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CHAPTER I

Introduction

Networks, both wired and wireless, have for decades been growing in size and

complexity. The number of computers connecting the global Internet are counted

in the billions; wireless sensor networks of thousands or tens of thousands of nodes

have been proposed, and these numbers will continue to grow over time as wireless

sensors become cheaper and more ubiquitous. The huge size of these networks makes

human network moderation and monitoring extraordinarily difficult. In the global

Internet, there is no single entity that is able to control or even monitor the entire

internetwork. In wireless networks, the size and the ad-hoc, even temporary nature

of the network, precludes requiring a human administrator to set up each node in

the network. In both wired and wireless cases, there is a great need for automated

network self-configuration and monitoring, and this need will grow over time as

networks grow larger.

The network self-configuration and self-monitoring problem of estimating the lo-

cation of sensors is considered in this thesis. The use of both terms ‘location’ and

‘sensor’ must be explained to understand the generality of the problem considered.

First, ‘sensor’ is used to refer to a device which is connected, via wire or RF

communication medium, to other devices in the network. A sensor is also referred to

1
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as a ‘node’ in a graph with edges that represent the pair-wise communications possible

in the network. This representation of a sensor network is depicted in Fig. 1.1. In

this framework, each node measures some quantity relating either to its environment,

or to the operation of the node itself, such as the traffic level passing through the

node. Whether or not this measurement requires a physical sensor integrated circuit

(IC) or software embedded in the node, this measurement is said to be made by a

‘sensor’. The sensor is central to the purpose and operation of the network, and

because of its importance, in this thesis, the word ‘sensor’ is used to refer to the

entire device. Thus sensor network generally refers to any communication network

in which each node, device, or router, measures some local quantity of interest.

Second, location refers to coordinates which describe each node in the network.

These location coordinates to be estimated may be either physical location, or data

location:

• Physical Location: The sensor’s physical coordinates, that is, where it exists in

space, are estimated.

• Data Location: Non-physical coordinates for the sensor’s measured data are es-

timated. These coordinates describes where, in a particular space, the measured

data vector lies.

Estimating a sensor’s physical coordinates is intuitively important: when sensor data

is reported, it should be accompanied with an indication of where in space that data

was recorded. Data location coordinates are made necessary by the bandwidth and

energy limitations of a network. In such sensor networks, large quantities of sensor

data are recorded and are available, but typically are not sent through the network,

due to the communication constraints. Instead, summary statistics may be typically
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Figure 1.1: This thesis considers sensor networks, in which nodes (©) have wired or wireless com-
munication channels, shown as arrows, with some other nodes. Each node also has a
sensor, shown as S1, . . . , S8, which may measure the physical environment, or the node
itself.
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communicated, and occasionally when the situation requires it, full data is sent. Data

coordinates are a summary statistic, a lower-dimensional representation of the full

data available, which preserve information about the relationships between sensors’

data.

To estimate these physical or data location coordinates, two types of sensor mea-

surements are used in this thesis. First, pair-wise measurements are considered, in

which two sensors measure some quantity which directly relates to the relative lo-

cations of the two sensors. For example, if one sensor measures the received signal

strength (RSS) of the transmission made by a second sensor, and the RSS is known

to decay with distance, this is a pair-wise measurement which gives some indication

of relative location between sensors.

Second, sensor data measurements are considered, which refer to measurements

made at a single sensor of the environment near itself. For example, if a sensor is

placed at each city in the U.S. to measure the daily temperature, humidity, and

rainfall over the course of a year, the sensor is recording a sensor data measurement.

The sensor data measurement is taken at a single location; however, cities which are

physically close to one another, eg., Ann Arbor and Detroit, will be likely to have

very correlated sensor data measurements. In general, in random fields correlated

over space and time, the sensor data measurement also provides some information

about the relative location of sensors.

In summary, this thesis considers wired and wireless networks comprised of sensors

which make pair-wise or sensor data measurements, which are then used to estimate

physical or data location coordinates. This unified approach allows these topics to

be studied together as the problem of location estimation in sensor networks.

To introduce the particular issues which motivate studying these topics, in the
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next sections, wireless sensor networks are introduced in Section 1.1 and the need for

data localization in wired networks is introduced in Section 1.2. Following this, the

location estimation problem in sensor networks is formally stated in Section 1.3. The

specific contributions presented in this thesis are listed in Section 1.4, and Section

1.5 presents the outline and the table of notation used in this thesis.

1.1 Wireless Sensor Networks

Dramatic advances in radio frequency (RF) and micro-electro-mechanical systems

(MEMS) IC design have made possible the use of large networks of wireless sensors

for a variety of new monitoring and control applications. For example, smart struc-

tures will actively respond to earthquakes to make buildings and bridges safer, and

constantly monitor for cracks or structural problems [73]. Precision agriculture will

reduce costs and environmental impact by watering and fertilizing exactly where nec-

essary, and will improve quality by monitoring storage conditions after harvesting

[102, 39]. Condition-based maintenance will direct equipment servicing exactly when

and where needed based on data from wireless sensors. Traffic monitoring systems

will better control stoplights and inform motorists of alternate routes in case of traffic

jams. Environmental monitoring networks will sense air, water and soil quality and

identify the source of pollutants in real time. A wide variety of such applications

have been enabled by the promise of inexpensive networks of wireless sensors, as

described in review articles in [1, 26, 38, 95].

Automatic estimation of physical location of the sensors in these wireless networks

is a key enabling technology. The overwhelming reason is that a sensor’s location

must be known for its data to be meaningful. If a system is set up to respond locally

to changes in sensor data, then it must know where those changes are occurring. In



6

many cases, location itself is the data that needs to be sensed - localization can be

the driving need for wireless sensor networks in applications such as warehousing and

manufacturing logistics, in which radio tagged parts and equipment must be able to

be accurately located at all times. Also, sensor location information, if it is accurate

enough, can be extremely useful for scalable, ‘geographic’ routing algorithms.

To make these applications viable with possibly vast numbers of sensors, device

costs will need to be low (from a few dollars to a few cents depending on the applica-

tion), sensors will need to last for years or even decades without battery replacement,

and the network will need to organize without significant human moderation. Tra-

ditional physical localization techniques are not well suited for these requirements.

Including GPS on each device is cost and energy prohibitive for many applications,

not sufficiently robust to jamming for military applications, and limited to outdoor

applications. Local positioning systems (LPS) [125] rely on high-capability base

stations being deployed in each coverage area, an expensive burden for most low-

configuration wireless sensor networks.

Instead, this thesis considers the problem in which some small number m of sen-

sors, reference nodes, obtain their coordinates - either via GPS, or from a system

administrator during startup - and the rest, n unknown-location nodes, must deter-

mine their own coordinates. If sensors were capable of high-power transmission, they

would be able to make measurements to multiple reference nodes, and positioning

techniques such as multi-lateration or multi-angulation could be applied. These di-

rect techniques have been studied for decades within and outside of the signal proces-

sing research community [121]. However, low-capability, energy-conserving devices

will not include a power amplifier, will lack the energy necessary for long-range com-

munication, or may be limited by regulatory constraints on transmit power. Instead,
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Figure 1.2: In cooperative localization (b), measurements made between any pairs of sensors can
be used to aid in the location estimate. Traditional multi-lateration or multi-angulation
(a) is a special case in which measurements are made only between an unknown-location
sensor and known-location sensors.
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Figure 1.3: Cooperative localization is analogous to finding the resting point of (a) masses (spools
of thread) connected by a network of (b) springs. First, reference nodes are nailed to
their known coordinates on a board. Springs have a natural length equal to measured
ranges and can be compressed or stretched. They are connected to the pair of masses
whose measured range they represent. After letting go, the equilibrium point (c) of the
masses represent a minimum-energy localization estimate; the actual node locations are
indicated by ⊗.
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wireless sensor networks, and thus localization techniques, will be multi-hop (a.k.a.

‘cooperative’ localization), as shown in Fig. 1.2. Rather than solving for each sensor’s

position one at a time, a location solver, analogous to the system of masses connected

by springs shown in Fig. 1.3, will estimate all sensor positions simultaneously.

Such localization systems are an extension of techniques used in or proposed for

wireless local area networks (WLAN) and cellular mobile station (MS) location, as

described elsewhere in this issue. Unknown-location devices are still allowed to make

measurements with known-location references, but in cooperative localization, they

additionally are allowed to make measurements with other unknown-location de-

vices. The additional information gained from these measurements between pairs

of unknown-location devices enhances the accuracy and robustness of the localiza-

tion system. In the considerable literature, such systems have alternatively been

described as ‘cooperative’, ‘relative’, ‘distributed’, ‘GPS-free’, ‘multi-hop’, or ‘net-

work’ localization; ‘self-localization’; ‘ad-hoc’ or ‘sensor’ positioning; or ‘network

calibration’. In this article, ‘cooperative’ localization [105] is used to emphasize the

communication and measurements between many pairs of sensors required to achieve

localization for all sensors.

1.1.1 Motivating Application Example: Animal Tracking

If cooperative localization can be implemented in wireless networks as described

above, many compelling new applications can be enabled. For the purposes of bio-

logical research and animal behavior studies, it is very useful to track animals over

time and over very wide spaces [3, 61]. Such tracking can answer questions about

animal behavior and interactions within their own and with other species. Using

current practices, tracking is a very difficult, expensive process, and requires bulky

tags that rapidly run out of energy. A typical practice is to attach VHF transmitter
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collars to animals to be tracked, and then triangulate their location by driving (or

flying) to various locations with a directional antenna. Alternatively, GPS-based

collars can be used, but are limited by cost concerns, and offer only a short lifetime

due to high energy consumption. Using wireless sensor networks can dramatically

improve the abilities of biological researchers (as demonstrated by ‘ZebraNet’ [61]).

Using multi-hop routing of location data through the sensor network enables low

transmit powers from the animal tags. Furthermore, inter-animal distances, which

are of particular interest to animal behaviorists, can be estimated using pair-wise

measurements and cooperative localization methods, without resorting to GPS. The

end result of the longer battery lifetimes is less frequent re-collaring of the animals

being studied.

1.1.2 Motivating Application Example: Logistics

As another example, consider deploying a sensor network in an office building,

manufacturing floor, and warehouse. Sensors already play a very important role in

manufacturing. Monitoring and control of machinery has traditionally been wired,

but making these sensors wireless reduces the high cost of cabling and makes the

manufacturing floor more dynamic. Automatic localization of these sensors further

increases automation.

Also, boxes and parts to be warehoused and factory and office equipment can all

be tagged with sensors when first brought into the facility. These sensors monitor

storage conditions (temperature, humidity) and help control the HVAC system. Sen-

sors on mobile equipment report their physical location when the equipment is lost

or needs to be found (e.g. during inventory), and even contact security if they are

about to ‘walk out’ of the building. Knowing where parts and equipment are when

they are critically needed reduces the need to have duplicates as back-up, savings
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which could pay for the wireless sensor network itself.

Radio-frequency identification (RFID) tags, such as those now required by Wal-

mart on pallets and cartons entering in its warehouses [65], represent a first step

in warehouse logistics. RFID tags are only located when they pass within a few

feet of a reader, thus remaining out of access most of their time in the warehouse.

Networked wireless sensors, however, can be queried and located as long as they are

within range (on the order of 10 m) of the closest other wireless sensor.

Costs of Commercial Logistics Solutions

Local positioning systems (LPS) are also proposed for logistics applications. For

LPS, sensors are active, using signals transmitted to or received from high-capability

base stations to locate them. One issue with LPS is the cost of deploying base

stations which cover an area of interest.

For example, a company called Detection Systems, Inc. (now owned by Bosch

Security Systems) deployed a LPS for a personal security application system on a

small college campus. The base stations use measured RSS to calculate and report

the location of a radio tag when its ‘Alarm’ button is pushed, so that police can be

dispatched to the exact location of the person requesting assistance [10]. The system

was successful in terms of meeting the accuracy requirements of the campus police,

and had a demonstrated track record of success. However, the system was a test

system, for which Detection Systems bore the $400,000 cost of deployment. It was

probably this high cost of deployment which limited the adoption of this system at

other campuses.

Another LPS is sold by WhereNet Corp., which is marketed as an “active RFID”

solution. WhereNet has agreements with automobile manufacturers (including Ford

Motor) to provide localization solutions for its logistics or “supply-chain inventory
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visibility” applications. WhereNet’s active tages transmit signals to multiple base

stations, which locate them based on time-difference of arrival measurements. It has

been reported that WhereNet’s system suffers in heavy multipath environments like

manufacturing floors. The cost of a WhereNet deployment, according to WhereNet,

is around $350,000 to $500,000 for a 1 million square foot warehouse and 2,000

assets to track [78]. This price tag, about $175 to $250 per asset, is high compared

to what a cooperative localization system would cost per asset, because cooperative

localization systems would not require extensive installed infrastructure.

In addition, the theoretical accuracy of cooperative localization increases with

the density of sensors. This is shown in Section 3.4 for a general class of location

estimation problems. This is analogous to Metcalfs Law, which holds that the value

of a network increases with the number of nodes. Thus, having heterogeneous sensors

of varied purposes, all participating in the same network, will help drive localization

errors down.

1.1.3 Pair-wise and Sensor Data Measurements

Sensors may have be able to measure various pair-wise or sensor data measure-

ments. Wireless sensor networks are generally envisioned for applications which

monitor wide areas for changes in the physical environment. Thus recording sen-

sor data over time is a primary requirement of sensors; using the same sensor data

measurement to extract location information would be a desirable extra feature. If

the field being measured is correlated over space, and the correlation is isotropic,

i.e., independent of direction, then sensor data measurements over time provide in-

formation about which sensors are likely to be physically close to other sensors.

Such information can be used to get a coarse estimate of physical coordinates. This

problem is considered in Section 4.6.
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While such use of sensor data measurements is possible in some applications, it is

restricted due to its requirement of an isotropic correlated random field. More gener-

ally, pair-wise measurements are used for physical location estimation, in which one

sensor measures the signal transmitted from a second sensor. Pair-wise measure-

ments include the measurement of signal properties such as angle-of-arrival (AOA),

time-of-arrival (TOA), or received signal strength (RSS). These measurements might

be made using acoustic or RF signals. One contribution of this thesis is to report ex-

tensive pair-wise measurements of TOA and RSS in RF channels for wireless sensor

networks, and models derived from those measurements, in Chapter II.

1.2 Internet Data Localization

The task of monitoring the Internet for anomalies such as worm outbreaks, denial-

of-service attacks, and intrusion attempts, involves the processing of large quantities

of data recorded at many nodes across the network. The sensor network framework

is applicable here because software on routers and other computers (firewalls, end

users, etc.) in the Internet can measure varying quantities of interest which might

be affected when an anomalous event occurs. The huge quantity of information

available (the header and data of all packets recorded in transit) is far greater than

can be transferred to a central location for processing; furthermore, privacy concerns

preclude setting up a system to record full traffic data. The decentralized reduction

of the huge quantity and high-dimensionality of internet traffic data is a significant

challenge which research must overcome in order to detect anomalous events on the

internet with high reliability and with a low rate of false-alarms.

Estimating data location is the means considered in this thesis to reduce the

dimensionality of traffic data recorded at each node on the network while preserving
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information about the relationships between data recorded at different nodes. In this

problem, considered in Chapter V, sensor data measurements are made at different

routers on a wired Internet backbone network, in order to estimate 2-D data location

coordinates which, plotted on a map, provide information about the relationships

between the different backbone routers. Such maps show dramatic spatial changes

when anomalous events occur on the backbone. This data localization problem is

also referred to as ‘cooperative’ localization, since routers communicate and make

calculations with the other nearby routers in order to calculate a network-wide set

of data location coordinates.

1.3 Problem Statement

Before going into detail, it is useful to formally state the cooperative sensor lo-

cation estimation problem. Throughout this thesis, ‘cooperative’ localization is con-

sidered as shown in Figs. 1.2 and 1.3. In every problem considered in this thesis, a

network of N total sensors is considered. In the network, the objective is to estimate

the coordinates of n of the sensors, given a priori the coordinates of m of the sensors,

where N = n + m. In other words, for the 2-D localization problem, a total of 2n

unknown-location node parameters must be estimated, θ = [θx, θy], where

(1.1) θx = [x1, . . . , xn], θy = [y1, . . . , yn]

given the known reference coordinates [xn+1, . . ., xn+m, yn+1, . . ., yn+m], and at least

one of a variety location measurements. The location of sensor i is also referred to

as zi where zi = [xi, yi]
T . While the 2-D case is considered in this thesis, extension

to 3-D appends a third coordinate to each sensor location vector [44].

Measurements can be either pair-wise or sensor data. Pair-wise measurements

Xi,j could be any physical reading that indicates distance or relative position, eg.
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time-of-arrival (TOA), angle-of-arrival (AOA), received signal strength (RSS), or

connectivity (whether or not two devices can communicate). Alternatively, a sensor

data measurement at sensor i at time t is denoted vi(t). Both types of measurements

can contain, directly or indirectly, information about the relative location of the

sensors in the network.

In the case of pair-wise measurements, it is not assumed that all
(

N
2

)

pairs make

measurements. Let the set H(i) be the set of sensors with which sensor i makes

measurements. Clearly, i /∈ H(i), and H(i) ⊂ {1, . . . , n + m}. Note that these

pair-wise measurements could be done via different modalities - eg. RF, infrared

(IR), acoustics [77, 6], or a combination of these [47]. Finally, TOA can be measured

using different signaling techniques, such as direct-sequence spread-spectrum (DS-

SS) [75, 96] or ultrawideband (UWB) [25, 40, 41]. These measurement methods are

discussed in Chapter II. The main message of Chapter II is that these pair-wise

measurements are adversely affected by the physical environment, which cannot be

changed. Since the exact layout of the environment in which the sensor network

is deployed determines the pair-wise measurements, and every area’s layout can’t

a priori be known, these environmental effects are considered to be random, and

statistical models are created for the pair-wise measurements.

In addition to the above problem statement applicable throughout this thesis,

there are some additional extensions which will be noted as needed. We list them

here to survey the scope of the estimation problems considered.

1.3.1 Imperfect Prior Knowledge

For some applications, nodes have some, but imperfect a priori coordinate knowl-

edge. For these nodes, it is desirable to estimate the node coordinate taking into ac-

count its imperfect prior information. When we consider imperfect prior knowledge,
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we assume that the first n sensors have some finite (not perfect) location informa-

tion. We consider this generalization as an additional capability of the distributed

weighted multi-dimensional scaling (dwMDS) algorithm presented in Section 4.4.

The appropriate performance bounds in the case of imperfect prior information are

mean-squared error (MSE) bounds, which have have been considered in [77, 80].

1.3.2 Solely Relative Location

Other localization research has focused on truly ‘relative’ location, i.e., when no

references exist (m = 0), and an arbitrary coordinate system can be chosen. For

example, in geographic routing, only distances and angles between nodes are im-

portant, so no absolute coordinates are necessary. This is often called ‘beacon-free’

sensor localization [116]. In this thesis, beacon-free localization is explicitly consid-

ered using the dwMDS method in Section 4.4, and is a straightforward extension of

the manifold learning-based algorithms considered in Sections 4.3, 4.5, and 4.6.

1.4 Contributions

The following lists particular novel contributions of my thesis research, which part

of the thesis they are covered, and any publications reporting them.

• Models: Measurement-verified statistical models of pair-wise measurements of

TOA, RSS, and connectivity in RF channels (Chapter II and [93, 87, 92])

• Measurements: Pair-wise RF channel TOA and RSS measurements in wireless

sensor networks operating in a variety of environments (Section 2.6 and [93, 94,

87, 92])

• Performance Bounds: Lower bounds on estimator variance for a variety of

pair-wise measurement modalities, derived from the appropriate models (Chap-
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ter III and [87, 92, 88]), and for a sensor data measurements given a particular

random field model (Chapter 4.6 and [89])

• Theory: Proof that increasing the number of sensors in the network, given

pair-wise measurements and the specific sufficient conditions listed, will strictly

decrease the lower bound on average estimator variance (Theorem III.5, Ap-

pendix A.2, and [92])

• Algorithms: Introduction and testing of the distributed weighted multi-dim-

ensional scaling (dwMDS) localization algorithm (Section 4.4 and [27, 28]) and

a Laplacian Eigenmap-based localization algorithm (Section 4.5 and [90])

• Adaptive Methods: Development of two adaptive neighbor selection algo-

rithms to reduce sensor localization bias, in particular, caused by neighbor se-

lection in noise (Sections 4.4.3 and 4.5.3, and [27, 28, 90])

• Physical Localization from Sensor Data Measurements: Application

of manifold learning methods to estimate physical sensor location coordinates

based on sensor data measurements (Section 4.6 and [89])

• Internet Traffic Visualization: Developed tools which use sensor data mea-

surements to estimate 2-D data location coordinates for visualization of ex-

tremely high-dimensional space-time Internet traffic, for the purposes of detect-

ing traffic anomalies (Chapter V and [91])

1.5 Outline of Thesis

The goal of this thesis is to explore the sensor location estimation problem from

a statistical signal processing perspective. First, Chapter II introduces various pair-

wise measurement modalities, presents statistical models which describe them, and
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the measurement campaigns conducted to build and verify the models. From these

pair-wise measurement models, Cramér-Rao bounds are derived in Chapter III which

lower bound the covariance achievable by any unbiased location estimator. Next, in

Chapter IV, particular location coordinate estimators are introduced and compared

to the lower bound. A general review of localization algorithms in the literature is

presented. Then, manifold learning is introduced, and three new manifold learning-

based localization algorithms are introduced and evaluated. The last of those three

new algorithms uses sensor data, rather than pair-wise measurements, as relative

location information. Then, in Chapter V, sensor data localization is applied to a

sensors on the backbone routers of Abilene, an internet backbone network.

For convenience, a table of notation used through the thesis is included in Table

1.1.
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Notation Description
N = n + m Total number of sensors

n Number of sensors with imperfect or no a priori coordinate information
m Number of sensors with perfect a priori coordinate knowledge (‘anchor’ nodes)
zi Actual length D coordinate vector of sensor i, i = 1 . . . n + m

Pi,j Power received (dBm) of signal at sensor i transmitted by sensor j
∆0, Π0 Π0 is free-space received power at reference distance ∆0 (typically 1m)

np RF Path loss exponent
σdB Standard deviation of RSS error in (dB)
Ti,j Time delay between transmission of signal by sensor j and arrival at sensor i
vp Speed of propagation (m/s)
µT Mean of time delay error in (s)
σT Standard deviation of time delay error in (s)
Ai,j Angle-of-arrival of signal at sensor i transmitted by sensor j
σα Standard deviation of AOA error in (rad)
Qi,j Connectivity (a.k.a. proximity), 1 if i in range of j, 0 otherwise
P0 Minimum received power for successful reception
d0 Distance at which mean received power = P0

R Threshold distance for neighborhood selection (often = d0).
vi(t) Sensor data measurement taken by sensor i and time t

τ Time duration during which sensors record data
vi Data measurement vector, vi = [vi(1), . . . vi(τ)]
δi,j Measured / estimated distance between sensors i and j
ẑi Estimated coordinate of sensor i, i = 1 . . . n
Z Actual coordinate matrix, [z1, . . . , zN ]
S Global objective function to be minimized
Si Local objective function to be minimized at sensor i = 1 . . . n

z
(k)
i Estimated coordinates of sensor i at iteration k
Ni Set of sensor numbers which are considered neighbors of i
wi,j Weight given to the measured range between sensors i and j

Table 1.1: Symbols used through thesis.



CHAPTER II

Localization Measurements and Models

The key to developing reliable localization systems which use pair-wise measure-

ments is to accurately represent the severely degrading effects of the channel in which

the pair-wise measurements are made. Propagation of RF signals in real-world en-

vironments, full of obstructions, reflectors, people and objects in motion, make this

representation challenging. This chapter discusses extensive RF measurement cam-

paigns the author has conducted in order to characterize localization measurements.

Models are presented and tested using the measured data. These measurements,

and others from the literature that are referenced, allow the formation of statisti-

cal models for TOA, RSS, AOA, QRSS, and connectivity measurements, which are

introduced in Sections 2.2 through 2.5. These models form the basis for the later

chapters of this thesis.

Generally, range and angle measurements used for localization are impacted by

both time-varying errors and static, environment-dependent errors. Time-varying

errors (e.g. due to additive noise and interference) can be reduced by averaging

multiple measurements over time. Environment-dependent errors are the result of

the physical arrangement of objects (e.g. buildings, trees, and furniture) in the

particular environment which the sensor network is operating. Since the environment

19
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is unpredictable, these errors are unpredictable and must be modeled as random.

However, in a particular environment, objects are predominantly stationary, and

thus for a network of mostly stationary sensors, environment-dependent errors will

be largely constant over time.

The majority of applications of wireless sensor networks involve mostly stationary

sensors. Because some time delay is acceptable in these applications, each pair of

sensors will make multiple measurements over time and average the results together

to reduce the impact of time-varying errors. This thesis creates a model of the

statistics of pair-wise measurements after time-averaging, in order to determine the

performance of localization in wireless sensor networks.

Section 2.1 begins by discussing the general methodology and goals of these mea-

surement experiments. In order to present complete coverage of this variety of pos-

sible pair-wise measurement modalities, parts of the description of the models pre-

sented in this chapter were written collaboratively by the author and A.O. Hero at

the University of Michigan; J.N. Ash and R.L. Moses at Ohio State University; and

S. Kyperountas and N.S. Correal at Motorola Labs, and initially published in [86].

2.1 Measurement Characterization

Ideally, statistical characterization of sensor network measurements would pro-

ceed as follows: deploy K wireless sensor networks, each with N sensors positioned

with the identical geometry in the same type of environment, but each network in a

different place. For example, one might test a sensor network deployed in a grid, in

K different office buildings. In each deployment, make many measurements between

all possible pairs of devices. Repeat each pair-wise measurement over a short time

period and compute the time-average. Then, the joint distribution (conditional on
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the particular sensor geometry) of the time-averaged measurements could be char-

acterized. To our knowledge, no such wide-scale pair-wise measurements have been

attempted, due to the huge scale of the task. First, a large K would be required to

characterize the joint distribution. Secondly, the result would only be valid for that

particular N and those particular sensor coordinates - each different geometry would

require a different measurement experiment!

Measurements made to date have made simplifying assumptions about the mea-

surement model. Typically, it is assumed that measurements in a network are in-

dependent and from the same family of distributions [68, 77, 25, 69, 52, 83]. The

independence assumption, which says that observing an error in one link does not

provide any information about whether or not errors occur in different links, is a

simplifying assumption [94]. Large obstructions may affect a number of similarly-

positioned links in a network. Considering correlations between links would make

the analysis more difficult, but as a future research topic, conducting measurements

to characterize the effects of link dependencies would be basic research which would

enable even more accurate analysis and prediction in wireless sensor networks.

The second simplifying assumption is the choice of a family of distributions. Each

measurement is usually subtracted from its ensemble mean, and then the assumption

is made that the error (the difference) is characterized by a particular parameterized

distribution, such as a Gaussian, log-normal, or mixture distribution. The mea-

surements are then used to estimate the parameters of the distribution, such as the

variance. By this method, one set of parameters can be used to characterize the

whole set of measurements.

The author has conducted several measurement experiments in order to determine

accurate statistical models for RSS and TOA measurements in indoor wireless sensor
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networks. These measurement experiments are presented in Section 2.6. However,

it is useful to first have a general introduction to the sources of error and difficulties

of each type of measurement, before being able to understand a particular measure-

ment campaign. Thus, Sections 2.2 through 2.5 are used to present an introduction

into the various measurement models, prior to the measurement-based validation in

Section 2.6. Each measurement modeling section (Sections 2.2 through 2.5) discusses

four sub-topics: ‘Major Sources of Error’, ‘Statistical Model’, and ‘Calibration and

Synchronization’.

2.2 Received Signal Strength

Received signal strength (RSS) is defined as the voltage measured by a receiver’s

received signal strength indicator (RSSI) circuit. Often, RSS is equivalently reported

as measured power, i.e., the squared magnitude of the signal strength. The RSS of

acoustic, RF, or other signals can be considered. Wireless sensors communicate with

neighboring sensors, and RSS of RF signals can be measured by each receiver during

normal data communication, without presenting additional bandwidth or energy

requirements. Because RSS measurements are relatively inexpensive and simple to

implement in hardware, they are an important and popular topic of localization

research. Yet, RSS measurements are notoriously unpredictable. If they are to be

useful and part of a robust localization system, their sources of error must be well-

understood.

2.2.1 Major Sources of Error

In free space, signal power decays proportional to d−2, where d is the distance

between transmitter and receiver. In real-world channels, multipath signals and

shadowing are two major sources of environment-dependence in the measured RSS



23

[101, 52]. Multiple signals with different amplitudes and phases arrive at the receiver,

and these signals add constructively or destructively as a function of the frequency,

causing frequency-selective fading. The effect of this type of fading can be dimin-

ished by using a spread-spectrum method (eg. direct-sequence or frequency hopping)

which averages the received power over a wide range of frequencies. Spread-spectrum

receivers are an acceptable solution, since spread-spectrum methods also reduce in-

terference in the unlicensed bands in which wireless sensors typically operate. The

measured received power using a wideband method (as the bandwidth → ∞) is

equivalent to measuring the sum of the powers of each multipath signal [36].

Assuming that frequency-selective effects are diminished, environment-dependent

errors in RSS measurements are caused by shadowing, i.e., the attenuation of a signal

due to obstructions (furniture, walls, trees, buildings, and more) that a signal must

pass through or diffract around in its path between the transmitter and receiver.

Shadowing is also called medium-scale fading [52]. As discussed at the start of this

section, these shadowing effects are modeled as random - as a function of the envi-

ronment in which the network is deployed. A RSS model considers the randomness

across an ensemble of many deployment environments.

2.2.2 Statistical Model

Typically, the ensemble mean received power in a real-world, obstructed channel

decays proportional to d−np, where np is the ‘path-loss exponent’, typically between

2 and 4 [101, 52]. The ensemble mean power at distance d is typically modeled as

(2.1) P̄ (d) = Π0 − 10np log
d

∆0

where Π0 is the received power (dBm) at a short reference distance ∆0.

The difference between a measured received power and its ensemble average, due
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to the randomness of shadowing, is modeled as log-normal (i.e., Gaussian if ex-

pressed in dB). The log-normal model is based on a wide variety of measurement

results [52, 101, 35, 93, 92] and analytical evidence [29]. This model is tested via

experimental measurements in Section 2.6. The standard deviation of received power

(when received power is expressed in dBm), σdB , has units of (dB) and is relatively

constant with distance. Typically, σdB is as low as 4 and as high as 12 [101]. Thus,

the received power (dBm) at sensor i transmitted by j, Pi,j is distributed as

(2.2) f (Pi,j = p|θ) = N
(

p; P̄ (‖zi − zj‖), σ2
dB

)

,

where N (x; y, z) is our notation for the value at x of a Gaussian p.d.f. with mean

y and variance z, θ is the coordinate parameter vector from (1.1), and the actual

transmitter-receiver separation distance ‖zi − zj‖ is given by

(2.3) ‖zi − zj‖ =
√

(xi − xj)2 + (yi − yj)2,

for a two-dimensional location coordinate zi = [xi, yi]
T .

