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CHAPTER I

Introduction

1.1 Overview

Adaptive sensing has been an evolving field in signal processing over the past

half century. The goal in adaptive sensing is to control the data acquisition process

through adaptive design of system parameters based on acquired information to

optimize performance. Adaptive sensing accounts for uncertainties, distortions, and

changes in the sensing environment thereby leading to improved performance and

better system efficiency over non-adaptive sensing methods. For example, in target

detection, waveform adaptation can be exploited to mitigate the effect of a heavily

cluttered environment and improve detection performance. As another example,

agile radar systems can adaptively control their beam direction based on wide beam

coarse resolution initial measurements to focus on the desired targets.

Many adaptive sensing tasks in radar imaging, communication systems, and wire-

less sensor networks are limited in resources such as energy, time, and bandwidth.

Hence resource constraints form an important component in adaptive sensing, where

decisions are made online using optimal resource allocation. For example, in radar

imaging, an adaptive beamformer is constrained to detect a target in minimum time.

In communication systems, there is a restriction on the number of transmitted wave-

1
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forms at any time due to bandwidth constraints. In sensor networks, energy usage

is constrained as replacing batteries in remote sensors may be infeasible. It is criti-

cal to consider resource limitations while designing data measurement strategies for

adaptive sensing applications.

This dissertation develops new methods for resource constrained adaptive sensing

in the context of parameter estimation and detection, sensor management, and target

tracking. While the results in this thesis are applicable to many problems, we will

illustrate our approach using examples from radar imaging and sensor networks.

1.2 Motivation

1.2.1 Radar imaging

Radar is a system that uses electromagnetic (EM) waves to identify the range,

speed, altitude, and direction of moving and fixed objects such as aircrafts, tanks,

and terrain. Radar was invented in 1944 during the second world war. Since then,

radar has continued to be an important modality in surveillance applications such as

target tracking and target detection (e.g., mines, trucks, and aircrafts) [143]. More

recently, it has also been used for civilian applications such as auto and aircraft

anti-collision systems, medical tomography, environmental monitoring [103,138], and

autonomous navigation [33]. The main principle in radar is that EM waves scatter or

reflect of objects that have significantly different dielectric properties. The strength

of backscatter from a particular object depends on a variety of parameters and con-

ditions such as frequency, polarization, observation angles, environment, weather,

and shape of the target.

The objective in radar imaging is to form an accurate image of the distribution of

the complex valued conductance of an unknown medium based on the radar backscat-

ter or forward scatter. To image a random medium, the imaging area in space is
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divided into voxels, volume elements in a three dimensional space, analogous to pix-

els in 2D space. Each voxel is often characterized by its reflection coefficient, which

is the measure of the complex reflectivity of the medium and depends on the conduc-

tance of the target at a particular location. Radar imaging refers to the estimation

of these reflection coefficients.

A mono-static radar imaging algorithm involves transmitting a waveform or a

signal through the medium, measuring the backscattered signals reflected back from

the objects or targets, and processing the received signals to form an image of the

medium. Classical methods for focusing antenna sensitivity in a particular angu-

lar direction are performed using directional antennas [159] or by multiple antenna

beamforming [38]. Recently, there has been a growing interest in cognitive radar

(CR) [65] that can dynamically adapt to a changing environment. Such an adaptive

sensing process can overcome several sources of active and passive interference such

as noise, clutter, and jamming and improve the performance of radar imaging.

Moreover, the design of the transmitted waveforms is performed under an average

energy constraint. Energy constraints are important in stealth applications, where

accurate estimation is performed at low signal-to-noise ratios to avoid being detected

by adversaries. A radar system must also detect and image targets in a limited time,

which constrains the total transmit energy. Radar signal design subject to both

average and peak power constraints is addressed in [8] and [142] using a control

theoretic approach. There, the design is non-adaptive and the optimal continuous

waveforms are shown to be on-off measurement patterns alternating between zero

and peak power levels for a tracking example. Parameterized waveform selection

for dynamic state estimation is explored in [78] and [79] where the shape of the

waveforms are allowed to vary under constant transmit power. Closed-form solutions
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to the parameter selection problem are found for a very restrictive set of cases such

as one-dimensional target motions. More recently there has been a growing interest

in dynamic waveform selection algorithms for tracking and detection [151]. However,

there has been little effort in developing adaptive waveform design strategies that

allocate different amounts of energy to the waveforms over time.

The main focus of this dissertation is to show that considerable performance

improvements can be achieved using adaptive waveform design and optimal energy

allocation for parameter estimation and detection problems. The theoretical results

presented here can be applied to radar imaging, communications, sensor networks,

and other applications where energy constraints are relevant.

The following section reviews resource allocation problems for target tracking and

detection and strategies for solving them.

1.2.2 Target and sensor localization in sensor networks

A wireless sensor network system consists of spatially distributed sensors that

collect data about the environment. With recent advances in radio frequency (RF)

and micro-electro-mechanical systems (MEMS) integrated circuit (IC) design, the

deployment of a dense network of wireless sensors has become feasible for a number

of monitoring and control applications such as target tracking [94], environmental

monitoring [95], manufacturing logistics [89], geographic routing, and precision agri-

culture [169].

Target tracking using sensor networks has been of significant interest in many

military and civilian applications such as surveillance, vehicle tracking, robotics, bi-

ological research, and automotive collision warning systems. Depending on the mod-

els for the target trajectory and sensor measurements, tracking algorithms based on

the Kalman Filter [120], extended Kalman filter [73], and Gaussian sum approxi-
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mations [4] have been proposed. Particle filtering methods were then proposed for

tracking, where the probability density of the state of the target (e.g., physical coor-

dinates, velocity) is approximated on a set of discrete points [44]. While most target

tracking algorithms assume the knowledge of sensor locations, this is often not the

case. For dense networks, it is often impractical to manually position the sensors or

too expensive to attach a GPS to every device in the network. To detect and track

targets, the sensors must be able to automatically estimate their relative positions in

the network. Several sensor self-localization algorithms [35, 39, 87, 88, 111, 124] have

been proposed in the literature.

To extend the longevity of battery operated sensors, the tasks of sensor and target

localization must be performed using minimal energy usage. The conservation of

power in a sensor network can be performed in various ways, e.g., through optimal

energy allocation for sensing, through minimal inter-sensor communications, and

by optimal sensor scheduling. Since model-based tracking requires detailed sensed

information and is computationally intensive, researchers have looked at the simpler

problem of tracking in a binary sensing modality [6, 82]. The sensor outputs a high

value, when the target is within a sensing range and outputs a low value, when

the target falls outside its range. Based on the fusion of the sensor outputs, an

approximate link level trajectory can be realized to track the target. This approach

for a simple binary sensing measurement model is shown to require minimal power

and is also analytically tractable [149].

Significant energy savings can also be realized by minimizing inter-sensor com-

munications while implementing sensor localization algorithms. Classical methods

for self-localization use multidimensional scaling (MDS) [124]; maximum likelihood

estimation [108]; and convex optimization [45] algorithms. These are centralized
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approaches, where all the sensor data measurements need to be communicated to a

fusion center which computes the sensor location estimates. Such a process requires

many inter-sensor measurements and high bandwidth. The number of inter-sensor

communications can be reduced if the sensors can self-localize in a distributed fash-

ion. This has resulted in many decentralized algorithms based on adaptive trilat-

eration [111, 139] and successive refinement [35, 72] methods, which have shown to

yield accurate sensor location estimates using much lower energy consumption than

centralized methods.

Adaptive sensor management for target localization can further extend the service

life of the operating sensors. The task in sensor scheduling is to activate the sensors

optimally based on the current and past measurements to conserve power. The sensor

scheduling strategy depends on the objective function to be optimized. Examples

of objective functions that have been considered include minimizing track error,

minimizing probability of false detection, and maximizing Fisher information [85].

For minimizing state estimation error, the optimal sensor to be chosen at the next

time instant can be determined a priori and independent of measurements for the

case of linear Gaussian systems [7,105]. For other general models, long term optimal

scheduling of sensors is combinatorially hard and hence, implementable suboptimal

solutions have been proposed [14, 86].

In this dissertation, we develop a novel sparsity penalized MDS algorithm for

blind target tracking, i.e., a sensor network that can simultaneously track targets and

localize sensors in the absence of prior knowledge of sensor locations. Furthermore,

we also develop sensor and power management strategies that can be combined with

our blind tracking algorithm to obtain further energy savings.

Next, we describe the advancements and contributions of this thesis in the context
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Adaptive design Parameter Estimation Detection
Gau Ryl

two-step scalar X X X
multiple X X

multi-step scalar X
multiple X

Table 1.1: Research effort in the context of adaptive energy design for estimation and detection
problems. Key: Gau: Gaussian, Ryl: Rayleigh.

of resource constrained adaptive sensing.

1.3 Contributions

The following lists contributions, where they appear in this dissertation, and cor-

responding publications.

• We develop the theory for adaptive waveform amplitude design (energy alloca-

tion) for estimating and detecting parameters in an unknown channel/medium

under average energy constraints. The different modalities we considered are as

follows (refer Table 1.1 for a summary):

– Performance gain of at least 5dB over non-adaptive methods for estimating

static parameters in linear Gaussian channel model using a 50 time step

procedure (Chapter II and [126,129,130]).

– Improvement of at least 1.6dB for estimation in a Rayleigh scattering chan-

nel model using a suboptimal adaptive two-step strategy (Chapter III and

[127]).

– Over 2dB improvement in performance for binary hypothesis testing in a

linear Gaussian channel model using an optimal two-step strategy (Chapter

IV).
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• In the context of waveform design/sensor management, we develop a novel con-

vex relaxation based adaptive waveform (sensor) subset selection algorithm for

dynamic parameter estimation, which provides a linear time solution to the

combinatorially hard problem (Chapter V and [128]).

• For target and sensor localization, we propose the sparsity penalized MDS al-

gorithm with the following features (Chapter VI and [125,131]):

– Blind: the algorithm is capable of estimating sensor locations as well as

target tracks in the absence of prior knowledge of sensor locations.

– Decentralized: we perform the target and sensor location estimation locally

through limited inter-sensor communications to minimize energy.

– Fast convergence: The proposed iterative localization algorithm yields non-

increasing cost functions and converges in a few iterations.

– Robust: the MDS based link level tracking algorithm does not require spe-

cific target motion models and outperforms the likelihood ratio test based

target localization. The nonparametric nature of our algorithm makes it

attractive when RSS models are unavailable or inaccurate.

– Multimodal: The algorithm has the capabilities to operate at link level

when the target dynamics is poorly specified. However, it can incorporate

a detailed target motion model into the framework, when available.

1.3.1 Personal perspective

The research results presented in this thesis for different problems vary in their

depth of theoretical rigor and ease of practical implementation. In terms of theoret-

ical contributions, I believe that my most significant work was the part on adaptive

energy allocation strategies for the following reasons: I consider the formulation and

raghu
Highlight
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solution to the problem of optimal energy designs for a class of parameter estima-

tion problems very challenging. The asymptotically optimal and suboptimal designs

developed in this dissertation present significant performance improvements, which

will interest the theorists from the adaptive control community. Moreover, these

gains can also impact various research efforts where energy constraints are relevant,

e.g., obtaining surveillance images in quickest time, limiting radiation on patients in

medical imaging, or extending operating life of sensor networks. The energy designs

for estimation in a Rayleigh scattering model and to detection and classification in

linear models were natural extensions to the problem of estimation in linear models.

In terms of contributions towards direct applicability to the real world, the de-

velopment of a sparsity penalized MDS algorithm for target and sensor localization

presents a valuable contribution to a sensor network community on many counts.

First, through our designs, we were able to show considerable theoretical gains over

conventional methods in the context of target detection. More importantly, the pro-

posed algorithm is designed to be implemented in real-time which increases its reach

and impact on real world sensor network platforms. Finally, the performance im-

provements obtained on two real world data sets (ZebraNet and the UCSD wireless

topology discovery) despite the many caveats present in them further reemphasizes

the practical applicability of our algorithm.

1.4 Detailed outline of thesis

This thesis can be broadly divided as follows: the first four chapters deal with

adaptive waveform and energy design in the context of radar imaging and channel

estimation applications. Chapter V attempts to solve the waveform (sensor) subset

selection problem. In Chapter VI, we focus on target and sensor localization in sensor

raghu
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networks. Below, we provide an outline of each chapter in this thesis.

In Chapter II, we develop the theory of optimal energy allocation strategies for

estimating deterministic parameters in a linear Gaussian model under an average

energy constraint. We first derive the optimal energy design procedure for the esti-

mation of a scalar parameter and the corresponding mean-squared error (MSE) for a

two time step case. This adaptive two-step strategy yields an improvement of 1.7dB

relative to the optimal non-adaptive strategy. We then propose a novel suboptimal

solution to the N -step strategy and show an improvement of more than 5dB for

N = 50. For the case of a vector parameter, we consider two different criteria for

minimization of the MSE matrix: the minmax criterion and the trace criterion. For

the minmax criterion, we prove that the performance improvements obtained for the

scalar parameter case can be achieved for the vector parameter case. For the trace

criterion, we show that energy control does not provide any advantages compared

to the one-step strategy when the number of parameters to be estimated tends to

infinity. However, we prove that using suitable waveform and energy control, it is

possible to achieve an improvement of more than 5dB similar to the scalar parameter

case. Applications of our results to MIMO and inverse scattering channel models are

discussed.

Motivated by the energy design strategies for a linear model, Chapter III considers

the problem of adaptive energy allocation for estimation in a Rayleigh fading model.

In particular, we derive the optimal two-step energy allocation strategy for a Rayleigh

inverse scattering problem. Since there is no closed-form solution to the adaptive

two-step strategy, we present a suboptimal solution that yields a signal-to-noise ratio

(SNR) improvement of 1.6dB over the non-adaptive design.

Chapter IV presents the problem of designing optimal energy allocation for binary
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hypotheses testing in a linear Gaussian model under an average energy constraint.

We consider a two time step problem, where the objective is to design the optimal

energy allocation at the second step as a function of the first measurement. We

develop optimal designs for the frequentist and Bayesian approaches to signal detec-

tion. We show that the optimal strategies yield a performance improvement of at

least 2dB over the non-adaptive procedure.

In Chapter V, we divert our attention from optimal energy allocation to optimal

waveform selection. The goal in this framework is to adaptively select a small subset

of waveforms from a large waveform library that minimizes state prediction MSE

given the past observations. This adaptive strategy differs from previous approaches

to the subset selection problem since the optimal waveforms cannot be computed

offline; it requires the previous observations. Since the optimal solution to the sub-

set selection problem is combinatorially complex, we propose a convex relaxation

to the problem and present a low complexity suboptimal solution. We consider a

hidden Markov model (HMM) representation for the state and apply our algorithm

to estimate the state in order to minimize the MSE. Through simulations, we show

that the performance of this suboptimal procedure approaches that of the optimal

waveform selector.

In Chapter VI of this dissertation, we consider the problem of target tracking in

sensor networks. We assume no prior knowledge of the sensor locations and so we

refer to such a problem as ‘blind’ tracking. Since any sensor localization algorithm

can recover the sensor location estimates only up to a rotation and translation,

we propose a novel sparsity penalized MDS algorithm to align the current time

sensor location estimates to those of the previous time-frames. In the presence of

a target, only location estimates of those sensors in the vicinity of a target change
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relative to their previously estimated locations. Based on the differences in the sensor

location estimates between two time-frames, we propose a novel perturbation based

link level tracking algorithm, which localizes a target to within a small set of sensor

links. Through a detailed numerical study, we show that our tracking algorithm

outperforms the conventional likelihood ratio test (LRT) based tracking. In the

absence of a target trajectory model, we also suggest methods for translating this

link level estimate to actual target coordinates. As an application of our algorithm

to real data, we simulate a sensor network collecting data on zebra tracks from the

Sweetwater Game Reserve in Kenya available from the ZebraNet project undertaken

by Princeton biologists. We also implement our localization algorithm for discovering

the wireless network topology of the University of California, San Diego (UCSD)

campus from real-time user trace data.

Conclusions and future research directions are presented in Chapter VII of this

dissertation.

1.5 Connections

Chapter VI primarily focuses on algorithms for simultaneous target and sensor lo-

calization. Keeping in mind the issue of limited power and bandwidth, the algorithms

can be implemented distributively to minimize communication and computational

costs. However, further energy savings can be realized in this sensor network frame-

work by making use of the resource constrained adaptive sensing designs developed

in the earlier chapters. For example, consider the problem of sensor scheduling for

target tracking, i.e., we need to activate only a small subset of sensors in the network

to identify the targets. This problem can be cast as a waveform selection problem

and we can borrow the sparsity constrained convex relaxation solution in Chapter V
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to solve for the optimal sensor activation strategy. Given the activated sensors, the

probability of the detection of a target can be improved from the energy allocation

procedures described in Chapter IV. The sensor measurements need to be integrated

over a period of time which can then be used for accurate target tracking. Depending

on the integration time and the processing capabilities of the sensors, we can use the

different temporal energy allocation designs from Chapters II and III to decrease the

MSE in the estimation of the target locations.

1.6 Publications

The following publications are a product of the research covered by this thesis.

1. R. Rangarajan, R. Raich, and A. O. Hero III. Sparse multidimensional scal-

ing for blind tracking in sensor networks’. To appear in Advances in Sensor
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Stat. Signal Processing, Aug. 2007.
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CHAPTER II

Energy allocation for estimation in linear models

The context of this chapter is adaptive waveform design for estimating parameters

of an unknown channel under average energy constraints. This chapter focuses on the

simpler problem of adaptive waveform-amplitude design for which we obtain inter-

esting analytical results. We treat an N -step design problem where a fixed waveform

can be transmitted into the channel N times with amplitudes that can be chosen

as a function of past channel outputs. For N = 2 and a linear Gaussian channel

model, we derive the optimal amplitude to transmit at the second step as a function

of the first measurement. This adaptive 2-step energy allocation strategy yields a

mean-squared error (MSE) improvement of at least 1.7dB relative to the optimal

non-adaptive strategy. Motivated by the optimal two-step strategy we propose a

suboptimal adaptive N -step strategy that can achieve an MSE improvement of more

than 5dB for N = 50. Applications of our results to MIMO and inverse scattering

channel models are discussed.

2.1 Introduction

One of the important components in adaptive sensing problems such as channel

estimation and radar imaging is energy management. Most applications are limited

by peak power or average power. For example, in sensor network applications, sensors

15
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have limited battery life and replacing them is expensive. Safety limits the peak

transmit power in medical imaging problems. Energy is also a critical resource in

communication systems where reliable communication is necessary at low signal-to-

noise ratios. Hence it is important to consider energy limitations in waveform design

problems. Most of the effort in previous research has focussed on waveform design

under peak power constraints, e.g., sensor management. There has been little effort

in developing adaptive waveform design strategies that allocate different amounts of

energy to the waveforms over time.

Our goal in this chapter is to perform waveform amplitude design for adaptive

sensing to estimate the set of unknown channel parameters or scattering coefficients

under an average energy constraint. We formulate this problem as an experimental

design problem in the context of sequential parameter estimation. We explain the

methodology of experimental design, derive optimal designs, and show performance

gains over non-adaptive design techniques. As a final step, we describe in detail

how some applications of adaptive sensing such as channel estimation and radar

imaging can be cast into this experimental design setting thereby leading to attractive

performance gains compared to current literature. Next, we present a review of

waveform design literature to provide a context for our work.

Note: The term ‘sequential’ is used in different contexts in the literature. In this

chapter, ‘sequential’ means that at every time instant, the best signal to transmit is

selected from a library that depends on past observations.

2.1.1 Related work - waveform design

Early work in waveform design focussed on selecting among a small number of

measurement patterns [41]. Radar signal design using a control theoretic approach

subject to both average and peak power constraints was addressed in [8] and [142].
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The design was non-adaptive and the optimal continuous waveforms were shown to

be on-off measurement patterns alternating between zero and peak power levels for

a tracking example. In our design, the energy allocation to the waveforms over time

are optimally chosen from a continuum of values. Parameterized waveform selection

for dynamic state estimation was explored in [78] and [79] where the shape of the

waveforms were allowed to vary under constant transmit power. Closed-form solu-

tions to the parameter selection problem were found for a very restrictive set of cases

such as one-dimensional target motions. More recently a dynamic waveform selec-

tion algorithm for tracking using a class of generalized chirp signals was presented

in [151]. In contrast to these efforts, we focus our work in finding optimal waveform

amplitudes under an average energy constraint for static parameter estimation. Sen-

sor scheduling can be thought of as an adaptive waveform design problem under a

peak power constraint [51] where the goal is to choose the best sensor at each time

instant to provide the next measurement. The optimal sensor schedule can be de-

termined a priori and independent of measurements for the case of linear Gaussian

systems [7, 105]. The problem of optimal scheduling for the case of hidden Markov

model systems was addressed in [86]. In table 2.1, we compare our work with existing

literature via different categories.

2.1.2 Related work - sequential design for estimation

The concept of sequential design has been studied by statisticians for many

decades [31, 56, 74, 80, 133, 144] and has found applications in statistics, engineer-

ing, biomedicine, and economics. Sequential analysis has been used to solve im-

portant problems in statistics such as change-point detection [63, 156], point and

interval estimation [115], multi-armed bandit problems [135], quality control [147],

sequential testing [167], and stochastic approximation [134]. Robbins pioneered the
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Literature Type of parameters Type of design Type of constraint Type of control
D R LSD NLSD SQ NSQ EN SN NONE EN WV SN NONE

Waveform design [41] X X X X X
Sensor scheduling [7, 86, 105] X X X X X
Sequential estimation [23, 63] X X X X

Schweppe’s design [8, 142] X X X X
RLS [90] X X X X

Stein estimator [71, 158] X X X X
Kalman filter [120] X X X X

Our sequential approach X X X X

Table 2.1: Key to the table: D-deterministic, R-random, LSD-Linear state dynamics, NLSD-non linear state dynamics, SQ-Sequential design, NSQ-
Non sequential design, EN-energy, SN-sensors, WV-waveform parameters.
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statistical theory of sequential allocation in his seminal paper [135]. Early research

on the application of sequential design to problems of estimation was limited to

finding asymptotically risk-efficient point estimates and fixed-width confidence in-

tervals [23,63,83], i.e., sequential design was used to solve problems in which a con-

ventional estimate, based on a sample whose size is determined by a suitably chosen

stopping rule, achieves certain properties such as bounded risk. For the problem of

estimating the mean under unknown variance, it was shown that a sequential two-

step method guaranteed specified precision [5,156,157], which is not possible using a

fixed sample. The statistical sequential design framework assumes a fixed measure-

ment setup while acquiring the data and does not consider energy constraints. In this

chapter, we adaptively design input parameters to alter the measurement patterns

under an average energy constraint to obtain performance gains over non-adaptive

strategies.

Another class of problems in sequential estimation is online estimation, where fast

updating of parameter estimates are made in real time, called recursive identification

in control theory, and adaptive estimation in signal processing. For example, consider

the problem of estimating parameter θ in the following model

yi = xT
i θ + wi, i = 1, 2, . . . , n,

where {xi} are the sequence of inputs to the system, {wi} are independent identically

distributed (i.i.d) Gaussian random variables with zero mean and {yi} are the set

of received signals. The maximum likelihood estimate of θ is given by the least

squares (LS) solution, θ̂LS =
(∑n

i=1 xix
T
i

)−1
(
∑n

i=1 xiyi). One way of computing the

LS estimate is the recursive least squares approach (RLS) [90] which can be written
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as

θ̂n = θ̂n−1 + Pnxn(yn − xT
n θ̂n−1)

Pn = Pn−1 −
Pn−1xnx

T
nPn−1

1 + xT
nPn−1xn

,

where Pn =
(∑n

i=1 xix
T
i

)−1
. Using this recursive process, we avoid the complexity

of computing the matrix inverse.

In the above formulation it was assumed that the input sequence {xi} remains

fixed. The problem of waveform design is relevant when inputs xi can be adap-

tively chosen based on the past measurements y1, . . . , yi−1. Measurement-adaptive

estimation has application to a wide variety of areas such as communications and

control, medical imaging, radar systems, system identification, and inverse scatter-

ing. By measurement-adaptive estimation we mean that one has control over the

way measurements are made, e.g., through the selection of waveforms, projections,

or transmitted energy. The standard solution for estimating parameters from adap-

tive measurements is the maximum likelihood (ML) estimator. For the case of classic

linear Gaussian model, i.e., a Gaussian observation with unknown mean and known

variance, it is well-known [120] that the ML estimator is unbiased and achieves the

unbiased Cramér Rao lower bound (CRB). Many researchers have looked at im-

proving the estimation of these parameters by adding a small bias to reduce the

MSE. Stein showed that this leads to better estimators that achieve lower MSE than

the ML estimator for estimating the mean in a multivariate Gaussian distribution

with dimension greater than two [71, 158]. Other alternatives such as the shrinkage

estimator [104], Tikhonov regularization [165] and covariance shaping least squares

(CSLS) estimator [49] have also been proposed in the literature. While these pio-

neering efforts present interesting approaches to improve static parameter estimation
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performance by introducing bias, none of them incorporate the notion of sequential

design of input parameters. Our adaptive design of inputs effectively adds bias to

achieve reduction in MSE.

In this chapter, we formulate a problem of sequentially selecting waveform am-

plitudes for estimating deterministic parameters of a linear Gaussian channel model

under an average energy constraint over the waveforms and over the number of trans-

missions. In Section 2.2, the problem of experimental design [52, 171] for sequential

parameter estimation is outlined and the analogy between this problem and the

waveform design problem is explained. In Section 2.3, closed-form expressions for

the optimal design parameters (e.g., energy allocation to the waveforms in the adap-

tive sensing context) and the corresponding minimum MSE in the single parameter

(e.g., scatter coefficients in imaging, channel coefficients in channel estimation) case

are derived for a two-step procedure (two time steps). In Section 2.4, we provide a

suboptimal design for the two-step strategy, which takes into consideration a peak

power constraint and achieves near optimal performance. Since the optimal solution

requires the knowledge of parameters to be estimated, it is shown in Section 2.6 that

the performance of this omniscient solution can be achieved with a parameter inde-

pendent strategy. In Section 2.7, we describe an N -step sequential energy allocation

procedure, which yields more than 5dB gain over non-adaptive methods. These re-

sults are extended to the vector parameter case in Section 2.8. Finally in Section

2.9, we show the applicability of this framework by recasting the problems of channel

estimation and radar imaging to fit the statistical model of the sequential parameter

estimation problem and applying the results from the previous sections to show the

advantages of our approach over current literature for practical applications.
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2.2 Problem statement

We denote vectors in CM by boldface lower case letters and matrices in CM×N

by boldface uppercase letters. The symbol ‖ · ‖ refers to the l2-norm of a vector, i.e.,

‖x‖ =
√

xHx, where (·)H denotes the conjugate transpose. The terms MSE and

SNR are abbreviations to mean-squared error and signal-to-noise ratio, respectively.

Let θ = [θ1, . . . , θM ] be the M-element vector of unknown parameters. The problem

of estimating θ in noise can then be written as

(2.1) yi = f(xi, θ) + ni, i = 1, 2, . . . , N,

where {ni} is an i.i.d. random process corrupting the function of the parameters

of interest f(xi, θ) and i denotes the time index. The T -element design parameter

vectors, {xi}N
i=1 can depend on the past measurements: xi = xi(y1, . . . ,yi−1), where

yi is the ith K-element observation vector. In the context of adaptive sensing, f(xi, θ)

represents the response of the medium, T and K denote the number of transmit and

receive antennas respectively, {xi}N
i=1 are the set of waveforms to be designed, θ are

the set of channel parameters or scattering coefficients to be estimated using the set

of received signals {yi}N
i=1. For the classic estimation problem in a linear Gaussian

model, we have f(xi, θ) = H(xi)θ, H(xi) = [h1(xi),h2(xi), . . . ,hM(xi)] is a known

K × M matrix and linear in xi and ni is a circularly symmetric complex Gaussian

random variable with zero mean and covariance σ2I denoted by ni ∼ CN (0, σ2I).

When H(x) is linear in x, we can write hl(x) = Hlx, l = 1, 2, . . . , M . In this case

H(·) is uniquely determined by the matrices {H1,H2, . . . ,HM}. The linear Gaussian

model has been widely adopted in many studies [12,106] including channel estimation

[15] and radar imaging [148] problems. The set of observations for parameter θ can
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then be written as

(2.2) yi = H(xi)θ + ni, i = 1, 2, . . . , N.

For the case of a scalar parameter θ1, the observations are

(2.3) yi = h1(xi)θ1 + ni, i = 1, 2, . . . , N.

An N-step design procedure specifies a sequence of functions {xi(y1,y2, . . . ,yi−1)}N
i=1

corresponding to the N transmitted signal waveforms after receiving the previous

measurements. An optimal N-step procedure selects the design vectors so that the

MSE of the maximum likelihood (ML) estimator, θ̂
(N)
1 (y1,y2, . . . ,yN ) is minimized

subject to the average energy constraint, E
[∑N

i=1 ‖xi‖2
]
≤ E0, where E0 is the

total available energy and E [·] denotes the statistical expectation over the space of

received measurements. The ML estimator of θ1 for the N -step procedure is given

by

(2.4) θ̂
(N)
1 =

∑N
i=1 h1(xi)

Hyi∑N
i=1 ‖h1(xi)‖2

and the corresponding MSE
(
{xi}N

i=1

)
, E

[∣∣∣θ̂(N)
1 − θ1

∣∣∣
2
]

is

(2.5) MSE(N)
(
{xi}N

i=1

)
= E




∣∣∣∣∣

∑N
i=1 h1(xi)

Hni∑N
i=1 ‖h1(xi)‖2

∣∣∣∣∣

2


 .

Denote Ei(y1, . . . ,yi−1) = ‖xi(y1, . . . ,yi−1)‖2, where Ei(y1, . . . ,yi−1) represents the

energy allocated to each time step i. Define E
[
{xi(y1, . . . ,yi−1)}N

i=1

]
as the average

energy in the design parameters for the N -step procedure,

(2.6) E
[
{xi(y1, . . . ,yi−1)}N

i=1

]
= E

[
N∑

i=1

‖xi‖2

]
.

The average energy constraint can be written as

(2.7) E
[
{xi(y1, . . . ,yi−1)}N

i=1

]
= E

[
N∑

i=1

Ei(y1, . . . ,yi−1)

]
≤ E0.
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Our goal is to find the best sequence of the design vectors {xi}N
i=1 to minimize the

MSE(N)
(
{xi}N

i=1

)
in (2.5) under the average energy constraint in (2.7).

2.2.1 Non-adaptive strategy

As a benchmark for comparison, we consider the non-adaptive case where xi(y1, . . .

,yi−1) is deterministic, independent of y1,y2, . . . ,yi−1, ‖xi‖2 = Ei, and
∑N

i=1 Ei ≤

E0. Simplifying the expression for MSE in (2.5), we have

MSE(N) =

E

[∣∣∣
∑N

i=1 h1(xi)
Hni

∣∣∣
2
]

∣∣∣
∑N

i=1 ‖h1(xi)‖2

∣∣∣
2

Using the fact that {ni‖N
i=1 are i.i.d CN (0, σ2I), we obtain

MSE(N) =
σ2

∑N
i=1 ‖h1(xi)‖2

=
σ2

∑N
i=1 Ei

‖h1(xi)‖2

‖xi‖2

≥ σ2

E0λm(H1)
,(2.8)

where equality is achieved iff ∀i xi ∝ vm, the normalized eigenvector corresponding

to λm(H1), the maximum eigenvalue of the matrix HH
1 H1. Note

(2.9) λm(H1) = max
x

(xHHH
1 H1x)/(xHx) = max

x
‖h1(x)‖2/‖x‖2.

Furthermore, the performance of the ML estimator does not depend on the energy

allocation. Hence, without loss of generality we can assume all energy is allocated

to the first transmission which implies that any N -step non-adaptive strategy is no

better than the optimal one-step strategy. We define SNR
(
{xi}N

i=1

)
as

(2.10) SNR(N) =
λm(H1)E

[
{xi(y1, . . . ,yi−1)}N

i=1

]

σ2
.

Then the average energy constraint in (2.7) is equivalent to SNR(N) ≤ SNR0, where

SNR0 = λm(H1)E0/σ
2. We show in Appendix 2.11 that the problem of minimizing
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MSE(N) subject to SNR(N) ≤ SNR0 is equivalent to minimizing MSE(N) × SNR(N).

Thus we use the two minimization criteria interchangeably in the remainder of this

chapter. The product of MSE and SNR is

(2.11) MSE(N) × SNR(N) = E



∣∣∣∣∣

∑N
i=1 h1(xi)

Hni∑N
i=1 ‖h1(xi)‖2

∣∣∣∣∣

2



λm(H1)E
[∑N

i=1 ‖xi‖2
]

σ2

and the minimum MSE for the one-step (or non-adaptive N -step) strategy satisfies

(2.12) MSE
(1)
min × SNR0 = 1.

While our goal is to find optimal input design parameters, {xj(y1, . . . ,yj−1)}N
j=1

which achieve minimum MSE, any suboptimal design that guarantees MSE(N) ×

SNR0 < 1 is also of interest. We first look at a two-step sequential design procedure.

A word of caution: in Sections 2.3 and 2.4 we develop optimal and suboptimal

strategies where the solutions require the knowledge of the unknown parameter θ1.

However, in Section 2.6 we present a θ1-independent design which asymptotically

achieves the performance of the ‘omniscient’ strategies.

2.3 Omniscient optimal two-step sequential strategy

In the two-step sequential procedure, we have N = 2 time steps where in each

time step i = 1, 2, we can control input design parameter xi to obtain observation

yi. For a two-step process, we have

y1 = h1(x1)θ1 + n1(2.13)

y2 = h1(x2(y1))θ1 + n2.(2.14)

The ML estimator of θ1 for a two-step procedure from (2.4) is

(2.15) θ̂
(2)
1 =

h1(x1)
Hy1 + h1(x2)

Hy2

‖h1(x1)‖2 + ‖h1(x2)‖2
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and its MSE from (2.5) is given by

(2.16) MSE(2)(x1,x2) = E

[ |h1(x1)
Hn1 + h1(x2)

Hn2|2
(‖h1(x1)‖2 + ‖h1(x2)‖2)2

]
.

We assume that the shape of the optimal designs, i.e., {xi/‖xi‖} is the one-step

optimum given by vm defined below (2.8) and minimize the MSE over the energy of

the design parameters. In other words, we search for the optimal energy design to

the waveforms among those that have their shapes as vm. Denote ‖x1‖ =
√

E0α1

and ‖x2(y1)‖ =
√

E0α2(y1). Under the sequential design framework, we select

x1 =
√

E0 α1vm(2.17)

x2(y1) =
√

E0 α2(y1)vm,(2.18)

where α1 and α2(·) are real-valued scalars. The average energy constraint from (2.7)

can then be written as

(2.19) E
[
α2

1 + α2
2(y1)

]
≤ 1.

We use Lagrangian multipliers to minimize the MSE in (2.16) with respect to α1

and α2(·) under the energy constraint in (2.19). Substituting for x1 and x2(y1) given

by (2.17) and (2.18) respectively in (2.16) and adding the Lagrangian constraint we

obtain the objective function to be minimized as

MSE(2)(x1,x2) + γ(E
[
α2

1 + α2
2(y1)

]
)

= E

[ |h1(x1)
Hn1 + h1(x2)

Hn2|2
(‖h1(x1)‖2 + ‖h1(x2)‖2)2

]
+ γ

(
α2

1 + E
[
α2

2(y1)
])

Using linearity of h1(·), the objective function can be written as

1

E0

E

[ |α1h1(vm)Hn1 + α2(y1)h1(vm)Hn2|2
(α2

1 + α2
2(y1))2‖h1(vm)‖4

+ γE0

(
α2

1 + α2
2(y1)

)]

Taking the expectation over n2, the objective function becomes

1

E0
E

[
α2

1|h1(vm)Hn1|2 + α2
2(y1)‖h1(vm)‖2σ2

(α2
1 + α2

2(y1))2‖h1(vm)‖4
+ γE0

(
α2

1 + α2
2(y1)

)]
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Dividing numerator and denominator by ‖h1(vm)‖2σ2, the minimization criterion

simplifies to

=
1

SNR0
E

[
α2

1 |ñ1(y1; θ1)|2 + α2
2(y1)

(α2
1 + α2

2(y1))2
+ γSNR0

(
α2

1 + α2
2(y1)

)
]

=
1

SNR0

1

α2
1

E




1(
1 +

α2
2(y1)

α2
1

) − 1 − |ñ1(y1; θ1)|2(
1 +

α2
2(y1)

α2
1

)2 + γ
′

(
1 +

α2
2(y1)

α2
1

)

 ,(2.20)

where ñ1(y1; θ1) = h1(vm)H

‖h1(vm)‖

(
y1−h1(x1)θ1

σ

)
= h1(vm)H

‖h1(vm)‖
n1

σ
is a zero mean unit variance

complex Gaussian random variable and γ
′

= γα4
1SNR0. Since the optimal solution to

α2(y1) depends on y1 only through the function ñ1(y1; θ1), we denote the solution as

α2 (ñ1(y1; θ1)). Let g (ñ1(y1; θ1)) =
(
1 +

α2
2(ñ1(y1;θ1))

α2
1

)
. Then the objective function

can be written as

1

SNR0

1

α2
1

E

[
1

g (ñ1(y1; θ1))
− 1 − |ñ1(y1; θ1)|2

g2 (ñ1(y1; θ1))
+ γ

′

g (ñ1(y1; θ1))

]
.(2.21)

Differentiating and setting the objective function to zero, we have

(2.22) g3 − 1

γ′
g + 2

1 − |ñ1|2
γ′

= 0.

The function g that minimizes MSE is the root of the third-order polynomial in

(2.22), real-valued and greater than or equal to 1. If more than one real-valued

solution greater than 1 to the cubic equation exists, the optimal solution to g will be

the root that achieves minimum MSE. The optimal g for every ñ1 and γ
′

is denoted

by gγ
′ (ñ1). Also E

[
gγ

′ (ñ1)
]

= 1
α2

1
. Therefore, finding α1 that minimizes MSE is

equivalent to finding γ
′

that minimizes MSE. We obtain gγ′ (ñ1) for every γ
′

and

use a brute force grid search to find the optimal γ
′

that minimizes the expression

in (2.21). The MSE is minimized at γ
′∗ ≈ 0.22, or α∗

1 ≈ 0.7421. The optimal α2 is

given by the relation α∗
2 (ñ1(y1; θ1)) = α∗

1

√(
gγ′

∗ (ñ1(y1; θ1)) − 1
)
. Since this solution
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depends on the unknown parameter θ1, we call this minimizer an “omniscient” energy

allocation strategy. For the optimal solution, the product of MSE × SNR is

MSE
(2)
min × SNR0 ≈ 0.68.(2.23)

This corresponds to a 32% improvement in performance or a 1.67dB gain in terms

of SNR for the two-step design when compared to the one-step procedure for which

MSE
(1)
min × SNR0 = 1. MSE(2) × SNR0 is plotted for various values of α1 using both

simulations (dotted) and theoretically (solid) in Fig. 2.1.

