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ABSTRACT

We consider the problem of emitter tracking using received signal
strength (RSS) measured at a number of in-range access points (AP)
when some of the AP locations are unknown. This can be formu-
lated as a Euclidean distance matrix completion problem (EDMCP)
to which an iterative distributed weighted multidimensional scaling
(dwMDS) algorithm can be applied to simultaneously track emit-
ters and localize APs. The algorithm is illustrated using real-time
data collected by the University of California at San Diego (UCSD)
wireless topology discovery project.

Index Terms— distributed multidimensional scaling, sparsity
constrained tracking, wireless mobility.

1. INTRODUCTION

Wireless localization and tracking has attracted tremendous interest
from a wide range of sectors such as security, ecology, property con-
trol, and targeted marketing. Accurate location of targetscan facil-
itate a number of location based services in these domains. For ex-
ample, in perimeter surveillance a network of rf sensors canbe used
to estimate the location of intruders in the network. For retail stores
such as Walmart, these services can be used to locate equipment or
inventory in a warehouse or can advertise different products to users
based on their location in the store. The problem of estimating target
locations based on range information (e.g., received signal strengths
or time of arrival) has been an active area of research duringthe last
decade.

Mulltilateration can be used to locate energy emitting targets
based on the range information provided by the targets to multi-
ple access points (AP) or other receiving sensors. When there are
many users or when some of the locations of APs in range of the
targets are not known, the problem of estimating target locations can
be formulated as an Euclidean distance matrix completion problem.
Previous approaches for solving the EDMCP use semi-definitepro-
gramming methods [1] which are not scalable. In this paper, we
propose to use the sparsity penalized distributed weightedmultidi-
mensional scaling (dwMDS) algorithm introduced in [2] to solve the
EDMCP. Furthermore, we show how this general solution can beap-
plied to geo-localize the unknown AP locations in the wireless net-
work in addition to obtaining target coordinates. We conclude with a
tracking illustration of our algorithm on real-time data sets from the
Wireless Topology Discovery (WTD) project at the UCSD campus.
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Fig. 1. Wireless users X and access points (AP) U are at unknown
positions while access points K are at known positions. Given mea-
sured distances between X and K, X and U, and K and K the Eu-
clidean matric completion problem is to recover all pairwise dis-
tances between X, K and U.

2. PROBLEM FORMULATION

The problem of multi-emitter tracking can be represented asfollows.
Let {xi}

N
i=1 denote the unknown locations ofN users in the wire-

less network. APs in the network measure received signal strength
(RSS) from these users. Let{ki}

M
i=1 and{ui}

P
i=1 be the locations

of the APs, where the firstM AP locations are known and the last
P locations are unknown. Denote the RSS measurements between
targeti and APj as RSSi,j . At any time, a targeti is only in range of
a small subset of the APs and hence the matrix of RSS values is only
partially known. Our goal is to estimate the locations of thetargets
{xi} and the locations of the unknown APs{ui} given these RSS
measurements. A pictorial representation of the problem isshown
in Figure 1. The fundamental question is: given the knowledge of
connectivity (edges) of only some edges of a Euclidean network, can
one recover the connectivity of the entire network?

3. PROPOSED SOLUTION

Denote the distance between emitteri and APj asdi,j . Herei ∈
{1, . . . , N} andj belongs to{1, . . . , M, M + 1, . . . , M + P} cor-
responding to theM known andP unknown APs. In many envi-
ronments it can be shown that the RSS is approximately log-normal
in its distribution [3], i.e., if the recieved rms powerPi,j is in mil-
liWatts, then RSSi,j = 10 log10(Pi,j) is approximately Gaussian.