2.2.3 Estimating Range from RSS

The ‘range’, i.e., the estimated distance between devices i and j, can be estimated

from Pi,j. First, the maximum likelihood estimate of range is presented. The log-

likelihood of Pi,j given di,j = ‖zi − zj‖ is,

(2.4) log f (Pi,j|θ) = c1 −
[

Pi,j − P̄ (‖zi − zj‖)
]2

2σ2
dB

where c1 is a constant independent of θ. Because of the quadratic form, it is clear

that the maximum of the log-likelihood occurs when Pi,j = P̄ (‖zi−zj‖), where the P̄

is given in (2.1). As a direct result, the distance δMLE
i,j which best estimates ‖zi−zj‖

in the maximum-likelihood sense is,

(2.5) δMLE
i,j = ∆010

Π0−Pi,j

10np .
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Note that δMLE
i,j has a log-normal distribution since log δMLE

i,j has a Gaussian distri-

bution, and that

(2.6) E
[

δMLE
i,j

]

= C‖zi − zj‖,

where

(2.7) C = exp[γ/2], where γ =

(

10np

σdB log 10

)2

.

The parameter C is a multiplicative bias factor. For typical channels (like those

reported in [101]), C ≈ 1.2, adding 20% bias to the range.

Motivated by (4.3), a bias-corrected estimator (a pseudo-MLE) of distance can

be defined just by dividing the MLE by C,

(2.8) δBC
i,j =

∆0

C
10

Π0−Pi,j

10np .

The most important result of the log-normal model is that RSS-based range esti-

mates (from either estimator above) have variance proportional to their actual range.

This is not a contradiction of the earlier statement that σdB is constant with range.

In fact, constant standard deviation in dB means that the multiplicative factors are

constant with range. For example, consider a multiplicative factor of 1.5. At an

actual range of 100m, one would measure a range of 150m, an error of 50m; at 10m,

the measured range would be 15m, an error of 5m, a factor of 10 smaller. This is

why RSS errors are referred to as multiplicative, in comparison to the additive TOA

errors presented in Section 2.3. Clearly, RSS is most valuable in high-density sensor

networks.

2.2.4 Calibration and Synchronization

As made clear by the path loss exponent model in (2.1), the measured RSS is

a function of the path loss exponent np. This can be estimated along with the
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coordinates, as an unknown parameter, as briefly described in Section 4.2.

In addition, measured RSS is also a function of the calibration of both the trans-

mitter and receiver. Depending on the expense of the manufacturing process, RSSI

circuits and transmit powers will vary from device to device. Also, transmit powers

can change as batteries deplete. Sensors might be designed to measure and report

their own calibration data to their neighbors.

Alternatively, each sensor’s transmit power can be considered an unknown param-

eter to be estimated. This means that the unknown vector θ described in Section

1.3 is augmented to include the actual transmit power of each sensor along with its

coordinates. Or, analogous to time-difference of arrival (TDOA) measurements de-

scribed in Section 2.3, one can consider only the differences between RSS measured

at pairs of receivers [72]. The RSS difference between two sensors indicates informa-

tion about their relative distance from the transmitter, and removes the dependency

on the actual transmit power. As another alternative, each sensor might retain only

the order statistics of RSS - an ordered list from highest RSS to lowest RSS from

neighbor’s transmissions [128]. The discussion of localization algorithms is left until

Chapter IV.

2.3 Time-of-Arrival

Time-of-Arrival (TOA) is the measured time at which a signal (RF, acoustic, or

other) first arrives at a receiver. The measured TOA is the time of transmission plus a

propagation-induced time delay. This time delay, Ti,j, between transmission at sensor

i and reception at sensors j, is equal to the transmitter-receiver separation distance,

‖zi − zj‖ divided the propagation velocity, vp. This speed for RF is approximately

106 times as fast as the speed of sound – as a rule of thumb, for acoustic propagation,
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1 ms translates to 1 ft (0.3 m), while for RF, 1 ns translates to 1 ft.

The cornerstone of time-based techniques is the receiver’s ability to accurately es-

timate the arrival time of the line-of-sight (LOS) signal. This estimation is hampered

both by additive noise and multipath signals.

2.3.1 Major Sources of Error: Additive Noise

Even in the absence of multipath, the accuracy of the arrival time is limited by

additive noise. Estimation of time-delay in additive noise is a relatively mature field

[16]. Typically, the TOA estimate is the time that maximizes the cross-correlation

between the received signals and the known transmitted signal. This estimator is

known as a simple cross-correlator (SCC). The generalized cross-correlator (GCC)

derived by Knapp and Carter [64] (the maximum likelihood estimator (MLE) for the

TOA) extends the SCC by applying pre-filters to amplify spectral components of the

signal that have little noise and attenuate components with large noise. As such, the

GCC requires knowledge (or estimates) of the signal and noise power spectra.

For a given bandwidth and signal-noise ratio (SNR), our time-delay estimate can

only achieve a certain accuracy. The Cramér-Rao bound (CRB) provides a lower

bound on the variance of the TOA estimate in a multipath-free channel. For a signal

with bandwidth B in (Hz), when B is much lower than the center frequency, Fc (Hz),

and signal and noise powers are constant over the signal bandwidth [103],

(2.9) var(TOA) ≥ 1

8π2 B Ts F 2
c SNR

,

where Ts is the signal duration (s), and SNR is the signal to noise power ratio. By

designing the system to achieve sufficiently high SNR, the bound predicted by the

CRB (2.9) can be achieved in multipath-free channels. Thus (2.9) provides intuition

about how signal parameters like duration, bandwidth, and power affect our ability to
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accurately estimate the TOA. For example, doubling either the transmission power

or the bandwidth will cut ranging variance in half. This CRB on TOA variance

is complementary to the bound that will be presented in Section 3.1 for location

variance, because the location variance bound requires, as an input, the variance of

the TOA estimates.

2.3.2 Major Sources of Error: Multipath

TOA-based range errors in multipath channels can be many times greater than

those caused by additive noise alone. Essentially, all late-arriving multipath com-

ponents are self-interference that effectively decrease the SNR of the desired LOS

signal. Rather than finding the highest peak of the cross-correlation, in the mul-

tipath channel, the receiver must find the first-arriving peak, because there is no

guarantee that the LOS signal will be the strongest of the arriving signals. This

can be done by measuring the time that the cross-correlation first crosses a thresh-

old. Alternatively, in template-matching, the leading edge of the cross-correlation is

matched in a least-squares sense to the leading edge of the auto-correlation (the cor-

relation of the transmitted signal with itself) in order to achieve sub-sampling time

resolutions [96]. Generally errors in TOA estimation are caused by two problems:

• Early-Arriving Multipath: Many multipath signals arrive very soon after the

LOS signal, and their contributions to the cross-correlation obscure the location

of the peak from the LOS signal.

• Attenuated LOS: The LOS signal can be severely attenuated compared to the

late-arriving multipath components, causing it to be ‘lost in the noise’ and

missed completely, causing large positive errors in the TOA estimate.
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In dense sensor networks, in which any pair of sensors can measure TOA, there is the

distinct advantage of being able to measure TOA between nearby neighbors. As the

path length decreases, the LOS signal power (relative to the power in the multipath

components) generally increases [83]. The measurement study in [83] is particularly

valuable in verification of this claim, because it presented synchronized indoor TOA

measurements which specifically measured the received power in the LOS signal

and then compared it to the received power measured at later time delays. These

measurements were made on a large number of links in an office building, and it was

shown that the relative LOS signal power is high at low path lengths, and slowly

decreasing with increasing path length. Thus, the severely attenuated LOS problem

is especially severe in networks with large inter-sensor distances.

While early-arriving multipath components cause smaller errors than late-arriving

multipath, they are very difficult to combat. Generally, wider signal bandwidths are

necessary for obtaining greater temporal resolution. The peak width of the autocor-

relation function is inversely proportional to the signal bandwidth. A narrow auto-

correlation peak enhances the ability to pinpoint the arrival time of a signal and helps

in separating the LOS signal cross-correlation contribution from the contributions

of the early-arriving multipath signals. Wideband direct-sequence spread-spectrum

(DS-SS) or ultra-wideband (UWB) signals (see sidebar on UWB) are popular tech-

niques for high-bandwidth TOA measurements. However, wider bandwidths require

higher speed signal processing, higher device costs, and possibly higher energy costs.

Standards proposed to the IEEE 802.15 Alternative Physical Layer Task Group 3a

quote receiver power consumptions on the order of 200 mW [58], about 5 times

the quoted power consumption of IEEE 802.15.4 Low-Rate Wireless Personal-Area

Networks receivers. Although high-speed circuitry typically means higher energy-
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consumption, the extra bandwidth can be used to lower the time-average power

consumption. Transferring data packets in less time means spending more time in

standby mode.

Finally, note that time delays in the transmitter and receiver hardware and soft-

ware add to the measured TOA. While the nominal delays are typically known,

variance in component specs and response times can be an additional source of TOA

variance.

2.3.3 Statistical Model

Measurements have shown that for short-range measurements, measured time

delay can be roughly modelled as Gaussian [77, 68, 17, 25],

(2.10) f (Ti,j = t|θ) = N
(

t; ‖zi − zj‖/vp + µT , σ2
T

)

,

where µT and σ2
T are the mean and variance of the time delay error, θ is defined in

(1.1), ‖zi − zj‖ is given in (2.3), and vp is the propagation velocity. Wideband DS-

SS measurements reported in [92] supported the Gaussian error model and showed

µT = 10.9 ns and σT = 6.1 ns. UWB measurements done in on a mostly-empty

Motorola factory floor showed µT = 0.3 ns and σT = 1.9 ns. This mean error µT can

be estimated (as a nuisance parameter) by the localization algorithm so that it can

be subtracted out [25].

However, the presence of large errors can invalidate the Gaussian model. These

errors make the tails of the distribution of measured TOA heavier than Gaussian, and

have been modeled using a mixture distribution: with a small probability, the TOA

measurement results from a different, higher-variance distribution, as described in

[13] and [51]. Localization systems should be designed to be robust to these large er-

rors, also called non-line-of-sight (NLOS) errors. For TOA measurements made over
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time in a changing channel, the TOAs which include excess delays can be identified

and ignored [13]. Even in static channels, if the number of range measurements

to a device are greater than the minimum required, the redundancy can be used

to identify likely NLOS errors [20, 4]. Localization algorithm robustness is further

addressed in Chapter IV.

2.3.4 Calibration and Synchronization

If wireless sensors have clocks that are accurately synchronized, then the time

delay is determined by subtracting from the measured TOA the known transmit

time. Sensor network clock synchronization algorithms have reported precisions on

the order of 10µs [113]. Because of the difference in propagation speed, such clock

accuracies are adequate for acoustic signals [47], but not for RF signals.

For time-of-arrival in asynchronous sensor networks, a common practice is to use

two-way (or round-trip) TOA measurements. In this method, a first sensor transmits

a signal to a second sensor, which immediately replies with its own signal. At the

first sensor, the measured delay between its transmission and its reception of the

reply is twice the propagation delay plus a reply delay internal to the second sensor.

This internal delay is either known, or measured and sent to the first sensor to be

subtracted. Multiple practical two-way TOA methods have been reported in the

literature [63, 69, 75, 40]. Generally each pair of sensors measures round-trip TOA

separately in time. But, if the first sensor has adequate signal processing capability,

multiple sensors can reply at the same time, and two-way TOAs can be estimated

simultaneously using multi-user interference cancellation [63].

The state of each sensor’s clock (its bias compared with absolute time) can also

be considered to be an unknown parameter and included in the parameter vector θ.

In this case, one-way TOA is measured and input to a localization algorithm which
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estimates both the sensor coordinates and the biases of each sensor’s clock [68]. The

difference between the arrival times of the same signal at two sensors is called the

time-difference of arrival (TDOA). A TDOA measurement does not depend on the

clock bias of the transmitting sensor. TDOA methods have been used in source

localization for decades for locating asynchronous transmitters, and has application

in GPS and cellular localization. Under certain weak conditions, it has been shown

that TOA with clock bias (treated as an unknown parameter) is equivalent to TDOA

[111].

2.3.5 Ultra-Wideband and TOA

Ultra Wideband (UWB) communication employs narrow pulses of very short (sub-

nanosecond) duration that result in radio signals that are broadly spread in the

frequency domain. The article by Gezici et. al. [45] provides a detailed overview of

UWB-based localization. A signal is considered to be UWB if either its fractional

bandwidth, the ratio of its bandwidth to its center frequency, is larger than 0.2, or

it is a multiband signal with total bandwidth greater than 500 MHz. In 2003, the

U.S. Federal Communications Commission (FCC) approved the commercialization

and operation of UWB devices for public safety and consumer applications. Among

the envisaged applications are wireless networking and localization. Standardization

of UWB is underway, including the development of a high bit rate UWB physical

layer that supports peer-to-peer ranging, in IEEE task group 802.15.3a, and in IEEE

task group 802.15.4a [58].

The very high bandwidth of UWB leads to very high temporal resolution, making

it ideal for high precision radiolocation applications. Implementations of UWB-based

range measurements, reported in [69, 41, 25, 40], have demonstrated RMS ranging

errors of 0.4 to 5 feet (0.12 to 1.5 m).
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2.4 Angle-of-Arrival

By providing information about the direction to neighboring sensors rather than

the distance to neighboring sensors, angle-of-arrival (AOA) measurements provide lo-

calization information complementary to the TOA and RSS measurements discussed

above.

There are two common ways that sensors measure AOA (as shown in Figure 2.1).

The most common method is to use a sensor array and employ so-called array

signal processing techniques at the sensor nodes. In this case, each sensor node is

comprised of two or more individual sensors (e.g., microphones for acoustic signals or

antennas for RF signals) whose locations with respect to the node center are known.

A four-element Y-shaped microphone array is shown in Figure 2.1(a). The AOA is

estimated from the differences in arrival times for a transmitted signal at each of the

sensor array elements. The estimation is similar to time-delay estimation discussed

in Section 2.3, but generalized to the case of more than two array elements. When

the impinging signal is narrowband (that is, its bandwidth is much less than its

center frequency), then a time delay τ relates to a phase delay φ by φ = 2πfcτ where

fc is the center frequency. Narrowband AOA estimators are often formulated based

on phase delay. See [123, 115, 82] for more detailed discussions on AOA estimation

algorithms and their properties.

A second approach to AOA estimation uses the RSS ratio between two (or more)

directional antennas located on the sensor (see Figure 2.1(b)). Two directional an-

tennas pointed in different directions such that their main beams overlap can be used

to estimate the AOA from the ratio of their individual RSS values.

Either AOA approach requires multiple antenna elements, which can contribute to
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Figure 2.1: Angle-of-arrival (AOA) estimation methods. (a) AOA is estimated from the time-of-
arrival differences among sensor elements embedded in the node; a 4-element Y-shaped
array is shown. (b) AOA can also be estimated from the received signal strength (RSS)
ratio RSS1/RSS2 between directional antennas.

sensor device cost and size. However, acoustic sensor arrays may already be required

in devices for many environmental monitoring and security applications, in which the

purpose of the sensor network is to identify and locate acoustic sources [19]. Locating

the sensors themselves using acoustics in these applications is a natural extension.

RF antenna arrays imply large device size unless center frequencies are very high.

However, available bandwidth and decreasing manufacturing costs at millimeter-wave

frequencies may make them desirable for sensor network applications. For example,

at 60 GHz, higher attenuation due to oxygen absorption helps to mitigate multipath,

and accurate indoor AOA measurements have been demonstrated [126].

2.4.1 Major Sources of Error and Statistical Model

AOA measurements are impaired by the same sources discussed in the TOA sec-

tion above - additive noise and multipath. The resulting AOA measurements are

typically modeled as Gaussian, with ensemble mean equal to the true angle to the

source and standard deviation σα. Theoretical results for acoustic-based AOA esti-
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mation show standard deviation bounds on the order of σα = 2◦ to σα = 6◦ depending

on range [23]. Estimation errors for RF AOA on the order of σα = 3◦ have been

reported using the RSS ratio method [7].

2.4.2 Calibration and Synchronization

It is not likely that sensors will be placed with known orientation. When sensor

nodes have directionality, the network localization problem must be extended to

consider each sensor’s orientation as an unknown parameter, to be estimated along

with position. In this case, the unknown vector θ (see Section 1.3) is augmented to

include the orientation of each sensor.

2.5 Quantized RSS and Connectivity

2.5.1 Connectivity Measurements

It is common for localization research to consider connectivity (a.k.a. proximity)

measurements as a simple, inexpensive, backward-compatible location measurement.

Whether or not devices have accurate RSS measurement circuitry on their receivers,

two devices can determine whether or not they can communicate. Two sensors are not

considered to be connected solely based on the distance between them – two sensors

are connected if the receiving sensor can successfully demodulate packets transmitted

by the other sensor. The receiver fails to successfully demodulate packets when the

received signal strength (RSS) is too low. Since RSS is a random variable due to

the unpredictability of the fading channel, and connectivity is a function of RSS,

connectivity is also a random variable.

Specifically, the connectivity measurement of sensors i and j, Qi,j , is modeled as
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a binary quantization of RSS,

(2.11) Qi,j =











1, Pi,j ≥ P1

0, Pi,j < P1

where Pi,j is the received power (dBm) at sensor i transmitted by sensor j, and P1

is the receiver threshold (dBm) under which packets cannot be demodulated.

In reality, being in-range of another device (transmitting a packet which the other

device correctly demodulates) is not a step function of received power. An additional

source of variation in proximity measurements is the randomness of packet errors

given the received power level. Thus in reality, given received power Pi,j, proximity

Qi,j ∈ {0, 1} is a binary random variable, such that

(2.12) P[Qi,j = 1|Pi,j] = P [No Packet Error|Pi,j]

where the probability of a packet error is a function of the type of signalling and

forward error correction (FEC) used, packet length, and whether the receiver is co-

herent or non-coherent. If (2.12) was used to define proximity, all of these details of

the transceiver implementation would be required in order to calculate the perfor-

mance of localization based on connectivity measurements. Instead, by using (2.11)

we can present results that are independent of signaling, packet length, and receiver

implementation. Since (2.11) removes some variability from the measurement model,

the calculated lower bounds are conservative: they do in fact provide a lower bound

for a connectivity-based localization system.

Finally, note that the assumption that proximity is a step function of RSS will

not loosen the bound significantly for digital receivers in typical fading channels.

For digital receivers, there is a large range of received powers for which the prob-

ability of packet error is very close to zero, and a large range of power for which
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the probability is very close to one. The range of power for which the probability

of packet error is neither close to one or zero is small in comparison. Fig. 2.2 plots

P[No Packet Error|Pi,j] from (2.12) for a packet of 200 bits and a coherent BPSK

receiver without FEC. For comparison, Fig. 2.2 also plots the CDF of received power

under a log-normal model with standard deviation of 8 dB, which is a typical value

for indoor channels [101]. It can be seen that the variation caused by the fading

channel is significantly more severe than that caused by the randomness of packet

errors given the received power level.
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Figure 2.2: Two plots relating to the variation in proximity measurements: (- - - -) the CDF of Pi,j

in dB above P̄i,j , and (——) the probability of no packet error given Pi,j in dB above
Pthr (for a packet of 200 bits and a coherent BPSK receiver without FEC).

Given the definition of proximity in (2.11) and the model for Pi,j in (2.2), it can

be shown that the probability mass function of Qi,j given the coordinates of devices

i and j is

P[Qi,j = s|zi, zj] = s + (−1)sΦ [gi,j(1)] ,(2.13)

gi,j(s) =
√

γ ln
‖zi − zj‖

ds
,(2.14)

γ =

(

10np

σdB log 10

)2

(2.15)

where s ∈ {0, 1}, and ds is the range at which the the mean received power is Ps, ie.,
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the communication ‘range’. Specifically, from (2.1),

(2.16) ds = ∆010
Π0−Ps
10np .

The function Φ(x) is the CDF of a univariate zero-mean unit-variance Normal dis-

tribution.

2.5.2 Quantized RSS Measurements

As noted, connectivity measurements are just a binary quantization of RSS mea-

surements. For more generality, this thesis considers arbitrary K-level quantized

received signal strength (QRSS) system. For example, consider a transmitter which

has the option of using a power amplifier (PA). The transmitter could send a packet

twice - once using the PA, and once without. Assuming a stationary channel during

the two measurements, one of three results are possible, essentially resulting in a

single 3-level QRSS measurement.

Also, consider that real-world RSS measurements are always going to be quan-

tized. If there are very many levels, then the effect of the quantization is minimal.

However, if an A/D converter is used to quantize an analog measure of received

power, the complexity of the A/D increases linearly with the number of levels. De-

termining the acceptable granularity of measured RSS will help minimize receiver

complexity.

Expanding on the model for connectivity measurements, define K levels numbered

0 through K − 1. For a particular system, define the (increasing) threshold powers

Ps, s ∈ {1, . . . , K−1} to be the minimum power in level s. Similarly, define ds to be

the path length at which the mean received power is equal to Ps, as in (2.16). Thus,

a measurement of Qi,j = s for s ∈ {0, . . . , K − 1} would occur if Pi,j ∈ [Ps, Ps+1).
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Similarly, Qi,j = s would occur if δi,j ∈ (ds+1, ds], where

(2.17) δi,j = ∆010
Π0−Pi,j

10np

Since there is no lower bound for ‘out-of-range’ power (the lower bound of level

s = 0), define P0 = −∞(dBm). Similarly, since it is preferable not to define a

finite maximum measured power (the upper bound of level s = K − 1), define

PK = ∞(dBm). Using (2.16), this implies that d0 = ∞ and dK = 0. Note Ps are

increasing in s, but ds are decreasing in s.

Now the probability mass function of QRSS measurements can be written as,

(2.18) P[Qi,j = s|zi, zj] = Φ [gi,j(s + 1)]− Φ [gi,j(s)] ,

where gi,j(k) is given in (2.14) and the convention is used for 0 < d < ∞, ln d
0

=∞

and that ln d
∞ = −∞.

2.5.3 Calibration and Synchronization

In general, QRSS and connectivity have identical calibration and synchronization

issues are RSS. As noted, QRSS is a more realistic representation of RSS, since RSS

will be generally be quantized to some extent. However, in addition to knowing

transmit power, an optimal location estimator would need to know the thresholds

between the quantization levels in each receiver. In general, these are not exactly

known. In reality, sub-optimal algorithms will be used for localization, which do not

try to know or estimate the receiver quantization function.
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2.6 Channel Measurement Experiments

Figure 2.3: Photo of measurement area looking above cubicle walls.

In this section, two sets of multipoint-to-multipoint (M2M) wideband channel

measurements are presented. These measurements were conducted in the Motorola

facility in Plantation, Florida. Here, the term ‘multipoint-to-multipoint’ emphasizes

that the channel between every pair of sensors is measured. In contrast, channel

measurements made for cellular deployment or WLAN deployment, measure the

channel between a base station and many possible mobile station locations, and are

thus point-to-multipoint. The first campaign measures RSS only, while the second

campaign uses more sophisticated hardware and measures both TOA and RSS si-

multaneously.

The objective of these campaigns are first, to verify the models presented in this

chapter, and provide estimates of the model parameters. Second, the measurements

are directly useful as input into localization algorithms to test what their performance

would have been had they been deployed in the measured environment. The model

verification and parameter estimation is presented in this chapter. The measurement-

based localization performance of the algorithms presented later in this thesis are



41

presented after those algorithms have been introduced in Chapter IV.

In both campaigns, the measurement environment is an office area partitioned by

1.8m high cubicle walls, with hard partitioned offices, external glass windows and

cement walls on the outside of the area. There are also metal and concrete support

beams within and outside of the area. Offices are occupied with desks, bookcases,

metal and wooden filing cabinets, computers and equipment. Since the areas are

open plan, it is difficult to define the ‘room dimensions’, but this is typical of office

environments in modern office buildings.

2.6.1 Measurement Campaign I: RSS

The initial measurement campaign used off-the-shelf measurement equipment to

measure received signal strength in a narrowband channel at 925 MHz, within the

900-928 MHz ISM band in the US. The measurement system consists of a HP 8644A

signal generator transmitting a CW signal at 925 MHz at an output level of 0.1 mW

and a Berkeley Varitronics Fox receiver. A λ/4 dipole with Roberts balun resonant at

925 MHz is positioned at a height above the floor of 1 meter at both the transmitter

and receiver. The antennas are both stationary during each measurement and have

an omnidirectional radiation pattern in the horizontal plane and a vertical beamwidth

of 30o. The Fox receiver was set to average received power over one second. The

campaign is conducted during evenings and on weekends to ensure that the channel

is mostly static during the measurements. Two meter tall Hayworth partitions and

ceiling-height interior walls divide the area into cubicles, lab space, and offices. To

simulate a system in which reference devices are placed approximately every 15 m

in the indoor environment, they are placed in a 4 by 4 grid in the measurement area

(see map in Fig. 2.4), thus m = 16.

Forty locations are chosen for the unknown-location devices (n = 40) in the
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Figure 2.4: Floor plan of measurement area for Measurement Campaign I showing sensor locations.

center quadrant (16 m by 14 m). The center quadrant consists of four columns of

cubicles and the hallways that separate them. Two or three unknown-location device

locations are chosen for each cubicle, and a few locations put into the hallways. This

density or greater might be expected, for example, in a location and tracking system

in which each employee places a tag on two or three valuable things that he or

she works with, such as computers and accessories, electronic equipment, briefcases,

wireless phones, notebooks, tools, or key rings. Together, there are N = 56 total

node (reference and unknown-location device) locations.

First, the transmitter is placed at location 1, and received power readings are

taken and recorded at locations 2 through 56. Next, the transmitter is moved to

location 2, and power readings are taken at locations 1 and 3 through 56. This

process continues until power measurements have been made between each pair of

devices (in both directions), for a total of 56× 55 = 3080 RSS measurements. The

measured received powers, plotted in Fig. 2.6, fit the channel model of Eq. 2.1 with

a d0 of 1 m, np of 2.98. The histogram of the residuals, rR
i,j = Pi,j−P̄ (‖zi−zj‖) shows
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a Gaussian PDF with nearly zero mean and a standard deviation of σdB = 7.38.

The log-normal distribution of the RSS measurements is verified by examining

the residuals rR
i,j using a quantile-quantile plot in Fig. 2.5. If the data is log-normal,

it would be expected that the data points to follow closely to the straight line. They

are very close, within the [−2, 2] quantile range. Outside of that range, the data is

somewhat heavier-tailed.
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Figure 2.5: Q-Q plot of residuals Pi,j−P̄ (‖zi−zj‖) for RSS data (in dBm), compared to a Gaussian
quantile.

Using a Kolmogorov-Smirnov (KS) test, the hypothesis is tested: H0 : rR
i,j ∼

N (r̄R, S2
R) vs. H1 : rR

i,j is not Gaussian, where r̄R is the sample mean of rR
i,j and S2

R

is the sample variance. The KS test yields a p-value of 0.28. One would accept H0

at a level of significance of α = 0.05. Note that the KS test p-value is particularly

affected by the worst fit between measurements and model, which occurs further

than 2 quantiles away from the mean. Thus, except for the behavior of the far tails

shown in Fig. 2.5, the data shows even higher fit with the log-normal model than

indicated by p = 0.28.
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Figure 2.6: RSS Measurements in Experiment I compared to path loss exponent model in (2.1)
shows agreement with np = 2.98, with standard deviation σdB = 7.38.

2.6.2 Measurement Campaign II: RSS and TOA

In the second measurement experiment, a more sophisticated measurement system

is used in order to simultaneously measure RSS and TOA. While measurement of

round-trip TOA can, in fact, be implemented in relatively inexpensive hardware, the

author knows of no off-the-shelf commercial hardware that provides an all-purpose

testbed. In this experiment, since it was hoped to sample the channel such that

different LOS estimation methods could be tested, hardware that implemented a

particular LOS estimation method and reports the TOA could not be used. Instead,

a more capable system was used, basically involving software radios which are syn-

chronized to GPS, programmed to meet the measurement needs, and which record

complete channel data, which is then post-processed using the ‘template-matching’

LOS estimation algorithm presented in Section 2.3.2.

The measurement system comprises a wideband direct-sequence spread-spectrum

(DS-SS) transmitter (TX) and receiver (RX) (Sigtek model ST-515). The TX and

RX are battery-powered and are placed on carts. The TX outputs an unmodulated

pseudo-noise (PN) code signal with a 40 MHz chip rate and code length 1024. The
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center frequency is 2443 MHz, and the transmit power is 10 mW. Both TX and RX

use 2.4 GHz sleeve dipole antennas kept 1m above the floor. The antennas have an

omnidirectional pattern in the horizontal plane and a measured antenna gain of 1.1

dBi. The RX records I and Q samples at a rate of 120 MHz, downconverts, and

correlates them with the known PN signal and outputs a power-delay profile (PDP).

An example PDP is shown in Fig. 2.7. Noise and ISM-band interference is ensured to

have minimal effect by by maintaining an SNR > 25 dB throughout the campaign.

For TOA, wireless sensors will likely make two-way (round-trip) measurements

as discussed in Section 2.3. However, for the purpose of these measurements, two-

way TOA measurements are not necessary. Instead, the TX and RX are carefully

synchronized using off-the-shelf time-synchronization equipment. Since they are care-

fully calibrated, one can essentially simulate what would happen in a two-way TOA

measurement using one-way TOA measurements. Essentially, this method measures

more than is necessary to model two-way TOA measurements; however, the one-way

measurements were easier to implement using off-the-shelf equipment.

Both TX and RX are synchronized by 1 pulse per second (1PPS) signals from two

Datum ExacTime GPS and rubidium-based oscillators. On each of the eight days of

the campaign, a procedure is followed to ensure a stable time base. After an initial

GPS synch of the ExacTimes, GPS is disconnected and the rubidium oscillators

provide stable 1PPS signals. The frequencies of the two rubidium oscillators are off

very slightly, thus the 1PPS signals drift linearly, on the order of ns per hour. By

periodically measuring and recording the offset between the two 1PPS signals using

an oscilloscope, the effect of the linear drift can be cancelled. A time base with

a standard deviation of between 1-2 ns is achieved. Since the noise variances add

together, the variance of the time base (≤ 4ns2) is a relatively small source of error
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in the total measured TOA variance (37ns2) which will be explained in Section 2.6.2.

Forty-four device locations are identified and marked with tape. The smallest

rectangle that encompasses the 44 locations is 14m by 13m. The M2M measurements

are conducted by first placing the TX at location 1 while the RX is moved and

measurements are made at locations 2 through 44. Then the TX is placed at location

2, as the RX is moved to locations 1 and 3 through 44. At each combination of TX

and RX locations, the RX records five PDPs. Since reciprocity is expected, there are

a total of 10 measurements for each link. All devices are in range of all other devices.

