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ABSTRACT

In this paper, we consider the problem of target trackinggisien-

sor network measurements. We assume no prior knowledgesof th

sensor locations and so we refer to this tracking as ‘bliBéice any
sensor localization algorithm can only find the sensor locagsti-
mates up to a rotation and translation, we propose a novesigpa
penalized multidimensional scaling (MDS) algorithm togalithe
current time sensor location estimates to those of the gusvime-
frames. In the presence of a target, only location estinaftédsose
sensors in the vicinity of a target vary from their initiabgtimated
values. Based on the differences in the sensor locatiomatgs be-
tween two time-frames, we design a perturbation based itiigor
naturally rising from the sparsity penalized MDS for traakimulti-
ple targets relative to the initial sensor location estasatThrough
a detailed numerical analysis, we show that the trackingralgn
based on sparsity penalized MDS outperforms the conveatiite-
lihood ratio test (LRT) based tracking.

low resolution tracking algorithm to monitor animal bet@vand
interactions with their own clan and with other species.
Most tracking algorithms assume knowledge of the senserloc
tions or estimate the sensor locations separately befoptoging
the tracking algorithm. The process of estimating the selmsa-
tions using a set of inter-sensor measurements is callexbsémn
calization. Prior work on sensor localization assume tresgmce
of anchor nodes, i.e., certain sensors which have knowlefitieir
positions in the network. In the absence of anchor nodesehsor
location estimates are only accurate up to a rotation amglaon.
The intuition behind this result is as follows: consider freblem
of estimatingn sensor locations given the(n — 1)/2 inter-sensor
distance measurements. The distance information deperg®
the differences in the sensor locations so that the positidnthen
sensors in the network can be rotated and translated witthaurtg-
ing these distances.

In this paper, we propose the sparsity penalized distribuisg-
hted multidimensional scaling (dwMDS) algorithm which silita-

Index Terms— Target tracking, sensor localization, sensor net-neqysly localizes the sensor nodes in the absence of anahdrs

works, distributed detection

1. INTRODUCTION

Target tracking has been of significant interest in manytamifiand
civilian applications such as surveillance, vehicle tiagkrobotics,
biological research, and automotive collision warningeys. De-
pending on the models for the target trajectory and sensasune-
ments, tracking algorithms based on the Kalman Filter ftgrded
Kalman filter [2], and Gaussian sum approximations [3] haeerb
proposed. Particle filtering methods were then proposetldoking,
where the probability density of the state of the target.(gbysi-
cal coordinates, velocity) is approximated on a set of éigcpoints
[4]. Most prior work on tracking consider a model-based apph,
which requires a detailed probabilistic model of the unkndarget
dynamics, more sensed information, and is computatioriatn-
sive.

A link level tracking algorithm localizes the target to witha
small set of sensor links. Link level tracking has many ative
features, the most important of which is that it does not ireqa
physical model for the target. This approach for a simpletyin
sensing measurement model is shown to require minimal pamar
is also analytically tractable [5]. Moreover, the goal ofta& sen-
sor networks is to obtain an estimate of the location of thgets,
or detect changes in the network. For example, in militapliap-
tions, the sensors can locate a target relative to the nletavat the
network can activate the appropriate sensors to identiytainget.
For animal tracking in biological research, it is suffici¢othave a
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tracks multiple targets. The principle behind our propcsigdrithm
is the following: in the ‘acquisition phase’ or initializah, an ini-
tial estimate of sensor locations is acquired. Once theossitgmve
been initially localized, it is only the network topologyathis criti-
cal to the problem of tracking. Hence, during the trackingge) we
introduce a sparsity constraint to the cost function of aliaation
algorithm, which attempts to align the current time senscation
estimates to that of the previous time-frame. By doing sokeep
monitoring the network with respect to a fixed geometry oiediby
the localization algorithm at the first time instance. Tharsjty con-
straint only reassigns a small fraction of the sensor looatiwhile
the rest of the sensor location estimates remain unchangedfeir
previously estimated values. When the sensor network isuked
for tracking, only the sensors affected by the presence afget
are perturbed. Based on the differences in the sensor doces-
timates between two time-frames, we propose a novel patiorb
based link level tracking algorithm, which accurately laces a tar-
get to within a small set of sensor links. Since this trackimethod
arises naturally from the sparsity penalized MDS algorithiis able
to perform spatial and temporal smoothing unlike the moreven-
tional LRT based tracking. We present a detailed numeritallyais
to illustrate the advantages of the perturbation basegitrgenethod
when compared to LRT based tracking. In the absence of & taage
jectory model, we also suggest methods for translatindittkigevel
estimate to actual target coordinates.