The theoretical performance curve (solid) was generated by evaluating the MSE(2)

in (2.21) (without the constraint term) for various values of γ
′

(or α1). Since the

expectation in (2.21) depends only on random variable ñ1, we construct a fine grid of

ñ1 and approximate the integral induced by the expectation as a Riemann sum. For

the simulation curve (dotted), we generate 10000 samples of n1 and n2 distributed

as CN (0, σ2I). Using n1 and x1 from (2.17), we generate 10000 samples of y1 from

(2.13). Using samples of y1, we generate samples of x2(y1) from (2.18) and obtain

10000 samples of y2 from (2.14) using x2(y1) and n2. We obtain an estimate of

MSE(2) by evaluating the expectation in (2.16) through numerical averaging over the

realizations.

The optimal energy allocation at the second step, α∗2
2 (ñ1(y1; θ1)) as shown in

Fig. 2.2 (solid) is a thresholding function, i.e., α∗
2 is zero for |ñ1|2 ≤ 0.59. This solution

implies that when the actual realization of the normalized noise along h1(vm) in the

first step is small enough, then the second measurement becomes unnecessary. On

the other hand, when the normalized noise along h1(vm) exceeds a threshold, then

there is some merit in incorporating the information from the second measurement.

The solution also suggests that the higher the noise magnitude at the first step,

the more the energy that needs to be used. However, the probability of allocating
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Figure 2.1: Reduction in MSE for varying values of α1.
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Figure 2.2: Plot of the optimal and suboptimal solution to the normalized energy transmitted at
the second stage as functions of received signal at first stage.
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energy greater than a particular value decreases exponentially with that energy value.

Nevertheless in applications with a peak energy constraint, the transmission of the

optimal energy at the second stage may not always be possible. Hence, in the

following section we look at a suboptimal solution which takes into account this

constraint and still achieves near optimal performance.

2.4 Omniscient suboptimal two-step strategy

The optimal solution in Section 2.3 is a thresholding function, where energy al-

located to the second stage is zero if the noise magnitude at the first step is less

than a threshold and increases with increasing noise magnitudes otherwise. For the

suboptimal solution, we use a binary energy allocation strategy at the second stage

based on the noise magnitude at the first step, i.e., we allocate a fixed nonzero energy

if the noise magnitude is greater than a threshold else we allocate zero energy. The

suboptimal solution to the design vectors x1 and x2 is then of the form

x1 = vm

√
E0 α1(2.24)

x2 = vm

√
E0 α2I

(∣∣∣∣
h1(vm)H

‖h1(vm)‖
n1

σ

∣∣∣∣
2

> ρ

)
= vm

√
E0 α2 I

(
|ñ1|2 > ρ

)
,(2.25)

where ñ1 is defined below (2.20), α1, α2 are design parameters independent of y1 and

I (·) is the indicator function, i.e.,

I (A) =






1, A is true

0, A is false.

The SNR of the suboptimal two-step procedure is

(2.26) SNR(2) = SNR0

(
α2

1 + α2
2P
(
|ñ1|2 > ρ

))
.
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The MSE of the ML estimator under this suboptimal solution using (2.16) is

MSE(2) = E

[ |h1(x1)
Hn1 + h1(x2)

Hn2|2
(‖h1(x1)‖2 + ‖h1(x2)‖2)2

]

=
1

SNR0
E

[
α2

1|ñ1|2 + α2
2

(α2
1 + α2

2)
2 I

(
|ñ1|2 ≥ ρ

)]
+

1

SNR0
E

[ |ñ1|2
α2

1

I
(
|ñ1|2 < ρ

)]
.

(2.27)

Denote β =
α2

1

α2
1+α2

2
, 0 ≤ β ≤ 1. Substituting for β in the expressions for MSE(2) and

SNR(2) in (2.27) and (2.26), we obtain

MSE(2) =
1

SNR0

1

(α2
1 + α2

2)

(
E

[
(β|ñ1|2 + (1 − β))I (|ñ1|2 ≥ ρ) +

|ñ1|2
β

I (|ñ1|2 < ρ)

])
,

SNR(2) = SNR0

(
α2

1 + α2
2

) (
β + (1 − β)P (|ñ1|2 ≥ ρ)

)
.

Using the fact that E [I (|x|2 ≥ ρ)] = e−ρ and E [|x|2I (|x|2 ≥ ρ)] = ρe−ρ when x ∼

CN (0, 1), the expressions for MSE(2) and SNR(2) simplify to

MSE(2) =
1

SNR0

1

(α2
1 + α2

2)

(
βρe−ρ + e−ρ +

1

β
(1 − (1 + ρ)e−ρ)

)
,(2.28)

SNR(2) = SNR0

(
α2

1 + α2
2

) (
β + (1 − β)e−ρ

)
.

Thus we have

(2.29) MSE(2) × SNR(2) =

(
βρe−ρ + e−ρ +

1

β
(1 − (1 + ρ)e−ρ)

)(
β + (1 − β)e−ρ

)
.

Minimizing MSE(2) × SNR(2) with respect to β and ρ through a grid search for

β ∈ [0, 1] and ρ ∈ [0,∞) yields β∗ ≈ 0.37, ρ∗ ≈ 0.675. It follows that α∗
1 ≈ 0.7319,

α∗
2 ≈ 0.9550, and substituting for the optimal values of α∗

1, α
∗
2, β

∗, ρ∗ in (2.28) and

multiplying by SNR0, yields

(2.30) MSE
(2)
min × SNR0 ≈ 0.7143.

This translates to a 28.47% improvement in MSE performance or a 1.5dB savings

in terms of SNR. Figure 2.3 plots the reduction in MSE for varying values of ρ at
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Figure 2.3: Theoretical versus simulation results for suboptimal strategy. Reduction in MSE for
varying values of ρ at optimal α∗

1 = 0.7319.

optimal α∗
1 and the reduction in MSE for varying values of α1 at optimal ρ∗ using

simulation (dotted) and theoretically (solid) is shown in Fig. 2.4. The theoretical

curves in both the figures are obtained by evaluating the expression for MSE(2) in

(2.28) for various values of α1 and ρ, where α2 is chosen to satisfy the SNR constraint

with equality i.e., SNR(2) = SNR0. For the simulation curves, we generate 10000

samples of y1 in (2.13) using samples of x1 obtained from (2.24) and n1, where

10000 samples of n1 and n2 are generated from CN (0, σ2I). Using samples of y1,

we generate 10000 samples of x2 from (2.25) and then obtain 10000 samples of y2

in (2.14) using samples of x2 and n2. We then obtain an estimate of MSE(2) by

computing the expected value in (2.16) through numerical averaging over the 10000

realizations. The suboptimal solution to the energy design is shown in Fig. 2.2 by a

dashed dotted line indicated as Suboptimal-I. Thus, while the suboptimal strategy

limits the peak transmit power to max (α∗2
1 , α∗2

2 )E0, it is able to achieve near optimal

performance.

In the previous two sections, we addressed the problem of minimizing MSE sub-
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Figure 2.4: Theoretical versus simulation results for suboptimal strategy. Reduction in MSE for
varying values of α1 at optimal ρ∗ = 0.675.

ject to an average energy constraint, E [‖x1‖2 + ‖x2‖2] ≤ E0. An average energy

constraint implies that the total allocated energy averaged over repeated trials of

the two-step experiment is constrained to be less than or equal to E0. This is less

restrictive than the strict energy constraint ‖x1‖2 + ‖x2‖2 ≤ E0, as any solution

satisfying this constraint satisfies the average energy constraint but not vice versa.

The problem of minimizing the MSE in (2.16) under this strict energy constraint is

presented in the following section.

2.5 Strict energy constraint solution

The strict energy constraint for a two-step procedure is ‖x1‖2 + ‖x2‖2 ≤ E0. The

MSE for the two-step process given by (2.16) can be rewritten as

MSE(2) = σ2

{
1

(‖h1(x1)‖2 + ‖h1(x2)‖2)
− ‖h1(x1)‖2(1 − |ñ1|2)

(‖h1(x1)‖2 + ‖h1(x2)‖2)2

}

= σ2(
1

f
− c

f 2
),(2.31)
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MSE

fmin fmax fc 2c

(a) MSE(f) for c > 0

MSE

ffmin fmax

(b) MSE(f) for c ≤ 0.

Figure 2.5: Typical plots of the MSE as a function of f .

where f = (‖h1(x1)‖2 + ‖h1(x2)‖2), c = ‖h1(x1)‖2(1 − |ñ1|2), and ñ1 defined below

(2.20) is complex Gaussian with zero mean and unit variance. Let ‖x1‖2 = E1 and

‖x2‖2 = E2 such that E1 + E2 ≤ E0.

Minimizing the MSE with respect to x2(y1) is equivalent to minimizing with

respect to f . f is a function of x1 and x2(y1). Since the squared norm of x1 and

x2 is limited to E1 and E2 respectively, the support of f is restricted to [fmin, fmax]

obtained by minimizing and maximizing with respect to x2 respectively:

fmin = E
′

1λm at x2 = vm⊥
√

E2

fmax = E
′

λm at x2 = vm

√
E2,

where E
′

1 = ‖h1(x1)‖2

λm
, E

′

= E
′

1+E2, and vm⊥ is an unit norm vector in the perpendic-

ular space of HH
1 H1, i.e., h1(vm⊥) = 0. When HH

1 H1 is full rank, then there exists

no vector in the orthogonal space, in which case an alternate solution, E2 = 0 can

be used to achieve fmin. Since E2 = 0 satisfies the energy constraint with inequality

and consumes minimal energy, we take E2 = 0 as the optimal solution to achieving

fmin.

Note that from Fig. 2.5, the MSE(2)(f) is either, monotonically increasing from
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f = 0 to 2c and decreasing from f = 2c to ∞ for c > 0, or strictly decreasing for

c ≤ 0. Since no local minimum exists, the minimum MSE will always occur at the

end points of the support of f . Therefore, to minimize the MSE, we simply need to

compare the MSE(2) values at fmin and fmax. The optimal x2 is

x2(y1) = arg max
x2

(f) I
(
MSE(2)(fmax) ≤ MSE(2)(fmin)

)

+ arg min
x2

(f) I
(
MSE(2)(fmin) < MSE(2)(fmax)

)

Since x2 = vm

√
E2 maximizes f , x2 = vm⊥

√
E2 or E2 = 0 minimizes f , and

MSE(2)(fmax) ≤ MSE(2)(fmin) is equivalent to |ñ1|2 ≥ ρ, we conclude that the optimal

x2(y1) is

(2.32) x2(y1) = vm

√
E2I

(
|ñ1|2 ≥ ρ

)
+ vm⊥

√
E2I

(
|ñ1|2 < ρ

)
,

or equivalently,

(2.33) x2(y1) = vm

√
E2I

(
|ñ1|2 ≥ ρ

)
,

where ρ =
E

′

1

2E
′

1+E2
and I(·) is the indicator function. This solution implies that when

the actual realization of the noise along h1 in the first transmission is small enough

there is no advantage in using the measurement from the second step. Therefore,

we transmit x2 ∝ vm⊥, which makes the overall estimator only a function of the

first measurement, or not transmit at the second step by having E2 = 0. When the

actual realization of the noise along h1 in the first transmission is not small enough,

there is some merit in incorporating the information from the second measurement

and therefore we select x2 ∝ vm.

Substituting for x2(y1) from (2.33) into (2.31), we obtain

MSE(2) =
σ2

E ′λm

{
I
(
|ñ1|2 ≥ ρ

)(E2

E ′
+

E
′

1|ñ1|2
E ′

)
+ I
(
|ñ1|2 < ρ

)(E
′ |ñ1|2
E

′

1

)}
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Figure 2.6: MSE(2) × SNR(2) vs. ρ.

where ñ1 ∼ CN (0, 1). Taking the expectation over ñ1, the MSE(2) simplifies to

(2.34) MSE(2) =
σ2

E ′λm

{
e−ρ 1 − 2ρ

1 − ρ
+

ρ(1 + ρ)

1 − ρ
e−ρ +

1 − ρ

ρ
(1 − e−ρ(1 + ρ))

}
.

We know that E
′

= ‖h1(x1)‖2

λm
+ E2. MSE(2) is minimized when E

′

is maximized

which happens when x1 = vm

√
E1. The value of ρ that minimizes the MSE(2) is

given by ρ∗ ≈ 0.2831. This implies that the optimal amount of energy allocated at

the first stage is E∗
1 ≈ 0.395E0 and the remaining energy, E∗

2 ≈ 0.605E0 is used at

the second stage. The minimum MSE will be given by,

MSE(2) ≈ 1

SNR(2)
(0.9283).(2.35)

We plot the numerical MSE(2) and the bias as a function of ρ and the exact

MSE(ρ) in Fig. 2.6 and 2.7 respectively. It is in fact easy to show that the bias of

optimal estimator is zero. The simulation curve was generated by using the design of

x2 given in by generating random 100000 samples of y1 and y2. The MSE(2) was then

evaluated by numerically evaluating the expected value in (2.16). The theoretical

curve was generated by evaluating the expression for MSE(2) in (2.34). We observe



37

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−1

−0.5

0

0.5

1
x 10

−6

re
al

(b
ia

s)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−10

−5

0

5
x 10

−7

ρ

im
ag

(b
ia

s)

Figure 2.7: Re(Bias) vs. ρ.

that the simulation results for the MSE(2) and the bias agree with their analytical

equivalents.

The optimal solution satisfies the the strict energy constraint with inequality but

the average energy used is only E0(α
∗2
1 + α∗2

2 e−ρ∗) ≈ 0.8550E0. The solution to the

two-step strategy under this strict energy constraint can also be derived by imposing

an additional constraint, α2
1 + α2

2 ≤ 1 to the suboptimal design problem described

earlier in Section 2.4. In the following section, we design a θ1-independent design

strategy that achieves the optimal performance asymptotically and allows for any

peak power constraint in the design.
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2.6 Parameter independent two-step design strategy

2.6.1 Problem statement

Consider the optimal design for the two-step procedure

x1 =
√

E0 α∗
1vm

x2 =
√

E0 α∗
2(ñ1(y1; θ1))vm =

√
E0 α∗

2

(∣∣∣∣
h1(vm)H

‖h1(vm)‖
(y1 −

√
E0α1h1(vm)θ1)

σ

∣∣∣∣
)

vm.

(2.36)

We showed that by designing α1 and α2 optimally we can gain up to 32% improvement

in estimator performance. But the “omniscient” solution (2.36) depends on the

parameter to be estimated. Here, we prove that we can approach the optimal two-

step gain by implementing a θ1-independent energy allocation strategy when θ1 is

bounded, i.e., θ1 ∈ [θmin, θmax], θmin, θmax ∈ R.

2.6.2 Solution

We describe the intuition behind the proposed solution in this subsection. The

details of the proof are given in Appendix 2.12. Since we do not know the value of

the actual parameter, we replace θ1 by a ‘guess’ of θ1, say θg, in the optimal solution

to the design at the second step given in (2.36). The resulting suboptimal design is

x1 =
√

E0 α∗
1vm(2.37)

x2 =
√

E0 α∗
2

(∣∣∣∣
h1(vm)H

‖h1(vm)‖
(y1 −

√
E0α

∗
1h1(vm)θg)

σ

∣∣∣∣
)

vm =
√

E0 α∗
2 (|ñ1 + z|) vm,

(2.38)

where

(2.39) z =
α∗

1

√
E0‖h1(vm)‖

σ
(θ1 − θg) = α∗

1

√
SNR0(θ1 − θg)
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Figure 2.8: Plot of reduction in MSE versus percentage error in guess of parameter of θ1 for various
SNR.

and ñ1, which is defined below (2.20) is CN (0, 1). Substituting the above suboptimal

solution in the expression for MSE(N) × SNR(N) in (2.11) and simplifying, we obtain

(2.40)

MSE(2)(z)×SNR(2)(z) = η(z) = E

[
α∗2

1 |ñ1|2 + α∗2
2 (|ñ1 + z|)

(α∗2
1 + α∗2

2 (|ñ1 + z|))2

]
E
[
α∗2

1 + α∗2
2 (|ñ1 + z|)

]
.

The optimal solution to MSE(2)(z) × SNR(2)(z) is achieved when z = 0. There are

two ways that drive z → 0. If θ1 = θg, then z = 0 and we have η(0) = η∗ = MSE
(2)
min×

SNR0 ≈ 0.68, the optimal two-step performance. Since θg is arbitrary, |θ1 − θg| > 0;

the two-step design is not optimal and therefore MSE(2) × SNR0 = η(z) > η∗. The

other way to achieve the optimal solution is to make SNR0 as small as possible. Note

that if SNR0 is sufficiently small MSE(2)×SNR(2) approaches its minimal value. Since

SNR(2) ≤ SNR0, driving the SNR0 to zero, drives the MSE(2) to infinity. To overcome

this problem, we propose an N ×2-step procedure to allow the SNR0 to be fixed while

driving z → 0. The N×2-step algorithm is outlined in Fig. 2.9 and is shown through

an illustration in Fig. 2.10. Any peak power constraint can also be satisfied using
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the N × 2-step strategy by choosing a sufficiently large N .

Figure 2.8 shows η(z) in (2.40) as a function of the percentage error in the guess

of θ1, 100
(

θ1−θg

θ1

)
for varying SNR0. The plot indicates that when θg = θ1, the

optimal performance of the adaptive two-step strategy is achieved for all SNR. At

high SNR, for certain values of |θ1 − θg|, the two-step strategy defined by equations

(2.37) and (2.38) performs worse than a single step strategy with signal-to-noise ratio

SNR0. This is because the solution presented in (2.37) and (2.38) in terms of scalar

α∗
1 and thresholding function α∗

2(·) were optimized for ñ1 + z ∼ CN (0, 1), i.e., when

z = 0. When θg 6= θ1, the following happens: z 6= 0, ñ1 + z ∼ CN (z, 1), and the

design parameters α∗
1 and α∗

2(·), which were found optimally for ñ1 + z ∼ CN (0, 1)

(z = 0) are no longer optimal. When |θ1 − θg| is large, z in (2.39) is a large constant

and hence ñ1 is a negligible term compared to z with high probability. In other

words, α∗
2(ñ1 + z) can be made arbitrarily close to α∗

2(z) with high probability as z

tends to infinity. This implies that the strategy becomes equivalent to a two-step

non-adaptive strategy with a specific non-adaptive energy distribution between the

two steps whose performance is given by MSE(2) × SNR0 = 1 from Section 2.2.1.

Thus we observe that the performance of the two-step strategy tends to 1 for large

|θ1−θg|. The most important information in the plot, however, is the performance of

the two-step strategy under low SNR since each 2-step procedure in the N × 2-step

strategy works at (1/N)th of the total SNR. Hence as N becomes large, SNR in each

experiment is very small and the lack of knowledge of θ1 plays a negligible effect on

the performance as z is made close to zero through the SNR factor.
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• Step 1: Perform N independent two-step suboptimal experiments with inputs 1√
N

x1

and 1√
N

x2 where x1 and x2 are given in (2.37) and (2.38) respectively, i.e., use energy

E0/N in each of the N experiments.

– The SNR of the 2N -step procedure is SNR(2N)(z) = NSNR(2),1(z) =

SNR(2)(z/
√

N) where SNR(2),k is the SNR of the kth two-step experiment. The

first equality follows from the fact that {SNR(2),k}N
k=1 are identical as the N

experiments are independent while the second equality follows from the fact that
each two-step experiment uses only (1/N)th of the total energy.

• Step 2: Obtain ML estimate from each step as θ̂
(2),k
1 and average the N estimates to

obtain the ML estimator of the N × 2-step strategy as θ̂
(2N)
1 = 1

N

∑N

k=1 θ̂
(2),k
1 .

– The MSE of θ̂
(2N)
1 is given by MSE(2N)(z) = 1

N
MSE(2),1(z) = MSE(2)(z/

√
N),

where MSE(2),k is the MSE of each two-step estimator θ̂
(2),k
1 . The first equality

follows from the fact that {MSE(2),k}N
k=1 are identical as the N experiments are

independent while the second equality follows from the fact that each two-step
experiment uses only (1/N)th of the total energy.

• From Steps 1 and 2, we have MSE(2N)(z) × SNR(2N)(z) =

MSE(2)(z/
√

N)SNR(2)(z/
√

N). As N → ∞, z/
√

N → 0 and MSE(2N)(z) ×
SNR(2N)(z) → η∗, i.e., minimal MSE is achieved. The details of the proof can be
found in Appendix 2.12.

Figure 2.9: Description of the N× two-step procedure.
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Figure 2.10: Illustration of the N× two-step procedure: the omniscient optimal two-step procedure,
where energy E1 is allocated to the first step and E2 is chosen optimally at the second
step based on the past measurements, is shown in Fig. (a). Figure (b) illustrates the
N ×2-step procedure, where N independent two-step experiments are performed with
the energy design as the optimal two-step energy allocation strategy scaled through
1/N but with θg replacing θ1. By averaging the estimates of the N two-step estimators,
we asymptotically achieve optimal performance as N → ∞.
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2.7 Design of N-step procedure

In Sections 2.3 and 2.6, we derived the omniscient optimal two-step design to

minimize the MSE and proved that the optimal performance can be achieved asymp-

totically using an N × 2-step strategy. But the N × 2-step strategy is a specific case

of a 2N -step design. In this section, we generalize the suboptimal solution from the

2-step case to the N -step case as follows: we assume that the shape of the design

vector is fixed and look at the energy allocation among the various steps. The set of

observations are as defined in (2.3). Let the shape of the design vector xi be vm and

the energy at step i, Ei = α2
i (y1, . . . ,yi−1), i.e., xi = vmαi(y1, . . . ,yi−1), 1 ≤ i ≤ N .

Then

α1 = A1(2.41)

αi = AiI

(
|∑i−1

j=1 h1(xj)
Hnj |2

∑i−1
j=1 ‖h1(xj)‖2σ2

≥ ρi

)
, i ≥ 2,(2.42)

where {Ai, ρi} are design parameters. This approximate solution is motivated from

the suboptimal thresholding solution to the two-step case derived in Section 2.4. Note

that the definition of the amplitudes at each stage is recursive, i.e., the amplitude

design αi depends on past inputs x1, . . . ,xi−1 which in turn depends on α1, . . . , αi−1.

To simplify our analysis, we make the assumption ρ1 ≤ ρ2 ≤ . . . ≤ ρN . Then,

(2.43)

α2 = A2I

(∣∣∣∣
h1(x1)

H

‖h1(x1)‖
n1

σ

∣∣∣∣
2

≥ ρ2

)
= A2I

(∣∣∣∣
h1(vm)H

‖h1(vm)‖
n1

σ

∣∣∣∣
2

≥ ρ2

)
= A2I

(
|ñ1|2 ≥ ρ2

)
,
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where ñi = h1(vm)H

‖h1(vm)‖
ni

σ
are i.i.d complex Gaussian random variables with zero mean

and unit variance. The amplitude at the third stage simplifies to

α3 = A3

( |h1(x1)
Hn1 + h1(x2)

Hn2|2
σ2 (‖h1(x1)‖2 + ‖h1(x2)‖2)

≥ ρ3

)

= A3I

( |A1ñ1 + A2ñ2|2
|A1|2 + |A2|2

≥ ρ3

)
I
(
|ñ1|2 ≥ ρ2

)
+ A3I

(
|ñ1|2 ≥ ρ2

)
I
(
|ñ1|2 < ρ2

)

= A3I

( |A1ñ1 + A2ñ2|2
|A1|2 + |A2|2

≥ ρ3

)
I
(
|ñ1|2 ≥ ρ2

)
.(2.44)

Following the same procedure, we simplify α4 as

(2.45)

α4 = A4I

( |A1ñ1 + A2ñ2 + A3ñ3|2
|A1|2 + |A2|2 + |A3|2

≥ ρ4

)
I

( |A1ñ1 + A2ñ2|2
|A1|2 + |A2|2

≥ ρ3

)
I
(
|ñ1|2 ≥ ρ2

)
.

Thus, a general expression for αi can be written as

(2.46) αi = Ai

i−1∏

s=1

I
(
|ws|2 ≥ ρs+1

)
,

where ws is defined in (2.134). This form states that the stopping criteria at time

step s is when the magnitude of the average noise, ws drops below the threshold

ρs+1. The goal is to minimize GN = MSE(N) × SNR(N) which from Appendix 2.13 is

given by

(2.47) MSE(N) × SNR(N)(A,ρ) =

(
N−1∑

i=1

Ti

Qi
+

T̃N

QN

)(
N−1∑

i=1

QiPi + QN P̃N

)
,

where A = [A1, . . . , AN ],ρ = [ρ1, . . . , ρN ], Qi, Ti, Pi are defined in (2.136), (2.137)

and (2.139) respectively.

There is no closed-form solution to this 2N dimensional optimization. Instead we

evaluate the performance of suboptimal solutions to the design vectors A and ρ. For

our simulations, we choose ρi = (i − 1)/(N − 1) ρmax, 1 ≤ i ≤ N . Furthermore, we

choose A as {Ai = d α∗
1, odd i; Ai = d α∗

2, even i}, where α∗
1, α

∗
2 are optimal values

from the suboptimal solution presented in Section 2.4 and d is chosen to satisfy the
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average energy constraint. We evaluate the performance of the N -step procedure

with these parameters through theory and verify the theory using simulations.

Performance gains, GN (in dB) are presented in Fig. 2.12. The theoretical per-

formance curve was generated by evaluating the expressions for Ti and Pi in (2.137)

and (2.139) using numerical integration and substituting them in (2.47) while the

simulations are generated by sampling the distributions of {yi}N
i=1 by first generating

samples of {αi}N
i=1 followed by an empirical estimate of the MSE. By designing this

N -step procedure, we are essentially altering the Gaussian statistics of the measure-

ment noise to obtain improvements in performance. In Fig. 2.11, we illustrate how

the distribution of the estimation residuals changes with the number of the steps.

We would like to point out that the simulation curve appears smoother than the

theory curve in Fig. 2.12 as evaluating (2.137) and (2.139) involved high order inte-

gration. We see that in 50 steps, we are able to achieve gains of more than 5dB. In

Section 2.6, we showed that the two-step gain can be achieved using an N × 2-step

strategy, i.e., in 2N steps. The basic motivating factor was to reduce the SNR in

each experiment and achieve the diversity gain by increasing the number of steps.

For the general N -step strategy, progressive reduction in SNR of each experiment

implies that as the number of steps increases, the error of guessing θ1 has a reduced

effect on the overall performance. We demonstrate the achievability of performance

for any N -step design in the following subsection.

Achievability of performance of any omniscient N-step design

For an N -step procedure, we need to design a sequence of input vectors {xi}N
i=1

optimally under an average energy constraint to minimize the MSE in (2.5).

Theorem 2.7.1. Let S = {xi (y1, . . . ,yi−1; θ1)}N
i=1 be any design of the input pa-
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rameters satisfying the following conditions:

• Average energy constraint - E
[∑N

i=1 ‖xi (y1, . . . ,yi−1; θ1) ‖2
]
≤ E0.

• Continuity - The design vector xi (y1, . . . ,yi−1; θ1) is a continuous function of

{yj}i−1
j=1 or can assume the form of a thresholding function in (2.42).

Then there exists a θ1-independent strategy whose performance can come arbitrarily

close to MSE(N)(S) which assumes the knowledge of parameter θ1.

Proof. The proof is similar to the N ×2-step strategy presented in Section 2.6, where

the actual value of θ1 in the optimal solution is replaced with a guess of θ1. Refer to

Appendix 2.16 for details.

2.8 Sequential design for vector parameters

A general N -step procedure for the case of M unknown parameters can be written

as

yi = H(xi(y1, . . . ,yi−1))θ + ni, i = 1, 2, . . . , N,(2.48)

where θ is an M-element vector, ni ∼ CN (0,Rn), and H(x) is a K × M matrix.

For the multiple parameter case, MSE is no longer a scalar. Various criteria such

as trace, minmax, determinant of the MSE matrix can be considered as measures of

performance under the multiple unknown setting.

2.8.1 Worst case error criterion

The component wise MSE for estimating specific parameters is given by the diago-

nal elements of the matrix MSE = E
[
(θ − θ̂)(θ − θ̂)H

]
. We seek to find the optimal

energy allocation between the two design vectors, xi({yj}i−1
j=1) = um

√
E0αi({yj}i−1

j=1),
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i = 1, 2, that minimizes the worst case mean-squared error (WC-MSE) of the un-

known parameters, where um is any unit norm vector independent of past measure-

ments, e.g., um is chosen to minimize the one-step MSE. The ML estimate for a

one-step process with energy E0 is given by

(2.49) θ̂
(1)

=
1√
E0

WumH(um)HR−1
n y1

and its corresponding MSE is

(2.50) MSE(1) =
1

E0

Wum ,

where Wum = (H(um)HR−1
n H(um))−1. Define Φ(u, MSE) = uHMSEu.

(2.51) WC-MSE = max
i

eH
i MSEei = max

i
Φ(ei, MSE),

where ei is an M-element vector with all zeros except for 1 in the ith position. Then

for a one-step process

(2.52) WC-MSE(1) = max
i

Φ(ei, MSE(1)) = Φ(ei∗ , MSE(1)),

where i∗ indicates the arg maxi Φ(ei, MSE(1)) and

(2.53) Φ(u, MSE(1)) =
1

E0
uHWumu.

The set of observations for the two-step process are

y1 =
√

E0α1H(um)θ + n1(2.54)

y2 =
√

E0α2(y1)H(um)θ + n2.(2.55)

For a two-step procedure, we need to design α1 and α2(y1) to minimize WC-MSE(2).

From (2.141) in Appendix 2.14, we have

Φ(u, MSE(2)) = Φ(u, MSE(1)) E

[
α2

1 |ñ1(y1; θ)|2 + α2
2(ñ1(y1; θ))

(α2
1 + α2

2(ñ1(y1; θ))2

]
,(2.56)
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where ñ1(y1; θ) = uHWumH(um)HR
−1
n (y1−H(x1)θ)√

uHWumu
is a complex normal random variable

with zero mean and unit variance. The error in (2.56) when minimized under the

constraint α2
1 + E [α2

2(ñ1)] ≤ 1 is exactly the same minimization derived for the

single parameter case in Section 2.3. It follows that the optimal and suboptimal

solutions to α1 and α2(·) will hold for the multiple parameter case. In other words

Φ(u, MSE(2)) ≈ 0.6821 Φ(u, MSE(1)). It follows that

(2.57) WC-MSE(2) = Φ(ei∗ , MSE(2)) ≈ 0.6821 Φ(ei∗ , MSE(1)) = 0.6821 WC-MSE(1)

and this performance can be achieved using a θ-independent strategy along similar

lines to the derivation for the scalar parameter case in Section 2.6. The reduction

in MSE in (2.57) holds for any M , the number of unknown parameters, as i∗, the

index of the worst case error, can always be computed from (2.52) and (2.53) for any

M ∈ N. A similar result can be derived for the N -step procedure.

2.8.2 Trace criterion

For the multiple parameter case, the MSE is a matrix and we consider the trace

as a measure of performance i.e., min{xi}N
i=1

tr(MSE(N)(θ)), where tr(·) denotes the

trace. So far, we considered the problem of optimal and suboptimal strategies for

energy allocation in an N -time step procedure. We assumed in our analysis that

the waveform transmitted is the one-step optimal derived in Section 2.2.1. For the

purposes of the trace criterion in the vector parameter case, we consider two possible

strategies: first, performing N -step energy allocation under the constraint that the

waveform transmit at every time instant is the one-step optimal for estimating the

vector parameters. The second strategy is to provide a waveform and energy allo-

cation simultaneously. We present the energy allocation procedure in the following

section.
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Energy design under fixed waveforms

The trace of the MSE matrix can be written in the following form,

tr(MSE) =

M∑

i=1

eH
i MSEei =

M∑

i=1

Φ(ei, MSE),(2.58)

In this analysis, we will assume that all the elements of the matrix H defined in (2.48)

can be controlled by the design vector xi at every time instant. In other words, we

assume the following statistical model

(2.59) yi = αi

√
E0X̃iθ + ni, i = 1, 2, . . . , N,

where X̃i is the K × M input design matrix and ni ∼ CN (0,Rn). The one-step

estimator for θ in this model is given by

(2.60) θ̂
(1)

=
1√
E0

(X̃H
1 R−1

n X̃1)
−1X̃H

1 R−1
n y1

and the corresponding MSE can be derived using a similar derivation to (2.50) as

(2.61) MSE(1) =
1

E0
(X̃H

1 R−1
n X̃1)

−1.

The trace of the MSE(1) matrix can then be written as

tr(MSE(1)) =
1

E0

tr
{

(X̃H
1 R−1

n X̃1)
−1
}

=
1

E0

M∑

i=1

eH
i (X̃H

1 R−1
n X̃1)

−1ei.(2.62)

For a two-step process, the set of observations can be written as

y1 = α1

√
E0X̃1θ + n1(2.63)

y2 = α2(y1)
√

E0X̃1θ + n2,(2.64)

where X̃1 will be chosen as the optimal one-step design and α1 and α2(y1) are optimal

energy allocation design parameters. The two-step ML estimator is given by

(2.65) θ̂
(2)

=
1√
E0

(X̃H
1 R−1

n X̃1)
−1X̃H

1 R−1
n

(
α1y1 + α2(y1)y2

α2
1 + α2

2(y1)

)
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and the corresponding MSE is

(2.66)

MSE(2) =
1

E0

En1

[
(X̃H

1 R−1
n X̃1)

−1X̃H
1 R−1

n

(
α2

1n1n
H
1 + α2

2(y1)Rn

(α2
1 + α2

2(y1))
2

)
R−1

n X̃1(X̃
H
1 R−1

n X̃1)
−1

]
.

The trace of the MSE(2) can be evaluated as

tr(MSE(2)) =
1

E0

(
E

[
α2

1

(α2
1 + α2

2(y1))2
nH

1 R−1
n X̃1(X̃

H
1 R−1

n X̃1)
−2X̃H

1 R−1
n n1

+
α2

2

(α2
1 + α2

2(y1))2
tr
{

(X̃H
1 R−1

n X̃1)
−1
}])

(2.67)

=
1

E0

(
E

[
α2

1

(α2
1 + α2

2(y1))2
ñH

1 (y1; θ)Mñ1(y1; θ)

+
α2

2

(α2
1 + α2

2(y1))2
tr
{

(X̃H
1 R−1

n X̃1)
−1
}])

,(2.68)

where

(2.69) M = R−1/2
n X̃1(X̃

H
1 R−1

n X̃1)
−2X̃H

1 R−1/2
n

and

(2.70) ñ1(y1; θ) = R−1/2
n n1 = R−1/2

n (y1 − α1

√
E0X̃1θ).

Since rotation or translation of the Gaussian random vector is still a Gaussian random

vector, it follows that ñ1 is i.i.d CN (0, I). Using circular invariance of trace of a

matrix, i.e., tr(ABC) = tr(CAB), we have

tr(M) = tr
{
R−1/2

n X̃(X̃HR−1
n X̃)−2X̃HR−1/2

n

}
= tr

{
(X̃HR−1

n X̃)−1
}

(2.71)

Define w1(y1; θ) as

(2.72) w1(y1; θ) =
ñH

1 (y1; θ)Mñ1(y1; θ)

tr(M)
.

Substituting (2.72) and (2.71) in (2.68), we obtain

(2.73)

tr(MSE(2)) = tr(MSE(1))

(
E

[
α2

1

(α2
1 + α2

2(w1(y1; θ)))2
w1(y1; θ) +

α2
2(w1)

(α2
1 + α2

2(w1(y1; θ)))2

])
,
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where α2(y1) is replaced with α2(w1(y1; θ)) as the dependence of α2 on y1 occurs

through w1(y1; θ). We will denote w1(y1; θ) and ñH
1 (y1; θ) as w1 and ñ1 respectively

in the remainder of this discussion for convenience.

Let M = QDQH denote the eigenvalue decomposition of the matrix M, where

D = [d1, . . . , dN ] denotes the eigenvalues. Then

w1 =
ñH

1 Mñ1

tr(M)
=

n̂H
1 Dn̂1

tr(D)
=

∑N
i=1 di|n̂1,i|2∑N

i=1 di

=
N∑

i=1

(
di∑N
i=1 di

)
|n̂1,i|2,(2.74)

where n̂1 = QHñ1 is again CN (0, I) since Q is unitary and n̂1,i denotes the ith ele-

ment of the vector n̂1. {|n̂1,i|2}N
i=1 are independent central χ2

2 random variables, i.e.,

chi-square random variables with 2 degrees of freedom (exponentially distributed).

Hence w1 is central chi-square mixture with N degrees of freedom with

E [w1] = 1(2.75)

var(w1) = 2
N∑

i=1

(
di∑N
i=1 di

)2

(2.76)

To find the optimal solution to the energy at the second stage, i.e., α2(w1) we need

to minimize with respect to α2(w1) the function

(
E

[
α2

1

(α2
1 + α2

2(w1))2
w1 +

α2
2(w1)

(α2
1 + α2

2(w1))2

])
(2.77)

subject to the constraint on the average energy E [α2
1 + α2

2(w1)] ≤ 1. The Lagrangian,

the minimization condition plus the constraint, can be written as

min
α1,α2(w1)

Ew1

[
α2

1w1 + α2
2(w1)

(α2
1 + α2

2(w1))2

]
+ λ

(
α2

1 + Ew1

[
α2

2(w1)
])

(2.78)

= min
α1,α2(w1)

1

α2
1

En1

[
w1 + α2

2(w1)/α
2
1

(1 + α2
2(w1)/α

2
1)

2

]
+ λα2

1

(
1 + Ew1

[
α2

2(w1)/α
2
1

])
(2.79)

= min
α1,g(w1)

1

α2
1

Ew1

[
w1 + g(w1) − 1

g2(w1)

]
+ λα2

1Ew1 [g(w1)](2.80)

= min
α1,g(w1)

1

α2
1

Ew1

[
1

g(w1)
− 1 − w1

g2(w1)
+ λ

′

g(w1)

]
,(2.81)
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where g(w1) = 1+α2
2(w1)/α

2
1 and λ

′

= λα2
1. Differentiating and setting the derivative

with respect to g to zero,

g3 − 1

λ′
g + 2

1 − w1

λ′
= 0(2.82)

The structure of the optimal design for the multiple parameter case is the same

as that of the optimal design for the single parameter case. The only difference

between the solutions is that the optimal solution α2(w1) is a function of w1, a χ2-

mixture with N degrees of freedom which reduces to being a exponentially distributed

random variable when the number of parameters to be determined is reduced to 1.