Over the course of the 8-day campaign, a total of 44*43*5 = 9460 measurements are

taken.

TOA from Experiment II
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Figure 2.7: (a) Measured PDP with TX at 1 and RX at 24 and threshold (- - -) above which received
power is integrated to calculate RSS. (b) Leading edge of same PDP showing LOS TOA
= ‖z1 − z24‖/vp (· − · − ·) and estimated TOA (- - -). (c) Autocorrelation of PN signal
RPN (τ) used in template-matching [96].

The wideband radio channel impulse response (CIR) is modeled as a sum of

attenuated, phase-shifted, and time-delayed multipath impulses [52][101]. The PDP
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Figure 2.8: Measured wideband path gain (x) as a function of path length. Linear fit (—) is with
d0 = 1m, np = 2.3, and σdB = 3.92.

output of the Sigtek measurement system, due to its finite bandwidth, replaces each

impulse of the CIR with the autocorrelation function of the PN signal RPN(τ) shown

in Fig. 2.7(c), an approximately triangular peak 2/RC = 50ns wide. In high SNR,

low multipath cases, TOA estimates can be more accurate than 2/RC . However, a

wider peak permits more multipath errors since the line-of-sight (LOS) component,

with TOA ‖zi− zj‖/vp, can be obscured by non-LOS multipath that arrive < 2/RC

seconds after the LOS TOA. If the LOS component is attenuated, it can be difficult

to distinguish the LOS TOA. In Fig. 2.7(a), the PDP is seen to contain several

multipath within the first 200ns. Inspecting the PDP immediately after τ = 0, as

shown in Fig. 2.7(b), the LOS path at 42ns is visible but attenuated compared to a

later multipath which appears to arrive at 80ns.

The template-matching method [96] provides a TOA estimation algorithm which

is robust to such attenuated-LOS multipath channels. In template-matching, samples

of the leading edge of the PDP are compared to a normalized and oversampled

template of RPN(τ) shown in Fig. 2.7(c). The TOA estimate t̃i,j is the delay that

minimizes the squared-error between the samples of the PDP and the template. In
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Figure 2.9: Q-Q plot of (a) Pi,j − P̄ (‖zi − zj‖) for RSS data, and (b) Ti,j − ‖zi − zj‖/vp for TOA
data, compared to a Gaussian quantile.

Fig. 2.7(b), the template-matching TOA estimate t̃1,24 = 51ns is in error by +9ns.

If a local maximum was necessary to identify the LOS path, the error would have

been much greater.

The average of the 10 t̃i,j measurements for the link between i and j is called Ti,j.

This set of time-averaged measurements, {Ti,j}, is a reasonable representation of the

TOAs that the studied 44-node sensor network would measure.

Consider the error in the measurement rT
i,j,

(2.19) rT
i,j = Ti,j −

‖zi − zj‖
vp

.

Since non-LOS multipath are delayed in time, rT
i,j usually has a positive mean. In

these measurements, the average of rT
i,j for all pairs (i, j), µT = 10.9 ns. The measured

standard deviation, σT , is 6.1 ns.

Next, the parameters for the measurement-based RSS model is shown, before

performing hypothesis tests on the measured data in Section 2.6.2.
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RSS from Experiment II

It has been shown that a wideband estimate of received power, pi,j, can be ob-

tained by summing the powers of the multipath in the PDP [101]. To distinguish

between noise and multipath, only power above a noise threshold is summed, as

shown in Fig. 2.7(a). This wideband method reduces the frequency-selective fading

effects. Define the time-average RSS measurement Pi,j to be the geometric mean of

the 10 pi,j measurements for the link between i and j. As described in Section 2.2,

time-averaging reduces fading due to motion of objects in the channel, and shadowing

effects remain the predominant source of error.

The measured Pi,j match the log-normal shadowing model in (2.2) with n = 2.30

and σdB = 3.92 dB, using d0 = 1m. The low variance may be due to the wide

bandwidth, averaging, and homogeneity of the measured cubicle area.

In Figure 2.10, the error between range measurements and real distances, i.e.,

δBC
i,j −‖zi−zj‖, is plotted. Note that the standard deviation of the RSS-based range

estimator error increases steadily with distance. But, most importantly, the error as

a percentage of actual range is often high: there are several range errors larger than

100% of the actual range.

RSS Model Verification from Experiment II

The log-normal and Gaussian distributions of the RSS and TOA measurements

are verified by examining the residuals rR
i,j , Pi,j− P̄ (‖zi−zj‖) and rT

i,j , Ti,j−‖zi−

zj‖/vp via quantile-quantile (Normal probability) plots in Fig. 2.9. Both RSS and

TOA data fit the models well between the -2 and +2 quantiles. Using a Kolmogorov-

Smirnov (KS) test, the hypothesis is tested: H0 : rR
i,j ∼ N (r̄R, S2

R) vs. H1 : rR
i,j is not

Gaussian, where r̄R is the sample mean of rR
i,j and S2

R is the sample variance. An
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identical test is conducted on rT
i,j for the TOA measurements. For the RSS and TOA

residuals, the KS tests yield p-values of 0.09 and 0.50, respectively. In both cases,

one would decide to accept H0 at a level of significance of α = 0.05.

However, the low p-value for the RSS data indicates that log-normal shadowing

model in (2.2) may not fully characterize the data. In fact, if in H0 a 2-component

Gaussian mixture distribution is used (with parameters estimated from rR
i,j via the

MLE), the KS test yields a p-value of 0.88. A topic for future research is to inves-

tigate whether the potential benefits of using a mixture distribution in the channel

model would justify its additional complexity. The experimental results reported

in the next sections do assume the log-normal shadowing model. An avenue of fu-

ture research remains to investigate the difference in lower bounds and maximum

likelihood estimation performance when assuming a log-normal mixture model as

compared to a log-normal model for RSS.

2.6.3 Data Availability

Measurement-based verification is essential for testing localization algorithms and

determining measurement models, yet such measurement sets are difficult to record.
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To help overcome this difficulty, the TOA and RSS measurements from Experiment

II have been made freely available online in Matlab data file format [84].

2.7 Conclusion

The models presented in Sections 2.2 through 2.5 have been shown through ex-

periments, both those the author has conducted and those reported in the literature,

to be good approximations for the very complicated real-world behavior of pair-wise

measurements in unpredictable RF channels. Wireless sensor networks designed to

use these pair-wise measurements should consider these sources of error, error mod-

els, and calibration and synchronization issues.

In particular, these error models are sufficient to find Cramér-Rao bounds on

localization performance in cooperative localization, lower bounds which are not a

function of the particular localization algorithm employed, and thus can be used to

very quickly judge the precisions possible from various measurement modalities. The

models in this chapter are fundamental to the performance limits presented in the

following chapter.



CHAPTER III

Localization Bounds

3.1 Limits on Localization Covariance

The Cramér-Rao bound provides a means for calculating a lower bound on the

covariance of any unbiased location estimator which uses connectivity, QRSS, RSS,

TOA, or AOA measurements. Such a lower bound provides a useful tool for re-

searchers and system designers. Without testing particular estimation algorithms, a

designer can quickly find the ‘best-case’ using particular measurement technologies.

Researchers who are testing localization algorithms, like those presented in Chapter

IV, can use the CRB as a benchmark for a particular algorithm. If the bound is

nearly achieved, then there is little reason to continue working to improve that al-

gorithm’s accuracy. Furthermore, the bound’s functional dependence on particular

parameters helps to provide insight into the behavior of cooperative localization.

The bound on estimator covariance is a function of the following:

1. Number of unknown-location and known-location sensors,

2. Sensor geometry,

3. Whether localization is in two or three dimensions,

4. Measurement type(s) implemented (i.e., RSS, TOA, or AOA),

52
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5. Channel parameters (such as σdB and np in RSS, σT in TOA, or σα in AOA

measurements),

6. Which pairs of sensors make measurements (network connectivity),

7. ‘Nuisance’ (unknown) parameters which must also be estimated (such as clock

bias for TOA or orientation for AOA measurements).

Note that, in collaboration with J.N. Ash at Ohio State University, we have

developed a publicly available, multi-featured Matlab-based code and GUI for the

calculation of the localization CRB, shown in Figure 3.2 [5]. The GUI was developed

to illustrate the use of a variety of Cramér-Rao bounds on localization variance

developed jointly at OSU and the University of Michigan. The code can determine

bounds when any combination of RSS, TOA, and AOA measurements are used. It

allows the inclusion of device orientation and clock biases as unknown ‘nuisance’

parameters. Sensors can be arranged visually using the GUI and the bound can be

calculated. For each sensor, the GUI displays the CRB by plotting the lower bound

on the 2-σ uncertainty ellipse. The tool also includes the ability to run Monte-Carlo

simulations which estimate sensor parameters and coordinates using the maximum-

likelihood estimator (MLE) that will be discussed in Chapter IV. The Monte-Carlo

coordinate estimates are plotted on screen for comparison with the covariance bound.

This is a very useful graphical tool to help make concrete the analysis presented in

this section.

Furthermore, the author has made public more basic Matlab functions for directly

calculating the CRB [84]. Given the above list of inputs, these Matlab functions will

directly calculate and return the lower bound on the variance. These functions allow

a user to calculate bounds for comparison with their own localization simulation
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results. In addition to TOA, RSS, and AOA, this code additionally calculates bounds

for QRSS and connectivity. These code and tools have been made publicly available

in order to make the bound more readily available to researchers and system designers

from a variety of disciplines.

In this section, analytical results for the CRB are presented. First, it is shown

that ‘cooperative’ location estimation is one of a larger class of ‘self-calibration’

estimators which use some prior information, and pair-wise estimates, to infer device

parameters. A result is proven regarding sufficient conditions for a strictly decreasing

variance bound as more sensors are added to the network. This result is an important

theoretical contribution of this thesis.

Next, the localization CRB derivation is presented for the different pair-wise mea-

surement methods considered in this thesis. The objective is both to show that the

lower bound is simple to calculate and that it provides a means to compare the three

measurement methods presented in Chapter II.

To keep the formulation short, two simplifying assumptions are made. First, 2-D

(rather than 3-D) localization is addressed. Second, the unknown channel and device

parameters (orientation for AOA, transmit powers and np for RSS and QRSS, and

clock biases for TOA) are assumed to be known. Analysis of bounds without these

assumptions are left to the references [44, 76, 77, 17, 68] which have presented details

of these analytical CRBs, for a variety of different measurement types.

Furthermore, to keep this section short and to the point, the detailed derivations

are presented separately in Appendix A.

3.1.1 What is the Cramér-Rao Bound?

The Cramér-Rao bound (CRB) provides a lower bound on the variance achiev-

able by any unbiased location estimator [122]. The bound is useful as a guideline:
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knowing the best an estimator can possibly do helps us judge the estimators that

are implemented. Essentially, the CRB is a general uncertainty principle which is

applied in this chapter to location estimation.

A detailed derivation of the CRB is provided in [122]. This section purely serves

as an overview for those without a priori knowledge of the CRB. The most important

benefit of the CRB is that the lower bound on estimation variance can be calculated

without ever considering a single estimation method. All that is needed to calculate

a CRB is the statistical model of the random measurements, i.e., f (X|θ), where X

is the random measurement, and θ are the parameters that are to be estimated from

the measurements. Any unbiased estimator, θ̂, must satisfy

(3.1) Cov(θ̂) ≥
{

E
[

−∇θ(∇θ ln f (X|θ))T
]}−1

,

where Cov(θ̂) is the covariance of the estimator, E[·] indicates expected value, ∇θ is

the gradient operator w.r.t. the vector θ, and superscript T indicates transpose.

ln
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 |θ
 ,
 θ

 )
1

2

θ1 θ2

ln
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 θ

 )

θ1 θ2

1
2

(a) (b)

Figure 3.1: Example log-likelihood functions for two-parameter estimation with (a) small and (b)
large curvature. The variance bound will be higher in example (a) than in (b).

The bound is very similar to sensitivity analysis, applied to random measure-

ments. The CRB is based on the curvature of the log-likelihood function, ln f (X|θ).

Intuitively, if the curvature of the log-likelihood function is very sharp like the ex-

ample plot in Fig. 3.1(b), then the optimal parameter estimate can be accurately
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identified. Conversely, if the log-likelihood is broad with small curvature like the

graph in Fig. 3.1(a), then estimating the optimal will be more difficult.

The CRB is limited to unbiased estimators. Such estimators provide coordinate

estimates that, if averaged over enough realizations, are equal to the true coordi-

nates. Although unbiased estimation is a very desirable property, some bias might

be tolerated in order to reduce variance – in such cases, the bound can be adapted

[54].

3.2 Decreasing Bound on Self-Calibration Estimators

A fundamental question regarding ‘cooperative’ localization is whether or not

adding unknown-location sensors to the network increases the precision of the loca-

tion estimates. This is a critical question, because it relates to the claim that more

dense sensor networks will provide better localization estimates.

In this section, a single additional unknown-location sensor is added to an existing

N -sensor network. It is shown that, given the sufficient conditions presented, the

lower bound on the covariance of original N sensors’ coordinates strictly decreases.

While this doesn’t show that the covariance approaches zero (or any particular limit),

it does show that adding additional sensors does, in fact, allow more precise local-

ization estimates.

In fact, this theorem applies more generally to a larger class of network estimation

problems called ‘self-calibration’ estimators. In network self-calibration problems

each device in a network has a parameter (or parameters) which must be deter-

mined. In these problems, information comes both from measurements made be-

tween pairs of devices and a subset of devices which know a priori their parameters.

A network self-calibration estimator estimates the remaining, unknown device pa-
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rameters. Another example, besides sensor localization, is the problem of distributed

clock synchronization in a network, which could be achieved by devices observing

pair-wise timing offsets when just a small number (≥ 1) of devices are synchronous.

3.2.1 Self-Calibration Estimation

Specifically, consider a vector of device parameters γ = [γ1, . . . , γn+m]. Here, each

device is assumed to have one parameter, but note that the results would equally

apply if γ was a vector of parameters. Devices 1 . . . n are unknown devices (pre-

viously called unknown-location devices, but now more general than just location)

and devices n + 1 . . . n + m are reference devices. The unknown parameter vector is

θ = [θ1, . . . , θn] where θi = γi for i = 1 . . . n. Note {γi : i = n+1 . . . n+m} are known.

Devices i and j make pair-wise observations Xi,j with density fX|γ(Xi,j|γi, γj). De-

vices are permitted to make incomplete observations, since two devices may be out of

range or have limited link capacity. Let H(i) = {j : device j makes pair-wise obser-

vations with device i}. By convention, a device cannot make a pair-wise observation

with itself, so that i /∈ H(i). By symmetry, if j ∈ H(i) then i ∈ H(j).

By reciprocity, it is assumed that Xi,j = Xj,i, thus it is sufficient to consider only

the lower triangle of the observation matrix X = ((Xi,j))i,j when formulating the joint

likelihood function. In practice, if it is possible to make independent observations

on the links from i to j, and from j to i, it is assumed that a scalar sufficient

statistic can be found. Finally, it is assumed {Xi,j} are statistically independent for

j < i. This assumption can be somewhat oversimplified (see [94] for the RSS case)

but necessary for analysis. Using measurements like those presented in Section 2.6

remains important to verify true performance.
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The log of the joint conditional pdf is

(3.2) l(X|γ) =

m+n
∑

i=1

∑

j∈H(i)
j<i

li,j, where li,j = log fX|γ(Xi,j|γi, γj).

The CRB on the covariance matrix of any unbiased estimator θ̂ is cov(θ̂) ≥ F−1
θ ,

where the Fisher information matrix (FIM) Fθ is defined as,

(3.3) Fθ = −E∇θ(∇θl(X|γ))T =















f1,1 · · · f1,n

...
. . .

...

fn,1 · · · fn,n















As derived in Appendix A, the diagonal elements fk,k of Fθ reduce to a single sum

over H(k), since there are card{H(k)} terms in (3.2) which depend on θk = γk.

The off-diagonal elements can be further reduced: when k 6= l, there is at most one

summand in (3.2) which is a function of both k and l.

(3.4) fk,l =











−∑j∈H(k) E
[

∂2

∂θ2
k

lk,j

]

, k = l

−IH(k)(l)E
[

∂2

∂θk∂θl
lk,l

]

, k 6= l

where IH(k)(l) is an indicator function, 1 if l ∈ H(k) or 0 otherwise.

3.2.2 Conditions for a decreasing CRB

Intuitively, as more devices are used for location estimation, the accuracy increases

for all of the devices in the network. For an N device network, there are O(N)

parameters, but O(N2) variables {Xi,j} used for their estimation. The analysis of

this section gives sufficient conditions to ensure the CRB decreases as devices are

added to the network. Consider a network of n unknown devices and m reference

devices, and define N = n+m. Now consider adding one additional unknown device.

For the n and (n + 1) unknown device cases, let F and G be the FIMs defined in

(3.3), respectively. (In other words, F is an n× n matrix, and G is an n + 1× n + 1

matrix.)
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Theorem III.5. Let [G−1]ul be the upper left n× n block of G−1. If for the (n + 1)

unknown device case:

Condition 1: ∂
∂θn+1

lk,n+1 = ± ∂
∂θk

lk,n+1, ∀k = 1 . . . n and

Condition 2: device n + 1 makes pair-wise observations between itself and at least

one unknown device and at least two devices, in total;

then two properties hold:

Property 1: F−1 − [G−1]ul ≥ 0 in the positive semi-definite sense, and

Property 2: tr F−1 > tr [G−1]ul.

Theorem III.5 is proven in Appendix A.2. The Gaussian and log-normal distribu-

tions in Sections 2.2, 2.3, and 2.4 meet Condition (1). Property (1) implies that the

additional unknown parameter introduced by the (n +1)st unknown device does not

impair the estimation of the original n unknown parameters. Furthermore, Property

(2) implies that the sum of the CRB variance bounds for the n unknown parame-

ters strictly decreases. Thus when an unknown device enters a network and makes

pair-wise observations with at least one unknown device and at least two devices in

total, the bound on the average variance of the original n coordinate estimates is

reduced. Note that Properties (1) and (2) of Theorem 1 would be trivially satisfied

by the data processing theorem if adding a device into the network did not increase

the number of parameters.

3.3 The Cooperative Localization CRB

In this section, the self-calibration lower bound analysis in Section 3.2 is applied

specifically to the localization estimation problem originally stated in Section 1.3.

In particular, 2-D coordinate estimation is considered, when the measurements Xi,j

are RSS, QRSS, connectivity, TOA, or AOA. As it turns out, the formulation of the
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variance bounds for these various measurements is remarkably similar. Particular dif-

ferences can be seen that show how localization performance varies by measurement

type.

Detailed derivations are done separately for each measurement type in the Ap-

pendices. However, in order to readily be able to compare the bounds over all

measurement types, a unified calculation method is presented. Specifically, calcula-

tion of the CRB for estimation of θ as given in (1.1) is described in three steps. The

reader should refer to the Appendix for the detailed derivation of each lower bound

(TOA, RSS, AOA, and K-level QRSS).

3.3.1 Calculate Fisher information sub-matrices

First, form three n×n matrices: Fxx, Fxy, and Fyy. As introduced in Section 1.3,

n is the number of unknown-location sensors. The k, l element, for k, l ∈ {1, . . . , n}

of each matrix is calculated as follows:

(3.6)

[

Fxx

]

k,l
=











γ
∑

i∈H(k) hk,i(xk − xi)
2/‖zk − zi‖s k = l

−γ IH(k)(l)hk,l(xk − xl)
2/‖zk − zl‖s k 6= l

[

Fxy

]

k,l
=











γ
∑

i∈H(k) hk,i(xk − xi)(yk − yi)/‖zk − zi‖s k = l

−γ IH(k)(l)hk,l(xk − xl)(yk − yl)/‖zk − zl‖s k 6= l

[

Fyy

]

k,l
=











γ
∑

i∈H(k) hk,i(yk − yi)
2/‖zk − zi‖s k = l

−γ IH(k)(l)hk,l(yk − yl)
2/‖zk − zl‖s k 6= l

Here, γ is a channel constant, and s is an exponent, which are both a function of the

measurement type and are given in Table 3.1, and IH(k)(l) is the indicator function,

(which allows us to include the information only if sensor k made a measurement

with sensor l), IH(k)(l) = 1 if l ∈ H(k), or 0 if not. Also, hk,l is a loss term due to

quantization, which is equal to one for TOA, RSS, and AOA, since they are assumed
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to use unquantized measurements, and for QRSS, hk,l is given by

(3.7) hi,j =
1

2π

K−1
∑

s=0

[

exp
(

−1
2
g2

i,j(s + 1)
)

− exp
(

−1
2
g2

i,j(s)
)]2

Φ (−gi,j(s + 1))− Φ (−gi,j(s))

where gi,j(s) was given in (2.14), Φ(x) is the CDF of the standard normal, and

distance thresholds ds are given by (2.16). Note that this can be used for any K-

level QRSS measurements, but in particular, 2-level QRSS represents connectivity

measurements. For K = 2, (3.7) simplifies considerably,

(3.8) hi,j =
exp[−g2

i,j(1)]

2πΦ [−gi,j(1)] {1− Φ [−gi,j(1)]} .

3.3.2 Merge sub-matrices to form the FIM

Next, form the 2n× 2n Fisher information matrix (FIM) F corresponding to the

2n coordinates in θ that need to be estimated. For TOA, RSS, or QRSS, select

F = FTR, while for AOA, select F = FA, where

(3.9) FTR =







Fxx Fxy

FT
xy Fyy






, FA =







Fyy −Fxy

−FT
xy Fxx






,

where Fxx, Fxy, and Fyy are given in (3.6), and the superscript T indicates matrix

transpose.

3.3.3 Invert the FIM to get the CRB

The CRB matrix is equal to F−1, the matrix inverse of the FIM. The diagonal of

F−1 contains 2n values which are the variance bounds for the 2n parameters of θ.

To say this more precisely, let an estimator of sensor i’s coordinates be ẑi = [x̂i, ŷi]
T .

If the location variance of the estimator is defined to be σ2
i ,

(3.10) σ2
i , tr {covθ(ẑi)} = Varθ(x̂i) + Varθ(ŷi),
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then the Cramér-Rao bound asserts that,

σ2
i ≥

(

F−1
)

i,i
+
(

F−1
)

i+n,i+n
.(3.11)

Table 3.1: Differences in CRB by Measurement Type.

Channel Constant γ Exponent s FIM F Quantization Loss h

TOA γ = 1/(vpσT )2 s = 2 F = FTR hk,l = 1

RSS γ =
(

10np

σdB log 10

)2

s = 4 F = FTR hk,l = 1

QRSS γ =
(

10np

σdB log 10

)2

s = 4 F = FTR hk,l given in (3.7)

Connectivity γ =
(

10np

σdB log 10

)2

s = 4 F = FTR hk,l given in (3.8)

AOA γ = 1/σ2
α s = 4 F = FA hk,l = 1

3.3.4 Results Seen from the CRB

Even without calculating the CRB for a particular sensor network geometry, the

scaling characteristics of the variance bound can be explored. What happens when

the geometry and connectivity of the network is kept constant, but the dimensions

of the network are scaled up proportionally?

• TOA: TOA bounds will remain constant with a scaling of the dimensions. Note

that since s = 2 for TOA, the fractions in (3.6) are unitless - if units of the

coordinates were (ft) or even (cm) instead of (m), the ratios would be identical.

Instead, the units come from the standard deviation of ranging error, vpσT .

• RSS, and AOA: These bounds on standard deviation are proportional to the

size of the system. Since s = 4 for RSS and AOA, the geometry ratios in (3.6)

have units of 1/distance2, so the variance bound (the inverse) takes its units of

distance2 directly from this ratio. Note that the channel constant γ is unitless

for both RSS and AOA.
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• QRSS: The CRB for quantized RSS and connectivity have the same propor-

tionality as RSS, except for the terms {hi,j}. However, the only dependency of

hi,j is on the ratio between inter-sensor distances and the threshold distance,

‖zi − zj‖/ds. Thus if the threshold distances ds are scaled proportionally with

the size of the network, then the hi,j terms remain constant, and allow QRSS

bounds to scale proportional to the size of the network, just like RSS.

Of course, channel parameters will change slowly as the path lengths change (TOA

measurements over kilometer links would have higher variance than over 10 m links),

but these scaling characteristics are good first order approximations.

For connectivity measurements, the term hi,j in has a maximum of 2/π ≈ 0.64

when gi,j(1) = 0, which happens when devices i and j are separated by approxi-

mately the threshold distance d1. Compared to the FIM for RSS measurements,

the connectivity measurements have the same FIM except for the term hi,j . Thus,

2-level quantized measurement of RSS in this (best) case contains 64% of the infor-

mation in the unquantized RSS measurement. The inverse of the Fisher information

is the variance bound, and in this case, it would be pi/2 ≈ 1.57 times the variance

bound for the unquantized RSS measurement. This analysis also shows explicitly

that the information is highest when two devices are separated by approximately the

threshold distance. Setting the threshold distance for connectivity-based localization

is more explicitly explored in the examples in Section 3.4.

Finally, note that the bound on standard deviation of localization error is propor-

tional to
√

1/γ. It makes sense that the localization error is proportional to σT for

TOA and σα for AOA. It is not as obvious, but from the CRB for RSS, it is seen that

the proportionality is to σdB/np for RSS-based localization. An RSS-based localiza-

tion system operating in a high path-loss exponent environment, while requiring



64

higher transmit powers from sensors, also allows more accurate sensor localization.

For example, the author has measured np ≈ 5 when placing wireless sensors on a

lawn, due to both the ground-level antennas and the absorption of the grass. Such

high np can be viewed as a favorable environment for accurate localization.

Figure 3.2: Lower bounds and Monte-carlo ML estimates can be calculated interactively using this
Matlab-based GUI which is freely available online [5]. Sensors can be placed arbitrarily,
and their capabilities and a priori location information given. The user may select any
combination of AOA, TOA, and RSS measurements.

3.4 Numerical Examples

Figures 3.3 and 3.7 show two examples which are used throughout this thesis: the

single unknown-location sensor example, and the
√

N by
√

N grid example. Other,

more random deployments are also tested, but are presented along with simulation

results in Chapter IV. For this chapter, two simple geometries are used in order to

make observations about the relative performance of the many measurement modal-

ities.
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L

L

(x1, y1)

Figure 3.3: Diagram showing layout of the N = 5 sensors from the single unknown-location sensor
example described in Section 3.4.1, with four reference sensors (×) at the corners of a
L× L square area and one unknown-location sensor (•) at z1 = [x1, y1]

T .

3.4.1 Single Unknown-Location Node Example

Although this thesis considers predominantly ‘cooperative’ localization, the CRB

derived here applies equally well to the traditional multi-lateration techniques in

which one unknown-location device must be able to make measurements with mul-

tiple reference devices. In this example, the network consists of unknown-location

device 1 and reference devices 2 . . .m+1, and device 1 makes measurements with all

m reference devices. Specifically, bounds are calculated for the case in which m = 4

reference devices are located in the corners of a L meter by L meter square area, as

shown in Fig. 3.3. For now, L = 1m is assumed, but the scaling properties of the

measurement modalities described in Section 3.3.4 describe the CRB as a function of

L. The unknown-location device makes measurements with all four reference devices.

Further, the value of the parameter ratio, σdB/np = 1.7, is used to match the val-

ues obtained from Measurement Experiment II. For the case of RSS measurements,

the lower bound for σ1 is calculated and plotted as a function of unknown-location

device location in Fig. 3.4(a). The minimum of the CRB for σ1 for the case of RSS
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measurements is 0.27 m, and the average bound within the square is 0.305 m.

For proximity or QRSS measurements, the bound is a function of the threshold

distances {ds}. For a system using proximity measurements, designers can select

the threshold distance d1 by changing either the sensitivity of the receiver or the

transmit power level. For a K-level QRSS system, a designer must additionally set

ds for s = 2 . . .K − 1, which can be done either by design of the A/D converter in

the receiver, or by design of the power amplifier transmit power levels. Other system

considerations, for example, network connectivity and energy efficiency, must also

be considered when setting these parameters. In this example, in order to present a

universal lower bound, d1 and d2 . . . dK−1 as the distances that minimize the lower

bound σ1. Specifically, this bound is minimized for the case when the unknown-

location device is located in the center of the square area, ie., z1 = [0.5, 0.5]T m.

Proximity

Since the unknown-location device is located equidistant from all of the reference

devices, the analytical expression for the CRB simplifies considerably. In particular,

the CRB in the proximity case is minimized when d1 is equal to the distance between

the unknown-location device and any of the reference devices, ie., d1 = 1/
√

2 m. In

this case, the CRB is given by,

(3.12) σ2
1 ≥

π

4

(

σdB log 10

10np

)2

.

For σdB/np = 1.7, the bound on the standard deviation σ1 is 0.3477 m. This is

verified graphically in Fig. 3.4(b), which plots the bound on the standard deviation

of unbiased location estimates as a function of the location of the unknown-location

device, while the design parameter d1 = 1/
√

2 m is kept constant. Furthermore, the

average standard deviation bound within the square is 0.45 m. Note that the average
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standard deviation bound using proximity measurements is 48% worse as compared

to the bound obtained using RSS measurements.

(a)
0

0.5
1

0

0.5

1
0.25

0.3

0.35

0.4

x Position (m)y Position (m)

Lo
w

er
 B

ou
nd

 fo
r σ

1 (
m

)

(b)
0

0.5
1

0

0.5

1

0.4

0.5

0.6

x Position (m)y Position (m)

Lo
w

er
 B

ou
nd

 fo
r σ

1 (
m

)

(c)
0

0.5
1

0

0.5

1
0.3

0.4

0.5

x Position (m)y Position (m)

Lo
w

er
 B

ou
nd

 fo
r σ

1 (
m

)

Figure 3.4: Lower bound for σ1 (m) for the single unknown-location device system vs. the coordi-
nates of the unknown-location device, in a channel with σdB/np = 1.7, for (a) RSS, (b)
proximity with d1 = 1/

√
2 m and (c) 3-level QRSS with d1 = 0.90 m and d2 = 0.56 m.

