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Gene regulation in eukaryotes involves a complex interplay between the proximal pro-
moter and distal genomic elements (such as enhancers) which work in concert to drive
precise spatio-temporal gene expression. The experimental localization and characteri-
zation of gene regulatory elements is a very complex and resource-intensive process. The
computational identification of regulatory regions that confer spatiotemporally specific
tissue-restricted expression of a gene is thus an important challenge for computational
biology. One of the most popular strategies for enhancer localization from DNA sequence
is the use of conservation-based prefiltering and more recently, the use of canonical (tran-
scription factor motifs) or de novo tissue-specific sequence motifs. However, there is an
ongoing effort in the computational biology community to further improve the fidelity of
enhancer predictions from sequence data by integrating other, complementary genomic
modalities.

In this work, we propose a framework that complements existing methodologies for
prospective enhancer identification. The methods in this work are derived from two
key insights: (i) that chromatin modification signatures can discriminate proximal and

distally located regulatory regions and (ii) the notion of promoter-enhancer cross-talk
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(as assayed in 3C/5C experiments) might have implications in the search for regula-
tory sequences that co-operate with the promoter to yield tissue-restricted, gene-specific

expression.

Keywords: Nephrogenesis; random forests; transcriptional regulation; transcription fac-
tor binding sites (TFBS); GATA genes; comparative genomics; functional genomics;
tissue-specific genes; network analysis; directed information; heterogeneous data
integration.

1. Introduction

Understanding the mechanisms underlying regulation of tissue-specific gene expres-
sion remains a challenging question. While all mature cells in the body have a
complete copy of the human genome, each cell type only expresses those genes it
needs to carry out its assigned task. This includes genes required for basic cellular
maintenance (often called “housekeeping genes”) and those genes whose function
is specific to the particular tissue type that the cell belongs to. Gene expression
by way of transcription is the process of generation of messenger RNA (mRNA)
from the DNA template representing the gene. It is the intermediate step before
the generation of functional protein from messenger RNA. During gene expression,
transcription factor (TF) proteins are recruited at the proximal promoter of the
gene as well as at sequence elements (enhancers/silencers) which can lie several
hundreds of kilobases from the gene’s transcriptional start site (Figs. 1 and 2).

It is hypothesized that the collective set of transcription factors that drive (reg-
ulate) expression of a target gene are cell, context-and tissue-dependent.1,2 Some of
these TFs are recruited at proximal regions such as the promoter of the gene, while
others are recruited at these distal regulatory regions. There are several (hypothe-
sized) mechanisms for promoter-enhancer interaction through protein interactions
between TFs recruited at these elements during formation of the transcriptional
complex.3 A commonly accepted mechanism of distal interaction, during regula-
tion, is looping,4–6 shown in Fig. 2, wherein intervening DNA between the enhancer
and promoter is “looped out” to facilitate the interaction between the TFs of the
promoter and the enhancer, leading to formation of the transcriptional complex.

TF Complex

Promoter 
(proximal)

TATA box

Exon Intron

Distal 
Enhancer

Distal 
Enhancer

TSSRNA Pol II

Fig. 1. Schematic of transcriptional regulation. Sequence motifs at the promoter and the distal
regulatory elements together confer specificity of gene expression via TF binding.
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Fig. 2. Distal enhancer-promoter interaction via looping is mediated via protein interactions during
TF complex formation. The set of TFs that are putatively recruited at the proximal promoter and
distal enhancer can be found from sequence and expression data. Evidence of protein-interaction
between proximal and distal TFs can be found from interaction databases.

An important challenge in current biology is to understand where functional reg-
ulatory elements (like enhancers) are located for a gene of interest. Given the com-
plexity of the regulatory process, there are several instances wherein the enhancer
for a gene is located hundreds of kilobases from the gene it regulates.5,7,8 One of the
typical experimental approaches to localize a gene-specific enhancer is via bacterial
artificial chromosome (BAC) trap assays.9,10

Thereafter, using conservation and TFBS-based criteria, smaller genomic
sequences (1 − 2kb) are isolated for subsequent transgenic analysis. However, even
short genomic regions can have several conserved sequence elements (CSEs) worthy
of experimental testing (e.g. ∼ 120 CSEs surpass a 70% sequence conservation in a
45kb human-mouse aligned region, neighboring Gata2 ). Since an experimental anal-
ysis of each of these several regions is clearly unfeasible, there is a need for the use
of principled methodologies that could potentially reduce this large list of enhancer
candidates to a much shorter high-confidence list for experimental validation.

Since the main problem of interest is the prospective discovery of enhancers
in a pre-specified sequence region, it would seem imperative to explore modalities
that supplement conservation and TFBS criteria to reduce false positives. In this
work, we explore three such modalities that emerge from functional genomic assays
(from several recent independent studies as well as from the ENCODE project).
These three modalities reveal some interesting new features of regulatory regions
that are potentially of great use in discriminating gene-specific enhancers versus
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other neutral regions. We note that there are promoter-independent enhancers too,
and that their computational study has been far more principled.1,11 However,
their study is outside the scope of this study where we focus on gene-specificity in
addition to tissue-specificity.

Understanding the characteristics of such regulatory regions entails several
aspects:

(1) Do regulatory regions like promoters and enhancers have any interesting
sequence properties that depend on their tissue-specificity of gene expression?
Such properties can be examined based on their individual sequences or their
epigenetic preferences. A common approach is the identification of canonical
or de novo tissue-specific motif-signatures2,13 for such elements, and has been
applied quite extensively. In this work, we focus on the sequence-specificity and
epigenetic preferences of tissue-specific distal regulatory regions (enhancers)
versus proximal regulatory regions (promoters).

(2) To reduce the large number of false positives that arise from sequence com-
parisons alone, we appeal to a mechanistic insight from biology. For long-range
transcriptional regulation to be possible, there has to be an enhancer-promoter
interaction during formation of the tissue-specific, gene-specific transcriptional
machinery. Literature suggests that such interaction is mediated by protein-
protein interactions between promoter TFs and enhancer TFs after looping
along the chromosomal length.4,6,14 This insight (Fig. 2) leads to two further
questions:

• Which TFs bind the promoter and the putative enhancer(s)?
• Does this resultant “interaction graph” between enhancer and promoter

TFs have any special structural characteristic that can discriminate func-
tional non-coding regulatory regions from non-functional ones?

