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ABSTRACT

Principal Component Analysis (PCA) is a widely applied
method for extracting structure from samples of high di-
mensional biological data. Often there exist misalignments
between different samples and this can cause severe problems
in PCA if not properly taken into account. For example,
subject-dependent temporal differences in gene expression
response to a treatment will create relative time shifts in the
samples that decohere the PCA analysis. Depending on the
characteristics of the underlying signal, the sensitivityof PCA
to such misalignments is severe, leading to a phase transition
phenomenon that can be studied using the spectral theory of
autocorrelation matrices. With this as motivation, we pro-
pose a new method of PCA, called MisPCA, that explicitly
accounts for the effects of misalignments in the samples. We
illustrate MisPCA on clustering longitudinal temporal gene
expression data.

1. INTRODUCTION

Principal Component Analysis (PCA) [1] is a widely used
technique for dimensionality-reduction of high dimensional
data, with applications in pattern recognition [2], blind chan-
nel estimation [3] and network-traffic anomaly detection [?].
In all these applications, PCA can be used to separate the la-
tent features corresponding to signal from the random fluctu-
ations of noise. The fundamental assumption underlying this
approach is that the signal lies in a lower dimensional sub-
space, while the noise is random and isotropic; spreading its
power across all directions in the observation space.

Unfortunately, in many cases, despite the appropriateness
of the low-dimensional subspace model, measurement limita-
tions can lead to observations revealing different signal sub-
spaces. This occurs for example when the sampling times
across observations can not be synchronized appropriately,
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due to technical limitations or to different temporal latencies
of the phenomena under study. In previous work, we consid-
ered an Order Preserving Factor Analysis (OPFA) model that
accounted for order-preserving circular shifts in each factor
and we demonstrated its effectiveness for extracting order-
preserving factors from misaligned data [4]. Here, we pro-
pose an alternative approach to OPFA that applies to mis-
aligned data without order restrictions and is applicable to
larger sample sizes.

In this paper, we consider the limitations of PCA for the
problem of estimating a rank-1 signal subspace from high-
dimensional misaligned data. We introduce a modified ver-
sion of PCA, called Misaligned PCA (MisPCA), that simul-
taneously aligns the data and estimates the aligned signal sub-
space. For signal subspaces of rank greater than one, a defla-
tion procedure is applied to sequentially estimate succesive
principal components.

The paper is divided into two parts. First, we propose a
simple approximation of the combinatorial MisPCA estima-
tion problem that considerably improves the PCA estimate
whenever misalignments are present. Second, building on
recent results in random matrix theory [5, 6], we derive
high-dimensional asymptotic results that characterize the
minimum SNR necessary to detect and estimate the signal
from the sample covariance.

This paper is organized as follows. Section 2 introduces
the misaligned signal model. We give algorithms for Mis-
aligned PCA in Section 3. Section 4 studies the statistical ef-
fects of misalignments on the sample covariance. We present
numerical results and a gene expression data analysis appli-
cation in Section 5 and we conclude the paper in Section 6.

The following notation is used. Boldface upper case let-
ters denote matrices, boldface lower case letters denote col-
umn vectors, and standard lower case letters denote scalars.
The superscriptT denotes the transpose operator. Given a
symmetric matrixX, λi (X) and vi (X) refer to its i-th
eigenvalue and eigenvector, respectively. tr(·) and det (·)
denote the trace and determinant operators.In is then × n
identity matrix.



2. PROBLEM FORMULATION

We consider the following discrete-time, circularly mis-
aligned, rank-1 signal model,

xi [k] = aih [k − di] + ǫi [k] , i = 1, · · · , n. (1)

Hereh [k] is an unknown real sequence of length equal to
p and indexed byk, and the integer valued elements of the
vectord ∈ {0, · · · , dmax}n parameterize the amount of cir-
cular shift in each observation, withdmax < p. For each
i = 1, · · · , n, the random variablesai are i.i.d, zero-mean
Gaussian and thep-length sequencesǫi [k] are i.i.d., zero-
mean Gaussian white processes. To simplify the notation, we
will further assume thatE

[

ǫ2i [k]
]

=
∑p

k=1
h2 [k] = 1, and

we define the Signal-to-Noise Ratio (SNR) as:

SNR=
E

[

a2
i

]

E [ǫ2i [k]]
.