Three-Level QRSS

Next, consider the performance of the system in the case of K = 3 QRSS mea-

surements. Again, the system is optimized to minimize the CRB when the unknown-

location device is located at z1 = [0.5, 0.5]T m. It can be shown that the CRB as a
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Figure 3.5: The Fisher information f1,1 for the case of 3-level QRSS when a single unknown-location
device is located in the center of a 1m by 1m square with reference devices in each corner.
The FIM is plotted as a function of the two thresholds, d2 and d1, which separate the
three QRSS regions. The maximum of f1,1 (x) is at d1 = 0.90 m and d2 = 0.56 m.
Since d2 ≤ d1, only half of the plot is shown.

function of the two threshold distances, d1 and d2, is given by,

σ2
i ≥

2

f1,1
(3.13)

f1,1 =
2b

π







exp
[

−b ln2 da

d1

]

Φ
(

−
√

b ln da

d1

) +
exp

[

−b ln2 da

d2

]

Φ
(

−
√

b ln da

d2

)+

[

exp
(

− b
2
ln2 da

d2

)

− exp
(

− b
2
ln2 da

d1

)]2

Φ
(

−
√

b ln da

d2

)

− Φ
(

−
√

b ln da

d1

)











where da = 1/
√

2 m, the distance between the unknown-location device and any

reference device. The term f1,1 is equal to Fxx, ie., the Fisher information for the

x-coordinate. Note the notation ln2 x is used to indicate (ln x)2. From (3.13), d1 and

d2 are selected to maximize f1,1. For a range of d1 and d2, the Fisher information

f1,1 is plotted in Fig. 3.5.

For three cases, the three-level QRSS Fisher information f1,1 reverts to the two-

level proximity Fisher information. These cases are (1) when d1 = d2, (2) when d1

is very large, and (3) when d2 is very small. Intuitively, in any of these three cases,
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there are effectively only two levels, and the system reverts to a proximity system.

Fig. 3.5 shows this graphically. The value of f1,1 along the diagonal d1 = d2 can be

seen to be the same as f1,1 along the horizontal line at the lowest d2, and along the

vertical line at the highest d1.

The maximum of f1,1 occurs for d1 = 0.90 m and d2 = 0.56 m. For these two

parameters, the bound on the standard deviation σi is 0.3076 m when the unknown-

location device is at z1 = [0.5, 0.5]T m. The CRB as a function of unknown-location

device location is plotted in Fig. 3.4(c). Furthermore, the average standard deviation

bound within the square is 0.37 m.

Note that in any of the three cases presented in this section, the CRB scales with

the size of the system. If instead the square area had sides of length L, and the

threshold distances ds were scaled by L, then the bound on σi would also be scaled

by L.

TOA

The case of localization using TOA measurements when there is one unknown-

location device and m reference devices has been well-studied in the literature [121,

111, 114], and the results in [114] are specifically used to validate the bound presented

in this thesis. From the CRB, the lower bound when there is n = 1 unknown-location

device and m reference devices is,

(3.14) σ2
1 = v2

pσ
2
T m

[

m
∑

i=2

m+1
∑

j=i+1

(

d1⊥i,j‖zi − zj‖
‖z1 − zi‖ ‖z1 − zj‖

)2
]−1

,

where d1⊥i,j is the shortest distance from z1 to the line which intersects zi and zj . The

ratio d1⊥i,j ‖zi−zj‖/(‖z1−zi‖ ‖z1−zj‖) has been called the geometric conditioning

Ai,j of device 1 w.r.t. references i and j [114]. Ai,j is the area of the parallelogram

specified by the vectors from device 1 to i and from device 1 to j, normalized by the
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lengths of the two vectors. The geometric dilution of precision (GDOP), defined as

σ1/(vpσT ), is

(3.15) GDOP =

√

m
∑m

i=2

∑m+1
j=i+1A2

i,j

which exactly matches the result in [114].

Fig. 3.6 plots σ1 as a function of z1 = [x1, y1]
T for case when the m = 4 reference

devices are located in the corners of a 1 m by 1 m square. Note in the TOA case,

σ1 is proportional to vpσT , thus vpσT = 1 was chosen in Fig. 3.6 so that the bound

could be calculated more easily for arbitrary vpσT . Finally, σ1, does not scale if the

size of the square was L by L meters rather than 1 by 1 m.

3.4.2
√

N by
√

N Grid Example

Consider a sensor network in a L by L area, with N sensors arranged into
√

N rows

and
√

N columns, as shown in Fig. 3.7. The four sensors in the corners are reference

nodes, while the remaining N−4 are unknown-location nodes. This section considers

what happens to the localization variance bound as
√

N increases, for L = 20m, when

measurements are:

1. RSS with σdB/np = 1.7, obtained from Measurement Experiment II [92],

2. TOA with σT = 6.1 ns and vp = 3 · 108m
s , also obtained from Measurement

Experiment II, and

3. AOA with σα = 5◦ (see Section 2.4.1).

As presented above, the lower bound on localization standard deviation for RSS,

TOA, and AOA are proportional to these three channel parameters. This simulation

is begun with the full-connectivity assumption, i.e., that each sensor makes measure-

ments with every other sensor in the network. The RMS value of the localization
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Figure 3.6: σ1 (m) for the example system vs. the coordinates of the single unknown-location
device, when measurements are TOA with vp σT = 1m.
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Figure 3.7: Diagram showing layout of the N sensors from the example described in Section 3.4.2,
with four reference sensors (×) and N − 4 unknown-location sensors (•) in a L × L
square area.
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bound is calculated, i.e.,
√

1
n
trF−1, which gives an average of the bound over the

entire K2 − 4 unknown-location sensors. The result is shown in the solid lines in

Fig. 3.8 labelled as ‘r =∞’. Next, the simulation is changed to consider the realistic

case in which each sensor only makes measurements to those sensors located within

r = 10 m of itself1. In this case, the bound is shown as dotted lines in Fig. 3.8 and

labelled as ‘r = 10 m’.
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Figure 3.8: Lower bounds for localization standard deviation for the example described in Section
3.4.2 when measurements are RSS (with σdB/np = 1.7 [92]), TOA (with σT = 6.3ns
[92]), and AOA (with σα = 5◦). Parameter r is the radius of connectivity - only pairs of
sensors closer than r make measurements, and for r =∞, all pairs make measurements.

Comparing performance of the measurement methods for the chosen parameters,

AOA outperforms TOA and RSS, while RSS can perform as well as TOA at high

sensor densities. Of course, these comparisons are based on the chosen values of the

measurement parameters and the chosen geometry shown in Fig. 3.7. As described in

Section 3.3.4, these bounds are proportional to 1/
√

γ where γ is the channel constant

given in Table 3.1. For example, if it was assumed that σα = 10◦ instead of 5◦, the

standard deviation bound for AOA would be twice that shown in Fig. 3.8. Note that

1Of course, sensors will not really know exactly which sensors are within 10 m, but the connectivity implied by
the 10 m radius provides a realistic test.
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RSS and AOA bounds decrease more rapidly than TOA as the density increases. Also

for RSS and AOA, the difference between the r = 10m and r = ∞ lines decreases

dramatically as density increases. At high densities, the results show that little

additional information comes from the distant sensors (> 10 m). For TOA, however,

even distant sensors’ measurements can provide significant localization information.

Connectivity Bound in Grid Example

For QRSS measurements, the lower bound is a function of distance thresholds.

Consider the CRB for connectivity, i.e., 2-level QRSS, in the
√

N by
√

N grid exam-

ple described above, as
√

N increases. If designing a system for a particular density

of devices, N , a system designer should optimize the threshold for that particular

density. What is the optimal threshold as a function of N? This relationship is

determined by simulation as shown in Fig. 3.9.

First, an optimal d1 for each
√

N = 3 . . . 10 is found by calculating σ̄ for thresholds

in the range [0.1, 0.8] in increments of 0.01. The results, displayed in Fig. 3.9, show

the optimal d1 decreasing from 0.64 for
√

N = 3 to 0.21 for
√

N = 10. Note,

however, that the ratio of the minimum σ̄ and the distance between devices in the

grid (
√

N − 1)−1 is almost constant. That is, (
√

N − 1) mind1 σ̄ ≈ 0.60 for each
√

N

in the range tested. Since the standard deviation bound scales proportionally with

system size, as a rule of thumb, the lower bound on the RMS standard deviation is

about 60% of the distance between devices.

Quantization Levels in QRSS in the Grid Example

In this section, CRB results for K-level QRSS are presented as a function of K.

This analysis is done for the 5 by 5 grid example (N = 25) with L = 1 m. Results

have already been presented for the case of K = 2 (connectivity) and the case of
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Figure 3.9: For proximity measurements in the
√

N by
√

N grid example, the minimum σ̄ vs.
√

N ,
and the d1 used to achieve that minimum.

unquantized RSS measurements, which should match the asymptotic performance of

QRSS as K →∞.

Ideally, for a particular K, the K−1 thresholds {Ps}s=1...K−1 which minimize the

bound on σ̄ should be found. However, as K becomes large, finding a minimum in

this K − 1 dimensional space becomes difficult. In addition, in a real low-cost im-

plementation, the quantization design of RSS is unlikely to be non-uniform. Specif-

ically, RSS is often quantized on a log scale with a constant granularity in (dB).

Thus it is reasonable to limit the search space to two parameters: the mean of Ps,

ie. P̄ = 1
K−1

∑K−1
s=1 Ps, and ∆P , Ps+1 − Ps, ∀s = 1 . . .K − 2. Equivalently, the

geometric mean of ds can be used, ie. dmean , (
∏K−1

s=1 ds)
1/(K−1), and the parameter

dratio, defined as ds/ds+1, ∀s = 1 . . .K − 2, can be used.

For these two parameters over wide ranges, the CRB is calculated for K-level

QRSS. At each K, the dmean and dratio which minimize the bound for σ̄ are found.

This search is repeated for each K, for K = 4 . . . 10. The minimum bound for σ̄ is

plotted as a function of K in Fig. 3.10(a). Also shown in Fig. 3.10(a) is the RSS

result for the same example, which gives the asymptotic limit for QRSS. The results
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show that for K ≥ 5, the QRSS bound is within 10% of the bound for RSS. Thus,

K-level QRSS rapidly approaches the limits of RSS as K increases. The values of

dmean and dratio which minimize the bound at each K are plotted in Fig. 3.10(b).

Note that the value of dmean is relatively constant (between 0.44 and 0.45 m) for

K > 3. Thus for a particular geometry of devices, there may be a rule-of-thumb for

the selection of dmean (or equivalently P̄ ) regardless of the value of K.
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Figure 3.10: For K-level QRSS in the 5 by 5 grid example, (a) the lower bound on σ̄ as a function
of K, and (b) the dmean and dratio which result in those minima.

3.5 Bias Sensitivity

The CRB applies to estimators which are unbiased, that is, that the mean of a

parameter estimate is equal to the actual value. This section investigates how the
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lower bound might change if an estimator was permitted to have a small amount of

bias.

Note that a constant bias does not affect the bound - if a parameter estimator

has a known constant bias (constant across the range of the parameter), the bias

can simply be subtracted out. However, if an estimator has a non-zero bias gradient,

i.e., a changing bias as a function of the actual parameter value, the bias cannot

simply be negated. While zero bias gradient is a desirable estimator characteristic,

a small amount of bias gradient is often acceptable in exchange for a decrease in the

estimator variance. In particular, the uniform Cramér-Rao bound (UCRB) analysis

of [54] is used in this section. The bias sensitivity index η is defined as [54],

(3.16) η =

∣

∣

∣

∣

∂

∂δ
B(θ, δ)

∣

∣

∣

∣

δ=0

∣

∣

∣

∣

where δ is the limit imposed on |∇θbθ|, where ∇θ is the gradient w.r.t. the parameter

vector θ, bθ is the bias vector as a function of θ, and B(θ, δ) is the UCRB, the lower

bound on the variance possible from any estimator with bias gradient norm less than

or equal to δ, as defined in [54]. Intuitively, η represents how quickly the variance

bound can be reduced as a function of the bias gradient, if a small bias gradient is

allowed.

In particular, the bias sensitivity index is calculated for the single unknown-

location node example discussed at length in Section 3.4.1. There are just two

parameters, x1 and x2. Define ηx and ηy to be the bias sensitivity indices of x1 and

x2, respectively. By direct application of the result in [54],

ηx = 2

√

1 +
f 2

xy

f 2
yy

(3.17)

ηy = 2

√

1 +
f 2

xy

f 2
xx

,(3.18)
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where f are the (scalar) elements of F , the Fisher information matrix for the sin-

gle unknown-location node coordinates, which, since there are only two unknown

coordinates, is given by

(3.19) F =







fxx fxy

fxy fyy






,

where the elements of F are given in (3.6).

A value of η = 2 means that the variance bound is insensitive to δ near δ = 0,

while very high η indicates that even a small bias gradient can dramatically change

the variance bound. Plots of ηx and ηy are shown in contour plots in Fig. 3.11 for

the cases when measurements are TOA, RSS, and 3-level QRSS. The TOA and RSS

results are independent of the channel parameter γ, but the 3-level QRSS result is a

function of the chosen distance thresholds. In the 3-level QRSS plots, the thresholds

d1 = 0.90 m and d2 = 0.56 m are used, to follow those chosen in Fig. 3.5 in Section

3.4.1.

When measurements are TOA, the values of ηx and ηy are small throughout the

area. Even at the corners, both are less than about 2.2, only 10% higher than the

minimum of 2. Even at the corners, there is only a small change in the variance

bound when a small bias gradient is permitted.

When measurements are RSS, the bias sensitivity index η is very high when

the sensor is on the edge of the square area and very close to one of the reference

sensors, as high as 6.5 in Fig. 3.11(b-c). This is a result of the accuracy of RSS being

proportional to the distance between sensors. As the unknown-location sensor gets

very close to a reference sensor, its distance from that reference can be very accurately

determined. In comparison, the information obtained from RSS measurements with

the distant reference devices is very small. In effect, the unknown sensor can be
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Figure 3.11: For the one-blindfolded sensor example, contour plots of the bias sensitivity index η
for the estimation of (a,c,e) x1 and (b,d,f) y1, when measurements are (a-b) TOA,
(c-d) RSS, and (e-f) 3-level QRSS with thresholds d1 = 0.90 m and d2 = 0.56 m.
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accurately estimated to be on a circle with a particular radius around the nearby

reference sensor. When the unknown sensor is close to a reference sensor and also

on the y1 = 0 or y1 = 1 edge of the square area, essentially, there is very little y1

information (fyy), but a high quantity of x1 information (fxx). As a result, in this

case, ηx (Fig. 3.11(c)) is very high. Incidentally, the bias sensitivity indices for the

case of AOA measurements are the same as for RSS measurements, except with ηx

and ηy exchanged. For AOA measurements, ηx is given in Fig. 3.11(d) while ηy is

given in Fig. 3.11(c). This equality is due to the similar, and complementary, forms

of the Fisher information for the cases of AOA and RSS, as presented in Section 3.3.

However, note that the very high bias sensitivity in the RSS case is partially

due to the assumption that there is no quantization - that all RSS values, even

very high RSS values, can be measured. In fact, all RSS circuits will have some

degree of quantization. In particular, practical receivers have a maximum measurable

RSS quantization level, essentially countering the effect described above when the

unknown sensor approaches a reference sensor. This is seen in Fig. 3.11(e-f), which

shows the η results for 3-level QRSS. In this case, there is very little bias, and

a maximum η of about 2.2 is seen, and this maximum is located away from the

corners. When RSS is quantized, the references contribute more equally to the

location information of the unknown location sensor, even when that sensor is very

close to one of the references.

This bias gradient and variance tradeoff for localization based on RSS measure-

ments is explored further in Section 4.2, in which the bias gradient of the maximum

likelihood estimator for the single unknown-location node example is calculated and

discussed.



80

3.5.1 Discussion

Note that this chapter has not addressed how tight the localization CRB is, that

is, for realistic signal-to-noise ratios, whether or not the lower bound can be nearly

achieved. The discussion in Chapter IV introduces particular localization algorithms,

simulates their performance, and shows that in many cases, the estimator perfor-

mance can be very near the CRB.



CHAPTER IV

Localization Algorithms

Up until this chapter, models for measurements and the performance bounds

which result from them have been presented without discussing a single sensor loca-

tion estimator. This chapter introduces several such estimators, and uses the bounds

presented in the previous chapter as a comparison. This chapter will also present

experimental measurements from Section 2.6 to test how well these new estimators

would have performed in a real sensor network.

Section 4.1 provides a brief review of the now extensive literature in sensor lo-

calization algorithms. Then, Section 4.2 presents maximum likelihood estimators

(MLEs) for sensor localization when measurements are RSS and TOA as a baseline

for comparison.

Then Section 4.3 introduces manifold learning. The contribution of this thesis

to sensor localization algorithms is the application of multiple different manifold

learning methods. It isn’t necessarily intuitive that manifold learning methods are

applicable to sensor localization. However, as will be described in detail in Sec-

tion 4.3, these dimensionality reduction methods attempt to find low dimensional

coordinates which best represent original high-dimensional coordinates in terms of

some metric. Manifold learning methods, in particular, emphasize the local structure

81
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between nearest neighbors, when finding the low-dimensional representation. Thus

manifold learning is a tool which provides the desired behavior – finding 2-D (or 3-D)

coordinates from higher-dimensional measured data, and emphasizing the distances

between pairs of sensors which are in close proximity. As discussed in Chapter II,

measurements between nearby sensors often provide more location information than

measurements between distant sensors.

In particular, three new manifold learning-based approaches to sensor localization

are presented in this thesis:

1. Section 4.4 introduces the distributed weighted multi-dimensional scaling (dwMDS)

algorithm for use when pair-wise measurements are either TOA or RSS. This

algorithm was developed in collaboration between the author and Jose A. Costa

[27, 28].

2. Next, Section 4.5 introduces an adaptive Laplacian Eigenmap algorithm for

sensor localization from pair-wise connectivity measurements [90].

3. Finally, Section 4.6 compares multiple manifold learning approaches when sen-

sor data itself is used as location information. Rather than using range mea-

surements between pairs of sensors, high-dimensional data from an isotropic,

spatially correlated field is measured by each sensor, and used for localization.

Table 4.1 provides a quick reference for the manifold learning-based algorithms

(and the MLE) which use pair-wise measurements for sensor localization. Mani-

fold learning approaches to using sensor data to achieve localization are enumerated

separately in Section 4.6. As a further note regarding Table 4.1, since there are

general, decentralized algorithms for optimizing cost functions [99], many central-

ized optimizations could be accomplished by local collaboration. However, Table 4.1
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labels each algorithm as centralized or decentralized based only on whether or not

the decentralized implementation has been introduced and tested in this thesis.

MLE dwMDS Lapl. Eig. Isomap
2-Stage 2-Stage

Allows imperfect prior No Yes No No
Decentralized No Yes No No
Model-based Yes No No No
Measurement Modalities
• Presented in thesis TOA/RSS TOA/RSS Connectivity Connectivity
• Could be used with Any Connectivity TOA/RSS TOA/RSS
Iterative Optimization Yes Yes No No
Computational Complexity O

(

LN2
)

O (LKN) O
(

KN2
)

O
(

N3
)

Table 4.1: Comparison of algorithms discussed in Chapter IV.

4.1 Overview of Localization Algorithm Research

The literature in sensor co-operative localization algorithms is extensive and grow-

ing. Signal processing, statistics, and computer science communities have published

extensively in this area. This section provides an overview from a signal processing

perspective, of the relevant techniques and methods which have been useful. More

complete reviews and algorithm comparisons have been presented in [80, 106, 116].

While positioning and navigation have a long history, to enable cooperative local-

ization, there is a need to extend existing methods by finding ways to use measure-

ments (of range or angle) between pairs of unknown-location nodes. The challenge is

to allow sensors which are not in range of any known-location devices to be located,

and further, to improve the location estimates of all sensors.

If each sensor was in range of multiple reference nodes, each sensor’s location could

be calculated directly and independently. For example, in [14], nodes measure RSS

received from a dense network of reference nodes. Each sensor estimates its location

to be the mean of the locations of the in-range reference nodes. In most wireless

sensor networks, though, to minimize installation expenses, reference nodes will be
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sparse, and low-energy sensors generally will not be in range of enough references (3

or 4 for 2-D or 3-D localization, respectively).

Cooperative localization algorithms can be generally divided into centralized al-

gorithms, which collect measurements at a central processor prior to calculation, and

distributed algorithms, which require sensors to share information only with their

neighbors, but possibly iteratively.

4.1.1 Centralized Algorithms

If the data is known to be described well by a particular statistical model (eg.

Gaussian or log-normal), then the maximum likelihood estimator can be derived

and implemented [92, 77], as will be presented in Section 4.2 for the cases of RSS

and TOA measurements. One reason that these estimators are used is that their

variance asymptotically (as the signal-to-noise (SNR) ratio goes high) approaches

the lower bound given by the CRB (in Section 3.1). While this property is desirable,

note that there may be no practical way to increase the SNR due to severe channel

degradations discussed in Chapter II. As indicated by the name, the maximum of a

likelihood function must be found. There are two difficulties with this approach:

1. Local Maxima: Unless the MLE is initialized to a value close to the correct

solution, it is possible that our maximization search may not find the global

maximum.

2. Model Dependency: If measurements deviate from the assumed model (or model

parameters), the results are no longer guaranteed to be optimal.

One way to prevent local maxima is to formulate the localization as a convex

optimization problem. In [33], convex constraints are presented that can be used

to require a sensor’s location estimate to be within a radius r and/or angle range
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[α1, α2] from a second sensor. In [68], linear programming using a ‘taxi metric’ is

suggested to provide a quick means to obtain rough localization estimates. More gen-

eral constraints can be considered if semi-definite programming (SDP) techniques are

used [12]. One difficulty which must be overcome in both techniques is their high

computational complexity. Toward this end, a distributed SDP-based localization

algorithm was presented in [11]. Also, very simple constraints can be used by using

the order statistics of RSS measurements - at a receiver, store only a list of neigh-

bors, listed in decreasing order of RSS. This non-parametric method allows simple

half-plane constraints and has been used in a coding-theoretic approach to sensor

localization [128].

Multi-dimensional scaling (MDS) algorithms (and Isomap [118]) are formulated as

sensor localization algorithms in the setting of a least-squares (LS) problem [110, 109].

These formulations are described in detail in Section 4.3.3. The major result is that

in classical MDS, the LS solution is found by eigen-decomposition, which does not

suffer from local maxima. In order to linearize the localization problem, the classical

MDS formulation works with squared distance rather than distance itself, and the

end result is very sensitive to range measurement errors.

While MDS and Isomap have complexity O(N3), where N = n + m is the total

number of sensors, other manifold learning methods, such as local linear embedding

(LLE) [104], are also based on eigen-decomposition, but of sparse matrices, and are

O(KN2), where K is the number of neighbors. Manifold learning will likely play

an important role when using either pair-wise measurements [90, 27] or sensor data

measurements [89]. Three approaches are presented in this thesis in Sections 4.4

through 4.6. Also adapted from the statistical learning area, ‘supervised learning’

approaches localization as a series of detection problems [112]. The covered area is
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split into smaller, overlapping regions, and based on the measurements, each region

detects whether or not the sensor is within its boundaries.

4.1.2 Distributed Algorithms

There are two big motivations for developing distributed localization algorithms.

First, for some applications, no central processor, or none with enough computational

power, is available to handle the calculations. Second, when a large network of

sensors must forward all measurement data to a single central processor, there is a

communication bottleneck and higher energy drain at and near the central processor.

Distributed algorithms for cooperative localization generally fall into one of two

categories:

1. Network Multilateration: Each sensor estimates its multi-hop range to the near-

est reference nodes. These ranges can be estimated via the shortest path be-

tween the sensor and reference nodes, i.e., proportional to the number of hops,

or the sum of measured ranges along the shortest path [81, 108, 79]. Note

that finding the shortest path is readily distributed across the network. When

each sensor has multiple range estimates to known positions, its coordinates are

calculated locally via multilateration [121, 15].

2. Successive Refinement: These algorithms try to find the optimum of a global cost

function, eg., least squares (LS), weighted LS (WLS) [27], or maximum likeli-

hood (ML). Each sensor estimates its location and then transmits that assertion

to its neighbors [2, 105, 107]. Neighbors must then recalculate their location

and transmit again, until convergence. A device starting without any coordi-

nates can begin with its own local coordinate system and later merge it with

neighboring coordinate systems [124]. Typically, better statistical performance
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is achieved by successive refinement compared to network multilateration, but

convergence issues must be addressed.

Bayesian networks (or factor graphs) provide another distributed successive refine-

ment method to estimate the probability density of sensor network parameters.

These methods are particularly promising for sensor localization - each sensor stores

a conditional density on its own coordinates, based on its measurements and the

conditional density of its neighbors [57]. Alternatively, particle filtering (or Monte-

Carlo estimation methods) methods have each sensor store a set of ‘particles’, i.e.,

candidate representations of its coordinates, weighted according to their likelihood

[22, 56]. These methods have been used to accurately locate and track mobile robots

[120], and they will likely find application in future sensor localization and tracking

research.

4.1.3 Centralized / Decentralized Comparison

Both centralized and distributed algorithms must face the high relative costs of

communication. The energy required per transmitted bit could be used, depending

on the hardware and the range, to execute 1,000 to 30,000 instructions [19]. Central-

ized algorithms in large networks require each sensor’s measurements to be passed

over many hops to a central processor, while distributed algorithms have sensors send

messages only one hop (but possibly make multiple iterations). The energy-efficiency

of centralized and distributed estimation approaches can be compared [99]; in gen-

eral, when the average number of hops to the central processor exceeds the necessary

number of iterations, distributed algorithms will likely save communication energy

costs.

There may be hybrid algorithms which combine centralized and distributed fea-
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tures in order to reduce the energy consumption beyond what either one could do

alone. For example, if the sensor network is divided into small clusters, an algorithm

could select a processor from within each cluster to estimate a map of the cluster’s

sensors. Then, cluster processors could operate a distributed algorithm to merge

and optimize the local estimates, such as described in [60]. Such algorithms are a

promising open topic for future research.
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4.2 Maximum Likelihood Estimator

The maximum likelihood estimator (MLE) is a centralized and model-based lo-

calization algorithm which could be used to estimate location using TOA, RSS,

connectivity, or AOA measurements, as long as a statistical model is available. In

this section, the MLE is presented for the TOA and RSS cases, with a brief discus-

sion of the case of connectivity measurements at the end of this section. A discussion

of the MLE when measurements are AOA was presented in [77]. None of the pre-

sented MLEs have analytical solutions, and optimization of the likelihood functions

has been implemented using an iterative, conjugate-gradient method.

4.2.1 TOA

Recall that in TOA measurements, the time delay between sensors i and j, Ti,j, is

modelled as Gaussian, as given by (2.10). In general, the maximum likelihood esti-

mator finds the parameters which maximizes the likelihood function, or equivalently,

minimizes the negative of the log-likelihood function. Thus, when measurements are

TOA, the MLE is

(4.1) {ẑi} = arg min
{zi}

N
∑

i=1

∑

j∈H(i)
j<i

[vp(Ti,j − µT )− ‖zi − zj‖]2 .

Recall that zi is the coordinate of sensor i, H(i) is the set of sensors with which

sensor i made measurements, vp is the speed of propagation, and µT is the mean of

TOA error.

4.2.2 RSS

The MLE for the RSS case is [93],

(4.2) {ẑi} = arg min
{zi}

N
∑

i=1

∑

j∈H(i)
j<i

(

ln
(δMLE

i,j )2

‖zi − zj‖2

)2
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where δMLE
i,j is a function of the measured received power Pi,j as given in (2.17)

(specifically, the MLE of distance given Pi,j). Unlike the MLE based on TOA mea-

surements, the RSS MLE is readily shown to be biased. Specifically, for a single

reference and single unknown-location device, the range estimate between the two

devices is δ1,2. Using (2.2), the mean of δ1,2 is given by

(4.3) E[δ1,2] = C ‖z1 − z2‖

where C is the multiplicative bias factor given in (2.7). For typical channels (like

those reported in [101]), C ≈ 1.2, adding 20% bias to the range. Motivated by (4.3),

a pseudo-MLE can be defined,

(4.4) {ẑi} = arg min
{zi}

N
∑

i=1

∑

j∈H(i)
j<i

(

ln
(δBC

i,j )2

‖zi − zj‖2

)2

,

where δBC
i,j is given in (2.8) and is the MLE of distance divided by the bias factor C.

Note that the channel parameters np in (4.4) and µT in (4.1) can also be esti-

mated as nuisance parameters. In this case, they are also optimized during the cost

minimization.

Even in the bias-reduced estimator in (4.4), there remains residual bias. Consider

m = 4 and n = 1. Place the reference devices at the corners of a 1 m by 1 m square

and the unknown-location device within the square, the case drawn in Fig. 3.3. The

bias gradient norm of ẑ1 is calculated via simulation [54] from (4.4) as a function of

the unknown-location device’s coordinates and displayed in Fig. 4.1.

The gradient of the bias could be used in the uniform CRB to calculate the

achievable variance of the biased estimator [54] as compared to all other estimators

with same or less bias gradient norm. Fig. 4.1 shows that the bias gradient is high

(with norm ≈ 1) at the corners of the square. Expression (4.4) shows that the MLE
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tries to force the ratio δBC
1,j /‖z1 − zj‖ close to 1. If the unknown-location device is

very close to one reference device and far away from the others, then measurements

from the other three reference devices provide relatively little information regarding

the placement of the unknown-location device. In the limit as the unknown-location

device approaches a reference device, it can only be localized to a circle around that

reference. Thus no unbiased estimator is possible. The MLE in (4.4) approaches a

constant in the limit, and thus the bias gradient norm approaches 1.
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Figure 4.1: Bias gradient norm of the RSS MLE of x1 from (4.4) for the single unknown-location
sensor example (see Fig. 3.3).

4.2.3 Connectivity

When measurements are connectivity, the likelihood function is very difficult to

optimize. When ‘connected’ sensors are closer to each other than the connection

radius R, there is little motivation to move them closer; alternatively, when ‘non-

connected sensors are further than the connection radius R, there is little motivation

to move them further apart. The cost function suffers from many local optima sep-

arated by high ‘barriers’ in which a gradient-based iterative optimization procedure

will be likely to become stuck. Since gradient-based iterative algorithms have great
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difficulty converging to the global optimum, the MLE has not been implemented for

the case when measurements are connectivity. Instead, this thesis has developed a

different estimator, which obtains a global optimum directly via eigen-decomposition,

as presented in Section 4.5.

4.2.4 Simulation Results

The MLE is tested for the case of RSS measurements via simulation on a 5 × 5

grid of sensors, of which the four in the corners are reference sensors, as shown in

Fig. 3.7 with N = 25 and L = 1m. As described in Section 3.3.4, the results can

be seen in units of L, since they would scale proportionally to L. A channel with

σdB/np = 1.7 is used to match the measured channel parameters from Measurement

Experiment II (Section 2.6.2), and 200 Monte Carlo simulations are run. In these

simulations, all sensors are assumed to be in range of all other sensors, and thus

make RSS measurements with every other sensor.

For comparing different estimators, let the mean bias b̄ and the RMS standard

deviation σ̄ of the estimator be defined as:

b̄ =
1

n

n
∑

i=1

‖z̄i − zi‖(4.5)

σ̄ =

√

1

n
trC(4.6)

where n is the number of unknown-location devices, z̄i is the mean of all of the

estimates of sensor i over all trials of the simulation, zi is the actual location of

sensor i, and C is the covariance of the coordinate estimates over all trials of the

simulation.