Thus RSSi,j in dBm is typically modeled as

RSSi,j ∼ N (RSS0 − 10np log

(

di,j

d0

)

, σ02) (1)

whereσ0 is the standard deviation of the received power in dBm
and RSS0 is received power in dBm at a reference distanced0. The
constantnp is referred to as the path-loss exponent and it depends
on the environment. We use maximum likelihood estimation tocom-
pute the range,di,j from RSSi,j . The maximum likelihood estimator
of di,j is given by

δi,j = d010(
(RSS0−RSSi,j)/10np). (2)

The complete inter-point distance matrixD, called the Euclidean
distance matrix, is a symmetric matrix of the form

D =





Dkk Dkx Dku

Dxk Dxx Dxu

Duk Dux Duu



 , (3)

whereDkk is the distance matrix between the known AP locations,
Dkx = D

T
xk is the distance matrix between the known AP locations

and the users, and the rest of the sub-distance matrices are similarly
defined. Among these sub-matrices, onlyDkk is completely known.
The distance matricesDkx andDux are partially known since dif-
ferent users are within range of only a fraction of the known and
unknown APs. For any matrixD defineD

∗ as the matrixD with
some of its entries deleted and define∗ as the matrixD with all of
its entries deleted. With this notation, if the exponentnp is known
then the incomplete Euclidean matrix of distances can be recovered
from the noiseless RSS measurements

D
∗ =





Dkk D
∗

kx ∗
D

∗

xk ∗ D
∗

xu

∗ D
∗

ux ∗



 . (4)

The objective is to reconstruct the complete distance matrix D

in (3) from the RSS measurements. OnceD is recovered we can
recover the user tracks and unknown AP locations. We consider
two cases: (a) the exact completion problem, i.e., when the dis-
tances inD∗ are available; (b) the approximate completion problem,
i.e., when only a noise contaminated version ofD

∗ is available.

3.1. Exact completion problem

In the noiseless case (σ0 = 0) the problem of localizing the unknown
APs and the targets can be formulated as an Euclidean distance ma-
trix completion problem (EDMCP) [4,5]. This is a classical problem
in geometry and can be stated as the problem of recovering theset of
all pairwise distances betweenn points given only a subset of these
distances. A solution exists when a sufficient number of entries of
D are specified.

Specifically, letA = ((ai,j)) be anN × N partial distance
matrix inRk. Let G = (V, E) be an undirected graph withV =
1, 2, . . . , N , E = {(i, j) | ai,j is specified}, and whose specified
entries are chordal.

Definition: A graph ischordal if each of its cycles of four or
more vertices has a chord, which is an edge joining two nodes that
are not adjacent in the cycle.

Theorem 3.1. [4] Every partial distance matrix inRk, the graph of
whose specified entries is chordal, admits a completion to a distance
matrix inR

k. The matrix completion is unique if if and only if

B =

(

0 e
T

e A(S)

)

has rankk + 2 for anyS ∈ S , (5)

whereS is the collection of all minimal vertex separators ofG, e is
a column vector of ones andA(S) is a matrix formed by using the
set of vertices inS.

A solution to the exact completion problem for an arbitrary known
set of partial matrix entries is not generally in closed-form [6]. A
special case for which a closed form solution does exist is given in
the following

Theorem 3.2. LetA be a(N + M) × (N + M) partial distance
matrix with rankk + 2 and the following structure:

A =

[

A11 A12

A21 A22

]

, (6)

whereA11 is N × N , A12 is N × M , and A22 is an M × M

matrix. Given,A11,A12, there exists an unique Euclidean matrix
completion toA given byA22 = A21A

+
11A12 if rank(A11) =

k + 2.

Proof. The set of nonadjacent vertices for the partially complete dis-
tance matrixA defined in(6) is given byNv = {(i, j) | N + 1 ≤
i, j ≤ N + M}. The corresponding collection of minimal vertex
separators of the graphG is a singleton setS = {1, 2, . . . , N}. This
guarantees that the graph associated with the entries ofA is chordal.
As N > k + 2, B in (5) has rankk + 2 if A11 has rankk + 2. Let
r = k + 2. From Theorem 3.1, there exists a unique solution to the
exact completion problem. The eigendecomposition ofA is given
by

A = VΛV
T
,

whereΛ = diag(λ1, λ2, . . . , λr) andV = [v1, v2, . . . ,vr] are the
corresponding set of orthonormal eigenvectors. LetV = [VT

1 V
T
2 ]T ,

whereV1 is N × r andV2 is M × r. Then the sub-matrices can be
written as

A11 = V1ΛV
T
1

A12 = V1ΛV
T
2

A22 = V2ΛV
T
2

SinceA11 is full rank, the pseudo inverse ofA11 can be written as

A
+
11 = V1(V

T
1 V1)

−1
Λ

−1(VT
1 V1)

−1
V

T
1 .