The primary goal of answering the questions above is to build an enhancer
discovery program that can localize tissue-restricted gene-specific enhancers in a
given chunk of genome sequence (within a ∼ 200kb genomic window, as obtained
from BAC trap strategies10). These questions will help us understand the nature
of distal regulatory regions and provide a way to complement existing approaches
in enhancer localization11,12 to achieve lower false positive rate and higher experi-
mental efficacy.

As a case study to answer these questions, we examine the distal regulation of
Gata2 regulation in the developing kidney. Gata2 is a gene belonging to the GATA
family of transcription factors (GATA1-6 ), and binds the consensus –WGATAR–
motif on DNA. It is located on mouse chromosome 6, and plays an important role in
mammalian hematopoiesis, nephrogenesis and CNS development, with important
phenotypic consequences. The study of long-range regulatory elements that effect
Gata2 expression has been ongoing for several years now.
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Recently, Khandekar and co-workers10 reported the characterization of two
enhancer elements, conferring urogenital-specific (UG) expression of Gata2, between
80–150kb downstream from the Gata2 transcription start site on chromosome 6. In
this experiment, four regions were selected for transgenic analysis based on sequence
identity and TF motif matches. However, only two of these were functional.

Based on the insights from the various individual studies since and the ENCODE
project, outlined above, we asked if it might now be possible to explain the behavior
of these four regions along these new modalities (tissue-specificity, epigenetic sig-
natures and TF-interaction graphs), thereby enabling the proposal of a framework
for promoter-specific enhancer discovery from sequence.

2. Rationale and Data Sources

The overall schematic of distal transcriptional regulation via looping is shown in
Fig. 2. This schematic and the discussion in Sec. 1 suggests the decomposition
of the regulatory process along three main modalities: sequence, expression and
interactome. Our main goal in this paper is to understand urogenital enhancer
potential of these four UG sequence candidates10 from these three perspectives.
These attributes are discussed below:

(1) Sequence perspective: To build motif signatures underlying kidney-specific
enhancer activity, it would be ideal to have a database of known, previ-
ously characterized, urogenital (UG) enhancers so that we could learn the
sequence preferences of such tissue-specific regulatory regions. However, due
to the unavailability of such data, we instead utilize kidney-specific promoter
sequences (like in Refs. 2, 13, or 15). Apart from this approach, we also exam-
ine a public dataset of histone-modified sequences of regulatory regions to find
motif-signatures of genomic elements that are potentially enhancers. Though
this data source is not kidney-specific, we observe that these epigenetic signa-
tures have a strong, discriminative association with distal regulatory regions.

• Chromatin marks in known regulatory elements: The ENCODE project suggests
that mono-methylation of the lysine 4 residue of Histone H3 is associated with
enhancer (or distal regulatory) activity16 whereas tri-methylation of H3K4
and H3 acetylation are associated with promoter activity. Using this set of
H3K4me1, H3K4me3 and H3ac sequences, we aim to find sequence motifs
that are indicative of such epigenetic preferences during transcription. Though
such epigenetic data is available for five different cell lines, we choose the HeLa
cell line data because of its widespread use as a model system to understand
transcriptional regulation in vitro in the laboratory.

For simplicity, we find the frequencies of six-nucleotide long motifs in
the H3K4me1 and H3K4me3/H3ac sequences. Then, we build a random
forest (RF) classifier to discriminate monomethylated-H3K4 sequences from
trimethylated-H3K4/acetylated-H3 sequences based on motif occurrence.
We note that even though this data is not kidney cell-specific, it has favorable
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specificity and sensitivity characteristics. The motifs thus obtained are puta-
tively associated with epigenetic properties of proximal and distally located
regulatory regions (such as enhancers), and are predictive of the regulatory
potential of new sequences (Sec. 8).

• Promoters of kidney-specific genes: A catalog of kidney-specific mouse pro-
moters is available from the GNF Symatlas (http://symatlas.gnf.org/ ). This
database contains a list of annotated genes and their expression in several tissue
types, including the kidney. Since the proximal promoter of such kidney-specific
genes harbors the transcriptional machinery for gene regulation, their sequences
putatively have motifs that are associated with kidney-specific expression.
Additionally, promoters that are spatio-temporally expressed during kidney
development are also analyzed (MGI: http://www.informatics.jax.org/ ). The
GNF dataset profiles mostly adult tissue-types. Since our goal is to study
enhancer activity during nephrogenesis, we focus on genes expressed between
day e10 and e12 in the developing kidney — such a list is obtained from the
MGI database.

Without loss of generality, we use six-nucleotide motifs (hexamers) for char-
acterizing these sequences. This is based on the observation that most transcrip-
tion factor binding motifs have a 5–6 nucleotide core sequence with degeneracy
at the ends of the motif. A similar strategy was introduced in Refs. 17 and
18. The main difference in our approach from such previous work is that dif-
ferential hexamer analysis was done for the same class of sequences, and the
statistical nature of the “test-set” is, by design, similar to the training set. That
is, in Ref. 17, differential hexamers are found between known Cis-Regulatory
Modules (CRMs) and non-CRMs, and used for the prediction of new CRMs
from sequence. On the other hand, Ref. 18 deals with finding hexamer features
of known promoters and using them to predict new promoters from sequence.
In our case, however, we do not have enhancer sequence data (equivalent to
CRMs) and we are using promoter sequence-data for the prediction of enhancers
(CRMs) instead. Thus, the nature of the test sequence is very different. We
demonstrate that our approach is partially useful in the discovery of putative
enhancers from sequence. Also, the presented motif-finding approach does not
depend on motif length and can be scaled, depending on biological knowledge.