The problem considered in this paper is that of estimating the
signal sequenceh [k] from a collection of observations obey-
ing model (1). For convenience, we will write (1) in vector
form:

xi = aiCdih + ǫi, i = 1, · · · , n,

wherexi, h andǫi arep-dimensional real vectors, andCdi is
ap × p circular shift matrix with shift equal todi:

[Cdi]k,l =

{

1 if k = (di + l) modp
0 otherwise.

Using the properties ofai and ǫi we can conclude thatxi

follows a multivariate Gaussian distribution with zero mean
and covariance:

Σi = E
[

xix
T
i

]

= SNRCdihhT CT
di

+ Ip. (2)

3. ALGORITHMS

In general, the covariance matrix of each observation is not
the same for alli = 1, · · · , n. However, equation (2) reflects
an underlying rank-1 structure corresponding to the signalh.
In this section we propose to exploit this fact by estimatingh

from the joint likelihood of the misaligned data{xi}n

i=1
. The

log-likelihood function is:

l (h, d, SNR) = c −
n

∑

i=1

tr
(

Σ
−1
i xix

T
i

)

−
n

∑

i=1

log detΣi

wherec denotes a constant independent of the relevant param-
eters. Using the Sherman-Morrison-Woodbury matrix inver-
sion formula,

l (h, d, SNR) = c + n
SNR

1 + SNR
hT S (d)h − n log (SNR+ 1) ,

where, for anyτ ∈ {0, · · · , dmax}n, possibly different from
d, we define thep × p matrix:

S (τ ) =
1

n

n
∑

i=1

CT
τi

xix
T
i Cτi . (3)

This quantity can be interpreted as analigned sample covari-
ance matrix, with alignment parameter equal toτ . When
τ = 0, this coincides with the sample covariance.

Maximizing l (h, d, SNR) under the constraint||h||
2

= 1
for a fixed SNR leads to the Misaligned Principal Component
Analysis (MisPCA) solution:

λMisPCA = max λ1 (S (τ )) (4)

s.t. τ ∈ {0, · · · , dmax}n ,

which consists of finding the alignment vectorτ that maxi-
mizes the leading eigenvalue of the aligned covarianceS (τ ).
The optimal alignment is denoted bydMisPCA, and the corre-
sponding MisPCA signal estimate is given by:

hMisPCA = v1

(

S
(

dMisPCA
))

.

To estimate the SNR, it suffices to maximizel
(

hMisPCA, dMisPCA, SNR
)

under the constraint SNR≥ 0. The optimum occurs at (see
Appendix A.1):

SNRMisPCA =

{

0 if λMisPCA < 1
λMisPCA − 1 otherwise.

(5)

Unfortunately, the MisPCA problem (4) is combinatorial,
and exhaustive search is prohibitive even for smalln. Here
we consider two simple approximate solutions to (4). The
first approximation ignores the misalignments altogether,i.e.
solving (4) withd = 0. This leads to the usual PCA estimate
of h:

hPCA = v1 (S (0)) . (6)

The second approximation, alternatively estimatesd andh.
At each iterationt > 1, we compute:

dA-MisPCA
t = arg max

τ∈{0,··· ,dmax}n
hA-MisPCA

t−1

T
S (τ )hA-MisPCA

t−1

hA-MisPCA
t = v1

(

S
(

dA-MisPCA
t

))

where we seth0 to an initial estimate ofh and stop the algo-
rithm when the change in likelihood is sufficiently small. We
call this procedure Alternating MisPCA (A-MisPCA).