First, simulation results of the pseudo-MLE (4.4) are shown in Fig. 4.2(a). For

this estimator, b̄ = 0.033 and σ̄ = 0.0957. Comparing the estimator and the CRB,

the lower bound on σ̄ is 0.0925. Next, the MLE from (4.2) is tested, and the results
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are shown in Fig. 4.2(b). For this estimator, b̄ = 0.006 and σ̄ = 0.1029. The bias has

been reduced by a factor of 5, and the standard deviation has increased by 7.5%.
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Figure 4.2: RSS pseudo-MLE and MLE performance: mean (H) and 1-σ uncertainty ellipse (—-)
for each unknown-location sensor compared to the true location (•) and CRB on the
1-σ uncertainty ellipse (- - - -), when reference sensors are located at each ×.

The fact that the estimator is so close to the bound even at realistic values of

the signal-to-noise ratio is promising, as it means that the lower bound presented in

Chapter III is a reasonably tight lower bound.

4.2.5 Experimental Results

In this section, the RSS MLE and pseudo-MLE and TOA MLE are tested on the

recorded RSS and TOA data sets from Measurement Experiments I and II. For all

of these experimental results, since measurements were made between each pair of

devices, the full connectivity assumption is employed.

First, the measured RSS data set from Measurement Experiment I is used in the

RSS MLE and pseudo-MLE. The location estimates are shown in Fig. 4.3. As a

summary, RMS location error of the estimates is 2.16m for the MLE and 1.87m for

the pseudo-MLE.

Next, the RSS and TOA data sets recorded in Measurement Experiment II are
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Figure 4.3: Estimated coordinates (H) connected to actual coordinates (•) for the 40 unknown-
location sensors from Measurement Experiment I using (a) MLE and (b) pseudo-MLE.
Reference devices are located at each ×.

used to test the MLEs. The results are shown in Fig. 4.4. For the TOA measure-

ments, the RMS error is 1.15 m, while for the RSS measurements, the RSS MLE

has RMS error 2.20 m. The estimates from the pseudo-MLE using RSS measure-

ments have virtually identical results, with RMS error 2.21 m, and are not plotted

separately.

Note that in all cases, the localization errors of the sensors in the center of the

measurement area are generally lower than those at the edge. This indicates that,

for a particular sensor, there may be a significant advantage to having sensors on all

sides of itself.
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Figure 4.4: Estimated coordinates (H) connected to actual coordinates (•) for the 40 unknown-
location sensors from Measurement Experiment II using (a) TOA measurements and
the TOA MLE, (b) RSS measurements and the RSS MLE. Reference devices are located
at each ×.

4.3 Introduction to Manifold Learning Methods

The MLE depends on a parametric model and is consequently subject to model

mismatch and slow convergence. In contrast, algorithms presented in this chapter

are based on non-parametric models and manifold learning algorithms. Manifold

learning refers to a variety of non-linear data dimension reduction methods which

can extract lower-dimensional non-linear subspaces from very high-dimensional data.

For example, consider Fig. 4.5. Three-dimensional data is shown to lie approximately

within a curved, 2-D surface. Principal components analysis (PCA) would calculate

a 2-D plane which, in a least-squares sense, would best represent the data points. But

since the data clearly does not lie in a plane, the PCA output would have significant

errors. In comparison, manifold learning algorithms are formulated assuming only

that locally (for a point and its nearest neighbors) that data lie in an approximately

linear subspace. Globally, the subspace can be curved. Manifold learning methods

output 2-D coordinates for each point which preserve the relative distances between
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Figure 4.5: Manifold learning methods do not assume that data lies in a globally linear subspace;
however, a data point and its nearest neighbors lie approximately within a locally linear
subspace.

points and their nearest neighbors.

Generally, manifold learning methods comprise these six steps:

1. Input Points: Collect N high-dimensional data points.

2. Compute Distances: Compute distances between all pairs of points.

3. Select Neighbors: For each point, find which few other points are closest.

4. Build Graph: Calculate a graph which encodes the neighbor relationships.

5. Find Low-D Coordinates: Find the low-dimensional coordinates which best

preserve the neighbor relationship graph (in some sense).

6. Low-D Transform: Possibly rotate, scale, or translate the low-D coordinates

to match some a priori information, or for ease of viewing.

These steps in particular are discussed in the next few sections, and for the remainder

of this thesis, since each localization problem considered uses these steps.

Further, a contribution of this chapter is to consider iterative neighbor selection,

in which, after completing Step 5 (Find Low-D Coordinates) the algorithm returns

to Step 3 (Select Neighbors) to adjust each point’s neighbor relationship, and re-
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completes Steps 4 through 6. These iterative algorithms are presented in Sections

4.4 and 4.5.

Finally, note that there is a duality between data localization and physical sen-

sor localization. In data localization, low-dimensional coordinates are found for

measured high-dimensional data vectors. The resulting low-D coordinates are non-

physical in the sense the data do not have mass at the coordinates calculated for

them. In physical sensor localization, physically meaningful coordinates of sensors

are estimated for sensors which do exist at those coordinates. However, when sensors

measure data that has spatial relationships, there can be significant overlap, even

duality, between the two localization problems.

For example, consider the image data localization problem presented by Tenen-

baum et. al. in [118], shown in Fig. 4.6, which computed 2-D coordinates for face

images which were taken from different azimuth and elevation angles. While Tenen-

baum framed the problem as data localization, it could equivalently be considered to

be sensor localization. Rather than estimating coordinates for images (data), we want

to know the coordinates of the cameras (sensors) which took the pictures. Certainly,

there is a duality in this problem between data and physical sensor localization.

One major difference between the two types of localization is that in physical

sensor localization, the first step (input points) is often skipped. In the algorithms

introduced in Sections 4.4 and 4.5, the distances between sensors are directly mea-

sured via the radio channel.

The next section discusses methods of neighbor selection (Step 3). Then, Sections

4.3.2 through 4.3.4 discuss how Steps 4 and 5 differ in various manifold learning

algorithms.
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Figure 4.6: Tenenbaum et. al. in [118] present this example of localizing face images in a database,
but it equivalently serves to localize the cameras which took each photo.

4.3.1 Neighbor Selection Methods

Neighbor selection uses the pair-wise distances {δi,j} to determine which sensors

each sensor considers to be its neighbors. We denote Ni to be the set of neighbors

of sensor i.

In the R-radius method, all pairs (i, j) with δi,j < R for some constant radius R,

are considered to be neighbors. Since δi,j = δj,i, the R-radius neighbor relation is

symmetric.

However, if the radius R is set too low, the neighborhood graph may end up

sparse or disconnected, while setting it too high would result in large neighborhoods

which may violate the local linearity assumption. Thus variants of the K-nearest-

neighbors (KNN) method, which are non-parametric neighbor selection methods, are

presented. These methods are:

1. K-nearest-neighbors (KNN): Sensor j is a neighbor of sensor i, i.e., j ∈ Ni, if

and only if δi,j is one of the K smallest of the set {δi,k}k 6=i. Clearly, |Ni| = K.



99

Note KNN is not a symmetric relation.

2. Symmetric K-nearest-neighbors (SKNN): To achieve a symmetric neighbor re-

lation, j ∈ Ni, if and only if δi,j is one of the K smallest of either set {δi,k}k 6=i

or one of the K smallest of set {δk,j}k 6=j. In other words, the KNN relation is

OR’ed together with its transpose. For SKNN, |Ni| ≥ K.

3. ‘Take Pity’ K-nearest-neighbors (TPKNN): Initialize Ni using KNN for all sen-

sors i. If sensor k has less than Lmin sensors which consider it as a neighbor,

i.e.|{i : k ∈ Ni}| < Lmin, then it is considered a ‘lonely’ sensor. For each lonely

sensor k, its Lmin closest neighbors are forced to ‘take pity’ on sensor k and

include k in their neighbor list. The TPKNN relation is not symmetric, but it

is used to avoid particular sparsity issues.

4.3.2 Typology of Manifold Learning Algorithms

Once neighbors are selected, an algorithm (eg. Isomap or Laplacian Eigenmap)

encodes the neighbor and distance information into a graph, and then calculates

low-dimensional coordinates which best represents the graph (Steps 4 and 5 from

the list at the start of Section 4.3). Manifold learning algorithms are generally one

of two types: distance-based and similarity-based methods. These two types are

contrasted by analogy in Fig. 4.7. As the name would indicate, the distance-based

methods encode information regarding the distances between points in the graph.

The similarity-based methods encode inverse distance, or some decreasing function

of distance. The operation of Isomap, a distance-based algorithm, is presented in

Section 4.3.3, and the operation of Laplacian Eigenmap, a similarity-based algorithm,

is presented in Section 4.3.4.
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(a) (b)

Figure 4.7: Physical analogy of manifold learning algorithms based on (a) distances and (b) similar-
ity between sensors. Sensors (spools) are connected by (a) springs which have natural
length equal to the measured distance, or by (b) rubber bands with different weights
(thickness of the band). In distance-based methods, sensors can push and pull their
neighbors, while in similarity-based methods, sensors can only pull. After the spools
are released and the system comes to rest (optimizes), the group is scaled and rotated
to match the a priori known coordinates ⊗.

4.3.3 Isomap

Classical MDS finds the coordinates {zi} which minimize the following cost func-

tion:

(4.7) SMDS =
∑

i,j

(

δ2
i,j − ‖zi − zj‖2

)2

where δi,j is a measured distance between sensors i and j. Because the distances

are squared before taking the difference, the cost is a quadratic function of the

coordinates. In particular, the minimum of SMDS can be found directly from the

singular value decomposition of the appropriate transform of the N × N distance

matrix D = [[δi,j ]]i,j, as derived in detail in [30]. This eigen-decomposition operation

has computational complexity O(N3).

In Isomap [118], the distances δi,j measured between non-neighbors are ignored.

Essentially, long-distance measurements are assumed to be completely unreliable.

Then, a neighbor graph is built which connects all pairs (i, j) of neighboring sensors
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Figure 4.8: Example taken from [118] which demonstrates the Isomap algorithm on a ‘Swiss Roll’.

with an edge of length δi,j. Finally, δSP
k,l is set equal to the sum length along the

shortest path on the neighbor graph between sensors k and l, for all pairs (k, l) ∈

{1, . . . , N}2. Isomap proceeds just as classical MDS, replacing in (4.7) the direct

distances {δi,j} with the shortest path distances {δSP
i,j }. The general idea is that

the shortest path on the neighborhood distance graph is a good approximation to

the shortest distance on the manifold, as demonstrated in Fig. 4.8 [118]. In terms

of calculation, the Isomap algorithm adds to the MDS complexity of O(N3), an

additional requirement of finding of shortest path. Using Dijkstra’s algorithm, this

is an O(N2) operation, and this calculation is readily decentralized in a wireless

network.

An algorithm called MDS-Map, introduced by Shang et. al. [110], applies the

Isomap algorithm when measurements are connectivity to sensor localization. Simu-

lation results will be shown as a comparison to the Laplacian Eigenmap-based algo-

rithm developed in Section 4.5. The distributed weighted MDS (dwMDS) algorithm,

introduced in Section 4.4, is also a distance-based manifold learning method.
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4.3.4 Laplacian Eigenmap

The Laplacian Eigenmap method is a similarity-based manifold learning method

that considers the minimization of the cost SLE [8]:

(4.8) SLE =
∑

i,j

wi,j‖zi − zj‖2

subject to the translation and scaling constraints,

(4.9)
∑

i

zi = 0 and
∑

i

‖zi‖2 = 1.

The weights (or similarities) wi,j have an inverse relationship with distance - for

more distant neighbors, the weights are set smaller. For non-neighbors, wi,j is set

to zero as an approximation, since the distance is large for non-neighbors. Also, the

Laplacian Eigenmaps method requires symmetric weights, i.e., wi,j = wj,i.

The minimum of cost SLE without any constraints would occur when all the

coordinates zi were equal. The constraints in (4.9) remove the translation ambiguity

by setting the origin as the center, and counteract the tendency to put all points at

the origin by mandating a unit norm average coordinate.

The benefit of the formulation in (4.8) and (4.9) is that the globally optimum

solution can be found via eigen-decomposition. Defining the N × N weight matrix

W = [[wi,j]]i,j and its column sums (or row sums, since W is symmetric) ui =

∑N
j=1 wi,j, the graph Laplacian L is given by,

(4.10) L = diag[u1, . . . , uN ]−W,

where diag[u1, . . . , uN ] is the diagonal matrix with {ui} on its diagonal. Matrix L

is sparse, since wi,j = 0 for non-neighbors, and each row or column has at most

K + 1 non-zero elements. The eigen-decomposition of L is the set of (λk,vk), for

eigenvalues λk and eigenvectors vk, k = 1 . . .N . Here, it is assumed w.l.o.g. that the
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eigenvectors are sorted in increasing order by magnitude of eigenvalue. As presented

in detail by Belkin and Niyogi in [8], the vk for i = 2 . . . d + 1 provide the optimal

lowest-cost, d-dimensional solution to (4.8). Specifically,

(4.11) ẑi = [v2(i), . . . ,vd+1(i)],

where vk(i) is the ith element of the kth eigenvector.

Finding the smallest eigenvalues and eigenvectors of a sparse and symmetric ma-

trix is a computational problem which has been studied for decades for problems

in physics and chemistry [32, 9], and can be solved using distributed algorithms for

parallel processing. In particular, if sensors select local cluster-heads, the distribu-

ted algorithm can use data-distribution techniques and block-Jacobi preconditioning

methods to reduce communication. Due to the sparsity of the graph Laplacian ma-

trix, the computational complexity of the eigen-decomposition is O(KN2), where K

is the number of neighbors of each sensor.

The locally linear embedding (LLE) and the Hessian-based LLE (HLLE) meth-

ods are also similarity-based manifold learning algorithms. The HLLE method [34]

expands the optimization to attempt to preserve the local Hessian, i.e., 2nd-order

differences within local neighborhoods, within the final low-dimensional coordinate

embedding.

4.4 Distributed Weighted Multi-dimensional Scaling

In this section, joint work of the author and Jose A. Costa is presented. In

this work, a distributed weighted multi-dimensional scaling algorithm (dwMDS) is

designed for sensor localization [27, 28]. The key features of dwMDS are:

1. The algorithm allows for a distributed implementation across the network with

minimal communication requirements,
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2. The algorithm accounts for prior information, which allows use of reference

nodes with either perfect or imperfect prior coordinate estimates,

3. The algorithm uses a weighted cost function that allows pair-wise measurements

that are believed to be more accurate to be weighted more heavily, and

4. The algorithm is based on iterative function optimization such that each itera-

tion is guaranteed to improve the value of the cost function.

4.4.1 Distributed Weighted MDS Cost

The algorithm is inspired by classical multi-dimensional scaling (MDS), which was

presented in Section 4.3.3. The proposed method minimizes the following variation

on the classical MDS cost function,

(4.12) S = 2
∑

1≤i≤n

∑

i<j≤N

wi,j (δi,j − ‖zi − zj‖)2 +
∑

1≤i≤n

ri‖zi − zi‖2

where coordinates {zi} are found which minimize S, given: pair-wise measurements

δi,j; an arbitrary weight wi,j assigned to quantify the predicted accuracy of measure-

ment δi,j; imperfect prior information that node i for i = 1 . . . n are located at coordi-

nate zi with accuracy ri; and perfect prior information that node i for i = n+1 . . .N

are located exactly at zi. If no measurement δi,j is available between i and j, or its

accuracy is zero, then wi,j = 0. Similarly, if no prior information exists for the coor-

dinates of node i, then ri = 0. It is assumed that wi,j ≥ 0, wi,i = 0 and wi,j = wj,i,

i.e., the weights are symmetric. In summary, the first n sensors have either no prior

information or some, but imperfect prior information (unknown-location sensors);

sensors n + 1 . . .N have perfect prior coordinate information (reference sensors).

In comparison to classical MDS and Isomap, (4.12) differs in that:

• A penalty term accounts for prior knowledge about node locations,
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• Rather than pure least squares, weighted least squares is possible, and

• The cost is the squared difference between distances, rather than the squared

difference between squared distances.

Note that, under a Bayesian perspective, (4.12) can be interpreted as the posterior

density of the nodes locations given the observed dissimilarities, f({zi}|{δi,j}), if the

dissimilarities {δi,j} are assumed to be i.i.d. Gaussian with mean ‖zi − zj‖ and

variance (2wi,j)
−1 and the points {zi} have a Gaussian prior with mean zi and

variance (2ri)
−1.

After simple manipulations, S can be rewritten as follows:

(4.13) S =
n
∑

i=1

Si + c,

where local cost functions Si are defined for each unknown-location node (i.e., 1 ≤

i ≤ n),

(4.14) Si =
n
∑

j=1
j 6=i

wi,j (δi,j − ‖zi − zj‖)2 +
N
∑

j=n+1

2wi,j (δi,j − ‖zi − zj‖)2 + ri‖zi− zi‖2,

and c is a constant independent of the nodes locations {zi}. As Si only depends on

the measurements available at node i and the positions of neighboring nodes, (i.e.,

nodes for which wi,j > 0), it can be viewed as the local cost function at node i. Note

that if m = 0 (i.e., no reference nodes are available) and ri = 0, for all i (i.e., no

prior information on the nodes locations), then ∂S/∂zi = 2 ∂Si/∂zi. This implies

that the influence of zi on the local cost Si determines its influence on the global

cost S. Motivated by this cost structure, an iterative scheme is proposed in which

each sensor updates its position estimate by minimizing the corresponding local cost

function Si, after observing dissimilarities and receiving position estimates from its

neighboring nodes.
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4.4.2 dwMDS Algorithm

Unlike classical MDS, no closed form expression exists for the minimum of the cost

function S or Si. By assuming that each node has received position estimates from

neighboring nodes, the algorithm minimizes Si = Si(zi) iteratively using quadratic

majorizing functions as in SMACOF (Scaling by MAjorizing a COmplicated Function

[49]). This method has the attractive property of generating a sequence of non-

increasing STRESS values.

A majorizing function Ti(z,y) of Si(z) is a function Ti : R
D × R

D → R that

satisfies: (i) Si(z) ≤ Ti(z,y) for all y, and (ii) Si(z) = Ti(z, z). This function can

then be used to implement an iterative minimization scheme. Starting at an initial

condition z0, the function Ti(z, z0) is minimized as a function of z. The newly found

minimum, z1, can then be used to define a new majorizing function Ti(z, z1). This

process is then repeated until convergence (see [49] for details). The trick is to use

a simple majorizing function that can be minimized analytically, e.g., a quadratic

function. Following [49], Si is rewritten as:

Si(zi) = η2
δ + η2(Z)− 2 ρ(Z) ,

where Z = [z1, . . . , zN ], and

η2
δ =

n
∑

j=1
j 6=i

wi,jδ
2
i,j +

N
∑

j=n+1

2wi,jδ
2
i,j,(4.15)

η2(Z) =

n
∑

j=1
j 6=i

wi,j‖zi − zj‖2 +

N
∑

j=n+1

2wi,j‖zi − zj‖2 + ri‖zi − zi‖2,(4.16)

ρ(Z) =

n
∑

j=1
j 6=i

wi,jδi,j‖zi − zj‖+

N
∑

j=n+1

2wi,jδi,j‖zi − zj‖.(4.17)

Term (4.15) does not depend on zi and term (4.16) is quadratic in zi. Only term

(4.17) depends on zi through a more complicated (sum of square roots) function.
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Define Ti(z,y) as:

(4.18) Ti(zi,yi) = η2
δ + η2(Z)− 2 ρ(Z, Y) ,

where

(4.19)

ρ(Z, Y) =
n
∑

j=1
j 6=i

wi,j
δi,j

‖yi − yj‖
(zi−zj)

T (yi−yj)+
N
∑

j=n+1

2wi,j
δi,j

‖yi − yj‖
(zi−zj)

T (yi−yj).

Using the fact that, by the Cauchy-Schwarz inequality,

‖zi − zj‖ =
‖zi − zj‖ ‖yi − yj‖

‖yi − yj‖
≥ (zi − zj)

T (yi − yj)

‖yi − yj‖
,

it is easily seen that Ti majorizes Si. Minimizing Si through a majorizing algorithm

is now a simple task of finding the minimum of Ti:

(4.20)
∂Ti(zi,yi)

∂zi
= 0 .

An expression for this gradient is given in [27]. If Z(k) is the matrix whose columns

contain the position estimates, z
(k)
i , for all points i = 1 . . . n at iteration k, one can

derive an update for the position estimate of node i using equation (4.20):

(4.21) z
(k+1)
i = ai

(

ri zi + Z(k)b
(k)
i

)

,

where

(4.22) a−1
i =

n
∑

j=1
j 6=i

wi,j +
n+m
∑

j=n+1

2wi,j + ri,

and b
(k)
i = [b1, . . . , bn+m]T is a vector whose entries are given by:

(4.23)

bj = wi,j

[

1− δi,j/‖z(k)
i − z

(k)
j ‖)

]

j ≤ n, j 6= i

bi =
∑n

j=1
j 6=i

wi,jδi,j/‖z(k)
i − z

(k)
j ‖+

∑N
j=n+1 2wi,jδi,j/‖z(k)

i − z
(k)
j ‖

bj = 2wi,j

[

1− δi,j/‖z(k)
i − z

(k)
j ‖
]

j > n

.
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Inputs: {δi,j}, {wij}, m, {ri}, {zi}, ǫ, initial condition Z(0)

Initialize: k = 0, S(0), compute ai from equation (4.22)
repeat

k← k + 1
for i = 1 to n

compute b
(k−1)
i from equation (4.23)

z
(k)
i = ai

(

ri zi + Z(k−1)b
(k−1)
i

)

compute S
(k)
i

S(k) ← S(k) − S
(k−1)
i + S

(k)
i

communicate z
(k)
i to neighbors of node i (i.e., nodes for which wi,j > 0)

communicate S(k) to node i + 1 (mod n)
end for

until S(k−1) − S(k) < ǫ

Figure 4.9: Algorithm for distributed weighted multi-dimensional scaling

As the weights wi,j are nonzero only for nodes j in the neighborhood of node i, only

the corresponding entries of vector b will be nonzero, and the update rule for zi will

depend only on this neighborhood (as opposed to the whole matrix Z(k)).

Note that unlike the centralized SMACOF algorithm described in [49], the com-

putation of (4.21) does not require the evaluation of a n× n Moore-Penrose matrix

inverse.

Summary and Comments

The proposed algorithm is summarized in Figure 4.9. Note the following com-

ments:

1. The choice of weighting function wi,j should reflect the accuracy of measured

dissimilarities, such that less accurate measurements are down-weighted in the

overall cost function. If a noise measurement model is available, wi,j can be

tailored to the variance predictions of the model. For example, one might

select wi,j = 1/(c1δi,j + c2)
2 if the measurements are Gaussian distributed

with standard deviation increasing linearly with the true distances, i.e., σ =

c1‖zi−zj‖+ c2. When a reliable model is not available, one can adopt a model-
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independent adaptive weighting scheme. This is the approach adopted in this

thesis. Inspired by the weighting frequently used in locally weighted regression

methods (LOESS) [21], the following weight assignment is proposed:

(4.24) wi,j =











exp
{

−δ2
i,j/h

2
i,j

}

, if δi,j is measured

0 , otherwise

,

where hi,j = max [{δi,k}k ∪ {δk,j}k]. This choice of wi,j, both equalizes the

(nonzero) weight distribution in all sensors, and is symmetric. This LOESS-

based scheme shows robust performance in the experiments reported in Section

4.4.5.

2. The question of how to adaptively choose the neighbors of each node (i.e., which

weights are made positive) in order to decrease communication costs or improve

localization performance is addressed in Section 4.4.3.

3. The values of ri should be chosen according to the prior information on node i’s

location. For a Gaussian distributed prior with variance σ, one should choose

ri = 1/(2σ2). Prior information can have a dramatic impact on localization

accuracy, as shown in [106]. If ri’s are very high (compared to the wij’s), then

the solution to (4.12) will ‘stretch’ range measurements in order to place sensors

with prior information at their a priori coordinates. Conversely, if ri’s are very

low, then the solution will attempt to preserve range measurements and instead

find a single global translation and rotation that results in agreement between

estimates and prior coordinates. The localization performance as a function of

ri is investigated in Section 4.4.6.

4. Regarding the initialization of the algorithm, every node requires an initial

estimate of its position. This can be done using the algorithms proposed in
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[105] or [124]: each node builds its local coordinate system, which is then passed

along the network until a rough global map of the network is built. In the

experiments reported in Section 4.4.5, the algorithm was robust with respect to

“rough” initial position estimates.

5. In the description of the algorithm, it was assumed for notational convenience,

that the algorithm cycles through the network in an ordered fashion (i.e., mes-

sages are passed between nodes in the order 1, 2, . . . , n). However, many other

non-cyclic update rules are possible. In particular, one possibility is for (spa-

tial) clusters of sensors to iterate among themselves until their position estimates

stabilize. These estimates can then be transmitted to the neighboring clusters,

before starting a new iteration step.

6. Although the majorization approach used guarantees a non-increasing sequence

of STRESS vales, it may converge to a local minimum of this cost function,

instead of the global one, like any gradient search method. This behavior can

be alleviated to some extent by using some of the advanced search techniques

proposed in [49].

4.4.3 Neighbor Selection in Noise

In most sensor network research, each sensor selects its neighbors by choosing

those devices which are within a threshold distance (R-radius neighbor selection).

But, since the exact distance ‖zi−zj‖ is not known, sensors must use noisy measure-

ments δi,j to select neighbors. Range measurements, whether made via TOA, RSS,

or proximity, are all subject to errors. In this section the biasing effects of selecting

neighbors via noisy distance measurements are explored.

When distance is measured in noise, the act of thresholding neighbors based on the
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measured distance will tend to select the devices with smaller measured distances.

For example, consider two devices separated by distance R, when R is also the

threshold distance. With some positive probability (due to noise), the measured

distance, δ, will be greater than R, and the two will not be considered neighbors.

Alternatively, if δ ≤ R, the two will be considered neighbors, and δ will be used in

the localization algorithm. The problem is that the expected value of δ, for devices

separated by R which consider themselves neighbors, is less than R. Thus, the

measured distance is negatively biased because of the effect of thresholding. Note

that using KNN for neighbor selection (see Section 4.3.1) effectively has an adaptive

threshold, and thus does not avoid this biasing effect.

This bias has not been specifically addressed in the sensor localization litera-

ture, because its effects are not severe in certain systems. Some proposed sensor

localization systems measure very accurate distances, eg., using TOA in UWB or a

combination of RF and ultrasound media – for these systems, the effect of selecting

neighbors based on measured distances will be minimal. Alternatively, if neighbors

are selected based an independent means (eg., based on RSS or connectivity when

range estimates are based on TOA), than the biasing effect is avoided1. Finally, when

studies show results for the case in which all devices are connected to every other

device, the thresholding step (and its biasing effect) is eliminated. In this thesis,

the full-connectivity assumption is explicitly stated when it is used. The manifold

learning-based localization algorithms presented in this and in the next sections use

thresholding and noisy measurements, and are thus subject to the biasing effect, but

are specifically designed to mitigate it.

The discussion is limited to RSS measurements in this section, since low device

1Note, however, that if both RSS and TOA are available, one may wish to use a combination of them; and even if
not, RSS and TOA for a link are correlated because objects in the environment tend to degrade both measurements
simultaneously.
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costs and energy consumption are very attractive device characteristics of RSS, but

the discussion is also applicable to systems which use noisy TOA-based range mea-

surements for neighbor selection.

RSS-based Biasing Effect

When discussing thresholding based on RSS, a distinction must be made between

the physical limits of the receiver and the threshold which is used to select neighbors,

because generally, the two do not need to be the same. If a device has a large radio

range in order to be robust to low device densities, a system designer may set a stricter

threshold when there are very many devices with which the sensor can communicate.

Denote P0 to be the received power level below which a receiver cannot demodulate

packets. This assumption that connectivity is a binary quantization of received power

is an assumption addressed in Section 2.5.1. Denote PR to be the received power

level below which the transmitting device is not included as a neighbor. Clearly,

PR ≥ P0. Equivalently, distances d0 and R can be defined from (2.5) to be the

maximum-likelihood estimate of range given the received power Pi,j is equal to P0

and PR, respectively. (d0 is the same quantity defined for connectivity measurements

in Section 2.5 by (2.16).)

Whether or not neighbors are selected based on connectivity (measured power is

greater than P0) or based on a power threshold (measured power is greater than PR),

the biasing effect will be the same. In following, PR and R are used to indicate the

thresholds (which may be set equal to P0 and d0 if desired).

Let E [δi,j |Pi,j > PR] be the expected value of the range estimate between devices

i and j given that the two are neighbors (i.e., the received power Pi,j is greater than



113

PR). Using the RSS measurement model (see Section 2.2), it can be shown that

(4.25) E [δi,j |Pi,j > PR] = C‖zi − zj‖
1− Φ

(√
γ log

‖zi−zj‖
R

+ 1√
γ

)

1− Φ
(√

γ log
‖zi−zj‖

R

) ,

where Φ(·) is the cumulative distribution function of a standard Gaussian random

variable, γ is the RSS channel parameter given in Table 3.1, and C is the constant

(bias multiplier) given in (4.3). Equation (4.25) is plotted in Fig. 4.10 as a function of

the ratio of the true distance to R. Ideally, the range estimator should have a mean

value equal to the actual range. However, as the range increases, the expected value

of δi,j (given that i and j are neighbors) deviates from linear and asymptotically

becomes constant. There is a strong negative bias for devices separated by R or

greater.
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Figure 4.10: The expected value of the RSS-based estimate of range given that that two devices

are neighbors (- - -), and the ideal unbiased performance (· · · · · · ). The channel has

σdB/np = 1.7 and R = 1 (or equivalently, distances are normalized by R).

4.4.4 Two-Stage Selection Algorithm

Motivated by the negative bias phenomenon displayed in Fig. 4.10, a two stage

neighborhood selection process is proposed.

In the first stage, the dwMDS algorithm from Fig. 4.9 is run with a neighborhood

structure based on the available range measurements, i.e., set wi,j = 0 if δi,j > R.
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After convergence, this step provides an interim estimate {ẑi} of the sensors locations.

With high probability, the predicted distances between the estimated sensor locations

will be negatively biased.

In the second stage, these predicted distances from the estimated sensor locations

are used to compute a new neighborhood structure, by assigning wi,j = 0 if ‖ẑi −

ẑj‖ > R. Some neighbors with low range measurements will be dropped, and some

neighbors with possibly longer range measurements will be added. Then, using {ẑi}

as an initial condition and the new neighborhood structure, the dwMDS algorithm

is re-run, resulting in the final location estimates. Note that the predicted distances

‖ẑi − ẑj‖ are used only to select neighbors (i.e., which weights are positive) – the

measured ranges δi,j are still used to determine the positive weight values.

