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Single Photon Emission
Computed Tomography (SPECT)

• 1958 - Anger camera

• 1963 - first ECT device

• 1964 - parallel-hole collimators

• 1972 - statistical image reconstruction

• 1973 - first CT scanner

• Late 70’s - first commercial SPECT
(Tomomatic)

• 1979 - dual head SPECT & fan-beam
collimators

• 1980 - triple head SPECT

• 1984 - ring geometry SPECT

• 90’s - combined CT/SPECT and
PET/SPECT
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Transverse Section

• Brain Transverse Section

• HMPAO blood flow study

• Diagnosis: Evidence of
stroke in left cortex

Tomographic Image R LTransverse Section



6

Tomographic Brain Imaging

Tomographic Image

• Brain Transverse Section

• X-Ray CT

• Diagnosis: Lesions in left
cortex
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Directions in radionuclide tomography
� 3D emission computed tomography (ECT)

� Imaging spatio-temporal processes

� Fusion of anatomical side information

� New detector materials, collimators, projection geometries
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1. System Model
� Object intensity distribution:λ 2 IRN

� Detector intensity (fluence) distribution:µ= Aλ+e

� A = M�N system matrix

� e= Background intensity (assumed known)

� Projection Data:fYigM
i=1 independent Poisson

� Pseudo-linear system model

Y = A λ+e+n

� n is vector of independent shifted Poisson random variables

� E[n] = 0

� cov(n) = diag(µ) = diag(Aλ+e) = Signal dependent!
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What makes this a hard problem?
� Poisson likelihoodis difficult to maximize overλ

� A is very large

2D) MN = (512�128)(1282)� 1 Gigabyte (109)

3D) MN = (512�128)(256)(64)(1283)� 2 Petabytes (1015)

� A is typically poorly conditioned

� estimates ofλ must be positive

� estimates ofλ must be spatially smooth
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2. Image Reconstruction Algorithms

I. Algebraic Reconstruction (AR): SolveY = Aλ+e for λ

II. Statistical Reconstruction: Iteratively maximize log-likelihood (ML)

LY(λ) = ln f (Y; λ) =

M

∑
m=1

Ym ln(µm)�µm�Ym!

or maximize penalized likelihood (PML):

ΦY(λ) = LY(λ)�βλTPλ

� µ= Aλ+e

� P is n.n.d. smoothing matrix

� β > 0 is smoothing parameter
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Expectation-Maximization Algorithm
� HypothesizeX= “Complete data”

� “ Q-Term”: Optimal estimate of unknown distribution

Q(λ;λk) := E

h

ln f (X;λ)jY; λk

i
:

� The EM Algorithm:

� E–Step: EvaluateQ-term.

� M–Step: Solve λk+1 = argmax
λ�0

Q(λ;λk):
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Emission Phantom FBP Reconstruction of ECT Data ML−EM Reconstruction of ECT Data

Uptake estimate: α̂ = 1T
ROIλ̂

� FBP oversmooths and ignores Poisson statistics orprior information

� ML undersmooths and ignoressmoothnessinformation
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β=0 β=10-5 β=10-4 β=10-3

Example: EM Algorithm with
Roughness Penalty

106 counts, 100 iterations



ML-EM Aceleration Methods

Define newQ function

Qi(λi ;λk) = E

h

ln f (Xi ; λi ;λK

�i)jY; λk

i
:

� SAGE ML estimator[Fessler&Hero SP94, IP95]

λk+1
i = argmax

λi�0
Qi(λi ;λk)

� Kullback Proximal Point Acceleration[Chretien & Hero IT00]

λk+1
i = argmax

λi�0

n
(1�ρk) ln f (Y; λi ;λk

�i)+ρkQi(λi ;λk)
o

whereρk > 0 is a relaxation sequence.
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Plain EM and KPP–EM

ML−Plain EM      (rms =  10.092063%)

(a) Plain EM

ML−Proximal EM   (rms =   9.694054%)

