E

[(
∂

∂θk
lk,j

)(
∂

∂θl
ll,p

)]

(31)

Here, due to independence and zero mean of the two terms, the expectation of the product will

be zero unless both p = k and j = l. Thus the k �= l result in (5).
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B. Proof of Theorem 1

To prove Theorem 1, partition G into blocks:

G =


 Gul gur

gll glr


 (32)

Here, Gul is an n × n matrix, gur = gT
ll are n × 1 vectors with kth element,

gur(k) = IH(n+1)(k)E
[(

∂

∂θk
lk,n+1

)(
∂

∂θn+1
lk,n+1

)]
(33)

where H(n + 1) ⊆ {−m + 1, . . . , n} is set of devices with which device n + 1 makes pair-wise

observations. glr is the scalar Fisher information for the n + 1st parameter,

glr =
∑

j∈H(n+1)

E

[(
∂

∂θn+1
ln+1,j

)2
]

. (34)

Let ln(X|θn) be the joint log-likelihood function as defined in (3) for the n parameter case and

ln+1(X|θn+1) be the joint log-likelihood function for the n + 1 parameter case. For the n + 1

parameter case,

ln+1(X|θn+1) =
n+1∑

i=−m+1

∑
j∈H(i)

j<i

li,j

=
n∑

i=−m+1

∑
j∈H(i)

j<i

li,j +
∑

j∈H(n+1)

ln+1,j

= ln(X|θn) +
∑

j∈H(n+1)

ln+1,j. (35)

Looking at the 2nd partial derivatives of
∑

j∈H(n+1) ln+1,j w.r.t. θk and θl, where k, l ≤ n, since

ln+1,j is a function only of parameters θn+1 and θj ,

∂2

∂θk∂θl

∑
j∈H(n+1)

ln+1,j =




IH(n+1)(k) ∂2

∂θ2
k
ln+1,k, l = k

0, l �= k
(36)

Eqs. (35) and (36) show that the Gul matrix is different from to the F matrix from (4) only in the

diagonal elements. The off-diagonal elements in Gul equal their counterparts in F, specifically,

[[Gul]]i,j = fi,j∀i �= j. This is clear since (36) is zero for l �= k. The diagonal elements of Gul

each have one additional term compared to their counterparts in F, that is, [[Gul]]k,k = fk,k +hk

where hk is defined as,

hk = IH(n+1)(k)E

[(
∂

∂θk
ln+1,k

)2
]

(37)
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Then, defining h = {h1, . . . , hn}, we have that Gul = F + diag(h). Now, compare the CRB for

the covariance matrix of the first n devices in the n and n + 1 blindfolded device cases, given by

F−1 and [[G−1]]ul, respectively. Here, [[G−1]]ul is the upper left n × n submatrix of G−1, which

can be written

[[G−1]]11 =
{
Gul − gurg

−1
lr gll

}−1
= {F + J}−1 (38)

where

J = diag(h) − gurgt
ur

glr
(39)

Both F and J are Hermitian. We know that F is positive semidefinite. Let λk(F), k = 1 . . . n

be the eigenvalues of F and λk(F + J), k = 1 . . . n be the eigenvalues of the sum, both listed in

increasing order, then if we can show that J is positive semidefinite, then it is known [11] that:

0 ≤ λk(F) ≤ λk(F + J),∀k = 1 . . . n (40)

Since the eigenvalues of an inverse of a matrix are the inverses of the eigenvalues of the original

matrix,

λk

(
{F + J}−1

)
≤ λk(F−1),∀k = 1 . . . n (41)

If in addition, we can show that trJ > 0, then trF + J > trF, and therefore
∑n

k=1 λk(F + J) >∑n
k=1 λk(F). This with (40) implies that λj(F + J) > λj(F) for at least one j ∈ 1 . . . n. Thus in

addition to (41),

λj

(
{F + J}−1

)
< λj(F−1), for at least onej ∈ 1 . . . n (42)

which implies that

tr
(
{F + J}−1

)
< trF−1 (43)

which shows that the mean of the bounds on the unbiased estimator variances for the n param-

eters has strictly decreased.

1) Showing positive semidefiniteness and positive trace of J: First, we show that the diagonal

elements of J are all non-negative. These elements, [[J]]k,k are given by

[[J]]k,k = hk − g2
ur(k)
glr

. (44)

If k /∈ H(n + 1) then hk = 0 and gur(k) = 0, thus the diagonal element equals zero. Otherwise

if k ∈ H(n + 1) then the diagonal elements are,

[[J]]k,k = E

[(
∂

∂θk
ln+1,k

)2
]
−

E2
[(

∂
∂θk

ln+1,k

) (
∂

∂θn+1
ln+1,k

)]
∑

j∈H(n+1) E

[(
∂

∂θn+1
ln+1,j

)2
] . (45)

October 3, 2002 DRAFT



IEEE TRANSACTIONS ON SIGNAL PROCESSING 28

Because of the reciprocity condition (2) of Theorem 1, the numerator of the fraction is equal to

the square of the j = k term in the sum in the denominator. Thus

[[J]]k,k ≥ E

[(
∂

∂θk
ln+1,k

)2
]
− E

[(
∂

∂θk
ln+1,k

)(
∂

∂θn+1
ln+1,k

)]
= 0 (46)

The equality will hold if k is the only member of the set H(n+1). If H(n+1) has other members,

then [[J]]k,k will be strictly greater than zero. This proves that with at least two members in the

set H(n + 1), trJ > 0.