We set up the motif discovery as a feature extraction problem from these
tissue-specific promoter sequences and then build a random forest (RF) classi-
fier to classify new sequences into tissue-specific and non tissue-specific cat-
egories based on these identified sequence features (motifs). Based on the
motifs derived using a RF classifier algorithm we are able to accurately classify
more than 95% (training-error rate) of tissue-specific genes based upon their
upstream promoter region sequences alone. Since promoters are non-coding
regulatory regions, the derived motifs can be putatively used to find kidney-
specificity of other non-coding regions genome-wide (Sec. 9).
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(2) Expression perspective: There is limited expression data for the devel-
oping mouse kidney, mainly due to small tissue yield at such early time
points. For this study, we use microarray expression data from a pub-
lic repository of kidney microarray data (http://genet.chmcc.org, Ref. 19,
http://spring.imb.uq.edu.au/ ).20 Each of these resources contain expression
data profiling kidney development from about day 10.5 dpc to the neonate
stage. Such expression data can be mined for potential regulatory influence
between upstream TF genes and Gata2.21,22

• Inference of TF effectors at the promoter region: The TFs putatively recruited
at the proximal promoter are identified using the directed information (DTI)
metric, that uses gene-expression (mRNA-level) influence in addition to phylo-
genetic conservation of the corresponding binding site. We have earlier shown
that DTI is a good predictor of gene influence and can be used to infer tran-
scriptional regulatory networks.22

• Inference of TF effectors at each non-coding region: At the distal enhancer, it
is believed that there is recruitment of tissue-specific transcription factors that
co-operate with the basal transcriptional machinery (at the promoter) to direct
tissue-specific gene expression.23,2 Whereas phylogeny and expression-based
influence metrics can yield high confidence candidates for promoter TFs, a sim-
ilar analysis for enhancers is not possible, because of higher order effects.2,13

To this end, the only way to search for putative enhancer TFs is to combine
phylogeny with tissue-specific annotation (from UNIPROT or MGI). Hence,
every transcription factor, whose motif is conserved at a non-coding (puta-
tive enhancer) region and is tissue-specific in annotation, is considered a likely
candidate TF at that non-coding region.

(3) Interactome perspective: The identification of phylogenetically con-
served effector TFs at the promoter (identified via DTI), as well as
those that are phylogenetically conserved at the putative enhancer candi-
date regions, lead to the exploration of protein-interactions (PPI) between
these TFs, during distal enhancer-promoter interaction (Sec. 10). The
STRING database (http://string.embl.de) integrates various experimental
modalities (genomic context, high-throughput experiments such as co-
immunoprecipitation, co-expression and literature) to maintain a list of
organism-specific functional protein-association networks that is amenable to
such exploration.

In this work, the above perspectives are examined in the context of the urogen-
ital enhancers identified in Ref. 10. We aim to show that each of these modalities
(tissue-specificity motifs, epigenetic signatures and TF-interaction graphs) has a
predictive value for the identification of enhancers and the integration of these het-
erogeneous perspectives can lead to potential reduction in false positive rate during
large-scale enhancer discovery, genome-wide. Such analyses can also be examined
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in the context of new studies.24,25 To date, there has been no comprehensive study
for summarizing these various heterogeneous data sources to understand the char-
acteristics of such regulatory regions.

3. Validation/Biological Application

As suggested in Sec. 1, we use the recently identified Gata2 urogenital (UG)
enhancers to validate our computational approach. All the data sources (and their
analysis) are therefore going to be focused on the developing kidney.

The experimental characterization of these enhancers was done as follows. Based
on BAC transgenic10 studies, the approximate location of the urogenital enhancer(s)
of Gata2 were localized to a 70 kilobase region on chromosome 6. Using inter-
species conservation plots, four elements were selected for transgenic analysis in
the mouse. These were designated UG1, 2, 3 and 4. After a lengthy and resource-
intensive experimental effort, two out of these four non-coding elements, UG2 and
UG4, were found to be true UG enhancers. Our goal is to find preferences at the
sequence, expression and interactome level that can explain these experimental
observations: i.e. that UG2, 4 are Gata2 -specific urogenital enhancers and UG1, 3
are not urogenital enhancers for Gata2.

It is easy to see the utility of such an “enhancer discovery” methodology, since
this can be applied also to other genes of interest. Given the complexity of 1% of the
genome, made possible by the ENCODE project, the search for functional elements
genome-wide is going to be an important and challenging exercise.

4. Organization

With a view to understanding the discriminating characteristics of transcriptional
regulatory regions, the first part of this paper (Secs. 5–8) addresses identification of
motif signatures representative of transcriptional control from kidney-promoter and
epigenetically marked sequence sets. The second part of this work (Secs. 10.1–10.2)
integrates phylogeny and expression data to find regulatory TFs at the proximal
promoter and enhancer(s) of Gata2. Using the notion of TF interactions between
enhancer and promoter, we examine if protein-interaction data (Sec. 10.3) can offer
supporting evidence for the observed in-vivo behavior of the four Gata2 candidate
sequences. Classifiers are designed to discriminate regulatory versus non-regulatory
regions based on these three modalities (kidney-specific motifs, epigenetic signatures
and TF-interaction graphs). Finally, a probabilistic combination of these classifiers
is done to obtain a validation (Sec. 11) of the Gata2 UG enhancer (UGE) candidates
(UG1 − 4). Sections 12 and 13 conclude the paper.

5. Sequence Data Extraction and Pre-Processing

Before proceeding to motif identification, a matrix of motif–chromatin-sequence
correspondences is created. In this matrix, the counts of hexamer (six-nucleotide)



April 6, 2010 14:28 WSPC/185-JBCB S0219720010004756

Distal Transcriptional Regulation from Sequence, Expression and Interactome Perspectives 227

Table 1. The ‘motif count matrix’ for a set of histone-modified
sequences. The first column is their genomic locations along the
chromosome, the next two columns are hexamer quantile labels, and
the last column is the corresponding sequence class label (+1/−1).