4. STATISTICS OF THE MISALIGNED
COVARIANCE

The performance of the algorithms presented in the last sec-
tion depend on the statistics of the leading eigenvalue and



eigenvector of the random matrixS (τ ), for a fixed, deter-
ministic τ . In this section, we use recent asymptotic results
on the spectrum of large random matrices [5, 6] to character-
ize the asymptotic behavior ofλ1 (S (τ )) andv1 (S (τ )) in
the following setting: We assume that the number of variables
p = pn grows linearly with the number of samplesn so that,
asn tends to infinity,

lim
n→∞

pn

n
= c > 0. (7)

Note that this includes the possibility ofpn being larger than
the number of observationsn. Before we proceed to state
the main result, we will need to define the following quanti-
ties. For anyt ∈ {0, · · · , p − 1}n, define the functions (t) :
{0, · · · , p − 1}n → {0, · · · , n}p, with coordinates given by:

si (t) =
| {j ∈ {1, · · · , n} : tj = i − 1} |

n
(8)

where|S| denotes the cardinality of a setS. (One can inter-
prets (t) = [s1 (t) , · · · , sp (t)] as a histogram of the values
in t.) In addition, for anyh ∈ R

p, we define thep × p auto-
correlation matrixRh of h as:

[Rh]i,j = hT Ci−jh (9)

Finally, the expected value ofS (τ ) is given by:

Σ (τ ) := E [S (τ )] = SNRHdiags (d−pτ )HT + Ip,

whereH =
[

h C1h · · · Cp−1h
]

, d denotes the true
alignment parameter with which the data was generated, and
−p indicates a modulop subtraction.

The following result shows that the leading eigenpair of
S (τ ) matches that ofΣ (τ ) only if the SNR is higher than a
phase transition SNR which depends on the unknown param-
eters of the model,h andd.

Theorem 4.1 Let τ ∈ {0, · · · , dmax}n and S (τ ) be the
pn × pn aligned sample covariance evaluated atτ , defined
in (3). Let SNR,h and d be the true model parameters as
defined in Section II. Then, assuming (7), aspn, n → ∞,

λ1 (S (τ ))
a.s.→

{

(SNRγ + 1)
(

1 + c

SNRγ

)

SNR>
√

c

γ

(1 +
√

c)2 otherwise,

and:

|〈v1 (S (τ )) , w〉|2 a.s.→







(SNRγ)
2−c

(SNRγ)
2

+cSNRγ
SNR>

√
c

γ

0 otherwise,

where
a.s.→ denotes almost sure convergence,w = v1 (Σ (τ )),

and c is defined in (7). Here,γ is the gain/loss due to mis-
alignments (i.e.τ being different fromd), and is given by:

γ = λ1

(

diag(s (d−pτ ))
1

2 Rhdiag(s (d−pτ ))
1

2

)

, (10)

wheres (t) andRh are defined in (8) and (9), respectively.
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Fig. 1. Predicted and average values of
|〈v1 (S (0)) , v1 (Σ (0))〉|2 for h ∈ R

200 equal to a
rectangular pulse with width67 and10. The phase transition
SNR predicted by Theorem 4.1, denoted byc1/2

g
in the

figure, is higher for narrow signals, which are less robust to
misalignments.

See Appendix A.2 for a proof. This result is better under-
stood graphically. Figure 1 shows the average|〈v1 (S (0)) , w〉|2
computed over 50 random realizations generated with model
(1) for a signal of dimensionp = 200, n = 200 samples and
two choices ofh, with dmax = 100. Notice that the empirical
results accurately match the asymptotic theory.