(b) KPP–EM

� Reconstructed image after 50 iterations. (% RMS are included in the

title of each figure.)
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Plain SAGE and KPP–SAGE

ML−Plain SAGE    (rms =   8.939033%)

(a) Plain SAGE

ML−Proximal SAGE (rms =   8.857219%)

(b) KPP–SAGE
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Log−−Likelihood Vs iterations

[True − Maximum] log−likelihood among 50 iterations in parentheses (see legend)

ML−Plain EM      (  0.169698)
ML−Proximal EM   (  0.069722)
ML−Plain SAGE    (  0.004604)
ML−Proximal SAGE (  0.002248)

� True log–likelihood minus log–likelihoodVsnumber of iterations
(k= 11; : : :50) for various methods (2–D).
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Combining MRI and SPECT For Functional Imaging
� Tracers: oxygen, glucose, iodine, antibodies, etc.

� “Functional” information about physiological processes

� Uptake estimation in a region of interest
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Use of MRI-derived Organ Boundaries
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System Extraction
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ML vs PML Reconstruction with Perfect Side Info

ML−SAGE

(c) Maximum Likelihood (ML)

PML−SAGE

(d) Penalized ML (PML)

� Note: ML image is obtained withβ = 0.
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Gibbs Weight Mapping ω jk(θ)

� Non-Negativity
ω jk � 0; 8 j;k� Symmetry
ω jk = ωk j; 8 j;k� Locality
ω jk =
0 (non-neighbors)

j,k

ω

ω
ω

j-1,k

j+1,k

j,k-1 j,k+1ω

Example Normalized Image and Boundary
� Boundary relaxed weight mapping

Normalized “set membership” imageJ(θ)

used to prevent smoothing across bound-

ary.

20



ECT Reconstruction via Spatially Variant Gibbs Model
� Selectλ to maximize penalized likelihood

ΦY;ω(λ) = ln f (YE; λ)�βλTPλ

� Penalty

λTPλ = ∑
j;k2N

ω jkjλ j �λkj2

� N is clique (neighborhood)

� ω jk = ω jk(θ)
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[Left, Up;  Up−Right, Up−Left] weight matrices

Figure 2. Ideal weights: a) left, b) up, c) up-right, d) up-left.
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Incorporation of Imperfect Side Info

For unknownθ we could either

� Use “estimate and plug weights”:ωi j = ωi j (θ̂)

� Use minmax averaged weights [Hero & etal, IT99]

w̃i j (θ̂) =

jF̂θ̂j
1
2

(
p

2π)p

�
Z

Θ
wi j (θ)exp

n
� 1

2(θ� θ̂)TF̂†
θ̂ (θ� θ̂)

o

dθ

= wi j (θ̂) � h(θ̂)

� F̂θ̂ is “empirical Fisher information” matrix

� h is a Gaussian convolution kernel
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Unsmoothed weights

Figure 3. Extracted weights: a) left, b) up, c) up-right, d)
up-left.
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Smoothed weights without leakage−prevention boundary

Figure 4. Smoothed weights: a) left, b) up, c) up-right, d)
up-left.
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3. Bounds and Feasibility Studies

General statistical measures of performance

Let λ̂ be an estimator of source intensityλ 2 IRN.

� Estimator bias: biasλ(̂λp) = Eλ[λ̂p]�λ

� Estimator variance: varλ(λ̂p)

� Estimator MSE: varλ(λ̂p)+bias2λ(λ̂p)
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Standard performance measures for imaging systems

Let λ = ep denote a point source intensity at pixel locationp

ep = [0; : : : ;0;1;0; :::;0]T

Point spread function (PSF):hp = Eλ=ep

[λ̂p]

� Point source sensitivity (volume of PSF):ηp = ∑N
j=1 h2

p( j)

� Recoverable resolution (width of PSF):