Sequence AAAATA AAACTG Class

chr2:41410492-41411867 2 1 +1
chr6:41654502-41654782 4 2 +1
chr3:41406971-41408059 1 1 −1
chr2:41665970-41667002 2 3 +1
chr4:41476956-41478365 1 2 −1
chrX:41783327-41784532 1 2 +1

motif occurrence in the ‘H3K4me1 ’ and ‘H3K4me3/H3ac’ regions is obtained using
sequence parsing (R package: ‘seqinr ’). The motif length of six is not overly restric-
tive, and can be changed based on biological insight. A Welch t-test is then
performed between the relative counts of each hexamer in the two epigenetic-
modification categories (‘H3K4me1 ’ and ‘H3K4me3/H3ac’) and the top 1000 hex-
amers with p-value ≤ 10−6 are selected. This set of discriminating hexamers is
designated (

−→
H = H1, H2, . . . , H1000). This procedure resulted in two hexamer-

gene co-occurrence matrices, one for the ‘H3K4me1 ’ (or +1) class of dimension
Ntrain,+1×1000 and the other for the ‘H3K4me3/H3ac’ (or −1) class — dimension
Ntrain,−1 × 1000. Here Ntrain,+1 is the matrix of H3K4me1 sequences correspond-
ing to distal regulatory regions. Ntrain,−1 is the set of ‘H3K4me3/H3ac’ sequences
that are associated with proximal promoters.

This dataset is obtained from the Sanger ENCODE database (http://www.
sanger.ac.uk/Post Genomics/encode/data-access.shtml) and contains 298 sequences
that undergo modification (me1/me3/ac) in histone ChIP assays. 140 of these cor-
respond to H3K4me1 (enhancers) and 158 correspond to H3K4me3/H3ac marks
(promoters).

5.1. Kidney-specific promoter sequences

The Novartis foundation tissue-specificity atlas [http://symatlas.gnf.org/ ], has a
compendium of genes and their corresponding tissues of expression. Genes have
been profiled for expression in about 25 tissues, including adrenal gland, brain,
dorsal root ganglion, spinal chord, testis, pancreas, liver, etc. Considering these
diversity of tissue-types, one concern with the interpretation of this data is the
variability in expression across tissue-types. To address this concern, we take a
fairly stringent approach — if a gene is expressed in less than three tissue types,
it is annotated tissue-specific (‘ts ’), and if it is expressed in more than 22 tis-
sue types, it is annotated non-specific (‘nts ’). Based on this assignment, we find
a list of 86 genes that are tissue-specific as well as have kidney expression (MGI:
http://www.informatics.jax.org/ ). For these kidney-specific genes, we extract their
promoter sequences from the ENSEMBL database (http://www.ensembl.org/ ),
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using sequence 2000bp upstream and 1000bp downstream up to the first exon rel-
ative to the transcriptional start site reported in ENSEMBL (release 37).

6. Motif-Class Correspondence Matrices

From the above, Ntrain,+1 × 1000 and Ntrain,−1 × 1000 dimensional count matrices
are available for the chromatin-modified sequences. Before proceeding to the feature
(hexamer motif) selection step, the counts of the M = 1000 hexamers in each
training sample are normalized to account for variable sequence lengths. In the co-
occurrence matrix, let gci,k represent the absolute count of the kth hexamer, k ∈
1, 2, . . . , M in the ith chromatin-sequence. Then, for each sequence gi, the quantile
labeled matrix has Xi,k = l if gci,[ l−1

K M ] ≤ gci,k < gci,[ l
K M ], K = 4. Matrices of

dimension Ntrain,+1×1001, Ntrain,−1×1001 for the specific and non-specific training
samples are now obtained. Each matrix contains the quantile label assignments for
the 1000 hexamers (Xi, i ∈ (1, 2, . . . , 1000)), as stated above, and the last column
would have the corresponding class label (Y = −1/ + 1). Having constructed two
groups of sequences for analysis — enhancer-associated (‘H3K4me1 ’) and promoter-
associated (‘H3K4me3/H3ac’) — we seek to find the smallest set of hexamer motifs
that are most discriminatory between these two classes. Towards this goal, we use
random forest classifiers (RF)26 for finding such a discriminative hexamer subset.

Based on the above strategy for epigenetically marked sequences, we follow
the same procedure, from sequence extraction, parsing and quantization to obtain
hexamer-promoter counts for the kidney-specific gene promoter sequences. As an
illustration, we show a representative matrix (Table 2).

7. Random Forest Classifiers

A random forest (RF) is an ensemble of classifiers obtained by aggregating (bagging)
several classification trees.26 Each data point (represented as an input vector) is
classified based on the majority vote gained by that vector across all the trees of

Table 2. The ‘motif count matrix’ for a set of gene-promoters.
The first column is their ENSEMBL gene identifiers, the next
two columns are hexamer quantile labels, and the last column
is the corresponding gene’s class label (+1/ − 1).

Ensembl Gene ID AAAAAA AAATAG Class

ENSG00000155366 1 1 +1
ENSG000001780892 4 3 +1
ENSG00000189171 1 2 −1
ENSG00000168664 4 3 −1
ENSG00000160917 2 1 −1
ENSG00000176749 1 1 −1
ENSG00000006451 3 2 +1
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the forest. Each tree of the forest is grown in the following way:

• A bootstrapped sample (with replacement) of the training data is used to grow
each tree. The sampling for bootstrapped data selection is done individually at
each tree of the forest.

• For an M -dimensional input vector, a random subspace of m (� M)-dimensions
is selected, and the best split on this subspace is used to split the node. This is
done for all nodes of the tree.

During the training step, before sampling by replacement, one-third of the cases
are kept “out of the training bag.” This OOB (out-of-bag) data is used to obtain
an unbiased estimate of the classification error as trees are added to the forest. It
is also used to get estimates of variable importance.

Several interesting insights into the data are available using random forest anal-
ysis. The variable importance plot yields the variables that are most discriminatory
for classification under the ‘ensemble of trees’ classifier. This importance is based
on two measures: ‘Gini index’ and ‘decrease in accuracy.’ The Gini index is an
entropy-based criterion which measures the purity of a node in the tree, while the
other metric simply looks at the relative contribution of each variable to the accu-
racy of the classifier. For our studies, we use the ‘randomForest’ package for R.
The classifier performance on the individual data and the related diagnostics are
mentioned under Sec. 8.