Next, we show that J is diagonally dominant [11], i.e.,

|[[J]]k,k| ≥
n∑

j=1,j �=k

|[[J]]k,j | (47)

|hk − g2
ur(k)
glr

| ≥
n∑

j=1,j �=k

|gll(k)gll(j)|
glr

(48)

Because have shown the diagonal elements are ≥ 0 we can remove the absolute value from the

left hand side and add g2
ur(k)
glr

to both sides. Next, glr > 0 since H(n + 1) �= ∅, so multiply both

sides by glr. Then we must prove that

glrhk ≥ |gll(k)|
n∑

j=1

|gll(j)| (49)

We start the proof by noting that if k /∈ H(n + 1) then hk = 0 and gll(k) = 0, and the equality

holds. If k ∈ H(n + 1), then

glrhk = E

[(
∂

∂θk
lk,n+1

)2
] ∑

j∈H(n+1)

E

[(
∂

∂θn+1
ln+1,j

)2
]

(50)

Because of the reciprocity condition (2) of Theorem 1,

E2

[(
∂

∂θk
lk,n+1

)2
]

= E2
[(

∂

∂θn+1
lk,n+1

)(
∂

∂θk
lk,n+1

)]
(51)

Thus

glrhk =
∣∣∣∣E

[(
∂

∂θn+1
lk,n+1

)(
∂

∂θk
lk,n+1

)]∣∣∣∣ ∑
j∈H(n+1)

∣∣∣∣∣E
[(

∂

∂θn+1
lj,n+1

)(
∂

∂θj
lj,n+1

)]∣∣∣∣∣
= |gll(k)|




∑
j∈H(n+1)

j≥1

|gll(j)| +
∑

j∈H(n+1)
j≤0

∣∣∣∣∣E
[(

∂

∂θn+1
lj,n+1

)(
∂

∂θj
lj,n+1

)]∣∣∣∣∣

 (52)

Since gll(j) = 0 if j /∈ H(n + 1) we can change include in the first sum all j ∈ 1 . . . n. The first

and second sums in the brackets correspond to the terms due to observations with blindfolded
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and reference devices, respectively. Thus

|glrhk| ≥ |gll(k)|
n∑

j=1

|gll(j)| (53)

which is what we needed to prove. If device n + 1 makes a pairwise comparison with atleast

one reference device, the inequality in (53) will be strictly greater than zero. If it makes no

observations with reference nodes, then the equality in (53) would hold.

Diagonal dominance implies J is positive semidefinite. Strict diagonal dominance, which would

hold if H(n+1) ⊃ 1 . . . n (device n+1 makes observations with all blindfolded devices and atleast

one reference device), implies J is positive definite. Positive definiteness assures that the CRB

matrix will strictly decrease. The looser positive semidefinite condition implies the inequality in

(41).

C. CRB for Location Estimation

For the elements of FR, we first explicitly state the log likelihood function for the observation

between device i and j,

li,j = log


 10√

2πσ2
dB log 10

1
Pi,j


− b

8

(
log

d2
i,j

d̂2
i,j

)2

. (54)

Recall that di,j =
√

(xi − xj)2 + (yi − yj)2. Thus taking the partial of li,j w.r.t. xj

∂

∂xj
li,j = −b

(
log

d2
i,j

d̃2
i,j

)
xj − xi

d2
i,j

, (55)

Note that ∂
∂xj

li,j = − ∂
∂xi

li,j, thus the log-normal distribution of RSS measurements meets con-

dition (2) of Theorem 1. The second partial derivatives will differ based on whether or not i = j

and if the partial is taken w.r.t. yi or xi. For example,

∂2

∂xj∂yj
li,j = −b

(xi − xj)(yi − yj)
d4

i,j

[
− log

(
d2

i,j

d̃2
i,j

)
+ 1

]

∂2

∂xj∂yi
li,j = −b

(xi − xj)(yi − yj)
d4

i,j

[
log

(
d2

i,j

d̃2
i,j

)
− 1

]
(56)

All of the 2nd partial derivatives depend on the term, log(d2
i,j/d̂

2
i,j), which has an expected value

of zero. We use these simplified terms in (5) for each block of the FR matrix given in (17),

simplifies considerably and the final FIM takes the form in (19). For the TOA case,

li,j =

(
− log

√
2πσ2

T − (Ti,j − di,j/c)2

2σ2
T

)
(57)
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taking the partial w.r.t. xj

∂

∂xj
li,j = − 1

σ2
T

(
c Ti,j

di,j
− 1

)
(xj − xi), (58)

Note that in the TOA case we also have ∂
∂xj

li,j = − ∂
∂xi

li,j, meeting condition (2) of Theorem 1.

Two examples of the second partial derivatives are given by,

∂2

∂xj∂yj
= − 1

σ2
T c2

cTi,j

di,j

(xi − xj)(yi − yj)
(xi − xj)2 + (yi − yj)2

∂2

∂xj∂xi
= − 1

σ2
T c2

[
cTi,j

di,j
− 1 − cTi,j

di,j

(xi − xj)2

d2
i,j

]

The 2nd partial derivatives depend on the term, cTi,j/di,j, which has an expected value of 1.

These simplified terms for each block of the FR matrix take the form in (20).
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