Note that this 2-stage algorithm does not imply twice the computation of a one-

stage algorithm. The dwMDS algorithm is based on majorization, and each iteration

brings it closer to convergence. Since the first stage only needs to provide coarse

localization information, it does not need to be very accurate, and so the dwMDS

algorithm can be stopped quickly with a large ǫ. Next, the second stage begins with

very good (although biased) coordinate estimates, so the second run of the dwMDS

algorithm will likely require fewer iterations to converge.

Note that for some of the devices which are considered neighbors in the 2nd

stage of the algorithm, the measured range δi,j will actually be greater than R.

Thus, to use this 2-stage algorithm, R must be sufficiently less than the physical

communication limit of the devices, d0, so that other range measurements can be

considered. Considering the non-circular (real-world) coverage area of a device, d0

can be considered to be the mean radius of the coverage area, while R should be set

to the minimum radius of the coverage area.
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4.4.5 Simulation Results

In this section, all the simulated data were generated from the RSS measurement

model presented in Section 2.2, with channel parameter σdB/np = 1.7.

First dwMDS algorithm performance is demonstrated on a network of 7×7 sensors

arranged on a uniform grid of unit area, as was drawn in Fig. 3.7, in which the

four corner devices are reference nodes and the remaining 45 are unknown location

devices, and L = 1 m. For all experiments on this configuration, R = 0.4 m is used

(yielding an average of 14 neighbors per device). A Monte Carlo simulation is run

with 200 trials to determine confidence ellipses, root-mean-square error (RMSE) and

bias performance (per sensor) of the location estimates. The results are displayed

in Figure 4.11, which plots the mean and 1-σ uncertainty ellipse of the estimator,

compared to the actual device location and the Cramér-Rao lower bound (CRB)

on the uncertainty ellipses (presented in Chapter III). Note that the CRB shown is

calculated assuming full connectivity (all devices measure range to all other devices),

and as such provides only a loose lower bound on the best performance achievable

by any unbiased estimator. The first experiment is a baseline best-case scenario, in

which perfect (noise-free) distance measurements are used to select neighborhoods

(even though noisy measurements are used as measurements {δi,j}). The baseline

assumes that an oracle is available to declare when the true distance between i and j

is less than a threshold, i.e., ‖zi−zj‖ < R. This is shown in Figure 4.11(a), resulting

in a RMSE of the location estimates of 0.090 m and an average bias of 0.019 m.

For the second experiment, the perfect connectivity knowledge is removed. In-

stead, RSS measurements are used to select neighbors, i.e., devices i and j are

neighbors if Pi,j ≥ PR, or, equivalently, if δi,j ≤ R. The results are shown in Figure

4.11(b). The estimates are strongly pulled towards the center of the square, due
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Figure 4.11: Comparison of dwMDS estimators when neighborhood selection is done using (a) oracle

to obtain actual distances, (b) measured distances, or (c) adaptive, 2-stage selection

algorithm. Estimator mean (H) and 1-σ uncertainty ellipse (—) for each unknown-

location sensor compared to the true location (·) and CRB on the 1-σ uncertainty

ellipse (- - -).
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to the negative bias of the range estimates which are ‘selected’ by the connectivity

condition. Now, the RMSE is 0.162 m and the bias is 0.130 m.

A third experiment uses the 2-stage adaptive neighborhood selection method pro-

posed in Section 4.4.4. The results are displayed in Figure 4.11(c), where it can be

seen that this method succeeds in removing the negative bias effect. The bias has

gone back down to 0.012 m, while the RMSE is 0.092m, just slightly higher than the

baseline experiment using the oracle.

Comparing Figures 4.11(c) and (a), the localization errors of the two-stage al-

gorithm are spread more evenly throughout the network compared to the first ex-

periment – the errors for edge devices are reduced, while those in the center have

increased. Based on the similarity of the RMSE in both experiments, it is believed

that the 2-stage algorithm eliminates most of the neighbor selection bias. Addition-

ally, by changing the neighbor lists (and therefore the cost function) and re-running

the dwMDS algorithm, the 2nd iteration also provides the opportunity to break out

local maxima, which are more likely to affect edge devices. Finally, the low variance

achieved by the 2-stage algorithm is very close to the CRB which no unbiased loca-

tion estimator can outperform, despite the fact that the CRB is an optimistic bound

for the scenario considered here.

The influence of the threshold distance on the RMSE performance of the proposed

algorithms has also been studied. Figure 4.12 shows a plot of the RMSE vs. threshold

distance, for the 7× 7 uniform grid example using adaptive neighborhood selection.

It can be seen that there is an optimal threshold distance, R = 0.5 m, beyond which,

no performance increase occurs. As R is increased beyond this optimal value, more

distant sensors are included in the cost function. By the RSS measurement model,

the accuracy of range measurements degrades quickly with distance, thus adding
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Figure 4.12: RMSE versus threshold distance for the 7 × 7 uniform grid example using adaptive

neighborhood selection.

these far way sensors will not bring any gain to the estimation algorithm.

4.4.6 Influence of Prior Weight ri

To test how the estimator performs as a function of ri, the following simulations

are run. Under the same 7 × 7 grid scenario, consider the four corner nodes to

have imperfect information (rather than perfect a priori coordinate knowledge). In

particular, the algorithm only has access to a noisy version of the actual coordinates

of these nodes, perturbed by zero mean Gaussian noise with unknown variance σ2
p .

Figure 4.13 shows the resulting RMSE, obtained by running 5000 Monte-Carlo 2-

stage dwMDS simulation trials for σp = 0 : 025, 0 : 050, 0 : 100 and setting ri = r for

the corner nodes, where r is made to vary between 10−2 and 102.

When r is very small (10−2), the RMSE levels off to a value that is constant for

all values of σp. Essentially, the prior is only being used to rotate and translate the

relative map produced by the dwMDS in order to best fit the observed positions of

the corner sensors. This constant RMSE at low r is not too far from the minimal

RMSE, so a reasonable non-parametric option might be to set r = 10−2. On the

other hand, for very high values of r, the observed positions of the corner sensors are
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Figure 4.13: RMS location error versus prior weighting value r of the four corner nodes in the 7×7
grid example when the corner nodes coordinates are observed in different levels of noise
σp.

treated as fact, and the map is stretched to place the corner sensors exactly where

they were observed, to the detriment of fitting measured ranges.

For intermediate values of r, there is an optimal r which best weights the relative

information in the prior coordinates with respect to the weights chosen for the mea-

sured ranges. As would be expected, the optimal r is inversely proportional to σ2
p ,

although the exact dependence may depend on factors such as the distribution of ni,

the weighting scheme chosen, and the number of neighbors of each node. Further

research should investigate these dependencies. However, the RMS location error

near the optimal is a very shallow function of r – for all three plots, there is nearly

an order of magnitude range within which the RMS location error is within 1% of

its minimum. So, although simulation might be necessary to find the optimal r, as

long as r is within the correct order of magnitude, the results will be nearly optimal.

If r is set to an intermediate value, the resulting RMS location error will be lower

than that possible using either:
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• A method that uses prior coordinate information only to find the best rotation

of a calculated relative map (i.e. [110]), which is analogous to very low r in the

dwMDS method, or

• An MLE which assumes that reference sensor coordinates are known perfectly

(i.e. [92], which is analogous to very high r.

4.4.7 Measurement Results

To test the performance of the proposed algorithm on real-world channel mea-

surements, the RSS and TOA measurements presented in detail in Section 2.6.2 are

used. Recall that this data set includes the RSS and TOA range measurements from

a network of 44 devices in an office area. The bias-corrected pseudo-MLE from (2.8)

is used to estimate range δi,j from the measured RSS. Of the N = 44 nodes, m = 4

are set to be reference nodes (i.e.with perfect prior information).

The performance of the dwMDS algorithm with adaptive neighborhood selection

is compared to classical MDS and the MLE based solutions from [92]. Figures 4.14(a)

and (b) show the location estimates using classical MDS (which used all the pair-

wise range measurements between sensors) and the dwMDS algorithm, for the RSS

measurement data set. The true and estimated sensor positions are marked by ’o’

and ’▽’, respectively, where the lines represent the estimation errors. The reference

nodes are marked with an ’x’. It can be observed that the dwMDS algorithm does

much better than classical MDS. In fact, the RMSE for the classical MDS solution

is 4.30 m, while for dwMDS, using R = 6 m (yielding an average of 19 neighbors

per sensor), it drops to 2.48 m. This error is 14% higher than the RMSE of 2.18 m

achieved using a centralized MLE. However, note that the MLE uses all pairwise

range measurements, and relies on previously estimated channel parameters. If R is
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Figure 4.14: Location estimates using (a-b) RSS and (c-d) TOA range measurements from exper-
imental sensor network, comparing results from (a & c) Classical MDS and (b & d)
dwMDS estimators. True and estimated sensor locations are marked, respectively,
by ’o’ and ’▽’, while reference nodes are marked by ’x’. The dwMDS algorithm uses
adaptive neighbor selection, with R = 6 m.
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allowed to increase at the expense of increasing communication costs, the dwMDS

algorithm can reach an RMSE as low as 2.27 m for R = 8.5 m, just 4% higher than

the MLE.

Figures 4.14(c) and (d) show again the location estimates using classical MDS

and the dwMDS algorithm, but this time for the TOA measurement data set. The

RMSE for the classical MDS solution is 1.96 m and 1.12 m for the dwMDS algorithm

using R = 6 m (wich yields an average of 17.5 neighbors per sensor). This error is

slightly better than the RMSE of 1.23 m achieved using a centralized MLE. If R is

allowed to increase at the expense of increasing communication costs, the dwMDS

algorithm can reach an RMSE as low as 0.94 m for R = 7.5 m. Once again, note that

the dwMDS algorithm, unlike the MLE estimator from [92] and Section 4.2, does

not use all the pairwise range measurements and doesn’t assume knowledge of the

distribution of the range measurements.

4.5 Laplacian Eigenmap Connectivity-based Estimator

This section develops and compares localization algorithms which solely use con-

nectivity measurements as location information. Recall that if a sensor i can suc-

cessfully demodulate the packets transmitted by another sensor j, then the two are

considered to be connected, i.e., Qi,j = 1. When received signal strength (RSS)

is too low, packets can’t be demodulated, and sensors will not be connected, i.e.,

Qi,j = 0. Connectivity was described in more detail in Section 2.5.1.

This section emphasizes that connectivity is a noisy measurement, and as a re-

sult, the bias and variance of any connectivity-based coordinate estimator must be

considered. In addition to accuracy and precision, the estimator should have low

computational complexity so that sensor localization will scale well with the size
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of the network. This section introduces a Laplacian Eigenmap based localization

method which has both lower computational complexity and lower variance than

MDS-based methods.

In this section, imperfect prior coordinate information is not considered - sensors

either have no prior information (unknown-location nodes) or perfect prior informa-

tion (reference nodes). However, allowing imperfect prior information would be a

simple extension to the developed method.

Connectivity measurement-based localization algorithms, also called range-free

localization, have found considerable application in ad hoc networks and wireless

sensor networks, eg., in [81, 110, 117]. In particular, connectivity-based localiza-

tion via MDS was introduced in [110], which demonstrated that localization can be

achieved without resorting to iterative optimization algorithms that don’t always

converge to the global maxima. The MDS-MAP method in [110] effectively applies

the manifold learning technique called Isomap [118] to the connectivity-based sensor

localization problem. The new method is compared to the MDS-MAP method in

Sections 4.3.3 and 4.5.4.

4.5.1 Weight Selection

The selection of weights wi,j for neighboring sensors is critical to localization per-

formance, as shown earlier for the dwMDS method in Section 4.4. In the original

Laplacian Eigenmap (LE) method [8], weights are selected by looking at the local ge-

ometric structure of neighboring high-dimensional data points. In this connectivity-

based problem, only a coarse idea of local structure is available, since measure-

ments are binary. Also, the algorithm begins with ‘distance’ (connectivity) measure-

ments rather than higher-dimensional coordinates themselves, so the weight selection

method of [8] cannot be directly applied.
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This section presents multiple methods of weight selection, and then compares

them via simulation in Section 4.5.4.

First, in the Equal Weights method, set wi,j = Qi,j, i.e., wi,j = 1 if i and j are

connected and 0 if not. As will be shown in Section 4.5.4, this is a poor weight

selection method, because sensors with the most neighbors will tend to have too

much ‘pull’, and will bias their neighbors’ coordinate estimates too close to their

own.

To counteract this tendency, two alternatives are offered which both affect the

column sums of W , i.e., ui =
∑N

j=1 wi,j. Note that ui is analogous to the ‘pull’ of

sensor i. In both alternative methods, {wi,j} are first set using the equal weights

method. Then,

Equal Sum-of-Weights : Adjust the weights such that the new column sums ũi = µu

for all i = 1 . . .N , where µu is the average of the original column sums, µu =

1
N

∑N
i=1 ui.

Linear Sum-of-Weights : Adjust the weights such that the new column sums ũi are

linearly related to ui. Specifically, let ũi = µu + β(ui − µu)/σu where σu is the

standard deviation of {ui}Ni=1. In this chapter, slope β = 0.1 is used throughout.

Adjustment of weights to achieve desired column sums is described in Section 4.5.2.

The W output by any neighbor weight selection method is then used to calculate

coordinate estimates {z̃i} via the Laplacian Eigenmap algorithm in Section 4.3.

4.5.2 Symmetric Adjustment of Weights

Matrix W must remain symmetric after any weight adjustment, since it describes

a symmetric graph. If the weights in column i were just scaled by ũi/ui, column i

would have the desired sum ũi, but W would not remain symmetric. In this weight-
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adjustment algorithm, we iteratively adjust {wi,j} until ũi = ui. The inputs to

the algorithm are: the original weights {wi,j}; the desired sum of weights {ũi} for

i = 1 . . . N ; and a convergence threshold ǫ (here ǫ = 0.01). The algorithm outputs

the modified weight matrix. The steps are:

1. Calculate ui =
∑N

j=1 wi,j for i = 1 . . . N .

2. Define φi =
√

ũi/ui, for i = 1 . . .N .

3. Assign wi,j = wj,i := φiwi,jφj ∀ neighbors i, j. (In matrix notation, W := ΦWΦ

where Φ = diag[φ1, . . . , φN ].)

4. If ∀i, 1− ǫ < φi < 1 + ǫ, stop. Else go to 1.

The algorithm requires O(KN) multiplies, where K is the average number of neigh-

bors. The convergence of this algorithm is not addressed here, except to note that

in simulations, it typically converges in 5-10 iterations for ǫ = 0.001.

4.5.3 Two-Stage Weight Selection

From experience with the dwMDS algorithm, it is apparent that localization es-

timates can be greatly improved by using a two-stage neighbor selection method.

Thus the following two-stage algorithm for weight selection is tested:

1. Using the linear sum-of-weights method to set W , calculate the Laplacian Eigen-

map coordinate estimates {z̃i}.

2. For the 2nd round, let the desired column sums ˜̃ui be

(4.26) ˜̃ui = ũi

√

Ki/K̃i

where K̃i is the number of its neighbors j for which ‖z̃i − z̃j‖ < R, and R is

the radius of coverage. Adjust W to meet {˜̃ui} as described in Section 4.5.2,
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and then calculate final coordinate estimates {ẑi}i=1...N using the new weight

matrix.

Intuitively, if few of the neighbors of sensor i are estimated to be within its commu-

nication range, then one can guess that sensor i’s weights should be increased. The

presented choices are by no means optimal, and other iterative algorithms or updates

are certainly possible. This section simply demonstrates that the performance of this

ad hoc two-stage method does in fact dramatically improve localization performance.

4.5.4 Simulation Results

In this section localization performance is tested using different estimators in

multiple sensor geometries. For each test, 200 Monte-Carlo simulation trials were

run in order to determine the mean coordinate estimate z̄i for i = 1 . . . n, and the

covariance matrix C. In each simulation, the statistical model in Section 2.5.1 is

used to randomly generate connectivity measurements in the sensor network. Each

plot in Fig. 4.15 shows z̄i (H) and the 1-σ covariance ellipse (—-) for each sensor.

For comparison, plotted in gray (or red in the electronic version) is the actual sensor

coordinate (•) and the Cramér-Rao bound (CRB) for the 1-σ covariance ellipse (- - -

-) [88]. For each test, the mean bias b̄ and the RMS standard deviation σ̄ summarize

the performance of the localization estimator, which were defined in (4.5). Note all

distances are in terms of L, the chosen scale of the network.

MDS-MAP

First MDS-MAP is tested in the 7 by 7 grid network, as drawn in Fig. 3.7, in which

the four corner sensors are reference sensors, and the other 45 are unknown-location

sensors. For a communication radius R = 0.5, the MDS method has standard devi-

ation of location error σ̄ = 0.218 and a bias of b̄ = 0.087, as shown in Fig. 4.15(a).
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Figure 4.15: Estimator mean (H) and 1-σ uncertainty ellipse (—-) for each unknown-location sensor
compared to the true location (•) and CRB on the 1-σ uncertainty ellipse (- - - -),
when reference sensors are located at each ×. All cases are R = 0.5 tests described in
Section 5 and in Table 1.



128

Location MDS- LE Eql. LE Eql. LE Lin.
Estimator MAP Wts.

P

-Wts.
P

-Wts. LE 2-Stage Linear Sum-of-Weights

Geometry 7 by 7 Grid Grid+Z
4 Grid+Z

2 Unif. Rand

R = 0.3 b̄ = 0.026 b̄ = 0.106 b̄ = 0.056 b̄ = 0.048 b̄ = 0.039 b̄ = 0.046 b̄ = 0.062 b̄ = 0.069

σ̄ = 0.205 σ̄ = 0.191 σ̄ = 0.153 σ̄ = 0.153 σ̄ = 0.133 σ̄ = 0.142 σ̄ = 0.155 σ̄ = 0.126

R = 0.4 b̄ = 0.022 b̄ = 0.154 b̄ = 0.059 b̄ = 0.035 b̄ = 0.033 b̄ = 0.037 b̄ = 0.055 b̄ = 0.048

σ̄ = 0.205 σ̄ = 0.188 σ̄ = 0.143 σ̄ = 0.144 σ̄ = 0.136 σ̄ = 0.139 σ̄ = 0.141 σ̄ = 0.127

R = 0.5 b̄ = 0.087 b̄ = 0.186 b̄ = 0.040 b̄ = 0.036 b̄ = 0.026 b̄ = 0.027 b̄ = 0.040 b̄ = 0.031

σ̄ = 0.218 σ̄ = 0.189 σ̄ = 0.149 σ̄ = 0.146 σ̄ = 0.144 σ̄ = 0.147 σ̄ = 0.149 σ̄ = 0.140

Figure 4.15(a) 4.15(b) 4.15(c) 4.15(d) 4.15(e) 4.15(f) 4.16(g) 4.16(h)

Table 4.2: Simulated performance of MDS-MAP and Laplacian Eigenmap (LE) using equal weights,
equal sum-of-weights, linear sum-of-weights, and two-stage linear sum-of-weights, for
different ranges R. The sensor geometries are the 7 by 7 grid, grid plus noise (c = 2 and
c = 4), and uniform random.
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Figure 4.16: Continued from Figure 4.15.
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At R = 0.5, almost all pairs of sensors are within 1 or 2 hops from each other. At

lower radii R, the MDS-MAP achieves very low bias, as shown in Table 4.5.4, but

the standard deviation of error is largely constant, consistently about twice the lower

bound of the CRB.

Laplacian Eigenmap One-Stage

Equal Weights: Next, the Laplacian Eigenmap is tested using the equal weights

method (as described in Section 4.5.1). The simulation results show a heavily biased

estimator. For R = 0.5, the results are shown in Fig. 4.15(b), in which the mean

bias b̄ = 0.186 and the standard deviation of location error σ̄ = 0.189. At R = 0.3

and R = 0.4, the biases b̄ listed in Table 4.5.4 are lower but still very high.

Equal Sum-of-Weights: The performance of Laplacian Eigenmap, when weights

are determined by the equal sum-of-weights method, is dramatically better than the

equal weights method, as shown in Table 4.5.4. For R = 0.5, the results shown in

Fig. 4.15(c) show that the edge nodes seem to have weights too high compared to

the interior nodes, the opposite bias pattern compared to Fig. 4.15(b).

Linear Sum-of-Weights: The Laplacian Eigenmap with adjusted sum-of-weights

reduces the bias compared to equal sum-of-weights. As shown in Table 4.5.4 and

in Fig. 4.15(d), the bias has been reduced, especially at R = 0.4, even though the

values of σ̄ are largely unchanged.

Laplacian Eigenmap Two-Stage

Using the two-stage weight adjustment described in Section 4.5.3, bias is further

reduced. Furthermore, as shown in Table 4.5.4, the variance for R = 0.3 and R =

0.4 is dramatically lower than the one-stage linear sum-of-weights method. These

variances in the grid geometry are about 30-35% higher than the Cramér-Rao lower
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bound, so even an efficient estimator would not reduce σ̄ dramatically further.

However, we certainly don’t expect that sensors will be arranged in a perfect

grid. The true test of sensor localization is performance sensor placement is random,

which is presented next. Each test shows the performance of the Laplacian Eigenmap

two-stage weight selection method.

Grid Plus Noise: First, a Gaussian random vector is added to each unknown grid

coordinate, i.e., for i = 1 . . . n, zi = żi + Zi/c, where żi is the original coordinate

on the 7 by 7 grid, and {Zi} are independent Gaussian-distributed with mean zero

and covariance (1/6)2I2, and c = 2 or 4. Essentially, the standard deviation of the

random addition is either one-fourth or one-half of the distance between grid nodes.

Two geometries are generated from this model for c = 2 and c = 4, and simulation

results are shown in Table 4.5.4 and in Fig. 4.15(f) and Fig. 4.16(g), respectively.

For R = 0.4 and 0.5, the bias and standard deviation of location error increase only

slowly. However, for R = 0.3, the bias and variance do increase considerably. Note

that sensors actually located outside of the unit square [0, 1]2 have noticeably higher

bias and variance.

Uniform Random: Next, for i = 1 . . .N , zi are independently chosen from a

uniform distribution over the unit square area, [0, 1]2, as seen in Fig. 4.15(h). The

sensors closest to each corner are selected as the 4 references, so in this test, even

the references are randomly deployed. The resulting σ̄ are lower than in the 7 by 7

grid or the grid plus noise geometries. Note that the CRB for σ̄ is also about 15%

lower for this deployment compared to the 7 by 7 grid, so it is legitimate to expect

lower σ̄. Essentially, sensors very close together can provide increased information

about their relative location. However, the biases b̄ are higher than the 7 by 7 grid,

especially for R = 0.3.
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4.5.5 Discussion

For random deployments, a low communication radius like R = 0.3 may cause

some sensors to have very few neighbors, and localization performance will suffer.

System designers should plan for the tendency of sensors outside of the convex hull of

the reference nodes to experience higher localization errors. This behavior is a result

of using similarity-based algorithms like Laplacian Eigenmaps, in which sensors only

‘pull’ closer together, as described in Section 4.3. It is difficult for such methods to

accurately locate sensors outside of the reference nodes. If reference node locations

can be placed, some should be placed on the edge of the desired coverage area.

Using a realistic statistical model for connectivity, simulations presented in this

section show the potential of the Laplacian Eigenmap method to be a robust, low-

bias and low-variance sensor location estimator. It does not suffer from local optima

and it has low computational complexity compared to MDS-based estimators such as

[110]. The presented two-stage weight-selection method is used to achieve low bias

and standard deviation within 35% of the lower bound. However, general analysis

of weight selection methods has not been attempted. Finally, distributed algorithms

have not yet been presented for the proposed methods. These issues remain open for

future research.

4.6 Sensor Field Data Localization

This section explores using sensor data measurements to provide sensor location

information. When sensors are deployed in order to be able to measure and monitor

a time-varying, spatially correlated field, it is proposed to use the measurements

simultaneously to extract sensor location information. Localization using field data

is possible when a high density of sensors in the network results in correlation in
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data recorded at neighboring sensors. This high density and correlated field is already

expected to be an attribute of many wireless sensor networks. Due to the randomness

of deployment - sensors may be dropped from a helicopter or spread onto a field from

a tractor - high average density is desirable to ensure complete coverage. Also, for

the manufacture of inexpensive (sometimes unreliable) devices, redundancy increases

reliability and robustness to sensor failures. Finally, correlation is useful to reduce

data rate (and lengthen battery lifetime) via distributed compression [98].

A startup period is required in which sensor data is measured to establish cor-

relations between the field measurements made at different sensors. For long-term

monitoring applications using static sensors, a one-time setup delay can be readily

justified. Furthermore, inexpensive devices are likely to additionally use RF prox-

imity or RSS information to estimate sensor locations [88, 92]. In a real sensor

network, field data might be useful as complementary information, used alongside

RSS or other distance measurement. It might become an important means of ver-

ification, in a secure localization system, that a sensor which claims to be close to

another neighbor, is actually a neighbor. However, this section considers localization

performance using solely sensor field data. Localization using multi-modal measure-

ments is an important topic of future research.

4.6.1 Application Examples

Consider the precision agriculture application. Sensors in the soil measuring soil

pH level, salinity, nitrogen level, and moisture level, will allow farmers to customize

the planting, watering, herbicide application, and fertilizing of their field so to max-

imize their crop and minimize their costs and negative environmental impacts [102].

Soil chemistry at various areas of the field changes over time due to weather, bi-

ological effects, watering or fertilization. Over days or months, the soil conditions
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may be viewed as a random field, correlated in time and space. Similarly, consider

acoustic sensor networks deployed over wide outdoor areas for the purpose of source

localization. The ambient noise in the environment, caused by birds, wind, lightning,

vehicles, and pedestrian traffic, will show significant spatial correlation, since sound

attenuates with distance. Sensor self-location was presented for acoustic sensor net-

works when sound sources are deterministically inserted into the environment [76] or

dynamically tracked through the environment [18]. In this section, such purposeful

sources may be a part of the deployment, but more generally, the effect of the exist-

ing environmental sources is considered. It is assumed in this case that the acoustic

field is a stationary and isotropic spatially correlated random field.

As another example, consider wireless sensors attached or built into to the struc-

ture of bridges or buildings to monitor vibrations and structural health. The vi-

brations experienced at nearby sensors should be strongly correlated, possibly time-

delayed and noisy versions of the same signal. This observation has already been used

for time-synchronization of wireless sensors in smart structures [70]. Using vibration

signals for spatial synchronization, i.e., localization, is a natural extension.

4.6.2 Localization Algorithm

This section describes how manifold learning algorithms are applied to estimate

sensor location.

Sensor Data Measurement

Initially, each sensor i = 1 . . . N records data vi(t), for time t = 1 . . . τ . Let

the vector vi = [vi(1), . . . , vi(τ)] be the data of sensor i. Then, after time τ , each

sensor sends its data (vi) to its immediate neighbors. Define ki as the number of

sensors with which sensor i can directly communicate, and K as the desired number
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of neighbors. If ki < K, sensor i queries sensors that are one or more hops away

from itself. If ki ≥ K, sensor i only receives data from those ki sensors. Sensor i

then calculates Euclidean distance in R
τ between its own data and its neighboring

sensors’ data. Let these data distances be denoted {δi,j}j, where

(4.27) δi,j = ‖vi − vj‖.

There are some specific items to note:

• Previously in this thesis, δi,j was used to denote physical distance measurement,

and here it is used to denote distance between data measured at different sensors.

• Equation (4.27) uses Euclidean distance, but other applications may require and

use other distance measures.

• If multi-modal sensors are used, this work might be extended by allowing vi(t)

to be a vector measurement.

Neighbor Selection

Next, using the distances {δi,j}j, sensor i defines its neighbor list. In this section,

the following neighbor selection methods are used: the LLE algorithm uses the K-

nearest neighbors (KNN) selection method; the Isomap algorithm, which requires

neighbor symmetry, uses the symmetric KNN (SKNN) neighbor selection method,

and the HLLE, which does not require symmetry but is sensitive to sparse neighbor

graphs, uses the take-pity KNN (TPKNN) neighbor selection method (with Lmin =

3). These neighbor selection methods were defined in Section 4.3.1. As will be

described in more detail when presenting the simulation results, the HLLE method

does not work when there exists a sensor in the network which is not considered to

be a neighbor of any other sensor. The TPKNN method is used to avoid such a

situation.
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Dimension Reduction

Following the neighbor selection, a manifold learning algorithm is applied (Isomap,

LLE, or HLLE algorithm) to reduce the dimension of the sensor data {vi}. Detailed

descriptions of these algorithms are given in [118, 104, 34], and these algorithms are

reviewed in Section 4.3. These algorithms output a map with a mean coordinate

of zero (
∑

i zi = 0) and possibly a non-physical scale, for example,
∑

i ‖zi‖2 = 1.

The coordinate outputs also have some arbitrary rotation. Thus they serve only as

a relative map of the sensors in the network.

Matching Prior Knowledge

Once the manifold learning algorithms output a relative map of sensor coordinates,

the a priori known coordinates are used to find a rotation, scaling, and possible

mirroring so that the reference coordinate estimates match their known coordinates

in a least-squares sense. Since this final optimization involves only m ≪ n device

coordinates, its calculation is much less complex than the original manifold learning

on a single device. The outputs are a translation and D×D transformation matrix,

which is used to produce the final coordinate estimates {ẑi}ni=1. For the reference

devices, i.e., i = n + 1 . . .N , which are assumed to have perfect prior coordinates,

their a priori coordinates are used rather than their estimated coordinates.

4.6.3 Simulation Model

In order to run simulations to test the above algorithms, a model is required for

the time-varying, isotropic spatially correlated field. Unlike the RF measurements

conducted and modelled in Chapter II, the author has not made or found reported

in-depth sensor network measurements of the space-time field. Part of the difficulty

is that each modality, eg., temperature, soil moisture, acoustic, or image sensors
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would likely require a different space-time model.

Instead, for the purposes of simulations presented in this thesis, an isotropic multi-

variate Gaussian model is employed. This model is used in the precision agriculture

literature [31, 74] to model soil chemistry parameters and soil moisture levels. While

it is clear that many field measurements will have more complicated behavior, this

model provides us with a means to show some analytical and simulation results and to

explore the system performance as a function of a few parameters. In particular, the

citations [31, 74] make the isotropic assumption, i.e., that the covariance between

two sensors’ data is only a function of the distance between them. This would

not hold though, if, for example, there was some angular dependence, such as a

consistent wind direction which caused higher correlation in a particular angular

direction. However, isotropic models form the building blocks for more sophisticated

non-isotropic or non-stationary models [48].

In the model used in this chapter, at each time t, sensor i measures data vi(t).