8. Random Forests on Chromatin-Modified Sequences

We train the RF classifier on the set of 298 chromosome sequences that have varying
chromatin modifications associated with them (i.e. H3K4me1/me3, and H3ac),
as mentioned in Sec. 2. These are derived from the HeLa cell line and are not
necessarily context-specific for kidney development. However, given the widespread
use of this cell line for transcriptional studies, we aim to find if the motifs associated
with regulatory elements are indeed predictive of enhancer activity.

Before proceeding to motif identification, we check for possible sequence bias
(such as GC-nucleotide composition) between these two classes of chromatin mod-
ified sequences. If there is a significant bias, then the motifs turn out to be just
GC-rich sequences that are not very biologically informative for determination of
regulatory potential. The GC composition of these two classes of sequences is rep-
resented in Fig. 3. As can be seen, the average GC composition is the same and
there is no such sequence bias that would skew the discovery and subsequent inter-
pretation of these epigenetic motifs. The performance of the histone-RF classifier
is explained in the context of the classifier combination in Sec. 11.

The motifs obtained from the random forest analysis indicate the “sequence-
preferences” of regulatory elements that are nucleosome-free in HeLa cells (Fig. 4).
We analyze the performance of these classifiers on the 4 UG candidate regions,
mentioned previously. In both cases, UG2 − 4 are classified as enhancers, whereas
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Fig. 3. GC plots for sequence bias in H3K4me1 histone sequences versus H3K4me3 and H3ac
sequences. We observe that there is no significant bias in GC content.

UG1 is correctly classified as not being regulatory. Additionally, a control set of
“promoter-independent” enhancers derived from the Mouse Enhancer database1

was also classified as enhancers based on these chromatin-sequence motif signatures.
This high prediction accuracy in spite of non-specificity of cell context (HeLa cell
line) is very interesting and has potentially high predictive value.

9. Random Forests on Kidney-Specific Promoters

In this section, we aim to find discriminating sequence motifs between a set of
kidney-specific promoters and housekeeping promoters with a goal to find sequence
motifs underlying kidney-specific regulation. The kidney enriched dataset has 86
genes that are assigned to a tissue specific class and have higher than mean expres-
sion in the kidney. For the purpose of training and testing, we consider the set of
housekeeping genes identified from the ‘nts ’ class and reported in literature.27,28

There are almost 1500 genes in the housekeeping gene (‘nts ’) set. Since this would
lead to unbalanced predictions during classifier training, we use a stratified sam-
pling approach29 to select a sample size that reduces this effect (the sampling itself
is done with a prior on the relative sizes of the two classes). Here, the set of (−1)
promoter-sequences are taken to be of the same size as the (+1) class. Using this
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Fig. 4. Top hexamers which can discriminate between H3K4me1 histone sequences versus
H3K4me3 and H3ac sequences.

approach, we obtain a training-error classification accuracy of > 95% on the kidney
enriched tissue-specificity data set. Before proceeding to motif identification, it is
necessary to check for possible sequence bias (GC composition) between the two
classes of promoters (kidney-specific versus housekeeping). The GC composition of
these two classes of sequences is represented in Fig. 5. We note that though only
a subset of ‘nts’ gene-promoters were used during the RF analysis, we show the
GC-composition for the entire class of ‘nts’ sequences for completeness. As can be
seen, the average GC composition is the same. The ROC space representation and
variable importance plot for the overall classification is indicated below (Fig. 10,
represented by (·) and Fig. 6, respectively). The confusion matrices are all explained
in the context of the classifier combination in Sec. 11.

To address a related question, we examine if the top ranked hexamers in
the kidney dataset correspond sequence-wise to known transcription factor bind-
ing sites. Using the publicly available Opossum tool (http://www.cisreg.ca/cgi-
bin/oPOSSUM/opossum/ ) or MAPPER (http://bio.chip.org/mapper), we found
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Fig. 5. GC plots for sequence bias in kidney-specific versus housekeeping promoters.
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Fig. 6. Top hexamers which can discriminate between kidney-specific and housekeeping genes.
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several interesting transcription factors to map to these motifs, such as Nkx, ARNT,
c-ETS, FREAC4, NFAT, CREBP, E2F, HNF4A, Pax2, MSX1, SP1, several of
which are kidney-specific. Though this is highly consistent with the tissue-specificity
of the dataset, the functional relevance of these sites remains to be experimentally
validated.

10. PPI Between Promoter and Enhancer TFs

In order to understand the nature of interactions between the enhancer and pro-
moter TFs (Fig. 2), we decouple the overall regulation problem into three parts:

(1) Identification of putative TF effectors at the promoter (Sec. 10.1),
(2) Identification of enhancer TFs (Sec. 10.2), and
(3) Examination of the interaction-graph formed between enhancer-TFs and pro-

moter TFs (Sec. 10.3).

The key question that is explored in the following sections is: having identified the
set of tissue-specific TFs that might putatively bind the promoter and the can-
didate regulatory regions, does the structure of the bipartite TF-interaction graph
(across the promoter TFs and the enhancer TFs) reveal any interesting features that
distinguish the functional UG2, 4 regions from the non-functional UG1, 3 regions?

