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Single Photon Emission
Computed Tomography (SPECT)

1958 - Anger camera

1963 - first ECT device

1964 - parallel-hole collimators

1972 - statistical image reconstruction
1973 - first CT scanner

Late 70’s - first commercial SPECT
(Tomomatic)

1979 - dual head SPECT & fan-beam
collimators

1980 - triple head SPECT
1984 - ring geometry SPECT

90’s - combined CT/SPECT and
PET/SPECT




Transverse Section

 Brain Transverse Section
« HMPAO blood flow study

« Diagnosis: Evidence of
stroke in left cortex
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Tomographic Brain Imaging

 Brain Transverse Section
« X-RayCT

« Diagnosis: Lesions in left
cortex

Tomographic Image
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Directions in radionuclide tomography

3D emission computed tomography (ECT)

Imaging spatio-temporal processes

Fusion of anatomical side information

New detector materials, collimators, projection geometries



1. System Model

e Object intensity distributionA € RN
e Detector intensity (fluence) distributiop:= AA +¢€

e A =M x N system matrix

e €= Background intensity (assumed known)
e Projection DatafY;}M, independent Poisson

e Pseudo-linear system model
Y=AA+e+n

e nis vector of independent shifted Poisson random variables
e E[N=0

e cov(n) = diag(l) = diag(AA + e) = Signal dependent!



What makes this a hard problem?

Poisson likelihoodis difficult to maximize ovei

A is very large
2D = MN = (512x128)(128) ~ 1 Gigabyte (18)
3D = MN = (512 128)(256)(64)(128°) ~ 2 Petabytes (10)

A is typically poorly conditioned
estimates oA must be positive

estimates oA must be spatially smooth



2. Image Reconstruction Algorithms

|. Algebraic Reconstruction (AR): SolveY = AA +efor A

ll. Statistical Reconstruction: Iteratively maximize log-likelihood (ML)

Ly(A) =Inf(Y; A) ZYmIn — U — Ym!

or maximize penalized likelihood (PML):
®y(A) =Ly(A) —BA'PA

o= AN+ e
e P is n.n.d. smoothing matrix

e 3 > 0 Iis smoothing parameter



Expectation-Maximization Algorithm

e HypothesizeX= “Complete data”

e “Q-Term”. Optimal estimate of unknown distribution

QAN =E [In FOGA)[Y; A

e The EM Algorithm:
e E—Step: EvaluateQ-term.

e M-Step: Solve AL arg ;n%xQ(A,Ak).
A>
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Emission Phantom FBP Reconstruction of ECT Data ML-EM Reconstruction of ECT Data

Uptake estimate & = 155\

e FBP oversmooths and ignores Poisson statistiggior information

e ML undersmooths and ignoresnoothnesmformation
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Example: EM Algorithm with
Roughness Penalty

106 counts, 100 iterations

b=0 b=10" b=104 b=103
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ML-EM Aceleration Methods

Define newQ function

QNN = E [Inf0G; A A |Y; AY).
e SAGE ML estimatofFessler&Hero SP94, IP95]

AL = argmaxQ (A, A)
Ai>0

e Kullback Proximal Point AcceleratiofChretien & Hero ITOO]

)\ik+1 — arg max{(l— pk) In f(Y; )\i,Alii) + PkQi ()\i,Ak)}
Ai>0

wherepyx > 0 Is a relaxation sequence.
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Plain EM and KPP—EM

ML-Plain EM  (rms = 10.092063%) ML-Proximal EM (rms = 9.694054%)

(a) Plain EM (b) KPP—EM

e Reconstructed image after 50 iterations. (% RMS are included in the
title of each figure.)
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Plain SAGE and KPP-SAGE

ML-Plain SAGE (rms = 8.939033%) ML-Proximal SAGE (rms = 8.857219%)

(a) Plain SAGE (b) KPP—SAGE
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Log—-Likelihood Vs iterations

ML-Plain EM  ( 0.169698)
181 ML-Proximal EM ( 0.069722)
- — - ML-Plain SAGE ( 0.004604)
——  ML-Proximal SAGE ( 0.002248)

1.6

141

| R—

|
10 15 20 25 30 35 40 45 50
[True — Maximum] log-likelihood among 50 iterations in parentheses (see legend)

e True log-likelihood minus log-likelihoodsnumber of iterations
(k =11,...50) for various methods (2-D).
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Combining MRI and SPECT For Functional Imaging

e Tracers: oxygen, glucose, iodine, antibodies, etc.

e “Functional”’ information about physiological processes

e Uptake estimation in a region of interest
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Use of MRI-derived Organ Boundaries

ECT Ye

/" System

No side information—

sitee ] MR | % _[Boundary | 0 (Estmaeanspug |a _[Emission
(Subject) System Extraction b%e Reconstructiof
Correct for $
uncertainty
in B :
A
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ML vs PML Reconstruction with Perfect Side Info

ML-SAGE PML-SAGE

(c) Maximum Likelihood (ML) (d) Penalized ML (PML)

e Note: ML image is obtained witB = 0.
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Gibbs Weight Mapping wijx(8)

e Non-Negativity

Wik >0, V], k
o Si/mmetryJ ® ® ® ®
. W_q k
Wik =.0xj, ¥ ],K ’1’ \ /
o Locality @i Wwuux® O @ O
Wik — +1 k / /\

0 (non-neighbors)

@
O

Example Normalized Image and Boundary

e Boundary relaxed weight mapping
Normalized “set membership” image0)
used to prevent smoothing across bound-
ary.
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ECT Reconstruction via Spatially Variant Gibbs Model