The paper is organized as follows: in Section 2, we formufate
problem of sensor and target localization. In Section 3, resgnt
the sparsity penalized MDS algorithm for sensor locatiograhent.
We describe the LRT and the sparse MDS based tracking digmit
in Section 4 and present a numerical study of their perfooman
Section 5. We conclude this paper in Section 6.



2. PROBLEM FORMULATION

The goal of this paper is to simultaneously localize the senand
targets. Consider a network &f = n 4+ m sensors tracking the
targets. Letxi,...,xy denote the true sensor locations. The
sensor nodegx;} """
know their actual locations. Later, we s@t = 0 for anchor free
localization. DenoteX = [x1,x2,...,xn~] as the matrix of ac-
tual sensor locations. LdD = (d;;);—; be the matrix of the
true inter-sensor distances, whetg; denotes the Euclidean dis-

tance between sensorand sensoy. In some cases, there is im-

perfect a priori knowledge of certain sensor locations. sTihfor-

are the anchor nodes, i.e., sensors which

where|| - || denotes thé;-norm, i.e.,||x|| = vxTx. Define thelo-
measure of a vector = [v1,v2, ..., v,] as the number of nonzero
elements given by

n
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where(-) is the indicator function. Using aky-constraint on the
distance vectog® of the form ||g” |0 < ¢, we guarantee that
no more thary of the location estimates will vary from their pre-
vious time-frame values. Minimizing a cost function undee -
constraint requires a combinatorial search which is coatmrtally

mation is given by{x; };_; and the corresponding set of confidence jnfeasible. Define thé,-measure of a vector as

weights is{r; }i—,;. Whenx; is unavailable, we set; = 0. We

obtain M inter-sensor received signal strength (RSS) measurements

{Pfy?’k ML, for pairs of sensorg, j at timet. The indiceg(4, j) run
over a subset of1,2,..., N} x {1,2,..., N}. Sensor localiza-
tion is the process of estimating the location of theensor nodes
{_xi mgiven{x; } it {ri}, {xi ), gnd_{Pff].)”“}. Furthermore,
given the RSS measurements, the objective of the trackgugitim

is to identify the set of linkg, j which indicate a presence of a tar-

get. These binary outputs are then used to obtain an estohtie
physical location of the target.

3. SPARSITY PENALIZED MDS

Sensor localization algorithms can be broadly classifiemitimo cat-
egories: centralized strategies and decentralized gteateln a cen-
tralized algorithm such as MDS, a fusion center estimatessén-
sor locations using the measurement data received fronetisoss.
In a decentralized algorithm, the localization of the semsmles is
performed locally, i.e., each sensor estimates its locatimsed on
the information communicated from its neighbors. This riist
tive strategy limits power consumption and conserves baittivior
large scale sensor networks. An example of decentralizealita-
tion is the dwMDS algorithm proposed in [6]. However, cotesis
reconstruction of the sensor locations is attainable amiyé pres-
ence of anchor nodes. If the current localization algoritare im-
plemented for anchor free localization, the geometry ofsiesor
network assumes different alignments as localization rfopmed
over various time instants. This makes it impossible tatd@mnges

in the network. To overcome this problem, we present a dparsi

penalized dwMDS algorithm that aligns the current senscation
estimates to those of previous time-frames.

Consider using the MDS algorithm independently to obta& th

sensor location estimates at timend at timet — 1. Alignment
between these two sets of points can be performed in variays.w
For example, in Procrustes analysis [7] alignment is peréat by
finding the optimal affine transformation of one set of nodes t
yields the set closest to the second set of points in the $epstres
sense. However, this procedure cannot guarantee that reasprs
locations estimates will remain unchanged from their frasiy es-
timated values. The errors in the sensor location estiniatgeen
two time steps may accumulate over time resulting in alignnee-
rors. In contrast, we introduce a sparseness penalty ornigteandes
between the sensor location estimates at tiifde) and at timel — 1
(ng*”) directly to the sensor localization algorithm. Constract
vector of Euclidean distances between the location estisrettime
tand attimet — 1
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For a quadratic cost function, dp-constraint ¢ < p < 1) induces
a sparse solution. Among dl} sparsifying constraints, only =
1 offers a convex relaxation to thig-constraint [8]. To promote
sparsity, we next advocate the use of theonstraint as a penalty
term via the Lagrange multiplier in the dwMDS algorithm tdv&o
for the sensor location estimates. Hence the tgyansity penalized
MDS

