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CHAPTER 1

Introduction

1.1 Thesis Overview

With the advent of knowing the complete genome sequence for many organisms,
we now know where each protein-encoding gene is in the human genome. However,
the proper function of a cell depends on eliciting appropriate gene expression, in
the amount, tissue and time of production of the messenger RNA that encodes the
proteins transcribed from every gene. 98% of mammalian genomic sequences do
not encode proteins. Previously this non-coding DNA was thought to be “junk”;
however, many recent examples in the literature have now shown that a significant
portion of this non-coding DNA is involved in the precise regulation of gene expres-
sion.

This thesis deals with identifying these critical regulatory elements within the
functional non-coding DNA by using computational approaches, specifically using
modern methods of statistical learning that can incorporate many different types of
experiments - from DNA sequence to gene expression chips to protein-protein and
protein-DNA interaction data - that are currently being generated in thousands of
high throughput experiments.

Eukaryotic gene expression is regulated by the recruitment of TF (transcription



factor) proteins to the proximal promoter, close to a gene’s transcriptional start site,
as well as to long-range regulatory elements (LRE). LREs can lie several hundred
thousands of base-pairs (kilobase-pairs) away from the actual gene. LREs play im-
portant roles in the spatial (tissue-specific) and temporal expression of any gene —
and analysis of LREs can be informative for the study of key biological processes,
like organ development and disease progression. Current methods to prospectively
identify LREs are based on the analysis of inter-species conservation (suggesting evo-
lutionary selection) along the genome sequence and then experimentally examining
the role of each conserved sequence element (CSE) in vivo. Because of the large
number of such conserved non-coding sequence elements, employing such unselective
approaches to identify tissue-specific LREs is experimentally laborious, very costly
and unscalable to large genomic loci.

The primary goal of this thesis is to generate a small list of high confidence candi-
date LREs for any given gene, using the large amount of data that has been generated
from high throughput experiments - with the purpose of accelerating discovery and
validation. Though the genes considered in this work are Gata2 & Gata3, the meth-
ods that we develop are general and can be extended to any gene of interest. The
Gata2 & Gata8 genes are involved in the development of several important organ
systems, such as the urogenital system and central nervous system.

Below, I summarize the main contributions of this thesis.

1. Transcriptional regulatory networks: As suggested above, the recruitment of
transcription factors to an LRE that will in turn regulate the expression of
a target gene (e.g. Gatad) implies the presence of an influence between the
“effector” TF (a TF that binds to the LRE) and Gata3. Biologists are acutely

interested in such influence networks, to look for the presence of such TF binding



site sequences in each CSE, thereby increasing the probability of that CSE being
a regulatory element. However, the inference of TF effectors has had two main
challenges - previous methods have modeled the dependency between TF and
their target-gene as a static phenomenon. Cell processes are, on the contrary,
strongly dynamic. Additionally, resolving the direction of influence is an equally

important component to delineate the true transcriptional effectors.

In this problem, based on data from gene expression chip (microarray) time
series for early development, we propose time-varying and context-specific net-
works as a framework to model stage-specific transient gene influences. A time-
varying network as a model for transcriptional influences has not been examined
in the literature so far; such a model is biologically relevant as biological network

relationships are rarely ubiquitously active (Chapter 2).

Next, to resolve the direction of dependence between the TF effector and the
target gene, we derive a metric to find directed dependency based on gene
expression. Inspired from information theory, “directed information” is a new
solution in such problems. This metric enables one to examine directed relation-
ships between specific network components, thereby improving on the current
state of the art. This metric has strong performance characteristics in spite
of the intrinsic non-linearity of gene expression, and outperforms several other
metrics that make strong assumptions on the nature of expression data. It is
a metric that can resolve direction from highly non-linear gene expression data

(Chapter 3).

. Data Fusion: Given the diversity of genomic data sources that can be poten-

tially mined to identify putative TF effectors, we seek to integrate data from



various modalities (sequence, expression, protein-interaction). We have devel-
oped a novel framework to statistically co-embed gene relationships from each
modality onto a common space. Such a framework makes it possible to study
the combined effect of relationships across different data sources, enabling visu-
alization, interpretation and discovery of high probability LREs. No application
for co-embedding data, till recently a purely mathematical problem, has been

demonstrated for computational biology before (Chapter 5 and 6).

3. Another perspective to understand the nature of regulatory regions is to exam-
ine if their genomic sequences have any specific features. These features can
be the over-occurrence of certain key patterns, called “sequence motifs”. The
availability of experimental DNA sequence data that underlies spatio-temporal
expression in some genes enables the design of an approach to discover “motifs”
that confer such expression. Using a neutral set of sequences (those that do
not confer expression in experiment), we developed a learning paradigm to find
6-nucleotide motifs that can discriminate tissue-specific elements from neutral
ones. The identified sequence motifs have a fairly high predictive power for
potential specificity of tissue expression and are being used to design statisti-
cal classifiers that predict the specificity of new sequences. I have developed
two new methodologies - one based on random forest classifiers and the other
based on adapting the directed information criterion for feature selection, for
this problem (Chapter 4, 5). Such a dataset can be further processed to un-
derstand any language-level features (grammar of transcription factor binding,

spacing etc) using advanced tools such as structured prediction.

4. Graph Mining: To obtain a mechanistic insight into transcriptional regulation,



we explore the structure of the interaction-graph between TFs at the promoter
and those at the enhancer. These graphs are derived from protein interaction
databases. Our analyses indicate that several graph metrics, such as centrality,
density, heterogeneity are indicative of the cohesive strength that exists between
the enhancer and promoter, during distal interaction. We observe that, the
higher the cohesive strength of interaction between the TF's, the stronger the

chance that the candidate element is truly regulatory (Chapter 5).

5. In-vivo experiments are necessary to validate computational predictions. To
experimentally validate our model and results, we identified possible LREs from
candidate genomic sequences using the integrative model developed here. These
regions were cloned upstream of the Gata3 promoter and assayed for their
tissue- and temporally-regulated expression in transgenic mice. This has led
to the discovery of a new inner-ear (by Dr. Kim Lim) and pyloric (by Dr. T.
Moriguchi) enhancers for Gata3. Additionally, the behavior of Gata2 and Gata3
enhancers with known spatio-temporal gene expression has also been reconciled

through the integration of diverse data sources (Chapter 5, 6).

1.2 Long-range Transcriptional Regulation in Gata2/Gata3

Transcription is the process of generation of messenger RNA from the DNA tem-
plate (or gene). Transcription is initiated by the recruitment of RNA Polymerase
IT, and regulated by several cis- and trans- elements. These cis- elements, also re-
ferred to as enhancers/silencers/insulators are DNA sequences where trans-activating
factors (transcription factor proteins) are recruited during formation of the transcrip-
tional machinery that is responsible for transcriptional initiation and elongation. It

has been observed that the precise spatio-temporal expression of genes is exquis-



itely regulated at these promoter proximal or distal enhancers, some of which can lie
hundreds of kilobases from the transcriptional start site. Hence the identification of
these enhancers is critical to understanding gene function and role. Since different
enhancers are responsible for conferring expression in different tissues, their precise
localization and characterization is crucial to the understanding of fundamental bi-
ological processes such as disease and development. In this work, we focus on the
regulation of the Gata2 and Gata? genes, which have roles in urogenital, cardiac,
hematopoietic, and neural development.

The GATA family of transcription factors (GATA-1 through -6) play critical but
diverse roles in biological processes that functionally contribute to mammalian de-
velopment. Research in our laboratory focuses on the characterization of cis and
trans elements that specify how the Gata2 and Gata3 genes are controlled in in-
dividual tissues. Here, we have analyzed the molecular mechanism(s) that regulate
the expression of Gata3 in the urogenital (UG) and sympathetic nervous /sympa-
thoadrenal systems (SAS). The Gata3 gene is prominently expressed in the UG/SNS
and is centrally implicated in the control of noradrenergic differentiation ([15], [19])
and mammalian kidney morphogenesis [198]. However, the mechanism (i.e. cis reg-
ulatory elements and trans-acting factors) by which UG/SAS-specific activation of
Gata? is achieved is not known.

Tissue-specific expression of genes in metazoa is often governed by cis elements
that can lie enormous distances from the structural gene that they regulate ([11],
[211]), but there is no current algorithm for identifying tissue-specific enhancer ele-
ments with high confidence. An approach that has been recently adopted is based
on the identification of DNA sequences that are evolutionarily conserved (conserved

sequence elements or CSEs) between syntenic regions of multiple genomes [7]. Al-



though this strategy usually yields many candidate elements (in fact, too many),
there is no strategy for distinguishing among these for which might be the most
likely to control the activity of a gene in a specific tissue. Furthermore, individually
assaying each candidate CSE for regulatory activity is not a viable experimental ap-
proach (i.e., both too costly and too time consuming). Currently, we are attempting
to extend current bioinformatics approaches to this problem by exploring whether
or not additional insight can be gleaned from genomic resources (expression pro-
files, protein-protein interaction data or phylogenetic studies) to refine the position
of functionally relevant gene regulatory elements. The hypothesis explored in the
thesis is that integration of these under explored genomic features into a sequence
conservation construct should reduce the number of candidate regulatory elements
to a small, high confidence set. We explore using this bioinformatics strategy for
identifying UG /SAS-specific regulatory elements that control both Gata3 and other
kidney/SAS-specific genes.

We recently localized the positions of UG-specific and SA-specific Gata8 enhancer
element(s) on mouse chromosome 2, between positions 9,065,411 and 9,226,186 and
positions 9,226,186 and 9,271,464 respectively (Lim, Moriguchi and Rao, unpub-
lished). A central experimental hypothesis to be tested in this work is that UG-
specific (or SA-specific) Gata8 expression is determined by one or more CSEs lo-
cated within these intervals. Thus our aim has been to localize these UG/SA-
specific gene regulatory element(s) to reveal the molecular basis for Gata3 urogen-
ital/ sympathoadrenal-specific gene regulation, by testing whether CSEs identified
using the bioinformatics strategy are functional. The overall enhancer identification

strategy has two main components.



1.2.1 Part 1

Does examination of known enhancer elements that confer tissue-specific gene ex-
pression reveal useful ‘features’ in the context of available genomic data? Known
enhancer elements associated with genes that have been identified both in our lab-
oratory and others have been examined. Features responsible for conferring tissue
specificity in these enhancer elements were identified by correlating sequence infor-
mation, gene expression and other genomic data available from public repositories
and linking them to the expression pattern they direct (some preliminary work is
reported in ref. [24] with respect to the previously-identified urogenital enhancers
of the Gata2 and Gata3 genes). An integrative classifier that can learn from these
features and distinguish between regulatory and non-regulatory elements has been

designed, and is described in Chapter 5.

1.2.2 Part 2

Which of the candidate conserved sequence elements within two overlapping BACs
direct expression of Gata3 in the UG/SAS? An experimental strategy has been im-
plemented that involves the cloning of candidate CSEs into a vector employing the
Gata? proximal promoter to direct lacZ expression, generating transgenic mice, and
determining whether any individual CSE directs in vivo reporter gene expression in
a pattern that mimics that of endogenous Gata3. This step provides an experimental
validation for the UG/SAS-specific regulatory activity of the high confidence can-
didate CSEs identified in the bioinformatics research aim,that is the subject of this
thesis. This work has been done by Dr. K.C. Lim (for the UGE case) and Dr. T.
Moriguchi (for the SA case) in the Engel Laboratory. This part will be described

subsequently in other work and we will only address the various computational meth-



ods in this thesis. At this point we have been able to achieve a fair discrimination of
enhancers vs. neutral regulatory elements but we face additional challenges in order
to predict the exact tissue-specificity of each identified enhancer. In the last chapter,
we also present some recent analysis on identifying a T-cell specific Gata3 regulatory
element. The experimental component of this project is being completed by Dr. S.

Hosoya-Ohmura and Dr. T. Kuroha of the Engel laboratory.

1.3 Rationale, motivation, preliminary data

The SAS, and the adrenalin/noradrenalin biosynthetic pathway play a central role
in the pathogenesis of hypertension in humans as well as in rodent models. The zinc
finger transcription factor Gata3 plays a vital role in regulating two essential genes of
the noradrenalin biosynthetic pathway: tyrosine hydroxylase (TH) and dopamine-/3
-hydroxylase (DBH) ([19], [22] and T. Moriguchi, personal communication). Gata3
germ line mutant embryos have reduced accumulation of TH and DBH and conse-
quently suffer mid-embryonic demise as a result of noradrenalin insufficiency ([15],
[19]). Gata3 expression persists in the SAS from early embryonic stages in the sym-
pathetic chain and adrenal chromaffin cells, suggesting a life long contribution of
Gata3 to catecholamine biosynthesis and the control of sympathetic tone ([4], [11],
[15], [19]). Gata3 contains two steroid hormone receptor-like zinc fingers that di-
rectly bind to DNA [27], and recognize the consensus motif GATA that is highly
conserved amongst all six members (GATA-1 through -6) of this multigene family
[10] .

The Gata3 gene is also expressed during nephrogenesis starting from the ex-
pression in the Wolffian duct. Later, in the metanephros, it is expressed in the

ureteric bud and is involved throughout development to give rise to the entire col-
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lecting system of the developing kidney. Gata3 thus plays an important role in the
differentiation program of the kidney [31]. There have also been detailed studies
that point out the critical role of Gata3 on nephrogenesis in a dosage-dependent
manner. Gata? loss leads to severe abnormalities in the developing kidney and is
reminiscent of the kidney deficiency phenotype associated with the HDR syndrome

(hypoparathyroidism, deafness, renal dysplasia).
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Figure 1.1: Localization of Gata3 sympathoadrenal and kidney enhancer activity: Gata3 BAC
260A19 confers sympathetic ganglia (SG), adrenal gland (AG, dotted red outline,
arrows) and, at this stage (14.5 dpc), Zukerkandl organ (arrowheads) show beta-
galactosidase staining, while overlapping BAC 294023 does not. However, the re-
gion of overlap between these two BACs confers expression in the mesonephros and
metanephros in the developing urogenital system, and putatively harbors the urogeni-
tal enhancer. (from Dr. T. Moriguchi, Engel laboratory)

Our goal in initiating these studies was to identify the regulatory elements un-

derlying transcriptional regulation of Gata? in the UG and SAS. This has been a
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daunting experimental task, since our lab showed more than 6 years ago that the
UG and SAS-specific element(s) lie more than 400 kbp 5’ or 200 kbp 3’ to the Gatas
structural gene on Mm chromosome 2 [11]. The Engel laboratory has recently devel-
oped a strategy using bacterial artificial chromosomes (BACs), each encompassing
approximately 200 kbp of genomic sequence, to scan the genome in the vicinity of
any gene for potential regulatory activity ([12], [204]). We have very recently local-
ized the position of at least one such distal regulatory element on Mm chr2, between
genome positions 9226186 and 9271464, which appears to harbor SAS-specific ac-
tivity (Moriguchi and Rao, unpublished). One BAC, RP23-260A19, is capable of
directing lacZ reporter activity in the adrenal gland and sympathetic ganglia, the
two main sites of SAS activity, while an overlapping BAC, RP23-294023, does not
(Fig. 1.1), thus localizing Gata3 SA activity to a region between +521 and +566 kbp
3’ to the Gatad structural gene. (There are no other SA-specific genes anywhere near
this region of the genome). Similarly, the ~ 150kb overlapping region between BACS
RP23-260A19 and RP23-294023 (i.e., chr2: 9065411-9226186), which is +566kbp to
+725kbp has UG specific activity (Fig. 1.1).

Without further defining the potential enhancer elements within this 46 kbp (or
150kbp) region, we would need to experimentally test each candidate element. A
candidate element is defined as any sequence that is under positive selective pressure
(i.e., does not mutate) and thus is evolutionarily conserved. The identification of
conserved sequence elements (CSEs) lying in this 46 kbp (or 150kbp) is the first step
towards defining an SAS-specific (or UG-specific) enhancer element. Fig. 1.2 (red
peaks) defines the CSEs (with more than 70% sequence conservation of length >
100 bp) within this 46 kbp interval in the mouse (Mm) relative to Human (Hs), Rat

(Rn), and Dog (Cf). None of these are conserved in the pufferfish (Fugu), which
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does have a sympathetic nervous system, but not adrenal glands or chromaffin cells,
used as a control genome sequence. Fig. 1.4 similarly defines the location of the
CSEs which does have UG-specific activity. At least 120 CSEs are found within this
46 kbp (> 200 CSEs in the 150kbp) interval. To reduce the number of candidates
to a significantly smaller, high confidence subset, other complementary approaches

will need to be employed, which can then be finally explored empirically.

X 3 4 5 6 7 8 10 9 14 1 13 12 15 16 17 18 19

Figure 1.2: Conserved Sequence Elements in a cross-genome comparison between human, mouse,
rat, dog and pufferfish (generated using hitp://www.ecrbrowser.dcode.org). Each red
region is a candidate enhancer.

A number of computational algorithms to identify enhancers on the basis of con-
servation studies and transcription factor binding site (TFBS) clustering have been
developed and applied, and a subset have been shown to harbor the anticipated
in vivo regulatory activity [7]. Most methods identify regulatory sequences from
interspecies sequence comparisons; such CSEs are empirically defined as regions of
high (typically >85%) DNA sequence identity. The intrinsic assumption is that this
conservation reflects conserved regulatory function. Within the regions of strongest

conservation, a search for TFBSs from a set of co-regulated genes involved in the bio-
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Figure 1.3: Phylogenetic Shadowing of four mammalian genomes to highlight some CSEs under
selective pressure(red regions)

logical process of interest usually reveals several candidates. Although simple, these
methods have been effective in identifying some mammalian enhancers ([7], [215]).
Despite sporadic successes, the efficacy of comparative sequence analyses coupled to
binding site cluster detection in regulatory sequence discovery is still unclear, espe-
cially in the context of attempting to define organ-specific gene regulation elicited
by enhancers lying far from the gene that they control. However, recent results from
the ENCODE project have revealed at least one interesting observation — functional
regulatory elements are not necessarily highly conserved in primary sequence [188].
Thus, the threshold for conservation might need to be lowered to prospectively iden-
tify these potential regulatory elements, leading to an increase in the false positive
rate. One way to ensure improved detection is the principled integration of other
data sources that could supplement sequence information.

The hypothesis we will explore in this thesis is: given the vast amount of diverse

genomic data that is currently available, is it possible to glean additional informa-
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tion (features) about potential regulatory activity, to reduce a large set of candidate
elements to a smaller, higher confidence set? Publicly available genome data such
as microarray expression, protein-protein interaction maps, tissue expression and
phylogenetic information could be very useful in identifying features relevant to the
identification of such regulatory elements. We present some case studies for under-
standing the architecture of kidney-specific enhancers of the Gata2 and Gata3 genes
based on these diverse data sources ([198], [204], [24]). In this work, we explored
each of these data repositories (Chapters 2-4) and attempted to integrate them into
a single strategy (Chapter 5) to aid in the identification of high confidence candidate
regulatory elements. We anticipate that this strategy will lead to the development
of an approach that will be applicable to any gene for the purpose of identifying the

underlying transcriptional control elements.

1.4 Research Outline

In the first part of this thesis, we will explore the question: does examination
of well characterized enhancer elements that control tissue-specific gene regulation
reveal any interesting ‘features’ in the context of available genomic data?

Transcriptional regulation in eukaryotes is a complex process involving the re-
cruitment of multiple transcription factors (TFs) to the basal promoter, as well as
to distal regulatory cis elements. These promoter and enhancer elements commu-
nicate by looping the DNA between them, over large distances, to drive regulation
of the target gene ([2], [1]). These activities are thought to be mediated by pro-
tein:protein interactions that take place between the TFs bound to DNA at the
basal promoter and at the distal enhancer element to form an active transcriptional

complex. Distal elements are evolutionarily selected for function, meaning that they
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are conserved among related species [21]. Several studies have reported the presence
of other sequence features that contribute to the regulatory role of a conserved se-
quence element (CSE), ([205], [20]). Individual TFBSs within CSEs are also under
evolutionary pressure [21]. In many cases, transcription factor binding to the distal
elements is thought to confer tissue-specific expression of a target gene [20)].

In this work, I have assessed the utility of the following genomic ‘features’ in iden-
tifying potential regulatory elements: sequence features (phylogenetic shadowing and
histone-modification potential), transcription factor features (phylogenetically con-
served TFBSs, tissue-specific TFBSs and network linkage) and ontology features. We
have examined multiple, publicly available genomic databases and to extract features
that contribute to the regulatory elements underlying UG /SAS-specific regulation of
Gata3. As an example, the steps that we will follow to define a urogenital/ sympa-
thoadrenal enhancer (UGE/SAE) from among the CSEs within the experimentally

defined interval of 46 kbp (or 150kbp) (Fig. 1.4 and 1.2) is described below.

1.4.1 Sequence features

The DCODE website (http://www.dcode.org) is used to establish the compara-
tive genomic analyses relevant to this work. We initially aligned the Gata3 locus
(Mm chr2:9774937-9795629, and the SA region 521-566 kbp or 566-725 kbp UG re-
gion 3’ to the Gatad translation initiation site) with several annotated genomes. An
appropriate choice of genomes for cross-genome comparison is essential to the iden-
tification of potentially functional elements. Since the sympathetic nervous system
(SAS) functions similarly in human (Hs), mouse (Mm), rat (Rn) and dog (Cf), we
will have used 4 genomes for genome-wide comparisons. For the urogenital function,

comparisons up to Chicken (Gg) have been found to be meaningful [30].
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e Phylogenetic shadowing [21] , a rebirth of phylogenetic footprinting [6] , identi-
fies highly species-conserved sequences within this 46 kbp (or 150 kbp) interval
(> 100 bp with > 60% sequence identity; a fairly low-stringency criterion that
is a useful metric to identify conserved sequences). Fig. 1.3 highlights phylo-
genetic shadowing over this interval, which identifies (in red) regions conserved
across all four genomes (Hs, Mm, Rn and Cf). Along the abscissa, green shad-
ing indicates the position of repetitive sequences that lie in the interval. The
ordinate axis characterizes the degree of conservation between genomes. Each
red region is a potentially important functional regulatory element. The top
three regions, in the order of increasing sequence identity, are labeled 1, 2 and
3. While there are several shorter regions which are also of interest, they are

not well illustrated in the figure because of the large size of the genomic region

that was surveyed.

Figure 1.4: Conserved Sequence Elements in a cross-genome comparison between human, mouse,
rat, dog, chicken and pufferfish (generated using http://www.ecrbrowser.dcode.org).
Each red region is a candidate enhancer.

Fig. 1.5 presents the same analysis for the 150 kb UGE region. There are about
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Figure 1.5: Phylogenetic Shadowing of five mammalian genomes to highlight some CSEs under

selective pressure(red regions)

8 regions that are conserved between human, opossum, rat, mouse , dog, and

chicken and each is a potential UG regulatory region.

An examination of histone modifications at promoter sequences and some long-
range regulatory elements for the ENCODE regions [188] indicate that promot-
ers usually express trimethylated histone H3 lysine 4 residue (i.e. H3K4me3) or
H3 acetylation whereas enhancers undergo H3K4 monomethylation. This yields
two classes of sequences that have different propensities for histone modification
that are amenable to motif discovery approaches outlined below. This is in line
with finding a “histone code” related to enhancer characterization. Though this
is cell-context dependent, we have observed that the motifs identified from such
an approach are fairly discriminatory for nucleosome occupancy and histone
modification. We have built a random forest (RF) classifier that yields high
classification accuracy and has very good receiver operating characteristic when

validated on known urogenital enhancers of Gata2 and Gata3 [24]. Such a clas-
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sifier is a statistical tool that can discriminate promoter and enhancer sequences

by building rules over derived motifs.

Random forest (RF) based histone-modification scores are used to indicate,
among a group of CSEs identified by phylogenetic shadowing [24], the prob-
ability that a specified sequence is functionally involved in the regulation of
a specific target gene. The UCSC genome browser (http://genome.ucsc.edu)
is used for this analysis. Among the CSEs identified that might be a sympa-
thoadrenal enhancer (SAE), the RF score of CSE2 (Fig. 1.3) is highest. The
implication here is that the higher the RF score, the more likely is the possi-
bility that the sequence is functionally involved in gene regulation. Since this
46 kbp (or 150kbp) interval was shown empirically to harbor SAE (resp. UGE)
activity (Fig. 1.1), a high RF score for any CSE in this region recommends its
further exploration as a candidate SAE (or UGE). [It should be noted that RF
scores were initially established from data describing the enhancers and pro-
moters of a few selected cell lines. It is not established that use of this data
set of known regulatory elements leads to unbiased histone-modification scores
in other cells, though they seem to have good performance on other promoter
and enhancer datasets (ENSEMBL/MGI, Enhancer Browser, and urogenital

enhancers of Gata2, Gata3), [24])].

1.4.2 Transcription factor features

Identification of phylogenetically conserved Transcription Factor Binding Sites
(TFBSs): Regulatory elements typically bind clusters of multiple transcription factor

binding sites. Databases, such as TRANSFAC and JASPAR are used to analyze

sequences for potential TFBS motifs. A transcription factor is a protein which binds
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at the promoter (basal transcriptional machinery) or at any of the distal regulatory
elements (enhancers or silencers) and is involved in either activating or repressing the
expression of transcriptionally-associated genes by binding to sites within candidate
CSEs. The identification of phylogenetically conserved TFBS may further refine the
array of potential candidate transcription factors required for the localized expression
of Gata3 in the SAS or UG regions ([19], [228]). We note that such methods can
discriminate a family of TFs, but not the precise family member that might be
involved in mediating transcription in that tissue. To reconcile the behavior of various
promoter-specific transcriptional regulatory regions - we decouple the roles of the
promoter and the enhancer by examining which set of TF's bind each region and how

they interact during formation of the transcriptional machinery.

Gata3 100924 _at

1] oo 200 ann 400 00 &00 0

e i3
=+ ¥

00 900

me

. &
ARG

Mouse GeneAtlas UT4A
=
3
g
=
o
=2
=

iy
$k3 ﬂ?h ul%%E
mut_saiagﬁﬁ

] 1o 200 300 400 SO0 G600 OO @O0 900
mean () 2003-2005 GNF

Figure 1.6: Tissue-specific expression of Gatal in various tissue types as assayed using the murine
U74Av2 microarray chip (from hittp://www.symatlas.gnf.org)

TF binding at the promoter:
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1. To identify which set of transcription factor putatively bind at the promoter we
use the ‘module TF’ approach. Module TFs are groups of transcription factors
that bind a set of co-expressed genes, given the hypothesis that co-expressed
genes are possibly co-regulated. For Gata3, we examine the mouse genome in-
formatics (MGI) database to find genes that are co-expressed on day el4.5 in
the developing metanephros. We use the TOUCAN tool
(http://homes.esat.kuleuven.be/Saerts/software/toucan.php/) to find these sta-
tistically over-represented TFs. Additionally, we use Gene Ontology information
to find TFs with fewer degrees of freedom (i.e. more candidate TFs). These

approaches are further clarified in Chapter 6.

2. Another way to find the set of TFs that putatively regulate Gata3 is to use
microarray gene expression data. Using publicly available expression data for
the developing kidney ([80], [178], [240]), we adopted several methods from
time series analysis (Chapters 2-3) to find transcriptional effectors. Thus, using
a combination of TFBS match at the promoter and expression data, we are able

to enrich for a list of TFs that bind the Gata3 proximal promoter.

3. Publicly available gene expression microarray data
(GEO:http://www.ncbi.nlm.nih.gov/geo/) for the SAS/UG provides a frame-
work for correlating gene expression profiles and linking them to functional
inter-dependence. Genes having high correlation metrics are examined for the
presence of ‘module regulators’ [209] , which are, in essence, combinations of
conserved promoter TFBSs. The presence of these ‘module-TFs’ in the CSEs
is likely to identify those CSEs that have a higher statistical significance of

being functionally relevant. In the absence of expression data for the devel-
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oping SAS (or UG), the search for module-TFs can be accomplished on a
set of genes that are co-expressed in the developing SAS/UG at day el4.5
(http://www.informatics.jax.org/). Additionally, we have developed methods
for the identification of transcriptional effectors from microarray expression data
using network inference techniques ([117], Chapters 2-3). We have explored use
of a novel information metric, called directed information, or DTI for inferring
gene influence. This metric enables the discovery of putative transcriptional reg-
ulatory networks that examine relationships between module TF's and their tar-
get genes. As such time series expression data becomes gradually available, our

integrative methodology can be modified to incorporate such new data sources.

TF binding at the CSE/enhancer: We have determined the conserved TEFBS
in each phylogenetically shadowed region. We have examined each of these TFs
for their tissue-affiliated expression characteristics by querying the publicly avail-
able gene expression atlas (http://www.symatlas.gnf.org) or UNIPROT annotations
(http://expasy.org/sprot/). We can then quantitatively determine whether or not
the expression of a TF-encoding gene is higher in comparison to its ‘basal’ (median)
level of expression in other tissues. From this database, we can recover a profile
for the expression of each transcription factor over all catalogued tissue types. This
is illustrated for GATA3 in Figure. 1.6 as an example. As depicted in the figure,
murine microarray chipset U74Av2 expression confirms elevated expression of Gata3
in the adrenal gland and kidney. In a similar manner we can examine the expression
profile of every candidate TF that emerges from the analysis. We propose to inves-
tigate each CSE that has a statistical over-representation of such tissue-specific TFs
as a potential SAE/UGE (some examples of such tissue-restricted TFs are dHAND,

PHOX2b, MASH, in the developing SA system, [19]). Additionally, we have adapted
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the WebMotifs [29] system to this application, thereby enabling the search for TF
family motifs rather than individual members within each candidate CSE. Based on
the families identified, we explore the expression of each of the TF family-member
genes in the tissues of interest. The enrichment of tissue-specific TFs in any CSE
of interest is potential evidence for its regulatory role ([209], [216]). This has been
further explained in Chapter 6.

The strategy outlined above requires that a library of tissue-specific TFs be known
and publicly available. However, given that the tissue-specificity of many TF's is still
under active investigation, as well as the fact that the present version of TRANSFAC
is still being annotated, it would be of interest to ask whether there are motifs that
are over-represented in adrenal or other SAS-related tissues (similarly for the UGE
analysis). The Gene Expression Atlas of the Novartis foundation as well as Mouse
Genome Informatics (MGI) databases describe the expression characteristics of an
exhaustive compendium of tissue-specific genes. The promoters of these genes can
be mined for over-represented sequence motifs. These motif sets are tissue-type
dependent. Treating this problem as one that is conceptually similar to searching
through a text document by co-clustered interrogation (with random hexanucleotide
motifs as words and genetic loci as documents), we continue to explore an approach
to the identification of tissue-specific motifs using random forest classifiers. We
propose to extend this technique by building sequence models with these motifs; this
may allow us to search genome-wide for novel enhancers responsible for directing
gene expression in the same tissue represented by the motif set, independent of their
relative orientation and spacing.