SelectA to maximize penalized likelihood

Dy o(A) = Inf(Ye; A) —BATPA

Penalty

AP = wiklAj— Akl
j.keN

N is cliqgue (neighborhood)
Wik = Wik(0)
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[Left, Up; Up—Right, Up—Left] weight matrices

Figure 2. Ideal weights: a) left, b) up, c) up-right, d) up-left.
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Incorporation of Imperfect Side Info

For unknownB we could either
e Use “estimate and plug weightsiy; = oy (Q)

e Use minmax averaged weights [Hero & etal, IT99]

1
2

3 Fs

[ wi (@) exp{-4(@6—0)F(0-8)} do

= wij(8) * h(B)

o Ifé Is “empirical Fisher information” matrix

e his a Gaussian convolution kernel
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Unsmoothed weights

Figure 3. Extracted weights: a) left, b) up, c) up-right, d)
up-left.
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Smoothed weights without leakage—prevention boundary

Figure 4. Smoothed weights: a) left, b) up, ¢) up-right, d)
up-left.
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Performance Plot for Mean Uptake (MRI noise = 0.36)

+—+t Ideal side info.

D — Unsmoothed

* — —% Smoothed (with True Fisher)

0— — 0 Smoothed (with Expected Fisher)
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(a) Mean Uptake Bias Variance Tradeoff
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3. Bounds and Feasiblility Studies

General statistical measures of performance
Leti be an estimator of source intensky RV,
e Estimator bias: biezs{f\p) = EA[Rp] —A

e Estimator variance: v,';_lffx 0)

e Estimator MSE: vzlr(fxp) + biaﬁ_(fxp)
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Standard performance measures for imaging systems

Let A = g, denote a point source intensity at pixel locatjn

=10,...,0,1,0,...,0]"

Point spread function (PSH), = Ey—¢, Ap)

e Point source sensitivity (volume of PSR); = 3, h3(j)

e Recoverable resolution (width of PSF):

FWHM{h} =

1 N
r]_ Z 2h2 pr_ng

i

|Z||: 2nd-moment-of-inertia norm oR.



¥MTc and 131 Point Source Images (2D)

Single on-axis point source at 10 cm

100K coincident events 100K coincident events

6.4cm’” 6.4cm 6.4cm’” 6.4cm
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Fisher information matrix

Fr(A) = Ba[OaIn £(Y;A) Oy In £(Y; )]

Unbiased CR Bound

AsSUMeN is any unbiased estimator, b;l_@p) =0,A e RN, Then

van (Ap) > e Ry e,

Biased CR Bound

Assumei is any estimator such that bias gradi@lbiag_(fx p) equals.
Then

van, (Ap) > e+ B e+ B

= applicability of these CR bounds is very limited
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Uniform CR Bound [Hero& etal SP96]

Assumel is any estimator such that bias gradient nq)\rmlbias&(f\p) | is
less thard, 0< 0 < 1. Then:

N

van (Ap) > B(6,9)
where

B(G,é) — [gp‘l'gmin]TFY_l[@p‘l'gmin]

= pPep [l +pR] TR [l + PR ey,

Amin=—[1+p FY]_1§p
andp is given by solution to

g(p> — ”QminH2:62 p>0
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Achievability of Uniform CRB?

Estimators vs Uniform Bound: 1000 realizations

1 L] L] | | | | | | | | | | | |
0.9 — Uniform Bound
' + Identity Penalized Maximum Likelihood
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BIAS-GRADIENT NORM
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Relation between bias gradient and recoverable resolution

For PML estimato@ = argmax In f(Y;A) — BAT PA

N

Cabias (o) | = | [Fr )[R (N) + BP) ™~ In] e, P+O(1/B)

\ .

~~

|Ex—e, Apl—epl

=np FWHM{h,} + O(1/B)
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Compton-SPECT Camera
Operating Principles

1) radioactive source

emits gray photon ...

3) ... deposits
N | Y energy ...

/|\

5) ... and is detected
by 2nd detector

L

4) ... scatters away
at some angle ...

2) ... gray strikes
first detector ...

Detections occurring
within a small time
window are recorded for
processing

— 1st Detector Position

— Energy Deposited

— 2nd Detector Position
Compton scatter
equation relates scatter
angle / energy
Photon direction
determined to within a
conical ambiguity
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Single Measurement
Backprojection Cone

W si PAD
DE TECTOR
-LH'

—
e

SECOND DETECTOR
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Multiple Measurements
Intersecting at Source Location

Source

Image Plane

| W\ 1st Detector
2nd Detector \ B
F = *_ .

< Scattered
g-Rays
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Compton Advantage

« Same imaging time (take efficiency into account)
e Assume a 9x9x0.5 cm3 silicon 1st-detector (20x efficiency advantage)

25 |
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University of Michigan
Compton-SPECT System

e Silicon 1st-Detector e
— 4.5cm x 1.4cm x 0.03cm

 Nal 2nd Detector

— 50cm diameter
— 10cm deep

— 11 detector modules,
arranged around
circumference
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4. Conclusions

Tools of statistical SP have played an important role in

e design/acceleration of iterative reconstruction algorithms
[Fessler&etal]

e optimal fusion of information across imaging modalities
[Robinsoné&etal]

e benchmark studies for new imaging modalities [Clinthorne&etal]
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Other areas of impact

e shape estimation (CRB, active ballons, spherical harmonics)
[Robinsoné&etal]

e Optimization of imaging subsystems (collimation, detector
trajectories, etc) [Sauveé&etal]

e multi-modality multi-scan image registration [Hero&etal]

e detection and confidence regions in tomographic imaging
[Hero&Zhang]
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