The cost function of the dwMDS algorithm [6] is motivated by
the variational formulation of the classical MDS, whicheatipts to
find sensor location estimates that minimize the inter-@edistance
errors. Keeping in mind that it is the geometry of the senstwark
which is crucial for tracking, we present a novel extensitrihe
dwMDS algorithm through the addition of the sparsenessadimiu
lp-constraint. At any time, we seek to minimize the overall cost
functionC'™® given by
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For each time, 65?1 is an estimate of the distance between sensor

1 and sensoy obtained from RSS measuremé?ﬁtj)’l. The weights

{wg_?’l} are chosen to quantify the accuracy of the predicted dis-
tances. When no measurement is made between séasaor sen-

sor j, wz(tj” = 0. Furthermore, the weights are symmetric and
wl(?l = 0. If available, the a priori information of sensor loca-
tions is encoded through the penalty terfns|x; — x;||?}. Finally,
we introduce ari,-constraint ( < p < 1) on the distances between
the sensor locations at timteand the estimated sensor locations at
time ¢ — 1. The Lagrange multiplier of the sparseness penalty is
denoted as\. We can tune the value of to yield the desired spar-
sity level ing(”). Later, when we apply the algorithm for tracking,
the sparseness will be advantageous as only those sensolrsan
highly affected by the target will vary from their initial pitions,
thereby allowing for a detection of the target through thecpss of
relative sensor localization. The sensor location esémate found
by minimizing C in (4) using optimization transfer. Closed-form
iterations for a distributive implementation of the spgrgienalized
MDS algorithm is derived in [9].

To find the maximum likelihood (ML) estimate of the distance
from the RSS measurements, we assume the RSS to be log-normal
in its distribution [10], i.e., ifP; ; is the measured power by sensor



i transmitted by sensgrin milliWatts, then10 log,,(P;,;) is Gaus-
sian. ThusP; ; in dBm is typically modeled as
N(Pj,00)

~

®)

2y

d
do )’

where P, ; is the mean received power at distantg, oo is the
standard deviation of the received power in dBm, &hds received
power in dBm at a reference distanég n,, is referred to as the
path-loss exponent that depends on the multipath in theammient.
Given the received power, we use maximum likelihood esfonab
compute the range, i.e., distance between the sensor neahes;.
The ML estimator ofi; ; is given by

Py — 10n, log (

62J = d010(<P07P77wj)/10np). (6)

4. TRACKING USING SPARSE MDS

Given the alignment of sensor location estimates betweertitae-
frames, we now present an algorithm for performing link léxasck-
ing using the sparsity constrained MDS algorithm. Link levack-
ing does not require a physical model for a target. Howevas i
important to know the effect of the target on the inter-semsea-
surements. Researchers have proposed various modele fRiSiB
measurements ranging from the traditional linear Gaussiaael to
the binary sensing models. These are approximate statistmdels
and the distribution of the measurements in the presenceasfat
remains an open question.

To model the statistics under the setting of vehicle tragkine
conducted experiments using RF sensors hardware in thernoes
of a target [9]. We constructed a fine grid of locations, whibe

for each linki, j is given by
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where~ is chosen to satisfy a false alarm level aﬁ’q is the mean
received power in the sensor link estimated using an irsilof
range measurements. We assume that the sensor networkiss in i
steady state operation mode. We do not consider the tramsfeats

in the measured data when it is obtained in the absence ohaystt

A derivation of the decision rule and its performance cardomdl in
Appendix 7. We show that the performance of the optimal detés
dependent on the number of samplésavailable for the inter-sensor
measurements. A/ becomes very large, the probability of correct
detections tends tol. However, if only few samples are available,
B may not approach and misdetect type errors may become non
negligible. In such a case, instead of using the LRT, we canaus
test on the variation of the sensor location estimates at tifrom
their estimates at a previous timer < t). In other words, we can
perform a simple hypothesis test for each link of the form

whered!") = [|x{" — x{"|| and{x{"} are the sensor location esti-
mates obtained from the sparsity penalized MDS algorithm.
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5. NUMERICAL STUDY

We analyze the performance of the localization algorithraisigu
ROC curves. We consider the following setup: we deplay & 10

target was placed and RSS measurements were recorded betwétiform grid of sensors in a network (see Fig. 2). We conséter

two static sensors for positions on the grid. Upon gathettieglata,
we fit the following statistical model in the presence of &rgrhe
RSS measurements under this kiypothesis at sensor linkj are
distributed as