Our previous analysis on known urogenital enhancers of the Gata2, and Gata3

genes revealed a new feature hitherto unexplored in the context of cis-regulatory el-
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ement identification [24]. Examination of the network of protein:protein interactions
between module-TF's of a group of co-expressed genes and the phylogenetically con-
served TFs at the enhancers reveals a strong “network-linkage” between these TF's
(using the MIMI: Michigan Molecular Interactions Database). This is also observed
for a study of Mecp2 enhancers ([215], and unpublished data), and is consistent
with the hypothesized long-range interactions between the proximal promoter and
enhancer underlying distal gene regulation. On the other hand there is almost no
interaction at the TF level between the promoter and a non-enhancer. This “network-
linkage” feature is seen to be a potential discriminatory feature to the discovery of
possibly functional non-coding elements and may reduce the false positive rate (due
to lower conservation thresholds) significantly. Additionally, the examination of gene
ontology databases for co-localized transcription factors belonging to the enhancer
and promoter is additional evidence for possible linkage. We have examined a struc-
tural linkage metric that quantifies the degree of connectedness between the two
groups of TFs using the ‘Network-Analysis’ plugin in Cytoscape (Chapter 5) [173].
For each of the features that will be derived using the approach described above,
a ‘training set’ of known enhancers (UG2, UG4, UGE, etc.) were analyzed from
multiple organisms. To apply this integrative methodology I have designed a classifier
capable of discriminating between regulatory and non-regulatory elements based on
each of the various features listed above. The non-regulatory elements, also available
from laboratory experimental data [204], are a set of conserved elements that do
not have expression in transgenic mice. Each training data object is a known non-
coding element that is described by a set of features as described previously (sequence
conservation, RF motif scores, network linkage etc.). Based on these features, we

have trained a set of classifiers and validate the learned classifier on the test data
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set [199]. The test data set comprises of a group of known enhancers that are not
present in the training set. Each learned classifier will seek to discriminate between
regulatory and non-regulatory DNA based on that feature. Finally the results of
the individual classifiers are combined to obtain a “combined belief”, across multiple
modalities, that indicates if the input sequence is potentially regulatory or not [24].

This study has used some novel methods for cis-regulatory element identification
based on histone modification motifs, and network linkage features along with other
known strategies and is the first instance of heterogeneous data integration from ex-
perimental and computational measures, to understand the architecture of transcrip-
tional regulatory elements. Needless to say, the various aspects of this integrative
approach are fairly general and can be easily extended to any gene of interest. This
integrative methodology would be an important component of the classifier design
step outlined below.

The overall goal of this work is to develop the methodology to create a ranked
list of candidate CSEs based on multiple genomic features, without the introduction
of any experimental component. Each of these ‘feature sources’ provides a clue for
refining a set of CSEs based on biological relevance to a higher confidence set, which
can then be tested in vitro or in vivo. Our laboratory employed a transgenic reporter
assay to test the functional relevance of high confidence candidate CSEs, described
in greater detail below.

We have used the above methods to reconcile the behavior of known urogenital
enhancers of the Gata2 (Chapter 5) gene [24]. In Chapter 5, we have shown that
understanding TF binding at the promoter and enhancer as well as their interactions
is extremely meaningful as part of a prospective strategy to localizing such distal

regulatory regions.
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The last chapter (Chapter 6) describes the discovery of the OVE in the 150kb
kidney region and the PE in the 45 kb SA region. We note that these discoveries
were made without access to H3K4, network linkage data and hence the predictive
capability of these methods is expected to boost the performance of the overall
classifier. We have also described several additions to the said methods in Chapter
6, to improve on our model. A frank assessment of our method is that we can
distinguish potential enhancers from neutral elements but we are still some way away
from picking enhancers that simultaneously account for spatio-temporally specific

and promoter-dependent expression.

1.5 Experimental Validation

The experimental strategy is designed to test the regulatory role of the candidate
UG/SAS enhancers identified in our research aim. The question we address is: which
CSE(s) from the chr2:9229957-9275238 (mm8) interval contains the SAS enhancer?
This is tested by generating transgenic mice bearing individual high confidence CSEs,
and determining whether these sequences can direct reporter gene expression in a
pattern that mimics the expression of Gata? in sympathetic ganglia and adrenal
chromaffin cells.

Each of the CSEs that is identified as one with a high probability of being the
sympathoadrenal enhancer (SAE) will be cloned into a vector that has been mod-
ified to include the minimal Gata3 promoter directing reporter (such as lacZ) ex-
pression. The candidate sequence is PCR amplified from the RP23-260A19 BAC,
using a suitable choice of restriction sites at the primer ends to ensure compatibility
for cloning into the plasmid. Primers are designed using the Primer3 tool avail-

able from http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi, and its loca-
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tion will be confirmed using the in silico PCR tool at http://genome.cse.ucsc.edu/cgi-
bin/hgPcr/. The ligated construct is transformed into competent cells, and trans-
formants will be screened for the presence of the appropriate fragment by restriction
enzyme digestion. Purified plasmid DNA will be diluted in and microinjected into
early mouse embryos at concentrations of 0.5 to 2 ng/ul using standard techniques.
Microinjected embryos are transferred into female pseudo-pregnant mice. Embryos
will be isolated at 12.5 gestational days and stained with X-Gal (5-bromo-4-chloro-
3-indolyl-/ -D-galactopyranoside).

Individual candidate SAEs may confer only a subset of SAS expression (e.g. a
single CSE may direct only sympathetic ganglion expression, but not expression in
adrenal chromaffin cells). Since the 46 kbp interval (Fig. 1.1) contains both SG
and adrenal expression, those elements could be separate, and thus we will continue
to assay other, lower probability CSEs for (e.g.) chromaffin cell activity if multiple
SAEs are implicated. A similar analysis may be applied to identification of the UGE
in chr2: chr2:9069182-9229960 (mm8). Depending on the context, researchers in the
Engel laboratory are using validation in cell lines or in transgenic mice as a way to

assay for functional role of the regulatory element.
1.6 Contributions of this Thesis:
Most of the results in Chapter 2-6 are for the kidney expression of Gata2 and

Gata3, since a lot more literature and data is available for kidney-expression and

nephrogenesis studies. Based on this, the chapters are organized as follows:

e Chapter 2: Mixture of Gaussian (MOG) clustering of gene expression data and

network identification for the inference of transcriptional effectors.

e Chapter 3: Directed information (DTI)-based TF network identification from
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microarray expression data.

Chapter 4: Generalizing on the use of mutual information for feature selection,
we have used DTI for sequence motif discovery to discriminate kidney-specific

promoters from housekeeping promoters.

Chapter 5: We use random forests (RF) classifiers for H3K4 and kidney-specific
sequence motif discovery, and combined this with an integrative strategy to
reconcile behavior of some known Gata2 and Gata3 enhancers, using interaction

graphs of promoter-enhancer crosstalk.

Chapter 6: This is a synopsis of ideas that that have been tried and are pos-
sibly useful for augmenting our current “enhancer prediction” model. As an
example, we have presented a generalization to searches for TF families rather
than individual members, as well as module TF discovery after accounting for
biological process similarity among genes, thereby improving on the exploratory

capability of the approach.



CHAPTER I1

Network Inference Using State Space Models

Most current methods for gene regulatory network identification lead to the in-
ference of steady state networks, i.e., networks prevalent over all time, a hypothesis
which has been challenged. There has been a need to infer and represent networks
in a dynamic (i.e., time-varying) fashion, in order to account for different cellular
states affecting the interactions amongst genes. In this work, we present an approach,
regime-SSM, to understand gene regulatory networks within such a dynamic setting.
The approach uses a clustering method based on these underlying dynamics, followed
by system identification using a state space model for each learnt cluster, to infer
a network adjacency matrix. We finally indicate our results on a mouse embryonic
kidney expression dataset as well as a T-cell activation based expression dataset and

demonstrate conformity with reported experimental evidence.

2.1 Introduction

Most methods of graph inference work very well on stationary time series data,
in that the generating structure for the time series does not exhibit switching. In
([32],[59]), some useful methods to learn network topologies using linear state space
models (SSM), from T-cell gene expression data have been presented. However it is

known that regulatory pathways do not persist over all time. An important recent

28
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finding in which the above is seen to be true is following examination of regulatory
networks during the yeast cell cycle [36], wherein topologies change depending on
underlying (endogeneous or exogeneous) cell conditions. This brings out the need
to identify the variation of the ‘hidden states’ that regulate gene network topolo-
gies and to incorporate them into a network inference framework [37]. This hidden
state at time ¢ (denoted by ;) might be related to the level of some key metabo-
lite(s) governing the activity (g;) of the gene(s). These present a notion of condition
specificity which influence the dynamics of various genes that are active during that
regime (condition). From time series microarray data, we aim to partition each
gene’s expression profile into such regimes of expression, during which the underly-
ing dynamics of the gene’s controlling state (z;) can be assumed to be stationary. In
[53], the powerful notion of context sensitive boolean networks for gene relationships
has been presented. However, at least for short time series data, such a boolean
characterization of gene state requires a one bit quantization of the continuous state,
which is difficult without expert biological knowledge of the activation threshold and
knowledge of the precise evolution of gene expression. Here, we work with gene pro-
files as continuous variables conditioned on the regime of expression. Each regime is
related to the state of a state-space model that is estimated from the data.

Our method (regime-SSM) examines three components: To find the switch in
gene dynamics, we use a Change point detection (CPD) approach using Singular
Spectrum Analysis (SSA). Following the hypothesis that the mechanism causing
the genes to switch at the same time came from a common underlying input ([36],
[47]) we group genes having similar change points. This clustering borrows from
a Mixture of Gaussian (MoG) model [33]. The inference of the network adjacency

matrix follows from a state space representation of expression dynamics among these
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co-clustered genes [32],[59]). Finally, we present analyses on the publicly available
embryonic kidney gene expression dataset [35] and the T-cell activation dataset [32],
using a combination of the above developed methods and validate our findings with
previously published literature as well as experimental data.

For the embryonic kidney dataset, the biological problem motivating our net-
work inference approach is one of identifying gene interactions during mammalian
nephrogenesis (kidney formation). Nephrogenesis, like several other developmental
processes, involves the precise temporal interaction of several growth factors, differen-
tiation signals and transcription factors for the generation and maturation of progen-
itor cells. One such key set of transcription factors is the GATA family, comprising
six members, all containing the (-GATA-) binding domain. Among these, Gata2
and Gata3 have been shown to play a functional role ([35], [39]) in nephric devel-
opment between days 10-12 after fertilization. From a set of differentially expressed
genes pertinent to this time window (identified from microarray data), our goal is to
prospectively discover regulatory interactions between them and the Gata2/3 genes.
These interactions can then be further resolved into transcriptional, or signaling
interactions on the basis of additional biological information.

In the T-cell activation dataset, the question is if events downstream of T-cell
activation can be partitioned into early and late response behaviors and if so, which
genes are active in a particular phase. Finally, can a network level influence be
inferred among the genes of each phase and do they correlate with known data? We
note here that we are not looking for the behavior of any particular gene, but only
interested in genes from each phase.

As will be shown in this chapter, regime-SSM generates biologically relevant hy-

potheses regarding time varying gene interactions during nephric development and
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T-cell activation. Several interesting transcripts are seen to be involved in the process
and the influence network hereby generated resolves cyclic dependencies.

The main assumption for the formulation of a linear state space model to examine
the possibility of gene-gene interactions is that gene expression is a function of the
underlying cell state and the expression of other genes at the previous time step. If
longer range dependencies are to be considered, the complexity of the model would
increase. Another criticism of the model might be that non-linear interactions cannot
be adequately modeled by such a framework. However, around the equilibrium point

(steady state), we can recover a locally linearized version of this non-linear behavior.

2.2 SSA and Change Point Detection

First we introduce some notation. Consider N gene expression profiles, g™, ¢, . ..

RE; T being the length of each gene’s temporal expression profile (as obtained from
microarray expression). The j time instant of gene i’s expression profile will be
denoted by g](-i).

State space partitioning is done using Singular Spectrum analysis [34] (SSA). SSA
identifies “structural change points in time” series data using a sequential procedure
[40]. We will briefly review this method.

Consider the ‘windowed’(width Ny ) time series data given by { gii), gg), ce g](é)w},

with M(M < NTW) as some integer valued lag parameter, and a replication parameter

K = Ny — M + 1. The SSA procedure in CPD involves the following:

e Construction of an [ dimensional subspace: Here, a ’trajectory matrix’ for the

time series, over the interval [n + 1,n + T is constructed:
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W 0 (i) (i)

Int1 Ini2 Ints -+ Gnik
CI0 (i) )
(2.1) G%(") _ Inre  Inis In+a -+ Inik+1
(%) (@) (@) (%)
gnl+M gnZ+M+1 gnZ+M+2 e gnl+NW

where K = Ny — M + 1. The columns of the matrix ng(n) are the vectors
GY = (g g )T with j =1, K.

e Singular Vector Decomposition of the lag covariance matrix R*" = G1™ (G5™)T
yields a collection of singular vectors - a grouping of [ of these Singular vectors,

corresponding to the [ highest eigenvalues - denoted by I = {1,...,1}; estab-

lishes a subspace .%, 1 of RM.

e Construction of the test matrix: Using Gil;(;) defined by

(3) (@) (@)

Intp+1 Inip+2 - In+q
i(n) 91(11—)Fp+2 QS—)i—p—kS e gﬁzz-)kq—kl
Gtest =
(4) (2) (4)
Inip+Mm  IniprM+1 -+ YInigrMm—1

Here, we use the length (p) and location (¢) of test sample. We choose p > K,
with K = Ny — M + 1. Also ¢ > p, here we take ¢ = p + 1. From this
construction, the matrix columns are the vectors G;’("),j =p—+1,...,q. The

matrix has dimension M x Q, Q= (¢q—p) =1.

e Computation of the detection statistic:

The detection statistics used in the CPD are:
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— The normed Euclidean distance between the column span of the test matriz
ie. G;’(") and the [-dimensional subspace %, ; of R™. This is denoted by
Dn,1,pa-

— The normalized sum of squares of distances, denoted by .S,, = %ﬁﬁ, with g, ;1 =

D10,k Where m is the largest value of m < n so that the hypothesis of

no change is accepted.

— A cumulative sum (CUSUM) type statistic Wy = Sy, W11 = maz{(W,, +

Sn—H - Sn - %),0},% Z 1.

The CPD procedure declares a structural change in the time series dynam-

ics if for some time instant n, we observe W, > h with the threshold: h =

(2ta/(MQ))\/§q(3MQ — @Q?+1), t, being the (1 — ) quantile of the standard

normal distribution.
e Choice of algorithm parameters:

— Window Width (N ): Here, we choose Ny ~ T'/5, T being the length of
the original time series, because for this choice the algorithm provides a
reliable method of extracting most structural changes. Choosing a much
smaller Ny, might lead to some outliers being classified as potential change
points, but in our set-up this is preferred in contrast to losing genuine
structural changes based on choosing larger Ny .

— Choice of lag M: In most cases, we choose M = NTW

2.3 Mixture of Gaussians (MoG) Clustering

Having found change points (and thus, regimes) from the gene trajectories of the

differentially expressed genes, our goal is to now group (cluster) genes with similar
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temporal profiles within each regime. In this section, we derive the parameter update
equations for a Mizture of Gaussian clustering paradigm. As will be seen later, the
Gaussian assumptions on the gene expression permit the use of co-clustered genes
for the SSM based network parameter estimation.

We now consider the group of gene expression profiles ¢ = {g(l), g, ... ,g(")},
all of which share a common change point (time of switch) - ¢;. Consider gene

() ]T a T,,-dimensional random vector which follows

proﬁle 'i, g(z) - [ggl)agQ PAI 7ch

a k-component finite mixture distribution described by:

(2.2) p(glo) = Z (8| Pm)
where «q, ..., are the mixing probabilities, each ¢,, is the set of parameters defin-
ing the m' component, and @ = {¢1,..., ¢, a1,...,a4} is the set of complete

parameters needed to specify the mixture. We have,

(2.3) apm >0,m=1,...,k and Zamzl

For a set of n independently and identically distributed samples,
(2.4) 4 ={gW,g®,....g™},
the log-likelihood of a k-component mixture is given by:

(2.5) logp(#16) = log | [ n(¢?16)

i=1
n k
(2.6) => 109> amp(g®|ém)
i=1 m=1

e Treat the labels, 2 = {z(®) ... 2™} associated with the n samples - as

missing data. Each label is a binary vector z(®) = [zy), . 0 =

)] where zy,
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(1)

and zpi = 0, for p # m indicates that sample g® was produced by the m

component.

In this setting, the Expectation Maximization algorithm can be used to derive
the cluster parameter (@) update equations.
In the E step of the EM algorithm, the function Q(0,0(t)) = E[logp(¥4, Z°|0)|4,0(t)],is

computed. This yields,

2.7 wi) = B0, 4] = dm(t)p(g(i)lém(f))
- v e > Gy ()p(g @165 (¢))

where w{? is the posterior probability of the event 29 = 1, on observing gﬁ,?.

The estimate of the number of components (k) is chosen using a Minimum Message
Length (MML) criterion [33]. The MML criterion borrows from algorithmic infor-
mation theory and serves to select models of lowest complexity to explain the data.
As can be seen below, this complexity has two components - the first encodes the
observed data as a function of the model and the second encodes the model itself.
Hence, the MML criterion in our setup becomes, :

k(N, +1)

(2.8) kearaer = argmin, { —logp(¥|0(k)) + 5

logn}.

N, is number of parameters per component in the £ component mixture, given the

number of clusters ki, < k < kpas-



36

In the M step: For m = 0,1,...,k, ém(t + 1) = argmaxg,, Q(G,é(t)), for m :
GQm(t + 1) > 0, the elements qg’s of the parameter vector estimate @ are typically
not closed form and depend on the specific parametrization of the densities in in the
mixture, i.e. p(g®|d,,). If p(g?|h,,) belongs to the Gaussian density A (u,,, o)

class, we have, ¢ = (u, X) and EM updates yield [2],

n (%)
(2.9) At +1) = M,
n

> U’?(??g(i)

diet w
S wid (89 — pim(t + 1)) (89 — pim(t + 1))7
Z?:l w'srll)

The equations 2.3.9-11 are the parameter update equations for each of the m =

(2.10) P (t41) =

(2.11) St +1) =

1,...k cluster components.

For the kidney expression data, since we are interested in the role of Gata2 and
Gatad during early kidney development, we consider all the genes which have similar
change points as the Gata2 and Gata3 genes respectively. We perform a MoG
clustering within such genes and look at those co-clustered with Gata2 or Gatas.
Co-clustering within a regime potentially suggests that the governing dynamics are
the same, even to the extent of co-regulation. Just because a gene is co-clustered
with Gata2 in one regime, it does not mean that it will co-cluster in a different
regime. This approach suggests a way to localize regimes of correlation instead of the
traditional global correlation measure that can mask transient and condition-specific
dynamics. For this gene expression data, the MML penalized criterion indicates
that an adequate number of clusters to describe this data is two (k=2). In Tables.
2.1 and 2.2, we indicate some of the genes with similar co-expression dynamics as
Gata2/Gatal and a cluster assignment of such genes. We observe that this clustering

corresponds to the first phase of embryonic development (day 10-12 dpc), the phase
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where Gata2 and Gata3 are perhaps most relevant to kidney development ([41],
[45],[46], [50]).

In Table. 2.1, the entries in each column of a row (gene) indicate the change
points (as found by the SSA-CPD procedure) in the time series of the interpolated
gene expression profile. Our simulation studies with the T-cell data indicate that the
SSM and CoD performance is not much worse with the interpolated data compared
to the original time series (Table. 2.7). Because of the present choice of parameters
Ny, we might detect some false positive change points, but this is preferable to the
loss of genuine change points. An examination of the change points of the various
genes in Table. 2.1 indicates three regimes - between points approximately 1-5, 5-
11 and 12-20. The missing entries mean that there was no change point identified
for a certain regime and are thus treated as such. Since our focus is early Gata3
behavior, we are interested in time points 1-12, and hence examine the evolution
of network-level interactions over the first two regimes for the genes co-clustered in
these regimes.

To clarify the validity of the presented approach, we present a similar analysis on
another data set — the T-cell expression data presented in [32]. This data looks at the
expression of various genes after T-cell activation using stimulation with phorbolester
PMA and ionomycin [72]. This data has the profiles of about 58 genes over 10 time
points with 44 replicate measurements for each time point. Since here we have no
specific gene in mind (unlike earlier where we were particularly interested in Gata3
behavior), the change point procedure (CPD) yields two distinct regimes — one from
time point 1 to 4 and the other from time point 5 to 10. Following the MoG clustering
procedure yields the optimal number of clusters to be 1 (from MML) in each regime.

We therefore call these two clusters ‘early response’ and ‘late response’ genes and
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Gene Symbol Change point I  Change point II  Change point 11

Bmp7 6 10 12
Rara 5 11 16
Pax2 6 12 15
Gata3 5 9 12
Gata2 18
Gdf11 10 20
Npnt 12 16
Cd44 5 11 15
Pgf 5 11

Pbx1 5 12 20
Ret 10

Table 2.1: Change Point Analysis of some key genes, prior to clustering (annotations in Table. 2.8).
The numbers indicate the time points at which regime changes occur for each gene.

Genes with the same Genes with the same
dynamics as Gata3 dynamics as Gata?2

Bmp7 Lamc2
Nrtn Cldn3
Pax2 Rosl

Rosl Ptprd
Pbx1 Npnt

Rara Cdh16
Gdfl1 Cldn4

Table 2.2: Some of the genes co-clustered with Gata2 and Gata3 after MoG Clustering (annotations
in Table. 2.8)

then proceed to learn a network relationship amongst them, within each cluster. The
CPD and cluster information for the early and late response is summarized in Table.

2.1.

2.4 State Space Model

For a given regime, we treat gene expression as an observation related to an
underlying hidden cell state (x;), which is assumed to govern regime-specific gene
expression dynamics for that biological process, globally within the cell. Suppose
there are N genes whose expression is related to a single process. The " gene’s
expression vector is denoted as gt(i),t = 1,...T , where T is the number of time

points for which the data is available. The State Space Model (SSM) is used to

model the gene expression (ggi),i =1,2,..N and t = 1,2,..T) as a function of this
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Genes related to Genes related to
early response (time points: 1-4) late response (time points: 5-10)
CD69 CCNA2
Mcpl CDC2
Mecl1 EGR1
EGR1 IL2r gamma
JunD 1L6
CKR1

Table 2.3: Some of the genes related to early and late response in T-cell activation (annotations in
Table. 2.9)

underlying cell state (z;) as well as some external inputs. A notion of influence
among genes can be integrated into this model by considering the SSM inputs to
be the gene expression values at the previous time step. The state and observation

equations of the State Space Model [48] are:

e State equation:

Xt+1 = Axg + Bgit+est; €t~ A(0,Q);
(2.12)
1=1,....,N; t=1,...T

e Observation equation:

(213) gt — CXt + Dgt—l + eo,t; eoyt ~ JV(O, R)

With x¢ = [z07,2, .., 2%17 and g, = [¢™,¢?, ..., ™7, A likelihood
method [32] is used to estimate the state dimension K . The noise vectors e
and e, are Gaussian distributed with means 0 and covariance matrices ) and R
respectively.

From the state and observation equations (2.12) and (2.13), we notice that the
matrix-valued parameter D = [D”]fj]]vv quantifies the influence among genes 7 and

J from one time instant to the next, within a specific regime. To infer a biological
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network using D, we use bootstrapping to estimate the distribution of the strength of
association estimates amongst genes and infer network linkage for those associations
that are observed to be significant.

Within this proposed framework, we segment the overall gene expression time
trajectories into smaller, approximately stationary, gene expression regimes. We note
that the MoG clustering framework is a non-linear one in that the regime-specific
state space is partitioned into clusters. These cluster assignments of correlated gene
expression vectors can change with regime, allowing us to capture the sets of genes

that interact under changing cell condition.

2.5 System Identification

We consider the case where we have R, = B x P realizations of expression data for
each gene available. Arguably, mRNA level is a measure of gene expression, B(= 2)
denotes the number of biological replicates and P( = 16 perfect match probes)
denotes the number of probes per gene transcript. Each of these R, realizations
are T time points long and are obtained from Affymetrix U74Av2 murine microarray
raw .CEL files. In the section below, we derive the update equations for maximum
likelihood estimates of the parameters A, B,C, D, and R (in equations (2.12) and
(2.13)) using an EM algorithm, based on ([43], [48]). The assumptions underlying
this model are outlined in Table. 2.4. A sequence of T output vectors (g1, 82, - - -, 8T)
is denoted by {g}, and a subsequence {g,,&to+1:--- 8¢, } by {g}il. We treat the
(x¢, 8) vector as the complete data and find the log-likelihood log P({x}, {g}) under
the above assumptions. The complete E and M steps involved in the parameter

update steps are outlined in Tables. 2.5 and 2.6.
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Symbol Interpretation Expression
T Number of
Time points
R, Number of
Replicates
T
P(ge|x¢) = H{e—%[gt—Cxt—Dgt—l]'R‘l[gt—CXt—Dgt—ﬂ} - (2m) /2 det(R)~Y/2
t?2
P(x¢|x¢—1) H{e—%[xt—Axt—l—Bgt—l]'Q_l[xt—Axc—l—Bgc—l]} . (27r)—k/2 det(Q)_1/2
t=2
P(x1) Initial state e~ sbarmIViba=ml . (97)=k/2 def(17) /2
density
assumption
R, T T
P({x},{g}) Markov property (P(x1) H PlxeDxe_ 1D g 1) - H P(ge D x D, gg 1))
=1 t=2 t=1
R, T

log P({x},{g})

joint log

probability

1 . . . . .
- Z{Z(g[gt(l) —Cx — Dgy 1) R gV — Ox') — Dgy117))

=1 t=2
T ~ 1 (i) -1
- (5)log(det(R))— Z(§[Xt — Ax¢_1'"Y — Bge-1'"]'Q
Jxe® — Axe_1 D — Bgy_1 )

T log(det(@)) - lxi — mlVy [ — ] - 3 log(det(V1)) -

2
T(p+k)
)

Table 2.4: Assumptions and Log-likelihood calculations in the State Space Model.The (=) symbol
indicates a definition.

2.6 Bootstrapped Confidence Intervals

As suggested above, the entries of the D matrix indicate the strength of influence

among the genes, from one time step to the next (within each regime). We use

Bootstrapping to find confidence intervals for each entry in the D matrix and if it is

significant, we assign a positive or negative direction (+1 or -1) to this influence.

The bootstrapping procedure [44] is adapted to our situation as follows:

e Suppose there are R regimes in the data with change points (cy, ¢, . . .

,cr) iden-

tified from SSA. For the 7' regime, generate B independent bootstrap samples

of size N (the original number of genes under consideration), - (Y7, Y3, .

from original data, by random resampling from g = [g

LY
() (@)
Cr T

a"'agC+1]T
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Matrix Interpretation

Symbol

M Step :

e Initial State
Mean

Vrew Initial State
Covariance

gnew Output Matrix

R"ew Output Noise
Covariance

Anew State Dynamics
Matrix

Dnew Input to
Observation

Bnrew Input to
State Matrix

Qrev State Noise

Covariance

Expression
X1
R
1 <&, ~ (i ) —
R T D LA A
Rg i=1
Ry T R, T R, T
Zzgt(z Xt _DZEX}( 8t—1 (ZZP(”)
i=1 t=1 i=1 t=1 i=1 t=1
1 T ,
T Z (i (1) Cnew( )gt (4) ) prew l(z)gt (1)]
9 i=1 t=1
Ry, T Rg T
Z[Pt(lt) 1—th( gt— 1 ZPt 1
i=1 t=2 i=1 t=2
Ry T Ry T
D e Vgi1 ) — g% ¢ @ ZZpt(l % Vg D]
i:Rl t=1 i=1 t=1
9 T
[Z Z(gt—l(’)gt—l ) gy 40 )Xt ZP(’ X gt LG ))]—1
i=1 t=1 i=1 t=1
Ry, T ) Ry, T ‘
ZZ[Pt(,?—l( ZPt(z))_let(l)gt—l O — ( )gt 1 K )]
zil t=2 i=1 t:2R
9 T 9 T
[Z Z ge—1 % (z)( Z Pt(z))_l xeVge-1 @ — ge_1ge1 (i)]_l
i=1 t=2 i=1 t=2
1 Ry, T Ry T ) R, T ‘
—R - Z Z Pt(z Anew Z Z Pt(i)l,t _ BZ Z gt_l(z)XAt (z))
9 i=1 t=2 i=1 t=2 i=1 t=2

Table 2.5: M-step of the EM algorithm for State Space parameter estimation. The (=) symbol
indicates a definition.

e Using the EM algorithm for parameter estimation, estimate the value of D (the

influence parameter). Denote the estimate of D for the i'® bootstrap sample by

D;.

*
(2

e Compute the sample mean and sample variance of the estimates of D over all



43

E Step :

Forward

Xlo = T

Ve = i

x¢t1 update Ax¢_ 1" + Bge_1

AR update AVITRA + @

K update vi—to'eviTte' + rR)T!

X! update !+ Ky (ge — Ox' ™' — Dgi_1)
Vit update Vit - K ovitt
Backward :

Vir_, Initialization (I - KrC)AV. !

Xt = XtT

Pt = ‘/tT + XtTXtT/

Jio1 update vittavi—h-t

Xt_lT update Xt_lt_l + Jt_l(xlT — AXt_lt_l - Bgt_z)
174 update Vi 4+ B (VE = VYT
Py = Vt?;_l + XtTXt—lT,

Vi s update VIS T s+ Jea (Vi — AV T

Table 2.6: E-step of the EM algorithm for State Space parameter estimation.

the B bootstrap samples. That is:

B
1 .
(2.14) Mean =D = B ZE_I (D}),
;2
. o *_T9*\2
(2.15) Variance = 51 ;:1 (D; — D)

e Using the above obtained sample mean and variance, estimate confidence inter-
vals for the elements of D. If D lies in this bootstrapped confidence interval we
infer a potential influence and if not, we discard it. Note that even though we
write D, we carry out this hypothesis test for each D; ;,i =1,...n;5 =1,...,n;

for each of the n genes under consideration in every regime.

2.7 Summary of Algorithm

Within each regime identified by CPD, we model gene expression as Gaussian dis-

tributed vectors. We cluster the genes using a Mizture of Gaussians (MoG) clustering
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algorithm [33] to identify sets of genes which have similar ‘dynamics of expression’ -
in that they are correlated within that regime. We then proceed to estimate the dy-
namic system parameters (matrices A, B, C, D, @ and R) for the State Space Model

(SSM) underlying each of the clusters. We note two important ideas:

e That we might obtain different cluster assignments for the genes depending on

the regime and

e That since all these genes (across clusters within a regime) are still related to

the same biological process, the hidden state x; is shared among these clusters.

Therefore, we estimate the SSM parameters in an alternating manner by updating
the estimates from cluster to cluster while still retaining the form of the state vector
x¢. The estimation is done using an Ezpectation - Maximization type algorithm.
The number of components during regime-specific clustering are estimated using a
Minimum Message Length criterion. Typically, O(N) iterations suffice to infer the
mixture model in each regime with N genes under consideration. Thus, our proposed

approach is as follows:

e Identify the N key genes based on required phenotypical characteristic using
fold change studies. Preprocess the gene expression profiles by standardization

and cubic spline interpolation.

e Segment each gene’s expression profile into a sequence of state dependent tra-

jectories (regime change points), from underlying dynamics, using SSA.
e For each regime (as identified in step 2):

Cluster genes using a MoG model so that genes with correlated expression

trajectories cluster together. Estimate the SSM parameters ([43], [48]) for
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each cluster (from IV.1 and IV.2 for estimation of the mean and covariance
matrices of the state vector), within that regime. The input to observation

matrix (D) is indicative of the topology of the network in that regime.

e Examination of the network matrices D, (by bootstrapping to find thresholds
on strength of influence estimates) across all regimes to build the time varying

network.