Theorem 4.1 determines a “no-hope” regime for PCA and
MisPCA. Consider for instance the PCA estimate, whereτ =
0, and uniformly distributed misaligmentsd so thats (d) =

1

dmax

1. Then Theorem 4.1 implies that if the SNR is lower
than

dmax

λ1 (Rh)

√
c, (11)

the PCA estimate, defined in (6), is orthogonal to the leading
eigenvalue ofΣ (0), which contains partial information about
the underlying signalh. The scalar accompanying

√
c in (11)

can be interpreted as a tradeoff between the magnitude of the
misalignments and the smoothness of the signalh.

More generally, if SNR≤
√

c

γ
for anyτ ∈ {0, · · · , dmax}n,

then the first part of Theorem 4.1 asserts that the MisPCA ob-
jective in (4) is almost surely uninformative:

λ1 (S (τ ))
a.s.→ (1 +

√
c)2 asn → ∞,

and hence there is little hope for recoveringd andh.

5. EXPERIMENTS

In this section, we present numerical results that demonstrate
the benefit of using the A-MisPCA algorithm described in
Section III.

5.1. Numerical comparison of MisPCA Algorithms

We compare the PCA and A-MisPCA approximations de-
scribed in Section II. As a benchmark, we compute the
Oracle-PCA, which assumes knowledge ofd and consists
of performing PCA onS (d).
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Fig. 2. Estimated SNR levels needed for each of the algo-

rithms to attain a level of fidelityρ, defined as
∣

∣

∣
〈halgo, h〉

∣

∣

∣
≥

ρ, for ρ = .15 andρ = .7, as a function of the number of
samplesn, and as a function of the ratiodmax

W
, wheredmax is

the maximum delay andW is the time width of the rectangu-
lar signalh. Since PCA is biased, it fails to attain the fidelity
level in several regimes.

In our experiments, we estimate the minimum SNR
needed for each algorithm to attain a certain level of fidelity
with respect to the generativeh, here a rectangular signal of
width W . The top plots of Figure 2 show the results as a
function of the number of samplesn with dmax

W
= 5. The

bottom plots of the same figure show the results as a function
of dmax

W
for fixed n = 100. These results demonstrate the

advantage of A-MisPCA over PCA in almost every regime.
Only whendmax

W
≤ 1 does PCA fare better than A-misPCA.

In that regime, the misalignments are small compared to the
width of the rectangular signal and hence affect little the PCA
estimate.

5.2. Application to longitudinal gene expression data
clustering

In this section we apply our methodology to the study of an
influenza challenge study which is part of the (DARPA) Pre-
dicting Health and Disease program [7]. This dataset con-
sists of a collection of272 microarray samples of dimension
12023 genes obtained from17 individuals. All of these sub-
jects were inoculated with influenza A H3N2Wisconsin and
n = 16 blood samples were extracted before and after inoc-
ulation at prespecified time points. Finally, the clinicians on
the team established which of these subjects developed symp-
toms, based on a standardized symptom scoring method. In
previous work, we showed that the trajectories of the gene
expression values for different subjects are misaligned with
respect to one another [4].
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Fig. 3. Hierarchical Clustering results obtained after MisPCA
and PCA-based dimensionality reduction. The leftmost and
the right most panels show the centroids (+/− standard de-
viations) after MisPCA and PCA, respectively. The middle
panels correspond to a 2-dimensional embedding of the data
projected on the MisPC’s (left) and the PC’s (right).

An important problem in the analysis of temporal gene ex-
pression data is that of performingtemporal clustering, which
consists in identifying groups of genes with similar temporal
pattern. These genes are likely to be part of a biological path-
way and their temporal responses relate to the mechanistics
of the process under study. In this section, we use A-MisPCA
as a dimensionality reduction tool prior to clustering, andwe
show its advantage with respect to dimensionality reduction
using standard PCA. For this purpose, we compute the first
k Misaligned Principal Components (MisPC’s) using a de-
flation heuristic. At each step, we compute the A-MisPCA
estimate on the residual obtained after projecting the datato
the previously obtained MisPC’s. The numberk of Principal
Components (k = 4) is chosen as to minimize the cross vali-
dation error, using the cross-validation procedure described in
[4]. We apply the same methodology to obtain a rank-4 PCA
decomposition. As is common in gene-expression data anal-
ysis, we apply an Analysis-of-Variance pre-processing step to
select 1000 genes exhibiting high temporal variability. The
clustering results, obtained with a hierarchical clustering al-
gorithm1, are shown in Figure 3. The MisPCA-based cen-
troids, shown on the leftmost panel, have on average 30% less
variance that those obtained using PCA. The second and the