N(Pij, o), iid, k=1,2,....M
N(Pidﬁo—f)v
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chor free localization, i.e;n = 0 and make a single inter-sensor
measurement)( = 1) at each time frame. We assume no a priori
knowledge of the sensor coordinates, ire = 0. Each sensor com-
municates only to it8 nearest neighbors and the weights for those
links were chosen by the LOESS strategy [6]. The rest of tHghte
were set to zero. Furthermore, we set noise variangesdo, de-
fined in (5) and(7), respectively agg = 1 ando; = 500 = 5.
Sensor links within a radiu® = 1.5 indicate the presence of a tar-
get, i.e., follow the H hypothesis. We set the reference distatice

where Pf; is the k™ inter-sensor measurement when the target isdefined below(5) to bedy = 1 and the path loss exponent= 2.

in the neighborhood of the sensors. Thé sensor link measure-
ments are correlated through the random variablg. The val-
ues obtained from our actual experiments wege~ 0.1463dBm
ando; ~ 1.5dBm. The noise variance in the measurements
was roughly an order of0 times larger tharr. In other words,
RSS measurements tend to have a larger variance due tariscatte
and attenuation of the signals in the presence of a targetonfi-c
dence measure for such a log-normal distribution of the R8& id
obtained using the Kolmogorov-Smirnov (KS) test in [11] ahd
model is shown to work well for sensor localization. We assum
this statistical model for the RSS measurements, when thetts
within a specified distanc® of the sensor linki, j. The distance
R depends on the reflectivity of the object. If the object ishhig
reflective, then the variation in the RSS measurements éstigt by
more links.

Based on the Hland H, hypothesis given iif5) and(7) respec-
tively, we formulate the optimal decision statistic to dite pres-
ence of a target in a particular sensor link using the LRT. IR&

We set the sparseness paramefees 2.5 andp = 1 to produce a
change in the location estimates for only a small portian (%) of
the sensors.

We begin by considering the case of random appearance of tar-
gets in the sensor network, i.e., targets appear at ditféoeations
every time instant. For the distance based target localizaigo-
rithm (DBT), we setr = 0 in (9), i.e., we compare our distance
estimates to a fixed initial frame. For every time instang DBT
and the LRT are performed on each active sensor link and the pr
cess is repeated fa000 target locations. The resulting ROC curve
is presented in Fig. 1. The ROC for the LRT using simulatians i
indicated using circles and the corresponding theoreticale ob-
tained from(14) is shown as a solid line. We observe that the sim-
ulation and the theoretical curves match for the LRT. The R@C
the DBT is shown using a dashed line. The DBT algorithm yields
higher probability of correct detection than the LRT for mfadse
alarm levels. For example, at false alarm lewet= 0.3, 3 for the
DBT is approximately.89 which is5% more than that of the LRT,
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Fig. 1. ROC curve for the LRT and the DBT link level tracking Fig. 2. A simple tracking algorithm based on link level tracking.

algorithm. LRT (solid line), DBT for a random target with= 0
(dashed), DBT for a moving target with = 0 (dotted), and DBT
for a moving target withr = ¢ — 1 (dashed dotted).

True sensor locations (circle), true trajectory of theeafdiamond),
estimated trajectory (plus).

ample, fora = 0.1, § for the LRT is0.75. The result of spatial

which yields ~ 0.84. The intuition for this result is as follows: in

smoothing alone yield$ ~ 0.79. By performing both spatial and

the presence of a target, the RSS measurements of the siemksor | [€MPoral smoothing, we can obtairr 0.86 through our algorithm,

are spatially-correlated. The presence of a target in andivnk im-
plies that with high probability the target is present ingtdioring
sensor links. However, the RSS model) specifies only the dis-
tribution of the measurements independently on each lihle. ORT
makes complete use of the RSS measurements but is limitesl in i
performance as the optimal decision statistic for each etk
1, j is independent of other sensor link measurements. On tlee oth
hand, the DBT finds the active sensor links only based on the es
timated distances through sparsity penalized MDS. Howesiece
the inter-sensor distances are computed at each sensgrinfin
mation from its nearest neighbors, this method makes arndmpse
of the spatial correlation of the measurements in its decisfatistic,
which results in an improvement in performance.