The discussion of the network inference procedure would be incomplete in the
absence of any other algorithms for comparison. For this purpose we implement the
CoD (Coefficient of Determination) based approach ([62], [63] along with the models
proposed in [32] (SSM) and [67] (GGM). The CoD method allows us to determine
the association between two genes within a regime via a R? goodness of fit statistic.
The methods of ([32], [67]) are implemented on the time series data (with regard to
underlying regime). Such a study would be useful to determine the relative merits of
each approach. We believe that no one procedure can work for every application and
the choice of an appropriate procedure would be governed by the biological question
under investigation. Each of these methods use some underlying assumptions and if
these are consistent with the question that we ask, then that method has great utility.
These individual results, their evaluation and their comparison is summarized in the

Results section.

2.8 Results

2.8.1 Application to the GATA Pathway

To illustrate our approach (regime-SSM) we consider the embryonic kidney gene
expression dataset [35] and study the set of genes known to have a possible role in

early nephric development. An interruption of any gene in this signaling cascade
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potentially leads to early embryonic lethality or abnormal organ development. An
influence network among these genes would reveal which genes (and their products)
become important at a certain phase of nephric development. The choice of the
N(= 47) genes is done using FDR fold change studies [56] between Ureteric Bud
and Metanephric Mesenchyme tissue types, since this spatial tissue expression is of
relevance during early embryonic development. The dataset is obtained by daily
sampling of the mRNA expression ranging from 11.5-16.5 days post coitus (dpc).
Detailed studies of the phenotypes characterizing each of these days is available from
the Mouse Genome Informatics Database at http://www.informatics.jax.org/. We
follow [57] and use interpolated expression data pre-processing for cluster analysis.
We resample this interpolated profile to obtain twenty points per gene expression
profile. Two key aspects were confirmed after interpolation [57], [73] - (1), that there
were no negative expression values introduced and (2), that the differences in fold
change were not smoothed out.

Initial experimental studies have suggested that the 10.5-12.5 dpc are relatively
more important in determination of the course of metanephric development. We
chose to explore which genes (out of the 47 considered) might be relevant in this
specific time window. The SSA-CPD procedure identified several genes which exhibit
similar dynamics (have approximately same change points, for any given regime) in
the early phase and distinctly different dynamics in later phases (Table. 2.1).

Our approach to influence determination using the state space model yields upto
three distinct regimes of expression over all the 47 genes identified from fold change
studies between Bud and Mesenchyme [56]. MoG clustering followed by state space
modeling yield three regime topologies of which we are interested in the early regime

(day 10.5-12.5). This influence topology is shown in Fig. 2.1.



Figure 2.1: Network topology over regimes (solid lines represent the first regime, and the dotted
lines indicate the second regime).

Figure 2.2: Steady state network inferred over all time, using [32].

We compare our obtained network (using regime-SSM) with one obtained using
the approach outlined in [32], shown in Fig.2.2. We note that the network presented
in Fig. 2.2 extends over all time i.e. days 10.5-16.5 for which basal influences are
represented but transient and condition specific influences may be missed. Some
of these transient influences are recaptured in our method (Fig. 2.1) and are in
conformity (lower false positives in network connectivity) with pathway entries in
Entrez Gene [50] as well as in recent reviews on kidney expression [35], [41] (also,
Table. 2.8). For example, the Mapkl-Rara [71] or the Paz2-Gdf11 [69] interactions
are completely missed in Fig. 2.2 — this is seen to be the case since these interactions
only occur during the 10.5-12.5 dpc regime. We also see that the Acvr2b-Lamc?2
[70] interaction is observed in the steady state but not in the first regime. This
interaction becomes active in the second regime (first via the Acvr2b-Gdf11 and then
the Gdf11-Lamc?2), indicating that it might not have particular relevance in the day
10.5-12.5 dpc stage. Several of these predicted interactions need to be experimentally
characterized in the laboratory. It is especially interesting to see the Rara gene in

this network, because it is known that Gata3 [64], [65] has tissue-specific expression
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Figure 2.3: Steady state network inferred using CoD (solid lines represent the first regime, and the
dotted lines indicate the second regime).

in some cells of the developing eye. Also Gdf11 exhibits growth factor activity and
is extremely important during organ formation.

In Fig. 2.3, we give the results of the CoD approach of network inference. Here the
Gata3-Paz2 interaction seems reversed and counterintuitive. As can be seen, some of
the interactions (e.g: Paz2-Gata3) can be seen here (via other nodes: Mapk1-Wnt11),
but there is a need to resolve cycles (Ros1—Wnt11-Mapk1) and feedback/feedforward
loops (Bmp7-Gata3-Wnt11). Both of these topologies can convey potentially useful
information about nephric development. Thus a potentially useful way to combine
these two methods is to ‘seed’ the network using CoD and then try to resolve cycles
using regime-SSM.

2.8.2 T-cell Activation

The regime-SSM network is shown in Fig. 2.4. The corresponding network learnt
in each regime using CoD is also shown (Fig. 2.5). The study of this network using
GGM (for the whole time series data) is already available in [67]. Though there are
several interactions of interest discovered in both the SSM and CoD procedures, we
point out a few of interest. It is already known that synergistic interactions between
IL-6 and IL-1 are involved in T-cell activation [61]. IL-2 receptor transcription is af-
fected by EGR1 [66]. The topology of these two networks (CoD and SSM) indicates

some matches and are worth pursuing for experimental investigation. However, as al-
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Method Edges fnew flost
(T-cell data) inferred

SSM on original data 14
SSM on undersampled data 3 3
SSM on interpolated data 4 2

CoD on original data 12
CoD on undersampled data 3 2
CoD on interpolated data 4 2

Table 2.7: Results of Network inference on original, subsampled and interpolated data

ready alluded to above, we have to find a way to resolve cycles from the CoD network
[68]. Several of these match the interactions reported in ([32], [67]). However, the
additional information that we can glean is that some of the key interactions occur
during ’early response’ to stimulation and some occur subsequently (Interleukin-6
mediated T-cell activation) in the ‘late phase’.

An examination of the Gene Ontology (GO) terms represented in each cluster
as well as the functional annotations in Entrez Gene shows concordance with lit-
erature findings (Table. 2.8). Because this dataset has been the subject of several
interesting investigations, it would be ideal to ask other questions related to network
inference procedures, for the purpose of comparison. One of the primary questions
we seek to answer is: What is the performance of the network inference procedure if
a subsampled trajectory is used instead?

In Table. 2.7, the performance of the CoD and SSM algorithms are summarized.
Using the T-cell (10 points, 44 replicates) data, we infer a network using the SSM
procedure. With the identified edges as the gold standard for comparison, we now
use SSM network inference on a undersampled version of this time series (5 points,
44 replicates) and check for any new edges (fpew) or deletion of edges (fios:). Ideally,
we would want both these numbers to be zero. f,e, is the fraction of new edges
added to the original set and f,4, is no of edges lost from the original data network

over both regimes. Further, we now interpolate this undersampled data to 10 points
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and carry out network inference. This is done for each of the identified regimes. The
same is done for the CoD method. We note that this is not a comparison between
SSM and CoD (both work with very different assumptions), but of the effect of
undersampling the data and subsequently interpolating this undersampled data to
the original data length (via resampling). The above Table .2.7 suggests that as
expected, there is degradation in performance (SSM/CoD) in the absence of all the
available information. However, it is preferred to infer some false positives rather
than lose true positive edges. This also indicates that interpolated data does not do
worse than the undersampled data in terms of true positives (fios)-

We make three observations regarding this method of network inference,

e It is not necessary for the target gene (Gata2/Gata3) to be present as part
of the inferred network. We can obtain insight into the mechanisms underlying
transcription in each regime even if some of the genes with similar co-expression

dynamics as the target gene(s) are present in the inferred network.

e Probe level observations from a small number of biological replicates, seem to
be very informative for network inference. This is because the LDS parameter
estimation algorithm uses these multiple expression realizations to iteratively es-
timate the state mean, covariance and other parameters, notably D [48]. Hence
inspite of few time points, we can use multiple measurements (biological, techni-
cal and probe-level replicates) for reliable network inference. This follows similar
observations in [60], that probe-level replicates are very useful for understanding

inter-gene relationships.

e Following [57], it would seem that several network hypotheses can individu-

ally explain the time evolution behavior captured by the expression data. The
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LAT T-cell activation

Figure 2.4: Steady state network inferred using SSM (solid lines represent the first regime, and the
dotted lines indicate the second regime).

Figure 2.5: Steady state network inferred using CoD (solid lines represent the first regime, and the
dotted lines indicate the second regime).

LDS parameter estimation procedure seeks to find a maximum-likelihood (ML)
estimate of the system parameters A, B,C' and D and then finally uses boot-
strapping to only infer high confidence interactions. This ML estimation of the
parameters uses an EM algorithm with multiple starts to avoid initialization-
related issues [48], and thus finds the ‘most consistent’ hypothesis which would
explain the evolution of expression data. It is this network hypothesis that we
investigate. Since this network already contains our gene of interest Gata3, we

can proceed to verify these interactions from literature and experimentally.

2.9 Discussion

One of the primary motivations for computational inference of state specific gene
influence networks is to understand transcriptional regulatory mechanisms [58]. The
networks inferred via this approach are fairly general and thus, there is a need to

"decompose’ these networks into transcriptional, signal transduction or metabolic
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Figure 2.6: Steady state network inferred using GGMs.

Gene Symbol Gene Name Possible Role in Nephrogenesis (Function)
Bmp?7 Bone morphogenetic protein Cell signaling
Rara Retinoic Acid Receptor Retinoic acid pathway, related to eye phenotype
Gata2 GATA binding protein 2 Hematopoiesis, Urogenital development
Gata3 GATA binding protein 3 Hematopoiesis, Urogenital development,
Pax2 Paired Homeobox-2 Direct target of Gata2
Lamc2 Laminin Cell adhesion molecule
Npnt Nephronectin Cell adhesion molecule
Rosl Ros1 proto-oncogene Signaling epithelial differentiation
Ptprd protein tyrosine phosphatase Cell adhesion
Ret-Gdnf Ret proto-oncogene, Metanephros development

Glial neutrophic factor
Gdf11 Growth development factor Cell-cell signaling and adhesion
Mapkl Mitogen activated protein kinase 1 Role in growth factor activity, cell adhesion
Kcnj8 potassium inwardly-rectifying channel, Potassium ion transport

subfamily J, member 8

Acvr2b Activin receptor II1B Transforming growth factor beta receptor activity

Table 2.8: Functional annotations (Entrez Gene) of some of the genes co-clustered with Gata2 and
Gata3

using a combination of biological knowledge and chemical kinetics. Depending on
the insights expected, the tools for dissection of these predicted influences might
vary.

For comparison, we additionally investigated a graphical gaussian model (GGM)
approach as suggested in [38] using partial correlation as a metric to quantify in-
fluence (Fig. 2.6). This method works for short time series data but we could not
find a way to incorporate previous expression values as inputs to the evolution of
state or individual observations — something we could explicitly do in the state-space
approach. However, we are now in the process of examining the networks inferred
by the GGM approach over the regimes that we have identified from SSA. Again, we

observe that the network connections reflect a steady state behavior and that tran-
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Gene Symbol

Gene Name

Possible Role in T-cell activation (Function)

CD69
Mcl1l

IL6
LAT

EGRI1
CDC2
Casp7
JunD

CKR1

CYP19A1
Intgam
nFKB
IL2Rg
Pde4b
Mcpl
CCNA2

CD69 antigen

Myeloid cell leukemia sequence 1
(BCL2-related)

Interleukin 6

Linker for activation of T cells

Early Growth Response gene 1
Cell Division Control protein 2
Caspase 7

Jun D proto-oncogene

Chemokine Receptor 1

Cytochrome P450, member 19
Integrin alpha M

nFKB protein

Interleukin 2 receptor gamma

Phosphodiesterase 4B, cAMP-specific

Monocyte Chemotactic protein 1
Cyclin A2

early T-cell activation antigen
mediates cell proliferation and survival

Accessory factor signal

membrane adapter protein involved in

T-cell activation

activates nFKB signaling

Involved in cell-cycle control

Involved in apoptosis

regulatory role of in T lymphocyte proliferation
and Th cell differentiation

negative regulator of the antiviral CD8+

T cell response

cell proliferation

mediates phagocytosis induced apoptosis
Signaling transduction activity

signaling activity

mediator of cellular response to extracellular signal
Cytokine gene involved in immunoregulation
Involved in cell-cycle control

Table 2.9: Functional annotations of some of the co-clustered genes (early and late response) fol-
lowing T-cell activation

Method direction regime resolve higher non-linear/
-specific  cycles lags(>1) locally linear
CoD [31,32] Y Y N N Y
GGM [7] Y N N N Y
SSM [1] Y N Y Y Y
regime-SSM Y Y Y Y Y

Table 2.10: Comparison of various network inference methods (Y-Yes, N- No)

sient (state specific) changes in influence are not fully revealed. The same is observed

in the case of the T-cell data, from the results reported in [67]. A comparison of all

the presented methods, along with regime-SSM has been presented in Table. 2.10.

The comparisons are based on if these frameworks permit the inference of directional

influences, regime specificity, resolution of cycles, and modeling of higher lags.

2.10 Conclusions

In this work, we have developed an approach (regime-SSM) to infer the time

varying nature of gene influence network topologies, using gene expression data.
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The proposed approach integrates change point detection to delineate phases of gene
co-expression, MoG clustering implying possible co-regulation and network inference
amongst the regime-specific co-clustered genes using a state space framework. We can
thus incorporate condition specificity of gene expression dynamics for understanding
gene influences. Comparison of the proposed approach with other current procedures
like GGM or CoD reveals some strengths and would very well complement existing
approaches (Table. 2.10). We believe that this approach, in conjunction with se-
quence and transcription factor binding information can give very valuable clues to

understanding the mechanisms of transcriptional regulation in higher eukaryotes.



CHAPTER I11

Network Inference Using Directed Information

3.1 Introduction

Computational methods for inferring dependencies between genes ([106], [111],
[127]) using probabilistic techniques have been used for quite some time now. How-
ever the biological significance of these recovered networks has been a topic of debate,
apart from the fact that such approaches mostly yield networks of significant influ-
ences as ‘observed/inferred’ from the underlying structure of data. Alternatively,
other biological data (such as sequence information) might suggest the examination
of the probabilistic dependence of one gene on another gene through the transcrip-
tion factor (TF) encoded by the first gene. What if we were interested in the tran-
scriptional influences on a certain gene ‘A’ but our prospective network inference
technique was unable to recover them? We propose a technique with an eye on two
of these challenges: biological significance and influence determination between ‘any’
two variables of interest. Such an approach is increasingly necessary to integrate and
understand multiple sources of data (sequence, expression etc.).

The method that we propose builds on an information theoretic criterion referred
to as the directed information (DTI). The DTI is a variant of mutual information

(MI) that attempts to capture the direction of information flow. It is widely used

95
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in the analysis of communication systems with feedback or feedforward ([218], [219],
[125]) as well as in economic time series analysis ([194], [125]). The DTT ([218], [117])
can be interpreted as a directed version of mutual information, a criterion used quite
frequently in other related work [106]. As we demonstrate, the DTI gives a sense of
directional association for the principled discovery of biological influence networks.
The contributions of this work are as follows. Firstly, we present a short theoret-
ical treatment of DTI and an approach to the supervised and unsupervised discov-
ery of influence networks, using microarray expression data. Secondly, we examine
two scenarios - the inference of large scale gene influence networks (in mammalian
nephrogenesis and T-cell development) as well as potential effector genes for Gata3
transcriptional regulation in distinct biological contexts. We find that this method
outperforms other methods in several aspects and leads to the formulation of bio-
logically relevant hypotheses that might aid subsequent experimental investigation.
Finally, we conclude with the application of DTT to two important questions in
bioinformatics: TF module discovery and higher-order network inference. TF mod-
ule discovery is the identification of common regulatory modules (groups of TFs)
whose binding sites co-occur on the promoters of co-expressed genes. Higher-order
network inference, in this work, examines the resolution of three-way interactions

rather than only pairwise relationships among genes [110].

3.2 Organization

This chapter is organized as follows: In section 3.3, the working definition of
transcriptional gene networks is given. Based on this definition, four main research
problems are posed, pertaining to: supervised and unsupervised network inference,

TF module-gene interactions, and inference of higher order influence networks. Di-
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rected information (DTI) is proposed as part of a general framework to answer these
questions (section: 5.10.1) and a methodology for determination of influence and its
significance is examined (sections: Appendix and 5.10.1). The chapter concludes
with results applicable to each of the questions posed above (section: 3.8), using a

combination of synthetic and real biological data.

3.3 Gene Networks

Transcription is the process of generation of messenger RNA (mRNA) from the
DNA template representing the gene. It is the intermediate step before the genera-
tion of functional protein from messenger RNA. During gene expression (Fig. 4.1),
transcription factor proteins are recruited at the proximal promoter of the gene as
well as at distal sequence elements (enhancers/silencers) which can lie several hun-
dreds of kilobases from the gene’s transcriptional start site [204]. Since transcription
factors are also proteins (or their activated forms) which are in turn encoded for by
other genes, the notion of an influence between a transcription factor gene and the
target gene can be considered.

TATA box

Promoter Enhancer
{praximal} {distal)

Figure 3.1: Schematic of Transcriptional Regulation. Sequence motifs at the promoter and the
distal regulatory elements together confer specificity of gene expression via TF bind-
ing.
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Figure 3.2: A transcriptional regulatory network with genes A and B effect C. An example of C
that we study here is the Gata3 gene.

In Fig. 3.2, a characterization of transcriptional regulatory networks, as relevant
to this work, is given. As the name suggests, gene A is connected by a link to gene
C if a product of gene A, say protein A, is involved in the transcriptional regulation
of gene C. This might mean that protein A is involved in the formation of the
complex that binds at the basal transcriptional machinery of gene C to drive gene C
regulation.

The components of the transcription factor (TF) complex recruited at the gene
promoter are the products of several genes. Therefore, the incorrect inference of
a transcriptional regulatory network can lead to false hypotheses about the actual
set of genes affecting a target gene. Since biologists are increasingly relying on
computational tools to guide experiment design, a principled approach to biologically
relevant network inference can lead to significant savings in time and resources in
downstream experimental design. In this chapter we try to combine some of the other
available biological data (phylogenetic conservation of binding sites across genomes

and expression data) to build network topologies with a lower false positive rate of

linkage. Some previous work in this regard has been reported in ([216], [209]).
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3.4 Problem Setup

In this work, we also study the mechanism of gene regulation, with the Gata3 gene
as an example. This gene has important roles in several processes in mammalian
development ([100], [204]), like in the developing urogenital system (nephrogenesis),
central nervous system, and T-cell development. To find which TFs regulate the
tissue-specific transcription of Gata3 (either at the promoter or long-range regulatory
elements), a commonly followed approach ([209], [216]) is to look for phylogenetically
conserved transcription factor binding sites (TFBS). The hypothesis underlying this
strategy is that the interspecies-conservation of a TFBS suggests a possibly functional
binding of the TF at the motif (from evolutionary pressure for function). With a
view to understanding gene regulatory mechanisms, this work primarily addresses

the following questions:

e Biologists are also interested in the network of relationships among genes ex-
pressed under a certain set of conditions, which uses several network inference
procedures, such as Bayesian networks [127], mutual information [106] etc. How-
ever, there has been lack of a common framework to do both supervised and
unsupervised directed network inference within these settings to detect directed
non-linear gene-gene interactions. We present directed information as a po-
tential solution in both these scenarios. Supervised network inference pertains
to finding the strengths of directed relationships between two specific genes.
Unsupervised network inference deals with finding the most probable network
structure to explain the observed data (like in Bayesian structure learning using

expression data). This is addressed in sections 3.8.2 and 3.8.3.

e Which transcription factors are potentially active at the target gene’s promoter
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during its tissue-specific regulation ? - this question is primarily answered by
examining the phylogenetically conserved TFBS at the promoter and asking if
microarray expression data suggests the presence of an influence between the TF
encoding gene and the target gene (i.e. Gata?). This approach thus integrates

sequence and expression information (section: 3.8.4).

e Which transcription factors underlie the tissue-specific expression of a group
of co-expressed/co-regulated genes (eg: Gatal3 and others)? - one common
approach is to search the proximal promoters of all such tissue specific genes, and
look for ‘modules’ of TFs that control tissue-specific expression ([209], [216]).
For the Gata3 example, we ask if there are any TFs underlying ureteric bud
(UB) specific expression for Gata3, during nephrogenesis. For this purpose, we
find modules from co-expressed gene promoters and use microarray expression

to point out possible effectors of target gene expression (section: 3.8.5).

e Gene interactions during processes such as development and disease progression
are rarely pairwise, and occur in cliques such as pathways. Additionally, cross-
talk between components of different pathways is essential in the progression
of such dynamic processes. Towards this end, the inference of higher order
interactions (more than only two-way gene relationships) is seen to be a useful
approach [110]. Using DTI, it would be interesting to find directed interactions
between differentially expressed genes of the developing kidney to determine

pathway cross-talk (section: 3.8.6).

3.4.1 Phylogenetic Conservation of Transcription Factor Binding Sites (TFBS)

As mentioned above, the mechanism of regulation of a target gene is via the

binding site of the corresponding transcription factor (TF). It is believed that several
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TF binding motifs might have appeared over the evolutionary time period due to
insertions, mutations, deletions etc. in vertebrate genomes. However, if we are
interested in the regulation of a process which is known to be similar between several
organisms (say Human, Chimp, Mouse, Rat and Chicken), then we can look for
the conservation of functional binding sites over all these genomes. This helps us
isolate the putatively functional binding sites, as opposed to those which might have
randomly arisen. This however, does not suggest that those other TF binding sites
have no functional role. If we are interested in the mechanism of regulation of the
Gata3 gene (which is known to be implicated in mammalian nephrogenesis), we
examine its promoter region for phylogenetically conserved TFBS (Fig. 3.3). Such
information can be obtained from most genome browsers [112]. We see that even for
a fairly short stretch of sequence (1 kilobase) upstream of the gene, there are several
conserved sequence elements which are potential TEBS (light grey regions in Fig.
3.3).

In this figure, we present the alignment of the mouse Gata? promoter region with
its human and rat counterparts. The height of each of the dark gray regions indicates
the extent of conservation between these species. Furthermore, it indicates that sev-
eral transcription factors bind at these conserved regions. To test their functional
role in-vivo or in-vitro, it is necessary to select only a subset of these TFs, because
of the great reliance on resources and effort. Hence the genes coding for these con-
served TFs are the ones that we examine for possible influence determination via
expression-based influence metrics. If we are able to infer an influence between the
TF-coding gene and the target gene at which its TF binds, then this reduces the
number of candidates to be tested. To examine Gata3’s role in kidney development,

we use microarray expression data from a public repository of kidney microarray
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data (http://genet.chmcc.org/, hitp://spring.imb.uq.edu.au/ and
hitp://kidney.scgap.org/index.html). Each of these sources contain expression data
profiling kidney development from about day 10.5 dpc to the neonate stage. Some of
these studies also examine expression in the developing ureteric bud (UB), metanephric
mesenchyme (MM) apart from the whole kidney.

Our approach thus integrates several aspects:

e Using phylogenetic information to infer which TF binding sites upstream of a

target gene may be functional.

o Identifying if any of the TF genes influence a target gene by coding for a tran-
scription factor that binds at the site discovered from conservation studies. This
directed influence is captured using an influence metric (like directed informa-
tion) in conjunction with expression data ([178], [122])and explained in Section:

3.5.

T e

o il

Figure 3.3: TFBS conservation between Human, Mouse and Rat, upstream (x-axis) of Gatas,
from http://www.ecrbrowser.dcode.org/.
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3.5 DTI Formulation

As alluded to above, there is a need for a viable influence metric that can find rela-
tionships between the TF “effector” gene (identified from phylogenetic conservation)
and the target gene (like Gata3). Several such metrics have been proposed, notably,
correlation, coefficient of determination (CoD), mutual information etc. To allevi-
ate the challenge of detecting non-linear gene interactions, an information theoretic
measure like mutual information has been used to infer the conditional dependence
among genes by exploring the structure of the joint distribution of the gene expression
profiles [106]. However, the absence of a directed dependence metric has hindered
the utilization of the full potential of information theory. In this work, we examine
the applicability of one such metric - the directed information criterion (DTT), for
the inference of non-linear, directed gene influences.

The DTI - which is a measure of the directed dependence between two N-length

random processes X = XV and Y = Y is given by [219]:
N

(1) IXN 5 YN = ) I(X Y[y
n=1

Here, Y™ denotes (Y1,Y5,..,Y,), i.e., a segment of the realization of a random
process Y and I(X";Y?) is the Shannon mutual information [181].

An interpretation of the above formulation for DTI is in order. To infer the notion
of influence between two time series (nRNA expression data) we find the mutual
information between the entire evolution of gene X (up to the current instant n)
and the current instant of Y (Y7,), given the evolution of gene Y up to the previous
instant n — 1 (i.e. Y"~!). This is done for every instant, n € (1,2,..., N), in the N

- length expression time series.

As already known, [(XY; YY) = H(XY)—H(XM|YY), with H(X") and H(X" YY)
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being the entropy of X" and the conditional entropy of X~ given YV, respectively.
Using this definition of mutual information, the DTT can be expressed in terms of
individual and joint entropies of X" and Y~. The task of N-dimensional entropy
estimation is an important one and due to computational complexity and moder-
ate sample size, histogram estimation of multivariate density is unviable. However,
several methods exist for consistent entropy estimation of multivariate small sample
data ([189], [221], [225], [243]). In the context of microarray expression data, wherein
probe-level and technical/biological replicates are available, we use the method of
[189] for entropy estimation.

From (1), we have,

IXN YNy =3 [H(X"Y"!) — H(X"[Y™)]
(2) = {[HX"Y" ) - HY™ )] - [H(X",Y") - HY™)]}

e 'To evaluate the DTT expression in Fqn.2, we need to estimate the entropy terms
H(X™ Y™ Y, H(Y" ), H(X™, Y") and H(Y™). This involves the estimation of
marginal and joint entropies of n random variables, each of which are R dimen-

sional, R being the number of replicates (probe-level, biological and technical).

e Though some approaches need the estimation of probability density of the R-
dimensional multivariate data (X™) prior to entropy estimation, one way to
circumvent this is to the use the method proposed in [189]. This approach uses
a Voronoi tessellation of the R-dimensional space to build nearly uniform parti-
tions (of equal mass) of the density. The set of Voronoi regions (V1, V2 ... V")
for each of the n points in R-dimensional space is formed by associating with

each point X}, a set of points V¥ that are closer to X} than any other point
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X, where the subscripts k and [ pertain to the k" and [ time instants of gene

expression.

e Thus, the entropy estimator is expressed as : H(X™") = L3 log(nA(VY),
where A(V?) is the R-dimensional volume of Voronoi region V*. A(V?) is com-
puted as the area of the polygon formed by the vertices of the convex hull of
the Voronoi region V. This estimate has low variance and is asymptotically

efficient [190].

To obtain the DTT between any two genes of interest (X and Y') with N-length ex-
pression profiles X and YV respectively, we plug in the entropy estimates computed
above into the above expression (2).

From the definition of DTI, we know that 0 < (XN — YV) < [(XN; YY) < oo.

For easy comparison with other metrics, we use a normalized DTT metric (see Ap-

pendix) given by pprr = V1 — e 2(XV=YY) — V1 — e 2SI | This maps
the large range of DTI, ([0, 00]) to lie in [0, 1]. Another point of consideration is to
estimate the significance of the ‘true’ DTI value compared to a null distribution on
the DTT value (i.e. what is the chance of finding the DTT value by chance from the
series X and Y). This is done using empirical p-value estimation after bootstrap
resampling (Sec: 5.10.1). A threshold p-value of 0.05 is used to estimate the signif-
icance of the true DTI value in conjunction with the the density of a random data

permutation, as outlined below.
3.6 Significance Estimation of DTI
We now outline a procedure to estimate the empirical p-value to ascertain the

significance of the normalized directed information I (XN — YV) between any two

N-length time series X = XV = (X}, Xy,..., Xy),and Y = YV = (Y}, Y,,...,Yy).
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In our case, the detection statistic is © = I (XN — YV) and the chosen acceptable
p-value is a.

The overall bootstrap based test procedure is ([186],[229],[75]):
e Repeat the following procedure B(= 1000) times (with index b =1,..., B):

— Generate resampled (with replacement, or reordering) versions of the times

series XV YV denoted by X}, YV} respectively.

— Compute the statistic * = I(X}Y — Y;V).

e Construct an empirical CDF (cumulative distribution function) from these boot-
strapped sample statistics, as Fg(#) = P(© < 0) = & S0 Liso(z = 6 — 0Y),

where [ is an indicator random variable on its argument z.

e Compute the true detection statistic (on the original time series) 6y = I(X~ —
Y¥) and its corresponding p-value (py = 1 — Fg(6)) under the empirical null

distribution Fg(#).

o If Fo(0y) > (1 — ), then we have that the true DTI value is significant at level

@, leading to rejection of null-hypothesis (no directional association).

3.7 Summary of Algorithm

We now present two versions of the DTT algorithm, one which involves an inference
of general influence network between all genes of interest (unsupervised-DTI) and
another, a focused search for effector genes which influence one particular gene of
interest (supervised-DTI).

Our proposed approach using (supervised-DTI) for determining the effectors for

gene B is as follows:
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e Identify the G genes (Ay, Ao, ..., Ag), based on required phenotypical charac-
teristic using fold change studies. Preprocess the gene expression profiles by
normalization and cubic spline interpolation. Assuming that there are N points
for each gene, entropy estimation is used to compute the terms in the DTI

expression (Eqn. 2).

e For each pair of genes A; and B among these G genes :

{

— Look for a phylogenetically conserved binding site of TF encoded by gene

A; in the upstream region of gene B.

— Find DT1(4;, B) = I[(AY — BY), and the normalized DTI from A; to B,

pori(As, B) = V1 — e-2(AY2BY),
— Bootstrap resampling over the data points of A; and B yields a null dis-
tribution for DTI(A;, B). If the true DTI(A;, B) is greater than the 95%

upper limit of the confidence interval (CI) from this null histogram, infer a

potential influence from A; to B.

— The value of the normalized DTT from A; to B gives the putative strength

of interaction /influence.

— Every gene A; which is potentially influencing B is an ‘effector’. This search

is done for each gene A; among these G genes ((A1, As, ..., Ag)).

Note: As can be seen, phylogenetic information is inherently built into the influence
network inference step above. We note that, in supervised-DTI, the choice of potential

effectors for a target gene is based on only those TFs that have a binding site at the
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target gene’s promoter. In this sense, supervised-DTI aims to reduce the overall
search space based on biological prior knowledge.

For unsupervised DTI, we adapt the above approach for every pair of genes (A, B)
in the list, noting that DTI(A, B) # DTI1(B, A). In this case we are not looking at
any interaction in particular, but are interested in the entire influence network that
can be potentially inferred from the given time series expression data. The network
adjacency matrix has entries depending on the direction of influence and is related
to the strength of influence as well as control of false discovery rate (FDR). The
Benjamini-Hochberg procedure [132] is used to screen each of the M(= G(G — 1))
hypotheses (both directions) during network discovery amongst G' genes.

Briefly, the FDR procedure controls the expected proportion of false positives
among the total number of rejections rather than just the chance of false positives

[120]. It tolerates more false positives, and allows fewer false negatives.

e The p-values of the various edges (1,2, ..., M) are ranked from lowest to highest,
all satisfying the original significance cut-off of p = 0.05. The ranked p-values

are designated as p(1), p2), - - - P(m)-

e For j = 1,2,..., M, the null hypothesis (no edge) H; is rejected at level « if
PG) < 3

e All the edges with p-value < p(;) are retained in the final network.