Furthermore to compute the exact reduction in the MSE, we need to know the general

distribution of the χ2-mixture. Various series expansions have been proposed in the

literature for the distribution of a sum of χ2-random variables: power series [145],

χ2 series [136], improved power series and Laguerre series expansions [84], Laguerre

series for non central chi-square sum [101].

Before we proceed to find the optimal sequential design of energy for an N -step

process, we solve for the optimal X̃1 for an one-step process which yields the eigenval-

ues d1, d2, . . . , dN . To find the optimal one-step design vector, we need the following

results.

Lemma 2.8.1. N ≥ M

Proof. Consider the M × M matrix (X̃HR−1
n X̃) in the solution to the maximum

likelihood estimator of θ in (2.49).

(X̃HR−1
n X̃) =

{
(X̃HR−1/2

n )(X̃HR−1/2
n )H

}

Since for any matrix A, Rank(AAH) = Rank(A), it follows that

Rank(X̃HR−1
n X̃) = Rank(X̃HR−1/2

n ) = Rank(X̃) = min(N, M).(2.83)
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Since we want the M×M matrix (X̃HR−1
n X̃) to be invertible, we need Rank(X̃HR−1

n X̃) =

M . It follows that N ≥ M for any M .

For the rest of the derivation, we consider the following assumptions:

• Without loss of generality we assume N = M and furthermore X̃ is full rank.

• The receiver noises are independent and identically distributed.i.e., Rn = σ2I.

Lemma 2.8.2. For any positive m × m definite matrix A, the following inequality

holds,

tr(A−1) ≥
M∑

i=1

(ai,i)
−1,(2.84)

where ai,i is the ith diagonal element of A and equality iff A is diagonal.

Proof. The details of the proof can be found in [75].

Theorem 2.8.3. di = σ2N , i = 1, 2, . . . , N minimizes MSE(1).

Proof. The single-stage MSE given in (2.62) has the form

tr(MSE(1)) =
1

E0

(X̃H
1 R−1

n X̃1)
−1 =

σ2

E0

tr
{

(X̃H
1 X̃1)

−1
}

,(2.85)

when Rn = σ2I. To obtain the minimum error we need to find X̃1 optimally. Since

the energy component was already extracted as a multiplying term of the form

√
E0αj(y1, . . . ,yj−1), X̃1 should satisfy ‖X̃1‖F = 1 (‖ · ‖F denotes the Frobenius

norm). Using Lemma 2.8.2, it follows that the optimal X̃1 satisfies

(2.86) X̃H
1 X̃1 = diag(‖z1‖2, . . . , ‖zN‖2),
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where X̃1 = [z1, . . . , zN ]. We use Lagrange multipliers to solve the following opti-

mization problem. The Lagrangian is given by

L(X̃1, λ) = min
X̃1

tr

{(
X̃H

1 X̃1

)−1
}

+ λ(tr(X̃H
1 X̃1) − 1)(2.87)

=
N∑

i=1

(
‖zi‖2

)−1
+ λ

(
N∑

i=1

‖zi‖2 − 1

)
.(2.88)

Setting ∂L(X̃1,λ)
∂zj

= 0 for j = 1, . . . , N , we obtain

(
‖zj‖2

)−2
zj − λzj = 0(2.89)

(
1 − λ|zj‖4

)
zj = 0.(2.90)

It follows that the solution to {‖zi‖2}N
i=1 is

‖zi‖2 =

√
1

λ0
, i = 1, . . . , N(2.91)

The optimal λ, λ∗ = N2 and

‖zi‖2 =
1

N
, i = 1, . . . , N(2.92)

Hence X̃H
1 X̃1 = 1

N
I and

M = R−1/2
n X̃1(X̃

H
1 R−1

n X̃1)
−2X̃H

1 R−1/2
n = σ2 N2X̃1X̃

H
1

(
M− σ2NI

)
X̃1 = 0

M = σ2NI(2.93)

It follows that all eigenvalues d1, . . . , dN of the matrix M are equal to σ2 N .

Since all eigenvalues are equal, the expression for w1 in (2.74) can be simplified

to

w1 =
N∑

i=1

(
di∑N
i=1 di

)
|n̂1,i|2 =

1

N

N∑

i=1

|n̂1,i|2.(2.94)
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M α∗
1 λ

′∗ M α∗
1 λ

′∗ M α∗
1 λ

′∗

1.0000 0.7427 0.2077 11.0000 0.8781 0.5652 21.0000 0.9002 0.6373
2.0000 0.7910 0.3163 12.0000 0.8817 0.5766 22.0000 0.9003 0.6373
3.0000 0.8152 0.3787 13.0000 0.8817 0.5766 23.0000 0.9041 0.6502
4.0000 0.8295 0.4186 14.0000 0.8853 0.5883 24.0000 0.9041 0.6502
5.0000 0.8417 0.4535 15.0000 0.8890 0.6002 25.0000 0.9042 0.6502
6.0000 0.8512 0.4816 16.0000 0.8926 0.6123 26.0000 0.9080 0.6634
7.0000 0.8577 0.5012 17.0000 0.8927 0.6123 27.0000 0.9080 0.6634
8.0000 0.8643 0.5217 18.0000 0.8964 0.6247 28.0000 0.9080 0.6634
9.0000 0.8677 0.5323 19.0000 0.8965 0.6247 29.0000 0.9119 0.6768
10.0000 0.8746 0.5540 20.0000 0.9002 0.6373 30.0000 0.9119 0.6768

Table 2.2: Optimal values of α1 and λ for various M , number of unknown parameters

From Appendix 2.15, we see that w1 is a Gamma distribution whose probability

density function and cumulative distribution function as

fw1(y) =
NN

(N − 1)!
yn−1e−Ny, y ≥ 0(2.95)

Fw1(y) = 1 − e−Ny

N∑

j=0

(Ny)j

j!
,(2.96)

Using the above distribution and the optimal solution in (2.82) we solve for the

optimal solution to α2(w1) at the second stage. We already know that the minimum

occurs at α1 ≈ 0.7421 for M = 1. We solve for the optimal solution and find the gain

in MSE for various values of M . The optimal values of α1 and λ′ for varying values

of M is shown in Table 2.2. In particular, the performance of the two-step sequential

design are plotted versus varying values of α1 theoretically (solid) and via simulations

(dashed dotted) for M = 2 and M = 3 case in Fig. 2.13 and 2.14, respectively. Figure

2.15 plots the optimal reduction for the two-step design for increasing values of M

theoretically (solid) and via simulations (dashed dotted). It is interesting to note

that the reduction in MSE decreases as the number of parameters increases. In fact,

as the number of unknown parameters M goes to infinity, the ratio tends to 1. We

will prove this fact in the following sections.
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Figure 2.13: Plot of gain in two-step sequential design versus α1 for M = 2 through theory and
simulations
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Figure 2.14: Plot of gain in two-step sequential design versus α1 for M = 3 through theory and
simulations
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Figure 2.15: Plot of gain in two-step sequential design versus number of parameters M through
theory and simulations

Suboptimal solution

As in the case of the single parameter case, we explore the performance gain for

a suboptimal solution of the form,

(2.97) α2(w1) = α2I (w1 ≥ ρ),

where α2, ρ are chosen to satisfy the average energy constraint which can be written

as

(2.98) α2
1 + α2

2 (1 − Fχ(w1)) ≤ 1.

This solution is motivated from the suboptimal solution presented in Section 2.4 for

the scalar parameter case. Simplifying the energy constraint, we have

(2.99) α2
2 =

1 − α2
1

1 − Fχ(w1)
,
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where Fχ(w1) = P(w1 ≤ ρ) is the cumulative distribution function of the chi-square

mixture. Substituting (2.97) in (2.73) yields,

tr(MSE(2)) = tr(MSE(1))Ew1

[
α2

1

(α2
1 + α2

2)
2
w1I (w1 ≥ ρ)

+
α2

2

(α2
1 + α2

2)
2
I (w1 ≥ ρ) +

1

α2
1

w1I (w1 < ρ)

]
(2.100)

= tr(MSE(1))

(
1

α2
1

+

{
α2

1

(α2
1 + α2

2)
2
− 1

α2
1

}
Ew1 [w1I (w1 ≥ ρ)]

+
α2

2

(α2
1 + α2

2)
2

(1 − Fχ(w1))

)
,(2.101)

where α2 satisfies (2.99). We minimize the expression in (2.101) over 0 ≤ α1 ≤ 1

and ρ ∈ R+. Figure 2.16 plots the gain in MSE as a function of the number of

unknown parameters for the suboptimal solution through simulations along with the

optimal gain. As is the case for a single parameter case, the best possible suboptimal

design gives us an improvement of approximately 0.71. Also, it is worthwhile to note

that the suboptimal solution provides near optimal performance. This is essentially

due to the fact that the suboptimal solution is in accordance with the structure of

optimal solution.

Note: The general two-step design procedure is given in terms of w1 or in terms

of {n̂1,i}N
i=1 as in (2.74). Since

n̂1 = QHRnn1 = QHRn

(
y1 −

√
E0α1X̃θ

)
,(2.102)

it follows that the unknown θ can be replaced by a guess θg and a K × 2-step

procedure will yield the desired performance as in the single parameter case.

Asymptotic behavior of optimal design

Asymptotic distribution of w1: When d1 = . . . = dN , w1 is a gamma distribution

and it follows that the random variable w1 asymptotically behaves as [66]

w1 ∼
1

N
χN → N (1,

2

N
) as N → ∞(2.103)
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Theorem 2.8.4. tr(MSE2) → tr(MSE1) as M → ∞, i.e., There is no gain in

a sequential design procedure when the number of unknown parameters M goes to

infinity.

Proof. Since N ≥ M , as M → ∞, we have w1 → N (1, 2/N). It follows that

asymptotically, the optimal design at the second step should concentrate all the

energy at w1 = 1, i.e., α2(w1) = α2δ(w1−1) and the corresponding energy constraint

is α2
1 + α2

2 ≤ 1. Hence the minimum MSE at the second step asymptotically is given

by

tr(MSE2) = tr(MSE1)Ew1

[
α2

1

(α2
1 + α2

2(w1))2
w1 +

α2
2(w1)

(α2
1 + α2

2(w1))2

]

= lim
M→∞

tr(MSE1)Ew1

[
α2

1

(α2
1 + α2

2δ(w1 − 1))2
w1 +

α2
2δ(w1 − 1)

(α2
1 + α2

2δ(w1 − 1))2

]

= lim
M→∞

tr(MSE1)
1

α2
1 + α2

2

= tr(MSE1)
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Waveform and energy design for trace criterion

The problem of multiple parameter estimation is more complicated than estima-

tion of a single parameter for the following reason. We showed in Section 2.2.1 that

independent of the shape of xi, any non-adaptive energy allocation strategy is to

assign all energy to the first step, i.e., a one-step strategy with energy E0. But this

is not true for the multiple parameter setting. Let us consider a simple example of

estimating two parameters θ = [θ1 θ2]
T in the model y = H(x)θ + n, where

(2.104) H(x) =




x1 x2

0 x2


 ,

x = [x1 x2]
T , y = [y1 y2]

T , n = [n1 n2]
T ∼ CN (0,Rn), and Rn = σ2I. Then for a

one-step process, we have MSE(1)(θ1) = 2σ2/x2
1 and MSE(1)(θ2) = σ2/x2

2. Minimizing

tr(MSE(1)(θ)) = MSE(1)(θ1)+MSE(1)(θ2) over the energy constraint ‖x‖2 ≤ E0 = 1,

we obtain x1 = x2 = 1/
√

2 and tr(MSE
(1)
min) = 6σ2. Now consider the following

two-step non-adaptive strategy,

Step 1. x = [x1 0]T , y1 = x1θ1 + n1,

Step 2. x = [0 x2]
T , [1 1]y2 = 2x2θ2 + [1 1]n2.

Minimizing the tr(MSE(2)(θ)) = MSE(2)(θ1)+MSE(2)(θ2) = σ2/x2
1 +σ2/2x2

2 over the

energy constraint, we obtain x1 = x2 = 1/
√

2 and tr(MSE
(2)
min) = 3σ2. This translates

to a 3dB gain in SNR for the two-step non-adaptive strategy over the one-step

approach. We control the shape of the input x = [x1 x2]
T such that we have different

energy allocation for each column of the matrix H. By specifically designing the two-

step non-adaptive strategy given in steps 1 and 2, we have reduced the estimation of

the vector parameter θ = [θ1, θ2] to two independent problems of estimating scalar

parameters θ1 and θ2 respectively. For each of these scalar estimators, we design two
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N -step sequential procedures (2N steps in total) as in Section 2.7 for scalar controls

x1 and x2 to obtain an improvement in performance of estimating θ. Applying

the N -step design to both x1 and x2, we have MSE(N)(θ1) = GNMSE
(2)
min(θ1) for

the first N steps and MSE(N)(θ2) = GNMSE
(2)
min(θ2) for the next N steps. Hence

tr(MSE(2N)) = GNtr(MSE
(2)
min), where GN is defined in (2.47). In other words, the

MSE gains of the N -step procedure carry over to the vector parameter case as well.

2.9 Applications

2.9.1 MIMO channel estimation

It has been shown that multiple-input and multiple-output systems (MIMO)

greatly increase the capacity of wireless systems [55, 100, 162] and hence MIMO

has become an active area of research over the last decade [2, 132]. One important

component in a MIMO system is the need to accurately estimate the channel state

information (CSI) at the transmitter and receiver. This estimate has shown to play

a crucial role in MIMO communications [25]. A recent and popular approach to

channel estimation has been through the use of training sequences, i.e., known pilot

signals are transmitted and channel is estimated using the received data and the

pilot signals. A number of techniques for performing training based channel estima-

tion have been proposed: maximum likelihood training method [102], least squares

training [96], minimum mean squared estimation [140]. Recently, [15] proposed four

different training methods for the flat block-fading MIMO system including the least

squares and best linear unbiased estimator (BLUE) approach for the case of multiple

LS channel estimates.
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Problem formulation

In order to estimate the r×t channel matrix Θ for a MIMO system with t transmit

and r receive antennas, N ≥ t training vectors X = [x1, . . . ,xN ] are transmitted.

The corresponding set of received signals can be expressed as [15, 93]

(2.105) R = ΘX + M,

where R = [r1, . . . , rN ] is a r ×N matrix, M = [m1, . . . ,mN ] is the r ×N matrix of

sensor noise, xi is the t×1 complex vector of transmitted signals, and mi is the r×1

complex zero mean white noise vector. Let P0 be the transmitted training power

constraint, i.e., ‖X‖2
F = P0, ‖ · ‖F indicates Frobenius norm (‖X‖F =

√
tr(XHX))

and σ2 denote the variance of receiver noise. Though Θ is random, we estimate Θ

for a particular realization corresponding to the block of received data. The task of

channel estimation is to recover the channel matrix Θ based on the knowledge of

X and R as accurately as possible under a transmit power constraint on X. The

standard LS solution and the corresponding estimation error can then be written as

Θ̂LS = RXH(XXH)−1(2.106)

MSELS =
σ2t2r

P0
.(2.107)

Assuming co-located transmitter and receiver arrays [123,150] and multiple training

periods available within the same coherency time (quasi-static) to estimate the chan-

nel, the set of received signals at the N time steps given by Ri = ΘXi + Mi, i =

1, 2, . . . , N , can be rewritten in the following form:

(2.108) yi = H(Xi)θ + ni, i = 1, 2, . . . , N,

where yi = vec(Ri), θ = vec(Θ),ni = vec(Mi), vec(·) denotes the column-wise con-

catenation of the matrix, and H(Xi) = (Xi⊗I)T is a linear function of the input Xi,
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which is the same model described in (2.2). In [15], a method of linearly combining

the estimates from each of the N stages was proposed and the MSE of the N stage es-

timator was shown to be MSE
(N)
LS = σ2t2r/P0, where P0 is the total power used in the

N steps, i.e.,
∑N

i=1 ‖Xi‖2
F ≤ P0. If there are enough training samples, we could com-

pletely control the matrix H(Xi) through the input Xi and make H(Xi) orthogonal.

In this case (2.108) along with the average power constraint E [
∑

i ‖Xi‖2
F] ≤ P0 can

benefit from adaptive energy allocation designs in Sections 2.7 and 2.8.2, where the

problem is then separable into rt independent estimation problems of scalar param-

eters. Having N steps in the training sequence suggests an N -step energy allocation

strategy. Hence it follows that using our strategy we are guaranteed to achieve the

optimal error given by MSE(N) ≈ GNσ2t2r/P0, which we have shown to be at least

5dB (in 50 steps) better than any non-adaptive strategy.

2.9.2 Inverse scattering problem

The problem of imaging a medium using an array of transducers has been widely

studied in many research areas such as mine detection, ultrasonic medical imaging

[54], foliage penetrating radar, non-destructive testing [77], and active audio. The

goal in an inverse scattering problem is to image and detect the present of scatterers

(e.g., tanks, kidney stones, mines) in a medium using the backscattered signals.

Each scatterer is associated with a reflection coefficient, which is a measure of

reflectivity of the scatterer. The higher the reflection coefficient, the higher the

backscatter received. Accurate estimates of the reflection coefficients can be used

to detect the reflective objects in the medium. When the number of scatterers (tar-

gets) of interest is sparsely distributed, the scattering coefficients are usually modeled

as deterministic parameters and the phenomenon is termed as specular scattering.

Multiple scattering arise in the presence of many scatterers creating a random en-
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vironment. This random scattering is termed as diffusion scattering and in such a

case, the scattering coefficients are modeled as Rayleigh distributed parameters. The

multiple scattering tends to average out locally, so that the backscatter appears to

be only a function of the intensity level in that region.

A recent approach [22] to the problem of imaging uses the concept of time reversal,

which works by exploiting the reciprocity of a physical channel, e.g., acoustic, optical,

or radio-frequency. One implication of reciprocity is that a receiver can reflect back

a time reversed signal, thereby focusing the signal at the transmitter source [53].

Furthermore, with suitable prefiltering and aperture, the signal energy can also be

focused on an arbitrary spatial location. This analysis assumes the noiseless scenario.

For the noisy case, maximum likelihood estimation of deterministic point scatterers

(specular component) was performed in [148].

We apply our concept of designing a sequence of measurements to image a medium

of multiple scatterers using an array of transducers under a near-field approximation

of the scatterers in the medium. Here, we discuss the application of our results to

specular scattering, where the reflection coefficients are deterministic parameters.

In Chapter III, we formulate a adaptive design of experiments for the Rayleigh

scattering model.

Problem setting

We have N transducers located at positions {ra
k}N

k=1, that transmit narrowband

signals with center frequency ω rad/sec. The imaging area (or volume) is divided

into V voxels at positions {rv
k}V

k=1. The channel, denoted ai, between a candidate

voxel i and the N transducers is given by the homogeneous Green’s function as

(2.109) ai =

[(
exp(−jω/c‖ra

k − rv
i ‖)

‖ra
k − rv

i ‖

)

k=1...N

]T

,
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where c is the speed of light and j =
√
−1. This channel model is a narrowband

near-field approximation, which ignores the effect of multiple scattering and has been

widely adopted in other scattering studies, e.g., [18]. Each voxel can be characterized

by its scatter coefficient, e.g., radar cross-section (RCS), {θv}V
v=1, which indicates the

proportion of the received field that is re-radiated. Thus the channel between the

transmitted field and the measured backscattered field at the transducer array is

Adiag(θ)AT , where A = [a1, a2, · · · , aV ], θ = [θ1, . . . , θV ]T , and diag(θ) denotes a

V × V diagonal matrix with θi as its ith diagonal element.

The probing mechanism for imaging of the scatter cross-section follows a sequen-

tial process, generating the following sequence of noise contaminated signals,

yi = Adiag(θ)ATxi + ni = H(xi)θ + ni, i = 1, 2, . . . , N,(2.110)

where H(xi) = Adiag(ATxi). The noises {ni} are i.i.d complex normal random

vectors with zero mean and a covariance matrix σ2I. The goal is to find estimates

for the scattering coefficients θ under the average energy constraint to minimize the

MSE. If A is a square matrix, then we can condition diag(ATxi) to have a single non

zero component on any one of the diagonal elements, which translates to isolating the

ith column of H for any i. As in Section 2.8.2, we can perform V independent N -step

experiments to guarantee the N -step gains of at least 5dB over the standard single

step ML estimation for imaging [148]. If we are interested in optimally estimating

any linear combination of the scattering coefficients, then the sequential strategy

proposed in Section 2.8.1 can be used to achieve improvement in performance.

2.10 Conclusions

In this chapter, we considered the N -step adaptive waveform amplitude design

problem for estimating parameters of an unknown channel under average energy
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constraints. For a two-step problem, we found the optimal energy allocation at the

second step as a function of the first measurement for a scalar parameter in the

linear Gaussian model. We showed that this two-step adaptive strategy resulted in

an improvement of at least 1.65dB over the optimal non-adaptive strategy. We then

designed a suboptimal N -stage energy allocation procedure based on the two-step

approach and demonstrated gains of more than 5dB in N = 50 steps. We extended

our results to the case of vector parameters and provided applications of our design

to MIMO and inverse scattering channel models.

2.11 Appendix: proof of equivalence

Denote the set of design parameters as X = {xi (y1, · · · ,yi−1)}N
i=1. Let

X+ = arg min
X

MSE(N)(X)SNR(N)(X)(2.111)

X∗ = arg min
X

MSE(N)(X) s.t SNR(N)(X) ≤ SNR0.(2.112)

Lemma 2.11.1. For any β ∈ R, βX+ is also a minimizer of the minimization

criterion in (2.111), where βX = {βxi (y1, · · · ,yi−1)}N
i=1.

Proof. From the energy definition in (2.6), the SNR definition in (2.10), and the prop-

erty ‖βx‖ = β‖x‖, we obtain SNR(N)(βX+) = β2SNR(N)(X+). Using the scaling

property of the linearity of h1(·), h1(βx) = β h1(x) in (2.5), we have MSE(N)(βX+) =

1
β2 MSE(N)(X+). Hence MSE(N)(βX+)SNR(N)(βX+) = MSE(N)(X+)SNR(N)(X+),

which is the minimum value of the criterion in (2.111).

Since X∗ minimizes the RHS of (2.112), we have

(2.113) MSE(N)(X∗) ≤ MSE(N)(βX+),

where β satisfies SNR(N)(βX+) ≤ SNR0. Similarly, from Lemma 2.11.1, we obtain

(2.114) MSE(N)(βX+)SNR(N)(βX+) ≤ MSE(N)(X∗)SNR(N)(X∗).
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Multiplying (2.113) by SNR(N)(βX+) and combining it with (2.114) yields

(2.115)

MSE(N)(X∗)SNR(N)(βX+) ≤ MSE(N)(βX+)SNR(N)(βX+) ≤ MSE(N)(X∗)SNR(N)(X∗),

for |β| ≤
√

SNR0

SNR(N)(X+)
. Choosing β =

√
SNR(N)(X∗)

SNR(N)(X+)
satisfies this constraint and

SNR(N)(βX+) = SNR(N)(X∗) ≤ SNR0. Replacing SNR(N)(βX+) with SNR(N)(X∗)

in (2.115), we obtain

(2.116)

MSE(N)(X∗)SNR(N)(X∗) ≤ MSE(N)(βX+)SNR(N)(X∗) ≤ MSE(N)(X∗)SNR(N)(X∗),

It follows that MSE(N)(X∗) = MSE(N)(βX+), i.e., βX+ with β =
√

SNR(N)(X∗)

SNR(N)(X+)
is the

minimizer to the constrained minimization problem in (2.112). Furthermore,

Lemma 2.11.2. SNR(N)(X∗) = SNR0.

Proof. By contradiction: If SNR(N)(X∗) < SNR0, let SNR(N)(X∗) = 1
β
SNR0 for

some β > 1. Then by using the property ‖αx‖ = α‖x‖ in (2.6) and (2.10),

we have SNR(N)(
√

βX∗) = SNR0. Using linearity of h1(·) in (2.5), we obtain

MSE(N)(
√

βX∗) = 1
β
MSE(N)(X∗) < MSE(N)(X∗). It follows that

√
βX∗ satisfies

the constraint and achieves a lower MSE than X∗ which contradicts the fact that X∗

is the minimum.

2.12 Appendix: solution to problem 2.6.1

Properties of η(z) in (2.40)

We list some of the properties of η(z) which we will use to prove our results.

Proposition 2.12.1. η(z) achieves two-step minimum, i.e., η(z)|z=0 = η∗.

Proposition 2.12.2. η(z) is an even function of z, i.e., η(z) = η(|z|).
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Proof. η(z) in (2.40) depends on z only through expected values of the form Eñ1 [f(|ñ1 + z|)]

for some continuous function f . Thus Eñ1 [f(|ñ1 + z|)] = Eñ1

[
f(
∣∣e−∠zñ1 + |z|

∣∣)
]

= Em̃1 [f(|m̃1 + |z||)], where m̃1 = e−∠zñ1 is another complex Gaussian random vari-

able with zero mean and unit variance.

Proposition 2.12.3. Optimal two-step minimum is achieved uniquely: η(z) > η(0) ∀z ∈C − {0}. Therefore, MSE(2)(z) × SNR(2)(z) = η(z) achieves a global minimum at

z = 0, or θg = θ1.

Proof. By contradiction. If there exists z+ such that η(z+) < η(0), then the design

parameters α∗
1 and α∗

2(ñ1+z+) will yield a MSE(2)×SNR(2) < η(0) which contradicts

the fact that α∗
1 and α∗

2 achieves minimal η(0).

Proposition 2.12.4. Continuity of η(z): For any ǫ > 0, ∃ δ > 0 such that for any

0 ≤ z ≤ δ, η∗ ≤ η(z) ≤ (1+ǫ)η∗, i.e., the optimal performance MSE(2)×SNR(2) = η∗

can be approached within ǫ for any θg lying in the sphere 0 ≤ |θg − θ1| ≤ δ
α1

√
SNR0

.

Note that the sphere size increases as SNR decreases.

Proof. It follows from the fact that the functions E [·] , α∗
2(·), f(ñ1) are continuous. If

the solution to α∗
2(·) is the suboptimal thresholding function of the form (2.25) then

the MSE(2)(z) and SNR(2)(z) are integrals of the probability density function of an

independent Gaussian random variable over ellipsoids whose center is given through

z and hence are still continuous functions in z.

2.12.1 The N× two-step procedure

In this section, we take advantage of Proposition 2.12.4 to prove our result, i.e.,

the fact that the suboptimal solution presented in Section 2.6.2 can approach the

optimal two-step solution in Section 2.3 when θg lies within a sphere centered at θ1

with radius which increases as SNR decreases.
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Consider N independent two-step experiments described below. The observations

from the kth experiment are

yk
1 = h1(x

k
1)θ1 + nk

1(2.117)

yk
2 = h1(x

k
2)θ1 + nk

2, k = 1, 2, . . . , N,(2.118)

where nk
1 and nk

2 are i.i.d CN (0, σ2I). The input design vectors for the N experiments

are given by

xk
1 =

√
E0

N(1 + ǫ)
α∗

1vm(2.119)

xk
2 =

√
E0

N(1 + ǫ)
α∗

2

(∣∣∣∣
h1(vm)H

‖h1(vm)‖
(yk

1 − h1(x
k
1)θg)

σ

∣∣∣∣
)

vm

=

√
E0

N(1 + ǫ)
α∗

2

(∣∣∣ñk
1(y

k
1 ; θ1) + z

′

∣∣∣
)

vm, k = 1, 2, . . . , N,(2.120)

where

z
′

=
z√

N(1 + ǫ)
=

√
SNR0

N(1 + ǫ)
α∗

1(θ1 − θg),(2.121)

ñk
1(y

k
1 ; θ1) =

h1(vm)H

‖h1(vm)‖

(
yk

1 − h1(x
k
1)θ1

σ

)

=
h1(vm)H

‖h1(vm)‖
nk

1

σ
, k = 1, 2, . . . , N,(2.122)

and ǫ > 0. The SNR in each experiment is

SNR(2),k(z
′

) =
λm(H1)

σ2
E
[
‖xk

1‖2 + ‖xk
2‖2
]

=
SNR0

N(1 + ǫ)

(
α∗2

1 + E
[
α∗2

2

(∣∣∣ñk
1 + z

′

∣∣∣
)])

.(2.123)

Then the overall SNR in the 2N experiments (N two-step procedures) is given by

SNR(2N)(z
′

) =

N∑

k=1

SNR(2),k(z
′

)

= N SNR(2),1(z
′

)

=
SNR0

(1 + ǫ)

(
α∗2

1 + E
[
α∗2

2

(∣∣∣ñ1
1 + z

′

∣∣∣
)])

,(2.124)
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since {ñk
1}N

k=1 are i.i.d CN (0, 1) and hence the expected value of α∗2
2 (·) is identical

and independent of k. The ML estimator for the kth two-step process, θ̂
(2),k
1 is given

by

θ̂
(2),k
1 =

{h1(x
k
1)}Hyk

1 + {h1(x
k
2)}Hyk

2

‖h1(xk
1)‖2 + ‖h1(xk

2)‖2
.(2.125)

Since the N experiments are independent, the estimators {θ̂(2),k
1 }N

k=1 are i.i.d random

variables. The ML estimator for the N × 2-step procedure is

(2.126) θ̂
(2N)
1 =

1

N

N∑

k=1

θ̂
(2),k
1

and the corresponding MSE is

(2.127) MSE(2N)(z
′

) = E

[∣∣∣θ1 − θ̂
(2N)
1

∣∣∣
2
]

=
1

N2

N∑

k=1

MSE(2),k(z
′

) =
1

N
MSE(2),1(z

′

),

where MSE(2),k(z
′

) = E

[∣∣∣θ1 − θ̂
(2),k
1

∣∣∣
2
]

are identical as the N two-step experiments

are independent. Further, the input designs for each 2-step experiment given by

(2.119) and (2.120) are the same as the suboptimal input designs in (2.37) and

(2.38) with energy E0/(N(1+ ǫ)), and using a similar derivation to (2.40), we obtain

MSE(2),k(z
′

) =
N(1 + ǫ)

SNR0

E

[
α∗2

1

∣∣ñk
1 + z

′
∣∣2 + α∗2

2

(∣∣ñk
1 + z

′
∣∣)

(
α∗2

1 + α∗2
2

(∣∣ñk
1 + z′

∣∣))2

]
.(2.128)

Lemma 2.12.5. Given ǫ > 0, θ1, θg ∈ [θmin, θmax], θmin, θmax ∈ R, ∃N0 such that

∀N ≥ N0,
SNR0

(1+ǫ)
≤ SNR(2N)(z

′

) ≤ SNR0.

Proof. SNR0

(1+ǫ)
≤ SNR(2N)(z

′

), ∀N ∈ N follows from the fact SNR(2N)(z
′

) is an even

function of z and achieves minimum at z
′

= 0. (2.12.5.1)

Since E [·] and α∗
2(·) are continuous functions, SNR(2N)(z

′

) is continuous every-

where and hence at z
′

= 0. Thus for every ζ > 0, ∃δ > 0 such that |z′ − 0| < δ

implies |SNR(2N)(z
′

)− SNR0

(1+ǫ)
| < ζ . Choose ζ = ǫ SNR0

(1+ǫ)
, we have SNR(2N)(z

′

) ≤ SNR0.

(2.12.5.2)
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Choose N0 =
⌈

α∗2
1 λm(H1)E0|θmax−θmin|2

σ2δ2(1+ǫ)

⌉
, from (2.12.5.1) and (2.12.5.2), the result

follows. Q.E.D.

Theorem 2.12.6. Given ∆ > 0, θ1, θg ∈ [θmin, θmax], ∃N0 such that ∀N ≥ N0 we

have η∗

SNR0
≤ MSE(2N)(z

′

) ≤ (1+∆)η∗

SNR0
.

In other words, this theorem states that we can asymptotically achieve the perfor-

mance of the optimal two-step estimator η∗/SNR0 using the N× two-step procedure

when θ1 is bounded.

Proof. Comparing the product of expressions in (2.128) and (2.124) to the expression

for η(·) in (2.40) and using Proposition 2.12.2, we have for a single two-step procedure

that

MSE(2),k(z
′

) × SNR(2),k(z
′

) = η
(
z
′

)

= η

(
α∗

1|θ1 − θg|
√

SNR0

N(1 + ǫ)

)
.(2.129)

Since MSE(2N) = 1
N

MSE(2),k and SNR(2N) = NSNR(2),k, the total MSE satisfies

MSE(2N)(z
′

) × SNR(2N)(z
′

) =
1

N
MSE(2),k(z

′

) × NSNR(2),k(z
′

)

= η

(
α∗

1|θ1 − θg|
√

SNR0

N(1 + ǫ)

)
.(2.130)

Using Proposition 2.12.3, MSE(2N)(z
′

)× SNR(2N)(z
′

) ≥ η∗. From RHS of Lemma

2.12.5, it follows that

(2.131) MSE(2N)(z
′

) ≥ η∗

SNR(2N)(z′)
≥ η∗

SNR0
.

Since η(·) is continuous everywhere and at z
′

= 0, it follows that for every µ
′

> 0,

∃δ
′

> 0 such that |z′ − 0| ≤ δ
′

implies |η(z
′

)− η∗| ≤ µ
′

. Choose µ
′

= η∗ǫ
′

, we obtain
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η(z
′

) ≤ (1 + ǫ
′

)η∗. Thus for N0 =
⌈

α∗2
1 λm(H1)E0|θmax−θmin|2

σ2(1+ǫ)

⌉
max

(
1
δ
, 1

δ′

)2

, we have

MSE(2N)(z
′

) ≤ (1 + ǫ
′

)η∗

SNR(2N)(z′)

≤ (1 + ǫ
′

)(1 + ǫ)η∗

SNR0
from Lemma 2.12.5

≤ (1 + ∆)η∗

SNR0

,(2.132)

where ǫ
′

=
(

∆−ǫ
1+ǫ

)
and 0 < ǫ < ∆. From (2.131) and (2.132), we have the result.

2.13 Appendix: derivation of the N-step procedure

The design of the N -step procedure given by (2.42) can be written as

αi = Ai

i−1∏

s=1

I
(
|ws|2 ≥ ρs+1

)
, 1 ≤ i ≤ N,(2.133)

where

ws =

∑s
j=1 Ajñj√∑s

j=1 |Aj |2
.(2.134)

Then w = [w1, . . . , wN ]T is a zero mean complex normal vector. Define the sets

Ui = {|wi|2 ≥ ρi+1}, 1 ≤ i ≤ N . For the set of events {Ui}N−1
i=1 , the set of events

{Di = ∩i−1
k=1Uk ∩ U c

i , 1 ≤ i ≤ N − 1,∩N−1
k=1 Uk, i = N} are disjoint and satisfy

I (w ∈ {Di}N
i=1) = 1, ∀w ∈ CN . Hence

I

(
I (|w1|2 < ρ2) +

N−1∑

i=2

I (|wi|2 < ρi+1)

i−1∏

s=1

I (|ws|2 ≥ ρs+1) +

N−1∏

s=1

I (|ws|2 > ρs+1)

)
= 1.

Substituting this expression inside the expectation for the MSE(N) in (2.5), we obtain

MSE(N) = E

[
|∑N

i=1 h1(xi)
Hni|2

|∑N
i=1 ‖h1(xi)‖2|2

(
I (|w1|2 < ρ2)+

N−1∑

i=2

I (|wi|2 < ρi+1)
i−1∏

s=1

I (|ws|2 ≥ ρs+1) +
N−1∏

s=1

I (|ws|2 > ρs+1)

)]
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=
σ2

λm(H1)

(
1

|A1|2
E
[
|w1|2I (|w1|2 < ρ2)

]

+

N−1∑

i=2

1
∑i

j=1 |Aj |2
E

[
|wi|2I (|wi|2 < ρi+1)

i−1∏

s=1

I (|ws|2 > ρs+1)

]

+∑N
j=1 |Aj|2

E

[
|wN |2

N−1∏

s=1

I (|ws|2 > ρs+1)

])

MSE(N) =
σ2

λm(H1)

{
N−1∑

i=1

Ti

Qi

+
T̃N

QN

}
,(2.135)

where

Qi =

i∑

s=1

|As|2,(2.136)

T1 = E
[
|w1|2I (|w1|2 < ρ2)

]
= 1 − (1 + ρ2)e

−ρ2 ,

Ti = E

[
|wi|2I (|wi|2 < ρi+1)

i−1∏

s=1

I (|ws|2 > ρs+1)

]
,(2.137)

T̃i = E

[
|wi|2

i−1∏

s=1

I (|ws|2 > ρs+1)

]
.

The SNR of this N -step process is given by

SNR(N) =
λm(H1)

σ2
E

[
N∑

i=1

‖xi‖2

]

=
λm(H1)

σ2

{
A2

1E
[
I (|w1|2 < ρ2)

]

+

N−1∑

i=2

(
i−1∑

j=1

|Aj|2
)

E

[
I (|wi|2 < ρi+1)

i−1∏

s=1

I (|ws|2 ≥ ρs+1)

]

+

(
N∑

j=1

|Aj|2E
[

N−1∏

s=1

I (|ws|2 ≥ ρs+1)

])}

=
λm(H1)

σ2

{
N−1∑

i=1

QiPi + QN P̃N

}
,(2.138)
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where

P1 = E
[
I (|w1|2 < ρ2)

]
= |A1|2(1 − e−ρ2),

Pi = E

[
I (|wi|2 < ρi+1)

i−1∏

s=1

I (|ws|2 ≥ ρs+1)

]
,(2.139)

P̃i = E

[
i−1∏

s=1

I (|ws|2 ≥ ρs+1)

]
= 1 −

i−1∑

k=1

Pk.

From (2.135) and (2.138), we have

MSE(N) × SNR(N) =

(
N−1∑

i=1

Ti

Qi
+

T̃N

QN

)(
N−1∑

i=1

QiPi + QN P̃N

)
.(2.140)

2.14 Appendix: derivation of two-step minmax criteria

The ML estimate and the MSE for the two-step process described by (2.54) and

(2.55) are given by

θ̂
(2)

=
1√
E0

WumH(um)HR−1
n

(
α1y1 + α2(y1)y2

α2
1 + α2

2(y1)

)
,

MSE(2) =
1

E0

E
[
(θ − θ̂(2)

)(θ − θ̂(2)
)H
]

=
1

E0
E

[
WumH(um)HR−1

n

(
α2

1n1n
H
1 + α2

2(y1)Rn

(α2
1 + α2

2(y1))
2

)
R−1

n H(um)Wum

]
.