10.1. TF effector identification at promoter and enhancer

Promoter TF identification: TFs that regulate basal transcription at the promoter
can be identified from phylogenetic conservation or co-expression studies. In this
approach, the promoter sequence (here, the Gata2 promoter) is aligned across mul-
tiple species and the TFBS motifs that are conserved in the multiple alignment
are considered to be putative effectors of gene regulation. Such sequence-based
approaches have been examined in literature.2,13

Since the list of putative TFs (identified above) that potentially bind at the
promoter is still large, there have been efforts to incorporate gene-expression data
to reduce the set of potential TF effectors. In this scenario, if the gene corresponding
to the conserved TF has a high expression-level influence on Gata2 expression, then
that TF has stronger evidence for being a potential regulator.21

Recently, we introduced the directed information (DTI) as a metric to infer
expression-level influence between any putative transcription factor (TF) gene and
a target gene (such as Gata2 ).22 This seeks to integrate sequence and expression
data into the determination of relationships between transcription factors and their
target-genes. All additional details (performance on synthetic data, other biological
data and comparison with other metrics) are available in Ref. 22. Information-
based measures have enabled the investigation of non-linear gene relationships in
the presence of measurement noise.21 An important point to note is that unlike
mutual information, the DTI is a directed metric that enables the determination
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ATF3

Gata2

POU3F2E2F CREB1

HNF4A WT1

SP1 EGR1 NFYB MSX1

Fig. 7. Putative upstream TFs using DTI for the Gata2 gene.

of the strength, significance and direction of gene influence. For Gata2, this list of
effectors is listed in Fig. 7.

10.2. Enhancer TF identification

In Sec. 10.1, we examined the identification of promoter TFs using phylogenetic
sequence conservation of TFBS motifs in conjunction with expression level influ-
ence using DTI. The next key step towards determining the structure of promoter-
enhancer TF interactions is the identification of enhancer-TFs. As has been alluded
to earlier, there is no method to precisely infer which transcription factors bind a
certain regulatory element during long-range gene regulation. Thus, we appeal to
a traditional approach of finding tissue-specific transcription factors that are phy-
logenetically conserved at any potential regulatory region11,2 (one caveat, however,
is that conservation is not a very reliable predictor of TF binding30,31). This is
consistent with earlier observations that enhancers recruit tissue-specific transcrip-
tion factors during the formation of the overall transcriptional machinery during
gene expression, whereas promoters recruit components of the basal transcriptional
machinery.23,2,13,4

To ascertain the tissue-specificity of each TF that putatively binds a regulatory
element (identified via phylogenetic conservation), we examine that TF’s annotation
in the UNIPROT or MGI database.

10.3. Enhancer-promoter distal interaction via protein-protein

interactions — a graph-based analysis

Using the notion of protein-protein interaction (PPI) mediating long-distance inter-
actions between promoters and enhancers during looping,3,14,32 we explore the inter-
actome to look for within-group and between-group interactions in the promoter-TF
and the enhancer-TF groups.
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The interaction-graphs (e.g. Fig. 8) are obtained in the following manner:

• One part of the graph (hollow circles) corresponds to the TF effector group at
the promoter. These Vp TFs are identified based on phylogenetic conservation,
tissue-specificity and directed information (Sec. 10.1).

• The other part of the graph (filled circles) corresponds to the Ve tissue-specific
TFs group at the enhancer, identified based on phylogeny and tissue-specificity
annotation (Sec. 10.2).

• The interaction-graph is defined by the vertices V = (Vp ∪ Ve), and
the edges E = ei,j , i, j ∈ (1, 2, . . . , |Vp ∪ Ve|). Each bidirectional edge
E = (ei,j) is derived from an annotated interaction between TFs i and
j, based on an interaction database. These edges describe both within-
group TF interactions as well as between-group interactions. These inter-
actions are obtained from the STRING (http://string.embl.de/ ) and MiMI
(http://mimi.ncibi.org/MiMI/home.jsp) databases, both of which contain data
derived from multiple sources, such as yeast-2-hybrid screens, literature etc.

It would be of great value to use a catalog of gene-specific and tissue-specific
regulatory regions (with all possible transcription factors) from which to find such
interaction characteristics. However, such a repository does not yet exist. In this
section, we use a few examples (Gata3 OVE, Gata3 KE, Fgf OVE, Mecp2 F21/F6,
Shh FE) of known tissue-specific and gene-specific regulatory elements from litera-
ture, as a positive training set. For the negative training set, we consider the set of
regions that were reportedly investigated in these transgenic experiments but did
not yield gene-specific regulatory activity.

We have presented a preliminary analysis of enhancer-promoter TF interaction-
graphs for some genomic elements with known regulatory or non-regulatory activ-
ity6,33,8,34 in Table 3. The table represents the listing of some of the structural
attributes of these interaction-graphs, following analysis methods from literature.35

Table 3. The first column is the various regulatory and non-regulatory elements from literature,
the next column corresponds to its class label (+1/ − 1). The subsequent columns correspond
to the attributes of the overall TF-interaction graph (both within-group and between-group
interactions).

Clustering Characteristic
Sequence Class coefficient path length Heterogeneity Centralization Density

Mecp2 F216 +1 0.208 2.824 0.668 0.184 0.133
Mecp2 F66 −1 0 1.75 0.342 0.067 0.145
Gata3 OVE8 +1 0.036 2.254 0.779 0.359 0.154
Gata3 KE8 +1 0.409 2.0 0.813 0.684 0.216
Gata3 NE18 −1 0.383 2.131 1.139 0.757 0.15
Gata3 NE28 −1 0.458 2.013 0.872 0.699 0.203
Fgf10 OVE34 +1 0.313 2.433 0.72 0.323 0.133
Shh FE33 +1 0.394 2.312 0.797 0.49 0.175
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A deeper analysis of other graph topology metrics and their relation to functional
enhancer activity is a topic of future interest.

• Clustering coefficient: The clustering coefficient of a node is always a number
between 0 and 1. The network clustering coefficient is the average of the clustering
coefficients for all nodes in the network.

• Characteristic path length: The characteristic path length denotes the average
shortest-path distance of the graph. This gives the expected distance of any two
connected nodes in the graph and is a global indicator of network-connectivity.

• Heterogeneity: Network heterogeneity denotes the coefficient of variation of the
degree distribution.

• Centralization: This refers to the overall connectivity (cohesion) of the graph. It
indicates how strongly the graph is organized around its most central point(s).

• Density: It shows how densely the network is populated with edges (i.e. how
“close-knit” an empirical graph is). A network which contains no edges and solely
isolated nodes has a density of 0, whereas the density of a clique (completely
connected graph) is 1.