In Table. 3.7, we compare the various contemporary methods of directed network
inference. Recent literature has introduced several interesting approaches such as
graphical gaussian models (GGMs), coefficient of determination (CoD), state space
models (SSMs) for directed network inference. This comparison is based primar-

ily on expectations from such inference procedures - that we would like any such
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metric/procedure to:
e Resolve cycles in recovered interactions.

e Be capable of resolving directional and potentially non-linear interactions. This

is because interactions amongst genes involve non-linear kinetics.
e Be a non-parametric procedure to avoid distributional assumptions (noise etc).

e Be capable of recovering interactions that a biologist might be interested in.
Rather than use a method that discovers interactions underlying the data purely,
the biologist should be able to use prior knowledge (from literature perhaps).
For example, a biologist can examine the strength and significance of a known

interaction and use this as a basis for finding other such interactions.

From the above comparisons, we see that DTI is one metric which can recover

interactions under all these considerations.

Table 3.1: Comparison of various network inference methods.

Method Resolve Non Search Non

Cycles  -linear for -parametric

framework interaction framework

SSM ([116], [77)) Y Y N Y
CoD ([94)) N N Y N
GGM ([111)) N Y N N
DTT ([117)) Y Y Y Y

3.8 Results

In this section, we give some scenarios where D'TI can complement existing bioin-

formatics strategies to answer several questions pertaining to transcriptional regula-
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tory mechanisms. We address four different questions.

e To infer gene influence networks between genes that have a role in early kid-
ney development and T-cell activation, we use unsupervised DTI with relevant
microarray expression data, noting that these influence networks are not neces-

sarily transcriptional regulatory networks.

e To find transcription factors that might be involved in the regulation of a target
gene (like Gata3) at the promoter, a common approach is to first look for phy-
logenetically conserved TFBS sequences across related species. These species
are selected based on whether the particular biological process is conserved in
them. To add additional credence to the role of these conserved TFBSes, mi-
croarray expression can be integrated via supervised DTI to check for evidence

of an influence between the TF encoding gene and the target gene.

e Thirdly, we examine the promoters of several genes that have a documented
role in ureteric bud development. The idea is to look for common transcription
factor modules that govern the combined co-expression and co-regulation of
these genes [216]. Again, expression data and supervised DTI can be used to

check for influences between the module components and the target gene(s).

e Finally, the problem of inferring higher-order dependencies between various
genes using a combination of mutual and directed information is presented in the

context of differentially expressed UB-specific genes of the developing kidney.

Before proceeding, we examine the performance of this approach on synthetic

data.
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3.8.1 Synthetic Network

A synthetic network is constructed in the following fashion: We assume that there
are three genes g1, g3 and g7 (modeled as uniform random variables) which drive the

remaining genes of a nine gene network. The evolution equations are as below:

1

1
got = §gl,t—1 + §93,t—2 + g7i1 + €

1/2

gat = gg,t—l + 93,/t—1 + €

954 = G2,t—2 T G411 + €
1/2

g6t = Ga—1 T Goyo T €

3
gt = 5941,4_1 + €4

1 13 1 s
g8t = 596,/t—1 + 597,/t—1 + €

2 93 L 1
9ot = 594,/15—1 + 197,/15—2 + €

€; is the noise term associated with stochastic gene expression and is modeled as
a gaussian random variable A/(0, 0?), o = 0.01.

For the purpose of comparison, we study the performance of the Coefficient of
Determination (CoD) approach for directed influence network determination. The
CoD allows the determination of association between two genes via a R? goodness
of fit statistic. The methods of ([94], [103]) are implemented on the time series data.
Such a study would be useful to determine the relative merits of each approach. We
believe that no one procedure can work for every application and the choice of an
appropriate method would be governed by the biological question under investigation.

Each of these methods use some underlying assumptions and if these are consistent
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with the question that we ask, then that method has utility.

(With DTT) (with CoD)

Figure 3.4: The synthetic network as recovered by (a) DTI and (b) CoD.

As can be seen (Fig. 3.4), though CoD can detect linear lag influences, the strongly
non-linear ones are missed. DTI detects these influences and exactly reproduces
the synthetic network. Given the non-linear nature of transcriptional kinetics, this
is essential for reliable network inference. DTI is also able to resolve loops and
cycles (g3, [92, 94], g5 and ga, g4, g7, g2). Based on these observations, we examine the

networks inferred using DTT in both the supervised and unsupervised settings.

3.8.2 Directed Network Inference: Gata3 regulation in early kidney development

Biologists have an interest in influence networks that might be active during or-
gan development. Advances in laser capture microdissection coupled with those in
microarray methodology have enabled the investigation of temporal profiles of genes
putatively involved in these embryonic processes. Forty seven genes are expressed
differentially between the ureteric bud and metanephric mesenchyme [122] and pu-
tatively involved in bud branching during kidney development. The expression data
[178] temporally profiles kidney development from day 10.5 dpc to the neonate stage.
The influence network amongst these genes is shown below (Fig. 3.5). Several of the

presented interactions are biologically validated and there is an interest to confirm
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the novel ones pointed out in the network. The annotations of some of these genes
are given below (Table. 3.2).

Some of the interactions that have been experimentally validated include the
Rara-Mapk1 [76], Paz2-Gata3 [92] and Agtr-Paz2 [128] interactions. We note that
this result clarifies the application of DTT for network inference in an unsupervised
manner - i.e. discovering interactions revealed by data rather than examining the
strengths of interactions known a priori. Such a scenario will be explored later (Sec:
3.8.4). We note that though several interaction networks are recovered, we only show

the largest network including Gata3, because this is the gene of interest in this study.

Col18a1 Qat_ay W

Figure 3.5: Overall Influence network using DTI during early kidney development.

3.8.3 Directed Network Inference: T-cell Activation

To clarify the validity of the presented approach, we present a similar analysis on
another data set - the T-cell expression data [116], in Fig. 3.6. This data represents
the expression of various genes after T-cell activation using stimulation with phor-
bolester PMA and ionomycin. The dataset contains the profiles of about 58 genes
over 10 time points with 44 replicate measurements for each time point.

Several of these interactions are confirmed in earlier studies ([116], [90], [129],
[118]) and again point to the strength of DTT in recovering known interactions. The
annotation of some of these genes are given in Table. 3.3. We note that the network

of Fig. 3.6 shows the largest influence network (containing Gata3) that can be
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recovered. Gatad is involved in T-cell development as well as kidney development
and hence it is interesting to see networks relevant to each context in Figs. 3.5 and
3.6. Also, these 58 genes relevant to T-cell activation are very different from those for
kidney development, with fairly low overlap. For example this list does not include

Paz2 (which is relevant in the kidney development data).

Myeloid

Figure 3.6: DTI based T-cell network.

3.8.4 Phylogenetic conservation of TFBS effectors

A common approach to the determination of “functional” transcription factor
binding sites in genomic regions is to look for motifs in conserved regions across
various species. Here we focused on the interspecies conservation of TFBS (Fig. 3.3)
in the Gata3 promoter to determine which of them might be related to transcriptional
regulation of Gata3. Such a conservation across multiple-species suggests selective
evolutionary pressure on the region with a potential relevance for function.

As can be seen in Fig. 3.3, we examine the Gata3 gene promoter and find at
least forty different transcription factors that could putatively bind at the promoter
as part of the transcriptional complex. Some of these TFs, however, belong to the
same family.

Using supervised DTI, we examined the strength of influence from each of the TF-

encoding genes (4;) to Gata3, based on expression level ([178], http://spring.imb.ug.edu.au/ ).
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These “strength of influence” DTI values are first checked for significance at a p-value
of 0.05 and then ranked from highest to lowest (noting that the objective is to max-
imize I(A; — Gata3)).

Based on this ranking, we indicate some of the TFs that have highest influence
on Gata3 expression (Fig. 3.7). Obviously, this information is far from complete,
because of examination only at the mRNA level for both effectors as well as Gata3.

Table. 3.4 shows the embryonic kidney-specific expression of the TFs from Fig.
3.7. This is an independent annotation obtained from UNIPROT (http://expasy.org/sprot/).
To understand the notion of kidney-specific regulation of Gata3 expression by vari-
ous transcription factors, we have integrated three different criteria. We expect that
the TFs regulating expression would have an influence on Gata3 expression, be ex-
pressed in the kidney and have a conserved binding site at the Gata3 promoter. This
is clarified in part by Fig. 3.7 and Table. 3.4. As an example, we see that the TFs
Paz2, PPAR, SP1 have high influence via DTT and are expressed in embryonic kid-
ney (Table. 3.4), apart from having conserved TFBS. This lends good computational
evidence for the role of these TFs in Gata3 regulation, and presents a reasonable
hypothesis worthy of experimental validation.

Additionally, we examined the influence for another two TFs - STE12 and HP1,
both of which have a high co-expression correlation with Gata? as well as conserved
TFBS in the promoter region. The DTT criterion gave us no evidence of influence
between these two TFs and Gata3’s activity. This information coupled with the
present evidence concerning the non-kidney specificity of STE12 and HP1, presents
an argument for the non-involvement of these TFs in kidney specific regulation of
Gata3. Thus, the DTTI criterion can be used to guide more focused experiments to

identify the true transcriptional effectors underlying Gata3 expression.
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Table 3.2: Functional annotations (Entrez Gene) of some of the genes co-expressed with Gata2 and
Gatal during nephrogenesis.

Gene Symbol Gene Name Possible Role in Nephrogenesis (Function)
Rara Retinoic Acid Receptor crucial in early kidney development
Gata?2 GATA binding protein 2 several aspects of urogenital development
Gatad GATA binding protein 3 several aspects of urogenital development
Pax?2 Paired Homeobox-2 conversion of MM precursor cells to tubular epithelium
Lamc?2 Laminin Cell adhesion molecule
Pgf Placental Growth Factor Arteriogenesis, Growth factor activity during development
Col18al collagen, type XV III, alpha 1 extracellular matrix structural constituent, cell adhesion
Agtrap Angiotensin II receptor-associated  Ureteric bud cell branching

protein

Table 3.3: Functional annotations of some of the genes following T-cell activation.

Gene Symbol Gene Name Possible Role in T-cell activation (Function)
Casp7 Caspase 7 Involved in apoptosis
JunD Jun D proto-oncogene regulatory role of in T lymphocyte proliferation
and Th cell differentiation

CKR1 Chemokine Receptor 1 negative regulator of the antiviral CD8+ T cell response
1Yr Interleukin 4 receptor inhibits ILj-mediated cell proliferation
Mapk, Mitogen activated kinase 4  Signal transduction
AMLI acute myeloid leukemia 1;  CD4 silencing during T-cell differentiation

amll oncogene
Rb1 Retinoblastoma 1 Cell cycle control

This application shows the utility of DTI to specifically explore the expression-
level influence of a TF of interest to any target gene. This result coupled with the
unsupervised network inference methods in kidney and T-cell data, establish the

DTI-based methodology as a common framework for both types of analysis.

3.8.5 Module TFs in co-regulated genes

We examine another interesting scenario for the principled application of the DTI
criterion. The co-expression of genes in a biological context is a complex phenom-
enon involving the combinatorial regulation of such genes by several transcription
factors (TFs). Such co-expression occurs during processes like development and dis-
ease progression. This is also observed in co-clustered genes from the output of
hierarchical clustering algorithms (signatures). The underlying hypothesis is that

co-clustered /co-expressed genes might be under the control of some common TFs
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(modules) that underlie the co-ordinated expression of all these implicated genes.

Figure 3.7: Putative upstream TFs using DTI for the Gata3 gene. The numbers in each TF oval
represent the DTI rank of the respective TF.

Several tools (Genomatix [83], CREME [114], Toucan [74]) allow the inference
of such transcription factor modules from sets of genes. However, the next logical
question is if any of the TFs comprising the module indeed have an expression-level
influence on these target gene(s). Supervised DTI can be used in this context to

rank the most likely “effector TFs” for each gene in the gene-set.

Table 3.4: Functional annotations of some of the transcription factor genes putatively influencing
Gatad regulation in kidney.

Gene Description Expressed
Symbol in Kidney
PPAR  peroxisome proliferator- Y

activated receptor

Paz2 Paired Homeobox-2 Y
HIF1 Hypoxia-inducible factor 1 Y
SP1 SP1 transcription factor Y
GLI GLI-Kruppel family member Y
EGR3  early growth response 3 Y

To illustrate this application, genes that have expression in the developing Ureteric

Bud (UB) in the kidney are examined. The inductive signals between the ureteric
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bud and metanephric mesenchyme causes the differentiation of fetal kidney stem
cells into nephrons, the basic unit of function of the kidney. An examination of
these UB-specific genes (obtained from the Mouse Genome Informatics repository
at: hitp://www.informatics.jax.org/), ([123], [122]) reveals some modules. The UB-
specific genes as well as the modules are listed in Tables. 3.5 and 3.6 respectively.
Briefly, the modules are obtained as follows: the various UB-specific gene se-
quences are mined for their proximal promoter (from ~ 2000bp upstream to 200bp
downstream from the transcription start site). The various promoters are then
aligned and a search for significantly over-represented TFs is done using the position
weight matrices derived from the TRANSFAC/JASPAR database (MotifScanner).
From this set of TF's, modules of TFs (with potentially overlapping sites) are obtained
(ModuleSearcher). The TOUCAN 3.0.2 tool [74] allows for the entire sequence of
steps from sequence extraction to module searches. The list of all TFs in the various

modules identified are listed in Table. 3.6.
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Table 3.5: Genes expressed in the developing ureteric bud (day e10.5-11.0), as reported in Mouse
Genome Informatics database.

Ensembl Gene ID Gene Name

ENSMUSGO00000015619  Gata3
ENSMUSG00000032796  Lamal
ENSMUSG00000015647  Lamab
ENSMUSG00000026478  Lamcl
ENSMUSG00000018698  Lhz1
ENSMUSGO00000008999  Bmp7
ENSMUSG00000023906  Cldn6
ENSMUSG00000059040 Enot
ENSMUSG00000004231  Paz?2
ENSMUSG00000030110  Ret
ENSMUSG00000022144  Gdnf
ENSMUSGO00000031681  Smad1
ENSMUSG00000024563  Smad?2
ENSMUSG00000074227  Spint2
ENSMUSGO00000015957  Wnt11
ENSMUSG00000039481  Nrtn
ENSMUSGO00000063358  Mapk1

ENSMUSG00000063065  Mapks
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Table 3.6: Annotation of the module TFs from UB-specific genes.

TFs in Annotation Kidney-

module specificity (Y/N)
(GNF /literature)

SP1 trans-acting TF 1 Y

LMO?2 LIM domain only 2 N

0CT1 POU domain, class 2, TF 1 Y

ZIC1 zinc finger protein of the cerebellum 1 N

MZF1 myeloid zinc finger 1 Y

AP2 TF AP-2 Y

AP TF AP-4 Y

YY1 YY1 transcription factor Y

TAL1 T-cell acute lymphocytic leukemia 1 Y (cell line)
PAX2 paired box gene 2 Y

HNF Hepatocyte Nuclear Factor 4 Y

The list of module TFs is obtained by combining expression annotations (from
MGI) and sequence analysis. For the purpose of integrating heterogeneous data and
to reduce the number of candidate TFs that are putatively involved in regulating UB-
specific genes, we can use DTT to find influences between the TF-genes and the UB-
specific genes using expression data. As an example, one of the TF's in the module list
is Paz2 and has an important role in UB differentiation [92]. Another gene expressed
in the developing UB is Gata3. We now examine if the DTI, I(Paz2 — Gata3) is

significant and ranks high in the list. This is highlighted in Fig. 3.8.
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Figure 3.8: Cumulative Distribution Function for bootstrapped I(Paz2 — Gata3). The true value
of I(Paz2 — Gata3) = 0.9911.

For the Paz2-Gata3 interaction, we show the cumulative distribution function of
the bootstrapped detection statistic (Fig. 3.8) as well as the position of the true DTI
estimate in relation to the overall histogram. With the obtained density estimate of
the Paz2-Gata3 interaction, shown in Fig. 3.8, we can find significance values of the
true DTI estimate in relation to the bootstrapped null distribution.

An experimental validation of this is presented in ([184], [92]). Thus, we can
look at each module member for possible role in Gata3 regulation. As can be seen,
this approach integrates sequence information, phylogeny, and expression to look
for upstream effectors for genes of interest (those that share some pattern of co-
expression /co-regulation).

Extending this further, the strength and significance of the DTI can be found
between every pair of TF and UB-specific gene of Tables. 3.5 and 3.6. This can
be visualized as a ‘bipartite graph’ of TF-gene interactions, shown in Fig. 3.9. The
graph summarizes the degree of interactions between the various transcription factors
in the modules and the co-expressed genes, and is the overall integration of annota-
tion, sequence and expression data. Additionally, the embryonic kidney specificity
of the various module TFs is listed, based on literature and tissue-specificity annota-

tion (http://symatlas.gnf.org/SymAtlas/). 1t is to be noted that some transcription
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SP1 AP2A MZF1  AP4  pAp2  Octt YY1 TAL1 Pax2  HNF4

Gata3

Lamat

Lama5  Lamci Lhx1 Bmp7 Cldné  Eno1  Pax2 Ret  Gdnf Smadi Smad2  Spint2 Wnt11 Nrtn

Figure 3.9: A bipartite graph between the group of module TFs and genes co-expressed in the
developing ureteric bud (MGI:e10.5-11.0).

factors such as SP1 have ubiquitous expression across most tissues ([84], [119]), and

are not as informative as kidney-specific ones like Paz2 [92] or HNF4a [124].

3.8.6 Higher-order MI and DTI

The final part of this work highlights that directed information (DTI) and mu-
tual information (MI) can together aid in the discovery of higher order interactions
amongst genes. Higher order MI ([221], [110]) has been used successfully for the
discovery of interactions among triples of genes. Following work done in [121], we

use the ‘triplet information’ given by

Ii(zg; x5 mp) = ZH(xZ) — ZH(xi,a:j) + H(xi, xj, xp)

i<j
= I(wy; w95 03) — > I (i;.2;)
i<j
= [I(.Tl, .563) + I(SCQ, .T3)] — I({Z]fl, 1172}, .Ig)
From the above definition, it is clear that the use of triplet information helps
resolve the pairwise-joint dependencies between z;,x; and z;, versus the synergistic
dependence of any variable on the ‘combination’ of the other two variables. A positive

value of I3(x;; x;; ) indicates pairwise-dependence and hence DTI can be used to

infer directional association between x;, x; and ;. A negative value indicates synergy

Mapk1

Mapk3
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and needs to be resolved further.

For the network shown in Fig. 3.5, we aim to recover any synergistic interactions
of various genes using higher-order entropy methods, that are potentially missed due
to consideration of only pairwise interactions.

For the synergy framework presented above, we seek to determine the direction of
association of {z;, z;} and zy, for all genes ¢, j, k. For this purpose, I({z;,z;} — x)
is determined, using methods presented earlier. Depending on the relative magni-
tude of I({x;,x;} — zx) and I(xy — {z;,7;}), the direction of association can be
determined.

We now consider the set of genes common to those profiled in the microarray
expression ([80], [178], [122]) study as well as the annotated genes from MGI. For
these 12 genes (Bmp7, Cldn7, Gata3, Gdnf, Lamc2, Mapkl, Mapk3, Nrin, Paz2, Ret,
Spint1, Wnt11), we study the dependencies discovered using ‘triplet information’.
Also, for the purposes of this work, we only present those dependencies wherein
the triplet information is negative indicating possible synergistic interactions. These
interactions are indicated below (Table. 3.7).

Several of the pathways, such as the Gdnf-Ret, Wnt, and Mapk are implicated
in ureteric bud differentiation ([105], [86]). However, most studies have focussed
on interaction within a pathway and not so much on cross-talk between various
pathways. Organ development is a complex phenomenon and needs several reciprocal
interactions to control the growth of various cell populations. It is interesting to see
several known cross-interactions picked up using higher-order information, based
on expression data alone (Table. 3.7). Given that co-operation/synergies between
various pathways is essential in most other biological processes, we believe that using

a combination of higher-order MI and DTI would aid in the experimental resolution
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of such interactions.

Table 3.7: Some triplet interactions (discovered using DTI) that have putative biological role.
Biological validation from literature is given in parentheses.

UB-Specificity & Citation

(http://symatlas. gnf.org/SymAtlas/)

Gdnf Ret Gata3 Y [92]
Ret ~ Bmp7  Gata3 Y [86]
Paz2 Gata3  Ret Y [82]
Ret Wnt11  Gdnf Y [105]
Paz2 Wntll Gata3 Y [92]
Paz2 Ret Gdnf Y ([82],[79])
Conclusions

In this work, we have presented the notion of directed information (DTI) as a
reliable criterion for the inference of influence in gene networks. After motivating the
utility of DTT in discovering directed non-linear interactions, we present two variants
of DTT that can be used depending on context. One version, unsupervised-DTI,
like traditional network inference, enables the discovery of influences (regulatory
or non-regulatory) among any given set of genes. The other version (supervised-
DTI) aids the modeling of the strength of influence between two specific genes of
interest - questions arising during transcriptional influence. It is interesting that DTT
enables the use of a common framework for both these purposes as well as is general
enough to accommodate arbitrary lag, non-linearity, and resolution of cycles, loops
and direction.

We see that the above presented combination of supervised and unsupervised

variants enable their applicability to several important problems in bioinformatics
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(upstream TF discovery, module-gene interactions, and higher-order influence deter-
mination), some of which are presented in the results section. The network inference
approach can also allow incorporation of additional biophysical knowledge - both
pertaining to physical mechanisms as well as protein interactions that exist dur-
ing transcription. We point out that given the diverse nature of biological data of
varying throughput, one has to adopt an approach to integrate such data to make
biologically relevant findings and hence the DTT metric fits very naturally into such

an integrative framework.

Acknowledgements

The authors gratefully acknowledge the support of the NIH under award 5R01-
GMO028896-21 (J.D.E). We would like to thank Prof. Sandeep Pradhan and Mr.
Ramji Venkataramanan for useful discussions on Directed Information. We are very
grateful to Prof. Erik Learned-Miller for sharing his code for higher-order entropy

estimation, and Prof. Bruce Aronow for kidney expression data.

APPENDIX: A NORMALIZED DTI MEASURE

In this section, an expression for a ‘normalized DTT coefficient’ is derived. This is
useful for a meaningful comparison across different criteria during network inference.
The purpose of this section is to establish some connections between quantities like
MI, DTI, and correlation. In this section, we use X, Y, Z for XV, YV and Z¥V
interchangeably, i.e X = XV, Y =YV, and Z = ZV.

By the definition of DTI, we can see that 0 < I[(XV — YV) < [(XV;YV) <
0o0. The normalized measure ppr; should be able to map this large range ([0, c0])
to [0,1]. We recall that the multivariate canonical correlation is given by [[93]]:

PXNyN = E;A{QE XNyNE;}V/ ? and this is normalized having eigenvalues between 0
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and 1. We also recall that, under a Gaussian distribution on X~ and Y%, the
joint entropy H(XY; YY) = —11In(2me)* |Sxnywn|, where |A| is the determinant of
matrix A, Y x~yn~ denotes the covariance matrix, computed as Xynyn = ﬁX Ty,
indicating that there are R replicates of the X, Y time series, each of length N.
Thus, for I(XY; YY) = HXY)+ HY"N) — H(XY,Y"), the expression for mu-
tual information, under jointly Gaussian assumptions on X" and YV, becomes,

I(X;Y) = —%ln(%) =—1In(1— p_2XN;YN)‘ Hence, a straightforward trans-

formation is normalized MI, py; = V1 — e 2I(XVYY) — V1 — e 25X IXNyifyist)
A connection with [97], can thus be immediately seen.

With this, pysr is normalized between [0, 1] and gives a better absolute definition of
dependency that does not depend on the unnormalized MI. We will use this definition
of normalized information coefficients in the present set of simulation studies.

For constructing a normalized version of the DTI, we can extend this approach,
from [[194]]. Consider three random vectors X, Y and Z, each of which are iden-

tically distributed as N (ux, Xxx), N (py, Byy), and N (uz,Yzz) respectively. We

also have,
Hx Yxx XYxy Xxz
(Xa Y, Z) ~N Wy ) Yyx Xyy Xyz
Hz Yzx Yzy Yzz

2
Their partial correlation dy x|z is then given by, dy x|z = 1/ a?;g with, a; = Xyy —
EYZZEIZEZYa ay = Yyx — EYZEZIZEZX; az = Xxx — EXZEEEEZX-
Recalling results from conditional Gaussian distributions, these can be denoted
—1 ~1/2

by: a; = Ey|Z,a2 = EXy|Z and as = EX|Z- Thus, 5YX|Z = Zy|é2zxy|zzx|é .

Extending the above result from the mutual information to the directed information
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case, we have, pprr = V1 — e 22 I(X5Yi|YisY),

We recall the primary difference between MI and DTI, (note the superscript on
X):

ML I(XY; YN =N 1(XN; vy,
DTL  I(XN —»YN) =N (X5 vyh).

Having found the normalized DTI, we ask if the obtained DTI estimate is signif-
icant with respect to a ‘null DTT distribution” obtained by random chance. This is
addressed in Section 5.10.1.

We note that though the normality assumption was used to show the connection
between information and correlation, this distributional assumption is not used any-

where in the original DTT metric formulation and computation during its application

to network inference.



CHAPTER IV

Finding Motifs underlying Tissue - Specific Expression

4.1 Introduction

Understanding the mechanisms underlying regulation of tissue-specific gene ex-
pression remains a challenging question. While all mature cells in the body have a
complete copy of the human genome, each cell type only expresses those genes it
needs to carry out its assigned task. This includes genes required for basic cellular
maintenance (often called “housekeeping genes”) and those genes whose function is
specific to the particular tissue type that the cell belongs to. Gene expression by way
of transcription is the process of generation of messenger RNA (mRNA) from the
DNA template representing the gene. It is the intermediate step before the genera-
tion of functional protein from messenger RNA. During gene expression (Fig. 4.1),
transcription factor (TF) proteins are recruited at the proximal promoter of the gene
as well as at sequence elements (enhancers/silencers) which can lie several hundreds
of kilobases from the gene’s transcriptional start site (T'SS). The basal transcriptional
machinery at the promoter coupled with the transcription factor complexes at these
distal, long-range regulatory elements (LREs) are collectively involved in directing
tissue-specific expression of genes.

One of the current challenges in the post-genomic era is the principled discov-

88
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Figure 4.1: Schematic of Transcriptional Regulation. Sequence motifs at the promoter and the
distal regulatory elements together confer specificity of gene expression via TF binding.

ery of such LREs genome-wide. Recently, there has been a community-wide effort
(http://www.genome.gov/ENCODE/) to find all regulatory elements in 1% of the
human genome. The examination of the discovered elements would reveal charac-
teristics typical of most enhancers which would aid their principled discovery and
examination on a genome-wide scale. Some characteristics of experimentally identi-

fied distal regulatory elements ([216],[209]) are:

e Non-coding elements: Distal regulatory elements are non-coding and can either
be intronic or intergenic regions on the genome. Hence previous models for
gene finding [177] are not directly applicable. With over 98% of the annotated
genome being non-coding, the precise localization of regulatory elements that

underlie tissue-specific gene expression is a challenging problem.

e Distance/orientation independent: an enhancer can act from variable genomic
distances (hundreds of kilobases) to regulate gene expression in conjunction
with the proximal promoter, possibly via a looping mechanism [163]. These
enhancers can lie upstream or downstream of the actual gene along the genomic

locus.

e Promoter dependent: Since the action at a distance of these elements involves

the recruitment of TFs that direct tissue-specific gene expression, the promoter
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that they interact with is critical.

Although there are instances where a gene harbors tissue-specific activity at the
promoter itself, the role of long range elements (LREs) remains of interest, e.g: for
a detailed understanding of their regulatory role in gene expression during biological
processes like organ development and disease progression [206]. We seek to develop
computational strategies to find novel LREs genome-wide that govern tissue specific
expression for any gene of interest. A common approach for their discovery is the
use of motif-based sequence signatures. Any sequence element can then be scanned
for such a signature and its tissue-specificity can be ascertained [159].

Thus, our primary question in this regard is: is there a discriminating sequence
property of LRE elements that determine tissue-specific gene expression - more par-
ticularly, are there any sequence motifs in known regulatory elements that can aid
discovery of new elements [205]. To answer this, we examine known tissue-specific
regulatory elements (promoters and enhancers) for motifs that discriminate them
from a background set of neutral elements (such as housekeeping gene promoters).

For this study, the datasets are derived from the following sources:

e Promoters of tissue-specific genes: Before the widespread discovery of long-range

regulatory elements (LREs), it was hypothesized that promoters governed gene
expression alone. There is substantial evidence for the binding of tissue-specific
transcription factors at the promoters of expressed genes. This suggests that,
in spite of newer information implicating the role of LREs, promoters also have

interesting motifs that govern tissue-specific expression.

Another practical reason for the examination of promoters is that their locations

(and genomic sequences) are more clearly delineated on genome databases (like
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UCSC or Ensembl). Sufficient data (http://symatlas.gnf.org/) on the expression

of genes is also publicly available for analysis.

Sequence motif discovery is set up as a feature extraction problem from these
tissue-specific promoter sequences. Subsequently, a support vector machine
(SVM) classifier is used to classify new promoters into specific and non-specific
categories based on the identified sequence features (motifs). Using the SVM
classifier algorithm, 90% of tissue-specific genes are correctly classified based

upon their upstream promoter region sequences alone.

e Known long range regulatory elements (LRE) motifs: To analyze the motifs in

LRE elements, we examine the results of the above approach on the Enhancer
Browser dataset (http://enhancer.lbl.gov/) which has results of expression of
ultraconserved genomic elements in transgenic mice [227]. An examination of
these ultraconserved enhancers is useful for the extraction of discriminatory
motifs to distinguish the regulatory elements from the non-regulatory (neutral)
ones. Here the results indicate that up to 95% of the sequences can be correctly

classified using these identified motifs.

We note that some of the identified motifs might not be transcription factor
binding motifs, and would need to be functionally characterized. This is an advantage

of our method - instead of constraining ourselves to the degeneracy present in TF

databases (like TRANSFAC/JASPAR), we look for all sequences of a fixed length.
4.2 Contributions
The use of microarray gene expression data ([143],[234]) suggests an approach to

assign genes into tissue-specific and non-specific categories using an entropy crite-

rion. Variation in expression and its divergence from ubiquitous expression (uniform
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distribution across all tissue types) is used to make this assignment. Based on such
assignment, several features like CpG island density, frequency of transcription fac-
tor motif occurrence, can be examined to potentially discriminate these two groups.
Other work has explored the existence of key motifs (transcription factor binding
sites) in the promoters of tissue-specific genes ([170],[172]). Based on the successes
reported in these methods, it is expected that a principled examination and char-
acterization of every sequence motif identified to be discriminatory might lead to
improved insight into the biology of gene regulation. For example, such a strat-
egy might lead to the discovery of newer TFBS motifs, as well as those underlying
epigenetic phenomena.

For the purpose of identifying discriminative motifs from the training data (tissue-

specific promoters or LREs), our approach is as follows:

e Variable selection: Firstly, sequence motifs that discriminate between tissue-
specific and non-specific elements are discovered. In machine learning, this
is a feature selection problem with features being the counts of sequence mo-
tifs in the training sequences. Without loss of generality, six-nucleotide motifs
(hexamers) are used as motif features. This is based on the observation that
most transcription factor binding motifs have a 5-6 nucleotide core sequence
with degeneracy at the ends of the motif. A similar setup has been introduced
in ([180], [201],[241]). The motif search space is, therefore a 4 = 4096 dimen-
sional one. The presented approach, however, does not depend on motif length

and can be scaled according to biological knowledge.

For variable (motif) selection, a novel feature selection approach (based on an
information theoretic quantity called directed information - DI) is proposed.