Then,

Φ(u, MSE(2)) = uHMSE(2)u

=
1

E0

E

[
α2

1

(α2
1 + α2

2(y1))2

∣∣uHWumH(um)HR−1
n n1

∣∣2

+
α2

2

(α2
1 + α2

2(y1))2
uHWumu

]

=
1

E0
uHWumu E



 α2
1

(α2
1 + α2

2(y1))2

∣∣∣∣∣
uHWumH(um)HR−1

n n1√
uHWumu

∣∣∣∣∣

2

+
α2

2

(α2
1 + α2

2(y1))2

]

= Φ(u, MSE(1)) E

[
α2

1 |ñ1(y1; θ)|2 + α2
2(ñ1(y1; θ))

(α2
1 + α2

2(ñ1(y1; θ)))2

]
,(2.141)
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where

(2.142) ñ1(y1; θ) =
uHWumH(um)HR−1

n (y1 −H(x1)θ)√
uHWumu

=
uHWumH(um)HR−1

n n1√
uHWumu

is distributed CN (0, 1).

2.15 Appendix: distribution of Gaussian mixture

Let Y =
∑N

i=1 αiX
2
i where {Xi}N

i=1 are independent unit normal random variables.

Denote α = [α1, . . . , αN ]. Then the density (gN(α, y)) and distribution (GN (α, y))

function of Y is given as [84]

gN(α, y) =
(y

2

)n
2
−1

∞∑

k=0

ck(−1)k
(

y
2

)k

2Γ(n
2

+ k)
(2.143)

GN(α, y) =
(y

2

)n
2

∞∑

k=0

ck(−1)k
(

y
2

)k

Γ(n
2

+ k + 1)
,(2.144)

where ck are determined by

c0 = Πn
j=1α

− 1
2

j(2.145)

dk =
1

2

n∑

j=1

α−k
j , k ≥ 1(2.146)

ck =
1

k

k−1∑

r=0

dk−rcr(2.147)

Since w1 = 1
N

∑N
i=1 |n̂1,i|2 = 1

2N

∑2N
i=1 X2

i where {Xi =
√

2Re(n̂1,i)}N
i=1 and {Xi =

√
2Im(n̂1,i)}2N

i=N+1 are independent unit normal random variables. α = 1
2N

[1, . . . , 1]

yields

ck =

(
N + k − 1

k

)
(2N)N+k, k ≥ 0(2.148)

and the distribution of w1 can then be written as

fw1(y) =
NN

(N − 1)!
yn−1e−Ny, y ≥ 0(2.149)

Fw1(y) = 1 − e−Ny
N∑

j=0

(Ny)j

j!
,(2.150)
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Note that when all αi’s are equal, we have a mean of 2N independent unit normal

random variables equivalent to a sum of N independent exponential random variables

which is indeed a gamma distribution.

2.16 Appendix: proof of theorem 2.7.1

Proof. Since the shape of the design vectors xi is vm, we can write the set of trans-

mitted signals as

(2.151)

xi (y1, . . . ,yi−1) = vm

√
E0αi (y1 − h1(x1)θ1, . . . ,yi−1 − h1(xi−1)θ1) , i = 1, 2, . . . , K.

The inherent problem with any design S is the fact that the transmitted signal

depend on the past through the noise magnitudes in the previous stages, i.e., we

need to know the value of θ1 to achieve the optimal performance. We overcome the

dependence on the parameter of interest using a strategy similar to the one in Section

2.12.1. We replace θ1 with a guess of θ1 namely θg in the solution in (2.151). Then

we have,

xi = vm

√
E0αi

(
{yk − h1(xk)θg}i−1

k=1

)

= vm

√
E0αi

({
nk +

√
E0h1(vm)αk(θ1 − θg)

}i−1

k=1

)

= vm

√
E0αi

(
{nk + αkz}i−1

k=1

)
,(2.152)

where z = h1(vm)
√

E0(θ1 − θg). Then the MSE of this N -step procedure can be

written as

(2.153) MSE(K)(z) =
σ2

λmE0
E




∣∣∣
∑K

i=1 αi

(
{nk + αkz}i−1

k=1

)
ñi

∣∣∣
2

(∑K
i=1 α2

i

(
{nk + αkz}i−1

k=1

))2




under the average constraint given by

(2.154) SNR(K)(z) = SNR0E

[
K∑

i=1

α2
i

(
{nk + αkz}i−1

k=1

)
]
≤ SNR0.



77

Denote η(K)(z) as

η(K)(z) = MSE(K)(z) × SNR(K)(z)(2.155)

Proposition 2.16.1. MSE(K)(z) and SNR(K)(z) are continuous functions of z

Proof. If the functions {αi

(
{nk + z}i−1

k=1

)K
i=1

are continuous, then it follows that

MSE(K)(z) and SNR(K)(z) are continuous since E [·] and pdf of {nk}K
k=1 are con-

tinuous functions. Also if the solution to {αi}K
i=1 are thresholding functions of the

form (2.42) then the MSE(K)(z) and SNR(K)(z) are integrals of the probability den-

sity function of independent gaussian random variable over ellipsoids whose center

is given through z and hence are still continuous functions in z. It then implies that

η(K)(z) is also continuous in z.

N × K-step procedure

Similar to the N × 2-step procedure, we now construct an N × K-step process,

where we assume that the average energy in each of the N steps equals E0/N . Then

the ML estimate of θ1 for the kth K-step procedure is given by

(2.156) θ̂
(K),k
1 =

∑N
j=1{h1(x

k
j}Hyk

j∑N
j=1 ‖h1(x

k
j )‖2

,

where the input design vector is

(2.157) xk
j = vm

√
E0

N(1 + ǫ)
αj



{

nk
i +

αiz√
N(1 + ǫ)

}j−1

i=1


 , 1 ≤ i ≤ N, 1 ≤ j ≤ K

and {nk
i }K,N

i=1,k=1 are independent complex normal noises generated at the kth step on

the ith stage. Then the overall ML estimate of θ1 for the N × K-step procedure is

given by

(2.158) θ̂
(K),N
1 =

1

N

N∑

i=1

θ̂
(K),i
1
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and the corresponding MSE is

(2.159)

MSE(K),N(z) = E
[
‖θ1 − θ̂

(K),N
1 ‖2

]
=

1

N2

N∑

i=1

E
[
‖θ1 − θ̂

(K),i
1 ‖2

]
=

1

N
MSE(K),1(z),

where MSE(K),1(z) indicates the MSE of the first Kth estimator from the N stages

and is given by

MSE(K),1(z) = E




∥∥∥∥∥∥
θ1 − θ̂

(K),1
1


αj



{

n1
k +

z√
N(1 + ǫ)

}j−1

k=1






∥∥∥∥∥∥

2
(2.160)

= N(1 + ǫ)MSE(K)

(
αkz√

N(1 + ǫ)

)
(2.161)

Substituting the expression for MSE(K),1(z) in (2.161), we obtain

(2.162) MSE(K),N(z) = (1 + ǫ)MSE(K)

(
z

N(1 + ǫ)

)

The SNR of the N × K-step procedure is

SNR(K),N(z) =

N∑

j=1

SNR(K),j

=
N∑

j=1

K∑

i=1

E




∥∥∥∥∥∥
xj

i



{

nj
k +

αkz√
N(1 + ǫ)

}i−1

k=1




∥∥∥∥∥∥

2


=

N∑

j=1

SNR0

N(1 + ǫ)
E




K∑

i=1

α2
i



{

nj
k +

αkz√
N(1 + ǫ)

}i−1

k=1






=
SNR0

(1 + ǫ)
E




K∑

i=1

α2
i



{

n1
k +

αkz√
N(1 + ǫ)

}i−1

k=1






=
1

(1 + ǫ)
SNR(K)

(
z√

N(1 + ǫ)

)
.(2.163)

From (2.162),(2.163), and (2.155), it follows that

MSE(K),N(z)SNR(K),N(z) = MSE(K)

(
z√

N(1 + ǫ)

)
SNR(K)

(
z√

N(1 + ǫ)

)

= η(K)

(
z√

N(1 + ǫ)

)
(2.164)
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Using continuity of SNR(K)(z), for θ1 ∈ [θmin, θmax], we have for any ζ1 > 0, ∃δ1 > 0

such that for

∣∣∣∣
z√

N(1+ǫ)

∣∣∣∣ ≤ δ1 we have |SNR(K),N(z) − SNR0

(1+ǫ)
| ≤ ǫ1. Choosing ζ1 =

ǫ
(1+ǫ)

SNR0, we obtain

(2.165)
1 − ǫ

(1 + ǫ)
SNR0 ≤ SNR(K),N(z) ≤ SNR0.

The condition

∣∣∣∣
z√

N(1+ǫ)

∣∣∣∣ ≤ δ1 is equivalent to N ≥ N0, where N0 =
⌈

λmE0|θmax−θmin|2
δ1(1+ǫ)

⌉
.

Similarly continuity of η(K)(z) yields, for any ζ2 > 0, ∃δ2 > 0 such that for

∣∣∣∣
z√

N(1+ǫ)

∣∣∣∣ ≤

δ2, or equivalently N ≥ N1, where N1 =
⌈

λmE0|θmax−θmin|2
δ2(1+ǫ)

⌉
, we have

(2.166) |η(K)

(
z√

N(1 + ǫ)

)
− η∗| ≤ ζ2.

Choose ζ2 = ǫ2η
∗, then ∃N ≥ max(N0, N1), such that

MSE(K),N(z) =

η(K)

(
z√

N(1+ǫ)

)

SNR(K),N(z)
(2.167)

≤ (1 + ǫ2)η
∗

SNR(K),N(z)

≤ (1 + ǫ2)(1 + ǫ)

1 − ǫ

η∗

SNR0

≤ (1 + δ)
η∗

SNR0
,(2.168)

where δ = (1 + ǫ2)
(1+ǫ)
(1−ǫ)

− 1. Further

MSE(K),N(z) =

η(K)

(
z√

N(1+ǫ)

)

SNR(K),N(z)

≥ (1 − ǫ2)
η∗

SNR0
.(2.169)

Since 1 + δ > 1 + ǫ2 implies δ > ǫ2 implies 1 − ǫ2 > 1 − δ. Therefore from (2.168)

and (2.169),

(2.170)

∣∣∣∣MSE(K),N(z) − η∗

SNR0

∣∣∣∣ ≤ δ
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Hence we can achieve the performance of a K-step design asymptotically using an

N ×K-step design strategy. However in practice, an N ×K-step procedure might be

an overkill to achieve the optimal performance ǫ close. This is because for the K-step

strategy, the energy at each time step is already scaled by a factor proportional to

1/K which implies the effect of the unknown parameter θ1 has a reduced effect on

the overall performance even without the N × K-step approach.



CHAPTER III

Energy allocation for estimation in a non linear model

In Chapter II we designed optimal energy allocation strategies for estimation in

a linear channel model and discussed their applications to a linear inverse scattering

problem. In this chapter, we generalize the solution of the optimal energy allocation

for a nonlinear Rayleigh scattering medium. We study the effect of noise on the esti-

mation of Rayleigh scatterer reflection magnitudes by setting up a sequential design

of experiments. We derive an expression for the mean squared error for estimating

the scattering magnitudes. Employing some of the design strategies for the case of

the linear channel presented in the previous chapter, we derive suboptimal two-step

energy allocation solutions that yields a 1.7dB performance improvement over the

single step experiment for a Rayleigh fading channel. Closed-form expressions for

the optimal transmission scheme and the minimum mean squared error are provided.

3.1 Introduction

Over the past decade, the problem of imaging has been widely studied in areas

such as non-destructive testing [77], land mine detection, active audio, underwater

acoustics [70] and ultrasonic medical imaging [163]. One recent approach to imaging

uses the concept of time reversal [22,76]. Though time reversal imaging methods have

been studied in detail for both deterministic and random scattering environments,

81
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the performance of these methods in the presence of receiver noise has not been

thoroughly studied. A detailed review of the time reversal imaging literature and its

performance analysis is given in Appendix 3.5.

Design of experiments is another area which has found wide range of applica-

tions in statistical decision making [52,171]. Sequential design [31,133,144] uses the

knowledge of the past measurements to improve upon the performance of an esti-

mator. Applied to the problem of imaging a scattered medium, a carefully designed

sequence of measurements sounding the channel could alter the statistics of the next

measurement to yield an overall reduction in mean squared error (MSE).

The results of Chapter II were shown to be applicable for imaging a specular scat-

tering medium with a simple additive Gaussian measurement noise. In this chapter,

we consider the problem of imaging a Rayleigh scattering medium and systemat-

ically study the effect of receiver noise on the imaging performance. We evaluate

the imaging performance through the MSE of the least squared (LS) estimates of

the scatterer reflection powers. For the case of a single dense scatterer, we obtain

a closed-form expression for the MSE under the optimal transmission strategy. We

assume that the spatial properties of the transmitted signals are fixed and find the

optimal energy allocation scheme between the two transmissions involved in steps

(i) and (iii) under the constraint that the total transmitted energy is fixed. We then

show that we achieve a better performance than a single step strategy using this

two-step design. We then extend the results to the case of constrained optimization.

This chapter is organized as follows: in Section 3.2, we present the concept of imag-

ing a Rayleigh scattering medium using an iterative process of array measurements.

In Section 3.3, we formulate the MSE criterion for LS estimation of the scatterer

reflection powers. We offer an optimal two-step design that minimizes the MSE and
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Figure 3.1: Measurement setup

show that this strategy outperforms the conventional beamformer. Furthermore, we

provide simulation results to verify the optimal solution obtained analytically. We

conclude this chapter in Section 3.4.

3.2 Model and mathematical description

The block diagram in Fig. 3.1 provides a high level description of the system. The

signal flow in the block diagram is read clockwise from the upper left corner of the

diagram. The three blocks surrounded by the box on the upper left of the diagram

incorporate voxel selection (beam scheduling), spatio-temporal waveform selection

and beamsteering followed by transmission into the medium, denoted as a disper-

sive spatio-temporal channel function Hch. The block on the right of the diagram

processes the received backscattered signal and reinserts it into the medium Hch.

Let us consider W transducers at locations {ra
k}W

k=1 and M scatterers at unknown

locations {rv
k}M

k=1 with scattering strengths d = [d1, . . . , dM ]T in the medium. The
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most general channel model can be written as,

Hch = HDHT(3.1)

where D = diag(d) are the scattering strengths along the diagonal, H denotes the

random Green’s function and H represents the full Green function taking into account

the effective of both the background and multiple scattering [62, 148, 152]. The

Green’s function H and H between antenna i and scatterer j satisfy

H(rv
j , r

a
i ) = H(rv

j , r
a
i ) +

∑

k 6=j

H(rv
j , r

v
k)dkH(rv

k, r
a
i )

For e.g., if we assume second order scattering, then

H(rv
j , r

a
i ) = H(rv

j , r
a
i ) +

∑

k 6=j

H(rv
j , r

v
k)dkH(rv

k, r
a
i )(3.2)

Most studies consider a homogeneous medium [148] where the standard Green’s

function between any candidate voxel i at location r and the W transducers is given

by

(3.3) hi(r) =

[(
exp(−jω/c‖ra

k − r‖)
‖ra

k − r‖

)

k=1...W

]T

.

For fixed point scatterers in the medium, d are the scattering strengths that need to

be estimated, a problem that was studied in Chapter II of this dissertation. When

the number of scatterers in the medium is large, there is random scattering. For

random scattering, the scattering coefficients are random variables and are typically

modeled as Rayleigh (or Rician) distributed in magnitude, i.e., the coefficients are

independent circularly symmetric complex normal random variables with E [di] =

0, E [|di|2] = rd(i), E [didi1] = 0, E [di (di1)
∗] = 0; i1 6= i. This implies that the

elements of the channel matrix Hch are jointly complex normal random variables

and hence Rayleigh in magnitude. Note that matrix H is W ×M , D is M ×M , and

Hch is W × W .
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Figure 3.2: Scattering medium

The two-step probing mechanism for estimating the power distribution of the

scatter coefficients d involves four signal processing steps and generates the following

sequence of noise contaminated signals.

Step 1(a): The transducer array transmits a complex amplitude vector, x1.

Step 1(b): The transducer array receives the backscattered signal Hchx1 plus noise

n1,

y1 = Hch x1 + n1.(3.4)

Step 2(a): The transducer array transmits x2 = x2(y1) which, in general, is a

function of y1 allowing the system to exploit information about Hch in the signal y1.

Step 2(b): The transducer array receives the second backscattered signal,

y2 = Hch x2 + n2.(3.5)

The noises n1,n2 are i.i.d complex normal random vectors with zero mean and co-

variance matrix σ2I. For a Rayleigh scattering medium, y1 is complex normal with
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a mean of E [y1] = 0 and a covariance matrix given by

Ry1 = E
[
y1y

H
1

]

=

V∑

l=1

γlRl(x1) + σ2I,(3.6)

where

Rl(x1) =

∫
r
r̂l(r)hl(r)hl(r)

H |hT
l (r)x1|2dr∫

r
r̂l(r)dr

(3.7)

γl =

∫

r

r̂l(r)dr, l = 1, . . . , V,(3.8)

and r̂l(r) are the autocorrelation coefficients of the scatterer distribution. Our goal is

to estimate γ = [γ1, . . . , γV ]T , the fixed non-negative, Rayleigh scattering reflection

powers (intensities) that are determined through the statistics of the scatter coeffi-

cients {di}. The interpretation of the scattering magnitudes can be stated as follows:

when the number of random scatterers is large, a neighborhood of these scatterers

undergo multiple scattering which averages out asymptotically to yield a constant

scatterer reflection power for the particular region of interest. Figure 3.2 illustrates

this procedure. The imaging area is divided into V cells and {γi}V
i=1 denotes the

average scatterer reflection power in the cells.

Step 2 (i.e., 2(a) and 2(b)) can be repeated to generate a sequential n-step pro-

cedure where the n transmitted signals would be xj = xj(y1,y2, . . . ,yj−1), j =

1, 2, . . . , n. For the n-step procedure, the sequence of received signals are distributed

as

yj |xj ∼ CN (0,Ryj
), j = 1, 2, . . . , n,

Ryj
=

V∑

i=1

γiRi

(
xj({yk}j−1

k=1)
)

+ σ2I.(3.9)

Given the observations y1, . . . ,yj−1 at any step j, the objective is to design the next

transmitted signal xj(y1, . . . ,yj−1) in order to improve the estimator performance.
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3.3 Mean squared error calculation

We divide the analysis of the MSE into three parts: The one-stage estimator,

an optimal two-step non sequential design for estimation and a two-step sequential

design estimator. In the general setup, our goal is to design a sequence of experiments

to improve upon the performance of a one-step estimator under the constraint that

the total transmitted energy, E0 is fixed.

3.3.1 One-step estimator

Given N sample observations of y1 (W × 1), an estimator γ̂1({y1k}N
k=1) can be

obtained by least squares fitting of γ1, . . . , γV to the set of W 2 equations,

(3.10) R̂y1 =
1

N

N∑

k=1

y1ky1
H
k =

V∑

i=1

γiRi(x1) + σ2I

Equation (3.10) can be rewritten as

Mγ̂1 = vec
(
R̂y1 − σ2I

)
,

where M = [vec (R1(x1)) , . . . ,vec (RV (x1))] and vec(X) returns a vector obtained

by stacking the columns of the matrix X. Given (3.10), the LS estimate of γ is given

by,

γ̂1 =
(
MHM

)−1
MHvec

(
R̂y1 − σ2I

)
.(3.11)

The MSE for the one-step estimator can be written as

MSE1 = E
[
(γ̂1 − γ) (γ̂1 − γ)H

]

=
1

N

(
MHM

)−1
Π
(
MHM

)−1
,(3.12)

where

Π = N MHE
[

vec(R̂y1 − Ry1)vec(R̂y1 − Ry1)
H
]
M.
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Using the fourth-order moment property for complex Gaussian vectors described in

Appendix 3.7,

Πi,j = tr [Ri(x1)Ry1Rj(x1)Ry1] .(3.13)

Furthermore,

(
MHM

)
i,j

= vec (Ri(x1))
H vec (Rj(x1))

= tr [Ri(x1)Rj(x1)] .(3.14)

Specialization to the single dense scatterer case

For a single unknown dense scatterer (γ1), the LS one-step estimator of its reflec-

tion power from (3.11) and the corresponding MSE1 from (3.12) become

γ̂
(1)
1 (y1) =

tr
(
R1(x1)(R̂y1 − σ2I)

)

tr (R2
1(x1))

,(3.15)

MSE1(x1) =
1

N

(
γ2tr (R4

1(x1))

tr2 (R2
1(x1))

+
σ4

tr (R2
1(x1))

+
2σ2γtr (R3

1(x1))

tr2 (R2
1(x1))

)
.(3.16)

Note that though the received signals are corrupted by complex normal noise, the

estimate γ̂
(1)
1 is real as both matrices R1(x1) and Ry1 are Hermitian symmetric.

3.3.2 Two-step non sequential design

We find the optimal two-step non sequential energy design for estimating a scat-

terer reflector power γ1 of a dense scatterer. For an N -step non sequential procedure,

the energy allocation between the various steps is determined a priori and indepen-

dent of the measurements at each time step. We assume we transmit a fixed unit

norm waveform v and design only the energy allocation between the various steps.

In other words, the transmit signal at time step i is given by xi =
√

Eiv. For a



89

N -step non sequential process, the set of estimates of γ1 is given by

(3.17) γ̂
(1),i
1 (yi) =

tr
(
R1(xi)(R̂yi

− σ2I)
)

tr (R2
1(xi))

, i = 1, 2, . . . , N

and the corresponding MSE is

MSE1i(xi) =
1

N

(
γ2tr (R4

1(xi))

tr2 (R2
1(xi))

+
σ4

tr (R2
1(xi))

+
2σ2γtr (R3

1(xi))

tr2 (R2
1(xi))

)
, i = 1, 2, . . . , N.(3.18)

From (3.7), we have R1(xi) = EiR1(v). Substituting this expression in the MSE

term, we obtain

MSE1i(xi) =
1

N

(
γ2tr (R4

1(v))

tr2 (R2
1(v))

+
1

E2
i

σ4

tr (R2
1(v))

+
1

Ei

2σ2γtr (R3
1(v))

tr2 (R2
1(v))

)
,(3.19)

= t0 +
t1

SNRi
+

t2

SNR2
i

, i = 1, 2, . . . , N,(3.20)

where

t0 =
1

N

γ2tr (R4
1(v))

tr2 (R2
1(v))

,(3.21)

t1 =
1

N

2γtr (R3
1(v))

tr2 (R2
1(v))

,(3.22)

t2 =
1

N

1

tr (R2
1(v))

,(3.23)

and SNRi = Ei/σ
2, i = 1, 2, . . . , N .

The N -step non sequential estimate of γ1 can be written as

(3.24) γ̂
(N)
1 =

∑N
i=1 wiγ̂

(1),i
1∑N

i=1 wi

,

where {wi}N
i=1 are the weights. These weights are optimally chosen to minimize the

MSE of the overall estimator. The MSE of the N -step estimator is given by

MSE
(N)
1 = E

[
(γ̂

(N)
1 − γ1)

2
]

=

∑N
i=1 wiMSE1i(∑N

i=1 wi

)2 ,(3.25)
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where the last equality follows from the fact that the N one-step estimators are inde-

pendent. Minimizing MSE
(N)
1 with respect to the weights wi subject to a constraint

on their sum
∑N

i=1 wi, we obtain

(3.26) wi =
1

MSE1i
, i = 1, 2, . . .N.

Substituting the expression for weights from (3.26) in (3.25) yields,

(3.27) MSE
(N)
1 =

1
∑N

i=1
1

MSE1i

The objective is to minimize the MSE expression in (3.27) subject to an energy

constraint
∑N

i=1 Ei ≤ E0, where E0 is the total available energy. The energy con-

straint can be written as

(3.28)
N∑

i=1

SNRi ≤ SNR0,

where SNR0 = E0/σ
2. For a two-step process, the goal is to find the optimal SNR1

and SNR2 that minimizes MSE
(2)
1 . Since MSE1i ∝ 1/SNRi, an optimal solution

satisfies the energy constraint with equality. If not, we can always scale the energies

to satisfy the constraint with equality and obtain a lower MSE. Substituting for the

expressions of MSE1i from (3.18) in (3.27), the derivative of (3.27) with respect to

SNR1 is given by

(3.29)

∂MSE
(2)
1

∂SNR1

=
MSE11

∂MSE12

∂SNR1
+ MSE12

∂MSE11

∂SNR1

MSE11 + MSE12

− MSE11MSE12

(MSE11 + MSE12)
2

(
∂MSE11

∂SNR1

+
∂MSE12

∂SNR1

)

Setting the derivative to zero yields

(3.30)
1

(MSE11)2

∂MSE11

∂SNR1
+

1

(MSE12)2

∂MSE12

∂SNR1
= 0,
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where

∂MSE11

∂SNR1

=
−t1

SNR2
1

− 2t2

SNR3
1

,(3.31)

∂MSE12

∂SNR1

=
t1

(SNR0 − SNR1)2
+

2t2
(SNR0 − SNR1)3

,

=
t1

SNR2
2

+
2t2

SNR3
2

,(3.32)

where the last equality uses the fact that SNR2 = SNR0 − SNR1. Substituting the

above expressions and the expressions for MSE1i, i = 1, 2 from (3.20) in (3.30), we

obtain

(3.33)

1

(t0 + t1
SNR1

+ t2
SNR2

1
)2

( −t1

SNR2
1

− 2t2

SNR3
1

)
=

1

(t0 + t1
SNR2

+ t2
SNR2

2
)2

(
t1

SNR2
2

+
2t2

SNR3
2

)
.

The optimal solution requires a solution to a sixth order equation. By symme-

try, the value of SNR1 that minimizes MSE
(2)
1 will also be the value of SNR2 that

minimizes MSE
(2)
1 . Then SNR1 = SNR2 = SNR0/2 will be one solution satisfying

(3.33) but it remains to be verified whether this solution is a local minima or a local

maxima. Further the minima could also occur at the end points. In order to evaluate

whether the solution minimizes or maximizes the expression, we need to compute the

second order derivative of the MSE
(2)
1 with respect to SNR1. Computing the second

derivative using the expression of the first derivative in (3.29) we obtain

∂2MSE
(2)
1

∂SNR1
2 =

2

MSE11 + MSE12

(
MSE12

MSE11

∂MSE11

∂SNR1
+

MSE11

MSE12

∂MSE12

∂SNR1

)

+

(
1

MSE2
11

{
∂2MSE11

∂SNR1
2 − 2

MSE11

(
∂MSE11

∂SNR1

)2
})

+

(
1

MSE2
12

{
∂2MSE12

∂SNR1
2 − 2

MSE12

(
∂MSE2

∂SNR1

)2
})

,(3.34)
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where

∂2MSE11

∂SNR1
2 =

2t1

SNR3
1

+
6t2

SNR4
1

(3.35)

∂2MSE12

∂SNR1
2 = − 2t1

SNR3
2

− 6t2

SNR4
2

(3.36)

Evaluating the expressions for MSE11 and MSE12,
∂MSE11

∂SNR1
, ∂MSE12

∂SNR1
, ∂2MSE11

∂SNR1
2 , and

∂2MSE12

∂SNR1
2 in (3.20), (3.31), (3.32), (3.35), and (3.36) respectively at SNR1 = SNR2 =

SNR0/2, we obtain

MSE11(E0/2) = MSE12(E0/2) = t0 +
2t1

SNR0
+

4t2

SNR2
0

∂MSE11

∂SNR1 |E1=E0/2

= −∂MSE12

∂SNR1 |E1=E0/2

=
−4t1

SNR2
0

− 16t2

SNR3
0

∂2MSE11

∂SNR1
2

|E1=E0/2

=
∂2MSE12

∂SNR1
2

|E1=E0/2

=
16t1

SNR3
0

+
96t2

SNR4
0

.

Substituting the above values in the second derivative expression in (3.34), we have

∂2MSE
(2)
1

∂SNR1
2

|E1=E0/2

=
2

MSE2
0

{
16t1

SNR3
0

+
96t2

SNR4
0

− 2

MSE0

( −4t1

SNR2
0

− 16t2

SNR3
0

)2
}

=
32

MSE3
0SNR6

0

(
t0t1SNR3

0 + 6t0t2SNR2
0 − 8t22

)
.(3.37)

Hence for the solution E1 = E2 = E0/2 to be a minimum, the following condition

must be satisfied,

(3.38) t0t1SNR3
0 + 6t0t2SNR2

0 − 8t22 ≥ 0.

For a given set of parameters R1(x1) and a fixed waveform v, the SNR0 should satisfy

the condition in (3.38) for the equal energy allocation to be a solution. Figure 3.3

plots the MSE
(2)
1 using the expression in (3.27) for varying values of E1/E0 between 0

and 1 at different SNR0’s for a channel defined by R1(x1) and a waveform v chosen at

random. The second derivative of the MSE is shown along each curve corresponding

to a particular SNR0. We observe that for all SNR0 whose second derivative is non
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Figure 3.3: Plot of MSE
(2)
1 versus E1/E0 for varying SNR0.

negative, the MSE attains a minimum at E1 = E2 = E0/2. On the other hand, if the

second derivative is positive then we have local maxima at E1 = E2 = E0/2 while

the minima occurs at the end points, where all energy is allocated to either the first

or the second step.

Comparing design with linear Gaussian model

At low SNR, the MSE1i can be approximated as

(3.39) MSE1i ≈
σ4t2
E2

i

and the corresponding two-step estimator is given by

(3.40) MSE
(2)
1 ≈ σ4t2

E2
1 + E2

2

The MSE was optimized under the energy constraint E1 + E2 ≤ E0. For the two-

step non sequential design in a linear Gaussian model discussed in Chapter II, we

minimized the two-step MSE give by

(3.41) MSE(2) =
σ2λm

E1 + E2
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Figure 3.4: Contours of constant MSE for the Rayleigh and Gaussian case.

subject to the same constraint E1 + E2 ≤ E0. This suggested that any possible

solution to E1 and E2 satisfying the constraint with equality is an optimal solution.

In Fig. 3.4, we plot the contours of constant MSE for the Rayleigh and the Gaussian

channel in the single dense scatterer case. For the Rayleigh channel, the optimal

solution to the problem will lie at the end points of the support of E1 and E2, since

a larger circle indicates a smaller SNR and the largest circle that can be drawn to

intersect the constraint line E1 + E2 = E0 is that circle which touches the two end

points of the straight line at E1 = E0 and E2 = E0. From our derivation in the

previous section, the second derivative becomes proportional to −t22 < 0 at low SNR

indicating that E1 = E2 = E0/2 is a maxima in this low SNR case and not a minima.

3.3.3 Two-step sequential design

For a two-step sequential design, we search for a waveform x2(y1) which yields a

lower MSE than that achievable using x1 under the constraint that E [E1 + E2] ≤ E0

where E1 and E2 are the average energies used in the first and second transmissions
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respectively. We assume here that the spatial properties of x1 and x2 are fixed, and

go after the energy allocation between the two steps that minimizes the MSE. The

transmitted signal at the second step x2(y1) can be written as

x2(y1) =
√

E2(y1)
x1

‖x1‖
=
√

E2(y1)x̃1,(3.42)

where E2(y1) = ‖x2(y1)‖2, E2 = E [‖x2(y1)‖2], E1 = ‖x1‖2, and x̃1 is the normalized

version of x1. We first look at the two-step design for a single scatterer case. Let

γ̂
(1)
1 (y1) and γ̂

(1)
1 (y2) be the LS estimates of γ1 obtained from the two steps by

transmitting signals x1 and x2(y1) respectively. The overall two-step estimate of γ

is

γ̂
(2)
1 =

w1γ̂
(1)
1 (y1) + w2γ̂

(1)
1 (y2)

w1 + w2
,(3.43)

where the weights w1 and w2 are chosen to minimize the MSE. The MSE of the

two-step estimate is

MSE2 = E

[(
γ̂

(2)
1 − γ

)2
]

= Ey1

[
Ey2|y1

[(
γ̂

(2)
1 − γ

)2
]]

= Ey1 [MSE2|y1] ,(3.44)

where

MSE2|y1 =
w2

1(γ̂
(1)
1 (y1) − γ)2 + w2

2(MSE1(x2(y1)))

(w1 + w2)2
.

Minimizing MSE2|y1 with respect to w1 and w2, we get w1

(
γ̂

(1)
1 (y1) − γ

)2

= w2MSE1(x2(y1)).

Substituting for the optimal weights in equation (3.44), the two-stage MSE is

MSE2 = Ey1




1(
1

(γ̂
(1)
1 (y1)−γ)2

+ 1
MSE1(x2(y1))

)


 .(3.45)

In Section 2.3 of the previous chapter, the optimal solution to the two-step se-

quential energy allocation procedure for the additive Gaussian channel model was
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found to be a thresholding strategy. A similar thresholding solution to energy at the

second stage can be written as,

E2(y1) = A I

([
γ̂

(1)
1 (y1) − γ√
MSE1(x1)

]2

> ρ

)
,(3.46)

where I (·) is the indicator function and A is chosen to satisfy the energy constraint.

This solution implies that if the particular realization of γ̂1 was closer than average

to the true value, then it is fairly accurate and thus there is no need to retransmit

energy.

We first look at the solution to this problem at low SNR (SNR = E0

σ2 ). At low

SNR, the MSE for the two stages can be approximated as

MSE1(x1) ≈ H

NE2
1

,(3.47)

MSE1(x2(y1)) ≈ H

NE2
2(y1)

,(3.48)

where

H =
σ4

tr (R2
1(x̃1))

.

When N is large, the averaging associated with first estimate of γ drives the stan-

dardized MSE

(
γ̂
(1)
1 (y1)−γ√
MSE1(x1)

)
to asymptotically zero mean unit variance normal ran-

dom variable, n1. Substituting for n1 and MSE1(x1), MSE1(x2(y1)) from equations

(3.47), (3.48) into equation (3.45), the MSE for the two-step design is

MSE2 =
H

N
En1

[
n2

1I (n2
1 > ρ)

E2
1 + n2

1E
2
2(y1)

]

=
H

N
En1

[
n2

1I (n2
1 > ρ)

E2
1 + n2

1A
2

+
n2

1I (n2
1 ≤ ρ)

E2
1

]
(3.49)

So our goal now is to minimize this two-step MSE for the optimal energy allocation

between the two steps subject to the energy constraint which can be written as

Ey1 [E1 + E2(x2(y1))] ≤ E0(3.50)
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Substituting the suboptimal energy solution from equation (3.46) into (3.50), we

obtain

E1 + A E
[
I (|n1|2 > ρ)

]
≤ E0

A ≤ E0
(1 − α)

2Q(
√

ρ)
,(3.51)

where α = E1

E0
is the fraction of energy allocated to the first step. Putting back the

constraint into the MSE2 expression in equation (3.49) we get

MSE2 =
H

NE2
0

En1




n2
1I (n2

1 > ρ)

α2 +
(

n1(1−α)
2Q(

√
ρ)

)2 +
n2

1I (n2
1 ≤ ρ)

α2




=
H

NE2
0

(
2

∫ ∞

√
ρ

n2
1

α2 + n2
1

(
(1−α)

2Q(
√

ρ)

)2 f(n1)dn1

+
1

α2

[
−
√

2ρ

π
e

ρ
2 + 1 − 2Q(

√
ρ)

])
,(3.52)

where the integral is evaluated numerically. Minimizing MSE2 in the above expres-

sion, the optimal solution to ρ and α and the corresponding MSE at low SNR is

found to be

ρopt ≈ 0.8885, αopt =
E1opt

E0

≈ 0.66,(3.53)

MSE2(γ1) ≈ 0.6821
H

NE2
0

= 0.6821 MSE1(γ1)(3.54)

corresponding to a reduction in MSE by 68%. Figures 3.6 and 3.7 show the analytical

(solid line) and simulation (dashed line) plots of the gain = MSE2

MSE1
as a function of ρ

for αopt and as a function of α for ρopt at SNR = −10dB. Since MSE2

MSE1
< 1, we obtain

a reduction in MSE using our sequential design approach. The plot of gain in MSE

vs. SNR corresponding to αopt and ρopt at low SNR is shown in Fig. 3.8 through

simulation (dashed line) and analytically (solid line).
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Our design procedure is more critical at a lower SNR for the following reason. It

is important to note that the solution to x2(y1) and the weights depend on the value

of γ which is unknown. However, if we are given information of the form γ1 ∈ [γa, γb]

for any −∞ < γa, γb < ∞, then it is possible to incorporate this knowledge in making

the optimal decision for x2 by replacing γ1 with γg in (3.46) :

(3.55) E2(y1) = A I

([
γ̂

(1)
1 (y1) − γ√
MSE1(x1)

+

√
NE1(γ1 − γg)√

H

]2

> ρ

)
,

where γg is a guess of γ1. Since γ1 is bounded, the guess term
∣∣
√

NE1(γ−γg)√
H

∣∣ is also

bounded. For a typical low SNR scenario, the energy transmitted tends to zero

thereby making this term negligibly small. As a result, there is no loss of optimality

due to the guess factor γg in the solution in (3.55). To demonstrate this concept, we

plot the gain in MSE versus the error in the guess of γ for varying SNR in Fig. 3.9.

The figure validates the fact that as SNR decreases, the error in the guess of γ plays

a negligible role in the gain in MSE.

Performance under non negativity constraint

The performance of the one-step LS estimator of θ was described in Section 3.3.1

without imposing the restriction that γ is a non-negative quantity. The LS solution

(γ̂1) allows for negative estimates of γ. In practice, quadratic programming should

be used to solve for γ when γ ≥ 0. For a single dense scatterer, the constrained

solution (γ1 ≥ 0) can be written as

(3.56) γ̂
(1),c
1 = γ̂

(1)
1 I

(
γ̂

(1)
1 ≥ 0

)
.
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Denote MSEc
1 as the one-step MSE of the constrained LS estimator. MSEc

1 can be

evaluated as follows:

MSEc
1 = E

[∣∣∣γ̂(1),c
1 − γ1

∣∣∣
2
]

= E

[∣∣∣
(
γ̂

(1)
1 − γ1

)
I
(
γ̂

(1)
1 ≥ 0

)
− γ1I

(
γ̂

(1)
1 < 0

)∣∣∣
2
]

= E

[∣∣∣
(
γ̂

(1)
1 − γ1

)∣∣∣
2

I
(
γ̂

(1)
1 ≥ 0

)
+ γ2

1I
(
γ̂

(1)
1 < 0

)]

= MSE1


E



(

γ̂
(1)
1 − γ1√
MSE1

)2

I

((
γ̂

(1)
1 − γ1√
MSE1

)
≥ −γ1√

MSE1

)




+
γ2

1

MSE1
I

((
γ̂

(1)
1 − γ1√
MSE1

)
<

−γ1√
MSE1

)
(3.57)

When N is large, the averaging associated with first estimate of γ drives the standard-

ized MSE

(
γ̂
(1)
1 (y1)−γ1√
MSE1(x1)

)
to asymptotically zero mean unit variance normal random

variable, m1.