The above-mentioned network properties (as well as clustering coefficients, num-
ber of connected components etc.) are examined for the overall interaction-graphs
for the reported enhancers from literature. A logistic regression reveals that low
values of heterogeneity, characteristic path length and centralization are strong
predictors of potential enhancer activity. All of these attributes point to the decen-
tralized, homogenous and somewhat tighter connectivity of the interaction-graphs
for true enhancers. We note that the OOB error rate of the RF here is about 20%.
The quality of this classifier can be expected to improve as we obtain more data
(gene-specific regulatory regions) from which to extract features.

We now examine the interaction-graphs for the test set, i.e. the four Gata2
UGE candidates. For illustration, we only show the largest connected component
of the inter-group edges for each interaction graph (Fig. 8). For comparison, we have
also shown the interaction graphs between the UG candidates and the promoters
proximal to the Gata2 promoter (Rpn1, Rab7, Eefsec, Dnajb8 ). We observe that
the interaction densities for the proximal promoters are very low in comparison
to the density for Gata2, and that there are no strongly connected components
in the interaction graphs for the Gata2 proximal promoters, suggesting a high
specificiity of interaction between the true UG candidates (UG2/UG4) and the
Gata2 promoter, Fig. 9, and a corresponding low specificity of interaction for the
proximal promoters. This demonstrates the utility of this approach to the resolution
of promoter-specificity of enhancer action.

This figure indicates a very interesting property of the real enhancers vis-a-vis
the other conserved elements. We see that the TF effectors for Gata2 such as SP1,
POU3F2 (identified in the TF effector network above, Fig. 7), are involved in cross-
element interactions at the protein level, between the promoter and true enhancers
(UG2/4). However, the network linkage in the elements that showed no enhancer
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Fig. 8. Protein-protein interaction between putative Gata2 TFs (hollow circles) and putative UG
element TFs (filled circles). Note: This only shows the connections between two groups for one of
the connected components. For our analysis, we consider both intra- and inter-group connections.
From http://string.embl.de/
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Fig. 9. Protein-protein interaction between Gata2 proximal promoter TFs (hollow circles) and
putative UG element TFs (filled circles). Here, we observe that the interaction densities are very
low, in comparsison to Fig. 8. From http://string.embl.de/

activity is very sparse, suggesting low crosstalk between promoter and enhancer.
Also, the TFs at the enhancer nodes (dark circles) have a more uniform degree
distribution in the functional elements UG2/4 as compared to the non-functional
ones. Both these observations suggest lower heterogeneity and centralization of
such functional interaction-graphs. Thus, the extent of TF crosstalk is a potential
discriminator of possible enhancer function. This shows that superimposing such
PPI information along with sequence and expression data helps reduce the number
of false positives while integrating various aspects of distal regulation.
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11. Heterogeneous Data Integration and Validation on GATA2
UGE Candidate Sequences

As mentioned previously, the primary goal of the framework developed above is
to understand the behavior of known regulatory elements along different genomic
modalities. To validate their predictive potential, we demonstrate their application
to predicting the behavior of the experimentally-verified Gata2 UG enhancer can-
didates (which is our test set). Here we combine the results of the individual classi-
fiers (kidney-promoter RF, histone RF and interactome-RF) to obtain an integrated
prediction that a candidate sequence is an enhancer. For combining heterogeneous
classifiers, we use a “probabilistic belief fusion” approach.

The framework involves combining the ‘beliefs’ of the individual classifiers to
obtain a combined belief of prediction. To compute the belief of each classifier
we start by examining the confusion matrices for each of the classifiers (promoter
RF, histone-RF and graph-RF), following Ref. 38. Since each of the classifiers are
random forests, we can obtain their OOB error estimates through these confusion
matrices. For the graph-RF, this confusion matrix is as below,

CMgraph−RF =




Class −1 1 class.error

−1 4 1 0.20

1 1 4 0.20


 ,

thereby yielding an OOB error estimate of ∼ 20%.
Similarly, we have,

CMpromoter−RF =




Class −1 1 class.error

−1 67 19 0.22

1 10 76 0.12


 ,

thus yielding an OOB error estimate of ∼ 17%.

CMhistone−RF =




Class −1 1 class.error

−1 134 24 0.15

1 21 119 0.15


 ,

yielding an OOB error estimate of ∼ 15%.
As can be seen, these classifiers have fairly good sensitivity and specificity char-

acteristics. However, we note that each of the modalities might be imbalanced in
class membership in the original study, and so might not be as generalizable. This
is expected to improve as more training data for these classifiers becomes available
(especially for the graph-RF case). Moreover, these are three complementary data
sources and can be effectively combined to improve detection reliability. Since they
are trained on very different modalities, they can be assumed to be independent.
It can also be seen that this method of belief combining is applicable to as many
modalities (K) as necessary to the biological problem of interest, and hence is truly
scalable.
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Fig. 10. Representation of the three RF classifiers in ROC space (RF-histone in (◦), promoter-RF
in (·), and graph-RF in (�)). The diagonal line is the classification by random chance.

Let each classifier be characterized by its decision function ek(x) = jk that maps
a data point (x) to the class ‘j’, for k = 1, 2, . . . , K and jk ∈ (−1, 1). Here, K = 3,
and J = 2 classes.

The belief of the kth classifier is defined as

belk(x ∈ Ci|ek(x) = jk) = P (x ∈ Ci|ek(x) = jk)

The overall belief, bel(i), is computed using Bayes rule

bel(i) = P (x ∈ Ci).
∏K

k=1 P (x ∈ Ci|ek(x) = jk)∏K
k=1 P (x ∈ Ci)

bel(Ci) =
∏K

k=1 P (x ∈ Ci|ek(x) = jk)∑J
i=1

∏K
k=1 P (x ∈ Ci|ek(x) = jk)

.
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Table 4. Combined belief generation during heterogeneous classifier integration. The last column
represents the combined belief (probability that the UG candidate sequence is an enhancer) as a
result of integrating the promoter-RF, histone-RF and graph-RF predictions.