The improved performance of this criterion over using mutual information for
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motif selection is also demonstrated.

e Classifier design: After discovering discriminating motifs using the above DI
step, a SVM classifier that separates the samples between the two classes (spe-

cific and non-specific) from this motif space, is constructed.

Apart from this novel feature selection approach, several questions pertaining to
bioinformatics methodology can be potentially answered using this framework. Some

of these are:

e Are there common motifs underlying tissue-specific expression that are identi-
fied from tissue-specific promoters and enhancers?. In this chapter, an examina-
tion of motifs (from promoters and enhancers) corresponding to brain-specific

expression is done to address this question.

e Do these motifs correspond to known motifs (transcription factor binding sites)?.
We show that several motifs are indeed consensus sites for transcription factor
binding, although their real role can only be identified through experimental

evidence.

e Is it possible to relate the motif information from the sequence and expression
perspectives to understand regulatory mechanisms?, This question is addressed

in Section 4.11.C.

e How useful are these motifs in predicting new tissue-specific regulatory ele-

ments?. This is explained further in the results of SVM classification.

This work differs from that in ([180], [201]), in several aspects. We present the DI
based feature selection procedure as part of an overall unified framework to answer
several questions in bioinformatics, not limited to finding discriminating motifs be-

tween two classes of sequences. Particularly, one of the advantages is the ability to
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examine any particular motif as a potential discriminator between two classes. Also,
this work accounts for the notion of tissue-specificity of promoters/enhancers (in line
with more recent work in [210],[227],[143], [234],[204]). Also, this framework enables
the principled integration of various data sources to address the above questions.

These are clarified in the Results (Section: 4.11).

4.3 Rationale

The main approaches to finding common motifs driving tissue-specific gene reg-
ulation are summarized in ([209], [216]). The most common approach is to look
for TFBS motifs that are statistically over-represented in the promoters of the co-
expressed genes based on a background (binomial or Poisson) distribution of motif
occurrence genomewide.

In this work, the problem of motif discovery is set up as follows. Using two anno-
tated groups of genes, tissue-specific (‘ts’) and non-tissue specific (‘nts’), hexamer
motifs that best discriminate these two classes are found. The goal would be to make
this set of motifs as small as possible - i.e. to achieve maximal class partitioning with
the smallest feature subset.

Several metrics have been proposed to find features with maximal class label as-
sociation. From information theory, mutual information is a popular choice [160].
This is a symmetric association metric and does not resolve the direction of depen-
dency (i.e., if features depend on the class label or vice versa). It is important to
find features that induce the class label. Feature selection from data implies selec-
tion (control) of a feature subset that maximally captures the underlying character
(class label) of the data. There is no control over the label (a purely observational

characterization).
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With this motivation, a new metric for discriminative hexamer subset selection,
termed “directed information” (DI), is proposed. Based on the selected features,
a classifier is used to classify sequences to tissue-specific or non-tissue-specific cat-
egories. The performance of this DI based feature selection metric is subsequently

evaluated in the context of the SVM classifier.

4.4 Overall Methodology

The overall schematic of the proposed procedure is outlined below (Fig. 4.2).

Examine sequences
(promoters/enhancers)
from Tissue Expression Atlas

/mm\

Tissue-specific
sequences

Neutral sequences

sequences to obtain relativg€ounts.
Preprocess.

Build Co-occurrence
matrices for training data.

v

Feature (motif) Selection (DI/MI)
and Classification (SVM)

Biological Interpretation
of top ranking motifs

Figure 4.2: An overview of the proposed approach. Each of the steps are outlined in the following
sections.

Below we present our approach to find promoter-specific or enhancer-specific mo-

tifs.
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4.5 Motif Acquisition

4.5.1 Promoter motifs:
Microarray Analysis

Raw microarray data is available from the Novartis Foundation (GNF) [http://symatlas.gnf.org/].
Data is normalized using RMA from the Bioconductor packages for R [cran.r-project.org/].
Following normalization, replicate samples are averaged together. Only 25 tissue
types are used in our analysis including: Adrenal Gland, Amygdala, Brain, Cau-
date Nucleus, Cerebellum, Corpus Callosum, Cortex, Dorsal Root Ganglion, Heart,
HUVEC, Kidney, Liver, Lung, Pancreas, Pituitary, Placenta, Salivary, Spinal Cord,
Spleen, Testis, Thalamus, Thymus, Thyroid, Trachea, and Uterus.

In this context, the notion of tissue-specificity of a gene needs clarification. Sup-
pose there are N genes, g1, ¢s, ..., gy and T tissue types (in GNF: T = 25), we con-
struct a N x T tissue specificity matrix : M = [0]yxr. For each gene g;,1 <i < N,
let g; 0511 = median(g;;),Vk € 1,2,...,T; g being the expression level of gene i’

in tissue 'k’. Define, each entry M, as,

1 if gix > 2gi 0517
M,y =

3

0 otherwise.

Now consider the N dimensional vector m; = ZZ:1 Mk, 1 <1 < N ie. summing
all the columns of each row. The inter-quartile range of 'm’ can be used for ‘ts’/ ‘nts’
assignment. Gene indices 'i’ that are in quartile 1 (=3), are labeled as ‘ts’, and those
in quartile 4 (= 22), are labeled as ‘nts’.

With this approach, a total of 1924 probes representing 1817 genes were classified
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as tissue-specific, while 2006 probes representing 2273 genes were classified as non
tissue-specific. In this work, genes which are either heart-specific or brain-specific
are considered. From the tissue-specific genes obtained from the above approach, 45
brain-specific gene promoters and 118 heart-specific gene promoters are obtained. As
mentioned in Section 17, one of the objectives is to find motifs that are responsible
for brain/heart specific expression and also correlate them with binding profiles of

known transcription factor binding motifs.

Sequence Analysis

Genes (‘ts” or ‘nts’) associated with candidate probes are identified using the
Ensembl Ensmart [http://www.ensembl.org/] tool. For each gene, sequence from
2000bp upstream and 1000bp down-stream upto the start of the first exon relative
to their reported TSS is extracted from the Ensembl Genome Database (Release
37). The relative counts of each of the 4% hexamers are computed within each gene-
promoter sequence of the two categories (‘ts” and ‘nts’) - using the ‘seqinr’ library
in the R environment. A t-test is performed between the relative counts of each
hexamer between the two expression categories (‘ts” and ‘nts’) and the top 1000
significant hexamers (ﬁ = Hy, Ho, ..., Hyg) is obtained. The relative counts of
these hexamers is recomputed for each gene individually. This results in two hexamer-
gene co-occurrence matrices, - one for the ‘¢s’ class (dimension Ny.4in.+1 X 1000) and
the other for the ‘nts” class (dimension Niygin,—1 % 1000). Here Nygin +1 and Nygin,—1
are the number of positive training and negative training samples, respectively.

The input to the feature selection procedure is a gene promoter - motif frequency
table (Table 5.1). The genes relevant to each class are identified from tissue mi-
croarray analysis, following steps 1 and 2 above, and the frequency table is built

by parsing the gene promoters for the presence of each of the 4% = 4096 possible
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hexamers.

Ensembl Gene ID AAAAAA AAAAAG AAAAAT AAAACA

ENSG00000155366 0 0 1 4
ENSG000001780892 6 3 3 6
ENSGO00000189171 1 2 1 0
ENSGO00000168664 6 3 8 0
ENSG00000160917 4 1 4 2
ENSGO00000163655 2 4 0 1
ENSG000001228844 8 6 10 7
ENSG00000176749 0 0 0 0
ENSG00000006451 5 2 2 1

Table 4.1: The ‘motif frequency matrix’ for a set of gene-promoters. The first column is their
ENSEMBL gene identifiers and the other 4 columns are the motifs. A cell entry denotes
the number of times a given motif occurs in the upstream (-2000 to +1000bp from TSS)
region of each corresponding gene.

4.5.2 LRE motifs:

To analyze long range elements which confer tissue specific expression, the Mouse
Enhancer database (http://enhancer.lbl.gov/) is examined. This database has a
list of experimentally validated ultraconserved elements which have been tested for
tissue specific expression in transgenic mice [227], and can be searched for a list of
all elements which have expression in a tissue of interest. In this work, we consider
expression in tissues relating to the developing brain. According to the experimental
protocol, the various regions are cloned upstream of a heat shock protein promoter
(hsp68-lacz), thereby not adhering to the idea of promoter specificity in tissue-specific
expression. Though this is of concern in that there is loss of some gene-specific
information, we work with this data since we are more interested in tissue expression
and also due to a paucity of public promoter-dependent enhancer data .

This database also has a collection of ultraconserved elements that do not have
any transgenic expression in-vivo (caveat: in the context of the wrong promoter).
This is used as the neutral/background set of data which corresponds to the ‘nts’

(non-tissue specific class) for feature selection and classifier design.
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As in the above (promoter) case, these sequences (seventy four enhancers for
brain-specific expression) are parsed for the absolute counts of the 4096 hexamers,
a co-occurrence matrix (Nygin,+1 = 74) is built and then t-test p — values are used
to find the top 1000 hexamers (I-_Iz = H{,H),..., Hj,,) that are maximally different
between the two classes (brain-specific and brain-non-specific).

The next three sections clarify the preprocessing, feature selection and classi-
fier design steps to mine these co-occurrence matrices for hexamer motifs that are
strongly associated with the class label. Though this work is illustrated using two
class labels, the approach can be extended in a straightforward way to the multi-class

problem.

4.6 Preprocessing

From the above, Nyqin 1 % 1000 and Nypgin,—1 % 1000 dimensional co-occurrence
matrices are available for the tissue-specific and non-specific data, both for the pro-
moter and enhancer sequences. Before proceeding to the feature (hexamer motif)
selection step, the counts of the M = 1000 hexamers in each training sample need to
be normalized to account for variable sequence lengths. In the co-occurrence matrix,
let gc; represent the absolute count of the k" hexamer, k € 1,2,..., M in the '
gene. Then, for each gene g;, the quantile labeled matrix has X, = [ if 9Ci (=1 ary <
9cip < gci’[%M],K = 4. Matrices of dimension Nygin4+1 X 1001, Nipgin,—1 X 1001 for
the specific and non-specific training samples are now obtained. Each matrix con-
tains the quantile label assignments for the 1000 hexamers (X;,7 € (1,2,...,1000)),

as stated above, and the last column has the corresponding class label (Y = —1/+1).
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4.7 Directed Information and Feature Selection

The primary goal in feature selection is to find the minimal subset of features
(from hexamers: ﬁ/ﬁz) that lead to maximal discrimination of the class label
(Y; € (—1/+1)), using each of the i € (1,2,..., (Nyqin+1 + Nirain,—1)) genes during
training. We are looking for a subset of the variables (H,1,..., H;1000) Which are
directionally associated with the class label (Y;). These hexamers putatively influ-
ence/induce the class label (Fig. 4.3). As can be seen from [162], there is considerable
interest in discovering such dependencies from expression and sequence data. Fol-
lowing [139], we search for features (in measurement space) that induce the class

label (in observation space).

le\

Figure 4.3: Causal Feature discovery for two class discrimination, adapted from [139]. Here the
variables X; and X, discriminate Y, the class label.

One way to interpret the feature selection problem is the following: Nature is
trying to communicate a source symbol (Y € {—1/+ 1}), corresponding to the gene
class label (‘nts/ts’), to us. In this setup, an encoder that extracts frequencies of a
particular hexamer (H;) maps the source symbol (Y) to H;(Y"). The decoder outputs
the source reconstruction Y based on the received codeword ¢;(Y) = H;(Y).

We observe that there are several possible encoding schemes ¢;(Y’) that the encoder



101

could potentially use (i = 1,2,...,1000), each corresponding to feature extraction
via a different hexamer H;. An encoder is the mapping rule ¢; : Y — H;. The
ideal encoding scheme is one which induces the most discriminative partitioning of
the code (feature) space, for successful reconstruction of Y by the decoder. The
ranking of each encoder’s performance over all possible mappings yields the most
discriminative mapping. This measure of performance is the amount of information
flow from the mapping (hexamer) to the class label. Using mutual information as one
such measure indeed identifies the best features [160], but fails to resolve the direction
of dependence due to its symmetric nature I(H;;Y) = I(Y; H;). The direction of
dependence is important since it pinpoints those features that induce the class label
(not vice-versa). This is necessary since these class labels are predetermined (given to
us by biology) and the only control we have is the feature space onto which we project
the data points, for the purpose of classification. This loosely parallels the use the
directed edges in bayesian networks for inference of feature-class label associations
[139].

Unlike mutual information (MI), directed information (DI) is a metric to quantify
the directed flow of information. It was originally introduced in ([218], [219]) to exam-
ine the transfer of information from encoder to decoder under feedback/feedforward
scenarios and to resolve directivity during bidirectional information transfer. Given
its utility in the encoding of sources with memory (correlated sources), this work
demonstrates it to be a competitive metric to MI for feature selection in learning
problems. DI answers which of the encoding schemes (corresponding to each hexamer
H;) leads to maximal information transfer from the hexamer labels to the class labels
(i.e. directed dependency).

The DI is a measure of the directed dependence between two vectors X; =
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(X1, Xos, ... Xyl and Y = [V, Y5,...,Y,]. In this case, X;; = quantile label for
the frequency of hexamer 7 € (1,2,...,1000) in the j* training sequence. Y =
[Y1,Y5,...,Y,] are the corresponding class labels (—1,+1). For a block length IV,

the DI is given by [219]:

N
(1) XY = YNy = 1Y)

n=1

Using a stationarity assumption over a finite-length memory of the training sam-

ples, a correspondence with the setup in ([219], [169]) can be seen. As already known
[135], the mutual information I(X"V; YY) = H(XY) — H(XN|YY), where H(X")
and H(XY|Y"N) are the Shannon entropy of X and the conditional entropy of X~

given YV, respectively. With this definition of mutual information, the Directed

Information simplifies to,

(XN 5 YNy =3 [HX"Y"™ ) — HX"|Y™)]
(2) =Y {[HX"Y" ) = HY" )] - [H(X",Y") - H(Y")]}

Using (2), the Directed information is expressed in terms of individual and joint
entropies of X™ and Y™. This expression implies the need for higher-order entropy
estimation from a moderate sample size. A Voronoi tessellation [189] based adaptive
partitioning of the observation space can handle N = 5/6 without much complexity.

The relationship between MI and DI is given by [219],

DI (XN = YN) =N [(X5Y|yeh.
ML I(XN;YN) = 320 [(XY; vyt
=I(XN - YN)+ 1(0YN-1 — XV).

To clarify, I(XY — Y¥) is the directed information from X to Y, whereas
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I(0YN=! — X%) is the directed information from a (one-sample) delayed ver-
sion of YV to XN, From [169], it is clear that DI resolves the direction of in-
formation transfer (feedback or feedforward). If there is no feedback/feedforward,
I(XN - YN) = I(XN; YV).

From the above chain-rule formulations for DI and MI, it is clear that the expres-
sion for DI is permutation-variant (i.e., the value of the DI is different for a different
ordering of random variables). Thus, we instead find the I,(X" — Y*), a DI mea-
sure for a particular ordering of the N random variables (r.vs). The DI value for our
purpose, (XY — YV) is an average over all possible sample permutations given by,
I(XN =YYy = L5V (XN — YN). For MI, however, I,(X™; YN) = 1(XV;VV)
because, MI is permutation-invariant (i.e., independent of r.v ordering). As can be
readily observed, this problem is combinatorially complex, and hence, a monte-carlo
sampling strategy (1000 trials) is used for computing (X" — Y). This is because
we find that about 1000 trials yields a DI confidence interval (CI) that is only 20%
more than the corresponding CI obtained from 10,000 trials of the data, a far more
exhaustive number.

To select features, we maximize I(XY — Y) over the possible pairs (f,Y).
This feature selection problem for the i’ training instance reduces to identifying
which hexamer (k € (1,2,...,4096)) has the highest I(X); — Y).

The higher dimensional entropy can be estimated using order statistics of the
observed samples [189] by iterative partitioning of the observation space until nearly
uniform partitions are obtained. This method lends itself to a partitioning scheme
that can be used for entropy estimation even for a moderate number of samples in the
observation space of the underlying probability distribution. Several such algorithms

for adaptive density estimation have been proposed ([243],[221],[225]) and can find
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potential application in this procedure. In this methodology, a Voronoi tessellation
approach for entropy estimation because of the higher performance guarantees as
well as the relative ease of implementation of such a procedure.

The above method is used to estimate the true DI between a given hexamer and
the class label for the entire training set. Feature selection comprises of finding all
those hexamers (X;) for which I(XY — YV) is the highest. From the definition of
DI, we know that 0 < (X} — YV) < I(X};Y") < co. To make a meaningful
comparison of the strengths of association between different hexamers and the class
label, we use a normalized score to rank the DI values. This normalized measure
ppr should be able to map this large range ([0,00]) to [0,1]. Following [203], an

expression for the normalized DI is given by:

ppr = V1 — e AETSYT) — V1 — e 2 X IXEYiYi-h),

Another point of consideration is to estimate the significance of the DI value
compared to a null distribution on the DI value (i.e. what is the chance of finding
the DI value by chance from the N-length series X; and Y). This is done using

confidence intervals after permutation testing (Sec: VIIT).

4.8 Bootstrapped Confidence Intervals

In the absence of knowledge of the true distribution of the DI estimate, an ap-
proximate confidence interval for the DI estimate (I(XN — YV)), is found using
bootstrapping [186]. Density estimation is based on kernel smoothing over the boot-
strapped samples [229].

The kernel density estimate for the bootstrapped DI (with n = 1000 samples),
Z 2 (XN — YVN) becomes,

In(2) = 530 50 - ()

42| < 1) with h ~ 0.2675, and n = 1000.
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I (XY — Y7) is obtained by finding the DI for each random permutation of the X,
Y series, and performing this permutation B times. As is the clear from the above
expression, the Epanechnikov kernel is used for density estimation from the boot-
strapped samples. The choice of the kernel is based on its excellent characteristics
- a compact region of support, the lowest AMISE (asymptotic mean squared error)
and favorable bias-variance tradeoff [229].

We denote the cumulative distribution function (over the bootstrap samples) of
I(XN = YN by FI}B(XN_)YN)(I}B(XN — YN)). Let the mean of the bootstrapped

null distribution be I (XY — YV). We denote by #;_,, the (1 —a)® quantile of this

(XN Y N)-T5 (XN »YN)
5

distribution i.e. {t;_ : P([

| <ti_a) =1—a}. Since we need
the true I(XN — YV) to be significant and close to 1, we need I(XV — YN) >
[I5(XN — YN) 4+ t,_, x 6], with & being the standard error of the bootstrapped

distribution,

: B is the number of bootstrap samples.

5= \/[Elefb(XNﬁYN)—Ig(XN—)YN)]Q
= B—1

This hypothesis test is done for each of the 1000 motifs, in order to select the top 'd’
motifs based on DI value, which is then used for classifier training subsequently. This
leads to a need for multiple-testing correction. Because the Bonferroni correction is
extremely stringent in such settings, the Benjamini-Hochberg procedure [132], which

has a higher false positive rate, but a lower false negative rate is used in this work.

4.9 Support Vector Machines

From the top 'd’ features identified from the ranked list of features having high
DI with the class label, a support vector machine classifier in these 'd’ dimensions
is designed. A SVM is a hyperplane classifier which operates by finding a max-

imum margin linear hyperplane to separate two different classes of data in high
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dimensional (D > d) space. The training data has N(= Nygin+1 + Nirain,—1) pairs
(z1,91), (T2, Y2), - - -, (T, yn), with z; € Z? and y; € {—1,+1}.

An SVM is a maximum margin hyperplane classifier in a non-linearly extended
high dimensional space. For extending the dimensions from d to D > d, a radial
basis kernel is used.

The objective is to minimize ||3|| in the hyperplane {x : f(z) = 27 8+, }, subject
to

yi(aT B+ Bo) > 1= &Vi, & >0, & < constant [199].

4.10 Summary of Overall Approach

Our proposed approach is as follows. Here, the term ’sequence’ can pertain to
either tissue-specific promoters or LRE sequences, obtained from the GNF SymAtlas

and Ensembl databases or the Enhancer Browser.

1. The sequence is parsed to obtain the relative counts/frequencies of occurrence
of the hexamer in that sequence and to build the hexamer-sequence frequency
matrix. The ‘seqinr’ package in R is used for this purpose. This is done for
all the sequences in the specific (class “ + 1”) and non-specific (class “ —1")
categories. The matrix thus has N = Nyain 1 + Nirain,—1 rows and 4° = 4096

columns.

2. The obtained hexamer-sequence frequency matrix is preprocessed by assigning
quantile labels for each hexamer within the i"* sequence. A hexamer-sequence
matrix is thus obtained where the (i,7)" entry has the quantile label of the
7" hexamer in the i"” sequence. This is done for all the N training sequences

consisting of examples from the —1 and +1 class labels.

3. Thus, two submatrices corresponding to the two class labels are built. One
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matrix contains the hexamer-sequence quantile labels for the positive training

examples and the other matrix is for the negative training examples.

. To select hexamers that are most different between the positive and negative
training examples, a t-test is performed for each hexamer, between the ‘4s’ and
‘nts’ groups. Ranking the corresponding t-test p-values yields those hexamers
that are most different distributionally between the positive and negative train-
ing samples. The top 1000 of these hexamers are chosen for further analysis.
This step is only necessary to reduce the computational complexity of the over-
all procedure - computing the DI between each of the 4096 hexamers and the

class label is relatively expensive.

. For the top K = 1000 hexamers which are most significantly different between
the positive and negative training examples, [(X¥ — YV) and I(X};Y"N) re-
veals the degree of association for each of the k € (1,2,..., K) hexamers. The
entropy terms in the directed information and mutual information expressions
are found using a higher-order entropy estimator. Using the procedure of Sec-
tion: 4.7, the raw DI values are converted into their normalized versions. Since
the goal is to maximize I(X; — Y'), we can rank the DI values in descending

order.

. The significance of the DI estimate is obtained based on the bootstrapping
methodology. For every hexamer, a p = 0.05 significance with respect to its
bootstrapped null distribution yields potentially discriminative hexamers be-
tween the two classes. The Benjamini-Hochberg procedure is used for multiple-
testing correction. Ranking the significant hexamers by decreasing DI value

yields features that can be used for classifier (SVM) training.
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7. Train the Support Vector Machine classifier (SVM) on the top 'd’ features from
the ranked DI list(s). For comparison with the MI based technique, we use the
hexamers which have the top 'd’ (normalized) MI values. The accuracy of the
trained classifier is plotted as a function of the number of features (d), after
ten-fold cross-validation. As we gradually consider higher 'd’, we move down
the ranked list. In the plots below, the misclassification fraction is reported

instead. A fraction of 0.1 corresponds to 10% misclassification.

Note: An important point concerns the training of the SVM classifier with the
top 'd’ features selected using DI or MI (step 7 above). Since the feature selection
step is decoupled from the classification step, it is preferred that the top 'd’ motifs
are consistently ranked high among multiple draws of the data, so as to warrant
their inclusion in the classifier. However, this does not yield expected results on this
data set. Briefly, a Kendall rank correlation coefficient [144] was computed between
the rankings of the motifs between multiple data draws (by sampling a subset of
the entire dataset), for both MI and DI based feature-selection. It is observed that
this coefficient is very low in both MI and DI, indicating a highly variable ranking.
This is likely due to the high variability in data distribution across these multiple
draws (due to limited number of data points), as well as the sensitivity of the data-
dependent entropy estimation procedure to the range of the samples in the draw. To
circumvent this problem of inconsistency in rank of motifs, a median DI/MI value is
computed across these various draws and the top 'd’ features based on the median

DI/MI value across these draws are picked for SVM training [139].
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4.11 Results

4.11.1 Tissue specific promoters

We use DI to find hexamers that discriminate brain-specific and heart-specific
expression from neutral sequences. The negative training sets are sequences that
are not brain or heart-specific, respectively. Results using the MI and DI methods
are given below (Figs. 4.5 and 4.7). The plots indicate the SVM cross-validated
misclassification accuracy (ideally 0) for the data as the number of features using the
metric (DI or MI) is gradually increased. We can see that for any given classification
accuracy, the number of features using DI is less than the corresponding number
of features using MI. This translates into a lower misclassification rate for DI-based
feature selection. We also observe that as the number of features 'd’ is increased
the performance of MI is the same as DI. This is expected since, as we gather more
features using MI or DI, the differences in MI vs. DI ranking are compensated.

An important point needs to be clarified here. There is a possibility of sequence
composition bias in the tissue-specific and neutral sequences used during training.
This has been reported in recent work [241]. To avoid detecting GC rich sequences
as hexamer features, it is necessary to confirm that there is no significant GC-
composition bias between the specific and neutral sets in each of the case studies.
This is demonstrated in Figs. 4.4, 4.6 and 4.8. In each case, it is observed that the
mean GC-composition is almost same for the specific vs. neutral set. However, in
such studies, it is necessary to select for sequences that do not exhibit such bias.
In Figs. 4.6 and 4.8, even the distribution of GC-composition is similar among the
samples. For Fig. 4.4, even though the distributions are slightly different, the box
plots indicate similarity in mean GC-content.

Next, some of the motifs that discriminate between tissue-specific and non-specific
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Figure 4.4: GC sequence composition for brain-specific promoters and housekeeping (hkg) promot-
ers.

categories for the brain promoter, heart promoter and brain enhancer cases respec-
tively are listed in Table II. Additionally, if the genes encoding for these TFs are
expressed in the corresponding tissue [155], a (*) sign is appended. In some cases,
the hexamer motifs match the consensus sequences of known transcription factors
(TF). This suggests a potential role for that particular TF in regulating expression of
tissue-specific genes. This matching of hexamer motifs with TFBS consensus sites is
done using the MAPPER engine (http://bio.chip.org/mapper/). A hexamer-TFBS
match does not necessarily imply the functional role of the TF in the corresponding
tissue (brain or heart). However, such information would be useful to guide fo-
cused experiments to confirm their role in-vivo (using techniques such as chromatin
immunoprecipitation).

As is clear from the above results, there are several other motifs which are novel
or correspond to non-consensus motifs of known transcription factors. Hence, each of
the identified hexamers merit experimental investigation. Also, though we identify

as many as 200 hexamers in this work (please see Supplementary data), we have



111

0.35

—o— Ml
— % -DI

03f

0.25F

0.2f

0.15

0.1

Misclassification rate (fraction)—>

0.05F

Number of top ranking features used for classification —>

Figure 4.5: Misclassification accuracy for the MI vs. DI case (brain promoter set). Accuracy of
classification is ~ 0.9 i.e. 93%.

Brain Heart Brain
promoters promoters enhancers
Ahr-ARNT (%) Pax2 HNF-4 (*)
Tcfl1-MafG (*) Tcfll-MafG (¥*) Nkx2
c-ETS (¥) XBP1 (*) AML1
FREAC-4 Sox-17 (*) c-ETS (¥)
T3R-~alphal FREAC-4 Elk1 (*)
GATA(*)

Table 4.2: Comparison of high ranking motifs (by DI) across different data sets. The (*) sign
indicates tissue-specific expression of the corresponding TF gene.

reported only a few due to space constraints.

In the context of the heart-specific genes, we consider the cardiac troponin gene
(¢TNT, ENSEMBL:ENSG00000118194), which is present in the heart promoter set.
An examination of the high DI motifs for the heart-specific set yields motifs with the
GATA consensus site, as well as matches with the MEF2 transcription factor. It has
been established earlier that GATA-4, MEF2 are indeed involved in transcriptional

activation of this gene [154] and the results have been confirmed by ChIP [131].

4.11.2 Enhancer DB

Additionally, all the brain-specific regulatory elements profiled in the mouse En-

hancer Browser database (http://enhancer.lbl.gov/ ), were examined for discriminat-
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Figure 4.6: GC sequence composition for heart-specific promoters and housekeeping (hkg) promot-
ers.

ing motifs. Fig. 4.8 shows that the two classes have similar GC-composition. Again,
the plot of misclassification accuracy vs. number of features in the MI and DI sce-
narios reveal the superior performance of the DI-based hexamer selection compared
to MI (Fig. 4.9).

In this case, the enhancer sequences are ultraconserved, thus obtained after align-
ment across multiple species. The examination of these sequences identified motifs
that are potentially selected for regulatory function across evolutionary distances.
Using alignment as a prefiltering strategy helps remove bias conferred by sequence
elements that arise via random mutation but might be over-represented. This is
permitted in programs like Toucan [172] and rVISTA (http://rvista.dcode.org/ ).

As in the previous case, some of the top ranking motifs from this dataset are also
shown in Table II. The (*) signed TF's indicate that some of these discovered motifs
indeed have documented high expression in the brain. The occurrence of such tissue-
specific transcription factor motifs in these regulatory elements gives credence to the

discovered motifs. For example, ELK-1 is involved in neuronal differentiation [168].
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Figure 4.7: Misclassification accuracy for the MI vs. DI case (heart promoter set)

Also, some motifs matching consensus sites of TEF1 and ETS1 are common to the
brain-enhancer and brain-promoter set. Though this is interesting, an experiment
to confirm the enrichment of such transcription factors in the population of brain-

specific regulatory sequences is necessary.

4.11.3 Quantifying sequence-based TF influence

A very interesting question emerges from the above presented results. What if
one is interested in a motif that is not present in the above ranked hexamer list
for a particular tissue-specific set? As an example, consider the case for MyoD,
a transcription factor which is expressed in muscle and has a putative activity in
heart-specific genes [157]. In fact, a variant of its consensus motif - CATTTG is
indeed in the top ranking hexamer list. The DI based framework further permits
investigation of the directional association of the canonical MyoD motif (CACCTG)
for the discrimination of heart-specific genes vs. housekeeping genes. This is shown
in Fig. 4.10. As is observed, MyoD has a significant directional influence on the

heart-specific vs. neutral sequence class label. This, in conjunction with the expres-
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Figure 4.8: GC sequence composition for brain-specific enhancers and neutral non-coding regions.

sion level characteristics of MyoD, indicates that the motif CACCTG is potentially

relevant to make the distinction between heart-specific and neutral sequences.
Another theme picks up on something quite traditionally done in bioinformatics

research - finding key TF regulators underlying tissue-specific expression. Two major

questions emerge from this theme.

1. Which putative regulatory TFs underlie the tissue-specific expression of a group

of genes?

2. For the TFs found using tools like TOUCAN [172], can we examine the degree of

influence that the particular TF motif has in directing tissue-specific expression?

e To address the first question, we examine the TFs revealed by DI/MI motif
selection and compare these to the TFs discovered from TOUCAN [172], un-
derlying the expression of genes expressed on day el4.5 in the degenerating
mesonephros and nephric duct (TS22). This set has about 43 genes (including

Gata2). These genes are available in the Supplementary data.

Using TOUCAN, the set of module TFs are combinations of: FE47, HNF3B,
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Figure 4.9: Misclassification accuracy for the MI vs. DI case (brain enhancer set).
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Figure 4.10: Cumulative Distribution Function for bootstrapped I(MyoD motif: CACCTG — Y); Y
is the class label (Heart-specific vs. Housekeeping). True [(CACCTG — Y) = 0.4977.

HNF1, RREB1, HFH3, CREBP1, VMYB, GFII. These were obtained by
aligning the promoters of these 43 genes (—2000bp upstream to +200bp from
the TSS), and looking for over-represented TF motifs based on the TRANS-

FAC/JASPAR databases.