(3.58) MSEc
1 = MSE1E

[
m2

1I (m1 ≥ −s1) + s2
1I (m1 < −s1)

]
,

where s1 = −γ1√
MSE1

. Simplifying (3.58), we obtain

(3.59) MSEc
1 = MSE1

(
1 − 1√

2π
s1 exp(−s2

1/2) − Q(s1) + s2
1Q(s1)

)
,

where Q(x) is the Q-function given by

(3.60) Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt.

At high SNR, MSEc
1 ≈ MSE1, This follows from the fact that for N large, and high

SNR, s1 → ∞, and hence

MSEc
1 = lim

s1→∞
MSE1

(
1 − 1√

2π
s1 exp(−s2

1/2) − Q(s1) + s2
1Q(s1)

)

= MSE1.(3.61)
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Figure 3.5: Plot of the one-step MSE as a function of SNR for the constrained and the unconstrained
solutions.

Similarly, at low SNR, s1 → 0, and therefore

MSEc
1 = lim

s1→0
MSE1

(
1 − 1√

2π
s1 exp(−s2

1/2) − Q(s1) + s2
1Q(s1)

)

=
MSE1

2
(3.62)

Thus the performance of the new estimator under the nonnegativity constraint

is the same as the performance without the constraint at high SNR and there is a

3dB gain in performance at low SNR. The performance of the unconstrained and

the constrained solutions is plotted as a function of SNR for the one-step strategy in

Fig. 3.5. Using the same type of two-step design applied for the unconstrained case,

we derive an expression for the two-step constrained MSE in Appendix 3.6. Further

we show that the gain in this constrained case for low SNR is

MSEc
2(γ1)

MSEc
1(γ1)

≈ 0.1263(3.63)

and all the above discussions regarding the optimal solution and the guess of γ

approach can be directly extended to this constrained optimization.
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Figure 3.6: Gain(αopt) vs. ρ. at SNR = −10dB.

3.4 Conclusions

The problem of imaging a Rayleigh scattering medium using an array of sensors

rises in many applications. We obtained the MSE for the LS solution to the scatterer

reflection powers of the dense scattering regions. For a two-step sequential design,

we found the optimal transmission scheme that minimizes the MSE and proved

that we can gain over conventional one-step strategies. The gains in MSE obtained

analytically are verified through simulations. We also extended the results to the

constrained optimization case. One strategy for extending this result to the case of

estimating a vector of Rayleigh scattering magnitudes is to sequentially perform two-

step procedures on each of the dense regions in space. We also intend to solve the

problem of optimizing the transmitted spatial waveform rather than just looking at

the energy allocation, a topic that is addressed in Chapter V of this dissertation. In

addition, we need to generalize this approach from a two-step method to an iterative

sequence of measurements.
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Figure 3.7: Gain(ρopt) vs. α. at SNR = −10dB.
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3.5 Appendix: time reversal imaging

In this appendix, we analyze the performance of time reversal imaging for a ho-

mogeneous medium with single scattering in the presence of noise under energy

constraints. We use the Cramer Rao bound as a measure of performance and show

that the optimal waveform design at both the steps of a two time step process is the

optimal beamformer, i.e., time reversal does not provide any gains under these con-

ditions. Future work would be to provide a similar analysis for multiple scattering in

random media, as it is under these conditions that time reversal has its advantages.

Introduction

In the last decade, there have been many experimental and theoretical develop-

ments involving the concept of time reversal. In time reversal, an array of trans-

ducers receives signals from a localized source, time reverses it and retransmits into

the medium to focus near the source [53]. It has been shown that the cross-range

resolution is better in a random medium than in a homogeneous medium, both exper-
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imentally [54,91,153] and in theory [10,21,47,116]. This is because the rich scattering

in a noisy random medium tends to carry more information about the source and

the phenomenon is termed as super-resolution of the time reversal process in random

media [47].

The applications of time reversal can be broadly classified into two categories -

focusing or the ability to localize energy on particular points (scatterers) of a target

and time reversal imaging, i.e., in the context of recovering the target scattering

characteristics. For the purposes of focusing energy using time reversal [76,121,122],

the measured fields are time reversed and transmitted back into the medium to enable

focusing, a term often referred to as physical time reversal. Iterative time reversal

techniques [107] have also been used to achieve selective focusing. In [81], the concept

of adaptive beamforming [37] and interference cancellation is used to focus energy at a

specified location. This has led to extensive applications in ultrasonic nondestructive

testing (finding cracks and defects) [77], medical therapy (detection of tumors and

kidney stones) [163] and military applications (submarine detection, mines or objects

buried under sediments) [70, 97, 160].

In computational time reversal imaging, the received signals are back propagated

into a fictitious medium to form the image of a random scattering medium [20]. The

fictitious medium usually tends to be a homogeneous medium with constant sound

speed where the channel characteristics are completely known. This computational

time reversal process is also termed as migration, or back propagation in geophysics

[17, 32], and in x-ray crystallography respectively [113].

Since back propagation into a homogeneous medium in general is not the optimal

solution, researchers have focused attention on imaging a random media. It is shown

that the random Green’s function can be replaced by its expectation because of the
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self averaging property of time reversal [19, 116]. Using the above property and the

moment formula [69, 137], the random Green’s function is approximated through

the Green’s function of the homogeneous medium and the effective aperture, and

this result is used to perform interferometric imaging in [20]. In [27], wideband

time reversal imaging of an elastic target is performed in an acoustic waveguide

by modeling the unknown random Green’s function using a set of parameters and

determining them via a genetic algorithm by employing a cost function obtained

through the quality of the time reversal image.

While there has been much study of the performance of time reversal retrofocus-

ing methods for both deterministic and random scattering environments, the per-

formance of time reversal imaging methods in the presence of transducer noise and

unknown transducer position has not been thoroughly studied. Uncalibrated arrays

are especially a problem for radar applications of TRM due to small illumination

wavelengths, amplifying positional uncertainty and distorting the estimated scatter

field. Additive noise introduced at the receiver before and after time reversal will

also degrade TRM performance by increasing estimator variance. The time reversal

probing method considered here takes a double noise hit due to the combination of

receiver noise seeping into the transmitted time reversed signal and also into the

received backscatter signal. In this report we systematically study the effect of such

noise and sensor calibration factors on the imaging performance of TRM and com-

pare the same with the conventional beam forming methods under the constraint

that the energy transmitted in the two cases is the same. The imaging performance

is measured by the Cramèr-Rao Lower Bounds (CRB) on variance of any unbiased

scatter-coefficient estimator. The CRB permits quantitative comparisons of TRM

to conventional imaging methods independently of any specific estimation or image
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reconstruction algorithm.

Mathematical description of time reversal probing

We assume the Born approximation channel model which ignores the effect of

multiple scattering. Furthermore, we assume that the scattering coefficients are a

set of deterministic parameters to be estimated. Hence the channel can be written as

Hch = HDHT , where H is the homogeneous Green’s function presented in Section

3.2. The set of received signals for time reversal probing is similar to the set of

equations presented in Section 3.2 except that the transmit signal at the two time

steps x1 and x2(y1) have a specified structure as a result of time reversal probing.

The time reversal probing mechanism for imaging of the scatter cross section in each

voxel follows a 4-step process.

Step 1: The transducers first send x1, the projection of the signal z onto the beam-

steering matrix B1, i.e., x1 = B1z.

Step 2: Next, the transducers receive the backscattered signal, after it has traveled

through the channel Hch,

y1 = Hchx1 + n1 = HDHTB1z + n1.(3.64)

Step 3: Next, the transducers time-reverse the signal, amplify it by a factor a,

project it onto the beam-steering vector, and re-transmit, i.e., x2 = B2y
∗
1 = B2H

∗D∗HHB∗
1z

∗+

B2n
∗
1.

Step 4: Finally, the transducers receive the backscattered, time-reversed signal y2,

where

y2 = Hchx2 + n2 = HDHTB2H
∗D∗HHB∗

1z
∗ + HDHTB2n

∗
1 + n2.(3.65)

The noises n1,n2 are i.i.d complex normal random vectors with zero mean and a

covariance matrix σ2I.
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3.5.1 CRB for scattering coefficients

How well does probing the medium with the time reversal mechanism described

above permit the estimation of d? We use the CRB to generate lower bounds on the

variance of any unbiased estimators which use the measurements described above.

First, we consider the bounds on estimation of d via the measurement of y1 to

provide a baseline of the possible performance of a non-time-reversal measurement

method. Then, we calculate the bound on estimation of d via the measurement

of y2, ie., the performance using time reversal. We consider the case of calibrated

arrays, i.e., known transducer positions, in this section.

The FIM (CRB−1) for a set of parameters θ given a vector of complex normal

observations with mean µ(θ) and covariance matrix R(θ) is given by [75],

(3.66)

[I(θ)]ij = 2Re

{
∂µ(θ)H

∂θi
R−1(θ)

∂µ(θ)

∂θj

}
+ tr

[
R−1(θ)

∂R(θ)

∂θi
R−1(θ)

∂R(θ)

∂θj

]
,

where Re{·} indicates the real operator and I(θ) is the V × V Fisher Information

Matrix. The FIM above is defined for real parameters while the parameters d are

in general complex. If the FIM for the set of real and imaginary parameters, θ =

[dRe,dIm]T , is denoted by 2V × 2V matrix




Re(M) Im(M)

−Im(M) Re(M)


, then the FIM

for the set of complex parameters is given by 2M [75]. In the following section, we

compute the CR lower bounds of scatter coefficients and attempt to find the best

spatial beam forming matrices B1 and B2 which minimizes the CRB for a general

beam forming and TR methods.

Optimal beam steering for calibrated probing without time reversal.

Since both B1 and z are in our control, it is enough to optimize over a beam

steering vector x1 = B1z.
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Considering the measurement y1 as given in (3.64), the distribution of y1 is

(3.67) y1 ∼ CN
(
HDHTx1, σ

2I
)
.

Then the derivative of the mean µ1 is given by

(3.68)
∂µ1(θ)

∂diRe

= Heie
T
i HTx1

where ei is vector with all zeros except for a one in the ith place. The FIM1 for the

real part of the scattering coefficients would be

Re(M)i,j =
2

σ2
Re

{
∂µ1(θ)

∂diRe

H ∂µ1(θ)

∂djRe

}

=
2

σ2
Re
{
eT

i HHx∗
1(e

T
i HHHej)e

T
j HTx1

}
.

The FIM and CRB for the complex parameters is then given by

FIM1 =
4

σ2

{
diag∗(HTx1)(H

HH)diag(HTx1)
}

,(3.69)

CRB1 =
σ2

4

{
diag−1(HTx1)(H

HH)−1diag−1(HTx1)
∗}(3.70)

Our goal is to find the best x1 = v that will minimize the CRB for the scatter

coefficients. Since the minimization of the CRB over v has no closed form solution,

we find a suboptimal solution by maximizing the trace of the fisher information

matrix FIM1. The trace of the FIM is

tr(FIM1) =

V∑

i=1

FIM1i,i =
4

σ2

V∑

i=1

|eT
i HTv|2|HHH|i,i.(3.71)

We maximize the above expression of the tr(FIM1) subject to the constraint on

the energy transmitted, i.e., ‖B1z‖2 = ‖v‖2 ≤ E where E is the total energy.

Solving using Lagrange multipliers, the normalized optimal v, vopt is the eigen vector

corresponding to the maximum eigen value of the matrix Ĥ =
∑V

i=1 h∗
yih

T
yi‖hyi‖2.

The optimal FIM1 is then given by

FIM1 =
4E

σ2
diag∗(HTvopt)(H

HH)diag(HTvopt).(3.72)
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Optimal FIM for calibrated probing using time reversal : bi-static case

In a bi-static case, we observe both the received signals y1 and y2. We need to

obtain the best possible v and B2 for the new Fisher Information Matrix given by,

FIM2 = FIMy1,y2(θ)

= −E
[
∇2log f(y1,y2|θ)

]

= −E
[
∇2 (log f(y1|θ) + log f(y2|y1, θ))

]

= −E
[
∇2log f(y1|θ)

]
− Ey2,y1

[
∇2log f(y2|y1, θ)

]

= FIM1y1
(θ) − Ey1

[
Ey2|y1

[
∇2log f(y2|y1, θ)

]]

= FIM1y1
(θ) + Ey1

[
FIMy2|y1

(θ)
]
,

where y1 ∼ CN (HDHTx1, σ
2I) and y2|y1 ∼ CN (HDHTB2y

∗
1, σ

2I).

We only need to optimize the second term for the best possible B2 subject to an

energy constraint as the first term is independent of B2. We once again maximize

the trace of the Fisher Information Matrix over all possible B2, i.e., maximize the

trace,

tr
(
Ey1

[
FIM1y2|y1

])
=

4

σ2

V∑

i=1

Ey1

[
|HTB2y

∗
1|2i (HHH)i,i

]
(3.73)

subject to the energy constraints E [‖B2y
∗
1‖2] ≤ E2, ‖v‖2 ≤ E1 and E1 + E2 = E

where E1 and E2 are the energy used in the first and second transmissions. Using

Lagrange multipliers and setting the derivative with respect to B2 to zero, we get
(

4

σ2

V∑

i=1

H∗eie
T
i HT (HTH∗)i,i − λ∗

2I

)
B2 = 0,(3.74)

where the energy constraint is E2 = tr
(
BH

2 B2(Ey1

[
y∗

1y
T
1

]
)
)

and λ2 is the Lagrange

multiplier variable.

Using the above equations, we can generate a rank one solution to B2 given by

B2 = c2v2v
H
2 where ‖v2‖2 = 1. Substituting for B2 back in equation (3.74) and in
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the energy constraint, we get the optimal v2 = vopt and c2 = E2

σ2 . Thus the Fisher

Information Matrix using time reversal is

FIM2 = FIM1y1
(θ) + Ey1

[
FIMy2|y1

(θ)
]

=
4

σ2

{
diag∗(HTx1)(H

HH)diag(HTx1)+

|c2|2Ey1

[
|vH

2 y∗
1|2diag∗(HTv2)(H

HH)diag(HTv2)
]}

=
4

σ2

{
diag∗(HTx1)(H

HH)diag(HTx1) + E2 diag∗(HTvopt)(H
HH)diag(HTvopt)

}
.

FIM2 depends on x1 only through the first term and hence the optimal solution to

x1 is the same as before, i.e.,x1 =
√

E1vopt. Hence

FIM2 =
4(E1 + E2)

σ2
diag∗(HTvopt)(H

HH)diag(HTvopt)

=
4E

σ2
diag∗(HTvopt)(H

HH)diag(HTvopt)(3.75)

= FIM1(3.76)

This analysis proves that beam forming alone is optimal with regards to maximiz-

ing the trace of the FIM for the single scattering model. Nevertheless it would be

worthwhile to study the optimality while minimizing the CRB for multiple scattering

models.

3.6 Appendix: two-step sequential strategy, constrained case

The constrained solution for a two-step procedure is given by

(3.77) γ̂
(2),c
1 =

w1γ̂
(1),c
1 (y1) + w2γ̂

(1),c
1 (y2)

w1 + w2

,

where γ̂
(1),c
1 (y1) and γ̂

(1),c
1 (y2) are the constrained LS estimators of γ1 obtained from

each of the two-steps, i.e.,

γ̂
(1),c
1 (y1) = γ̂

(1)
1 (y1)I

(
γ̂

(1)
1 (y1) ≥ 0

)

γ̂
(1),c
1 (y2) = γ̂

(1)
1 (y2)I

(
γ̂

(1)
1 (y2) ≥ 0

)
.
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The corresponding MSE of the constrained two-step estimator can be evaluated as

MSEc
2 = E

[(
γ̂

(2),c
1 − γ1

)2
]

= Ey1

[
Ey2|y1

[(
γ̂

(2),c
1 − γ1

)2
]]

= Ey1 [MSEc
2|y1] ,(3.78)

where

MSEc
2|y1 =

w2
1(γ̂

(1),c
1 (y1) − γ1)

2 + w2
2(MSEc

1(x2(y1)))

(w1 + w2)2
+

2w1w2(γ̂
(1),c
1 (y1) − γ1)Ey2|y1

[
(γ̂

(1),c
1 (y2) − γ1)

]

(w1 + w2)2
.(3.79)

The bias term in the expression for MSEc
2|y1 in (3.79) is

b2 = Ey2|y1

[
(γ̂

(1),c
1 (y2) − γ1)

]

= Ey2|y1

[
(γ̂

(1)
1 (y2) − γ1)I

(
γ̂

(1)
1 (y2) ≥ 0

)
− γ1I

(
γ̂

(1)
1 (y2) < 0

)]

= Ey2|y1

[
√

MSE1(E2)
γ̂

(1)
1 (y2) − γ1√
MSE1(E2)

I

(
γ̂

(1)
1 (y2) − γ1√
MSE1(E2)

≥ − γ√
MSE1(E2)

)

−γ1I

(
(γ̂

(1)
1 (y2) − γ1)√
MSE1(E2)

< − γ1√
MSE1(E2)

)]
,(3.80)

where MSE1(E2) is the MSE of the second-step LS estimator which can be evaluated

using the expression in (3.20) for a fixed waveform v at energy E2. The expression

γ̂
(1)
1 (y2)−γ1√
MSE1(E2)

can be approximated by a zero mean unit variance random variable for

sufficiently large number of observations denoted by m2. Then the bias term can be

computed as

b2 =
√

MSE1(E2) (m2I (m2 ≥ s2) − s2I (m2 < s2))

=
√

MSE1(E2)

(
1√
2π

exp (−s2) − s2Q(s2)

)
,(3.81)

where s2 = γ1/
√

MSE1(E2). As in the sequential design case, we choose weights

w1 and w2 proportional to 1/
(
γ̂

(1),c
1 (y1) − γ1

)2

and 1/MSEc
1(x2(y1)) respectively.
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Substituting the expression for the weights in (3.79) and evaluating MSEc
2, we obtain

MSEc
2 = E




(
γ̂

(1),c
1 (y1) − γ1

)2

MSEc
1(x2(y1))

(
γ̂

(1),c
1 (y1) − γ1

)2

+ MSEc
1(x2(y1))




+ E




2b2

(
γ̂

(1),c
1 (y1) − γ1

)2

MSEc
1(x2(y1))

((
γ̂

(1),c
1 (y1) − γ1

)2

+ MSEc
1(x2(y1))

)2


 .(3.82)

Let m1c =
γ̂
(1),c
1 (y1)−γ1√

MSE1(E1)
. Then MSEc

2 can be rewritten as

MSEc
2 = E

[
m2

1cMSE1(E1)MSEc
1(E2)

m2
1cMSE1(E1) + MSEc

1(E2)

]

+ E

[
2b2m

2
1cMSE1(E1)MSEc

1(E2)

(m2
1cMSE1(E1) + MSEc

1(E2))
2

]
,(3.83)

where MSEc
1(x2(y1)) is replaced by MSEc

1(E2) since the energy of transmit signal

x2(y1) is E2(y1). At low SNR, we proved in Section 3.3.3 that MSE1(E1) ≈ H
NE2

1
.

Further we showed earlier in this section that the MSE of the constrained estimator

at low SNR is MSEc
1(E2) ≈ MSE1(E2)/2 ≈ H

2NE2
2
. Similar to the two-step sequen-

tial design for unconstrained estimation, we look for a suboptimal solution to the

energy distribution of the form E2 = AI(m2
1c > ρ). Substituting the expressions for

MSE1(E1), MSEc
1(E2), and E2 in the expression for MSEc

2 in (3.83), we obtain

MSEc
2(E1, ρ) =

H

2NE2
0

E

[{
2E2

0m
2
1c

E2
1 + 2A2m2

1c

+
4E2

0E1Ab2m
3
1c

(E2
1 + 2A2m2

1c)
2

}
I(m2

1c > ρ)

+
2E2

0m
2
1c

E2
1

I(m2
1c < ρ)

]

= MSEc
1(E0)

(
2E2

0E

[
m2

1c

E2
1 + 2A2m2

1c

I(m2
1c > ρ)

]

+4E2
0E1Ab2E

[
m3

1c

(E2
1 + 2A2m2

1c)
2 I(m2

1c > ρ)

]

+
2E2

0

E2
1

E
[
m2

1cI(m2
1c < ρ)

])
.(3.84)
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The distribution of m1c is given by

P (m1c < x) =






1 − Q(x) x < s1

Q(x) x = −s1

0 o.w

The expression for MSEc
2(E1, ρ) in (3.84) can be further simplified using the results

from integral calculus provided in Appendix 3.8 and minimum error is obtained by

numerically evaluating the expression on a grid of E1 and ρ. Then the optimal

solution is given by

(3.85) MSEc
2, opt ≈ 0.1215MSEc

1.

3.7 Appendix: results from matrix theory

Let ∆Rx = 1
Y

∑Y
i=1 xix

H
i − Rx and ∆Ry = 1

Y

∑Y
i=1 yiy

H
i − Ry where xi and yi

are zero mean complex normal i.i.d with covariance matrices Rx and Ry respectively.

Furthermore, E [xiyi] = Rxy and E [xiyj] = 0. Then the following results hold:

E [∆RxM∆Ry] =
1

Y
Rxytr {MRxy} ,(3.86)

E [tr{A∆Rx}tr{B∆Ry}] =
1

Y
tr{ARxyBRxy}.(3.87)

3.8 Appendix: result from integral calculus

An expression for the following indefinite integral is given below:

∫
x3 exp(−x2)dx

(1 + a2x2)2
=

1

2

exp(−x2)

a4(a2x2 + 1)
− 1

2

(a2 + 1) exp( 1
a2 )Ei(1, x

2 + 1
a2 )

a6
,

where Ei(1, x) is the exponential integral given by

(3.88) Ei(1, x) =

∫ ∞

x

exp(−t)

t
dt , x > 0.



CHAPTER IV

Energy allocation for detection in linear models

In Chapters II and III, we derived optimal energy allocation strategies for estima-

tion under two different channel models and showed more than 5dB improvement in

performance when compared to non adaptive procedures. In this chapter, we pose

a similar problem of optimal energy allocation for detection. Like in Chapter II, we

consider a linear Gaussian channel model and solve the two-step energy allocation

problem under the frequentist and Bayesian approaches. We show that such a two-

step approach yields a performance improvement of atleast 2dB over non adaptive

methods.

4.1 Introduction

The problem of detection of signals in noise has been studied in depth for many

years now. Signal detection is formulated as a hypothesis testing problem in the

theory of statistical inference [120]. In binary hypothesis testing, a decision is to be

made on the presence (H1) or absence of a target (H0) based on a set of observations.

In a parametric setting, the observation X has a probability density function f(x; θ)

based on the set of unknown parameters θ ∈ Θ. Under each hypothesis Hi, i = 1, 2,

the parameter θ belongs to the set Θi, where Θ1 ∩ Θ2 = φ and Θ1 ∪ Θ2 = Θ. The

H0 hypothesis is commonly referred to as the null hypothesis, since it refers to the

114
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absence of target and H1 is the alternative hypothesis. We can express the problem

as testing the two hypotheses

H0 : θ ∈ Θ0, X ∼ f(x; θ)

H1 : θ ∈ Θ1, X ∼ f(x; θ).

The hypotheses are said to be simple when the sets Θ0 and Θ1 are singleton, i.e., Θ0 =

θ0 and Θ1 = θ1. If either of the sets have more than one element, then the hypotheses

are said to be composite. Associated with these hypotheses are three main cost

functions: probability of false alarm (PFA) (deciding H1 when H0 is the truth),

probability of miss (PM) (deciding H0 when H1 is the truth), and probability of

detection (PD) (deciding H1 when H1 is the truth).

There are two main approaches to hypothesis testing: the frequentist approach

and the Bayesian approach. In the Bayesian strategy, θ is assumed to be a random

variable and a prior f(θ) is assigned for θ. The prior probabilities on H0 and H1 is

given by

(4.1) P (Hi) = P (θ ∈ Θi) =

∫

Θi

f(θ)dθ, i = 1, 2.

There is a cost assigned for making wrong decisions and the objective in the Bayesian

approach is to find a strategy to minimize the average cost. For a special case of

minimizing average probability of error, the cost function Pe can be written as

(4.2) Pe = PFAP (H0) + PMP (H1).

The optimal decision rule in this case is the Bayes Likelihood Ratio test (BLR) given

by

(4.3) ΛBLT :
f(x|H1)

f(x|H0)

H1

≷
H0

η,
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where η is the optimal Bayesian threshold

(4.4) η =
P (H0)

P (H1)
.

Rearranging terms in (4.3), we obtain

(4.5)
P (H1|x)

P (H0|x)
≷ 1,

which is the maximum a posteriori test or the MAP rule. The Bayesian approach

only ensures best average performance with respect to the selected prior and provides

no guaranteed protection against false alarm and miss.

A frequentist approach to detection is to find a strategy to maximize probability

of detection (PD) subject to a fixed false alarm level. A test is said to be of false

alarm level α ∈ [0, 1] if

(4.6) max
θ∈Θ0

PFA(θ) ≤ α.

which reduces to

(4.7) PFA(θ0) ≤ α.

for the simple hypotheses case. The optimal decision rule for a simple hypotheses in

the frequentist approach is given by the Neyman Pearson (NP) strategy. Let φ(x)

be the decision rule defined by

φ(x) =





1, decide H1

0, decide H0

Then the NP theorem states that the optimal test φ∗(x) is of the form

φ∗(x) =





1, f(x; θ1) > ηf(x; θ0)

q, f(x; θ1) = ηf(x; θ0)

0 f(x; θ1) < ηf(x; θ0),
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where η and q are chosen to satisfy Eθ0 [φ∗] = α. This is also referred to as the most

powerful (MP) test of level α since the power function of a test φ is β(θ) = PD(θ).

The randomization parameter q is necessary only if the cumulative density function

of the likelihood ratio, f(x; θ1)/f(x; θ0), has a discontinuity at 1 − α.

If the likelihood is continuous everywhere, then the NP likelihood ratio test (LRT)

can be rewritten as

(4.8) ΛLRT :
f(x|H1)

f(x|H0)

H1

≷
H0

η,

where η is chosen to satisfy PFA = P (ΛLRT > η|H0). Thus the LRT is identical to

BLT for the simple hypotheses case, except for the value of η. Though most practical

applications are composite in nature, the simple hypotheses case has continued to be

a focus of interest for many applications as they are easier to solve and provides a tool

for obtaining closed form solutions to basic detection problems. For example, many

communication channel need an optimal decision rule for classifying M symbols based

on received observations which can be formulated as a multiple hypotheses testing

problem with each hypotheses being a singleton set, i.e., Hi : θ = θi, i = 1, 2, . . . , M .

Keeping in mind the energy constraint in many such problems, the focus of this

chapter is to find optimal energy allocation strategies to a detection problem with

observations gathered from a sequence of steps. We consider a simple hypotheses

testing problem in a classic linear Gaussian model under an average energy constraint,

where an optimal decision rule needs to be designed based on observations from a

sequence of steps. The goal is to find the optimal energy allocation among the various

steps satisfying the energy constraint that minimizes a particular error criterion.

The organization of the chapter is as follows: We describe the hypotheses test-

ing problem formulation in Section 4.2. We then find the optimal two-step energy

allocation strategy while using the frequentist approach in Section 4.3. We outline
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a drawback of the frequentist strategy for this particular problem and provide the

optimal two-step energy allocation for the alternative Bayesian approach in Section

4.4. We provide scope for future work in the conclusion in Section 4.5.

4.2 Problem formulation

Consider the following binary hypothesis testing problem

H0 : θ = θ0

H1 : θ = θ1,

where θ0 and θ1 are known parameters. The set of observations for a linear Gaussian

model under each hypothesis is given by

H0 : y1 = x1θ0 + n1,

H1 : y1 = x1θ1 + n1.(4.9)

Signal x1 can be intepreted as transmit power and n1 is additive white Gaussian

noise (AWGN) with zero mean and variance σ2, i.e., n1 ∼ N (0, σ2).

4.3 Frequentist approach

In the frequentist framework, the decision rule maximizes the probability of correct

detection subject to a specified false alarm level.
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4.3.1 Single step solution

Given x1, the Likelihood Ratio Test (LRT) for the observations in (4.9) can be

written as

Λ1
LRT =

f(y1; θ1)

f(y1; θ0)

=
1

σ2

(
x1y1(θ1 − θ0) −

x2
1(θ

2
1 − θ2

0)

2

)

=
θ1

σ2

(
x1y1 −

x2
1θ1

2

)
H1

≶
H0

η.

We assume θ1 − θ0 > 0. Then θ0 can be set to zero without loss of generality.

Furthermore, x1 > 0 as any performance achieved by a negative x1 can be achieved

with |x1|. Since θ1, and x1 are known positive values, the LRT is equivalent to a

test of the form y1 ≷ η
′

. The optimal region of interest does not depend on the

parameters and hence the test is a Uniform Most Powerful (UMP) test. η
′

satisfies

(4.10) PFA = α = P (y1 > η
′|H0) = 1 −N (η

′

),

where α is the false alarm level. Denote β as the probability of correct detection.

Then for the one-step case,

β = 1 −N (N−1(1 − α) − d),(4.11)

where d = x1θ1

σ
. Under energy constraint |x1|2 ≤ E0, the performance is given by

(4.11) with d = d0 =
√

E0θ1

σ
=

√
SNR0θ1, where SNR0 = E0/σ

2 is the signal-to-noise

ratio.

4.3.2 Two-step design

For a one-step procedure, the transmitted power x1 modifies the density of the

observation y1 by a simple shift in mean. In a two-step procedure the received

measurement y1 is used to determine the transmitted power at the second step.
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Specifically, we control the input x2(y1) at the second step based on y1 to obtain

observation y2. Based on observations y1 and y2, an optimal decision is made on

the hypotheses H0vs.H1. The set of observations at the two time steps under each

hypothesis can be written as

(4.12) H0 :






y1 = x1θ0 + n1

y2 = x2(y1)θ0 + n2

(4.13) H1 :





y1 = x1θ1 + n1

y2 = x2(y1)θ1 + n2,

where n1, n2 are i.i.d zero mean and variance σ2 Gaussian random variables, i.e., ni ∼

N (0, σ2). The two-step log likelihood ratio test is given by

Λ2
LRT = log

f(y1, y2|H1)

f(y1, y2|H0)

H1

≶
H0

η,

= z1 + z2

H1

≶
H0

η,(4.14)

where

z1 =
θ1

σ2

(
x1y1 −

x2
1θ1

2

)
,(4.15)

z2 =
θ1

σ2

(
x2(y1)y2 −

x2
2(y1)θ1

2

)
.(4.16)

are the log likelihood ratios evaluated at the two steps separately.

We attempt to satisfy the average energy constraint under the null hypothesis H0

while maintaining a specified false alarm. Such an energy constraint makes sense for

a sensor network in a remote location, where targets are rare. In other words, most

of the time, the null hypothesis is valid and threshold exceedances are false alarms.

An analogous formulation could be achieved for the miss probability under H1. Thus,

the goal is to find the optimal design parameters x1, x2(y1) and η to maximize the



121

probability of detection (PD) subject to a fixed false alarm level α and subject to an

average energy constraint EH0 [|x1|2 + |x2(y1)|2] ≤ E0. Without loss of generality, the

energy constraint can be rewritten as EH0
[x2

1 + x2
2(y1)] ≤ E0. The objective function

is given by

(4.17) H = PD − µ(PFA − α) − λ(EH0

[
|x1|2 + |x2(y1)|2

]
− E0),

where µ and λ are Lagrangian multipliers chosen to satisfy the constraints.

Before we optimize for x1 and x2(y1), we derive expressions for PD and PFA. The

cumulative distribution function (CDF) of z1 and z2 under H0 is given by

Fz1(z|H0) = 1 − Q

(
z + t1/2√

t1

)
(4.18)

Fz2(z|y1, H0) = 1 − Q

(
z + t2(y1)/2√

t2(y1)

)
.(4.19)

where t1 =
x2
1θ2

1

σ2 and t2(y1) =
x2
2(y1)θ2

1

σ2 . Similarly the distribution under H1 can be

written as,

Fz1(z|H1) = 1 − Q

(
z − t1/2√

t1

)
(4.20)

Fz2(z|y1, H1) = 1 − Q

(
z − t2(y1)/2√

t2(y1)

)
.(4.21)

Further the density of z1 under H0 and H1 satisfies the following relation,

(4.22) fz1(z|H1) = fz1(z|H0)e
z.

Since there is a one-to-one mapping between y1 and z1 through (4.15), we refer to

the design parameter x2(y1) as x2(z1). Similarly t2(y1) = t2(z1). The probability of
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correct detection (PD) is given by

PD = P (z1 + z2 ≥ η|H1)

= EH1 [P (z2 ≥ η − z1|H1, z1)]

= EH1

[
Q

(
η − z1 − t2(z1)/2√

t2(z1)

)]

= EH0

[
Q

(
η − z1 − t2(z1)/2√

t2(z1)

)
ez1

]
,(4.23)

where the last equality follows from the relation in (4.22). The probability of false

alarm (PFA) is

PFA = P (z1 + z2 ≥ η|H0)

= EH0
[P (z2 ≥ η − z1|H0, z1)]

= EH0

[
Q

(
η − z1 + t2(z1)/2√

t2(z1)

)]
.(4.24)

The average energy constraint under H0 can be equivalently expressed as

Eavg = EH0

[
x2

1 + x2
2(z1)

]
.(4.25)

Substituting (4.23), (4.24), and (4.25) in the expression for the objective function in

(4.17), we obtain

H = EH0

[
Q

(
η − z1 − t2(z1)/2√

t2(z1)

)
ez1

]
− µEH0

[
Q

(
η − z1 + t2(z1)/2√

t2(z1)

)]

−λEH0

[
x2

2(z1)
]
+ µα + λE0 + λx2

1

= EH0

[
Q

(
η − z1 − t2(z1)/2√

t2(z1)

)
ez1 − µQ

(
η − z1 + t2(z1)/2√

t2(z1)

)
− λ

′

t2(z1)

]

+µα + λE0 + λx2
1,

where λ
′

= σ2λ/θ2
1. We now find the optimal t2(z1) and η that maximize PD under

these constraints. Setting ∂H
∂η

= 0 for each z1, we obtain

exp

(
− 1

2t2(z1)
(η − z1 − t2(z1)/2)2

)
exp z1 = µ exp

(
− 1

2t2(z1)
(η − z1 + t2(z1)/2)2

)
.
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Expanding the terms inside the exponentials and canceling terms common to both

sides yields

(4.26) η = loge(µ).

The derivative of H with respect to t2(z1) is given by

∂H

∂t2
=

1√
2π

exp

(
−(η − z1 − t2/2)2

2t2

)
exp (z1)

(
η − z1 + t2/2

2t2
√

t2

)

−µ
1√
2π

exp

(
−(η − z1 + t2/2)2

2t2

)(
η − z1 − t2/2

2t2
√

t2

)
− λ

′

.(4.27)

Substituting for µ from (4.26) and multiplying by exp (−η) on both sides, we obtain

∂H

∂t2
=

1√
2π

exp (z1 − η) exp

(
−(η − z1 − t2/2)2

2t2

)(
η − z1 + t2/2

2t2
√

t2

)

− 1√
2π

exp

(
−(η − z1 + t2/2)2

2t2

)(
η − z1 − t2/2

2t2
√

t2

)
− λ

′′

,(4.28)

where λ
′′

= exp (−η)λ
′

.

To solve for the optimal t2 using the above expression, consider the following

parametric substitution:

(4.29) η − z1 = u
√

t2 −
t2
2

.

Substituting (4.29) in (4.28) and setting the expression for the derivative in (4.28)

to zero, we obtain

(4.30)

exp

(
−u

√
t2 +

t2
2

)
exp

(
−(u −√

t2)
2

2

)(
u

2t2

)
−exp

(
−u2

2

)(
u −√

t2
2t2

)
=

√
2πλ

′′

,

Simplifying the above expression yields

(4.31) t2(z1) =
1

8π(λ′′)2
exp (−u2).

Substituting t2(z1) from (4.31) in (4.29), we have

(4.32) z1 = loge(µ) − u

2
√

2πλ′′
exp (−u2/2) − 1

16π(λ′′)2
exp (−u2).
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The expressions in (4.31) and (4.32) yield the optimal solution to the transmit power

at the second stage as a function of the observation at the first step in parametric

form. Constants λ
′′

and µ are chosen to satisfy the energy constraint and false alarm

constraint respectively.

Figure 4.1 illustrates the structure of the optimal solution, t22(z1) generated by the

parametric solution in (4.31) and (4.32) for various values of λ
′′

at fixed η ≈ −2.3

and x1 = 1. This can be thought of as a plot of the energy function x2
2(z1) with

θ1 = 1 and σ = 1. We observe that the optimal solution has mean greater than

zero. The intuition behind such a solution is the following: The distribution of z1

under H0 is N (−t1/2, t1) while the distribution of z1 under H1 is N (t1/2, t1). Thus

a realization of z1 which is close −t1/2 implies that with reasonably high probability

the realization came from the H0 distribution. On the other hand if the realization of

z1 is t1/2 or greater, then with high probability, the realization came from H1. Since

we constrain the energy under the null hypothesis H0, the solution assigns very low

or no energy at the second step for those realizations of z1 which are −t1/2 or lower.

However if the realization of z1 is high, then the algorithm is able to assign large

amounts of energy at the second step to gain on the performance of the algorithm

as the realizations were more likely from H1. However for very large z1 values, the

algorithm resets the energy level to zero for two reasons. Firstly, increase of energy

levels for large z1 are tightly controlled by the energy constraint. Secondly, for large

z1, the accuracy of the decision at the first step improves, reducing the need for

energy allocation to the second step. The test will clearly choose H1 as the solution

in such cases.

Figure 4.2 shows the ROC curve for the optimal two-step solution (solid) with the

following parameters: σ = 1, θ0 = 0, θ1 = 1, E0 = 1. We implement the optimal two-
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step solution as follows: We fix a false alarm level of α by choosing µ appropriately.

We then take a grid of values of x1 between 0 and 1; for each value of x1, we find

the optimal x2(z1) which satisfies the energy constraint by a numerical search on

the values of λ
′′

. We then find the optimal x1 and the corresponding x2(z1) that

maximizes PD. This process is repeated for various values of α. We also plot the

corresponding optimal one-step strategy (dashed dotted) with E0 = 1. We notice a

significant improvement in performance especially at low false alarm rates while at

other places the two-step ROC is at least as good as the one-step solution.
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Figure 4.1: Plot showing the optimal solution to energy at second stage for various values of λ
′′

with x1 = 1 and µ = −2.3.