FWHMfhg=
vuut 1

ηp

N

∑
j=1

( j� p)2 h2
p( j) = khp�epk

kzk: 2nd-moment-of-inertia norm on IRN.
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100K coincident events 100K coincident events

8 mm
FWHM

6.4 cm × 6.4 cm           99mTc 6.4 cm × 6.4 cm            131I

5 mm
FWHM

99mTc and 131I Point Source Images (2D)
Single on-axis point source at 10 cm



Fisher information matrix

FY(λ) = Eλ[∇λ ln f (Y;λ) ∇T
λ ln f (Y;λ)]

Unbiased CR Bound

Assumeλ̂ is any unbiased estimator, biasλ(λ̂p) = 0, λ 2 IRN. Then

varλ(λ̂p)� eT
pF�1

Y ep

Biased CR Bound

Assumeλ̂ is any estimator such that bias gradient∇λbiasλ(λ̂p) equalsβ.

Then

varλ(λ̂p)� [ep+β]TF�1
Y [ep+β]

) applicability of these CR bounds is very limited
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Uniform CR Bound [Hero& etal SP96]

Assumeλ̂ is any estimator such that bias gradient normk∇λbiasλ(λ̂p)k is
less thanδ, 0� δ � 1. Then:

varλ(λ̂p)� B(θ;δ)

where

B(θ;δ) = [ep+dmin]

TF�1
Y [ep+dmin]

= ρ2eT
p [I +ρFY]

�1FY [I +ρFY]
�1 ep;

dmin =�[I +ρFY]
�1ep

andρ is given by solution to

g(ρ) = kdmink2 = δ2 ρ � 0
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Bias-Variance Plane
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Example Uniform Cramer-Rao
Bound Curve
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Achievability of Uniform CRB?

Uniform Bound                        

Identity Penalized Maximum Likelihood

Truncated SVD Estimator              

Deconvolve/Shrink Estimator          
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Relation between bias gradient and recoverable resolution

For PML estimator̂λ = argmaxλ ln f (Y;λ)�βλTPλ

k∇λbiasλ(λ̂p)k = k�FY(λ)[FY(λ)+βP]�1� IN

�

epk2
| {z }

kEλ=ep

[λ̂p]�epk

+O(1=β)

= ηp FWHMfhpg + O(1=β)
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2) ... γ-ray strikes
first detector ...

1) radioactive source
emits γ-ray photon ...

5) ... and is detected
by 2nd detector

3) ... deposits
energy ...

4) ... scatters away
at some angle ...

Compton-SPECT Camera
Operating Principles

• Detections occurring
within a small time
window are recorded for
processing

– 1st Detector Position

– Energy Deposited

– 2nd Detector Position

• Compton scatter
equation relates scatter
angle / energy

• Photon direction
determined to within a
conical ambiguity
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Single Measurement
Backprojection Cone
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Multiple Measurements
Intersecting at Source Location

Source

Image Plane

1st Detector

2nd Detector

Scattered
γ-Rays
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Compton Advantage

• Same imaging time (take efficiency into account)

• Assume a 9x9x0.5 cm3 silicon 1st-detector (20x efficiency advantage)
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University of Michigan
Compton-SPECT System

• Silicon 1st-Detector
– 4.5cm x 1.4cm x 0.03cm

• NaI 2nd Detector
– 50cm diameter

– 10cm deep

– 11 detector modules,
arranged around
circumference



4. Conclusions

Tools of statistical SP have played an important role in

� design/acceleration of iterative reconstruction algorithms

[Fessler&etal]

� optimal fusion of information across imaging modalities

[Robinson&etal]

� benchmark studies for new imaging modalities [Clinthorne&etal]
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Other areas of impact

� shape estimation (CRB, active ballons, spherical harmonics)

[Robinson&etal]

� optimization of imaging subsystems (collimation, detector

trajectories, etc) [Sauve&etal]

� multi-modality multi-scan image registration [Hero&etal]

� detection and confidence regions in tomographic imaging

[Hero&Zhang]
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