Using the DI based motif selection, a set of 200 hexamers are found that discrim-
inate these 43 gene promoter sequences from the background housekeeping pro-
moter set. They map to the consensus sites of several known TFs, such as (iden-
tified from bio.chip.org/mapper/) Nkz, Mazl, ¢-ETS, FREAC/, Ahr-ARNT,

CREBP2, E2F, HNF3A/B, NFATc, Paz2, LEF1, Mazl, SP1, Tefl, Tcfl1-
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Figure 4.11: Cumulative Distribution Function for bootstrapped I(Paz2 motif:GTTCC — Y); Y
is the class label (UB/non-UB). True I(GTTCC — Y) = 0.9792.

MafG, many of which are expressed in the developing kidney (http://www.expasy.org/).
Moreover, we observe that the TFs that are common between the TOUCAN
results and the DI based approach: FREACY, Maxl, HNF3a/b, HNF1, SP1,
CREBP, RREB1, HFH3 are mostly kidney-specific. Thus, we believe that this
observation makes a case for finding all (possibly degenerate) TF motif searches
from TRANSFAC, and filtering them based on tissue-specific expression sub-
sequently. Such a strategy yields several more TF candidates for testing and

validation of biological function.

e For the second question, we examine the following scenario. The Gata3 gene
is observed to be expressed in the developing ureteric bud (UB) during kid-
ney development. To find UB specific TF regulators, conserved TF modules
can be examined in the promoters of UB-specific genes. These experimentally
annotated UB-specific genes are obtained from the Mouse Genome Informat-
ics database at http://www.informatics.jaz.org/. Several programs are used for
such analysis, like Genomatix [170] or Toucan [172]. Using Toucan, the promot-
ers of the various UB specific genes are aligned to discover related modules. The
top-ranking module in Toucan contains AHR-ARNT, Hox13, Pax2, Tallalpha-

EJ7, Octl. Again, the power of these motifs to discriminate UB-specific and
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non-specific genes, based on DI, can be investigated.

For this purpose, we check if the Paz2 binding motif (GTTCC [184]) indeed
induces kidney specific expression by looking for the strength of DI between the
GTTCC motif and the class label (+1) indicating UB expression (Fig. 4.11).
This once again adds to computational evidence for the true role of Paz2 in
directing ureteric bud specific expression [184]. The main implication here is
that, from sequence data, there is strong evidence for the Paz2 motif being
a useful feature for UB-specific genes. This is especially relevant given the
documented role of Paz2 ([138]) directing ureteric-bud expression of the Gata3
gene, one of the key modulators of kidney morphogenesis. Both the MyoD
and Paz2 studies indicate the relevance of principled data integration using

expression ([230],[155]) and sequence modalities.

4.11.4 Observations

With regard to the feature selection and classification results, in both studies
(enhancers and promoters), we observe that about 100 hexamers are enough to dis-
criminate the tissue-specific from the neutral sequences. Furthermore, some sequence

features of these motifs at the promoter/enhancer emerge.

e There is higher sequence variability at the promoter since it has to act in concert

with LREs of different tissue types during gene regulation.

e Since the enhancer/LRE acts with the promoter to confer expression in only one
tissue type, these sequences are more specific and hence their mining identifies

motifs that are probably more indicative of tissue-specific expression.

We however, reiterate that the enhancer dataset that we study uses the hsp68-lacz

as the promoter driven by the ultraconserved elements. Hence there is no promoter
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specificity in this context. Though this is a disadvantage and might not reveal all
key motifs, it is the best that can be done in the absence of any other comprehensive
repository.

The second aspect of the presented results highlight two important points. Firstly,
the identified motifs have a strong predictive value as suggested by the cross-validation
results as well as Table 1. Moreover, DI provides a principled methodology to inves-
tigate any given motif for tissue-specificity as well as for identifying expression-level

relationships between the TFs and their target genes, (Section 4.11.3).

4.12 Conclusions

In this work, a framework for the identification of hexamer motifs to discriminate
between two kinds of sequences (tissue-specific promoters or regulatory elements
vs non-specific elements), is presented. For this feature selection problem, a new
metric - the ‘directed information’ (DI) is proposed. In conjunction with a support
vector machine classifier, this method was shown to outperform the state-of-the-art
method employing undirected mutual information. We also find that only a subset
of the discriminating motifs correlate with known transcription factor motifs and
hence the other motifs might be potentially related to non-consensus TF binding
or underlying epigenetic phenomena governing tissue-specific gene expression. The
superior performance of the directed-information based variable selection suggests its
utility to more general learning problems. As per the initial motivation, the discovery
of these motifs can aid in the prospective discovery of other tissue-specific regulatory
regions.

We have also examined the applicability of DI to prospectively resolve the func-

tional role of any TF motif in a biological process, integrating other sources (litera-
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ture, expression data, module searches).

4.13 Future Work

Several opportunities for future work exist within this proposed framework. Mul-
tiple sequence alignment of promoter/regulatory sequences across species would be
a useful preprocessing step to reduce false detection of discriminatory motifs. The
hexamers can also be identified based on other metrics exploiting distributional di-
vergence between the samples of the “+ 17 and “ — 1”7 classes. Furthermore, there
is a need for consistent high-dimensional entropy estimators within the small sam-
ple regime. A very interesting direction of potential interest is the formulation of
a stepwise hexamer selection algorithm, using the directed information for maximal
relevance selection and mutual information for minimizing between-hexamer redun-

dancy [160].
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CHAPTER V

Understanding Distal Transcriptional Regulation from
Sequence Motif, Network Inference and Interactome
Perspectives

5.1 Introduction

Understanding the mechanisms underlying regulation of tissue-specific gene ex-
pression remains a challenging question. While all mature cells in the body have a
complete copy of the human genome, each cell type only expresses those genes it
needs to carry out its assigned task. This includes genes required for basic cellular
maintenance (often called “housekeeping genes”) and those genes whose function is
specific to the particular tissue type that the cell belongs to. Gene expression by
way of transcription is the process of generation of messenger RNA (mRNA) from
the DNA template representing the gene. It is the intermediate step before the
generation of functional protein from messenger RNA. During gene expression, tran-
scription factor (TF) proteins are recruited at the proximal promoter of the gene as
well as at sequence elements (enhancers/silencers) which can lie several hundreds of
kilobases from the gene’s transcriptional start site (Figs. 5.1 and 5.2).

It is hypothesized that the collective set of transcription factors that drive (regu-
late) expression of a target gene are cell, context and tissue dependent ([227], [242]).

Some of these TFs are recruited at proximal regions such as the promoter of the gene,
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Figure 5.1: Schematic of Transcriptional Regulation. Sequence motifs at the promoter and the
distal regulatory elements together confer specificity of gene expression via TF binding.

while others are recruited at more distal regions, such as enhancers. There are sev-
eral (hypothesized) mechanisms for promoter-enhancer interaction through protein
interactions between TFs recruited at these elements during formation of the tran-
scriptional complex [226]. A commonly accepted mechanism of distal interaction,
during regulation, is looping ([238], [192], [215]), shown in Fig. 5.2.

To understand the role of various genomic elements in governing gene regulation,
functional genomics has played an enabling role in providing heterogeneous data
sources and experimental approaches to discern distal interactions during transcrip-
tion. Each of these experiments have aimed to resolve different aspects (features) of
transcriptional regulation focussing on TF binding, promoter modeling and epige-
netic preferences for tissue-specific expression in some genomic regulatory elements
([188], [200], [207], [236], [215]). Additionally, some studies have demonstrated that
these data sets along with principled statistical metrics can be used to derive such
features computationally, with a view to asking questions relevant to the biology of
transcriptional regulation ([200], [236], [220], [208]).

There have been several principled yet scattered studies characterizing the role of
functional regulatory elements for certain genes (such as Mecp2, Shh, Gata2, Gata3)
in various organisms ([215], [211], [204], [210], [198], [223]). These reveal an inherent

spatio-temporal context of gene expression and regulation. However, there is a need
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for a unified set of principles, spanning various genomic attributes, that could account
for the behavior of these tissue-specific and gene-specific enhancers. We note that
there are promoter-independent enhancers too, and their computational study has
been far more principled ([227], [228]); however, their study is outside the scope of
this study where we focus on gene-specificity in addition to tissue-specificity.

The results of the ENCODE project (http://encode.nih.gov/), ([188], [207]) on 1%
of the human genome has established some very interesting results about the nature
of transcriptional regulation at the genome scale. Particularly, they report the use
of several experimental techniques (Histone ChIP on chip, DNASE1 hypersensitivity
assays etc.) analyzing transcribed regions as well as their regulatory regions, genome-
wide. A large scale computational effort is developing alongside to “learn” features
of such regulatory elements and use of these features for predicting other control
elements for genes outside the ENCODE regions, thereby accomplishing a genome-
wide annotation. Considering that over 98% of the genome is non-coding, this effort
is going to parallel the previous project in gene-annotation at the genome scale in
effort and importance. Adding to this complexity is the fact that the same non-
coding element can potentially regulate the expression of genes in a spatio-temporal
manner, activating different genes at different times in different tissues, and from
arbitrarily large distances from the gene. Thus there is a need for the principled
“reverse-engineering” of the architectures of these regulatory elements, using features
at the sequence, expression and interactome level.

Understanding the mechanism of transcriptional regulation thus entails several

aspects:

1. Do regulatory regions like promoters and enhancers have any interesting se-

quence properties depending on their tissue-specificity of gene expression? These
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properties can be examined based on their individual sequences or their epi-
genetic preferences. A common technique of analysis is the identification of

tissue-specific motif-signatures ([216], [209]) for such elements.

2. To reduce the vast number of false positives that arise from sequence approaches
alone, we appeal to a mechanistic insight from biology. For long-range transcrip-
tional regulation to be enabled, there has to be an enhancer-promoter interaction
during formation of the tissue-specific, gene-specific transcriptional machinery.
Literature suggests that such interaction is mediated by protein-protein inter-
actions between promoter TFs and enhancer TFs after looping along the chro-
mosomal length ([215], [175], [197], [238]). This insight (Fig. 5.2) poses two

further questions:

e Which TFs bind the promoter and the putative enhancer?

e Do the resultant interactions between enhancer and promoter TFs have any
special characteristic that discriminate functional non-coding regulatory re-

gions from non-functional ones?

As a case study to answer some of these questions, we examine the regulation of
Gata?2 regulation in the developing kidney. Gata?2 is a gene belonging to the GATA
family of transcription factors (GATA1-6), and binds the consensus -WGATAR- mo-
tif on DNA [222]. It is located on mouse chromosome 6, and plays an important role
in mammalian hematopoiesis, nephrogenesis and CNS development, with important
phenotypic consequences. The study of long-range regulatory elements that effect
Gata?2 expression has been on for several years now. The most common strategy for
identifying possible regulatory elements has hitherto been inter-species conservation

studies. Using this approach, all elements flanking the gene that are conserved more
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than some threshold are retained for further experimental characterization. The
reason underlying this strategy is that truly functional elements are under evolution-
ary pressure to retain their function across species. Given the technical complexity
of associated transgenic experiments, this turns out to be a fairly inefficient strat-
egy, especially since the number of candidate regulatory elements increases as larger
genomic regions are examined (to account for distal regulation). Such a scenario
prompts the need for an integrative strategy to reduce the number of candidates ob-
tained from a purely conservation-based search strategy using other, complementary
genomic modalities.

Recently, our lab reported the characterization of two enhancer elements, confer-
ring urogenital-specific expression of Gata2, between 80 and 150kbp away from the
gene locus, on chromosome 6 [204]. In this work, we examine if genomic features,
other than sequence identity, are predictive of the location of these elements. These
feature span sequence, expression and interactome perspectives for such regulatory
elements. We will also attempt to motivate the utility of these approaches (metrics
and data sources) as well as their biological relevance alongside (how they fit into
the biophysics of transcriptional regulation). It must be pointed out that there is
scant data available, in that data specific to the developing kidney is hard to come
by. Under this constraint, we have made some biologically plausible assumptions so

as to obtain maximum information from currently available data sources.
5.2 Rationale and Data Sources:
The overall schematic of distal transcriptional regulation via looping is given in

Fig. 5.2. This schematic suggests the decomposition of the regulatory process along

three main modalities: sequence, expression and interactome. Our main goal in
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this paper is to understand urogenital (kidney) enhancer behavior from these three

perspectives. These attributes are discussed below:

enhancer

promoter

conservation and expression DTI)

Enhancer TFs (identified using Phylogenetic
conservation and UNIPROT annotations)

O Promoter TFs (identified from Phylogenetic

............. —.,

£ ™ Set of Protein-Protein Interactions between

------- enhancer and promoter TFs

Figure 5.2: Distal enhancer-promoter interaction via looping is mediated via protein interactions
during TF complex formation. The set of TFs that are putatively recruited at the
proximal promoter and distal enhancer can be found from sequence and expression
data [231]. Evidence of protein-interaction between proximal and distal TFs can be
found from interaction databases.

1. Sequence Perspective: To build motif signatures underlying kidney-specific
enhancer activity, it would be best to have a database of previously characterized
urogenital (UG) enhancers. However, due to the unavailability of such data, we
utilize kidney-specific promoter sequences and histone-modified sequences of

enhancers to find motif-signatures of regulatory elements that are potentially

UG enhancers.

e Promoters of kidney-specific genes: A catalog of kidney-specific mouse pro-
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moters is available from the GNF Symatlas (http://symatlas.gnf.org/). This
database contains list of annotated genes and their expression in several
tissue types, including the kidney. Since the proximal promoter of such
kidney-specific genes harbors the transcriptional machinery for gene regula-
tion, their sequences putatively have motifs that are associated with kidney-
specific expression. Additionally, promoters that are spatio-temporally ex-
pressed during kidney development are also analyzed (MGI: http://www.informatics.jax. ore
The GNF dataset profiles mostly adult tissue-types. Since our goal is to
study enhancer activity during nephrogenesis, we focus on genes expressed
between day €10 and e12 in the developing kidney - such a list is obtained

from the MGI database.

Without loss of generality, we use six-nucleotide motifs (hexamers) as the
motifs. This is based on the observation that most transcription factor
binding motifs have a 5 — 6 nucleotide core sequence with degeneracy at the
ends of the motif. A similar strategy was introduced in ([180], [201]). The
main difference in our approach from such previous work is that differential
hexamer analysis was done for the same class of sequences, and the statis-
tical nature of the “test-set” is, by design, similar to the training set. That
is, in [180], differential hexamers are found between known Cis-Regulatory
Modules (CRMs) and non-CRMs, and used for the prediction of new CRMs
from sequence. On the other hand, [201] deals with finding hexamer fea-
tures of known promoters and using them to predict new promoters from
sequence. In our case, however, we don’t have enhancer data (equivalent
to CRMs) and we are using promoter-data for the prediction of enhancer

(CRM) instead. Thus, the nature of the test sequence is very different. We
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demonstrate that our approach is partially useful in the discovery of pu-
tative enhancers from sequence.Also,the presented motif-finding approach
does not depend on motif length and can be scaled depending on biological

knowledge.

We set up the motif discovery as a feature extraction problem from these
tissue-specific promoter sequences and then build a random forest (RF)
classifier to classify new sequences into specific and non-specific categories
based on these identified sequence features (motifs). Based on the motifs
derived using a RF classifier algorithm we are able to accurately classify
more than 95% (training-error rate) of tissue-specific genes based upon
their upstream promoter region sequences alone. Since promoters are non-
coding regulatory regions, the derived motifs can be putatively used to find

kidney-specificity of other non-coding regions genome-wide (Section: 5.8).

Chromatin marks in known regulatory elements: Using the recently released

ENCODE data, a catalog of sequences that undergo histone modifications
such as methylation and acetylation is available for analysis [207]. Re-
ports suggest that mono-methylation of the lysine residue of Histone H3 is
associated with enhancer activity [200] whereas tri-methylation of H3K4
and H3 acetylation are associated with promoter activity. Using this set
of H3K4mel, H3K4me3 and H3ac sequences, we aim to find sequence
motifs that are indicative of such epigenetic preferences during transcrip-
tion. Though epigenetic data is available for five different cell lines, we
choose the HeLa cell line data because of its widespread use as a model
system to understand transcriptional regulation in-vitro in the laboratory.

Thus, we build a RF classifier to discriminate monomethylated H3K4 se-
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quences from trimethylated H3K4/acetylated H3 sequences. We note that
this data is not kidney-specific, and such data is yet to become available.
This yields motifs associated with epigenetic properties of promoters and
enhancers, which are potentially predictive of the regulatory potential for

novel sequences (section: 5.9).

2. Expression Perspective: There is limited expression data for the developing
mouse kidney, mainly due to technical reasons concerning small tissue yield at
such early time points. For this study, we use microarray expression data from
a public repository of kidney microarray data (http://genet.chmce.org [240],
http://spring.imb.uq.edu.au/ [178]). Each of these sources contain expression
data profiling kidney development from about day 10.5 dpc to the neonate stage.
Such expression data can be mined for potential regulatory influence between

upstream TF genes and Gata2.

o Inference of TF effectors at the promoter region: The TFs putatively re-
cruited at the proximal promoter are identified using the Directed Informa-
tion metric, that uses gene-expression level influence in addition to phyloge-
netic conservation of the corresponding binding site. We have earlier shown
that DTT is a good predictor of gene influence and can be used to infer
transcriptional regulatory networks [231]. A more detailed explanation is

given in sections: 5.10.1 through 5.10.1.

e Inference of TF effectors at each non-coding region:
At the distal enhancer, it is believed that there is recruitment of tissue-
specific transcription factors that co-operate with the basal transcriptional

machinery (at the promoter) to direct tissue-specific gene expression ([206],
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[216]). Whereas phylogeny and expression-based influence metrics can yield
high confidence candidates for promoter TFs, a similar analysis for en-
hancers is not possible, because of higher order effects ([220], [209]). To
this end, the only plausible way to search for enhancer TFs is to combine
phylogeny with tissue-specific annotation (from UNIPROT or MGI). Hence,
every transcription factor, whose motif is conserved at a non-coding (pu-
tative enhancer) region and is tissue-specific in annotation is considered a

likely candidate TF at that non-coding region.

3. Interactome Perspective: The identification of phylogenetically conserved
effector TFs at the promoter (identified via DTI), as also those that are phy-
logenetically conserved at the putative enhancers, lead to the exploration of
protein-interactions between these TF's, during distal enhancer-promoter in-
teraction (Sec:5.10). The STRING database (http://string.embl.de) integrates
various experimental modalities (genomic context, high-throughput experiments
such as co-immunoprecipitation, co-expression and literature) to maintain a list
of organism-specific functional protein-association networks that is amenable to

such exploration.

In this work, the above questions will be integratively answered for training data as
well as in the context of the urogenital enhancers identified in [204]. We aim to show
that each of these ‘features’ have a predictive value for the identification of enhancers
and the integration of these heterogeneous data can lead to potential reduction in
false positive rate during large-scale enhancer discovery, genome-wide. To date, there
has been no comprehensive study for summarizing these various heterogeneous data

sources to understand transcriptional regulation.
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5.3 Validation/Biological Application

As suggested in Sec: 5.1, we use the recently identified Gata2 urogenital (UG)
enhancers to validate our computational approach. All the data sources (and their
analysis) are therefore going to be focused on the kidney.

The experimental characterization of these enhancers was done as follows. Based
on BAC transgenic [204] studies, the approximate location of the urogenital en-
hancer(s) of Gata2 were localized to a 70 kilobase region on chromosome 6. Using
inter-species conservation plots, four elements were selected for transgenic analy-
sis in the mouse. These were designated UG1, 2, 3 and 4. After a lengthy and
resource-intensive experimental effort, two out of these four non-coding elements,
UG2 and UG4 were found to be true UG enhancers. Our goal is to find “features”
at the sequence, expression and interactome level, that are predictive of this reported
behavior of elements UG1 — 4 in the developing kidney.

It is easy to see the utility of such a methodology, since this can be scaled up
contextually for other genes of interest. Given the complexity of 1% of the genome,
made possible by the ENCODE project, the search for functional elements genome-

wide is going to be an important and challenging exercise.

5.4 Organization

With a view to understanding the elements of transcriptional regulation, the first
part of this paper (Sections 5.5-5.9) addresses the problem of identifying motif sig-
natures representative of transcriptional control from kidney-specific promoters and
epigenetically marked sequences. The second part of this work (Sections 5.10.1 -
5.10.2) integrates phylogeny and expression data to find regulatory TF's at the proxi-

mal promoter and enhancer(s) of Gata2. Using the notion of TF interactions between
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enhancer and promoter, we examine if protein-interaction data (Section: 5.10.3) can
offer supporting evidence for the observed in-vivo behavior of four putative Gata2
regulatory elements. Classifiers are designed to discriminate regulatory vs. mnon-
regulatory regions based on each of these multiple modalities. Finally, a probabilistic
combination of these classifiers is done to obtain a validation (Section: 5.11) of the

Gata2 UGEs (UG1 — 4). Sections: 5.12 and 5.13 conclude the paper.

5.5 Sequence Data Extraction and Pre-processing

The Novartis foundation tissue-specificity atlas [http://symatlas.gnf.org/], has a
compendium of genes and their corresponding tissues of expression. Genes have
been profiled for expression in about twenty-five tissues, including adrenal gland,
brain, dorsal root ganglion, spinal chord, testis, pancreas, liver etc. Considering
these diversity of tissue-types, one concern with the interpretation of this data is
the variability in expression across tissue-types. To address this concern, we take
a fairly stringent approach - if a gene is expressed in less than three tissue types,
it is annotated tissue-specific (‘¢s’), and if it is expressed in more than 22 tissue
types, it is annotated to be non-specific (‘nts’). Based on this assignment, we find
a list of 86 genes that are tissue-specific as well as have kidney expression (MGI:
http://www.informatics.jaz.org/). For these kidney-specific genes, we extract their
promoter sequences from the ENSEMBL database (http://www.ensembl.org/), using
sequence 2000bp upstream and 1000bp downstream up to the first exon relative to
the transcriptional start site reported in ENSEMBL (release 37).

Before proceeding to motif selection, a matrix of motif-promoter correspondences
is created. In this matrix, the counts of hexamer (six-nucleotide) motif occurrence

in the ‘¢s” and ‘nts’ promoters is obtained using sequence parsing (R package: ‘se-
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qinr’). The motif length of six is not overly restrictive, since it corresponds to the
consensus binding site size of several annotated transcription factor motifs in the
TRANSFAC/JASPAR databases. A Welch t-test is then performed between the
relative counts of each hexamer in the two expression categories (‘ts” and ‘nts’) and
the top 1000 hexamers with p —value < 107¢ are selected. This set of discriminating
hexamers is designated (ﬁ = Hy, Hs,...,Hipo). This procedure resulted in two
hexamer-gene co-occurrence matrices, - one for the ‘4s” (or +1) class of dimension
Nirain,+1 % 1000 and the other for the ‘nts” (or —1) class - dimension N4, —1 % 1000.
Here Nipgin 41 is the matrix of the 86 kidney-specific genes. Nypqin,—1 is the set of
‘nts’ that do not have kidney-specific expression.

As an illustration, we show a representative matrix (Table. 5.1).

Ensembl Gene ID  AAAAAA AAATAG Class

ENSG00000155366 1 1 +1
ENSG000001780892 4 3 +1
ENSG00000189171 1 2 -1
ENSG00000168664 4 3 -1
ENSG00000160917 2 1 -1
ENSG00000176749 1 1 -1
ENSG00000006451 3 2 +1

Table 5.1: The ‘motif count matrix’ for a set of gene-promoters. The first column is their ENSEMBL
gene identifiers, the next 2 columns are hexamer quantile labels, and the last column is
the corresponding gene’s class label (+1/ — 1).

All the above steps, from sequence extraction, parsing and quantization to ob-
tain hexamer-promoter counts that are done for the kidney-specific genes can be
repeated for the histone-modified sequences. This dataset is obtained from the
Sanger ENCODE database (http://www.sanger.ac.uk/PostGenomics/encode/data-
access.shtml), and contains 298 sequences that undergo modification (m1/me3/ac)
in histone ChIP assays. 140 of these correspond to H3K4mel (enhancers), and
158 correspond to H3K4me3/H3ac marks (promoters). Here, the 1000 hexamers

discriminating H3K4mel-sequences (+1 set) and a (H3K4me3/H3ac) (—1), are
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designated H' = H{, H), ..., Hiyp-

Sequence AAAATA AAACTG Class
chr2:41410492-41411867 2 1 +1
chr6:41654502-41654782 4 2 +1
chr3:41406971-41408059 1 1 -1
chr2:41665970-41667002 2 3 +1
chr4:41476956-41478365 1 2 -1
chr5:41530471-41531046 2 2 -1
chrX:41783327-41784532 1 2 +1

Table 5.2: The ‘motif count matrix’ for a set of histone-modified sequences. The first column is
their genomic locations along the chromosome, the next 2 columns are hexamer quantile
labels, and the last column is the corresponding sequence class label (+1/ — 1).

5.6 Motif-Class Correspondence Matrices

From the above, Nyqin +1 X 1000 and Nypgin,—1 % 1000 dimensional count matrices
are available both for the kidney-promoter and histone-modified sequences. Before
proceeding to the feature (hexamer motif) selection step, the counts of the M = 1000
hexamers in each training sample need to be normalized to account for variable
sequence lengths. In the co-occurrence matrix, let gc; ; represent the absolute count
of the k' hexamer, k € 1,2,..., M in the " gene. Then, for each gene g;, the
quantile labeled matrix has X, = [ if 9C; (=1 pry < gciy < 9Ci 1L K = 4. Matrices
of dimension Ny gin,+1 X 1001, Nipgin,—1 X 1001 for the specific and non-specific training
samples are now obtained. Each matrix contains the quantile label assignments for
the 1000 hexamers (X;,i € (1,2,...,1000)), as stated above, and the last column
would have the corresponding class label (Y = —1/ + 1). Having constructed two
groups of genes for analysis, tissue specific (‘4s’) and non-tissue specific (‘nts’) -
we seek to find hexamer motifs which are most discriminatory between these two
classes. Our goal would be to make this set of motifs as small as possible - i.e. to
achieve maximal class partitioning with the smallest feature subset. Towards this

goal, we explore the use of random forests (RF') [176] for finding such a discriminative
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hexamer subset.

5.7 Random Forest Classifiers

A random forest (RF) is an ensemble of classifiers obtained by aggregating (bag-
ging) several classification trees ([199], [176]). Each data point (represented as an
input vector) is classified based on the majority vote gained by that vector across all

the trees of the forest. Each tree of the forest is grown in the following way:

e A bootstrapped sample (with replacement) of the training data is used to grow
each tree. The sampling for bootstrapped data selection is done individually at

each tree of the forest.

e For an M-dimensional input vector, a random subspace of m (< M)-dimensions
is selected, and the best split on this subspace is used to split the node. This is
done for all nodes of the tree. Each tree is grown to maximum length, with no

pruning.

During the training step, before sampling by replacement, one-third of the cases
is kept “out of the training bag”. This oob (out-of-bag) data is used to obtain an
unbiased estimate of the classification error as trees are added to the forest. It is
also used to get estimates of variable importance.

From the above we see that the classifier structure of the random forest is an
ensemble of trees. Each tree is trained and built on a different bootstrap sample
(split) of the training data. Hence each tree has a different topology. Unlike a tree
classifier, therefore, it is not possible to obtain a “consensus topology” of the RF
classifier. In the absence of one unifying structure for the purpose of visualization,
we can inspect the other outputs like variable importance, confusion matrix, and

OOB error rate to ascertain the accuracy and performance of the RF classifier.
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The variables selected for optimal partitioning over class labels can be examined
from a variable importance plot which indicates which variables are most discrimina-
tory between these two classes ([176], [213]). It is also to be noted that random forests
afford the dual advantage of both training and test-set error estimation (through the
OOB data) during the overall training procedure. Thus there is no separate proce-
dure for test-set error estimation that needs to be implemented in the case of RFs.
Each tree in the ensemble is trained on a 3rd — $rd split of the data. Each tree is
grown to get the least oob error before being incorporated into the classifier ensemble.

A confusion matrix is one representative tool to understand the performance of
the RF classifier. After the training process, the confusion matrix measures the
discordance between true and predicted classes (and can be used for OOB error esti-
mation). Each row represents the instances of the actual class, while each column of
the matrix represents the instances in a predicted class. The matrix can then be used
for false-positive, false-negative, true-negative and true-positive rate computations.

Several interesting insights into the data are available using random forest analy-
sis. The variable importance plot yields the variables that are most discriminatory
for classification under the ‘ensemble of trees’ classifier. This importance is based on
two measures- ‘Gini index’ and ‘decrease in accuracy’. The Gini index is an entropy
based criterion which measures the purity of a node in the tree, while the other met-
ric simply looks at the relative contribution of each variable to the accuracy of the
classifier. For our studies, we use the ‘randomForest’ package for R [213]. The clas-
sifier performance on the individual data and the related diagnostics are mentioned

under each head (Secs: 5.8 and 5.9).
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5.8 Random Forests on Kidney-specific promoters

In this section, we aim to find discriminating sequence motifs between a set of
kidney-specific promoters and housekeeping promoters with a goal to find sequence
motifs underlying kidney-specific regulation. The kidney enriched dataset has 86
genes that are assigned to a tissue specific class and have higher than mean expres-
sion in the kidney. For the purpose of training and testing, we consider the set of
housekeeping genes identified from the ‘nts’ class and reported in literature ([187],
[191]). There are almost 1500 genes in the housekeeping gene (‘nts’) set. Since, this
would lead to unbalanced predictions during classifier training, we use a stratified
sampling approach [213] to select for a sample size that reduces this effect (the sam-
pling itself is done with a prior on the relative sizes of the two classes). Here, the
set of (—1) promoter-sequences are taken to be of the same size as the (+1) class.
Using this approach, we obtain a training-error classification accuracy of > 95% on
the kidney enriched tissue-specificity data set.

Before proceeding to motif identification, it is necessary to check for possible se-
quence bias (GC composition) between the two classes of promoters (kidney-specific
vs. housekeeping). Though there are several kinds of sequence bias [232], the com-
position bias is most closely related to this problem. If there is a significant bias,
then the motifs turn out to be just GC rich sequences that are not very biologically
informative [241] for regulatory potential. The GC composition of these two classes
of sequences is represented in Fig. 5.3. We note that though only a subset of ‘nts’
gene-promoters were used during the RF analysis, we show the GC-composition for
the entire class of ‘nts’ sequences for completeness. As can be seen, the average GC

composition is the same. The ROC space representation and variable importance



plot for the overall classification is indicated below (Fig. 5.11 and Fig. 5.4). The

confusion matrices are all explained in the context of the classifier combination in

Section:5.11.

Figure 5.3: GC plots for sequence bias in kidney-specific vs. housekeeping promoters.

Figure 5.4: Top hexamers which can discriminate between kidney-specific and house-keeping genes.

To address a related question, we examine if the top ranked hexamers in the kidney

dataset correspond sequence-wise to known transcription factor binding sites. Using
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the publicly available Opossum tool (http://www.cisreg.ca/cgi-bin/oPOSSUM /opossum/)
or MAPPER (http://bio.chip.org/mapper), we found several interesting transcrip-
tion factors to map to these motifs, such as Nkx, ARNT, c-ETS, FREAC/, NFAT,
CREBP, E2F, HNF/A, Paz2, MSX1, SP1 several of which are kidney-specific.
Though this is highly consistent with the tissue-specificity of the dataset, the func-

tional relevance of these sites remains to be experimentally validated.

5.9 RFs on chromatin-modified sequences

We train a RF classifier on a set of 298 sequences from chromosome sequence that
have varying histone modifications associated with them (namely, H3K4mel/me3,
and H3ac ), as mentioned in Section: 5.2. These sequences had a high level of the
corresponding histone-modification from ChIP experiments. The other regions that
were assayed for but did not have high levels of modification are not considered in this
analysis. These are derived from the HeLa cell line and are not necessarily context-
specific for kidney development. However, given the widespread use of this cell line
for transcriptional studies, we aim to find if the motifs associated with regulatory
elements are indeed predictive of enhancer activity.