In table 4.1, we present a selected pair of points PD and PFA that lead to the

optimal two-step ROC in Fig. 4.2. For each pair, we also present the average energy

under the H1 hypothesis. We know already that the average energy under H0 hy-

pothesis is exactly E0. However we observe from the table that the average energy

consumed under H1 for low PFA is more than E0. This is because of the bias in

the optimal solution x2(z1) towards the mean of the H1 hypothesis discussed earlier.
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PFA PD EH1

[
x2

1 + x2
2

]

0.0081 0.2281 1.9151
0.0093 0.2372 1.8903
0.0106 0.2466 1.8868
0.0122 0.2565 1.8819
0.0183 0.2843 1.7939
0.0209 0.2950 1.7894
0.0241 0.3078 1.7767
0.0366 0.3445 1.6755
0.0422 0.3603 1.6535

Table 4.1: Probability of detection, false alarm values for optimal two-step solution along with
energy consumed under H1 hypothesis.

Thus in reality, if the observations come from H1, the solution proposes to use more

energy than E0 for most false alarm rates which is counter intuitive in light of the

restriction of the total energy. However, the average energy constraint is well defined

in a Bayesian setting as we will see in the next section.
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Figure 4.2: Optimal ROC curves for the optimal one-step and two-step strategies in the frequentist
setting.

4.4 Bayesian approach

In the frequentist approach, we considered the energy allocation problem for sim-

ple hypotheses testing (θ = θ0, θ = θ1). Since the optimal LRT was UMP, the results
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also hold for a composite hypotheses under suitable regions of Θ0 and Θ1. For ex-

ample, a composite hypotheses test of the form: H0 : θ = θ0, H1 : θ > θ0 or θ < θ0.

In this section, we consider the energy allocation for hypotheses testing using the

following Bayesian framework:

H0 : θ ∈ Θ0(4.33)

H1 : θ ∈ Θ1,(4.34)

where θ has a prior density f(θ). The problem of finding optimal energy allocation

for an arbitrary f(θ) is not feasible. Hence, we restrict our treatment to the following

simple hypotheses case:

H0 : θ = θ0 with prob. p(4.35)

H1 : θ = θ1 with prob. 1 − p.(4.36)

The Bayesian approach is to maximize the average probability of error, which from

the laws of total probability is given by

Pavg = P (H0|H1)P (H1) + P (H1|H0)P (H0)(4.37)

= (1 − PD)p + PFA(1 − p).(4.38)

4.4.1 One-step solution

Using the optimal Bayesian likelihood ratio test illustrated by (4.3), the decision

rule can be written as

(4.39) log

(
f(y|H1)

f(y|H0)

)
H1

≷
H0

η∗,

where the optimal Bayes threshold is given by the relation

(4.40) η∗ = log

(
p

1 − p

)
.
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The test simplifies to

(4.41)
θ1

σ2

(
x1y1 −

x2
1θ1

2

)
H1

≶
H0

η∗,

when without loss of generality we assume θ0 = 0. Then the probability of correct

detection, PD and the probability of false alarm, PFA are given by

PD = Q

(
η∗σ2

θ1x1
− x1θ1

2σ

)
(4.42)

PFA = Q

(
η∗σ2

θ1x1
+

x1θ1

2σ

)
,(4.43)

The average energy constraint for the one-step case is given by

(4.44) Eavg = E
[
x2

1|H0

]
P (H0) + E

[
|x1|2|H1

]
P (H1) = x2

1 ≤ E0.

Substituting the expressions for PD and PFA in (4.42) and (4.43) in (4.38), the

minimum average probability of error for the one-step strategy is

(4.45)

Pavg = (1 − p)

(
1 − Q

(
η∗

θ1SNR0
−

√
SNR0θ1

2

))
+ p

(
Q

(
η∗

θ1SNR0
+

√
SNR0θ1

2

))

4.4.2 Two-step solution

The set of equations governing each hypothesis are the same set of equations from

the frequentist approach given in (4.12) and (4.13). The optimal two-step Bayes

test is the same as the LRT presented in (4.14), where η is chosen optimally to

minimize the criterion in the Bayesian setting. Rather than maximize PD subject to

a false alarm constraint, the objective here is to design the optimal energy allocation

strategy to minimize average probability of error. The objective function for the

two-step strategy can be written as

Hb = (1 − p)(1 − PD) + pPFA + λ

(
E
[
t21 + t22(z1)

]
− E0θ

2
1

σ2

)
,(4.46)
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where the probabilities of false alarm and correct detection are the same expressions

given in (4.24) and (4.23), respectively, since the test remains the same. Further we

have reparameterized the energy allocation parameters x1 and x2(z1) through t1 and

t2(z1) defined below (4.19). The average energy constraint can be simplified as

Eavg = E
[
t21 + t22(z1)

]

= t21 + pEH0

[
t22(z1)

]
+ (1 − p)EH1

[
t22(z1)

]

= x2
1 + (p + (1 − p)ez1) EH0

[
t22(z1)

]
.(4.47)

Substituting the expressions for PFA, PD, and Eavg from (4.24), (4.23), and (4.47),

respectively in (4.46), we obtain

Hb = (1 − p)

(
1 − EH0

[
Q

(
η − z1 − t2(z1)/2√

t2(z1)

)
ez1

])

+pEH0

[
Q

(
η − z1 + t2(z1)/2√

t2(z1)

)]

−λ

(
x2

1 + (p + (1 − p)ez1) EH0 [t2(z1)] −
E0θ

2
1

σ2

)
.(4.48)

Setting the partial derivative of Hb with respect to η to zero yields,

(1 − p) exp

(
− 1

2t2(z1)
(η − z1 − t2(z1)/2)2

)
exp z1

−p exp

(
− 1

2t2(z1)
(η − z1 + t2(z1)/2)2

)
= 0.(4.49)

The optimal solution to η is given by

(4.50) η∗ = log

(
p

1 − p

)
,

which is the same optimal solution as in the one-step strategy. Setting ∂Hb

∂t2
= 0, we

obtain

1 − p√
2π

exp

(
−(η − z1 − t2/2)2

2t2

)
exp (z1)

(
η − z1 + t2/2

2t2
√

t2

)

− p√
2π

exp

(
−(η − z1 + t2/2)2

2t2

)(
η − z1 − t2/2

2t2
√

t2

)
= λ (p + (1 − p) exp (z1)) .
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Dividing by 1 − p on both sides and multiplying by exp (−η∗), we have

exp

(
−(η∗ − z1 − t2/2)2

2t2

)
exp (z1 − η∗)

(
η∗ − z1 + t2/2

2t2
√

t2

)

− exp

(
−(η − z1 + t2/2)2

2t2

)(
η − z1 − t2/2

2t2
√

t2

)
=

√
2πλ (1 + exp (z1 − η∗)) .

Using the same parametric substitution as (4.29) and simplifying, we obtain

1

2
√

t2
exp (−u2

2
) =

√
2πλ(1 + exp

(
t2
2
− u

√
t2

)
.(4.51)

The optimal solution to t2 in parametric form is given by

t2 =
1

8πλ2

1
(
exp (−u2/2) + exp−(u −√

t2)2/2
)2 ,(4.52)

where u and z1 are given by the relation

(4.53) η∗ − z1 = u
√

t2 −
t2
2

.

The solution to this equation is not obtainable in closed form. Hence we solve

it numerically and if there is more than one solution, we pick the lower valued

solution as the optimal t2 to minimize energy. Furthermore, t2(z1) is symmetric

about η∗, i.e., t
′

2(z1) = t
′

2(−z1), where t
′

2(z1) = t2(z1 + η∗). This result is easy to

verify. Substituting for u from (4.53) in (4.52) and simplifying, the optimal t2(z1)

satisfies

(4.54)
√

t2(z1) =
1

2
√

2πλ

exp
(
− 1

2t2(z1)
(z1 − η∗ − t2(z1)/2)2

)

1 + exp (z1 − η∗)
.

Then t
′

2(z1) = t2(z1 + η∗) is given by

(4.55)
√

t
′

2(z1) =
1

2
√

2πλ

exp−
(

1

2t
′

2(z1)
(z1 − t

′

2(z1)/2)2
)

1 + exp (z1)
.
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Replacing z1 with −z1, we obtain

√
t
′

2(−z1) =
1

2
√

2πλ

exp
(
− 1

2t
′

2(−z1)
(−z1 − t

′

2(−z1)/2)2
)

1 + exp (−z1)

=
1

2
√

2πλ

exp
(

1

2t
′

2(−z1)
(z1 + t

′

2(−z1)/2)2
)

exp (z1)

1 + exp (z1)

=
1

2
√

2πλ

exp
(
− 1

2t
′

2(−z1)
(z1 − t

′

2(−z1)/2)2
)

1 + exp (z1)
.(4.56)

Comparing (4.55) and (4.56), t
′

2(z1) and t
′

2(−z1) satisfy the same equation for opti-

mality. It follows that the solution to t
′

2(z1) and t
′

2(−z1) is identical.

The optimal solution given by the parametric form in (4.52) and (4.53) is plotted

in Fig. 4.3 for various values of λ at p = 0.5. For p = 0.5, η∗ = 0 and the optimal

curves are symmetric about zero. Figure 4.4 shows the optimal solution to the energy

at the second step for different values of p with fixed λ = 0.03. We observe that the

energy curves are symmetric about the lines z1 = η∗, where η∗ = log(p/(1 − p)).
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z
1

t 2(z
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Figure 4.3: Plot showing the optimal solution to energy at second stage for various values of λ. We
set p = 0.5, θ0 = 0, θ1 = 1, and σ = 1.

Figure 4.5 shows the performance of the optimal one-step (dotted) and two-step

strategies (solid), i.e., minimum average error versus p, the probability of H0 for
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Figure 4.4: Plot of the optimal solution to energy at second step for different prior probabilities at
λ = 0.03.

3 different SNRs, i.e., energy levels. The following values were assumed for the

parameters to generate the plot: θ0 = 0, θ1 = 1, σ = 1, and the energy allocated to

the first stage is 1 (x1 = 1). Rather than optimizing the energy allocation between

steps 1 and 2, we assume that x1 = 1, and find the optimal λ that yields E [x2
2(z1)] =

E0 − 1. Using the optimal design, we compute the average probability of error by

evaluating the values of PD and PFA in (4.42) and (4.43), respectively using numerical

integration. The optimal one-step performance was generated using (4.45).

Figure 4.6 plots the optimal performance of both the one-step and two-step the-

oretically and via simulations for a SNR of 3dB, i.e., E0 = 2. The theoretical curve

for the one-step procedure was generated using (4.45). For the simulation curve,

for each value of p, we generated N = 100000-element random vector which had

zeros with probability p and one otherwise corresponding to the H0 and H1 hypoth-

esis. Let N0 represent the number of zeros and N1 represent the number of ones.

Based on this random vector, N samples of y1 were generated using (4.9) and the

optimal Bayes threshold test in (4.41) was performed. We compute N10 and N01 as
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Figure 4.5: Minimum average error versus prior probability for varying SNR for the optimal one-
step and two-step cases.

the number of times a decision was classified as H1 when it was H0 and viceversa,

respectively. The probability of miss and false alarm are then computed as N10/N0

and N01/N1, respectively. The average probability of error was evaluated empirically

as N10/N +N01/N . For the two-step procedure, we first find the optimal second step

energy allocation and generated the analytical curve by computing the expressions

for PD and PFA in (4.42) and (4.43), respectively using numerical integration. For

the simulation curve, we generate the samples in a similar fashion to the one-step

procedure. We first create the N -element random vector of ones and zeros based on

prior probability p and generate samples of both y1 and y2 using the expressions in

(4.12) and (4.13). After performing the optimal two-step Bayes thresholding test in

(4.14) with η = η∗, we compute empirical estimates of PD and PFA by counting the

average number of times a wrong classification occurs. We use the estimates of PD

and PFA to compute the average probability of error. We observe from Fig. 4.6 that

the analysis and the simulation results match accurately.
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Figure 4.6: Minimum average error versus prior probability at SNR=3dB theoretically and by sim-
ulation.

4.5 Conclusions

We considered the binary hypotheses testing problem and found the optimal en-

ergy allocation strategies for the two-step procedure under an average energy con-

straint for the frequentist and the Bayesian approaches. In the frequentist framework,

we constrained the energy under the null hypothesis H0 under the assumption that

target presence is rare. The constraint is satisfied under H0 but not under H1. To

obtain a strategy that satisfies the energy constraint under H0 or H1, we turn to a

Bayesian formulation. For the Bayesian formulation, the average energy constraint

is defined as the average energy expended under both the hypothesis. The Bayesian

optimal detector framework yielded a similar solution as the frequentist optimal de-

tector for the parameter values investigated and the optimal solution yielded at least

a 2dB improvement in performance. Future work is to extend this principle to an

M-ary hypotheses testing procedure.



CHAPTER V

Adaptive waveform selection for state estimation

Chapters II-IV focused on adaptive waveform amplitude design for estimation and

detection. In this chapter, we shift our attention towards the problem of optimal

adaptive waveform selection. We would like to choose a small subset from a given set

of waveforms that minimizes state prediction mean squared error (MSE) given the

past observations. This differs from previous approaches to this problem since the

minimization problem cannot be generally solved by offline solutions (e.g., matching

pursuit (MP), basis pursuit (BP)); the optimal waveforms must be selected after

observations are received. Since the optimal solution to the subset selection prob-

lem is combinatorially complex, we propose a convex relaxation of the problem and

provide a low complexity suboptimal solution. We present a hidden Markov model

for the state and show that the performance of this suboptimal procedure for state

estimation approaches that of the globally optimal procedure.

5.1 Introduction

Over the past decade, the problem of optimal waveform design has found impor-

tant applications in synthetic aperture radar (SAR), automatic target recognition

and radar astronomy [13]. Based on the application, waveform design may depend

135
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on various optimality criteria, e.g., target classification [155], accurate reconstruc-

tion of a high resolution radar image [154], or estimating a set of target parameters.

One implication of choosing the set of transmitted waveforms optimally is that the

backscattered signals will contain maximum target information.

Most of the work in the area of waveform design involves finding the best func-

tional form of the waveforms suited to a particular task, e.g., design of waveforms

from the radar ambiguity function for narrowband signals [16] or design of wideband

waveforms to resolve targets in dense target environments [110]. However, closed-

form solutions to waveform design problems are only possible under restrictive model

assumptions, e.g., one-dimensional target motions [79].

In this chapter, we focus on the optimal waveform selection problem rather than

the design of waveforms, i.e., we would like to choose only a small subset from a given

library of waveforms. One application of the waveform subset selection problem is

in hyperspectral imaging [141]. A hyperspectral radar surveillance system mounted

on an aircraft or spacecraft obtains an spectral image using the energy reflected

or emitted by each voxel on the ground for many bands of the optical spectrum.

Different objects (e.g., minerals, metal, and soil) possess unique spectral signatures

in a particular spectral band. These signatures are then used to identify the objects.

However, transmission of the data cube (layers of spectral images) from the radar

system to a processing unit is difficult and expensive due to the large volume of

data. As an example, a data cube from the NASA imaging spectrometer is 500Mb

in size. An adaptive waveform selector can be used to find the optimal combination

of spectral bands that yields a minimal data set containing complete information

about the objects. Furthermore, for problems where exact solutions to waveform

designs are infeasible, a waveform selection procedure can provide an approximation
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to the optimal design solution. To assess the performance of a particular subset of

waveforms, we need to define an optimization criterion such as expected reward or

risk.

The problem of choosing p out of M possible waveforms becomes a high complexity

combinatorial optimization problem. E.g., if there are M = 128 waveforms and we

need to select p = 32 element subset, there are more than 1030 combinations of

indices that need to be checked. Significant work has been focused on approximation

methods based on convex relaxation which lead to sparse solutions [98]. One type of

convex penalty is the lasso, a shrinkage method which imposes an l1-norm constraint

on the optimization problem [164]. By nature of the constraint, making the weighting

of the constraint larger causes some of the coefficients to be zero thus giving rise to

a suboptimal sparse solution to the subset selection problem. The matching pursuit

(MP) [99] and basis pursuit (BP) [30] algorithms use interior point methods and

greedy stepwise regression, respectively to solve the lasso but involve considerable

complexity. The more recently proposed least angle regression (LARS) is an efficient

stepwise algorithm, which yields the exact solution to the lasso in linear time.

Recently, conditions under which the l1-norm constrained solution is equivalent

to the optimal subset selection is derived in [46, 60]. As a result, the use of l1-

norm constrained convex optimization to obtain spare representations has become

increasingly popular [98]. However, most of these problems that deal with sparse

regression are offline strategies, where the library of waveforms are chosen a priori

based on accumulated data. In contrast, we propose to solve the online subset

selection problem by construction of adaptive waveform libraries and using the LARS

to obtain the subset selection in linear time.

In this chapter, we consider the expected state prediction MSE as a measure of
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performance and find the optimal subset that minimizes this expected reward given

the past measurements (online strategy). We relax this combinatorially complex

problem into an optimization problem under l1-norm constraint and propose a low

complexity suboptimal solution whose performance approaches that of the optimal

subset selection. We then consider a numerical example to illustrate this approach

and provide simulation results to compare the various solutions.

The organization of the chapter is as follows: In Section 5.2, we present the

waveform selection problem. Section 5.3 proposes a suboptimal solution. We contrast

our solution with previous offline approaches in Section 5.4. In Section 5.5, we solve

the problem for a specific model. Section 5.6 addresses the computational complexity

of the proposed solution and Section 5.7 provides simulation results. We conclude

this chapter in Section 5.8.

5.2 Problem formulation

We consider the waveform selection problem for a hyperspectral radar system,

where the radar can transmit and receive energy over multiple channels simultane-

ously. We restrict the number of waveforms transmitted at any time to be a small

subset of p out of M available waveforms. Denote the state at time t as st and

let the received signals corresponding to a single transmit waveform φi be denoted

as yi
t, i = 1, . . . , M . We restrict our attention to single stage policies, i.e., myopic

policies that seek to maximize an expected reward conditioned on the immediate

past.

Let {i1, . . . , ip} ∈ {1, . . . , M} denote the indices of the p different waveforms taken

from a set of M (M ≥ p) waveforms. Denote the set of past observations as Yt−1 =

[y1,y2, . . . ,yt−1]. We solve the optimal subset selection problem by maximizing the
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expected reduction in the variance of the optimal state estimator after an action

(choosing p out of M waveforms) is taken:

max
i1,...,ip

{
E
[
‖st − E

[
st|Yt−1

]
‖2
∣∣Yt−1

]
−

E

[∥∥∥∥st − E
[
st|yi1

t , . . . ,y
ip
t ,Yt−1

]∥∥∥∥
2
∣∣∣∣∣Y

t−1

]}
.(5.1)

Since the first term is independent of {i1, . . . , ip}, the maximization in (5.1) can be

equivalently expressed as

min
i1,...,ip

E
[
‖st − ŝt(i1, . . . , ip)‖2

∣∣Yt−1
]
,(5.2)

where

ŝt(i1, . . . , ip) = E
[
st|yi1

t , . . . ,y
ip
t ,Yt−1

]
.(5.3)

The minimization in (5.2) requires one to evaluate (5.3) for all
(

M
p

)
possibilities of

i1, . . . , ip. Two fundamental difficulties are encountered in solving (5.2): computation

of the conditional expectation (5.3); and combinatorial minimization of (5.2). In the

tracking examples considered here the computation of (5.3) is not difficult. Since

the complexity of problem is exponential in M (for fixed p/M), we propose a low

complexity suboptimal solution for (5.2) whose performance approaches that of the

optimal one.

5.3 Proposed solution

As an alternative to exhaustively searching over
(

M
p

)
possible subsets we pose the

following sparsity constrained prediction surrogate:

min
γ

E

[
∥∥st −

∑

i

γigi(y
1
t , . . . ,y

M
t ,Yt−1)

∥∥2

∣∣∣∣∣Y
t−1

]
+ β‖γ‖l,

(5.4)
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where β ≥ 0, ‖γ‖l, 0 ≤ l ≤ 1 is a sparseness inducing penalty and {gi} is a set of

base predictors of st and the linear combination of these predictors approximates the

exact solution in (5.3). When ‖γ‖l = ‖γ‖0 is the l0-norm, gi(y
1
t , . . . ,y

M
t ,yt−1) =

gi(y
i1
t , . . . ,y

ip
t ,yt−1) = ŝt in (5.3), i indexes over the

(
M
p

)
combinations of indices

i1, . . . , ip, the solution of (5.4) yields the optimal solution (5.2) for sufficiently large

β. A surrogate investigated by many [40,164] for the l0-norm penalty is the l1-norm

penalty ‖γ‖1 which will be adopted here. In the special case that gi depends only on

a single variable yi
t the regression in (5.4) is equivalent to using a simple generalized

additive model (GAM) [64]. We further assume that gi(y
i
t) = E [st|yi

t,yt−1]. Thus

the constrained prediction problem can be formulated as

min
γ

E

[∥∥∥∥st −
M∑

i=1

γiE
[
st|yi

t,Y
t−1
]∥∥∥∥

2
∣∣∣∣∣Y

t−1

]
+ β‖γ‖1,(5.5)

and β is chosen such that exactly p out of the M γi’s are nonzero. This quadratic

optimization in γ under l1-norm constraint is a convex problem and can be evaluated

in a straightforward fashion using standard techniques, e.g., [40,48,114,164]. We first

find the range of β that gives rise to a sparse solution with exactly p nonzero elements

and fix it to that value in the range which gives the minimum unconstrained error.

We take the indices of the p nonzero components of γ corresponding to this β as the

solution to the waveform subset selection problem in (5.2).

5.4 Comparison to previous strategies

We contrast our approach to the previous offline strategies in Fig. 5.1. In algo-

rithms such as MP and BP, the library of waveforms are chosen to minimize the

worst case error in the approximation of the function f chosen from the functional

space P. In contrast, we design an online waveform library based on the observed

measurements that can be best used to predict the state at the next time instant.
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Matching Pursuit (MP)

• Function to be approximated: f ∈ Q, where Q denotes the functional space.

• Basis functions: {gi} ∈ Q.

• For choosing the optimal waveform library:

min
α

max
f∈P

‖f −
∑

i

αigi‖2 + λ‖α‖0.

• For finding the subset selector for a fixed function f0:

min
α

‖f0 −
∑

i

αigi‖2 + λ‖α‖0.

Our approach

• State variable to be predicted: st belongs to the probability space (Σ,F ,P).

• Basis functions: {gi(Y
t−1)} ∈ (Σ,F ,P) depend on the past observations Yt−1.

• The optimal subset selector chooses α to

min
α

E

[
‖st −

∑

i

αigi(Y
t−1)‖2|Yt−1

]
+ λ‖α‖0.

Figure 5.1: A comparison of our approach with previous offline methods.

The optimal subset selector is chosen to minimize the average error, which implies

that the optimal choice of waveforms depends on the higher order statistics between

the state and the base predictors.

5.5 Numerical study

To illustrate our approach, we consider the following problem: At time t = 1, we

assume without loss of generality that an arbitrary waveform index η from {1, . . . , M}

is chosen and waveform φη is transmitted into the medium. The received signal at

the first stage can then be written as

y1 = L(φη)s1 + n1 = Lηs1 + n1,(5.6)
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where L(·) is based on the channel model, n1 is receiver noise, and s1 is the initial

state. We consider the state update equation as a hidden Markov model (HMM),

equivalent to a Gaussian mixture model, defined as

st = A st−1 + It w1,t + (1 − It) w0,t, t = 2, 3, . . . ,(5.7)

where {wi,t, i = 0, 1}t are independent Normal random vectors with mean µi and

covariance matrix Rwi
, A is a fixed matrix and It are i.i.d Bernoulli random variables

with success probability q.

Assume the initial state s1 is a Normal random vector with zero mean and covari-

ance matrix Rs. Receiver noises {nt} are i.i.d Normal with zero mean and covariance

matrix Rn and {nt, {wi,t, i = 0, 1}, It, s1} are all independent. The model (5.7) cap-

tures the non-Gaussian nature of the tracking problem where the state dynamics

switch at random between the hidden states It = 1 and It = 0. The received signal

at time t = 2 corresponding to transmission of waveform φi can be written as

yi
2 = Lis2 + ni

2, i = 1, . . . , M.(5.8)

Our goal is to maximize expected reduction in the variance of the state estimator

after sending the waveforms {φik
}p

k=1 and receiving the backscatter yi1
2 , . . . ,y

ip
2 , i.e.,

min
i1,...,ip

E

[∥∥∥∥s2 − E
[
s2|yi1

2 , . . . ,y
ip
2 ,y1

]∥∥∥∥
2
∣∣∣∣∣y1

]
.(5.9)

For the proposed GAM prediction problem under l1-norm constraint, we need to

minimize

E

[∥∥∥∥s2 −
M∑

i=1

γiE
[
s2|yi

2,y1

]∥∥∥∥
2
∣∣∣∣∣y1

]
+ β‖γ‖1(5.10)

with respect to γ and use the nonzero indices obtained through this method as our

solution to the subset selection problem.
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Given I2 = k ∈ {0, 1}, the random vectors x2, yi
2 and y1 are jointly Gaussian.

Let y = [yi1
2

T
, . . . ,y

ip
2

T
,y1

T ]T . Then the joint distribution can be written as




s2

y




I2=k

= N







µk

µy,k


 ,




Rs2,k Rs2,k,y

RH
s2,k,y Ry,k





 ,(5.11)

where

µy,k =




[
LH

i1
, . . . ,LH

ip

]H
µk

0


 ,(5.12)

Rs2,k,y =
[
(Rs2,k)

[
LH

i1 , . . . ,L
H
ip

]
,ARsL

H
η

]
,(5.13)

Rs2,k = Rwk
+ ARsA

H .(5.14)

If y1 is a N × 1 vector, then Ry is a N(p + 1)×N(p + 1) matrix whose mn-th block

is given by

Ry,km,n = LimRs2,kL
H
in + Rnδ(m − n), 1 ≤ m, n ≤ p

Ry,km,p+1 = RH
y,kp+1,m

= LimARsL
H
η , 1 ≤ m ≤ p.

Ry,kp+1,p+1 = LηRsL
H
η + Rn.

Since the random vectors s2,y
i1
2 , . . . ,y

ip
2 ,y1 are jointly Gaussian, the conditional

mean of s2 given y and I2 = k can be evaluated as

E
[
s2|yi1

2 , . . . ,y
ip
2 ,y1, I2 = k

]

= µk + Rs2,k,yR
−1
y,k

(
y − µy,k

)
,

and the conditional mean estimator is

E
[
s2|yi1

2 , . . . ,y
ip
2 ,y1

]
=

1∑

k=0

E
[
s2|yi1

2 , . . . ,y
ip
2 ,y1, I2 = k

]

P
(
I2 = k|yi1

2 , . . . ,y
ip
2 ,y1

)
,(5.15)
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where the conditional probability of I2 can be found using Bayes formula:

Πk(y) = P (I2 = k|y)

= P
(
I2 = k|yi1

2 , . . . ,y
ip
2 ,y1

)

=
f(y| I2 = k)P(I2 = k)∑

i f(y| I2 = i)P(I2 = i)
,(5.16)

where f(y| I2 = k)

=
|Ry,k|−0.5

(
√

2π)N/2
exp

(
−0.5(y − µy,k)

HR−1
y,k(y − µy,k)

)

and P(I2 = 1) = q. Thus equation (5.15) can be rewritten as

E [s2|y] =
1∑

k=0

Πk(y)
(
µk + Rs2,k,yR

−1
y,k

(
y − µy,k

))
.(5.17)

The MSE criterion in (5.9) can now be evaluated by substituting for the conditional

expectation from (5.17). For the suboptimal criterion in (5.10), we need to find

E [s2|yi
2,y1] which is a specific case of (5.17) with p = 1, i.e., y = [yi

2,y1]. It is

worthwhile to note that even in the case of q = 0 or 1 for which the target dynamics

are linear Gaussian, the solution to (5.10) is suboptimal, i.e., it is not equivalent to

the conditional expectation (5.3). This is because the predictor does not take into

account the spatial correlation between the received signals y1
2, . . . ,y

M
2 . However, if

the received signals are scalars, then the l1-norm constrained solution to (5.10) can

be shown to be the optimal solution for the Gaussian case.

5.6 Computational complexity

The estimator given in (5.17) is in closed-form and hence the major complexity in

finding the optimal solution is in its evaluation for all
(

M
p

)
possible combinations of

waveforms. Instead we use the suboptimal solution given by (5.10) to find the best

p waveforms to be transmitted at the second stage. We use the recently proposed
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LARS algorithm (Least Angle Regression) [48] to solve for (5.10) which requires only

the same order of magnitude of computational effort as the ordinary least squares

solution. The algorithm uses the fact that the solution to (5.10) is piecewise linear

in β and hence one can obtain the exact solution in min(p, M − p) steps either by

doing a forward selection or backward elimination procedure.

5.7 Simulation results

Based on the formulation in Section 5.5, we perform a simulation for the simple

case of M = 5 different waveforms. This will allow us to quantify the gap between

the optimal solution (5.3) and the solution to the approximation (5.10). We assume a

radar receiver array with N = 25 antenna elements so that the received signals y1,y2

are 25× 1 vectors. The state vector is assumed to be a Ns × 1 vector with Ns = 10.

The correlation matrices Rn,Rw0,Rw1,Rs are identity matrices. The mean vectors

µ0 and µ1 are 10 × 1 vectors consisting of all zeros and all 0.1 respectively. The

Bernoulli random variables It takes the value 1 with probability q = 0.4. We assumed

the channel model to be linear and selected the waveforms {φi}M
i=1 at random over 25

dimensional unit sphere. These waveforms are unit norm and have cross correlation

less than 0.1. We simulated the performance of the optimal subset selector along

with the l1-norm constrained convex problem under this setting. The performance

criteria considered in the simulations is shown in Table 2.2.

We first present the MSE of the l1-norm penalized solution found from (5.5)

(solid line, GAM with l1) as a function of the sparseness regularization parameter β

in Fig. 5.2. For each value of β, we also show the corresponding l0-norm of optimal

γ (on top of the solid line) in the figure. The MSE is a increasing function of β

and as explained earlier, we notice that increasing β induces more sparseness in the
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constrained solution (solid line)with respect to β. ‖γ‖0, corresponding to the number of
nonzero components in the optimal solution of γ for constrained optimization is shown
adjacent to the solid line as a function of β.

solution. When β is large, the MSE converges to the variance of the state parameter.

We also plot the MSE of the optimal subset selection solution (dashed line) corre-

sponding to the l0-norm obtained through the l1-norm constrained solution. We see

a clear difference in performance between the two techniques. This is because of two

main reasons: The primary reason is the fact that we find a suboptimal solution by

assuming the GAM estimator of the form in (5.5) rather than the optimal estimator

given in (5.3). The other reason is due to the fact that we solve the minimization

problem subject to an l1-norm constraint rather than an l0-norm constraint.

In Fig. 5.3, we plot the performance of state estimators mentioned in Table 5.1.

We observe that the performance of GAM under l0-norm constraint is indeed found

to be optimal for ‖γ‖0 = 1 case and clearly suboptimal for other cases due to the

restrictive additive model. Finally we see that our proposed solution has a significant

performance gain as compared to the simple l1-norm constrained minimization and

approaches the optimal subset selection performance. This suggests that we can
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considerably reduce the computational complexity of the problem and at the same

time achieve nearly optimal performance using such a design approach.

5.8 Conclusions

We considered the problem of optimal waveform selection. We optimally choose

a small subset of waveforms that minimizes the state prediction MSE given the past

Approach Form of predictor Constr.

Subset Selection E
[
s2|yi1

2 , . . . ,y
ip

2 ,y1

]
-

GAM + l0
∑

i γiE
[
s2|yi

2,y1

]
‖γ‖0

GAM + l1
∑

i γiE
[
s2|yi

2,y1

]
‖γ‖1

Optimal predictor E
[
s2|y1

2, . . . ,y
M
2 ,y1

]
-

Proposed Solution Use optimal from GAM + l1 ‖γ‖1

in subset selection

Table 5.1: Form of predictors
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observations. We observe that the optimal subset selection is a combinatorially com-

plex optimization problem and hence infeasible. We proposed a suboptimal solution

through convex relaxation which achieves near optimal performance. We considered

a particular model and compared the performance of the various strategies through

simulation. This problem is a natural extension to the problem of optimal energy

allocation under energy constraints using sequential design strategies presented in

Chapters II and III. It would be worthwhile to explore the possibilities for designing

a waveform selector together with optimal energy allocation.



CHAPTER VI

Sparsity penalized MDS for blind tracking in sensor

networks

In this chapter, we consider the problem of tracking a moving target using sensor

network measurements. We assume no prior knowledge of the sensor locations and

so we refer to this tracking as ‘blind’. We use the distributed weighted multidimen-

sional scaling (dwMDS) algorithm to obtain estimates of the sensor positions. Since

dwMDS can only recover sensor position estimates up to rotation and translation,

there is a need for alignment of sensor positions from one time frame to another. We

introduce a sparsity constraint to dwMDS to align current time sensor positions es-

timates with those of the previous time frame. We formulate a local implementation

of the sparsity penalized MDS algorithm using optimization transfer to minimize

communication costs. In the presence of a target, location estimates of sensors in

the vicinity of the target will vary from their initial values. Based on the differences

in the sensor location estimates between two time-frames, we propose a novel pertur-

bation based link level tracking algorithm which identifies a set of senors localizing a

target. Using a detailed numerical study, we show that perturbation based link level

tracking outperforms LRT based target localization. Applications of the algorithm

to two real world data sets are discussed in detail.

149
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6.1 Introduction

Wireless sensor networks have been deployed for a number of monitoring and con-

trol applications such as target tracking [94], environmental monitoring [95], manu-

facturing logistics [89], geographic routing, and precision agriculture [169]. For many

target tracking applications such as anomaly detection [67,170], species distribution

and taxonomy [59], and surveillance [24], the main purpose of the sensor network

is to locate and track changes in remote environments. For example, species dis-

tribution and classification are currently documented using sightings, captures, and

trap locations, which involve considerable manpower, time, and effort. Deploying

mobile sensors with cameras can improve remote counts of the species as they move

around in the environment. For surveillance applications, the sensors must be able

to locate where the intruders or the vehicles are moving in the network. Another

example is the problem of locating equipment in a warehouse. The sensors that tag

the equipment must register their physical locations and activate an alarm if they

are about to exit the building. As another example, in secure protocol and network

routing it is critical to track anomalies such as worm activity, flash crowds, outages,

and denial-of-service (DOS) attacks in the network.

Automatic self-configuration and self-monitoring of sensor networks is the key

enabling technology for these tracking applications. To respond to changes in the

sensor network, it is critical to know where the changes are occurring. Data measure-

ments from the sensors must be registered to their physical locations in the network

in order to make optimal decisions. For dense sensor networks, the large size makes it

impractical for humans to manually enter the physical location of the sensors and it

is too expensive to attach the GPS to every device in the network. The sensors must



151

have the capabilities to automatically estimate their relative positions and detect

changes in the network at low cost, e.g., with minimum battery power.

Self-localization algorithms can be broadly classified into two categories, central-

ized strategies and decentralized strategies. In a centralized approach, all the data

collected by the sensors must be communicated to the fusion center which then

makes a decision based on this information. Algorithms that use multidimensional

scaling (MDS) [146], maximum likelihood estimation [108], and convex optimiza-

tion [45] have been proposed for centralized estimation and have shown to perform

well. However, this may be impractical when the sensors operate with limited power

and bandwidth. For networks with thousands of sensors, transmission of sensor data

to a fusion center overwhelm the low-bandwidth capacity of sensor networks. Fur-

thermore, remote sensors are frequently battery operated and battery replacement

may be infeasible or expensive.

The need to conserve power and bandwidth has set the stage for more efficient

decentralized strategies for localization. Among the popular approaches are adaptive

trilateration [111,139] and successive refinement [35,72] algorithms. In trilateration,

each sensor gathers information about its location with respect to anchor nodes, also

referred to as seeds [109], through a shortest path. Using the range estimates from

the seeds, a sensor uses trilateration to estimate its location in the network. In suc-

cessive refinement algorithms, each sensor localizes its position in its own coordinate

system based on the information communicated from only its neighbors. Sensors re-

fine their location estimates iteratively using updates from neighboring sensors and

finally merge their local coordinates systems, effectively finding the solution to the

localization problem.

The dwMDS algorithm proposed in [35] is one such successive refinement algo-
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rithm, where a global cost function is divided into multiple local cost functions at

each sensor location and the computational load involved in finding the sensor loca-

tion estimates is divided among the sensors in a distributed fashion. The allocation

of non-negative continuous weights to the measured data overcomes the problem

of combining local maps to one global map, a problem that is common to other

decentralized methods [72].

Recently, there has been research emphasis on localization based on a moving

target, called a ‘mobile’ in [28,117,161]. The mobile moves randomly in the network

while transmitting signals thereby allowing the sensors to estimate their range to

the mobile. This provides a large number of measurements with greater diversity

which helps overcome environmental obstacles and enables improved estimation of

the sensor node locations.

Sensor localization is frequently viewed as an essential prelude to the monitoring

and tracking of active phenomena. Target tracking and detection has been one such

motivating application of sensor networks [4, 73, 85, 168]. Most target tracking ap-

plications assume known sensor locations or estimate the location of sensor nodes

separately before employing the tracking algorithm. The standard model used for

describing the state dynamics of a moving target is the linear Gaussian model [120].

When the measurement model is also Gaussian, the optimal tracker is given by the

Kalman filter. For nonlinear state space and measurement models, other techniques

such as extended Kalman filter (EKF) [73], unscented Kalman filter (UKF) [168],

and Gaussian sum approximation [4] have been proposed. Particle filtering algo-

rithms were then formulated for target tracking, where the probability density of the

state is approximated by a point mass function on a set of discrete points [44]. The

discrete points are chosen through importance sampling. The advantage of particle
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filtering is its applicability to a large range of densities, noise processes, and mea-

surement models. Most prior work on tracking consider a model-based approach,

which requires a detailed probabilistic model of the unknown target dynamics, more

sensed information, and is computationally intensive.

More recently, researchers have looked at the simpler problem of tracking in a

binary sensing modality [6, 82]. The sensor outputs a high value, when the target

is within a sensing range and outputs a low value, when the target falls outside its

range. Based on the fusion of the sensor outputs, an approximate link level trajectory

can be realized to track the target. Link level tracking has many attractive features,

the most important of which is that it does not require a dynamical model for the

target, which is fundamental to most tracking algorithms in the literature [11]. This

approach for a simple binary sensing measurement model is shown to require minimal

power and is also analytically tractable [149]. Moreover, the goal of certain sensor

networks is to obtain an estimate of the location of the targets, or detect changes in

the network. For example, in military applications, the sensors can locate a target

relative to the network and the network can activate the appropriate sensors to

identify the target. For animal tracking in biological research, it may be sufficient to

have a low resolution tracking algorithm to monitor animal behavior and interactions

with their own clan and with other species. This procedure can also be interpreted

as a target detection problem implemented for multiple time steps.