Then

A21A
+
11A12

= V2ΛV
T
1

(

V1(V
T
1 V1)

−1
Λ

−1(VT
1 V1)

−1
V

T
1

)

V1ΛV
T
2

= V2ΛV
T
2 = A22.

Theorem 3.2 does not apply when all the points yielding the par-
tial matrix A11 lie on ak-dimensional sphere such that rank(A11)
is k + 1. It is easy to verify that a solution exists for this case using
Theorem 3.1, which is in fact unique, but Theorem 3.2 does notyield
the optimal completion.

This theorem can be applied to completion of the partial matrix
D

∗ defined in (4). Assume that rank(Dkk) ≥ k + 2, which requires
the numberM of known AP positions to be no less thank + 2.
Then a two step procedure recoversD from D

∗. First recoverDxx,
Dxk = D

T
kx from Dkk andD

∗

kx by applying Thm. 3.2 to the upper
left (M + N) × (M + N) submatrix ofD∗. Then, plugging the
solutionsDxx andDxk into their places in the upper left(M+N)×
(M + N) submatrix ofD∗ solve forDuu andDxu = D

T
ux by a

second application of the theorem. Thus in this case all unknown
entries inD can be recovered fromD∗.



3.2. Approximate completion problem

When only noisy measurementsA = D
∗+N of the partial distance

matrixD
∗ are available an approximation to the Euclidean distance

matrix D can be obtained by formulating a nonlinear least squares
problem. LetW be a symmetric weight matrix with nonnegative
elements, e.g.,wi,j = 1 if ai,j is given and zero otherwise. Consider
the Frobenius norm minimization

min
D

‖W ◦ (A −D)‖2
F s.t D ∈ D, (7)

where◦ denotes the Hadamard product andD is the convex cone of
Euclidean distance matrices. The objective function can berewritten
as

min
D

∑

i,j

wi,j (ai,j − di,j)
2
, s.t D ∈ D. (8)

A semi-definite programming solution to this problem is pro-
vided in [1] that does not scale well due to its high computational
complexity in the number of locationsN + M + P . A lower com-
plexity iterative algorithm is the dwMDS algorithm of Costa[7] and
it directly yields location estimates by minimizing the equivalent ob-
jective function over location vectorszi:

min
Z

∑

i,j

wi,j (ai,j − ‖zi − zj‖)
2
, (9)

whereZ = [k1, . . . ,kM ,x1, . . . ,xN ,u1. . . . ,uP ] is the set ofM
known positionski of the AP’s K, the set ofN unknown user posi-
tionsxi, and the set ofP unknown AP positionsuj . As in standard
MDS, the solution to (9) is not unique since rotations and transla-
tions of the location matrix leave the objective function invariant.
However, by constraining the positionski to be equal to the known
AP positions (anchor nodes), as long as these known AP positions do
not lie on a plane or a line, a unique solution can often be found [7].

The dwMDS algorithm was reformulated in [8], [2] for target
tracking by introducing a sparsity penalty on changes in theuser
part ({xi}) of the solution to (9) over time. This sparse dwMDS al-
gorithm is a distributed iterative procedure that can be implemented
in a decentralized in-network manner. Furthermore, the associated
weightsWi,j can be selected to emphasize more accurate RSS mea-
surements and de-emphasize others. We adopt a two-step version of
the dwMDS procedure to successively localize the unknown users
and APs that mimics the two step exact matrix completion procedure
discussed above. First dwMDS is implemented to recover tracks
{mbxi} without using the RSSs measured with respect to the un-
known AP’s (U in Figure 1) then, substituting the estimated track lo-
cations into the partial distance matrix we rerun dwMDS to recover
the unknown AP locations{ui}.