Here too, we examine the GC-composition bias of these two sequence classes (Fig.
5.5) and confirm that there is no such sequence bias that would skew the discovery
and subsequent interpretation of these epigenetic motifs.

The motifs obtained from the random forest analysis indicate the “sequence-
preferences” of regulatory elements that are kidney-specific (Fig. 5.4) or nucleosome-
free (Fig. 5.6). For the kidney-specific case, the underlying caveat is that co-
expression does not imply co-regulation; however we are only using the discovered

motifs to understand the “sequence-preferences” of kidney-specific regulatory-regions
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Figure 5.5: GC plots for sequence bias in H3K4mel histone sequences vs. H3K4me3 and H3ac

sequences.
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Figure 5.6: Top hexamers which can discriminate between H3K4mel histone sequences vs.

H3K4me3 and H3ac sequences.
[205] rather than using them for de-novo prediction of new genes that are regulated
by the same transcriptional machinery. Most of the motifs do not overlap TFBS
motifs and might be indicative of more interesting sequence properties. We analyze

the performance of these classifiers on the 4 UG enhancers, mentioned previously
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In both cases, UG2 — 4 are classified as kidney-specific enhancers, whereas UG1 is
correctly classified as not being regulatory. Additionally, a control set of “promoter-
independent” enhancers derived from the Mouse Enhancer database [227] was also
classified as enhancers based on these chromatin signatures. This high prediction
accuracy inspite of non-specificity of cell context (HeLa cell line) is very interesting
and has potentially high predictive value. This is explored further in Sec: 5.11.

We now proceed to the mechanistic insight (based on TF effector identification
and PPI) mentioned in Section. 5.1 to understand the behavior of putative regulatory

elements.

5.10 PPI between promoter and enhancer TFs

In order to understand the nature of distal interactions between the enhancer and

promoter TFs (Fig. 5.2), we decouple the overall regulation problem into three parts:
1. Identification of putative TF effectors at the promoter (Section: 5.10.1),
2. Identification of enhancer TFs (Section: 5.10.2), and

3. Examination of the interaction-graph formed between enhancer-TFs and pro-

moter TFs (Section: 5.10.3).

5.10.1 TF effector identification at Promoter and Enhancer

Promoter TF identification: TFs that regulate basal transcription at the promoter
can be identified from phylogenetic conservation or co-expression studies. In this ap-
proach, the promoter sequence (here, the Gata2 promoter) is aligned across multiple
species and the TFBS motifs that are conserved in the multiple alignment are consid-
ered to be putative effectors of gene regulation. An additional step involves examining

the promoters of all genes that are co-expressed in the same spatio-temporal manner
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as the gene of interest (e.g.: Gata? in the kidney). Such sequence-based approaches
have been examined in literature ([216], [209], [220]).

Since the list of putative TFs (identified above) that potentially bind at the pro-
moter is still large, there have been efforts to incorporate gene-expression data to
reduce the set of potential TF effectors. In this scenario, if the gene corresponding
to the conserved TF has a high expression-level influence on Gata2 expression, then
that TF has stronger evidence for being a potential regulator ([217], [212]). Recently,
we introduced the directed information (DTI) as a metric to infer expression-level
influence between any putative transcription factor (TF) gene and a target gene
(such as Gata2) [231]. We will briefly summarize the utility of DTI for TF ef-
fector identification in the following sections (Sec. 5.10.1 and 5.10.1). This seeks
to integrate sequence and expression data into the determination of relationships
between transcription factors and their target-genes. All additional details (perfor-
mance on synthetic data, other biological data and comparison with other metrics)
are available in [231]. Information-based measures have enabled the investigation of
non-linear gene relationships in the presence of measurement noise [217]. An impor-
tant point to note is that unlike mutual information, the DTT is a directed metric

that enables the inference of both strength and direction of gene influence.
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Figure 5.7: TFBS conservation between Human, Mouse and Rat, upstream (x-axis) of Gata2,
from http://www.ecrbrowser.dcode.org/. The mouse sequence is the base sequence

and is hence not displayed. The dark and light red regions correspond to potential
TF binding regions on DNA.

DTI Formulation

As alluded to above, there is a need for a viable influence metric that can find rela-
tionships between the TF “effector” gene (identified from phylogenetic conservation)
and the target gene (like Gata?2). Several such metrics have been proposed, notably
correlation, coefficient of determination (CoD), mutual information etc. To allevi-
ate the challenge of detecting non-linear gene interactions, an information theoretic
measure like mutual information has been used to infer the conditional dependence
among genes by exploring the structure of the joint distribution of the gene expression
profiles [217]. However, the absence of a directed dependence metric has hindered
the utilization of the full potential of information theory. In this section, we examine
the applicability of one such metric - the directed information criterion (DTT), for
the inference of non-linear, directed gene influences.

The DTT - which is a measure of the directed dependence between two N-length
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random processes X = X" and Y = YV is given by [219]:
N

(1) XN 5 YN = I(X" Y,y
n=1

Here, Y™ denotes (Y1,Y5,..,Y,), i.e. a segment of the realization of a random
process Y and I(X?";Y") is the Shannon mutual information [181].

An interpretation of the above formulation for DTT is in order. To infer the notion
of influence between two time series (nRNA expression data) we find the mutual
information between the entire evolution of gene X (up to the current instant n)
and the current instant of Y (Y7,), given the evolution of gene Y up to the previous
instant n — 1 (i.e. Y™~!). This is done for every instant, n € (1,2,..., N), in the N
- length expression time series.

As already known, [(XN;YN) = H(XN)-H(XN|YY), with H(XY) and H(XN|YN)
being the entropy of XV and the conditional entropy of X" given YV, respectively.
Using this definition of mutual information, the DTI can be expressed in terms of
individual and joint entropies of XV and Y». The task of N-dimensional entropy
estimation is an important one and due to computational complexity and moderate
sample size, histogram estimation of this multivariate density is unviable. However,
several methods exist for consistent entropy estimation of multivariate small sample
data ([189], [221], [225], [243]). In the context of microarray expression data, wherein
probe-level and technical/biological replicates are available, we use the method of

[189] for entropy estimation.

From (1), we have,
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(XN 5 YNy =3 [HX"Y™ ) — H(X"|Y")]
=Y {[HEX™ V") = HY")]-

[H (X" Y") = H(Y™)]}

e To evaluate the DTI expression in (2), we need to estimate the entropy terms

H(X™ Y"1, H(Y"1'), H(X",Y") and H(Y™). This involves the estimation
of marginal and joint entropies of n random variables, each of which are R
dimensional, R being the total number of replicates (probe-level, biological and

technical).

Though some approaches need the estimation of probability density of the R-
dimensional multivariate data (X™) prior to entropy estimation, one way to
circumvent this is to the use the method proposed in [189]. This approach uses
a Voronoi tessellation of the R-dimensional space to build nearly uniform parti-
tions (of equal mass) of the density. The set of Voronoi regions (V1 V2 ... V")
for each of the n points in R-dimensional space is formed by associating with
each point X}, a set of points V¥ that are closer to X than any other point
X, where the subscripts k and [ pertain to the £ and [ time instants of gene

expression.

Thus, the entropy estimator is expressed as : H(X") = LS log(nA(V),
where A(V?) is the R-dimensional volume of Voronoi region V*. A(V?) is com-
puted as the area of the polygon formed by the vertices of the convex hull of

the Voronoi region V*. This estimate has low variance and is asymptotically

efficient [190].
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To obtain the DTI between any two genes of interest (X and Y') with N-length ex-
pression profiles X and YV respectively, we plug in the entropy estimates computed
above into the expression (2).

From the definition of DTI, we know that 0 < (X" — YV) < I(X};Y") < oo,

For easy comparison with other metrics, we use a normalized DTI metric given by

N

ppr = VI — e 20X =VN) = (/1 — 25 IX5YiY'Y) - This maps the large range
of DI, ([0,00]) to lie in [0,1]. Another point of consideration is to estimate the
significance of the ‘true’ DTT value compared to a null distribution on the DTT value
(i.e. what is the chance of finding the DTT value by chance from the series X and
Y'). This is done using empirical p-value estimation after bootstrap resampling (Sec:
5.10.1). A threshold p-value of 0.05 is used to estimate the significance of the true
DTTI value in conjunction with the density of a random data permutation, as outlined

below.

Significance Estimation of DTI

We now outline a procedure to estimate the empirical p-value to ascertain the
significance of the normalized directed information I(X™ — YV) between any two
N-length time series X = XV = (X}, Xy,..., Xy),and Y =YV = (Y1, Y,,...,Yy).
In our case, the detection statistic is © = I (XN — YN) and the chosen acceptable

p-value is a.

The overall bootstrap based test procedure is ([186], [229], [196]):
e Repeat the following procedure B(= 1000) times (with index b=1,..., B):

— Generate resampled (with replacement) versions of the times series X%,

YV denoted by X}V, Y}V respectively.

— Compute the statistic * = I(XY — Y;V).
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e Construct an empirical CDF (cumulative distribution function) from these boot-
strapped sample statistics, as Fg(#) = P(© < 0) = & S0 Liso(z = 6 — 0Y),

where [ is an indicator random variable on its argument .

e Compute the true detection statistic (on the original time series), y = I(X~ —
Y™) and its corresponding p-value (py = 1 — Fg(6p)) under the empirical null

distribution Fg(0).

o If Fo(6y) > (1 — ), then we have that the true DTI value is significant at level

«, leading to rejection of null-hypothesis (no directional association).

Summary of DTI-based TF effector Inference

Our proposed approach using DTT for determining the effectors for gene B (Gata2

in the enhancer study) is as follows:

e Identify the G genes (Ay, As, ..., Ag), based on phylogenetic conservation (Fig.
5.7). Preprocess the gene expression profiles by normalization and cubic spline
interpolation. Assuming that there are N points for each gene, entropy estima-

tion is used to compute the terms in the DTT expression (Eqn. 2).

e For each pair of genes A; and B among these G' genes :

{

— Look for a phylogenetically conserved binding site of TEF encoded by gene

A; in the upstream region of gene B.

— Find DTI(A;, B) = I(AY — BY), and the normalized DTT from A; to B,

DTI(A;, B) = /1 — e 21(AY=BY),

— Bootstrap resampling over the data points of A; and B yields a null distri-

bution for DTI(A;, B). If the true DTI(A;, B) is significant at level o with
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respect to this null histogram, infer a potential influence from A; to B.

— The value of the normalized DTT from A; to B gives the putative strength

of interaction/influence.

— Every gene A; which is potentially influencing B is an ‘effector’. This search

is done for each gene A; among these G' genes (A, Ao, ..., Ag).

Note: As can be seen, phylogenetic information is inherently built into the influence
network inference step above. We note that, in this approach, the choice of potential
effectors for a target gene is based on only those TFs that have a binding site at
the target gene’s promoter. This aims to reduce the overall search space based on
biological prior knowledge.

As an example, we indicate the significance and strength of the DTT between the
Octl TF and Gata2. The high strength of influence and its significance coupled with
the phylogenetic conservation of the Oct1 motif indicates expression evidence for the

role of Oct! in Gata?2 regulation ([178], [185], [224]).

Empirical CDF of Null Distribution

Fix)

Figure 5.8: Cumulative Distribution Function for bootstrapped I(Oct! — Gata2) interaction. True
I(Oct1 — Gata2) = 0.9866. Also, I(Gata2 — Octl) = 0.8588.

Such analysis can be extended to all TFs that are phylogenetically conserved. For
Gata?2 regulation in the developing kidney, this set of putative TF effectors (apart

from Octl) is shown in Fig. 6.4. However, the functional role of these TFs in
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regulating Gata?2 regulation needs to be experimentally confirmed.

Figure 5.9: Putative upstream TFs using DTI for the Gata2 gene.

5.10.2 Enhancer TF identification

In the earlier section, we have examined the identification of promoter TFs using
phylogenetic sequence conservation of TFBS motifs in conjunction with expression
level influence using DTI. The next key step towards determining the nature of
promoter-enhancer TF interactions is the identification of enhancer-TFs. As has
been alluded to earlier, there is no method to precisely infer which transcription
factors bind a certain regulatory element during long-range gene regulation. Thus,
we appeal to a traditional approach of finding tissue-specific transcription factors
that are phylogenetically conserved at any potential regulatory region ([228], [242]).
This is consistent with earlier observations that enhancers recruit tissue-specific tran-
scription factors during the formation of the overall transcriptional machinery during
gene expression, whereas promoters recruit components of the basal transcriptional
machinery ([206], [216], [209], [242], [238]).

To ascertain the tissue-specificity of each TF that putatively binds a regulatory
element (identified via phylogenetic conservation), we examine that TF’s annotation
in the UNIPROT database. This database is one of the most current sources of

TF annotation and has details pertaining to the sequence specificity of the binding
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motif, the structure of the TF and its tissue-specificity of expression. For those TF's
that do not have a UNIPROT annotation, we look at the tissue-expression of the
corresponding gene from the mouse genome informatics (MGI) mRNA annotations.
The MGI expression annotations encompass multiple modalities (literature, RNA
in-situ) to suggest a tissue-restricted or conversely, a ubiquitous expression of the
TF gene. Thus, a set of tissue-specific transcription factors that bind any non-coding
region of interest (such as an enhancer) can be identified ([223], [242], [228], [209],
[216]). For the Gata2 UGEs, several potential TFs can be found, some of which are

highlighted in Fig. 5.10.

5.10.3 Enhancer-Promoter Distal Interaction via Protein-Protein Interactions - A
Graph Based Analysis

Using the notion of protein-protein interaction mediating long-distance interac-
tions between promoters and enhancers during looping ([226], [175], [197]), we ex-
plore the interactome to look for within-group and between-group interactions in the
promoter-TF and the enhancer-TF groups. The resultant interaction-graph can be
examined for several “structural” characteristics (like heterogeneity, degree distrib-
ution, path length, density, clustering coefficient and connected components) ([173],
[183]). The goal is to identify structural features that discriminate true enhancer vs.
non-functional element activity based on their interaction-graph.

The interaction-graphs (e.g: Fig. 5.10) are obtained in the following manner:

e One part of the graph (hollow circles) corresponds to the TF effector group at
the promoter. These V,, TFs are identified based on phylogenetic conservation

and directed information (section: 5.10.1).

e The other part of the graph (filled circles) corresponds to the V, tissue-specific

TF's group at the enhancer, identified based on phylogeny and annotation (sec-
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tion: 5.10.2).

e The interaction-graph is defined by the vertices V' = (V, U V;), and the edges
E=e; i,5€(1,2,...,]V,uV,]). Each bidirectional edge E = (e; ;) is derived
from an annotated interaction between TFs ¢ and j, based on an interaction
database. These edges describe both within-group TF interactions as well as
between-group interactions. To obtain the TF interactions, we use protein-
interaction information derived from the STRING (http://string.embl.de/) and
MiMI (http://mimi.ncibi.org/MiMI/home.jsp) databases, both of which contain
data derived from multiple sources, such as yeast-2-hybrid screens, literature,
ChIP etc. Though there is some inherent noise in the accuracy of these high-
throughput sources, they permit the use of a confidence threshold to discrimi-

nate a potentially true interaction from a spurious one.

Though it would be of great value to use a catalog of gene-specific and tissue-
specific regulatory regions (with all possible transcription factors) from which to find
such interaction characteristics - such a repository does not yet exist. In this section,
we use a few examples (Gata3 OVE, Gata3 KE, Fgf OVE, Mecp2 F21/F6 , Shh FE)
of known tissue-specific and gene-specific regulatory elements from literature, as a
positive training set. For the negative training set, we consider the set of regions that
were reportedly investigated in these transgenic experiments but did not yield gene-
specific regulatory activity. Based on which structural metrics are associated with
potential regulatory activity for these examples, we will examine if these features are
predictive of Gata2 UGE enhancer behavior, from its interaction-graph.

We have presented a preliminary analysis of enhancer-promoter TF interaction-
graphs for some genomic elements with known regulatory or non-regulatory activity

([215], [211], [198], [223]) in Table. 5.3. The table represents the listing of the
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structural attributes of these interaction-graphs, following analysis methods from
literature ([174], [173], [233]). A brief summary of these attributes are given below.
A deeper analysis of other graph topology metrics and their relation to functional

enhancer activity is a topic of future interest.

Sequence Class Clustering Characteristic Heterogeneity Centralization Density
Coefficient path length

Mecp2 F21[215) +1 0.208 2.824 0.668 0.184 0.133
Mecp2 F6 [215] -1 0 1.75 0.342 0.067 0.145
Gata3 OVE [198] +1 0.036 2.254 0.779 0.359 0.154
Gata3 KE [198] +1 0.409 2.0 0.813 0.684 0.216
Gata3 NE1 [198] -1 0.383 2.131 1.139 0.757 0.15
Gata3 NE2 [198] -1 0.458 2.013 0.872 0.699 0.203
Fgf10 OVE [223] +1 0.313 2.433 0.72 0.323 0.133
Shh FE [211] +1 0.394 2.312 0.797 0.49 0.175

Table 5.3: The first column is the various regulatory and non-regulatory elements from literature,
the next column corresponds to its class label (+1/ — 1). The subsequent columns
correspond to the attributes of the overall TF-interaction graph (both within-group and
between-group interactions).

e Clustering coefficient: In undirected networks, the clustering coefficient C,, of a
node n is defined as C,, = 2e,,/[k,(k,—1)], where k,, is the number of neighbors of
n and e, is the number of connected pairs between all neighbors of n. Thus C,,
of a node in a graph is the ratio of the number of edges between the neighbors of
that node over the total number of edges that could exist among its neighbors.
The clustering coefficient of a node is always a number between 0 and 1. The
network clustering coefficient is the average of the clustering coefficients for all

nodes in the network.

e Characteristic Path length: The length of a path along the graph is the number
of hops (or edges) between any two nodes along the graph. Though, there may
be multiple paths between two nodes n and m (TFs) along the interaction-graph
, the shortest path length L(n,m) = (L(m,n)) corresponds to the minimum

across these multiple paths. This measure is computed for all pairs of nodes in
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the network. The characteristic path length denotes the average shortest-path
distance of the graph. This gives the expected distance of any two connected

nodes in the graph and is a global indicator of network-connectivity.

Heterogeneity: Network heterogeneity denotes the coefficient of variation of the
degree distribution. A network that is heterogeneous would consist of some
nodes that are highly connected (exhibit ‘hub’ behavior), while the majority of
nodes tend to have very few connections. Understanding the heterogeneity of
the degree distribution in biological networks is an interesting topic of current

research, especially as a way to discover modularity [183].

Centralization: This refers to the overall connectivity (cohesion) of the graph. It
indicates how strongly the graph is organized around its most central point(s).
The central point(s) of the graph are the set of nodes which minimize the max-
imum distance distance from all other nodes in the graph [239]. Networks
whose topologies resemble a star/wheel pattern have a centralization close to
1, whereas decentralized networks are characterized by having a centralization

close to 0.

Density: The neighborhood of a given node n is the set of its neighbors. The
connectivity of n, denoted by k,, is the size of its neighborhood. The average
number of neighbors indicates the average connectivity of a node in the network.
A normalized version of this parameter is the network density &, /n(n—1). The
density is a value between 0 and 1. It is also the average standardized degree. It
shows how densely the network is populated with edges (i.e. how “close-knit” an
empirical graph is [239], [235]). A network which contains no edges and solely

isolated nodes has a density of 0, whereas the density of a clique (completely
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connected graph) is 1.

The above mentioned several network properties (as well as clustering coefficients,
number of connected components etc.) are examined for the overall interaction-
graphs for the reported enhancers from literature [173]. A logistic regression as well
as random forest analysis reveals that low values of heterogeneity, characteristic path
length and centralization are fairly good predictors of potential enhancer activity.
All of these attributes point to the decentralized, homogenous and somewhat tighter
connectivity of the interaction-graphs for true enhancers. We note that the OOB
error rate of the RF here is about 25%. The quality of this classifier can be expected
to improve as we get more data from which to extract features.

We now examine the interaction-graphs for the test set, i.e. the four Gata2 UGEs.
For illustration, we only show the largest connected component of the inter-group

edges for each interaction graph (Fig. 5.10).
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Figure 5.10: Protein-protein interaction between putative Gata2 TFs (hollow circles) and putative
UG element TFs (filled circles). Note: This only shows the connections between two
groups for one of the connected components. For our analysis, we consider both intra-
and inter-group connections. From http://string.embl.de/

This figure indicates a very interesting property of the real enhancers vis-a-vis
the other conserved elements. We see that the TF effectors for Gata2 such as SP1,
POUS3F2 (identified in the TF effector network above, Fig. 6.4), are involved in cross-

element interactions at the protein level, between the promoter and true enhancer
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(UG2/4). However, the network linkage in the elements that showed no enhancer ac-
tivity is very sparse suggesting low cross-talk between promoter and enhancer. Also,
the TFs at the enhancer nodes (dark circles) have a more uniform degree distribu-
tion in the functional elements UG2/4 as compared to the non-functional ones. Both
these observations suggest lower heterogeneity and centralization of such functional
interaction-graphs. Thus, the extent of TF cross-talk is a potential discriminator of
possible enhancer function. This shows that superimposing PPI information along
with sequence and expression data helps reduce the number of false positives while

integrating various aspects of distal regulation.

5.11 Heterogeneous Data Integration and Validation on Gata2 UGEs

As mentioned previously, the primary goal of the various methods developed above
is to understand the behavior of known transcriptional elements along different ge-
nomic modalities. To validate their predictive potential, we have to demonstrate their
application to predicting the behavior of the Gata2 UGEs (which is our test set).
In this section, we present a framework that combines the results of the individual
classifiers developed before (kidney-promoter RF, histone RF and interactome-RF)
to obtain a integrated prediction. For combining heterogeneous classifiers, we will
explore a “probabilistic belief fusion” framework in this paper. Of course, other
techniques from literature (like ensemble methods) are also highly amenable for ex-
ploration in this context.

The framework involves combining the ‘beliefs’ of the individual classifiers to
obtain a combined belief of prediction. To compute the belief of each classifier
we start with examining the confusion matrices for each of the classifiers (kidney-

promoter RF, histone-RF and graph-RF), following ([195], [244], [179]). Since each of
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the classifiers are random forests, we can obtain their OOB error estimates through

these confusion matrices. For the graph-RF, this confusion matrix is as below,

Class —1 1 class.error
CMgraph-rF = [ -1 4 1 0.20 ;
1 1 4 0.20
thereby yielding an OOB error estimate of ~ 20%.

Similarly, we have,

Class —1 1 class.error
CMpromoter-RF = | —1 67 19 0.22 ,

1 10 76 0.12

thus yielding an OOB error estimate of ~ 17%.

Class —1 1 class.error
CMhuistone-RF = | —1 134 24 0.15 ;
1 21 119 0.15
yielding an OOB error estimate of ~ 15%.

The three random forest classifiers are represented in ROC space (Fig. 5.11).
As can be seen, these three classifiers have fairly good performance characteris-
tics. Moreover these are three complementary data sources and can be effectively
combined to improve detection reliability. Since they are trained on very different
modalities, they can be assumed to be independent.

Each classifier is a function ey (z) = jj that maps a data point () to the class ‘j',

with k =1,2,..., K and j; € (—1,1). Here, K = 3, and J = 2 classes.
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Figure 5.11: Representation of the three RF classifiers in ROC space (RF-promoter in (+), and
RF-histone in (0), and graph-RF in (x)). The diagonal line is the classification by

random chance.

Thus, the belief of the k™ classifier is,
bely(x € Cilex(x) = ji) = P(x € Cilex(x) = ji)
The overall belief, bel(i), given by,

bel(i) = bel(xz € Ciley(x) = ji,...,ex(x) = jk) =

P(z € Ciler(z) = j1, ..., ex(x) = jk)
_ P(ey(z) = ji,...,ex(x) = jilz € C;).P(x € Cy)
P(ei(x) = j1,...,ex(x) = jk)

Further, we have that,

[T, Plex(z) = jilz € C;) _ [T, P(z € Cilex(x) = ji)
[T Plex(x) = ji) [T, Pz € C)

Thus,

[1i, P(z € Cilex(z) = i)
[1X, P(z € C;)

bel(i) = P(x € C}).

(due to independence of the K classifiers,)
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In the absence of the posterior probability P(z € C;), an approximation is used,

leading to [244],

bel(G) — Jl_[]i{:l]f(x € CZ|ek(x) = ]k) .
> izt [y Pla € Cilex(x) = ji)

Note: J = 2 and K = 3. Depending on the belief value bel(7), the decision rule

(E(x)) for classifying data point z is,

E(x) = j,if bel(j) = max; bel(i),

or, E(x) = j,if bel(j) = max; bel(i),and, bel(j) > «

where 0 < a < 1, with a being a threshold.

Sequence True  Promoter RF Histone RF Interaction-graph RF P (Class=+1)
Class prediction e;(z) prediction es(x) prediction ez(x) (Overall Belief)
Gata?2 UGL -1 -1 -1 -1 0.0054
Gata?2 UG2  +1 +1 +1 +1 0.9875
Gata2 UG3 -1 +1 +1 -1 0.832
Gata2 UG4  +1 +1 +1 +1 0.9875

Table 5.4: Combined belief generation during heterogeneous classifier integration. The last column
represents the combined belief (probability that the UG sequence is an enhancer) as a
result of integrating the promoter-RF, histone-RF and graph-RF predictions.

We now show the output classes of each of the 3 classifiers as well as the combined
belief on the Gata2 UGEs in Table. 5.4. More specifically, for the first row in Table.

5.4, the overall belief equation above becomes,

bel(ugl = +1) =

P(ugl = +1ley(z) = —1).P(ugl = +1|es(z) = —1).P(ugl = +1|es(z) = —1)
P(ugl = +1ley(z) = —1). P(ugl = +1leg(x) = —1).P(ugl = +1lez(z) = —1)+
P(ugl = —1lei(z) = —1).P(ugl = —1les(z) = —1).P(ugl = —1|ez(z) = —1
[(1 —precy1) x (1 —precys)] x [(1 — prec,3)
(1 —precy1) x (1 —precps) x (1 — precy,3)] + [precny X prec, o X precy, 3]

TN,

TPy
TNp+FNy -~

Here, Précy x = TP +FP;"

Similarly, prec,, = These are the negative and

positive precision values respectively, for the k" classifier. These rates are obtained



158

from the corresponding confusion matrices shown above. This approach is followed
for each of the UG1 — 4 elements.

If we set a threshold of @ = 0.85 or 0.90, we would get UG2 and UG4 to be
the true enhancers (100% accuracy). However, for a choice of o = 0.8, UG3 is
predicted to be an enhancer in spite of being declared a member of the (—1) class
by the graph-RF. This choice of threshold thus determines the performance of the
combined classifier.

Under the a = 0.8 case, however, the results are not to be interpreted as a
25% error rate since the nature of the test set (Gata2 UG enhancers) are very
different from the training data of each modality (promoters are proximal elements
whereas enhancers are distal; histone sequences are for a different cell-context; and
interaction-graphs are obtained over different genes). The fact that we are getting
such good prediction in spite of the training sets being so different is a strong point
in favor of examining and integrating these data sources. The real test-error rates

are given by the OOB error estimates of the individual classifiers.

5.12 Summary of Approach

In this work, we have shown that,

e Motif signatures are predictive of regulatory element location. These comprise
sequence-motifs derived from tissue-specific gene promoter sequences as well as

sequences related to epigenetic preferences during gene regulation.

e Promoter and enhancer TFs that are putatively recruited during gene (Gata?2)
regulation can be identified using a combination of phylogenetic conservation,

expression data, and tissue-specificity annotation.

e Effector TFs (via DTI) at the gene proximal promoter have high network linkage
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with enhancer TF's in case of functional enhancers. The TF interaction-graphs of
truly functional elements are seen to be have a lower centralization, characteris-
tic path length and heterogeneity suggesting higher cross-talk during formation

of the transcription factor complex.

These perspectives (based on sequence, expression and interactome data) shed
some light on the sequence and mechanistic preferences of true regulatory regions
interspersed genome-wide. It is to be noted that this model is data driven and may
not directly correspond to the biology of transcription. However, much like markov
models for gene sequence annotation, we believe that such data-driven models are

useful for model-building during genome-wide study.

5.13 Conclusions

In this work, we have examined the problem of regulatory element identification.
Such an effort has implications to understand the genomic basis of key biological
processes such as development and disease. Using the biophysics of transcription, this
can be modeled as a problem in data integration over various experimental modali-
ties such as sequence, expression, transcription factor binding and interactome-data.
Using the case study of enhancers corresponding to the Gata2 gene, we examine
the utility of these heterogeneous data sources for predictive feature selection, using
principled methodologies and metrics.

Based on motif signatures, we find that they predict the true enhancers (UG2,
UG4), and the false enhancer UG1, but mispredict UG3 to be an enhancer. However,
a mechanistic insight that analyzes enhancer behavior based on the interactions
between distally and proximally recruited transcription factors can greatly improve

on prediction accuracy. Additionally, combining heterogeneous classifiers based on
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multiple data modalities yields an improved accuracy of prediction.

The novelty of the proposed work spans several areas. Firstly, data sources that
are relevant to understand the mechanism of gene regulation (with Gata2 as an ex-
ample) have been identified. We have developed methods that reconcile the behavior
of known regulatory elements along each of these modalities. The kidney-promoter
based classifier aims to discover sequence preferences of kidney-specific regulatory
regions. The utilization of histone-modified sequences and their exploration for se-
quence motifs are indicative of epigenetic-preferences and nucleosome-occupancy pat-
terns. This has not been explored before in the realm of LRE characterization. The
use of DTI as a metric to infer putative TF to target-gene influence is a recent
one that serves to integrate phylogenetic TFBS conservation along with expression
data. Finally, the utilization of graph-based analysis techniques to understand the
“structure” of the TF interaction-graph between enhancer and promoter helps us
understand true enhancer behavior from a mechanistic viewpoint. The probabilistic
combination of multiple classifiers (each deriving from a unique data resource) aims
to reconcile the behavior of existing enhancers along multiple modalities. We hope
to demonstrate that a principled integration of non-overlapping genomic modalities

can be used to interpret the context and specificity of gene regulation.

5.14 Future Work

Some key elements directly emerge for guiding future research. As already alluded
to in the motif-signature procedure, specific expression data corresponding to stages
and tissues of interest would greatly improve the specificity of regulatory element
prediction. Furthermore, as histone modification maps for different cell lines are

generated, the false positive rate of prediction would decrease, thereby improving
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accuracy. Several other learning paradigms can be introduced into this setting, since
we are learning from structured data. Also, methods in joint classifier and feature
optimization might likely improve the accuracy of predictions. Additionally, methods
that analyse the grammar of these cis-regulatory regions (LREs) and look for motif
position, spacing and orientation will be of great utility.

At the expression level, methods for supervised network inference would have a
great impact on the discovery of TF effectors. Rapid advances have been made in
this area and their relevance to the biological context of the problem has become
very principled. At the interactome level, the work presented here can be extended
to the investigation of graph-clusters for weighted interaction-graphs. The weighted
edges are obtained from the confidence of the individual data sources, as well as the
number of species over which that particular edge is conserved ([174], [237]). Such
analysis enables the discovery of subgraphs of various degrees of inter-connectedness,

thereby discovering functional “graph-motifs”.
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CHAPTER VI

Some Other Ideas

6.1 Various Ideas

This chapter is meant to be a synopsis of several ideas that were developed in
the course of this project. Many of these are potentially useful in that they lead to

particularly interesting research directions and improvements to the existing model.