Next, we consider the case of a moving target, where we as-
sumed a standard state-space target motion model (for tipogmi
of a visually pleasing trajectory). We repeated the samerilgns
for 5000 such trajectories. The LRT based algorithm yields the same
performance curve as the test is independent of whetheatpettis
moving or not. The resulting ROC curve for the DBT is presdras
a dotted line in Fig. 1. Since we continue to base our decisitn
on the fixed initial frame£ = 0), we observe that the performance
of the DBT is also similar to the case of random target appeas

In the case of a moving target, the RSS measurements are also
temporally-correlated. Given a set of sensors indicatipgesence
of a target at a particular time, there is a high probabilitsttthe
target is in the vicinity of these sensors at the next timen&a To
make use of the temporal correlation, we can compare theruues-
timated distances to the estimated distances from thequgtime-
frame rather than the initial frame, i.e., set= ¢t — 1 instead of
7 = 0. The temporal correlation of the RSS measurements is cap-
tured in the DBT through the sparsity constraint used fayratig
the sensors locations estimates. In other words, with highagbil-
ity the sensor location estimates that are perturbed in tbeeiqus
time-frame will also be perturbed in the current time-frathereby
increasing the probability of detection. The resultsfoe= ¢ — 1
are presented in Fig. 1 using a dashed dotted line. We obtwatve
the performance gains are higher than the DBT performedweithy

which corresponds to 8% increase in performance.

We make the following observations for the two proposedstest

The DBT for link level tracking outperforms the LRT as it
can account for the spatial and the temporal correlations in
the target motion.

The LRT outperforms DBT for low false alarm levels «
0.01) for the following reasons: first, the DBT we considered
is suboptimal as we did not optimize the performance over the
choice of sparsityy, \). Furthermore, the LRT uses an opti-
mal decision statistic and the exact measurements to perfor
the test.

Any scenario that exhibits high spatial correlations (enghly
reflective targets) can yield further improvement in perfor
mance of the DBT. If the sampling time for the sensors and
the computation time of the DBT algorithm is much faster
than the target motion, the DBT can yield better performance
by taking advantage of more temporal correlations.

The disadvantage of LRT in this setting is that the test is per
formed independently on each sensor link. Further improve-
ments in the probability of detection can be achieved when
the LRT is derived for the full spatio-temporal model.

In the performance analysis, we assumed steady state opera-
tion, i.e., perfect knowledge of the inter-sensor distarae
obtained a priori in the absence of target. If such knowledge
is unavailable and distances need to be estimated, the LRT
tracker must be modified to a generalized likelihood ratsb te
(GLRT). The DBT can estimate the initial set of distances
more accurately from the RSS measurements by taking ad-
vantage of spatial correlations and hence can yield a higher
probability of detection than the GLRT.

Given sensors localizing the target, there is a number ofsvay
which the sensor coordinates can be translated to targedioates.
For example, take the midpoint of the convex hull generatethé
positions of those sensors that yield a high in the hyposhtesit.
Another estimate can be found by the intersection of conegions
corresponding to the sensor links that show the presendeedht-

spatial smoothing7( = 0) as such a decision rule incorporates bothget through the optimal decision rule. An example of the roidp

spatial and temporal correlations of the target dynamicsr ex-

tracking algorithm is shown in Fig. 2.



6. CONCLUSIONS wherep = S°M. P;/M is the minimal sufficient statistics of this
test. Under H, p |s distributed asV' (P, o2 /M) and under H, 7 is

In this paper, we proposed a novel sparsity penalized MD8-alg \(P, o3 /M +0o1). We find to satisfy a false alarm of level, i.e.,
rithm for simultaneous target and sensor localization. Sieset
selection capability of the sparsity constraint allowedaifind the P (|p— P| > ~|Ho) =2Q (\/MW) —a, (13)
set of sensors that have been perturbed in the presence t#rihe 0o
get. Based on experimental results, we formulated stistiodels
for the RSS measurements in the presence and absence ms.targWhICh impliesy = (o0/vVM)Q
Using this model, we showed that for a large range of falsarala

'(a/2). The probability of correct
‘Eleusmnﬂ is then given by

levels, the DBT outperforms the LRT as it is able to perforratisp B = P(lp—P|>~|H)
and temporal smoothing without the need for target motiodeis

The nonparametric nature of our algorithm makes it ativactihen = 2Q < )
RSS models are unavailable or inaccurate. /M + 07

7. APPENDIX: OPTIMAL LIKELIHOOD RATIO TEST

0.2
Q (Ql(aﬂ)\/ m) . (14)
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