Here, it is assumed that the data measured by sensors 1 . . .N at time t, v(t) =

[v1(t), . . . , vN(t)]T are jointly Gaussian with mean µ independent of the actual coor-

dinates {zi}, and covariance matrix R(θ),

(4.28) [R(θ)]i,j = σ2ϕ(‖zi − zj‖),

where ϕ(d) is a normalized isotropic covariance function. Further, it is assumed that

this covariance function is non-negative, thus ϕ : [0,∞) → [0, 1]. In the statistical

literature, a popular model for ϕ is the powered exponential class [48],

(4.29) ϕ(d) = exp (−(d/δ)α) ,

where 0 < α ≤ 2 and δ > 0 are constants.
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It is assumed, for simulation purposes, that sensor data recorded at different time

instants {w(t)}τt=1 are i.i.d. In reality, sensor data is likely to be correlated in time,

which would reduce the effective duration of the time sample.

4.6.4 Cramér-Rao Bound Formulation

Given the above space-time measurement model, a Cramér-Rao lower bound can

be derived for the variance of any unbiased location estimator in a network of ar-

bitrary geometry. This will be useful to judge the performance of the introduced

location estimators.

The Fisher information matrix F, when measurements follow the above multivari-

ate Gaussian model, is [62],

(4.30) [F(θ)]k,l =
τ

2
tr
[

R−1(θ)∂R(θ)
∂θk

R−1(θ)∂R(θ)
∂θl

]

,

where k, l ∈ {1, . . . , n}. Analytical simplification of (4.30) isn’t generally feasible,

and F(θ) must be calculated. Let x̂i and ŷi be unbiased estimators of xi and yi. The

trace of the covariance of the ith location estimate (for i = 1 . . . n) satisfies

σ2
i , tr {covθ(x̂i, ŷi)} = Varθ(x̂i) + Varθ(ŷi)

≥
[

F−1(θ)
]

i,i
+
[

F−1(θ)
]

n+i,n+i
(4.31)

Note that the CRB is not a function of σ2, and is inversely proportional to the

length of the sampling interval τ .

4.6.5 Simulation Examples

In particular, for the simulations, the powered exponential covariance function

(4.29) is used with δ = 1 and α = 1, and the time-duration is set to τ = 100. For

each test described below, a particular geometry of devices is fixed and 100 trials are

run, from which the means and one-σ uncertainty ellipses of the 45 unknown-location
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sensor location estimates are calculated. For the HLLE, the TPKNN neighbor selec-

tion method is used with K = 11 and Lmin = 3; the LLE uses SKNN with K = 7,

and for Isomap, KNN with K = 7 is used. (These values of are chosen by observing

simulated performance over a range of K and selecting which values of K worked

best for each method.)

Simulations are first run on the 7 by 7 grid example shown in Fig. 3.7. Four

sensors in the corners are reference devices (coordinates are known exactly), and 45

additional sensors are unknown-location. The performance of the LLE, HLLE, and

Isomap algorithms are compared to the CRB in Figs. 4.17(a),(b), and (c). While none

of the estimators have variance approaching the CRB, the LLE and HLLE estimators

have low variance compared to Isomap. While the HLLE is nearly unbiased, the LLE

and Isomap estimates have high bias.

Next, the performance of the HLLE algorithm is tested when the sensor positions

are perturbed from the grid locations. If θ1 is the vector of unknown coordinates used

above in the 7 by 7 grid example, then θ2 = θ1 + e is used, where e ∼ N (0, σ2
eI).

Here, σe = 1/18, i.e., 1/3 of the distance between devices in θ1. The results for

a particular deployment is shown in Fig. 4.17(d). There are sensors which have

significant bias, and overall, estimator variances have increased. In particular, the

HLLE tends to push apart the estimates of very close neighbors.

Finally, a random deployment is tested, i.e., the case when zi are uniformly dis-

tributed in [0, 1]2 for all i. This random deployment is much more dispersive than

the perturbed grid, since there is no guarantee of average device density throughout

the square area. In Fig. 4.17(e) and (f), the performance of the Isomap and HLLE

algorithms are shown for a particular realization of the uniformly random sensor de-

ployment. Both estimators show bias and similar variances, but some of the Isomap



139

(a) 0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

(b) 0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

(c) 0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

(d) 0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

(e) 0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

(f) 0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

Figure 4.17: Estimator mean (H) and 1-σ uncertainty ellipse (——-) for each unknown-location
sensor compared to the true location (·) and CRB on the 1-σ uncertainty ellipse (- - -
-), when the estimator is (a) LLE, (b) HLLE, (c) Isomap, (d) HLLE, (e) Isomap, and
(f) HLLE. For HLLE, K = 10, and for LLE and Isomap, K = 7. One reference device
(x) is in each corner, and the unknown-location devices are (a-c) located on a 7 by 7
grid, (d) permuted from the 7 by 7 grid by Gaussian random vectors, or (e-f) chosen
from a uniform random distribution on [0, 1]2.
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estimates are severely biased and show much higher variance. The HLLE algorithm

preserves the general shape of the network.

In the uniform random deployment, if the HLLE algorithm had used the KNN

neighbor selection method, then its performance is not robust. This robustness issue

was reported in [89] before its cause had been determined. The cause is the non-

symmetric behavior of the neighbor relation, and the sensitivity of the HLLE method.

As noted in Section 4.6.3, the HLLE fails in the ‘lonely’ sensor case, i.e., when a

sensor has very few devices (none, or just one) which consider it to be a neighbor.

For this reason, TPKNN is used with Lmin = 3 throughout the HLLE simulations

reported in this section.

4.6.6 Discussion

Manifold learning approaches can be very useful for sensor localization in networks

which wish to reduce overhead by using only the correlation in their data as loca-

tion information. Furthermore, this estimation could be adapted to be performed in

a scalable, distributed manner using the LLE and HLLE. While this decentralized

version is not implemented in this section, similarity-based methods are particu-

larly adaptable for distributed calculation, as described in Section 4.3.4. Finally,

HLLE appears to show the best performance in terms of the tradeoff between esti-

mator bias and variance. Future research must address bias issues in these manifold

learning methods in a systematic way. Note that adaptive neighborhood selection

methods such as explored in earlier sections have not been attempted in sensor data

localization. The manifold learning approach taken here can be extended to pro-

vide non-linear interpolation for field estimation. Due to the distinct advantages of

manifold learning, it is believed that future research applying these techniques to

estimation in wireless sensor networks will be particularly fruitful.



CHAPTER V

Internet Data Localization

This chapter discusses the application of sensor data localization to visualize traf-

fic data collected on routers across the Abilene backbone network, as reported in [91].

The goal of this data visualization is to enable network administrators to view very

high-dimensional traffic data on a 2-D image in order to readily see any traffic anoma-

lies that might be occurring, or to identify and classify anomalies that have occurred

in past recorded traffic data sets. Traffic anomalies include port or network scans,

denial of service (DoS) attacks, flash crowds, outages or network mis-configuration,

and worm activity.

The assumption made in this chapter is that when traffic anomalies or intrusion

attempts occur across the network, the distribution of network traffic across fea-

tures changes. Monitoring the network for changes over features such as time, space

(at various routers in the network), source and destination ports, IP addresses, and

AS numbers, is an important part of anomaly detection. This chapter presents a

manifold learning-based tool for the visualization of large sets of data which empha-

sizes the unusually small or large correlations that exist within the data set. This

tool and other command-line tools have been implemented in C by the author, and

are referred to as ‘Map-tools’. In this chapter, Map-tools are employed to display

141
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anomalous traffic recorded by NetFlow on the Abilene backbone network in January

2005. Furthermore, we present an online Java-based GUI which allows interactive

demonstration of the use of the visualization method.

While this chapter differs from the previous ones in that it deals with a wired

sensor network rather than a wireless one, it is analogous to a sensor network lo-

calization problem which deals with the estimation of 2-D coordinates, the same

problem statement posed in Section 1.3 except that the 2-D domain is no longer

physical space. The problem is especially similar to the one considered in Section

4.6, in which sensors measure data from a spatially correlated random field. The

difference is, rather that estimating actual, physical sensor coordinates, we will es-

timate 2-D data coordinates. These 2-D data coordinates won’t have a particular

physical meaning, but if they change dramatically over time, it can indicate a traffic

anomaly.

5.1 Introduction

Statistical intrusion and anomaly detection methods allow networks to be moni-

tored for attacks for which attack signatures have not yet been developed. However,

the huge quantity and high-dimensionality of internet traffic data are significant

challenges which research must overcome in order to achieve high reliability and

low false-alarm rates. Recently, subspace-based analysis of traffic data by Lakhina,

Crovella, and Diot [67, 66] has shown that high-dimensional Abilene traffic measure-

ments can be well-represented within a very low-dimensional subspace. The ‘curse-

of-dimensionality’ can be avoided when high-dimensional data can be represented

well in a low-dimensional subspace.
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Sketching is a dimensionality reduction method which projects data onto random

linear lower dimensional subspaces in a way that preserves inter-data distances, ap-

proximately, with high probability [46]. Sketching has been used to dramatically

reduce the number of dimensions necessary to store multi-dimensional histograms

[119]. Since the visualization presented in this chapter calculates distances between

multi-dimensional histograms, sketching could presumably be used to reduce the

storage and communication complexity of a distributed implementation of the pro-

posed method. Sketching is not tested in the implementation presented in this thesis,

but it would be a very valuable future addition.

In this chapter the distributed weighted MDS (dwMDS) method, presented in

Section 4.4, is used to take very high-dimensional NetFlow traffic measurements from

the Abilene backbone network and reduce their dimensionality to two dimensions.

The resulting 2-D ‘map’ of the measurements provides a means for visualization of

the relationships which exist in a set of traffic data. These relationships may be

spatial, eg., between measurements taken across a backbone network or between IP

addresses, autonomous systems (AS), or origin-destination (OD)-flows; temporal, eg.,

measurements taken at different times; or between different applications, as indicated

by port numbers.

Such visualization is complementary to detection methods which rely on dimen-

sionality reduction. Subspace-based detection [66] has been successfully used infer

the presence of spatial traffic distribution anomalies in network-wide traffic measure-

ments. This inference is done by quantifying the amount of traffic which cannot

be represented within a low-dimensional subspace. The method we present in this

chapter allows the visualization of the traffic which can be represented within a

low-dimensional subspace. Furthermore, this work uses a non-linear dimensionality
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reduction method rather than a linear method.

5.1.1 Visualization

In order to facilitate human moderation, the discussion in this chapter is limited

to 2-D representation of the data. Data visualization will complement statistical

detection methods by helping provide information to help a human moderator make

a decision regarding whether or not an anomaly has occurred, and if so, to determine

its temporal and spatial characteristics. To simplify the use of the visualization tool

by a human moderator, 2-D display is preferred.

Other visualization methods have found use in network monitoring. For example,

visualization of flows by application over time is commonly done using FlowScan

[97]. Monitoring the number of flows over time using FlowScan is an excellent tool

to identify DoS attacks. However, there is an increasing a number of ports at which

attacks are possible. As attacks (such as the Slammer worm) exploit smaller user

populations, even obscure services’ traffic must be monitored. Dimensionality reduc-

tion is a means to monitor, separately, hundreds or thousands of traffic statistics but

to minimize the complexity of the information display.

Furthermore, graph visualization provides information regarding the physical con-

nections that exist in a network. Visualizations of the global internet, such as

CAIDA’s Skitter plot [24], are important statements about the interconnectivity

of the global network. Other tools developed at CAIDA, such as Otter and Walrus,

provide 2-D and 3-D visualization of network graphs. The visualization method pre-

sented in this chapter provides information not just about the connections that exist,

but also the traffic correlations that exist. Connection distances match correlation

- when correlation between two nodes is high, they are plotted close together, but

when correlation is low, nodes are drawn further apart.
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Figure 5.1: Flow chart of data visualization from NetFlow data input to data map output.

5.1.2 Framework

The dimensionality reduction problem is framed as a sensor data localization

problem, very similar to the framework of Section 4.6. In this framework, ‘sensors’

are the hardware or software which record data, for example, on each router in a

backbone network. The traffic data which they record can be of arbitrarily high

dimension. For example, rather than counting the grand total number of flows (just

one dimension), sensors could count the total number of flows from each source IP

address (up to 232 dimensions). The key to understanding a particular sensor data

map is to know “Where are the sensors?”, “What traffic statistic is recorded?”, and

“What are the dimensions?”:

1. Where are the sensors?: Sensors can be ‘located’ at physical computers, i.e., at

backbone routers, or at IP addresses; or they can be ‘located’ at less physical

concepts such as source or destination ports, or particular time periods. A
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sensor attached to a particular source port monitors only traffic which matches

its source port, and a sensor attached to a time monitors only traffic which

arrives during that time period.

2. What traffic statistic is recorded?: Sensors might measure flows, packets, or

octets, or some combination of the three.

3. What are the dimensions?: Sensors can divide traffic by source or destination

IP address, port, or AS; time period; link or router; or some combination of

them. Traffic statistics are then recorded for each dimension (port, IP address,

AS, time period, link or router) separately.

For example, in Section 5.3, sensors are located at backbone routers, recording

the number of flows from each source IP address. As another example, in Section

5.4, sensors are located on backbone routers, recording the total number of packets

received in each of the past T 5-minute time intervals.

Note that this framework can be used to describe the measurements in [67], in

which sensors were located at all 10-minute time intervals over the course of a week,

and sensors measured total octets on each link across the (Sprint-Europe or Abilene)

backbone network.

Denote the data measured at sensor i as vi, where i ∈ {1, . . . , N}, where N is the

total number of sensors. The high-dimensional vector vi is then defined by,

(5.1) vi = [vi(l1), vi(l2), . . . , vi(l|L|)],

where L is the set of possible dimensions (see #3 above) with |L| elements, and

lk ∈ L for all l = 1 . . . |L|. In many applications, vi(lk) = 0 for most of its elements

lk, thus vi is best stored as a sparse vector. For example, the set of possible IP
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addresses is much larger than the set of IP addresses observed in a particular traffic

stream.

Map-tools uses the flow-tools package created by Mark Fullmer [42] to process

NetFlow files in order to generate the data for the vectors {vi}. A portion of an

example data set is shown in Table 5.1.

ATLA CHIN DNVR
130.14.24.0, 1545 129.25.0.0, 13913 129.25.0.0 14331

131.247.224.0, 1487 141.89.48.0, 8738 207.46.104.0 12142

128.61.64.0, 1197 207.46.104.0, 3708 207.46.248.0 7198

198.32.152.0, 1147 204.179.120.0, 3520 207.68.176.0 4968

164.111.192.0, 1139 203.250.224.0, 3441 64.4.16.0 4156

131.247.232.0, 1098 207.46.248.0, 3300 207.68.168.0 3707
...

...
...

Table 5.1: Example data: Top few lines of {vi} for 3 Abilene routers, flows by source IP (last 11

bits zeroed) for 5 minutes ending 20 Jan 2005 01:00 UTD.

5.2 Algorithm and Implementation

After sensors record {vi}i as described in Section 5.1.2, the next step is to calculate

distances between the data vectors. Often, two sensors will record different levels

of total traffic even though their traffic is very correlated. In this chapter, unless

otherwise noted, we normalize each data vector such that its sum is one:

(5.2) ṽi =
vi

‖vi‖1

where ‖vi‖1 is the L1 norm, i.e., the total traffic measured at sensor i. The value ṽi(l)

thus is the fraction of traffic measured in dimension l. Although this normalization

is arbitrary (another normalization could have been used), the normalization by L1

norm is intuitively desirable since ṽi represents the distribution or histogram of traffic

across dimension.
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5.2.1 Calculation of Distances

Let δ̃i,j be the distance between the measurement vectors from sensors i and j.

An arbitrary norm can be used; in this chapter, the Euclidean distance between ṽi

and ṽj is used,

(5.3) δ̃i,j =
[

∑

l∈|L|
(ṽi(l)− ṽj(l))

2
]

1
2

Then, define Dv =
∑

(i,j)∈C δ̃i,j, i.e., the sum of all of the distances between

neighbors. To ensure that different sensor maps are approximately the same size, we

also normalize δ̃i,j in order to achieve a desired constant sum, Dz, for some Dz ∈ R.

For each (i, j) ∈ C, we define

(5.4) δi,j = δ̃i,j
Dz

Dv

5.2.2 Neighbor Selection

Using the set of normalized distances {δi,j}, we next determine the sensor neighbor

relation. Intuitively, pairs of sensors which are ‘close’ to each other will consider each

other to be neighbors. The symmetric K-nearest neighbors (SKNN) method is used

to determine the neighbor set, since symmetry is required by the dwMDS.

5.2.3 Prior Coordinate Information

Prior coordinate information is an option in the dwMDS method. If there is no

prior information for sensor i, we set ri = 0. If all sensors have ri = 0, the calculated

output map can arbitrarily be translated, rotated, and flipped without affecting its

cost S. The purpose of the map is to show the relationships between sensors’ data,

and as such, translation, rotation, and flipping do not change the meaning of the

map. However, if the user will view many maps, for example, in sequence over time,

it would be confusing if each subsequent map was nearly identical but with arbitrary
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rotation. In this chapter, prior coordinate information is used purely to provide a

stable orientation for a sensor map. This is accomplished by setting ri = 10−3 for all

i, a very low value for the prior coordinate weight. As described in the simulations

in Section 4.4.6, very low r results in the dwMDS algorithm optimizing the relative

map of coordinates purely to match the measured distances, and a rotation and

translation to make the relative map match the prior coordinates.

As a set of prior coordinates, when the sensors are on Abilene backbone routers

as described in Section 5.3, the router coordinates plotted in Fig. 5.2(a).

5.2.4 Coordinate Embedding

Using the calculated distances {δi,j}, for pairs (i, j) which are neighbors, the

coordinate embedding is calculated in two dimensions using the dwMDS method de-

scribed in Section 4.4. Without repeating the details, this means that two-dimensional

coordinates {zi}i=1...N are found which best represent the calculated distances and

the prior coordinate information in a weighted-least-squares sense.

Map-tools uses a centralized implementation of the dwMDS algorithm, in which

the data is collected and optimized at a single processor [85]. This is used to demon-

strate the visualization method’s capabilities, but a distributed implementation is

an important topic for future research.

5.2.5 Error Metric

The squared error value e2
i for sensors i ∈ {1, . . .N} is defined as,

(5.5) e2
i =

∑

i,j

wi,j (δi,j − ‖zi − zj‖)2 ,

where wi,j is the neighbor weight used in the dwMDS algorithm, and is given in

(4.24). The value of ei helps quantify how much information was lost in the low

dimensional representation of the sensor coordinates. It represents the quantity of
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measurement distances {δi,j}j which are not represented by the 2-D coordinates of

itself, zi, and its neighbors j, {zj}. The value e2
i is analogous to the residual value in

PCA and can be used to help decide whether or not the sensor’s data is anomalous.

In the case studies, we ‘color’ each sensor as a function of ei: if ei is low, we shade

the sensor light gray, and if ei is high, we shade the sensor dark gray. Examples are

presented in the following section.

Note that the dwMDS method will output coordinates in an arbitrary dimen-

sion. Thus, although we limit ourselves to 2-D for the purposes of this thesis, 3-D

visualization is equally possible with the presented method.

5.3 Router Map Case Studies

In this section several examples of Map-tools are presented which visualize back-

bone traffic on Abilene. The examples use NetFlow data recorded during January

2005, downloaded from the Abilene Observatory [59]. Note that, for privacy rea-

sons, only the most significant 21 bits of IP addresses are available - the last 11 bits

are zeroed out. Furthermore, NetFlow data is sampled at 1/100, so for each packet

reported here, there were 99 more unrecorded.

When sensors are attached to routers in a backbone network, a ‘router map’ shows

the spatial characteristics and correlations of the routers’ traffic, rather than just the

connectivity of the routers. In the following examples, sensors are routers, and we

measure flows in a 5-minute period, separated by source IP address. For the number

of neighbors, K = 5 is chosen, and the size of each sparse data vector is limited to

1000 – flows not from the top 1000 source IP addresses (/21) for a particular router

are ignored. For this reason, source IP addresses are typically lost if they have less

than 10-50 flows. Note that such thresholding will likely miss low-level distributed
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Figure 5.2: (a) Mean (•) and 1-σ uncertainty ellipse (- - -) of router maps from 2-Jan to 29-Jan.
Figs. (b)-(f) show router coordinates (•) connected (- - -) to the mean (·) from (a), and
shaded by error value ei, during five anomalous events: (b) worm activity on 02-Jan
8:10, (c) outage on CHIN-IPLS link on 5-Jan 8:05, (d) network scan on 6-Jan 17:55, (e)
port scan on 12-Jan 20:15, and (f) port scan on 20-Jan 01:00. All times are UTD, and
figures show Abilene backbone links (—).
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denial-of-service (DoS) attacks, which use a few flows each from many source IP

addresses. Using a much higher number of flows will be critical for detection of

widely distributed DoS attacks, and is left for future research.

5.3.1 Typical Activity

First, we attempt to characterize ‘typical’ router map behavior using the router

maps for the four-week period 02-Jan to 29-Jan. Since a router map can be calculated

for each 5 minute period (12 per hour), there are a total of 12∗24∗7∗4 = 8064 maps.

We calculate the 8064 maps, and then calculate the sample mean and covariance of

zi for each router i, and show the results in Fig. 5.2(a). Although there are certainly

attacks active during this 4-week period, averaging maps over a long period of time

can provide intuition about what is typical behavior for the router map.

The typical router map in Fig. 5.2(a) both makes sense geographically and de-

scribes typical traffic patterns seen on Abilene. Much of Abilene traffic is East-West

or West-East, and Northern routers (especially DNVR, KSCY, IPLS, and CHIN)

bear much of this traffic. These routers have very correlated sensor data because a

significant proportion of Abilene OD-flows pass through all of them.

While Fig. 5.2(a) shows an ‘average’ router map, there are some times when the

map differs dramatically from the mean. In the following, five specific examples of

such router maps are shown, and a description is given of the traffic in the network

at that particular time.

5.3.2 Sunday, 02-Jan-2005 at 8:10 UTD

Fig. 5.2(d) shows the 02-Jan 8:10 router map during which there are about 1.3×104

flows going between two IP addresses: 129.171.184.0 (University of Miami, FL) and

64.4.16.0 (hotmail.com or msn.com). There are about 6000 flows originating from
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the U. Miami address from a wide variety of source ports to destination port 80

(TCP) of the Microsoft address. Each flow contains 1-6 (for an average of 2) 40-byte

packets. The hotmail.com address replies with 1500-byte packets, from source port

80 to a wide range of destination ports. While there are normally many flows from

the Microsoft address, this traffic accounts for about 80% of the total flows coming

from that source address. This traffic is suspected to be a result of worm activity,

but more investigation is warranted. The map shows the source and destination,

ATLA and STTL, being mapped very far from their mean location. Routers DNVR,

KSCY, and IPLS are also affected by the anomalous traffic, and are grouped very

close together. HSTN traffic is usally very similar to ATLA, but at this time it is

very different, and so HSTN is placed very far away.

5.3.3 Wednesday, 5-Jan at 8:55 UTD

At this time, there is scheduled maintenance on the CHIN-IPLS link. Usually,

IPLS and CHIN traffic are very similar, but during the downtime, much of the

traffic on Abilene re-routes through different links, such as a more Southern route

through WASH and ATLA. As a result, the router map in Fig. 5.2(c) shows a much

larger distance between IPLS and CHIN, and a much flatter map, since traffic on

the Southern routers are, temporarily, very correlated with Northern traffic.

5.3.4 Thursday, 6-Jan at 17:55 UTD

On Thursday, 6-Jan-2005, during the 5-minute period ending at 17:55 UTD, Net-

Flow data recorded on the CHIN router count a total of 9×104 single-packet flows (of

40-byte packets) from two source IP addresses in Taiwan to a small range of destina-

tion IP addresses in Hungary. This volume corresponds to about 25% of the typical

flow volume on CHIN. The traffic from the two Taiwanese source IP addresses was
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observed on CHIN and no other router, thus distances between sensor data recorded

at CHIN and other routers are unusually high, and the 2-D coordinates for CHIN

must be kept very distant from all other sensors. Also, because of the normalization

done to calculate δ̃ from δ, the rest of the map distances have shrunk to compensate.

This is shown in Fig. 5.2(d).

5.3.5 Wednesday 12-Jan at 20:15 UTD

Fig. 5.2(e) shows a router map during a large anomaly of 7.1 × 104 flows at the

STTL, LOSA, and SNVA routers on 12-Jan at 20:15 UTD. These flows are single,

29-byte UDP packet flows from source IP address 163.30.88.0 (possibly tyc.edu.tw)

to destination IP address 134.71.24.0 (csupomona.edu, California Poly in Pomona).

The packets are from source port 40150 to random destination ports. Since the

traffic was observed on LOSA, SNVA, and STTL but no other router, these routers

are placed far away to the West, while the rest of the routers, due to the constraint

on total distances, are placed very close together.

5.3.6 Thursday, 20-Jan at 01:00 UTD

At this time, there are 14,000 29-byte packets from a 129.25.0.0 (Drexel U.) source

IP address sent to a 131.252.120.0 (Portland State U.) destination (see Table 5.1).

The packets are UDP with source port 3095 or 3096 to a wide range of random

destination ports > 1024. These packets travel through the WASH, NYCM, CHIN,

IPLS, KSCY, DNVR, and STTL backbone routers. Other routers (SNVA, LOSA,

HSTN, and ATLA) do not see any flows from this source address at this time.

Distances between the listed Northern routers and the other Southern routers are

unusually high. In the router map shown in Fig. 5.2(f), there is a clear split in the

map between the two sets of routers.



155

Figure 5.3: Total traffic and port 80 traffic on 05-Jan-2005, displayed using the visu-
alization applet [85]. The router map is calculated for 08:25 UTD, during
scheduled maintenance of the CHIN-IPLS link, during which traffic drops
at CHIN and IPLS and increases dramatically at the HSTN and ATLA
routers.

5.4 Map Web Applet

In collaboration between the author, Panna Felsen, a high school student from

San Diego, and Adam Pacholski, a University of Michigan undergraduate student, we

have developed a Java-based space-time visualization applet. This applet, publicly

available online at [85], displays temporal and spatial traffic on the Abilene backbone,

as shown in Fig. 5.3. The applet has a graph of the traffic for each router, and can

plot traffic levels from 21 different sets of ports grouped by application.

In addition to displaying the traffic by port and time, the applet calculates a router

map for each time. In this router map, the sensors are routers, and they measure

total packets, by port and 5-minute time interval. The user can select which groups

of port traffic to use, from among a preset list of 21 ports or sets of ports. The
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user can simultaneously select the number of time intervals to use as dimensions.

Rather than normalizing to calculate ṽi(l) as described by (5.2), this applet uses

ṽi(l) = vi(l) − vi(l), where vi(l) is the median of the past Tm time samples, where

Tm is also user-adjustable. Using a filtered traffic stream emphasizes the changes that

occur over time. When traffic changes over time, the router map on the applet shows

where (which routers) the change is most dramatic. Details are available online [85].

5.5 Detection using Low-Dimensional Data

If there were no bandwidth or confidentiality restrictions on the internet, we could

send all data recorded at network routers to a central processor which would then

detect spatial and temporal anomalies. However, full data can quickly consume a

significant percentage of the bandwidth of the network and cause bottlenecks near

the central processor, where bandwidth requirements will be highest. In addition,

in the event of a high-traffic anomaly, the bandwidth requirements to monitor the

anomaly will increase, actually contributing to the network congestion.

Furthermore, if a central processor did have access to full high dimensional data,

it would suffer from the ‘curse of dimensionality’. Building a model to describe the

behavior of each dimension and the inter-relationships between dimensions would

require huge quantities of data as input and huge memory requirements at the central

processor if such a model could be calculated. A central processor may need to reduce

the data dimension as a first step, even given full data.

These bandwidth and detection issues motivate methods that use only low-dim-

ensional representations of the router traffic data in order to detect traffic anomalies.

If a detection method can accept data reduced in dimension by many orders of mag-

nitude and still provide adequate power, then it is likely that it can be successfully
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implemented across routers on the internetwork.

This section is meant to show an example traffic anomaly detection using low-

dimensional data without fully exploring the power and tradeoffs of such detectors.

There are many possible low-dimensional detection methods; see for example research

by Lakhina, Crovella, and Diot [67, 66]. In this section, for visualization purposes, it

is easiest to produce maps of coordinates in two dimensions. For detection purposes,

the low-dimensional representation wouldn’t be strictly limited to 2-D or 3-D. De-

tection performance as a function of quantization can be bounded and approximated

analytically to help find an optimal tradeoff between bandwidth and performance

[50]. Future research would be very valuable in this regard.

5.5.1 Map Anomaly Detector Formulation

Section 5.2 details the algorithm and implementation for finding 2-D location co-

ordinates from high-dimensional data recorded at each router in a network. Further,

router maps during ‘normal’ and ’anomalous’ times were displayed and discussed.

This section further formalizes the classification of router maps as either normal or

anomalous. No attempt is made to derive a causal test in this section, since the data

set (January, 2005) used in this Chapter is fully available. Online detection methods

are discussed at the conclusion of this section.

The particular statistical test which is used in this section is known as the mul-

tivariate t-test or Hotelling’s T 2 test. Intuitively, the router coordinates at one time

are compared to a library, i.e., router coordinates calculated at other times. If the

current coordinates are far enough from the mean of the library of other coordinates,

then the current traffic is labeled anomalous. Specifically, consider the current coordi-

nates θ(t) and the library of coordinates {θ(s)}s 6=t, where θ = [x1, . . . , xN , y1, . . . , yN ]

and the time s at which the coordinates were calculated is denoted as (s). We as-
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sume that the {θ(s)}s 6=t are independent multi-variate Gaussian, i.e., ∀s 6= t, θ(s) ∼

N (µ, R). It is also assumed that the current sample has the same covariance, so

θ(t) ∼ N (µt, R). We wish to test the hypotheses,

H0 : µ = µt(5.6)

H1 : µ 6= µt

Defining the sample mean and covariance to be

µ̂ =
1

τ

∑

s

θ(s)(5.7)

S =
1

τ − 1

∑

s

(θ(s)− µ̂)(θ(s)− µ̂)T ,(5.8)

the Hotelling’s T 2 statistic for time t is [127],

(5.9) T 2 = (θ(t)− µ̂)T S−1(θ(t)− µ̂)

The statistic T 2 measures the squared distance between the the data at time t and the

mean. The distance is a weighted distance, which takes into account the covariance

of the data set. When T 2 is higher than a threshold, we decide H1 and declare an

anomaly. Otherwise, the measurement is concluded to be ‘normal’.

Note that Hotelling’s T 2 test has previously been proposed for intrusion and

anomaly detection systems [127]. It is also an approximation for the generalized

likelihood ratio test (GLRT) for the hypotheses described by 5.6. The approxima-

tion made is that the sample mean µ̂ and covariance S, calculated using measure-

ments from 1 . . . τ , are approximately equal to the sample mean µ̂1 and covariance

S1 calculated excluding the measurement from time t. Since the measurement at

time t has a different mean under H1, it would be proper to exclude θ(t) from the

mean and covariance calculation. However, this is impractical from a computational
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perspective, since it requires calculating τ different covariance matrices and their

inverses.