6.2 The story thus far

Based on inter-species conservation, RP scores, TFBS clustering, tissue-specificity
of co-clustered TFBSes (i.e., all the knowledge and data prevailing up to that time),
we hypothesized the existence of some candidate enhancers in the 150kb UG and
45kb SA regions respectively. One of the candidates in the UG region indeed has
Gata3-specific regulatory activity, but in the inner ear — and has been named the
otic vesicle enhancer (OVE). Similarly, one of the candidates in the SA region has
Gata3 activity in the pylorus — and has been named the pyloric enhancer (PE). The
OVE and PE discoveries were made by Dr. Kim Lim and Dr. Takashi Moriguchi
respectively, of the Engel laboratory. The positions of these regions along the 150kb
UG regions and 45kb SA region is presented in Figs. 6.12 and 6.14 below.

However, since then there have been other data sources pertaining to tissue-

specificity of TF's, characterization of TF families, availability of limited histone mod-
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ification data (ENCODE), as well as more detailed protein-protein interaction data

via STRING (http://string.embl.de/) and MiMI (http://mimi.ncibi.org/MiMI/home.jsp)
databases. We have attempted to reconcile the behavior of existing Gata2 and Gata3
enhancers (UG2, UG4, UGE, OVE and PE) as well as some of those that did not
work in the context of these new data sources. Some of this has been explained in
Chapter 5 — where we have examined the UG2 and UG4 enhancers of the Gata?2
gene [204].

Based on our findings from Chapters 2-5, as well as some modifications explored in
this chapter, we are in the process of generating and validating new UG/SA /T-cell-
specific candidates regulating Gata3 expression. This work is currently underway
at the Engel laboratory and we are optimistic about the postulation of a suitable
model that enables gene-dependent discovery of enhancers that confer stage-specific
expression.

Below, we outline some of our recent findings in relation to the various aspects of

our “continuously-evolving” model of enhancer behavior.

6.3 TF Modules

One of the earliest strategies to find transcriptional effectors for a gene is to look
for the presence of common TF modules in the promoters of co-expressed genes
([216], [209]). For the case of kidney expression of the Gata2 and Gata3 genes,
we aim to find TF sets that govern the co-ordinated regulation of genes that are
spatio-temporally co-expressed with Gata2 or Gata3. To this purpose, we have used
Toucan tool, at (http://homes.esat.kuleuven.be/Saerts/software /toucan.php) for this
purpose and examined variants of the module TF approach under various scenarios

— this is explained further below.
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6.3.1 TOUCAN results on Gata2 and Gata3 expression

NCBI DAVID (http://david.abee.nciferf.gov/home.jsp) is used to convert these
MGI gene names to ENSEMBL identifiers (http://www.ensembl.org/). These EN-
SEMBL identifiers are the inputs to TOUCAN tool, wherein the promoter sequences
from the ENSEMBL database are extracted, using sequence 2000bp upstream and
1000bp downstream up to the first exon relative to the transcriptional start site
(‘First Exon’ option) reported in ENSEMBL (release 37). Note: in concordance
with newer observations, one can modify the search to look at the -300bp region to
be the promoter. Using the MotifScanner tool, we can look for statistically over-
represented TFBS motifs from the TRANSFAC/JASPAR databases. After the TF
motifs are located, ModuleScanner is used to locate modules of transcription factors
(of size 5, with partial overlap). According to the tool, this search enables the de-
novo discovery of regulatory modules of TFs that might underlie the co-ordinated
regulation of this co-expressed gene set. As is clear from the presented approach,
the degrees of freedom within which to do a TF search is biased towards motifs that
have to be over-represented in each and every promoter relative to the background
set, thereby losing out on motifs that have only subtle over-representation. Also, the
biological basis for co-ordinated regulation of co-expressed genes only applies to those
genes that have some intrinsic relationship amongst them. Thus the same analysis,
presented above, would be far more meaningful for a subset in this co-expressed gene
set. To discover such clusters, we use apriori knowledge of gene-gene relationships

from GO ontology.
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6.3.2 Co-embedding gene expression data based on GO ontology (BP)

The main idea here is to find sets of genes that are coupled not only based on
co-expression, but also their ‘proximity’ in ontology space. The rationale behind
this approach is that genes that have an apriori knowledge of being “coupled” with
Gata?2/Gata3 should be weighted higher when looking for transcriptional machinery
that co-ordinately co-regulates their joint expression. This also increases the degrees-
of-freedom among the set of possible transcription factors in the regulating module.
In an exploratory scenario this is preferable. This approach can be generalized to

any combination of weighting matrices (phylogenetic conservation, QTL etc.).

6.3.3 Part I: Building Realism while Clustering

As suggested in the previous sections, it would be useful to have a “space” which
respects biological process proximities in addition to expression similarities. This can
be enabled by considering a set of annotations that describe the “biological process”
(BP) information for each of the genes (in the nephrogenic differentiation program).
One set of annotations that is well researched by the bioinformatics community is
the Gene Ontology (GO) descriptors (http://www.geneontology.org/). This is a con-
trolled hierarchical vocabulary that annotates genes in various organisms by cellular
component (CC), molecular function (MF) and biological process (BP), based on
literature reports.

The next section examines the generation of a “semantic similarity matrix” be-
tween genes based on their GO (BP) descriptors, to quantify the cellular proximity
among them. Just like lexical word ontologies for spoken languages (e.g. WordNet
at hitp://wordnet.princeton.edu/), this structure imposes a tree structure on the

various GO terms, thereby expressing the similarity between any two terms in the
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ontology as a function of their parents in the ontology tree.

The next step involves the use of manifold embedding techniques that can in-
tegrate such GO similarity along with expression-level similarity to construct an
embedding of the genes as points in some space. One such technique is Laplacian
Eigenmaps [245], also profiled in Section: 6.3.3 that approximate both these relation-
ships (semantic and expression). This is a generalization of the principal component
approach in that the distance measures on such manifolds are not necessarily euclid-
ian.

We remind the reader that the main goal here is to embed genes based on their
expression profiles, but additionally weighted based on their BP proximity - this
would be more biologically relevant for the discovery of true biological activity. We
believe that such an approach is consistent with the rationale of using integrative

genomics or principled data integration for stronger hypothesis generation [?].

GO Semantic Similarity

To quantify the notion of similarity of terms along an ontology, we appeal to a vast
amount of literature that addresses such questions [246]. The semantic similarity of
any two GO terms along the ontology hierarchy is based on the number of shared
parents and the information content of the individual GO terms (measures: Jiang
Conrath, Resnik etc.). Based on the literature, we use the Jiang-Conrath similarity

measure, given by,

W, ; = sim(c;, ¢j) = ———— with jegs(c, ¢j) = 2log(p(lso(c;, ¢;)))—[log(p(c;))+

T Jedise(cisey)
log(p(c;))]

where ¢; and ¢; are two terms (nodes) along the GO ontology tree (i,j € {1,2,...,14}).
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lso(c;, ¢;) refers to the the information content of the last common parent of these
two nodes. The information content is computed based on the probabilities of ob-

serving the individual nodes and their last common ancestor in an overall corpus.

For the 14 genes profiled in this study, we use the R package “GOSim” to ob-
tain the semantic similarity matrix (size 14 x 14) based on GO BP annotation (this
information can be found both along mouse and human annotations). This similar-
ity matrix is used to obtain the weight matrix W during the Laplacian Eigenmap

embedding procedure [245] below.

LLE (Laplacian Eigenmaps)

e Build the K x K, (K = 14) dimensional weight matrix W from the Gene On-
tology (“Biological Process”) terms of the genes in the dataset. This distance

is the “normalized” semantic similarity alluded to above (section 6.3.3).

o Assign weight W, ;, from (1) for each gene pair (7, j), for each of the (12() gene

pairs. Note: The higher this weight, the closer the genes are.

e Find n nearest neighbors using the euclidian distance in principal component
space. The scores of the functional data along the first two principal compo-

nents can be interpreted as co-ordinates in a euclidian space.
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e Form the Graph Laplacian:

(
Lij=1q -W,; if 7 is connected to j;

0 otherwise.

\

e Solve: min,y" Ly = %Z”(Z/z — ) Wiy (2),

subject to:
— y!'Dy =1, and
— y'D1 =0,

where D;; = >, W, a diagonal weight matrix.

e Embed the co-ordinates to a lower dimensional manifold, using the solution (the

Laplacian Eigenmap) obtained from the minimization above.

— The solution to (2) is given by the d generalized eigenvectors associated
with the d smallest generalized eigenvalues solving Ly = ADy (neglecting

the zero eigenvalue and its eigenvector).

— Ify = [y1, - .., yq] is the collection of these eigenvectors, then the embedding
is given by :

vi = (Yi1,---,%ia)", ie., the d dimensional representation of the i data
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point (gene).

e In our representation, we take dimensionality, d = 2 and number of neighbors,
n = 5. The final embedding of the functional data based on expression and

BPmodalities is shown in Fig. 6.2.
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Figure 6.1: Manifold embedding various kidney-specific genes (MGI, €12.5) without GO weighting.
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Figure 6.2: Manifold embedding various kidney-specific genes (MGI, e12.5), using GO BP similarity
(Mm).

We note that we can also use a literature/prior-knowledge based weighting matrix
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Figure 6.3: Manifold embedding various kidney-specific genes (MGI, €12.5), using GO BP similarity
(Hs).

to convey similarities between genes in space. We can also combine several weight
matrices from various modalities to obtain a combined weight matrix W;; for use
during embedding.

Based on the above procedure, we make the following observations:

e Neighbors of Gata? without GO-embedding, Fig. 6.1 : Lamc2, Ret, Cldn7,

Mapkl, Paz2.

e Neighbors of Gatad in GO-embedded space (Mm), Fig. 6.2 : Lhzl, Paz2, Ret,

Wnt11, Mapk3.

e Neighbors of Gata3 in GO-embedded space (Hs), Fig. 6.3 : Paz2, Ret, Lhzl,

Mapk3, Wnt1l.

To find transcription factor effectors that potentially co-regulate co-expressed
genes, we only consider those genes that are within a finite neighborhood of Gata3.
Using TOUCAN tool (http://homes.esat.kuleuwven.be/ saerts/software/toucan.php),
we can look for TFBS modules that are only over-represented in this neighbor-subset.

This increases the degrees of freedom for the problem and enables the prospective
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nature of this approach to find transcriptional effectors (we need as many candidates
that we can find). Below, we indicate the TFs that are discovered under the scenarios
with and without embedding. As mentioned in other studies, this is an exploratory
exercise and the tissue-specificity and biological plausibility of these TFs as effectors

needs to be confirmed.

JASPAR:
1. All genes: GKLF, HFH3, HMGIY, PAX4, RREB1, HFH2, IRF1, COUP.

2. 5 neighbor subset: NRF2, MYF, HEN1, GKLF, AP2gamma, HMGIY, c-FOS,

Staf.
TRANSFAC:
1. All genes: SP1, AP2gamma, SP1, ATF, AP2, PAX5, CREB, PAX4, AP2alpha.
2. 5 neighbor subset: HEN1, AP2alpha, AP4, PAX4, AP2, LMO2COM, SP1.

For the SA case: Gata3 (14462), Trim37 (68729), Th (Mm: 21823), Tlej (21888)
are the co-expressed genes in day el4.5 of the adrenal medulla.

Toucan analysis: We imported sequences based on Entrez ids, used motif scanner
from the TRANSFAC/JASPAR databases and 3rd order markov model of mouse
proximal promoters as background; after getting TF's, looked for module enrichment
using Module Searcher - GA algorithm, 5 elements per module and 10 top scoring
modules. Based on this setup, the set of over-represented module TFs are:

HNF1, OCT1, NFY, SP1, NKX22, NKX61, USF, RREB1, CEBP, LHX3,PAX4,
AHR-ARNT, HFH3, MRF2, BRN2, E2.

Since there is no public expression data that is available for the developing SA system,
and hence we cannot do the embedding type analysis here. However, as such data

becomes gradually available the above analysis can be done for this case too.



172
It is important to realize two aspects:

e The results for the Gata3 case above convey a need to work with TF families
rather than their members since these are more generic and can enable the

examination of experimental data to ascertain their tissue-specificity.

e Some of these are tissue-specific whereas some are statistically abundant (like
SP1), hence one needs to look for biologically meaningful subsets that increase
the degrees of freedom and hence the number of candidate TFs. The GO on-

tology based embedding approach helps with this need.

6.4 Using Sparsity-penalized Regression for Inferring TF-gene depen-
dencies for Gata2 and Gata3

As seen in the previous chapters, we have tried to characterize the transcription
factor effectors underlying Gata2 and Gata3 expression in the developing kidney.
This approach, using the directed information criterion, serves to integrate sequence

information with expression data.

Figure 6.4: Putative upstream TFs using DTI for the Gata2 gene.



Figure 6.5: Putative upstream TFs using DTI for the Gata3 gene.

As a means to reduce the number of candidate effectors even further, we explore
a linear regression approach among the high DTI TFs while incorporating a sparsity
constraint on the total number of possible effectors. Following, ([248], [249]), we
explore the LASSO approach for such sparsity penalized regression.

Briefly, LASSO (least angle shrinkage and selection operator) is a method of
penalized regression. Like in ordinary least squares (OLS) regression, the objective
is to minimize the sum of squared errors, but with a penalty on the number of

non-zero regression coefficients,

n p—1 2 P
SSE,\ﬁzz <Y}—ZX¢jﬁj) +)\Z|5J‘|

=1

In our setting, Y; corresponds to the expression of Gata3 at the i’ time instant of
the expression profiling. X;; corresponds to the expression of predictor X; at the i
time instant. Each of the (p — 1) predictors correspond to the TF effectors identified
via DTI above. fy corresponds to the intercept term of the regression equation.
A is the tuning parameter; A = 0 is equivalent to OLS regression, whereas A = oo
implements the sparsity constraint. We once again note that this sparsity-constrained
regression formulation serves to understand target gene expression (Gata3/Gata?2)

as a joint function of the various predictors. Whereas, the DTI based approach
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treats each predictor as independent - the LASSO-regression approach can combine

the effects of the various predictors for appropriate biological inference.

The approach is detailed in REF and is outlined below. More information is also

available at: http://www-stat.stanford.edu/tibs/lasso/simple.html. One approach for

solution of the lasso regression problem is the forward stepwise regression algorithm:

e Initialize each of the regression coefficients 3; to zero.

e Find the predictor X; most correlated with the response, Y, and add it into the

additive model.

e Find the residuals r = Y — V. At each step, add the predictor that is most

correlated with the residual, r to the model .

e Iterate until all predictors are in the model.

An extension of the above approach is the least angle regression (LAR) procedure

([248], [249]). Applying this method to the predictors identified in Figs. 6.4 and 6.5,

we get the regression models as:

LASSO Regression for Gataz

Regression Coefficient Esfimates -->
1 1 1

“ 5 &
Total Number of Non—Sparse Coefficients.

Figure 6.6: Path for the LASSO-regression of Gata2 along its DTI predictors of Fig.6.4.

Thus, from Fig. 6.6, the primary effectors of Gata?2 are found to be: E2F,

POU3F2, HNF4A, WT1, SP1, EGR1, MSXI.

effectors is given in Fig. 6.6.

The contributions of the various
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LASSO Regression for Gatad

yaY%
A

Regression Coefficient Esfimates -->
|

4 5 &
Total Number of Non—Sparse Coefficients.

Figure 6.7: Path for the LASSO-regression of Gata3 along its DTI predictors of Fig. 6.5.

For Gata3, the joint effectors are found to be: PPAR, PAX2, ELK1, STRA13 and

SP1. Their contributions are given in Fig. 6.7.

6.5 Understanding variation in cis-regulatory regions

6.5.1 SNP TFs in Promoter

Another strategy to enable the discovery of possibly “functional” TFBS in Gata3
(or any other gene) regulation is to examine the TF sites interrupted by regula-
tory SNPs associated with diseases in which Gata3 is implicated (with phenotype
in the tissue of interest). For example, Gata3 haploinsufficiency causes human HDR
(hypoparathyroidism, sensorineural deafness, renal anomaly) syndrome. An exami-
nation of HDR in the dbSNP database reveals ~ 300 SNPs interspersed on chr:6. In
Figs. 6.8- 6.11, we have indicated the set of putative TF's that are likely interrupted

by SNPs and are therefore possibly functional.

6.5.2 SNP TFs in Enhancer(s)

The same kind of analysis can be pursued for the various enhancers listed in
Chapter 5 — however, we note that this exploratory strategy only serves to increase
the confidence in some of the effector TF since they are conserved, have tissue-

specific expression in the kidney and are putatively associated with the gene via
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disease linkage (eg: Gata3 and HDR). For some of the enhancers listed in Chapter

5, we examine if there are any rSNPs in these regions that interrupt TF binding sites

(Table. 6.1).
Table 6.1: rSNPs in TF families within some enhancers.
Enhancer Description TF mutation/rSNP
name (hg18 position) (up to Mm)

Gata?2 UG1  ¢chr3:129535922-129536271 None

Gata?2 UG2 chr3:129518788-129520320 MHI1, zf-Dof

Gata2 UG3  chr3:129479811-129484592 PAX, GATA, MH1, ForkHead, HMG
Gata?2 UG4  chr3:129579673-129581942 CTF, MH1, GATA

Gata3 UGE chr10:7983218-7983638 None

Gata3 OVE chr10:8726703-8727080 HLH, Homeobox, CTF

Gata3 PE chr10:8675225-8677369 Homeobox

6.6 Looking for TFBS families in CSEs

A predominant concern during the use of databases like TRANSFAC and JAS-
PAR is the high redundancy of the motifs listed therein. A consequence of this is
that several motifs from the same family show up as binding on the CSE thereby
increasing the spce of transcription factors that needs to be assayed for function
(either computationally or experimentally). Towards addressing this problem, JAS-
PAR makes available a list of TFBS family motifs which are useful for an unbiased
search across all conserved sequence elements. However, because the ease of use of
these matrices is still not favorable, we utilize a set of 36 TFBS family motifs that
are made available from the WebMotifs program [29] of the Fraenkel lab at MIT

(http://fraenkel.mit.edu/webmotifs/fbps.html). The binding of such TF families for
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the UG/SA and T-cell regions of Gata3 expression are shown below Figs. 6.12 -

6.14.
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TF symbol Motif Description
AP2 GGgAwNyGTGy | AP2-domain
bZIP sNTGACGy bZIP (Basic Leucine Zipper)
bZIP Maf GCtgaGTCA bZIP_MAF (Basic Leucine Zipper/Maf
Extended Homology Region transcription factor)
CBFB_NFYA CCAAysrg CBFB NFYA (CCAAT-binding transcription
factor subunit B)
CTF_NFI tTGSCNNN CTF NFI (CCAAT-box-binding factor
/Nuclear Factor I)
cuT NNATyGRT cuT
E2F_TDP GCGssAAa E2F_TDP (E2F/DP family winged-helix
DNA-binding domain)
Ets smGGAagy Ets (Erythroblast Transformation Specific Domain)
Fork_head rYAAACAa Fork_head
GATA NmGAyArG GATA (GATA zinc finger)
HALZ AATNATTG HALZ (Homeobox associated leucine zipper)
HLH sNCrsGTG HLH (Helix-loop-helix DNA-binding domain)
HMG _box AACAAwRr HMG _box (High Mobility Group box)
HNF-1.N gNyRAWNATTAAC | HNF-1 N (Hepatocyte nuclear factor 1,
amino terminus)
homeobox TAAKKrss Homeobox

continued on next page
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continued from previous page

TF symbol Motif Description
HSF_DNA-bind GAANNYTCkmG | HSF DNA-bind (Heat Shock
Factor-type DNA-binding)
IRF gAAANyGAAAs | IRF (Interferon regulatory factor
transcription factor)
MH1 tGGCwNNN MH1 (MAD homology 1 domain)
Myb_DNA-binding yAACsGNc Myb DNA-binding (Myb-like
DNA-binding domain)
Myc_N_term CACGTGsNN Myc N term (Myc amino-
terminal region)
PAX raSCgKGrm PAX (Paried box domain)
PBX tGATTGAT PBX (PBC)
POU ATGCAAAT POU
RFX_DNA _binding | GTTGCcrNGNNrm | RFX DNA binding
(Regulatory Factor
binding to X box DNA binding domain)
RHD GGrAaNyCCc RHD (Rel Homology Domain)
Runt yTGyGGTN Runt
SRF-TF CCwwAwaTrG SRF-TF (Serum Response Factor-type
transcription factor)
STAT _bind TTCyNGGAA STAT bind (Signal Transducers and
Activators of Transcription protein

continued on next page
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continued from previous page

TF symbol Motif Description
DNA-binding domain)
TBP GNATATAwA | TBP (Transcription factor RFIID/
TATA-binding protein)
TEA GGAATGNrr | TEA (Transcriptional Enhancer Activators
JATTS domain family)
TF_AP-2 GsSwssgss TF AP-2 (Transcription Factor Activator Protein 2)
TF_Otx kgrGaTTAgtg | TF Otx (Otx1 Transcription Factor)
WRKY cgGtCamcg | WRKY
71-C4 NNrGGTCA | zf-C4 (Zinc Finger, C4 type/Nuclear Hormone Receptor)
zf-Dof | NNNwAAAGN | zf-Dof (Dof domain, zinc finger)
Zn_clus CGGNNgNN | Zn Clus (Fungal Zn(2)-Cys(6) binuclear

cluster domain)

Table 6.2: Functional annotations of some of the transcription factor families from WebMotifs.

6.7 Other directions:

A tissue-specificity index has been formulated using results from the DiRE (distant

regulatory elements of co-regulated genes) (http://dire.dcode.org/) and the Enhancer

Identification (EI) tools [228] from dcode (http://www.dcode.org/). However, this

treatment needs to be extended to TF families rather than family members.

Based on the observation that tissue-specific TFs are recruited at enhancer regions

during spatio-temporal-specific expression, we are formulating a strategy that exam-

ines TF specificity in conjunction with their co-ordinated expression and interaction

during regulation. This is summarized below,




182

1. Find the most coherent set of proteins at the promoter that can explain the

co-ordinated expression for stage-specific co-expressed genes.
2. Find the most coherent protein set that is tissue-specific at the enhancer.

3. Find the most coherent protein set at the enhancer that is co-enriched with the
corresponding module TF set at the promoter — possibly via bipartite graphs

across promoter and enhancer.

We call this approach Protein Set Investigation (¥) — an extension of Gene Set
Enrichment Analysis (GSEA), in conjunction with the interactome level information
from MiMI. However, unlike traditional GSEA which only has a validation phase
(since gene sets are defined apriori), this method has both a discovery and validation
component /phase.

The heuristic/schematic idea for W is the following:

e TF family wise search; find top 3 ts members of each family identified in
CSE/promoter region; build maximal spanning subgraph across these cliques.
Note that these cliques are derived from MiMI and can have several intermediate

proteins that are not in the original query set (upto two hops away).

e Can find clique at promoter between module TFs; clique between TFs at en-
hancer candidates; and the clique from “both” module TFs and CSE TFs to
find co-enrichment. The module TFs should be clearly well represented in the

highest scoring graph.

e Look for size of span of the resulting graph, the overall tissue-specificity score
across all nodes in clique, and interconnectedness of the maximal graph for a

way to find the “best” graph.
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e All the intermediate nodes identified can be examined for differential expression
at mRNA level; pathway enrichment and so on — thereby finding the enrichment
of new protein sets for various scenarios (a generalization of GSEA [247], without

apriori defining gene sets).

e Validate on the set of tissue-specific enhancers (Gata2, Gata3, Mecp2, Shh,
GLI3, Fgf10); as well as on the module TF set from biologically relevant sets

of co-regulated genes [83].

Based on [228], we obtain tissue-specificity scores for various TFs in the rVista
TRANSFAC database (http://www.dcode.org/El/, and http://dire.dcode.org/ ). Each
TF (TF;) is characterized by its coverage Crp, (i.e. the number of tissue-specific
genes in whose promoter T'F; was found) and variable importance, Vyp, (the ability
of the TFBS motif to discriminate the set of SymAtlas annotated, tissue-specific
genes from a background set of random genes).

For our purpose — we examine each CSE for the tissue- specific enrichment of the

various TFBS that putatively bind the sequence. If the CSE binds K TF clusters,

K
2iz1 Crr iy XVrr
K b

then we have the tissue-specificity score of the CSE to be tscsr =
where T'F{;) is the highest scoring TF (in tissue-specificity) at cluster i, = (1,2, ..., K).
We note that since most sequences have clusters of binding sites, T'F; corresponds
to the highest scoring TF among all the members of the cluster. This is mainly due
to the fact that at most one TF can bind at any cluster site.

Based on this formulation, we have attempted to reconcile the behavior of some
enhancers and neutral regions along some common characteristics: conservation,
RP score, TFBS family clustering, tissue-specificity score, enhancer-promoter graph,
H3K4 modification.

As can be seen, the tissue-specificity score proposed is insufficient to predict which
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CSE is most likely functional (how about combination with RP score and inter-
species conservation, put that in table too). Need to combine with interactome
analysis, also move on to TFBS family analysis. We note that the set of genes from
which these tissue-specificity scores are derived come from SymAtlas, and has gene
expression studies mostly for adult tissue. This approach, therefore, needs extension
to embryonic stage-specific co-regulated genes (from MGI for example), in which case
it becomes another way of doing module TF discovery.

Another approach that has recently been explored for regulatory region discovery
is the prediction of nucleosome free regions along DNA using a “nucleosome position-
ing code” ([252], [251]). However, for efficient translation to the eukaryotic domain
these methods will need t be adjusted for cell context. One such recent tool is at:

http://compbio.med.harvard.edu/nuScore/.

6.8 A ‘protocol’ for the discovery of putative long-range, promoter-
specific regulatory elements (LREs) from sequence
As alluded to in the previous chapters, we extract the following “features” at the
promoter and enhancer and then combine these scores across sequence, expression
and interactome modalities to obtain a combined prediction for potential enhancer
activity.

I. At the promoter,

e Sequence Perspective Find all candidate transcription factors (preferably fami-

lies) using program of choice: ECR Browser, MatInspector, MAPPER.

e For each potential TFBS family, find putative effector TF using directed infor-

mation over the kidney-expression data. Augment this set with,

1. Components of basal transcriptional machinery, such as mediator com-
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plexes, histone modification complexes (HDAC/HATs/Swi-Snf), Pol II.
2. SNP TFs (related to possible tissue-specific cis-regulatory variation).

3. Module TFs, obtained by examination of transcription factors that are over-
represented in co-expressed genes (either directly from MGI or from the GO

similarity based embedding presented above).

note that TF effectors should be on non-overlapping regions of the DNA segment

being analyzed.

I1. At the putative regulatory element (identified via a reasonably low interspecies

sequence-identity threshold, ~ 70%),

e Sequence Perspective: For each candidate regulatory region within the con-

tig/locus of interest,

1. Find all candidate transcription factor binding sites (TFBS) using program
of choice: ECRBrowser, MatInspector, MAPPER. Alternatively, examine
the TF families that bind in the overlapping region (from BAC transgen-
ics). Using PfaM and MGI annotations, examine the tissue-specific ex-
pression of each of the family members in the tissue of interest (kidney
metanephros, T-cell or adrenal medulla). The CSE with the higher number

of non-overlapping tissue-specific TFs ranks higher in the list.

2. For each potential TFBS, find tissue-specific transcription factors based on
annotation (MGI, UNIPROT). Augment this set of TFBS with those that
are potentially disrupted by SNPs (http://cisreg.ca/RAVEN).

3. Find the scores for each region based on the kidney-specificity and histone-

modification based classifiers.

4. Find the RP score for each region.
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e Combine scores across multiple modalities based on bayesian model averaging

or belief combining.

e Examine bipartite graph topology using TF interaction graph between putative
effector TFs at promoter and putative TFs at enhancer (Cytoscape). Certain

graph characteristics are related to true enhancer activity (as in Chapter 5).

e Additionally, find the interactome level graph that spans the maximal nodes
in the sets of non-overlapping TF's at the promoter and enhancer, with highest

tissue specificity.
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CHAPTER VII

Conclusions, Summary and Future Work

7.1 Summary of Previous Work

In this work, we have described the challenge and potential approaches to lo-
calizing long-range regulatory elements for the Gata3 gene, responsible for directing
tissue specific expression in the developing urogenital and sympatho-adrenal systems.

Methodologies for the following problems have been discussed:

e Network inference between effectors (upstream TFs) and target genes (Gata3),
using State Space and Directed Information approaches (Chapters 2 and 3).
Some of the networks obtained here (on the kidney expression data) are quite
different — this is primarily because SSM approaches are linear-model based and
are used for unsupervised network discovery. DTT is a non-linear, information
based measure for influence discovery, and has been used in both supervised

and unsupervised settings.

e Identification of tissue-specific and histone modification motifs using DTT and

Random Forest classifiers (Chapters 4, 5).

e Characterization of enhancer-promoter cross-talk via TF interaction graph analy-

sis (Chapter 5).

191
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To demonstrate the value of these developed methodologies in enhancer predic-
tion, we have analyzed known enhancers of the Gata2 gene and shown their utility to
understand the behavior of why a conserved sequence region might be an enhancer.
Furthermore, we have discussed the beginnings of some future ideas in Chapter 6
to point out what else might be useful for the development of a good “enhancer
prediction model”.

Our efforts in this project have led us to believe that,:

e Enhancer discovery is an art — and will need some detailed knowledge of the

spatio-temporal biological process to be incorporated into the model.

e We have found that the traditional ideas of inter-species conservation, RP score
and TFBS clustering are insufficient, and lead to several false positives during
prospective enhancer discovery. The choice of species (during alignment) is
critical, also tissue-specificity scores of TFs for embryonic vs. adult tissues are

very different and will need to be suitably imputed.

e DNAsel hypersensitive site (DHS) region characterization, H3K4 modification
maps, protein-protein interaction data for UG-specific or SA-specific contexts
have the potential to greatly improve the accuracy of predictions. In the light
of unavailability of such data for our particular problem, it might be necessary
to generate at least some of this data, depending on feasibility, to improve

prediction accuracy.

e It is very important to pay attention to the cell context of the underlying
cells/tissue from which experimental data is generated. This particularly mat-
ters in the motif discovery and validation steps that is intrinsic to TFBS and

generalized motif discovery.
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e We have to build an in-house promoter-specific enhancer database to examine
all the characteristics based on such heterogeneous data integration — since the
mechanisms of promoter-specific and promoter-independent enhancers is quite

different ([253], [255], [254)).

e We are optimistic of these new methods for enhancer discovery. However,
though we can predict the location of enhancers with some fidelity, predict-
ing the right one responsible for directing precise spatio-temporal specificity is

still some distance away.

7.2 Future Work

Some aspects of this work that need to be completed will pertain to the following

issues.

e We are in the process of understanding cis-regulatory grammar, i.e., the rele-
vance of the spacing and position of the various motifs that constitute these
regulatory regions. To this end we are exploring novel methods in language
processing, such as conditional random fields [260], infinite relational models
[258], bayesian sets and hierarchical dirichlet processes [259] for such structured

prediction scenarios.

e Detailed computational and experimental approach for enhancer discovery for
the Gata3 kidney element (UGE2). This work is jointly with Dr. Kim Lim

(Engel laboratory, UM).

e Detailed computational and experimental approach for enhancer discovery for
the Gata3 sympatho-adrenal element (SAE). This work is jointly with Dr.

Takashi Moriguchi (formerly of the Engel laboratory, UM).
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e Finally, we are very interested to explore a probabilistic kernel setting within

which to generalize some of the methods of heterogeneous data integration [256].
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