Distributed target detection methods have been proposed in the literature [112]

in the context of designing an optimal decision statistics at the sensor fusion center.

The detection problem has also been addressed for under communication constraints,

where the sensor transmitting the information needs to send an optimal summary

of the gathered information to the fusion center [29]. In the context of anomaly
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detection in internet data, approximate density of incoming traffic is constructed for

each location. Distance between densities is then used as a similarity measure in the

MDS algorithm to form a map of the internet network. By performing MDS over

time, it is shown that anomalies such as network scans, worm attacks, and denial

of service attacks can be identified and classified [50, 119]. For wormhole detection

in ad hoc sensor networks, most research efforts require mobile nodes equipped with

special hardware or GPS devices [26, 68] to localize the wormhole.

In contrast to previous approaches, we propose a sparsity penalized MDS algo-

rithm which localizes the sensor nodes and performs link level tracking when no

prior information about the sensor locations are available. The principle behind our

proposed algorithm is the following: in the ‘acquisition phase’ or initialization, an

initial estimate of sensor locations is acquired using the dwMDS algorithm [35]. Any

localization algorithm recovers sensor location estimates only up to a rotation, re-

flection, and translation in the absence of anchor nodes, i.e., certain sensors which

have knowledge of their positions. This is because the distance information used

for finding sensor location estimates depends only on the differences in the sensor

locations so that the positions of the sensors in the network can be rotated and

translated without changing these distances. However, once the sensors have been

initially localized, it is only the relative sensor locations that are critical to the prob-

lem of target detection. Hence, during the tracking phase, we introduce a sparsity

constraint to the dwMDS problem formulation, which attempts to fix the alignment

of the sensor network with respect to the alignment of the localized network at the

previous time instance. By doing so, we keep monitoring the network with respect

to a fixed geometry obtained by the localization algorithm at the first time instance

(t = 1). We rely on the fact that accurate estimates of the sensor locations are



155

obtained during the acquisition phase, i.e., in the absence of targets. The sparsity

constraint only reassigns a small fraction of the sensor locations, while maintaining

the locations of remaining sensors close to their previous estimates.

When the sensor network is then used for tracking, only the sensors affected by

the presence of a target have their location estimates perturbed, while the rest of the

location estimates remain unchanged. Based on the differences in the sensor location

estimates between two time-frames, we propose a novel perturbation based link level

tracking algorithm, which localizes a target to within a small set of sensor links.

Figure 6.1 shows the localization process in the absence of targets. The actual sensor

locations are marked as circles and the anchor nodes are highlighted using squares.

The sensors communicate among themselves and the anchor nodes to obtain location

estimates indicated as crossed circles. Figure 6.2 shows the localization process in

the presence of a target. The measurements of the sensor nodes closest to the target

are affected and the sensor location estimates appear further apart than they are in

reality. This change in the sensor location estimates can be used to perform link

level tracking.

In the absence of a target trajectory model, we give a flavor of how this algorithm

can be extended to estimate actual target coordinates using standard state space

tracking algorithms like Kalman trackers and particle filters. Furthermore, the algo-

rithm we present here can be used to design optimal sensor scheduling strategies for

tracking to limit power consumption in sensor networks.

This chapter is organized as follows: Section 6.2 formally introduces the problem

of sensor localization. Section 6.3 introduces the classical MDS algorithm and its

variations. We then present our sparsity penalized dwMDS algorithm in Section 6.4.

In Section 6.5, we explain how this algorithm can be applied for link level tracking
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Figure 6.1: Localization in the absence of target. Anchor nodes (square), true sensor locations
(circle), estimated sensor coordinates (crossed circle).
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Figure 6.2: Link level tracking based on localization in the presence of target.
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and compare its performance with LRT based tracking. In Section 6.6, we apply

our algorithm on two real world data sets: the ZebraNet project and the UCSD

wireless topology discovery project. Finally, we conclude this chapter in Section

6.7 by discussing the extensions of this formulation for model-based multiple target

tracking and sensor management strategies.

6.2 Problem formulation

We begin by introducing the nomenclature used in this chapter. We denote vectors

in RM by boldface lowercase letters and matrices in RM×N by boldface uppercase

letters. The identity matrix is denoted by I. We use (·)T to denote the transpose

operator. We denote the l2-norm of a vector by ‖ · ‖, i.e., ‖x‖ =
√

xTx. A Gaussian

random vector with mean µ and covariance matrix C is denoted as N (µ,C).

The purpose of the sparsity constrained MDS algorithm is to simultaneously lo-

calize and track targets. We first formally state the sensor localization problem.

Consider a network of N nodes in d dimensional space. The localization algorithms

can be applied to arbitrary d (d < N) dimensional spaces. Since applications for

localization typically occur in physical space, we will restrict our attention to d = 2, 3

dimensions. Let {xi}N
i=1,xi ∈ Rd be the true location of the N sensors. The locations

of the first n(n < N) sensor nodes are unknown. The remaining m = N − n sensor

nodes {xi}N
i=n+1 are anchor nodes, i.e., whose locations are known. We introduce the

anchor nodes to keep the formulation as general as possible. Later, we set m = 0 for

anchor free localization. Denote X = [x1,x2, . . . ,xN ] as the d × N matrix of actual

sensor locations. Let D = (di,j)
N
i,j=1 be the matrix of the true inter-sensor distances,

where di,j denotes the distance between sensor i and sensor j. It is common that

some wireless sensor networks may have imperfect a priori knowledge about the lo-
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cations of certain sensor nodes. This information is encoded through parameters ri

and x̄i, where x̄i is the sensor location and ri is the corresponding confidence weight.

If x̄i is unavailable, then we set ri = 0. The problem setting is explained through

an illustration of a sensor network in Fig. 6.3. In this sensor network, each sensor

communicates to its three nearest neighbors and hence, the weights corresponding

to links between non neighboring sensors are zero.

xi

xj

x̄i
x̄j

ri

rj

δi,j

wi,k = 0

xk

x

y

Figure 6.3: Sensor localization setup: Anchor nodes (square), sensor nodes (circle), a priori sensor
locations (blocked circle). The communicating sensors are connected using solid lines.
The non neighboring sensor links have zero weight.

Sensor localization is the process of estimating the location of the n sensor nodes

{xi}n
i=1 given {xi}n+m

i=n+1, {ri}, {x̄i} and pairwise range measurements {δt
i,j} taken

over time t = 1, 2, . . . , K. The indices (i, j) run over a subset of {1, 2, . . . , N} ×

{1, 2, . . . , N}. The range measurements can be obtained by sensing modalities such

as time-of-arrival (TOA), received signal strength (RSS), or proximity.
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6.3 Classical MDS and variations

Multidimensional scaling (MDS) is a methodology for recovering underlying low

dimensional structure in high dimensional data. The measured data can come from

confusion matrices, group data, or any other (dis)similarity measures. MDS has

found numerous applications in cognitive science, marketing, ecology, information

science, and manifold learning [39, 42]. In the context of sensor localization, the

goal in MDS is to discover the sensor locations (lower dimensional embedding) from

the inter-sensor distances obtained by a given sensing method (high dimensional

data) [35, 72, 146].

Classical MDS [58] provides a closed-form solution to the sensor locations when

the inter-sensor measurements are the inter-sensor Euclidean distances, i.e., in the

absence of noise or nonlinear effects. When all pairwise range measurements are

available, we can compute the complete matrix of distances:

(6.1) di,j = ‖xi − xj‖ =
√

(xi − xj)T (xi − xj).

Denote by D(2) the matrix of squared distances, i.e., D(2) = (d2
i,j)

N
i,j=1. Then D(2)

can be rewritten as

(6.2) D(2) = ψ1T − 2XTX + 1ψT ,

where 1 is an N -element vector of ones and ψ = [xT
1 x1,x

T
2 x2, . . . ,x

T
NxN ]T . Let

H = I − (1/N)11T . Multiplying on the left of D(2) by −1/2H and the right by H,

we obtain

(6.3) A = −1

2
HD(2)H = HXTXH.

Let Y = HX. Given A, one can discover the matrix X to within a rotation and
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translation by solving the following variational problem

(6.4) min
Y

‖A− YTY‖2
F ,

where ‖ · ‖F indicates the Frobenius norm and the search space is over all full rank

d × N matrices. The solution to X is then given by

(6.5) X = diag(λ
1/2
1 , . . . , λ

1/2
d )VT

1 ,

where the singular value decomposition (SVD) of A is given by

(6.6) A = [V1 V2] diag(λ1, . . . , λd, λd+1, . . . , λN) [V1 V2]
T .

The matrix V1 consists of the eigenvectors of the first d eigenvalues λ1, . . . , λd,

while the rest of the N−d eigenvectors are represented as V2. The term diag(λ1, . . . , λN)

refers to a N × N diagonal matrix with λi as its ith diagonal element. Though the

solution to the classical MDS is obtained in closed-form, the algorithm has the fol-

lowing deficiencies:

1. MDS requires knowledge of all inter-sensor distances. Obtaining all pairwise

range measurements is prohibitive due to the size of the sensor network and

the limited power of the sensors. Furthermore, the SVD solution requires the

transmission of the range information to the fusion center which then performs

the MDS algorithm. Due to power and bandwidth limitations in the sensor

network, this process is infeasible.

2. The inter-sensor range measurements δi,j are corrupted by environment and

receiver noise which further degrades the quality of the measurements, i.e., δi,j

is only an estimate of the inter-sensor distance di,j.

3. MDS uses the squared distance matrix which tends to amplify the measurement

noise, resulting in poor performance.
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As mentioned in Section 6.1, there has been significant effort directed towards

designing decentralized strategies for sensor localization. However, consistent recon-

struction (without rotation or translation) of the sensor locations is attainable only in

the presence of anchor nodes. If the current localization algorithms are implemented

for anchor free localization, the sensor location estimates can assume different align-

ments when localization is performed at different time instants. The idea of using

perturbations in sensor location estimates between two time frames to identify the

presence of a target is infeasible in the absence of an alignment.

To illustrate this phenomenon, we implement the dwMDS algorithm for sensor

localization in the absence of anchor nodes and in the absence of target. By absence

of target, we mean that the inter-sensor measurements yield a reasonably accurate

estimate of the inter-sensor distances. We provide snapshots of the sensor location

estimates (cross) along with their actual locations (circle) in Fig. 6.4 as a function of

time. Observe that the geometry of the network is maintained, while the true loca-

tions are subject to rotation and translation. Now consider a target moving through

this network. In this scenario, the localization process is affected by inaccurate inter-

sensor measurements in the vicinity of the target. When anchor nodes are present,

only those sensor locations in the vicinity of the targets are localized to a position

different from previous time. So a time varying dwMDS algorithm can potentially

yield accurate target localization to within a small set of sensor links. However,

with anchor free localization, such a process becomes infeasible due to the alignment

problem. In the following section, we propose a methodology that overcomes this

problem.
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

Figure 6.4: Anchor free sensor localization by dwMDS. True sensor locations (circle), estimated
sensor locations (cross).

6.4 Sparsity penalized MDS

Consider using the MDS algorithm independently to obtain the sensor location

estimates at time t−1 and at time t. Alignment between these two sets of points can

be performed in various ways. For example, in Procrustes analysis [57] alignment is

performed by finding the optimal affine transformation of one set of nodes that yields

the set closest to the second set of points in the least squares sense. Let us consider

this alignment procedure for aligning two sets of sensor location estimates from two

time instants. Let at time t−1, there was no target and at time t, a target appears in

the network. The sensor measurements are altered due to the reflection/attenuation

from the target and the sensor localization algorithm yields sensor location estimates

that are perturbed from their previous time frame estimates. However, while per-

forming the alignment, this perturbation becomes less pronounced as the smoothing
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Figure 6.5: Original sensor locations (circle) and location estimates obtained from dwMDS algo-
rithm (cross) are the input data to Procrustes alignment.

penalty (least squares) will distribute the error equally among all the sensor location

estimates. Moreover, in the presence of noise, this procedure is only degraded further

and the alignment cannot provide unchanged sensor locations estimates from their

previously estimated values. The errors in the sensor location estimates between two

time steps may also accumulate over time resulting in more alignment errors. As an

example, a set of estimated coordinates obtained from the dwMDS algorithm (cross)

and the actual coordinates (circle) shown in Fig. 6.5 are aligned using Procrustes

analysis. The aligned coordinates as a result of least squares smoothing are shown

in Fig. 6.6. Using such an alignment, it is not possible to identify a perturbation of

a sensor location as that of the one caused by the presence of the target. Further-

more, such a procedure would require a fusion center to gather all the information

to perform this analysis.

In contrast, we introduce a sparseness penalty on the distances between the sensor

location estimates xi at time t and location estimates x
(t−1)
i at time t− 1 directly to
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Figure 6.6: Original sensor locations (circle) and aligned sensor location estimates (triangle) ob-
tained from Procrustes analysis.

the sensor localization algorithm. Construct a vector of Euclidean distances between

the location estimates at time t and at time t − 1

(6.7) g(t) =
[
‖x1 − x

(t−1)
1 ‖, . . . , ‖xn − x(t−1)

n ‖
]T

.

Define the l0-measure of a vector v = [v1, v2, . . . , vn] as the number of nonzero

elements given by

(6.8) ‖v‖0 ,
n∑

i=1

I (vi 6= 0),

where I(·) is the indicator function. Using an l0-constraint on the distance vector g(t)

of the form ‖g(t)‖0 ≤ q, we guarantee that no more than q of the location estimates

will vary from their previous time frame values. Minimizing a cost function under

the l0-constraint requires a combinatorial search which is computationally infeasible.

Define the lp-measure of a vector v as

(6.9) ‖v‖p ,
( n∑

i=1

|vi|p
)1/p

.
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For a quadratic cost function, an lp-constraint (0 < p ≤ 1) induces a sparse solution.

Among all lp sparsifying constraints, only p = 1 offers a convex relaxation to the

l0-constraint [46]. To promote sparsity, we next advocate the use of the lp-constraint

as a penalty term via the Lagrange multiplier in the dwMDS algorithm to solve for

the sensor location estimates. Hence the term sparsity penalized MDS.

The cost function of the dwMDS algorithm [35] is motivated by the variational

formulation of the classical MDS, which attempts to find sensor location estimates

that minimize the inter-sensor distance errors. Keeping in mind that it is the geome-

try of the sensor network which is crucial for tracking, we present a novel extension of

the dwMDS algorithm through the addition of the sparseness inducing lp-constraint.

At any time t, we seek to minimize the overall cost function C(t) given by

C(t) =
∑

1≤i≤n

∑

i≤j≤n+m

∑

1≤l≤M

w
(t),l
i,j

(
δ
(t),l
i,j − di,j(X)

)2

+
n∑

i=1

ri‖x̄i − xi‖2

+λ‖g(t)‖p
p.(6.10)

The Euclidean distance di,j(X) is defined in (6.1). For each time t, there are M

range measurements δ
(t),l
i,j for each sensor link i, j. As in [35], the weights w

(t),l
i,j can be

chosen to quantify the accuracy of the predicted distances. When no measurement

is made between sensor i and sensor j, w
(t),l
i,j = 0. Furthermore, the weights are

symmetric, i.e., w
(t),l
i,j = w

(t),l
j,i , and w

(t),l
i,i = 0. If available, the a priori information

of sensor locations is encoded through the penalty terms {ri‖x̄i − xi‖2}. Finally, we

introduce an lp-constraint (0 ≤ p ≤ 1) on the distances between the sensor locations

at time t and the estimated sensor locations at time t − 1. The Lagrange multiplier

of the sparseness penalty is denoted as λ. We can tune the value of λ to yield the

desired sparsity level in g(t). Later, when we apply the algorithm for tracking, the

sparseness will be advantageous as only those sensors which are highly affected by
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the target will vary from their initial positions, thereby allowing for a detection of the

target through the process of relative sensor localization. To solve this optimization

problem, we propose to use the successive refinement technique, where each sensor

node i updates its location estimate by minimizing the global cost function C(t), after

observing range measurements at node i and receiving position estimates from its

neighboring nodes.

6.4.1 Minimizing cost function by optimization transfer

Unlike classical MDS for which we could obtain a closed-form expression for the

sensor location estimates, there is no closed-form solution to minimizing C(t). The

original algorithm for minimizing the least squares MDS cost function in (6.10) with

λ = 0 and {ri = 0} used gradient methods with elaborate step-size procedures [87]. A

majorization method for solving the nonlinear least squares problem was introduced

in [43]. This procedure can be viewed as a special case of optimization transfer

through surrogate objective functions [92] (e.g., the popular EM algorithm) and

has shown to work well for sensor localization [35]. In this work, we generalize the

SMACOF (scaling by majorizing a complicated function [61]) majorization algorithm

by including an alignment penalty to address the problem of sensor localization and

tracking.

A majorizing function T (x,y) of C(x) is a function T : Rd × Rd → R, which

satisfies the following properties: T (x,y) ≥ C(x), ∀y and T (x,x) = C(x). In other

words, the majorizing function upper bounds the original cost function. Using this

property, we can formulate an iterative minimization procedure as follows: denote

the initial condition as x0. Starting from n = 1, obtain xn by solving

xn = arg min
x

T (x,xn−1),

raghu
Highlight
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until a convergence criterion for C(x) is met. We can easily observe that this iterative

scheme always produces a non decreasing sequence of cost functions, i.e.,

C(xn+1) ≤ T (xn+1,xn) ≤ T (xn,xn) = C(xn).

The first and last relations follows from the properties of majorizing functions while

the middle inequality follows from the fact that xn+1 minimizes T (x,xn). Now the

trick is to choose a majorizing function that can be minimized analytically, e.g., a

linear or quadratic function. We propose a quadratic majorizing function T (t)(X,Y)

for the global cost C(t)(X). Minimizing C(t)(X) through the majorization algorithm

is the simple task of minimizing the quadratic function T (t)(X,Y), i.e.,

(6.11)
∂T (t)(X,Y)

∂xi
= 0, i = 1, 2, . . . , n.

If we denote the estimates of the sensor nodes at iteration k as Xk, the recursion for

the update of location estimates for node i from (6.11) is given by

(6.12) xk
i =

1

ai

(
ci + Xk−1bk−1

i

)
,

where bk−1
i , ai, and ci are defined in (6.46)-(6.49) respectively. The details of the

derivation of the sparsity penalized MDS algorithm can be found in Section 6.8. For

each sensor i, the jth element of the vector bk−1
i depends on the weight wi,j. Since the

weights of the nodes not in the neighborhood of the sensor are zero, the corresponding

elements in the vector bk−1
i are also zero; therefore the update rule for node i in (6.12)

will depend only the location of its nearest neighbors and not on the entire matrix

Xk−1. This facilitates the distributed implementation of the algorithm. The proposed

algorithm is summarized in Fig. 6.7. We illustrate the majorization procedure in

Fig. 6.8. The original cost function (solid) and the corresponding surrogate (dotted)

is presented for every iteration, along with the track of the estimates at iteration k

(circle).
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Inputs: {w̄(t)
i,j }, {δ̄

(t)
i,j }, {ri}, {x̄i}, {x(t−1)

i }, ǫ, X0 (initial condition
for iterations).

Set k = 0, compute cost function C(t),0 and ai from equations (6.10)
and (6.48) respectively

repeat

– k=k+1

– for i = 1 to n

∗ compute bk−1
i from equation (6.46)

∗ xk
i = 1

ai

(
ci + Xk−1bk−1

i

)

∗ compute C
(t),k
i

∗ update C(t),k to C(t),k − C
(t),k−1
i + C

(t),k
i

∗ communicate xk
i to neighbors of sensor i (nodes for which

wi,j > 0)

∗ communicate C(t),k to next node ((i + 1) mod n)

– end for

until C(t),k − C(t),k−1 < ǫ

Figure 6.7: Description of the sparsity constrained MDS algorithm.
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Figure 6.8: Majorization procedure: cost function (solid curve), surrogate function (dotted curve),
optimal location estimate at each iteration (circle). Only a single coordinate is updated
in this picture.
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Our proposed algorithm introduces a sparseness penalty on the distance between

estimate at time t−1 and the current estimate. If the sparsity regularization param-

eter λ is not chosen properly, many sensor positions estimates might slowly vary with

time, thereby creating cumulative error in the sensor localization. An interesting way

to counteract this problem would be to penalize the distance between the current

estimate and the initial estimate at t = 1. Using such a constraint would mean that

the sensors are always compared to the fixed initial frame and errors do not accu-

mulate over time. The implementation of this algorithm would be straightforward

as it would simply involve changing the index t − 1 to 1 in the original algorithm

presented in Fig. 6.7. However, using the estimate from time t − 1 has the property

that it is easily adapted to the case of mobile sensors.

6.4.2 Implementation

Weights: When RSS measurements are used to compute distance estimates, the

weights are set using the locally weighted regression methods (LOESS) scheme [34]

similar to one used in the dwMDS algorithm [35]. The weight assignment is given

by

wi,j =





exp (−δ2
i,j/h

2
i,j), if i and j are neighbors

0, otherwise,

where hi,j is the maximum distance measured by either sensor i or j. A naive equal

weight assignment to all measurements is also shown to work well with our algorithm.

Initialization: For the successive refinement procedure, the sensor locations esti-

mates must be initialized for every time frame. Though several initialization algo-

rithms have been proposed in the literature, we use a naive random initialization.

We would like to point out that the initialization is not a critical component to our
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algorithm, as we are solely interested in the alignment of sensors in the network

and not on the exact locations. Irrespective of the initial estimates, the sparseness

penalty will ensure that the estimated sensor locations are relatively close to those

of previous time frames. In our simulations, we observe that our algorithm is fairly

robust with respect to the initial estimates.

Neighborhood selection: Traditionally, the neighbors are chosen based on the dis-

tance measure obtained from the RSS measurements, i.e., select all sensors within

a distance R as your neighbors. When the RSS measurements are noisy, there is a

significant bias in the neighborhood selection rule. This method has a tendency to

select sensors which are, on average, less than the actual distances ‖xi−xj‖. We use

a simple two-stage adaptive neighborhood selection rule proposed in [35] to overcome

the effect of this bias:

In the first stage, the dwMDS algorithm is run with a neighborhood structure

based on the available range measurements, i.e., set wi,j = 0 if δi,j > dR for some

reference distance dR. After convergence, this step provides an interim estimate {x̂i}

of the sensors locations.

In the second step, these predicted distances from the estimated sensor loca-

tions are used to compute a new neighborhood structure, by assigning wi,j = 0 if

‖x̂i− x̂j‖ > dR. Some neighbors with larger range measurements will be added while

some others with low range measurements will be removed. Then, using {x̂i} as an

initial condition and the new neighborhood structure, the dwMDS algorithm is re-

run, resulting in the final location estimates. We remark that this 2-step algorithm

does not imply twice the computation. The dwMDS algorithm is based on majoriza-

tion, and each iteration brings the location estimates one step closer to the optimal
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estimate. Since the first step only needs to provide coarse localization information,

it does not need to be very accurate, and so the dwMDS algorithm can be stopped

quickly with a large ǫ. The second step will likely require fewer iterations to converge

as we begin with a good set of initial estimates.

Range measurement models: The inter-sensor measurements can be obtained by RSS,

TOA, or proximity. Any one of these approaches can be used in our algorithm. Our

sparsity constrained dwMDS algorithm is fairly robust to either of these measure-

ment models. For the simulations in this chapter, we use the RSS to obtain a range

measurement between two sensors. It can be shown through the central limit the-

orem (CLT) that the RSS is log-normal in its distribution [36], i.e., if Pi,j is the

measured power by sensor i transmitted by sensor j in milliWatts, then 10 log10(Pi,j)

is Gaussian. Thus Pi,j in dBm is typically modeled as

Pi,j ∼ N (P̄i,j, σ
2
0)

P̄i,j = P0 − 10np log

(
di,j

d0

)
(6.13)

where P̄i,j is the mean received power at distance di,j, σ0 is the standard deviation of

the received power in dBm, and P0 is received power in dBm at a reference distance

d0. np is referred to as the path-loss exponent that depends on the multipath in the

environment. Given the received power, we use maximum likelihood estimation to

compute the range, i.e., distance between the sensor nodes i and j. The maximum

likelihood estimator of di,j is given by

(6.14) δi,j = d010((P0−Pi,j)/10np).

Simulation of tracker without a target

The simulation parameters are chosen as follows: we deploy a 10 × 10 uniform

grid of sensors in a network. We consider anchor free localization, i.e., m = 0 and we



172

assume we make a single inter-sensor measurement (M = 1). We set the sparseness

parameter λ to produce a change in the location estimates for only a small portion

of the sensors. The value of λ will depend on the size of the network and the noise

in the measurements. If the RSS measurements are very noisy, then range estimates

become inaccurate which tend to vary the sensor location estimates. Hence λ is

selected to ensure that sensor location estimates remain aligned with the previous

time frame estimates. In this simulation, we set λ = 0.1 and the noise variance

σ0 = 0.15. Each sensor communicates with its 15 nearest neighbors. The weights of

the RSS measurements were chosen based on the LOESS scheme described earlier.

The weights of links for non communicating sensors were set to zero.

We demonstrate the result of the sparsity constrained MDS algorithm on this

sensor network as a function of time in Fig. 6.9. The true locations are denoted

as circles and the estimated locations as crosses. In contrast to the least squares

alignment produced by Procrustes analysis in Fig. 6.6, we observe that we are able

to achieve near perfect alignment between two sets of sensor location estimates. The

presence of a target will perturb this alignment and in the following section, we

discuss the scope for target localization based on this phenomenon.

6.5 Tracking using sparse MDS

Here we present an algorithm for performing link level tracking using the sparsity

constrained MDS algorithm. By link level tracking, we refer to localization of targets

to within a set of inter-sensor links. Though link level tracking does not need any

assumptions on the dynamical target motion model, it is important to know the

effect of the target on the inter-sensor measurements. Researchers have proposed

various models for the signal strength measurements ranging from the traditional
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

Figure 6.9: Anchor free sensor localization by sparsity penalized MDS. True sensor locations (circle),
sensor position estimates (cross).

linear Gaussian model to the binary sensing model. These are approximate statistical

models and the distribution of the measurements in the presence of a target remains

an open question.

To model the statistics under the setting of vehicle tracking, we conducted exper-

iments using RF sensors hardware in the presence of a target. We constructed a fine

grid of locations, where the target was placed and RSS measurements were recorded

between two static sensors for positions on the grid. A detailed description of the

experimental setup is given in Appendix 6.9. Upon gathering the data, we fit the

following statistical model in the presence of target. The RSS measurements under

this H1 hypothesis at sensor link i, j are distributed as

P k
i,j|P̂i,j ∼ N (P̂i,j, σ

2
0), i.i.d, k = 1, 2, . . . , M(6.15)

P̂i,j ∼ N (P̄i,j, σ
2
1),
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where P k
i,j is the kth inter-sensor measurement when the target is in the neighborhood

of the sensors. The M sensor link measurements are correlated through the random

variable P̂i,j. The values obtained from our actual experiments were σ0 ≈ 0.1463dBm

and σ1 ≈ 1.5dBm. The noise variance in the measurements σ1 was roughly an order

of 10 times larger than σ0. In other words, RSS measurements tend to have a larger

variance due to scattering and attenuation of the signals in the presence of a target.

A confidence measure for such a log-normal distribution of the RSS data is obtained

using the Kolmogorov-Smirnov (KS) test in [118] and the model is shown to work well

for sensor localization. We assume this statistical model for the RSS measurements,

when the target is within a specified distance R of the sensor link i, j. The distance

R depends on the reflectivity of the object. If the object is highly reflective, then

the variation in the RSS measurements is detected by more links.

Based on the H0 and H1 hypothesis given in (6.13) and (6.15) respectively, we

formulate the optimal decision statistic to detect a presence of a target in a particular

sensor link using the LRT. The LRT for each link i, j is given by

(6.16)

∣∣∣∣∣
1

M

M∑

l=1

P
(t),l
i,j − P

′

i,j

∣∣∣∣∣
H1

≷
H0

γ,

where γ is chosen to satisfy a false alarm level and P
′

i,j is the mean received power

in the sensor link estimated using an initial set of range measurements. We assume

that the sensor network is in its steady state operation mode. We do not consider

the transient effects in the measured data when it is obtained in the absence of any

target. This most powerful test of level α yields the probability of correct detection

(6.17) β = 2Q

(
Q−1(α/2)

√
σ2

0

σ2
0 + Mσ2

1

)
.

A derivation of the decision rule and its performance can be found in Appendix

6.10. We show that the performance of the optimal detector is dependent on the
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number of samples M available for the inter-sensor measurements. As M becomes

very large, the probability of correct detection β tends to 1. However, if only few

samples are available, β may not approach 1 and misdetect type errors may become

non negligible. In such a case, instead of using the LRT, we can use a test on the

variation of the sensor location estimates at time t from their estimates at a previous

time τ (τ < t). In other words, we can perform a simple hypothesis test for each

link of the form

(6.18)
∥∥∥d(t)

i,j − d
(τ)
i,j

∥∥∥
H1

≷
H0

γi,j,

where d
(t)
i,j = ‖x(t)

i − x
(t)
j ‖ and {x(t)

i } are the sensor location estimates obtained from

the sparsity penalized MDS algorithm.

Simulation of tracker in the presence of target

We present our results by simulating moving targets in a uniform 10× 10 grid of

sensors. We set m = 0, i.e., no anchor nodes. We assume no a priori knowledge of

the sensor coordinates, i.e., ri = 0. Each sensor communicates only to its 15 nearest

neighbors and the weights for those links were chosen by the LOESS strategy. The

rest of the weights were set to zero. We obtain M = 50 data measurements for each

communicating sensor link in the network. We set the sparseness parameter λ to

produce a change in the location estimates for only a small portion of the sensors.

We allow any number of targets to appear in a sensor network with probability

0.4. Though our algorithm is robust to randomly moving targets in the network, we

consider a state-space model for the purposes of this simulation to produce a visually

pleasing target trajectory. We apply the sparsity constrained MDS algorithm as

multiple targets move through the sensor network.

The results are shown in Fig. 6.10. The true sensor locations are shown as circles
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and the estimated sensor locations are indicated using crosses. The sensors cor-

responding to those sensor links that declared a target present using the DBT are

shown in filled circles. The target trajectories are shown as inverted triangles. We ob-

serve that as the targets move, the sparsity constrained MDS algorithm reconstructs

changes in sensor positions while the majority of the estimates sensor locations are

unchanged from time step to time step. Thus, in conjunction with sparse dwMDS,

the DBT is able to localize the targets to within a small set of sensor links.

6.5.1 Numerical Study

We analyze the performance of the localization algorithms using ROC curves.

We consider the following setup: we deploy a 10 × 10 uniform grid of sensors in a

network (see Fig. 6.12). We consider anchor free localization, i.e., m = 0 and make

a single inter-sensor measurement (M = 1) at each time frame. We assume no a

priori knowledge of the sensor coordinates, i.e., ri = 0. Each sensor communicates

only to its NN = 8 nearest neighbors and the weights for those links were chosen by

the LOESS strategy [35]. The rest of the weights were set to zero. Furthermore, we

set noise variances σ0 and σ1 defined in (6.13) and (6.15), respectively as σ0 = 1 and

σ1 = 5σ0 = 5. Sensor links within a radius R = 1.5 indicate the presence of a target,

i.e., follow the H1 hypothesis. We set the reference distance d0 defined below (6.13)

to be d0 = 1 and the path loss exponent η = 2. We set the sparseness parameters

λ = 2.5 and p = 1 to produce a change in the location estimates for only a small

portion (< 10%) of the sensors.

We begin by considering the case of random appearance of targets in the sensor

network, i.e., targets appear at different locations every time instant. For the distance

based target localization algorithm (DBT), we set τ = 0 in (6.18), i.e., we compare

our distance estimates to a fixed initial frame. For every time instant, the DBT
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(a) t=1 (b) t=2

(c) t=3 (d) t=4

(e) t=5 (f) t=6

(g) t=7 (h) t=8

Figure 6.10: Anchor free sensor localization by sparsity constrained MDS in the presence of targets.
True sensor locations (circle), estimated sensor locations (cross), sensors localizing the
target (blocked circle), target trajectory (inverted triangle).
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and the LRT are performed on each active sensor link and the process is repeated

for 5000 target locations. The resulting ROC curve is presented in Fig. 6.11. The

ROC for the LRT using simulations is indicated using circles and the corresponding

theoretical curve obtained from (6.17) is shown as a solid line. We observe that the

simulation and the theoretical curves match for the LRT. The ROC for the DBT is

shown using a dashed line. The DBT algorithm yields higher probability of correct

detection than the LRT for most false alarm levels. For example, at false alarm level

α = 0.3, β for the DBT is approximately 0.89 which is 5% more than that of the

LRT, which yields β ≈ 0.84.

The intuition for this result is as follows: in the presence of a target, the RSS

measurements of the sensor links are spatially-correlated. The presence of a target

in a given link implies that with high probability the target is present in neighboring

sensor links. However, the RSS model in (6.15) specifies only the distribution of

the measurements independently on each link. The LRT makes complete use of the

RSS measurements but is limited in its performance as the optimal decision statistic

for each sensor link i, j is independent of other sensor link measurements. On the

other hand, the DBT finds the active sensor links only based on the estimated dis-

tances through sparsity penalized MDS. However, since the inter-sensor distances are

computed at each sensor using information from its nearest neighbors, this method

makes an implicit use of the spatial correlation of the measurements in its decision

statistic, which results in an improvement in performance.

Next, we consider the case of a moving target, where we assumed a standard state-

space target motion model (for the purpose of a visually pleasing trajectory). We

repeated the same algorithms for 5000 such trajectories. The LRT based algorithm

yields the same performance curve as the test is independent of whether the target
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Figure 6.11: ROC curve for the LRT and the DBT link level tracking algorithm. LRT (solid line),
DBT for a random target with τ = 0 (dashed), DBT for a moving target with τ = 0
(dotted), and DBT for a moving target with τ = t − 1 (dashed dotted).

is moving or not. The resulting ROC curve for the DBT is presented as a dotted line

in Fig. 6.11. Since we continue to base our decision rule on the fixed initial frame

(τ = 0), we observe that the performance of the DBT is also similar to the case of

random target appearances.

In the case of a moving target, the RSS measurements are also temporally-

correlated. Given a set of sensors indicating a presence of a target at a particular

time, there is a high probability that the target is in the vicinity of these sensors at

the next time frame. To make use of the temporal correlation, we can compare the

current estimated distances to the estimated distances from the previous time-frame

rather than the initial frame, i.e., set τ = t − 1 instead of τ = 0. The temporal

correlation of the RSS measurements is captured in the DBT through the sparsity

constraint used for aligning the sensors locations estimates. In other words, with

high probability the sensor location estimates that are perturbed in the previous
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time-frame will also be perturbed in the current time-frame, thereby increasing the

probability of detection.

The results for τ = t − 1 are presented in Fig. 6.11 using a dashed dotted line.

We observe that the performance gains are higher than the DBT performed only

with spatial smoothing (τ = 0) as such a decision rule incorporates both spatial and

temporal correlations of the target dynamics. For example, for α = 0.1, β for the

LRT is 0.75. The result of spatial smoothing alone yields β ≈ 0.79. By performing

both spatial and temporal smoothing, we can obtain β ≈ 0.86 through our algorithm,

which corresponds to a 15% increase in performance.

We make the following observations for the two proposed tests:

• The DBT for link level tracking outperforms the LRT as it can account for the

spatial and the temporal correlations in the target motion.

• The LRT outperforms DBT for low false alarm levels (α < 0.01) for the following

reasons: first, the DBT we considered is suboptimal as we did not optimize the

performance over the choice of sparsity (p, λ). Furthermore, the LRT uses an

optimal decision statistic and the exact measurements to perform the test.

• The issue of space-time sampling is key to the performance of the DBT. Any

scenario that exhibits high spatial correlations (e.g., highly reflective targets

or more sensors/unit area) can yield further improvement in performance of

the DBT. If the sampling time for the sensors and the computation time of the

DBT algorithm is much faster than the target motion, the DBT can yield better

performance by taking advantage of more temporal correlations.

• The disadvantage of LRT in this setting is that the test is performed indepen-

dently on each sensor link. Further improvements in the probability of detection
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can be achieved when the LRT is derived for the full spatio-temporal model.

• In the performance analysis, we assumed steady state operation, i.e., perfect

knowledge of the inter-sensor distances are obtained a priori in the absence of

target. If such knowledge is unavailable and distances need to be estimated, the

LRT tracker must be modified to a generalized likelihood ratio test (GLRT).

The DBT can estimate the initial set of distances more accurately from the RSS

measurements by taking advantage of spatial correlations and hence can yield

a higher probability of detection than the GLRT.

Spatial localization from link level localization

Our objective is to approximately locate the target relative to the location of

the sensors. There are a number of ways in which this link level estimate can be

translated into estimated target coordinates in space. For example, one could use

as an estimate the midpoint of the convex hull generated by the positions of those

sensors that detect the target according to the LRT or the DBT. An example of the

midpoint tracking algorithm is shown in Fig. 6.12. Another estimate can be found

by the intersection of convex regions corresponding to the sensor links that show the

presence of the target through the optimal decision rule. These estimates do not

require a physical model of the target trajectory. However, given a target motion

model, standard filtering techniques such as the Kalman filter or particle filter (PF)

can be used to obtain refined target position estimates from the link level data.
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Figure 6.12: A simple tracking algorithm based on link level tracking. True sensor locations (circle),
true trajectory of the target (diamond), estimated trajectory (plus).

6.6 Real world applications

6.6.1 ZebraNet database

ZebraNet data set 1 is a collection of zebra movement traces obtained from real-

world deployments at the Sweetwaters Game Reserve near Nanyuki, Kenya during

the summer of 2005 for a period of 10 days. Four zebras were fitted with sensor

nodes consisting of a global positioning system (GPS), simple microcontroller CPU,

wireless transceiver, and non-volatile storage to hold logged data and their locations

were recorded for a period of 7 days. The raw zebra tracks are shown in Fig. 6.13.

The four zebras are marked using a circle, plus, triangle, and a cross respectively.

The ZebraNet sensor nodes used node-to-node communication to propagate mea-

sured data towards the base station in a store-and-forward manner. Data was col-

lected on the zebra locations once every 8 minutes to enable the nodes to remain

functional for a longer period of time. The zebras on which the hardware set was

placed were chosen by biologists to monitor behavior patterns among the zebras.

For example, one of the nodes was on a male, which had a tendency to move around

1http://www.princeton.edu/ mrm/zebranet.html
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Figure 6.13: Raw tracks for 4 zebras denoted by a circle, plus, triangle, and cross.

looking for a mate. Another sensor was placed on a female, which seemed to be

a leader of the large herd. The following information was downloaded to the base

station for each of the sensor nodes: the node number; the location in Universal

Transverse Mercator (UTM) format; corresponding time rounded-off to the closest

minute; and energy status of the node when the measurements were taken.