1The hierarchical clustering algorithm is used with standardized Eu-
clidean distance and complete linkage. Different choices of the number of
clusters were explored and6 was shown to give the most interpretable re-
sults.



third pannel show a 2-dimensional embedding, computed us-
ing Multidimensional Scaling (MDS), of the projection of the
data on the MisPC’s and the Principal Components (PC’s). It
is clear that the clusters corresponding to up-regulated genes
(low-to-high variation) are better separated from the down-
regulated ones (high-to-low variation) in the MisPCA-based
projections.

6. CONCLUSIONS

We have introduced a new method of PCA that compensates
for potential circular shifts in the observed data. We have pro-
posed an approximate algorithm to solve the Misaligned PCA
problem and have shown its advantage over other approxima-
tions. Our methodology can be used to enhance the clustering
of misaligned data to obtain centroids that capture more defi-
nite latent temporal features from gene expression time series.
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A. APPENDIX

A.1. Derivation of SNRMisPCA

It is easy to verify that ifλMisPCA < 1, thenl
(

hMisPCA, dMisPCA, SNR
)

is monotonically decreasing over SNR≥ 0. Otherwise, it has
a positive stationary point at:

SNR◦ = λMisPCA − 1.

The second derivative ofl
(

hMisPCA, dMisPCA, SNR
)

with re-
spect to SNR is negative at SNR◦, hence SNR◦ is at least a lo-
cal maxima. It is easy to check thatl

(

hMisPCA, dMisPCA, SNR
)

is strictly increasing over0 ≤ SNR < SNR◦ and strictly de-
creasing over SNR◦ > SNR, thus the local maxima is also a
global maxima. This finalizes the proof of (5).

A.2. Proof of Theorem 4.1

The eigenvalue decomposition ofΣ (τ ) is denoted byQΣ∆ΣQT
Σ,

whereQΣ is a unitary matrix containing its eigenvectors and
∆Σ is a diagonal matrix containing its eigenvalues:

[∆Σ]i,i =

{

SNRλi

(

Hdiags (d−pτ ) HT
)

+ 1 1 ≤ i ≤ r
1 r < i ≤ p

wherer = rank
(

Hdiags (d−pτ ) HT
)

≤ 2dmax. A well-
known property of the eigenvalues of Grammian matrices al-
lows us to conclude thatλi

(

Hdiags (d−pτ )HT
)

is equal
to:

λi

(

diag(s (d−pτ ))
1

2 Rhdiag(s (d−pτ ))
1

2

)

In addition, using properties of the Gaussian distribution, we
can write:

S (τ ) = QΣS̃QT
Σ.

whereS̃ = ZZ
T

n
and each column of thep × n matrix Z

follows a zero-mean multivariate Gaussian distribution with
covariance∆Σ. The result forλ1 (S (τ )) follows from ob-

serving thatλ1 (S (τ )) = λ1

(

S̃
)

and applying Theorems

1 and 2 from [5]. The result concerningv1 (S (τ )) follows
from observing that:

〈v1 (S (τ )) , v1 (Σ (τ ))〉 = 〈QΣv1

(

S̃
)

, v1 (Σ (τ ))〉

= 〈v1

(

S̃
)

, e1〉,

wheree1 denotes the vector of all zeros except for a 1 in the
first coordinate, and applying Theorem 4 from [5]. See [6]
for an alternative derivation and insight into the origin ofthe
phase transition.