4. APPLICATION TO UCSD WTD DATA

4.1. UCSD wireless trace data

The wireless topology discovery (WTD) project1 was undertaken
by researchers at University of California San Diego (UCSD)[9].
The project collects data on dynamic characteristics and user behav-
ior in a real world wireless network. The primary objective of the
WTD project was to test and develop reliable routing protocols in
a geographically constrained wireless network. To collectdata,275
UCSD freshman were given HP Jordana PDAs which were equipped
with symbol802.11 compact flash cards and the WTD data collec-
tion software. The software recorded all access points (AP)sensed

1http://sysnet.ucsd.edu/wtd/
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Fig. 2. Campus map showing the200 known AP locations. Only the
horizontal (x,y) part of the 3D coordinates (x,y,z) are shown. In ad-
dition to these locations, there were100 APs at unknown locations.
Also shown is a sample RSS data from a single user to APs. The
sensed APs by the user are indicated in blocked red along withtheir
RSS measurements.

by the user every20 seconds. The trace data were collected over
a 11 week period and then transferred to a centralized database for
analysis. The data indicated that around300 APs were sensed over
this time among which only200 of them had knowledge about their
locations.

The trace data collected consisted of the following information:
user identity, sample time, AP identity, RSS, and AC/battery power
indicator. The coordinates of the known APs were also provided in
the database. Our objective was to recover user trajectories over time
and to reconstruct the network topology (locations of the unknown
APs) using available data. The map of the known AP locations on
the UCSD campus and the data samples at a particular time instant
for a single user are shown in Fig. 2. The APs sensed by the userare
shown as filled circles. The corresponding RSS values (2, 6, 27) are
shown next to these APs.

To reconstruct the user trajectories, we need to estimate user
locations over time based on measured RSS at the various access
points. The RSS values provided in the database were5-bit quan-
tized values between0 and31. Since the mapping from these quan-
tized values to the actual signal strength in dB is unknown, we needed
to calibrate the quantized numbers to signal strength values. This
was performed using an iterative least squares procedure that yielded
the best linear fit between the quantized values and the correspond-
ing RSS value in dB [10].

5. SIMULTANEOUS LOCALIZATION OF TARGETS AND
APS

First, we consider all users that sense at least4 known APs and one
unknown AP. Using only the knowledge of the RSS values between
the users and the known APs, we estimate the locations of the users
in the network. We then use the set of user locations with the cor-
responding RSS values to the unknown APs to estimate the location
of the unknown APs. As a validation of our two stage dwMDS al-
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Fig. 3. Location estimates of three known APs that were made un-
known to the two stage dwMDS algorithm and the corresponding
uncertainty ellipses. Only horizontal coordinates of the 3D coordi-
nate estimates are shown.
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Fig. 4. Location estimates of the unknown APs are shown in red.
The known AP locations are shown in blue.

gorithm for localization of targets and APs we performed thefol-
lowing experiment. We randomly choose a small set of known APs
K and added them to the setU of unknown APs. We reconstruct
the location of the APs in the augmented setU using different user
trajectories in the sparsity penalized dwMDS algorithm of [2]. The
knowledge of some of the locations in the augmented setU allows
us to indirectly measure the rms error of the reconstructionof the
unknown AP locations (see Fig. 3).

In Fig. 3 the known AP locations in the augmentedU set are
indicated by filled circles. The mean estimates of the APs areshown
as triangles. The black ellipse is the standard error ellipse for the un-
known AP location. The error in the mean estimate of the AP loca-
tion is roughly30m. The actual estimated locations of the unknown
APs are shown in Fig. 4. The known AP locations are indicated as
circles while the location estimates of the unknown APs are shown
as triangles.

6. CONCLUSIONS

In this paper, we considered the problem of multitarget localization
and tracking in a sensor (AP) network having some unknown sensor
locations. For the case where there is no noise in the RSS measure-
ments we formulated this problem as a Euclidean distance matrix
completion problem (EDMCP) and proposed a two step exact com-
pletion algorithm to recover the complete pairwise distance matrix
between all sensors and targets under some conditions on therank
of the distance matrix. The target positions and the unknownsensor
(AP) locations can be recovered from the completed distancema-
trix up to a rotation and translation. We then showed how a two
stage constrained dwMDS algorithm can be implemented to directly
recover the unknown locations. The sparsity constrained dwMDS al-
gorithm was illustrated for tracking wireless PDA users in the UCSD
WTD data set.

Possible ways for us to improve upon the localization perfor-
mance in the UCSD WTD data set are as follows. (1) to perform
multiple local fits to the RSS model rather than a single global fit.
This would allow us to adaptively fit the log-normal model foreach
AP based on its relative location in the network. (2) to include
side information, e.g., smoothness of user trajectories ortopographic
maps of the UCSD campus.
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