Our objective is use to these animal traces to test our target localization algo-

rithms. To simulate the performance of the sparse dwMDS algorithm, we superim-

pose a sensor network consisting of 300 randomly placed sensors on the region of

interest in the Sweetwaters Game Reserve. We assume the same hypothesis model

presented in (6.50) for the measurements in the presence and absence of target. We

assume that each sensor communicates with the 25 nearest neighbors. Based on

the noise level, we set a suitable sparsity level λ proportional to the noise variance

which ensures that approximately only 5% of the sensor location estimates can vary

from those of the previous time frames. We apply the sparsity penalized dwMDS

algorithm to this data as the zebras move around in the reserve. The results of the
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algorithm are presented in Fig. 6.14, shown at various time frames.

Numerical Study

We study the performance of the DBT using the zebra tracks rather than tracks

generated by a state-space motion model. We consider the same set of parameters

as in the numerical study in Section 6.5.1, i.e., m = 0, M = 1, ri = 0, d0 = 1,

NN = 8, η = 2, σ0 = 1, and σ1 = 5. We consider 300 randomly deployed sensors

in the network (see Fig. 6.14). The denser spatial sampling is useful for tracking

multiple targets (5 zebras) and also provides us a setting for addressing the effect of

spatial sampling on the DBT performance.

In order to compare the performance of the zebra tracks to the previous results,

we run the DBT algorithm on the 5 zebra tracks sequentially, i.e., we assume that

there is only one zebra roaming in the network at any time. In the first step, we set

τ = 0 in (6.18) and compare the distance estimates to the fixed initial frame. The

performances of the DBT and the LRT tests are averaged over the 5 zebra tracks.

The resulting ROC curves are presented in Fig. 6.15. The ROC of the LRT shown as

a solid line is the same curve as the ones presented earlier. The ROC curve for the

DBT is shown using a dashed dotted line. A similarly obtained ROC curve of the

DBT from the previous study (see dotted line in Fig. 6.11) is shown as a dotted line.

By comparing the perturbation to the fixed initial frame, we only perform spatial

smoothing of the sensor location estimates. We observe that the denser sampling of

sensors have resulted in better spatial smoothing, which eliminates more false alarms

resulting in an improved performance. For example, at a false alarm level α = 0.01,

the DBT with 100 sensors yields β ≈ 0.48, while the DBT with 300 sensors yields

β ≈ 0.66.

Next, we perform the DBT on the same set of tracks using τ = t − 1 in (6.18).
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(g) t=7 (h) t=8

Figure 6.14: Sparsity constrained MDS on the ZebraNet data. True sensor locations (circle), es-
timated sensor locations (cross), sensors localizing the target (blocked circle), target
trajectory (inverted triangle).
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Figure 6.15: ROC curve for the LRT and the DBT link level tracking algorithm using individual
zebra tracks with τ = 0. LRT (solid line), DBT for a moving target from state-space
model using 10 × 10 grid of sensors (dotted), and DBT for the zebra tracks (dashed
dotted) using 300 randomly located sensors.

The resulting ROC curve is presented in Fig. 6.16. The performance of the DBT

with τ = t − 1 is shown as a dashed line. The dashed dotted line represents the

performance of DBT with τ = 0, while the solid line denotes the ROC of the DBT

with τ = t − 1 from the previous study with 10 × 10 uniform grid of sensors. We

observe that the probability of detection of the DBT with τ = t − 1 for a specified

false alarm is mostly higher than that of τ = 0 DBT ROC curve. However, the

performance improvement between the two methods (with τ = 0 and τ = t − 1)

is lower than performance improvement between the same two methods from the

previous study. A possible reason for this behavior can be explained as follows:

in the previous study, we assumed a high sampling rate, so that the sensors can

make use of the temporal correlations in the measurements to improve performance.

On the other hand, the zebra tracks were sampled only once in 8 minutes, which

eliminates most temporal correlations in the data.
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Figure 6.16: ROC curve for DBT link level tracking algorithm using individual zebra tracks with
τ = t − 1. DBT for a moving target from state-space model using 10 × 10 grid of
sensors (dotted), and DBT for the zebra tracks (dashed dotted) using 300 randomly
located sensors.

Finally, we analyze the performance of the DBT for simultaneously tracking the

5 zebras. The resulting ROC curves for the case of τ = 0 and τ = t−1 are presented

in Fig. 6.17. The case of τ = 0 is shown as a dotted curve and the dashed dotted

curve represents the DBT performance with τ = t − 1. The performance gains for

the multiple targets case are similar to the case of tracking the individual zebras

sequentially. This suggests the DBT algorithm is well equipped to handle the case

of multi-target tracking.

6.6.2 UCSD wireless trace data

The wireless topology discovery (WTD) project2 was undertaken by researchers

at University of California San Diego (UCSD). The project collects data on dynamic

characteristics and user behavior in a real world wireless network. The primary

objective of the WTD project was to test and develop reliable routing protocols in

2http://nile.usc.edu/MobiLib
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Figure 6.17: ROC curve for DBT link level tracking algorithm using multiple zebra tracks. LRT
(solid line), DBT for zebra tracks with τ = 0 (dotted), and DBT for zebra tracks with
τ = t − 1 (dashed dotted).

a geographically constrained wireless network. To collect data, 275 UCSD freshman

were handed HP Jordana PDAs which were equipped with symbol 802.11 compact

flash cards and the WTD data collection software. The software recorded all access

points (AP) sensed by the user every 20 seconds. The trace data were collected over

a 11 week period and then transferred to a centralized database for analysis. The

data indicated that around 300 APs were sensed over this time among which only

200 of them had knowledge about their locations.

The trace data collected consisted of the following information: user identity,

sample time, AP identity, RSS, and AC/battery power indicator. The coordinates

of the known APs were also provided in the database. Our objective was to recover

user trajectories over time and to reconstruct the network topology (locations of the

unknown APs) using available data. The map of the known AP locations on the

UCSD campus is shown in Fig. 6.18. The data samples at a particular time instant

for a single user are shown in Fig. 6.19. The APs sensed by the user are shown using



189

100 200 300 400 500 600 700

100

200

300

400

500

600

Figure 6.18: Campus map showing the 200 known AP locations. Only the horizontal (x,y) part of
the 3D coordinates (x,y,z) are shown. In addition to these locations, there were 100
APs at unknown locations.

blocked circles. The corresponding RSS values are shown next to these APs.

To reconstruct the user trajectories, we need to estimate user locations over time

based on RSS observed to the various access points. The RSS values provided in

the database were 5-bit quantized values between 0 and 31. Since the mapping from

these quantized values to the actual signal strength in dB is unknown, we needed to

calibrate the quantized numbers to signal strength values.

Calibration

Consider a group of U users in the wireless network. Denote the location of user

i at time t as xt
i. Denote the set of N known AP locations as {yk}N

k=1. Let the

unknown locations of the remaining M APs be {zk}M
k=1. Given RSS measurement

Pi,j between user i and AP j, the ML estimate of the distance is given by

(6.19) δi,j = d010((P0−Pi,j)/10np),

where we set reference distance d0 = 1. Since there are no reference points given

through the data, P0 and np are unknown and need to calibrated. Furthermore,
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Figure 6.19: Sample RSS data from a single user to APs. The sensed APs by the user are indicated
in blocked red along with their RSS measurements.

values for Pi,j are given through the quantized numbers and the actual mapping

to RSS is not known. Here we assume that 5-bit quantized values is scaled and

translated version of the actual RSS, i.e., if the quantized values are given by P q
i,j,

then the RSS value is given by Pi,j = aP q
i,j + b. Hence the distance estimate in terms

of the quantized RSS values can be written as

(6.20) δi,j = 10((P q
0 −P q

i,j)/10nq
p),

where nq
p = np/a and P q

0 = (P0−b)/a. We provide an iterative least squares solution

for estimating P q
0 and nq

p that yields this mapping between the RSS integer values and

the distances. We start with random initial conditions for P q
0 and nq

p and compute

the user location estimates through the dwMDS algorithm based on the RSS values

between the users and the APs. We construct a scatter plot between the estimated

distances and the observed quantized RSS values. Using this map, we construct a

least squares fit to obtain a new set of values for P q
0 and nq

p. This process is repeated

until the values of P q
0 and nq

p converge. A block diagram of the algorithm is presented
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{Pi,j}U,N
i=1,j=1

ML estimator
{di,j}U,N

i=1,j=1
dwMDS

{xt
i}U

i=1

di,j = ‖xt
i − yj‖2

{yj}N
j=1{di,j}U,N

i=1,j=1
Least squares

P q
0 , nq

p

Figure 6.20: A block diagram of the iterative least squares procedure for estimating calibration
parameters.
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Figure 6.21: Estimated distances along with the least square fit to the data at the first iteration.

in Fig. 6.20. The histogram after the first step of this iteration is shown in Fig. 6.21.

The black line is the initially assumed map obtained by taking the logarithm of

(6.20), where P q
0 and nq

p are set to initial values used for generating the map. The

blue crosses indicate the estimated distances (dB) for various quantized values of the

RSS based on these initial conditions. The red line is the least squares fit to the

generated data. The two lines have different slopes which suggests that the actual

fit is not the same as the assumed fit. A similar graph generated after 15 iterations

is shown in Fig. 6.22. We observe that the two lines nearly coincide suggesting that

the values of P q
0 and nq

p are a stable fit to the data.
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Figure 6.22: Estimated distances along with the least square fit to the data after 15 iterations.

We observe from Fig. 6.22 that there is a large variance in the data and the mean

distance estimates of the RSS integer values are similar. One reason for this large

variance is due to the fact that we fit a global shadowing model to the APs. However,

in reality, some of the APs might be more accessible to the user ( e.g., on top of a

tower) than others (e.g., within a building). Furthermore, APs might sense users

using different power levels, which needs normalization. Below, we list a number of

limitations of this UCSD data set that made its analysis difficult.

Limitations of the data

1. Noisy and inconsistent data.

2. The RSS measurements recorded by the user to the various APs are not nor-

malized. A user can be sensing two different APs operating at two different

power levels. Furthermore, the user could be operating his/her PDA using AC

or battery power which may affect the RSS value.

3. 5-bit quantized RSS values. A 5-bit RSS value yields only 32 distinct distance
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estimates from the user to the AP which is insufficient to accurately locate the

user.

4. No reference RSS values. The map between the quantized numbers and the RSS

values is an important missing piece in this problem. We alleviate the need for

the map to a small extent by the calibration process described earlier.

5. The RSS values are recorded every 20 seconds, which is an insufficient sampling

rate for recovering smooth user trajectories.

Simultaneous localization of targets and APs

The information about the unknown AP locations are given by the RSS values

measured by the users at various time instants to these APs. One would expect

that since many of the AP locations are known, and the target user locations can be

estimated from these known-location AP data, we could recover the positions of the

unknown APs (they are after-all like any other fixed target at an unknown location

once target positions are approximate known). The problem of optimally localizing

the unknown APs and the targets can be formulated as an Euclidean distance matrix

completion problem (EDMCP) [3, 9]. This is a classical problem in geometry and

can be stated as the problem of recovering the set of all pairwise distances between

n points given only a subset of these distances. The inter-point distance matrix D

can be written as

(6.21) D =




Dyy Dyx Dyz

Dxy Dxx Dxz

Dzy Dzx Dzz




,

where Dyy is the distance matrix between the known AP locations, Dyx is the dis-

tance matrix between the known AP locations and the users, and the rest of the
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sub-distance matrices are similarly defined. Among these sub-matrices, only Dyy is

completely known. The distance matrices Dyx and Dzx are partially known since

different users are within range of only a fraction of the known and unknown APs.

Given the partial matrix,

(6.22) D∗ =




Dyy Dyx ∗

Dxy ∗ Dxz

∗ Dzx ∗




,

our objective is to reconstruct the complete distance matrix D in (6.21). Once D is

recovered we can recover the user tracks and unknown AP locations.

We consider two cases: (a) the exact completion problem, i.e., when the partial

matrix is exact. (b) the approximate completion problem, i.e., when the known

distances are estimated from noisy RSS measurements.

Exact completion problem

A set of necessary and sufficient conditions for existence of a unique solution to

the exact completion problem can be summarized by the following theorem [9].

Theorem 6.6.1. Let A be a N × N partial distance matrix in Rk. Let G = (V, E)

be an undirected graph with V = 1, 2, . . . , N , E = {(i, j) | ai,jis specified}, and whose

specified entries are chordal (see below for definition of a chordal graph). Let S be the

collection of all minimal vertex separators of G. Then A admits a unique completion

to a distance matrix in Rk if and only if

(6.23) B =




0 eT

e A(S)


 has rank k + 2 for any S ∈ S,

where e is a column vector of ones and A(S) is a matrix formed by using the set of

vertices in S.
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Definition: A graph is chordal if each of its cycles of four or more vertices has a

chord, which is an edge joining two nodes that are not adjacent in the cycle.

However, the solution to the exact completion problem for an arbitrary known set

of partial matrix entries cannot be obtained in closed-form [166]. But we show that

for a specific structure of the partial distance matrix, a closed-form solution to the

exact completion problem can be obtained. The key idea behind finding a solution

to the EDMCP is the rank deficiency of the distance matrix.

Theorem 6.6.2. Let A be a (N + M)× (N + M) partial distance matrix with rank

k + 2 and the following structure:

(6.24) A =




A11 A12

A21 A22


 ,

where A11 is N ×N , A12 is N ×M , and A22 is an M ×M matrix. Given, A11,A12,

there exists an unique Euclidean matrix completion to A given by A22 = A21A
+
11A12

if rank(A11) = k + 2.

Proof. The set of nonadjacent vertices for the partially complete distance matrix

A defined in (6.24) is given by Nv = {(i, j) | N + 1 ≤ i, j ≤ N + M}. The

corresponding collection of minimal vertex separators of the graph G is a singleton

set S = {1, 2, . . . , N}. When N > k + 2, B in (6.23) has rank k + 2 if A11 has rank

k+2. Let r = k+2. From Theorem 6.6.1, there exists a unique solution to the exact

completion problem. The eigendecomposition of A is given by

A = VΛVT ,

where Λ = diag(λ1, λ2, . . . , λr) and V = [v1,v2, . . . ,vr] are the corresponding set of

orthonormal eigenvectors. Let V = [VT
1 VT

2 ]T , where V1 is N × r and V2 is M × r.
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Then the sub-matrices can be written as

A11 = V1ΛVT
1(6.25)

A12 = V1ΛVT
2(6.26)

A22 = V2ΛVT
2(6.27)

Since A11 is full rank, the pseudo inverse of A11 can be written as

(6.28) A+
11 = V1(V

T
1 V1)

−1Λ−1(VT
1 V1)

−1VT
1 .

Then

(6.29)

A21A
+
11A12 = V2ΛVT

1

(
V1(V

T
1 V1)

−1Λ−1(VT
1 V1)

−1VT
1

)
V1ΛVT

2 = V2ΛVT
2 = A22.

This result does not hold for the following degenerate case: when all the points

yielding the partial matrix A11 lie on a k-dimensional sphere such that the rank(A11)

is k +1. It is easy to verify that a unique solution exists for this case using Theorem

6.6.1 but Theorem 6.6.2 does not yield the optimal completion. However, in a real

world setting, the probability that all the randomly deployed sensors lie in a 3-

dimensional sphere is nearly zero.

Approximate completion problem

For the UCSD trace data, Dyx and Dzx are only partially known and noisy.

Hence the theorem cannot be applied to this data set. For the case of approximate

completions, the optimal Euclidean distance matrix can be found by solving the

following minimization problem analogous to MDS. Let A = {ai,j} be a pre-distance

matrix, where only some elements ai,j are given. Let W be a symmetric weight matrix
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with nonnegative elements. For e.g., wi,j = 1 if ai,j is given and zero otherwise. Then

the closest distance matrix to A can be found by minimizing the objective function

(6.30) min
D

‖W ◦ (A −D)‖2
F s.t D ∈ D,

where ◦ denotes the Hadamard product and D is the convex cone of Euclidean

distance matrices. The objective function can be rewritten as

(6.31) min
D

∑

i,j

wi,j (ai,j − di,j)
2 , s.t D ∈ D.

A semi-definite programming solution to this problem is provided in [1]. In the

context of recovering the locations, the distributed weighted MDS algorithm mini-

mizes precisely the same cost function, i.e.,

(6.32) min
X

∑

i,j

wi,j (ai,j − ‖xi − xj‖)2 ,

where X = [x1, . . . ,xN ] are the set of locations which yields the distance matrix D.

In other words, the dwMDS yields another approach to the approximate completion

problem. We adopt a two-step dwMDS procedure to localize the unknown users and

APs.

First, we consider all users that sense at least 4 known APs and one unknown AP.

Using only the knowledge of the RSS values between the users and the known APs,

we estimate the locations of the users in the network. We then use the set of user

locations with the corresponding RSS values to the unknown APs to estimate the

location of the unknown APs. This two stage process is illustrated through Fig. 6.23.

Since we do know the ground truth of the actual location of the unknown APs, we

randomly choose a small set of known APs and add them to the set of unknown

APs. We reconstruct the location of unknown APs (and those APs assumed un-

known) using different user trajectories. For the set of APs with known coordinates,
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Figure 6.23: Two stage procedure for constructing network topology. First, through the known
APs, user locations are estimated. Based on these locations, the unknown APs are
localized.

we obtain a 1σ confidence region on the network topology which serves as a mea-

sure of performance of the localization algorithm. We illustrate the performance of

the method in Fig. 6.24. The known AP locations which were originally assumed

unknown are shown using filled circles. The mean estimates of the APs are shown

as triangles. The black ellipse is the uncertainty in the estimation of the unknown

AP. The error in the mean estimate of the AP location is roughly 30m. The actual

estimated locations of the unknown APs are shown in Fig. 6.25. The already known

AP locations are indicated as circles while the location estimates of the unknown

APs are shown as triangles.

Scope for improvement

Despite a number of limitations presented in this UCSD data set, we were able to

attain reasonable accuracy on the localization of the APs. We offer some suggestions

to improve upon the localization performance.

1. Multiple local fits to the RSS model rather than a single global fit: To accurately
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Figure 6.24: Location estimates of APs assumed to be unknown and the corresponding uncertainty
ellipses. Only horizontal coordinates of the 3D coordinate estimates are shown.

100 200 300 400 500 600 700

100

200

300

400

500

600

Figure 6.25: Location estimates of the unknown APs are shown in red. The known AP locations
are shown in blue.
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estimate distances from RSS measurements, we fit a single log normal model to

the RSS data. However, the attenuation in the RSS sensed by a user might be

different for different APs. For example, users might receive a higher RSS value

from an AP on a roof top rather than an AP on the same building one floor

below. This suggests that the log normal model can be adaptively chosen for

each AP based on its relative location in the network.

2. Inclusion of side information: We estimated the user locations with no assump-

tions on the user trajectories. One can make smoothness assumptions on the

user tracks by restricting the user location estimate at the current time to be

in a neighborhood of the user location estimate from the previous time instant.

Moreover, we can impose further constraints on the user and AP locations by

making use of the topology of the UCSD campus. For example, an user cannot

be located on a building or floating in air, and an AP cannot be in the middle

of a road.

6.7 Conclusions

In this chapter, we presented the sparsity penalized MDS algorithm for simultane-

ous localization and tracking. In this problem one is interested in tracking a targets

position relative to the sensor coordinates. The subset selection capability of our

proposed sparsity constraint allows the algorithm to find only those sensors which

have significantly changed their location estimate due to the presence of a target.

We use these sensors to perform link level tracking. We formulate a model for the

inter-sensor RSS measurements in the presence and absence of a target by conduct-

ing actual experiments in free space. Using this model, we propose a perturbation

based algorithm for link level target tracking. Through a numerical study, we showed
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that for a large range of false alarm levels, the DBT outperforms the LRT as it is

able to perform spatial and temporal smoothing without the need for target motion

models. The nonparametric nature of our algorithm makes it attractive when RSS

models are unavailable or inaccurate. We then tested our localization algorithms on

two real world applications: localizing zebras from the ZebraNet data and recovering

the wireless network topology of the UCSD campus. Currently, we are analyzing the

effect of space-time sampling (via the increase of sensors, faster sampling of mea-

surements) on the performance of the DBT. We are also in pursuit of optimal sensor

scheduling strategies for physical level tracking.

6.8 Appendix: derivation of sparsity penalized dwMDS

To simplify our derivation, we divide the global cost function into multiple local

cost functions as follows:

(6.33) C(t) =
n∑

i=1

C
(t)
i + c(t),

where c(t) is a constant independent of the sensor locations X and the local cost

function at each sensor node i is

C
(t)
i =

n∑

j=1,j 6=i

w̄
(t)
i,j (δ̄

(t)
i,j − di,j(X))2 + 2

n+m∑

j=n+1

w̄
(t)
i,j (δ̄

(t)
i,j − di,j(X))2

+ri‖x̄i − xi‖2 + λ‖xi − x
(t−1)
i ‖p,(6.34)

where w̄
(t)
i,j =

∑M
l=1 w

(t),l
i,j and δ̄

(t)
i,j =

∑M
l=1 w

(t),l
i,j δ

(t),l
i,j /w̄

(t)
i,j . The cost function C

(t)
i

depends only the measurements made by sensor node i and the positions of the

neighboring nodes, i.e., nodes for which w
(t),l
i,j > 0; C

(t)
i is local to node i [35]. The

local cost function in (6.34) can be rewritten as

(6.35) C
(t)
i (X) = c

(t)
1 + c

(t)
2 (X) − c

(t)
3 (X) + c

(t)
4 (X),
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where

c
(t)
1 =

n∑

j=1,j 6=i

w̄
(t)
i,j (δ̄

(t)
i,j )

2 + 2
n+m∑

j=n+1

w̄
(t)
i,j (δ̄

(t)
i,j )

2

c
(t)
2 (X) =

n∑

j=1,j 6=i

w̄
(t)
i,j d

2
i,j(X) + 2

n+m∑

j=n+1

w̄
(t)
i,j d

2
i,j(X) + ri‖x̄i − xi‖2

c
(t)
3 (X) = 2

n∑

j=1,j 6=i

w̄
(t)
i,j δ̄

(t)
i,j di,j(X) + 4

n+m∑

j=n+1

w̄
(t)
i,j δ̄

(t)
i,j di,j(X)

c
(t)
4 (X) = λ‖xi − x

(t−1)
i ‖p.(6.36)

The term c
(t)
1 is independent of xi. The term c

(t)
2 is quadratic in xi. Terms c

(t)
3

and c
(t)
4 are neither affine nor quadratic functions of xi. A majorizing function for

the term c
(t)
3 is motivated by the following Cauchy-Schwarz inequality,

(6.37) di,j(X) = ‖xi − xj‖ ≥ (xi − xj)
T (yi − yj)

di,j(Y)
, ∀Y,

where Y = [y1, . . . ,yn]. For c
(t)
4 , we present a quadratic majorizing function, which

can be obtained from the following relation

(6.38) αp/2 ≤ α
p/2
0 +

p

2
(α − α0)(α0)

(p
2
−1), ∀α, α0 > 0.

The above inequality follows from a linear approximation to the concave function

f(α) = αp/2 via Taylor series expansion. Choosing α = ‖xi − xt−1
i ‖2 and α0 =

‖yi − xt−1
i ‖2 yields

(6.39) ‖xi − xt−1
i ‖p ≤ ‖yi − xt−1

i ‖p +
p

2

‖xi − xt−1
i ‖2 − ‖yi − xt−1

i ‖2

‖yi − xt−1
i ‖2−p

,

the majorizing function for the c
(t)
4 term. Substituting the inequalities from (6.37)
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and (6.39) in (6.35), we obtain the majorizing function for the local cost function as

T
(t)
i (X,Y) = c

(t)
1 +

n∑

j=1,j 6=i

w̄
(t)
i,j d

2
i,j(X) + 2

n+m∑

j=n+1

w̄
(t)
i,j d

2
i,j(X) + ri‖x̄i − xi‖2

+2
n∑

j=1,j 6=i

w̄
(t)
i,j δ̄

(t)
i,j

(xi − xj)
T (yi − yj)

di,j(Y)

+4
n+m∑

j=n+1

w̄
(t)
i,j δ̄

(t)
i,j

(xi − xj)
T (yi − yj)

di,j(Y)

+ λ‖yi − x
(t−1)
i ‖p +

λp

2

‖xi − x
(t−1)
i ‖2 − ‖yi − x

(t−1)
i ‖2

‖yi − x
(t−1)
i ‖2−p

.

(6.40)

Since T
(t)
i (X,Y) is a majorizing function to C

(t)
i (X), it is easy to verify that the

function T (t)(X,Y) =
∑n

i=1 T
(t)
i (X,Y) is a majorizing function to the global cost

function C(t)(X). The partial derivative of T (t)(X,Y) with respect to xi is straight-

forward as all the expressions in (6.40) are linear or quadratic in xi. The partial

derivative of T (t)(X,Y) with respect to xi is given by

∂T (t)(X,Y)

∂xi
=

∂T
(t)
i (X,Y)

∂xi
+
∑

k 6=i

∂T
(t)
k (X,Y)

∂xi
,(6.41)

where

∂T
(t)
i (X,Y)

∂xi

= 2
n∑

j=1,j 6=i

(
w̄

(t)
i,j (xi − xj) − w̄

(t)
i,j δ̄

(t)
i,j

(yi − yj)

‖yi − yj‖

)

+4

(
n+m∑

j=n+1

w̄
(t)
i,j (xi − xj) − w̄

(t)
i,j δ̄

(t)
i,j

(yi − yj)

‖yi − yj‖

)

+2ri(xi − x̄i) + λp
(xi − x

(t−1)
i )

‖yi − x
(t−1)
i ‖2−p

(6.42)

and

∂T
(t)
k (X,Y)

∂xi
= 2

(
w̄

(t)
i,k(xi − xk) − w̄

(t)
i,kδ̄

(t)
i,k

(yi − yk)

‖yi − yk‖

)
.(6.43)
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Substituting (6.42) and (6.43) in (6.41) yields,

∂T (t)(X,Y)

∂xi

= 4

(
n+m∑

j=1,j 6=i

w̄
(t)
i,j (xi − xj) − w̄

(t)
i,j δ̄

(t)
i,j

(yi − yj)

‖yi − yj‖

)

+2ri(xi − x̄i) + λp
(xi − x

(t−1)
i )

‖yi − x
(t−1)
i ‖2−p

.(6.44)

Setting the derivatives to zero yields the following recursive update rule

(6.45) xk
i =

1

ai

(
ci +

[
x

(k−1)
1 , . . . ,x

(k−1)
N

]
b

(k−1)
i

)
,

where xk
i denotes the location of node i at iteration k. Furthermore, bk

i = [bk
1, b

k
2, . . . , b

k
N ]

and

bk
i = 4

(
n+m∑

j=1,j 6=i

w̄
(t)
i,j δ̄

(t)
i,j

‖xk
i − xk

j‖

)
,(6.46)

bk
j = 4

(
w̄

(t)
i,j −

w̄
(t)
i,j δ̄

(t)
i,j

‖xk
i − xk

j‖

)
, j 6= i,(6.47)

ai = 4
n+m∑

j=1,j 6=i

w̄
(t)
i,j + 2ri +

λp

‖xk
i − xt−1

i ‖2−p
,(6.48)

ci = 2rix̄i +
λpx

(t−1)
i

‖xk−1
i − x

(t−1)
i ‖

.(6.49)

The dwMDS algorithm in [35] obtains a recursive update for location xi by setting the

derivatives of the surrogate to the ith local cost function (T
(t)
i (X,Y)) to zero. This is

equivalent to minimizing the global cost function only under anchor free localization

(m = 0) and no a priori information (ri = 0). However, in our algorithm, we use the

local cost functions only to derive a majorizing function for the global cost function

and not in the minimization. Moreover, the algorithm is still decentralized in its

implementation though we minimize the global cost function with respect to the

sensor locations X.
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6.9 Appendix: experimental setup

To model the inter-sensor measurements in the presence of a target, we con-

ducted experiments using following setup: we constructed a fine grid of locations in

a free-space environment, where the target was placed and RSS measurements were

recorded between two static sensors for positions on the grid. Crossbow Technol-

ogy Inc MICA2 motes (MPR400 915 MHz models) running the TinyOS operating

system were used for the experiment. Packets containing several bytes of useful in-

formation, e.g., broadcast source, packet number, local battery voltage can be sent

through the Chipcon CC1000 radio, which operated at 910MHz. NesC code was

tailored for two of the motes, the transmitter and the receiver, while the third mote

relayed packets to a laptop using readily-available code. The radio of the transmit-

ting motes was programmed to broadcast at various power settings. The radio of

the receiving motes measured the RSS of each received packet, and then broadcasted

another packet containing this information intended for the base node. Packets were

labeled with their source to avoid confusion. The motes used in the experiment are

shown in Fig. 6.26(a). An aluminium wrapped basketball shown in Fig. 6.26(b) was

used as a reflective target. The environment under which the experiments were per-

formed is fairly clutter-free and is shown in Fig. 6.26(c). The experimental setup is

illustrated through Fig. 6.26(d). The statistical likelihood model described in (6.15)

was formulated based on the measurements collected from this experiment.
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(a) (b)

(c)

Tx Rx

O

x

y

(d)

Figure 6.26: Experimental setup for obtaining statistics of RSS measurements. (a) Crossbow Tech-
nology Inc MICA2 sensors, (b) reflective target, (c) environment, (d) experimental
setup.
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6.10 Appendix: optimal likelihood ratio test

To test the presence of a target on a sensor link i, j, we pose the following hy-

potheses testing problem

H0 : P1, . . . , PM ∼ N (P̄ , σ2
0)

H1 : P1, . . . , PM |P̂ ∼ N (P̂ , σ2
0), i.i.d, P̂ ∼ N (P̄ , σ2

1),

where P1, . . . , PM are the measurements made by a particular link i, j. We leave out

the indices i, j in the measurements for brevity. P̄ is the mean received power in the

sensor link i, j. We assume it can be obtained during the system setup in the absence

of targets. Denote the measurements by the M-element vector p = [P1, P2, . . . , PM ]T .

Then the hypotheses can be written as

H0 : p ∼ N (P̄1, σ2
0I)

H1 : p ∼ N (P̄1, σ2
111T + σ2

0I).(6.50)

To construct the LRT, we first compute the log likelihood ratio as

Λ = log

(
f(p|H1)

f(p|H0)

)

=
1

2
(p− P̄1)T (C−1

0 −C−1
1 )(p− P̄1) +

1

2
log

( |C0|
|C1|

)
,(6.51)

where C0 = σ2
0I, C1 = σ2

111T + σ2
0I and |C| denotes the determinant of a matrix C.

The eigendecompositions of the covariance matrices C0 and C1 can be written as

C0 = V0D0V
T
0 ,

C1 = V1D1V
T
1 ,

where Di is a diagonal matrix composed of the eigenvalues λi
1, . . . , λ

i
M and Vi is

the matrix of corresponding eigenvectors. The eigenvalues of the covariance matrix
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C1 are given by λ1
1 = σ2

1M + σ2
0 and λ1

i = σ2
0 , i = 2, . . . , M . The corresponding

eigenvectors are v1 = 1/
√

M,v2, . . . ,vM , where {vi}M
i=1 are a set of orthogonal unit

norm vectors. The eigenvalues of C0 are all σ2
0 and it is easy to verify that v1, . . . ,vM

are eigenvectors to C0, i.e., V0 = V1. Thus

(6.52) C−1
0 − C−1

1 = V0diag

(
Mσ2

1

Mσ2
1 + σ2

0

, 0, . . . , 0

)
VT

0 =
σ2

1M

σ2
1M + σ2

0

11T

M
.

Substituting (6.52) in (6.51) and collecting constant terms at the right hand side

yields the optimal LRT as

(6.53) |p̄ − P̄ |
H1

≷
H0

γ,

where p̄ =
∑M

i=1 Pi/M is the minimal sufficient statistics of this test. Under H0, p̄

is distributed as N (P̄ , σ2
0/M) and under H1, p̄ is N (P̄ , σ2

0/M + σ2
1). We find γ to

satisfy a false alarm of level α, i.e.,

(6.54) P
(
|p̄ − P̄ | > γ|H0

)
= 2Q

(√
Mγ

σ0

)
= α,

which implies γ = (σ0/
√

M)Q−1(α/2). The probability of correct decision, β is then

given by

β = P
(
|p̄ − P̄ | > γ|H1

)

= 2Q

(
γ√

σ2
0/M + σ2

1

)

= 2Q

(
Q−1(α/2)

√
σ2

0

σ2
0 + Mσ2

1

)
.(6.55)



CHAPTER VII

Conclusion and future directions

That’s one giant leap for me, one small step for mankind.

The need for optimal allocation of resources ( e.g., energy, sensors, and band-

width) in many adaptive sensing applications has been of much interest to different

research communities in recent years. The research presented in this dissertation

attempts to take one small step forward in the direction of providing optimal re-

source management strategies to adaptive sensing. While the work was motivated

by practical problems in radar and sensor networks, the results of this dissertation

can be widely applied. The theoretical results of Chapters II-IV and asymptotic

analysis in Chapter II can be applied to any application where energy constraints

make sense, e.g., X-ray CT, radiation oncology, and communications. We were able

to show that considerable performance improvements can be achieved if adaptive

designs use energy optimally.

The latter part of the thesis aimed towards developing optimal algorithms for

target and sensor localization in sensor networks that could be implemented real-

time and useful for analyzing real data. Along the way, we also suggested methods of

applying the experimental designs for adaptive resource allocation to radar imaging,

209
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channel estimation, and sensor network applications.

We conclude this dissertation by providing some ideas for future research.

Energy allocation

The first part of this dissertation considered the problem of waveform design and

energy allocation strategies for a general class of estimation and detection problems.

Applications of these results to inverse scattering, channel estimation, and target

tracking problems were discussed. It would be satisfying to see these designs im-

plemented in hardware for such applications to confirm the theory and simulations

presented here.

Another potential application of the energy allocation procedure is to medical

imaging and radiation therapy. Computed Tomography (CT) is a widely used

method for generating three dimensional images of the internal organs of a body

using multiple two dimensional X-ray images. There has been a growing need for

higher resolution images which can improve the detection of abnormalities (tumors,

cysts, infections) at an earlier stage. However, higher resolution comes at a cost of

higher radiation dose which could produce harmful reactions on the human body.

An energy allocation procedure similar to the one proposed in Chapters II-IV could

prove extremely useful to generate high quality images without having to expose the

body to high amounts of radiation. By giving lower levels of energy for a slightly

longer time period of time, one could minimize high levels of radiation to the patient.

It would be worthwhile to study whether such a strategy could be applied in this

context.
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Sensor scheduling

In the previous chapter, we implemented the sparsity penalized MDS algorithm

that could simultaneously localize sensors as well as targets. However, further savings

could be realized if we could design a sensor management strategy that enables only

those sensors which are necessary to identify the target. In the absence of any target

motion model, one could devise a simple strategy based on the sparsity penalized

MDS as follows: given the set of tagged sensors, i.e., sensor links with high output

through the distance based or LRT methods, we could activate all sensors within a

specified neigborhood and perform MDS locally to obtain the new position of the

target. This approach will enable the sensors further away from the target to go into

sleep mode and could be activated at a later stage.

If we are given a target motion model, then we could borrow the concepts of

sparse waveform selection method proposed in Chapter V of this dissertation for

sparse sensor selection. Consider the problem of choosing s sensors to activate at

each time step in a sensor network of n wireless sensors (s ≪ n) to minimize a target

state prediction error. This problem falls into the framework of sparse selection

described in Chapter V. We could then implement a convex relaxation solution and

show near optimal performance to this sensor selection problem.

Completion problems

The study of the sparsity penalized MDS as a real-time application tool for the

analysis of the UCSD wireless trace data has opened many interesting problems

for wireless topology discovery. The UCSD wireless traces capture signal strength

measurements of users within range of the various APs on campus. However, more

than 60% of the AP locations were unknown, thereby raising the question of whether
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the rest of the network topology could be discovered. In particular, given a set of

distances from the user to the known and unknown AP points, is it possible for us

to discover the entire pairwise distance matrix which then can be translated into

location estimates of the user and the AP points? We presented simple conditions

under which an accurate reconstruction is feasible in the absence of noise and with

the knowledge of all distances between the users and the APs. The presence of

noise and missing data (only certain user-AP distances are known) brings in the

topic of least squares reconstruction. In this context, there is extensive research on

Euclidean distance matrix completion problems (EDMCP) which finds a solution to

this problem via semi definite programming. It would be worthwhile to study the

theory of EDMCP and implement this approach for topology discovery. Furthermore,

inclusion of side information would add an additional dimension to the problem. For

example, incorporating constraints such as building layouts, attenuation map for

each AP, and information about transmit signal strengths should provide significant

performance improvement to the localization algorithm.
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ABSTRACT

RESOURCE CONSTRAINED ADAPTIVE SENSING

by

Raghuram Rangarajan

Chairperson: Alfred O. Hero III

Many signal processing methods in applications such as radar imaging, communi-

cation systems, and wireless sensor networks can be presented in an adaptive sensing

context. The goal in adaptive sensing is to control the acquisition of data measure-

ments through adaptive design of the input parameters, e.g., waveforms, energies,

projections, and sensors for optimizing performance. This dissertation develops new

methods for resource constrained adaptive sensing in the context of parameter esti-

mation and detection, sensor management, and target tracking.

We begin by investigating the advantages of adaptive waveform amplitude design

for estimating parameters of an unknown channel/medium under average energy

constraints. We present a statistical framework for sequential design (e.g., design of

waveforms in adaptive sensing) of experiments that improves parameter estimation

(e.g., scatter coefficients for radar imaging, channel coefficients for channel estima-

tion) performance in terms of reduction in mean-squared error (MSE). We derive



1

optimal adaptive energy allocation strategies that achieve an MSE improvement of

more than 5dB over non adaptive methods. As a natural extension to the problem of

estimation, we derive optimal energy allocation strategies for binary hypotheses test-

ing under the frequentist and Bayesian frameworks which yield at least 2dB improve-

ment in performance. We then shift our focus towards spatial design of waveforms by

considering the problem of optimal waveform selection from a large waveform library

for a state estimation problem. Since the optimal solution to this subset selection

problem is combinatorially complex, we propose a convex relaxation to the problem

and provide a low complexity suboptimal solution that achieves near optimal perfor-

mance. Finally, we address the problem of sensor and target localization in wireless

sensor networks. We develop a novel sparsity penalized multidimensional scaling

algorithm for blind target tracking, i.e., a sensor network which can simultaneously

track targets and obtain sensor location estimates.