True Promoter RF Histone RF Interaction-graph RF P(Class= +1)
Sequence Class prediction e1(x) prediction e2(x) prediction e3(x) (Overall Belief)

Gata2 UG1 −1 −1 −1 −1 0.0067
Gata2 UG2 +1 +1 +1 +1 0.989
Gata2 UG3 −1 −1 +1 −1 0.432
Gata2 UG4 +1 +1 +1 +1 0.9875

Note: J = 2 and K = 3. Depending on the belief value bel(i), the decision rule
(E(x)) for classifying data point x is

E(x) = j, if bel(j) = max
i

bel(i), or,

E(x) = j, if bel(j) = max
i

bel(i), and bel(j) ≥ α,

where 0 < α ≤ 1, with α being a threshold.
We now show the output classes of each of the three classifiers as well as the

combined belief on the Gata2 UG enhancer candidates in Table 4. More specifically,
for the first row in Table 4, the overall belief equation above becomes

bel(ug1 = +1) =
∏K

k=1 P (ug1 = +1|ek(x) = jk)∏K
k=1[P (ug1 = +1|ek(x) = jk)]+∏K

k=1[P (ug1 = −1|ek(x) = jk)]

=
∏K

k=1(1 − precn,k)

[
∏K

k=1(1 − precn,k) +
∏K

k=1 precn,k]

Here, precn,k = TNk

TNk+FNk
. Similarly, precp,k = TPk

TPk+FPk
. These are the negative

and positive precision values respectively, for the kth classifier. These rates are
obtained from the corresponding confusion matrices shown above. This approach
is followed for each of the UG1 − 4 elements (Table 4).

If we set a threshold of α = 0.50 or 0.90, we would get UG2 and UG4 as
the true enhancers (100% accuracy). However, for a choice of α = 0.40, UG3 is
predicted to be an enhancer in spite of it being declared a member of the (−1)
class by the graph-RF. This choice of threshold thus determines the performance
of the combined classifier (just like in any other hypothesis-testing scenario). We
note that at the present time, there is no known repository of promoter-specific
regulatory elements to carry out such graph-analysis on each element.

Under the α = 0.40 case, however, the results are not to be interpreted as a 25%
error rate since the nature of the test set (Gata2 UG enhancers) are very different
from the training data of each modality (histone sequences are for a different cell-
context; and interaction-graphs are obtained over different genes). The fact that
we are getting such good prediction in spite of the training sets being so different
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Fig. 11. Data integration across multiple modalities and combined belief generation. Given a query
CSE sequence (ug1 ), and the tissue of interest, the classifier can use the chromatin-modification
and interaction-graph modalities to output a combined belief for ug1 to be an enhancer.

is a strong point in favor of examining and integrating these data sources. The
test-error rates are given by the OOB error estimates of the individual classifiers.

12. Summary of Approach

In this work, we have shown that,

• Tissue-specificity motifs are useful for regulatory element identification. In spite
of an unbiased search, they discover motifs that are regulatory (such as TFBS
motifs) and potentially predictive.

• Chromatin modification motif signatures are predictive of regulatory element
location. These point to the cell-specific epigenetic preferences of distally located
regulatory regions.

• Promoter and enhancer TFs that are putatively recruited during gene (Gata2 )
regulation can be identified using a combination of phylogenetic conservation,
expression data, and tissue-specificity annotation.

• Effector TFs at the gene proximal promoter have high network linkage with
enhancer TFs in the case of functional enhancers. The TF interaction-graphs of
truly functional elements are seen to have a lower centralization, characteristic
path length and heterogeneity, suggesting higher crosstalk during formation of
the transcription factor complex.

These diverse perspectives (based on sequence, expression and interactome data)
shed some light on the sequence and mechanistic preferences of true regulatory
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regions interspersed genome-wide. It is to be noted that this model is data-driven
and needs further validation to correspond directly with the biology of transcription.

13. Conclusions

The novelty of the proposed work spans several areas. Firstly, data sources that
are relevant to understanding the mechanism of gene regulation (with Gata2 as
an example) have been identified. We have developed methods that reconcile the
behavior of known regulatory elements along each of these modalities. The utiliza-
tion of histone-modified sequences and their exploration for sequence motifs are
indicative of epigenetic preferences and nucleosome-occupancy patterns. This has
not been explored before for the prediction of distal regulatory regions. The use of
DTI as a metric to infer putative TF to target-gene influence is a recent one that
serves to integrate phylogenetic TFBS conservation with expression data. Finally,
the utilization of graph-based analysis techniques to understand the “structure” of
the TF interaction-graph between enhancer and promoter helps us understand true
enhancer behavior from a mechanistic viewpoint. The probabilistic combination of
multiple classifiers (each deriving from a unique data resource) aims to reconcile the
behavior of existing enhancers along multiple modalities. We hope to demonstrate
that a principled integration of non-overlapping genomic modalities can be used to
interpret the context and specificity of gene regulation.

14. Future Work

Some key elements directly emerge for guiding future research. As already alluded
to in the motif-signature procedure, specific expression data corresponding to stages
and tissues of interest would greatly improve the specificity of regulatory element
prediction. Furthermore, as histone modification maps for related cell lines are
generated, the false positive rate of prediction would decrease, thereby improving
accuracy. Several other learning paradigms can be introduced into this setting since
we are learning from structured data. Also, methods in joint classifier and feature
optimization might likely improve the accuracy of predictions. Additionally, meth-
ods that analyze the grammar of these cis-regulatory regions (LREs) and look for
motif position, spacing and orientation will be of great utility.

At the expression level, methods for supervised network inference would have a
great impact on the discovery of TF effectors. Rapid advances have been made in
this area and their relevance to the biological context of the problem has become
very principled. At the interactome level, the work presented here can be extended
to the investigation of graph-clusters for weighted interaction-graphs. The weighted
edges are obtained from the confidence of the individual data sources, as well as the
number of species over which that particular edge is conserved.35,36 Such analysis
enables the discovery of subgraphs of various degrees of inter-connectedness, thereby
discovering functional “graph-motifs.”
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An important point to note here is that there is currently no resource for
promoter-specific enhancer data genome-wide. However, as various high throughput
experiments become more prevalent, we can look forward to using these methods
for precision-recall analysis on such public repositories.
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