5.5.2 Experimental Testing of the Map Anomaly Detector

The T 2 statistic of (5.9) is calculated for the four-week period starting on 2 Jan

extending through the end of 29 Jan. First, router maps are calculated for each 5

minute period during the four weeks of January, using the total flows by source IP

address data, as described in Section 5.3. There are a total of τ = 8064 router maps.

With 11 routers and 2-D coordinates, the parameter vector θ is length 22, thus S is

a 22 by 22 matrix. All of the calculations have been implemented in C code, and are

part of the command line executable ‘calcTstat’.

With regards to the threshold, we choose to set the threshold using the measured

data to meet a particular number of alarms. In particular, a threshold was chosen to

classify 0.4% (or 32 out of 8064) of the router maps as anomalies; this corresponds

to a threshold of η = 13.92. Figure 5.4 plots
√

T 2 over the course of the four week

period in January, and marks the times of the anomalous maps.

It is typical to evaluate the theoretical rate of false alarm, α, for a threshold η. It

is known, given H0, that T 2 ∼ 2N(τ−1)
τ−2N

F(2N,τ−2N) where F(n1,n2) is the F distribution

with n1 and n2 degrees of freedom. Using this, at a threshold of η = 7.472 the false

alarm rate would be α = 10−4, essentially making it unlikely that we would see any

false alarms in our sample of 8064. The rate α diminishes quickly as a function of η,

and at the chosen threshold η = 13.92, α is insignificant, less than 10−20. Given the

model, we would not expect to see any false alarms in the sample data set.

As the next step, each detected anomaly event is investigated. Sometimes, several

consecutive (or nearly consecutive) router maps are marked as anomalies, and these

are denoted here as one ‘anomaly event’. A total of 15 anomaly events are detected,
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Figure 5.4: The square root of Hotelling’s T 2 statistic,
√

T 2 for each 5-minute router map during 02-
29 Jan 2005, with those exceeding the threshold

√
η = 13.9 marked with ◦ as anomalies.

and painstakingly investigated manually by looking at the flows recorded during each

event. These are detailed in Table 5.2. All of the router maps detected as anomalous

did in fact see significant anomalous traffic at the time for which the router map

was calculated. These anomalies involved were measured to be composed of between

13,000 and 130,000 flows, for an average of 58,000 flows. These size figures quoted

are the total flows measured by NetFlow within the five minute measurement period

- those which lasted longer than 5 minutes would have larger cumulative effect.

Furthermore, since NetFlow samples 1/100 packets, and many of these anomalies

involved flows with 1 packet per flow, the total number of flows on the network may

have been 100 times greater. Thus, the false alarm rate is in fact zero.

5.5.3 Experimental Limitations

While the described detector shows a 0% false alarm rate in the above test, we can

say nothing about the probability of miss. Identifying, classifying, and describing
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Date Time(s) Size (Flows) Label Brief Description Affected Routers

2005-01-02 2:45-3:20 30k-50k DDOS Single 29-byte UDP packet flows sent to Univ. in DNVR, KSCY,
Sweden from two sources (Colorado and Taiwan) IPLS, CHIN*

2005-01-02 8:10 13k Worm activity See Section 5.3.2
2005-01-06 17:55-18:00 90k Network scan See Section 5.3.4
2005-01-07 22:30 28k Multiple Single packet ICMP, TCP, and UDP flows exchanged NYCM, CHIN*

between .NCTU.edu.tw and .edu.pl
2005-01-17 18:35-18:55 110k-127k Port scan Single 40-byte TCP packet flows, scan of low dst CHIN

ports of dst IP in .edu.pl from .NTU.edu.tw
2005-01-18 11:40 50k Multiple Attack on mIRC (dst ports 6660-8) also using UDP, CHIN

ICMP traffic to dst IP in .edu.pl from .NTU.edu.tw
2005-01-18 20:05-20:20 42k Multiple Attack on mIRC (dst ports 6660-8) also using UDP, CHIN

ICMP traffic to dst IP in .edu.pl from .NTU.edu.tw
2005-01-19 0:35-0:45 22k Worm activity Single 60-byte TCP packets from multiple Miss. St. STTL, DNVR,

Univ. IPs to range of Microsoft IPs, dst port 113 KSCY, IPLS, ATLA
2005-01-22 3:20 20k-130k DDOS Attack on telnet (dst port 23) using 40-byte TCP All

packets from 6-10 different source IPs
2005-01-23 3:05 44k Port scan Single 29-byte UDP packet flows from cwru.edu STTL, DNVR,

(Ohio) src port 49201 to NTU.edu.sg (Singapore) KSCY, IPLS
2005-01-23 4:30 45k Port scan Single 29-byte UDP packet flows from umaryland.edu LOSA, HSTN,

src port 47508 to waseda.ac.jp (Japan) ATLA, WASH
2005-01-23 22:05 22k Port scan Single 28-byte UDP and 40-byte TCP flows from KSCY, IPLS

src utoronto.ca to MOREnet (Missouri)
2005-01-24 12:00 117k Port scan Single 29-byte UDP packet flows from asu.edu DNVR, KSCY,

src port 32769 to .ac.at (Austria) IPLS, CHIN
2005-01-24 17:10 59k Port scan Single 40-byte TCP packet flows, random src & dst STTL, DNVR,

ports, from utoronto.ca to unm.edu (New Mexico) KSCY, IPLS
2005-01-29 23:45-23:55 40k Port scan Single 29-byte UDP packet flows from asu.edu SNVA, LOSA

src port 36203 to yonsei.ac.kr

Table 5.2: Dates and times of router maps detected as anomalous and the size (in total flows measured per five minutes), type of anomaly, brief
description of the traffic, and the routers through which the anomalous traffic traveled. Description and classification are from the author’s
manual inspection; no verified log of the true anomalies is available.
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anomalous traffic from manual inspection is a tedious and time-consuming process.

Investigating all time instants (8064) for the measurement period would be a huge

task. Clearly, though, at the given threshold level, some attacks are missed. For

example, the link maintenance event discussed in Section 5.3.3 was not detected;

neither were the port scans discussed in Sections 5.3.5 and 5.3.6. The T 2 value for

these three events were 3.972, 13.232, and 5.022, respectively. The event in Section

5.3.5 was a large volume event and was just below the threshold of η = 13.92. Using

a slightly lower threshold would have allowed detection of this event. However, the

link maintenance event of Section 5.3.3 and a smaller size anomaly of Section 5.3.3

would not likely have been detected using the method described here.

Note that there are almost always small levels of worm, denial of service, port, and

network scan activity taking place on the network. It is difficult to specify an exact

level of anomalous traffic, below which a detector should not declare an anomaly, and

above which it should. Without such a anomalous traffic level threshold, though,

the detector will almost never see a false alarm.

One noticeable feature of Figure 5.4 is the daily periodicity of the T 2 statistic.

Clearly, daily fluctuations in traffic distribution are contributing to the ‘anomaly’

value. This implies that further, more flexible, or more periodic means should be

used to determine the mean and covariance of traffic. One obvious method would

be to use an recursive least-squares (RLS) approach, which weights the most recent

past more heavily than the distant past when characterizing statistical behavior.

A means to analyze the above experiment would be to compare it to other standard

methods for traffic anomaly detection. Implementation of other detection algorithms

and comparison would also be a valuable topic for future research.
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5.6 Future Work and Conclusion

This chapter has introduced a visualization tool which can aid in the discovery

of malicious activity and other traffic anomalies in high-dimensional NetFlow data.

It is clear that manifold learning methods, and sensor data localization, can be used

to provide information about relationships that exist in sets of sensor network data.

Specifically, the router maps calculated on Abilene traffic data did show changes

when anomalous traffic was present on the network. These changes were statistically

significant in many cases and can be detected by looking at the (low-dimensional)

coordinates rather than the high-dimensional traffic directly.

Future work will certainly attempt to further automate the detection and classi-

fication process, and compare the results to existing methods, in combination with

extensive manual analysis of detected anomalies, as described in Section 5.5. Note

that traffic anomaly detection methods which use full data, i.e., [37], can outperform

detection based on low-dimensional coordinate representation. Low-dimensional, or

quantized versions of full data, will naturally degrade detector performance [50].

Thus comparisons should compare methods with equivalent bandwidth requirements.

Investigation is planned of other distance metrics which may better emphasize

similarities in traffic distributions besides the L2 norm. Other ML methods such

as Isomap [118] and Laplacian Eigenmap [8] should also be tested. It is hoped

that router maps, along with maps produced when other ‘sensors’ are used (such

as port maps [91]), and other types of sensor maps may together serve as a step-

by-step investigation aid, iteratively helping to locate a traffic anomaly in a very

high-dimensional spatial and temporal data space.



CHAPTER VI

Conclusion

This thesis has explored topics in location estimation in sensor networks. Two

types of sensor networks have been considered, wireless and wired. Also, two types

of localization have been introduced: localization from pair-wise measurements, and

sensor data localization. The former type of localization tries to estimate physi-

cal sensor location, while the latter type is a data visualization method, in which

large quantities of data are summarized by low-dimensional coordinates. Both types

of localization have been explored in wireless sensor networks. In wired networks,

where the physical sensor locations are presumed known, the sensor data localization

problem is explored for the purpose of statistical anomaly detection.

In localization from pair-wise measurements, this thesis has emphasized making

and using models of those pair-wise measurements of TOA, RSS, connectivity, and

QRSS. From those models theoretical location estimation performance bounds are

derived. These bounds are used to judge multiple localization algorithms, and to

develop low-complexity algorithms which can achieve performance near the bound.

Manifold learning algorithms in particular have shown promising results, with vari-

ance close to the lower bound. Two manifold learning methods have been proposed

for use when pair-wise measurements are TOA, RSS, and connectivity.

164
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Sensor data localization has been applied in both wired and wireless sensor net-

works. When measured data comes from a time-varying, isotropic correlated field,

manifold learning methods can be used to estimate physical sensor coordinates. This

thesis has presented several examples of manifold learning methods, and their per-

formance in a particular multi-variate Gaussian sensor field model. Sensor data

localization has also been applied to the Abilene Internet backbone network, for the

purposes of visualizing high-dimensional data. The resulting non-physical router

map can then be ‘watched’ for the purposes of identifying and classifying the spatial

characteristics of traffic anomalies occurring on the network.

For wireless sensor networks, this research has provided guidelines for the develop-

ment of localization systems in sensor networks. First, the lower bounds developed

are tools useful to compare localization algorithms. Often in the literature, algo-

rithms are simulated and reported without comparing to any other localization algo-

rithm. Now, simulation performance can be quickly evaluated using the appropriate

lower bound as a benchmark.

Second, broad generalizations can be made about localization systems using differ-

ent pair-wise measurement modalities. Actual localization performance will depend

on many implementation details, including the localization algorithm used, size and

density of the network, the quantity of prior coordinate information, the pair-wise

measurement method chosen, and the accuracies possible from the measurements

in the environment of interest (the γ of Table 3.1). However, as a generalization,

it appears that TOA measurements will be most useful in low-density sensor net-

works, since they are not as sensitive to increases in inter-device distances as RSS

and AOA. Both AOA and TOA are typically able to achieve higher accuracy than

RSS; however, that accuracy can come with higher device costs. Because of their
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scaling characteristics, localization based on RSS and AOA measurements can, with-

out sacrificing much accuracy, avoid taking measurements on longer-distance links

and focus on those links between nearest neighbors. RSS measurements will allow

accurate localization in dense sensor networks, and will be very attractive due to

their low costs to system designers. In reality, RSS will be quantized. If RSS is

quantized down to connectivity, then performance will suffer significantly (typically

50-60% increase in standard deviation, as a rule of thumb), but using a small number

of quantization levels (on the order of 10) will bring the performance limits of QRSS

nearly to those of pure RSS.

Furthermore, localization algorithms can be made to nearly achieve the lower

bounds. In particular, the dwMDS method is demonstrated to be a low complexity,

decentralized localization algorithm applicable to both RSS and TOA measurements

and capable of nearly achieving the lower bound even in realistic channels. Also,

a similarity-based manifold learning algorithm, Laplacian Eigenmap, serves as a

means to achieve localization using connectivity measurements, and has much lower

variance than existing methods in the literature. Finally, note that iterative, adaptive

neighbor selection will be a key part of achieving low bias using often poor pair-wise

measurements.

6.1 Future Research Directions

There are many research questions raised by this research, and many others which

are important and have not yet been addressed.

6.1.1 Research Directions and ‘Dead Ends’

First, can be useful to discuss research areas which, in the author’s opinion, should

be emphasized or de-emphasized. In the area of wireless sensor networks, the em-
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phasis of this thesis has been on low-cost methods. Research funding is generally

more available to promote localization applications which require higher accuracy,

such as in acoustic sensor networks used for security applications, or in RF ad-hoc

communication networks useful in military applications. Also, researchers are very

able to design a network to achieve high accuracy, which can be quantified, rather

than design a network to achieve low cost, which is more difficult to quantify. How-

ever, it is important to recognize the commercial applications that are possible with

lower location-accuracy, lower-cost sensors such as logistics, air/water/soil quality

monitoring, precision agriculture, and ‘smart’ building monitoring and control. In

such areas, it is unlikely that AOA will be measured due to the cost of antenna

arrays. As Moore’s law progresses, TOA will become more affordable, and will be

more likely to be a good solution. For the next decade, at least, it is likely that RSS,

combined with a robust location estimation method, is likely to provide a marketable

localization solution.

Acoustic signals are natural for localization because of their slow propagation

speed compared to RF. However, it is important to note that acoustic transmission

requires high transmit energies. Battery powered sensors should not be required

to transmit acoustic (or ultrasound) signals unless battery life or size is not an

issue. When other environmental sources of acoustic signals are used for location

information, this would allow acoustic sensors to be localized, as discussed below

and in Section 4.6.

Finally, in Internet traffic anomaly detection, there is a critical lack of ‘ground

truth’ data. It is nearly impossible to take a significant set of traffic measurements

and determine and quantify all anomalous activity which happened within it. Thus,

comparing different methods is difficult and somewhat qualitative. It would be ex-
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tremely valuable for a validated database to be produced for a particular time pe-

riod or data set and made publicly available to the research community. But such

a task would need to be an ongoing one, since internet traffic and anomalous activ-

ity changes characteristics from month to month and year to year. Without such a

database, quantitative evaluation of anomaly detectors remains elusive - researchers

must be content to present and see presented somewhat subjective measures of the

detector performance.

6.1.2 Directions in RF Channel Measurement

While simulation will be very valuable, the next step in cooperative localization

research is to test algorithms using measured data. However, pair-wise measurements

of RSS, TOA, and AOA in wireless sensor networks have only begun to be reported,

largely because of the complexity of such measurement campaigns, as related in Sec-

tion 2.6. To conduct pair-wise measurements in a N sensor network requires O(N2)

measurements, and multiple sensor networks must be measured in order to develop

and test statistical models. Furthermore, for sensor data localization, data measure-

ments across space and time must be recorded and reported. These measurements

will become possible as wireless sensor networks themselves are deployed for particu-

lar applications such as precision agriculture and environmental monitoring. Despite

the complexity, data from such measurement campaigns will be of key importance

to sensor network researchers.

In particular, for pair-wise measurements, it will be critical to consider the link

dependencies in a real RF environment of deployment. Currently, the assumption is

commonly made that all
(

N
2

)

links are independent - however, the dependencies will

in fact have an effect on localization performance, in addition to energy consumption

and routing algorithms.



169

Such measurements should also consider joint statistics of RSS, TOA, and AOA,

since using multiple measurement modalities simultaneously may be complementary

[17]. While this article has considered them separately, multiple modalities measured

together may provide more information than just the sum of their parts. For example,

together, angle and time (spatio-temporal) measurements can cross-check for NLOS

errors - if at the leading edge in the receiver’s cross-correlation, power from multiple

angles are measured, then it is apparent that the leading edge is not a direct LOS

signal. This example is part of a bigger issue of determining sufficient statistics of

joint spatio-temporal-signal strength measurements, which is still an open research

topic.

6.1.3 Location Security

Such multi-modal measurements are critical for location security, which has not

been addressed in this thesis. To be robust to intruders, localization algorithms

must be secure against ‘Process of Measurement’ (PoM) attacks [71] which try to

compromise the measurements which are being used for localization. For example, an

attacker might use a wormhole to trick another sensor that it is located somewhere

where it is not actually located. Many such attacks are often simple. By using

multiple modalities, localization can be made robust against simple attacks.

6.1.4 Multiple Access Interference

It has been assumed in this thesis that appropriate multiple access channel (MAC)

layer mechanisms are used to avoid interference when making pair-wise measure-

ments. For example, since low-power wireless sensors rarely transmit (in order to

save energy), it might be appropriate to use carrier-sense multiple access (CSMA) in

order to avoid most RF interference. Furthermore, spread-spectrum techniques are
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required in unlicensed bands in which wireless sensors are likely to operate, and will

help reduce (but not completely eliminate) interference power.

However, some sensor localization systems may choose to allow MAC layer in-

terference during measurements. For example, research by Kim, Pals, et. al. [63]

measures round-trip TOA by simultaneous reply of neighbors to a sensor’s query.

The sensor uses multiple-user interference (MUI) cancelation techniques to estimate

the TOA of each arrival. Clearly, interference will degrade pair-wise measurements,

but real systems must deal with interference, either from other systems or from other

sensors in the same system.

6.1.5 Sensor Reliability

One of the aspects of wireless sensor networks is supposed to be their reliabil-

ity to sensor mis-calibration and failure. In order to achieve inexpensive devices on

the order of cents per device, testing and calibration will not be priorities. First,

sensor transmit powers will not likely be calibrated. Unless a sensor has a feedback

loop in its transceiver architecture like proposed in [75], the sensor transmit power

might need to be estimated as well, with (possibly) prior information on the transmit

power distribution of typical manufactured sensors at different stages in their bat-

tery charge. Different transmit powers (and receiver characteristics) cause the radio

channel to be asymmetric - Pi,j 6= Pj,i. In the case of connectivity measurements, this

asymmetry is an advantage because it serves to provide 3-level QRSS information

rather than just two levels. When both devices agree on connectivity, two devices

are either in-range or out-of-range; and when devices don’t agree on connectivity,

they are likely to be in some intermediate range. For localization based on RSS

measurements, system designers should plan to estimate transmit powers of devices

in order to be robust to sensor transmit powers. Such robust RSS-based algorithms
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have been reported [72], and are an important consideration for future algorithm

research.

Sensor ‘failure’ can mean many things. First, sensors that cannot power up or

communicate effectively do not exist to the network. Sensor deployments must be

dense enough that a given percentage of sensors failing does not disconnect the

network. Second, sensor failure might mean wildly incorrect measurements, for ex-

ample, from a uniform random distribution across a wide range. This is similar to the

localization security issue discussed above. Algorithms which allow measurements

to be ‘weighted’ low when neighbors see inconsistencies in their data, or ignored

adaptively, are of key importance. The dwMDS method and the LE-based method

discussed in Chapter IV both use adaptive neighborhood methods which update

neighbor weights adaptively using multiple rounds of location estimation. Future

research could quantify the ability of these algorithms to avoid a breakdown when a

sensor’s measurements fail in this way.

6.1.6 Sensor Mobility

This thesis estimated sensor coordinates over time in the context of Chapter V. In

the localization in wireless sensor networks, the mobility of sensors was not explicitly

considered. It is possible that tracking of mobile sensors could be done simply by

re-initializing the measurement and localization process. However, this would not

explicitly taken advantage of mobility to improve localization performance or to

reduce bandwidth requirements over time.

Mobility creates the problem of locating and tracking moving sensors in real time,

and also the opportunity to improve sensor localization. For the problem of passive

tracking of sources in the environment, a review is presented in [19], but the problem

of tracking active sensors has not been sufficiently addressed as a collaborative signal
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processing problem. The sensor tracking problem is an important aspect of many

applications, including the animal tracking and logistics applications discussed in

Sections 1.1.1 and 1.1.2.

For example, if a sensor makes multiple measurements to its neighbors as it moves

across space, it has the opportunity to reduce environment-dependent errors (such

as shadowing) by averaging over space. The multiple measurements are useful to

help improve coordinate estimates for other sensors in the network, not just the

mobile node. Researchers have tested schemes which use mobile sources and sensors

to achieve cooperative localization [18, 43], however further opportunities to exploit

mobility remain to be explored.

Consider the update rate, i.e., how often location must be re-estimated. If sensors

are completely stationary, localization might just be done at startup. In networks

with some changes over time, it shouldn’t be necessary to continually make and

broadcast pair-wise measurements between stationary sensors. There might be a

distributed algorithm which detects sensor motion (by monitoring for changing pair-

wise measurements) and then updates the location estimates only of those sensors in

motion, in order to save communication and computation. Such a distributed algo-

rithm would be valuable in both wireless sensor networks and network visualization

applications. The tradeoffs between measurement requirements, communication, and

accuracy should be more explicitly explored.

Furthermore, latency, i.e., speed of localization, becomes an issue, because long

delays make location information obsolete. Speeding up distributed algorithms such

as the dwMDS algorithm, or better understanding convergence rates, becomes impor-

tant. What is the tradeoff between latency and accuracy in a communication-limited

mobile network?
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6.1.7 Directions: Physical Localization from Sensor Data

There are certainly limitations when estimating physical sensor locations using

sensor field data measurements, as discussed in Section 4.6. First, this thesis has

shown two different applications of sensor data - localization and visualization for

anomaly detection. These are presented as separate applications. When doing lo-

calization from sensor data, it would be critical that no spatial anomaly existed in

the field data - such an anomaly would clearly result in very poor location estimates.

Similarly, for anomaly detection, coordinates of sensors shouldn’t be used as instan-

taneous sensor positions. Only in the average, over time, might these coordinates

indicate something about their sensor positions (see for example the average router

map in Figure 5.2(a)).

Secondly, the sensor field used for localization must be both spatially isotropic and

must be already a field which is important to the sensor network application. Local-

ization will not be possible from field data which are dominated by non-spatial fac-

tors. For example, measuring poverty in counties across the U.S. would not provide

spatial information, since its level is dominated by many other non-spatial factors.

However, particular sensor applications may be able to achieve localization from

sensor field data. The most likely would be sensors that measure the acoustic field.

Localization systems have already been designed for outdoor environmental moni-

toring sensor networks which are calibrated by driving a GPS-equipped vehicle (or

by flying a helicopter) through the area of deployment while transmitting its known

location to the sensors on the ground [18]. These studies use known-location sources

for sensor localization; in general, unknown-location acoustic sources (‘background

noise’) could provide a huge quantity of sensor location information. In collabo-

ration with Norman H. Adams, a measurement campaign using acoustic sensors
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(microphones) was conducted. The results indicated that simple Euclidean distance

measures wouldn’t be appropriate to judge the distance between two acoustic sig-

nals, which may have time offset and amplitude calibration issues. Furthermore, the

measurements used directional microphones, which introduced anisotropy into the

field measurements. Further measurements and an exploration of better distance

measures will be important for future research in this area.

6.1.8 Routing in Wireless Sensor Networks

As another research direction, geographic routing is an application of sensor local-

ization. The use of the coordinates of sensors can reduce routing tables and simplify

routing algorithms. Localization errors, however, can adversely impact routing al-

gorithms, leading to longer paths and delivery failures [53]. For the purposes of

routing efficiency, actual geographical coordinates may be less useful than ‘virtual’

coordinates [100], i.e., a representation of a sensor’s ‘location’ in the graph of net-

work connectivity. These virtual coordinates could be in an arbitrary dimension,

possibly higher than 2 or 3. There are often paths in multi-hop wireless networks

that consume less power than the shortest, straightest-line path between two nodes,

and virtual coordinates may enable a better representation of the network connec-

tivity. The virtual coordinate estimation problem is a dimension reduction problem

which inputs each sensor’s connectivity or RSS measurement vector and outputs a

virtual coordinate in an arbitrary low dimension, optimized to minimize a communi-

cation cost metric. Such research could enable more energy-efficient scalable routing

protocols for very large sensor networks.
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6.1.9 Network Self-Administration

Finally, the sensor data localization framework is applicable to a variety of non-

model-based data visualization and statistical detection and estimation problems.

In general, it is desirable for wireless and wired networks to be self-configuring and

self-monitoring. Due to the large scale of the Internet, and the proposed scale of

wireless sensor networks, the reliance on human moderation becomes problematic.

Networks that can use statistical learning techniques to model their own ‘normal’

behavior – either that of its measured data, or its traffic and routing characteristics –

can then detect anomalous data or behavior, and possibly react to repair itself. Such

self-monitoring networks are clearly a complicated and rewarding area of research.
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APPENDIX A

Derivations and Proofs

A.1 CRB for Network Self-Calibration

The diagonal elements, fk,k, of F given in (3.3) are,

fk,k = E
(

∂
∂θk

l(X|θ)
)2

= E
(

∑

j∈H(k)

∂
∂θk

lk,j

)2

fk,k =
∑

j∈H(k)

∑

p∈H(k)

E
(

∂
∂θk

lk,j

)(

∂
∂θk

lk,p

)

Since Xk,j and Xk,p are independent random variables, and E[ ∂
∂θk

lk,j] = 0, the ex-

pectation of the product is only nonzero for p = j. Thus fk,k simplifies to the k = l

result in (3.4). The off-diagonal elements similarly simplify,

fk,l =
∑

j∈H(k)

∑

p∈H(l)

E
(

∂
∂θk

lk,j

)(

∂
∂θl

ll,p

)

Here, due to independence and zero mean of the two terms, the expectation of the

product will be zero unless both p = k and j = l. Thus the k 6= l result in (3.4).

A.2 Proof of Theorem III.5

Compare F, the FIM for the n unknown device problem, to G, the FIM for the

n + 1 unknown device case. Partition G into blocks,

G =







Gul gur

gll glr
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where Gul is an n × n matrix, glr is the scalar Fisher information for θn+1, and

gur = gT
ll are n× 1 vectors with kth element,

gur(k) = IH(n+1)(k) E
(

∂
∂θk

ln+1
k,n+1

)(

∂
∂θn+1

ln+1
k,n+1

)

,

glr =
∑

j∈H(n+1)

E
(

∂
∂θn+1

ln+1
n+1,j

)2

.

Here, denote the log-likelihood of the observation between devices i and j in (3.2)

as lni,j and ln+1
i,j for the n and (n + 1) unknown device cases, respectively. Similarly,

let ln(X|γn) and ln+1(X|γn+1) be the joint log-likelihood function in (3.2) for the n

and n + 1 unknown device cases, respectively. Then

ln+1(X|γn+1) =

m+n+1
∑

i=1

∑

j∈H(i)
j<i

ln+1
i,j = ln(X|γn) +

∑

j∈
H(n+1)

ln+1
n+1,j.

Since ln+1
n+1,j is a function only of parameters γn+1 = θn+1 and γj,

∂2

∂θk∂θl

∑

j∈
H(n+1)

ln+1
n+1,j =











IH(n+1)(k) ∂2

∂θ2
k

ln+1
n+1,k, l = k

0, l 6= k

Thus Gul = F + diag(h), where h = {h1, . . . , hn} and hk = IH(n+1)(k)E( ∂
∂θk

ln+1
n+1,k)

2.

Compare the CRB for the covariance matrix of the first n devices in the n and n+1

device cases, given by F−1 and [G−1]ul, respectively. Here, [G−1]ul is the upper left

n× n submatrix of G−1,

[G−1]ul =
{

Gul − gurg
−1
lr gll

}−1
= {F + J}−1

where J = diag(h)− gurg
T
ur

glr

Both F and J are Hermitian. We know that F is positive semidefinite. Let λk(F), k =

1 . . . n be the eigenvalues of F and λk(F+J), k = 1 . . . n be the eigenvalues of the sum,

both listed in increasing order, then if it can be shown that J is positive semidefinite,

then it is known [55] that:

(A.1) 0 ≤ λk(F) ≤ λk(F + J), ∀k = 1 . . . n
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Since the eigenvalues of a matrix inverse are the inverses of the eigenvalues of the

matrix,

λk

(

{F + J}−1
)

≤ λk(F
−1), ∀k = 1 . . . n,(A.2)

which proves property 1 of Theorem III.5. If in addition, it can be shown that

tr(J) > 0, then tr(F + J) > tr(F), and therefore
∑n

k=1 λk(F + J) >
∑n

k=1 λk(F).

This with (A.1) implies that λj(F + J) > λj(F) for at least one j ∈ 1 . . . n. Thus in

addition to (A.2),

λj

(

{F + J}−1
)

< λj(F
−1), for some j ∈ 1 . . . n

which implies that tr ({F + J}−1) < tr(F−1), which proves property 2 of Theorem

III.5.

A.2.1 Showing positive semidefiniteness and positive trace of J

The diagonal elements of J, [J]k,k are,

(A.3) [J]k,k = hk − g2
ur(k)/glr.

If k /∈ H(n + 1) then hk = 0 and gur(k) = 0, thus [J]k,k = 0. Otherwise, if

k ∈ H(n + 1),

[J]k,k = E

(

∂ln+1
n+1,k

∂θk

)2

−

[

E

(

∂ln+1
n+1,k

∂θk

)(

∂ln+1
n+1,k

∂θn+1

)]2

∑

j∈H(n+1) E

(

∂ln+1
n+1,j

∂θn+1

)2 .

Because of reciprocity, the numerator is equal to the square of the j = k term in the

sum in the denominator. Thus

[J]k,k ≥ E

(

∂ln+1
n+1,k

∂θk

)2

− E

(

∂ln+1
n+1,k

∂θk

∂ln+1
n+1,k

∂θn+1

)

= 0.
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The equality will hold if k is the only member of the set H(n + 1). When condition

(2) of Theorem III.5 holds, [J]k,k will be strictly greater than zero. Thus trJ > 0.

Next, it is shown that J is diagonally dominant [55], i.e.,

[J]k,k ≥
n
∑

j=1
j 6=k

|[J]k,j| =
n
∑

j=1
j 6=k

|gll(k)gll(j)|
glr

,

where [J]k,k is given in (A.3). Since H(n + 1) 6= ∅, thus glr > 0, and an equivalent

condition is,

(A.4) glrhk ≥ |gur(k)|
n
∑

j=1

|gur(j)|.

If k /∈ H(n+1) then hk = 0 and gur(k) = 0, and the equality holds. If k ∈ H(n+1),

then

glrhk = E

(

∂ln+1
k,n+1

∂θk

)2
∑

j∈H(n+1)

E

(

∂ln+1
n+1,j

∂θn+1

)2

.

Because of condition (1) of Theorem III.5,

E

(

∂ln+1
k,n+1

∂θk

)2

=

∣

∣

∣

∣

E

(

∂ln+1
k,n+1

∂θn+1

∂ln+1
k,n+1

∂θk

)
∣

∣

∣

∣

Thus

glrhk = |gur(k)|
[

∑

j≥1
j∈H(n+1)

|gur(j)|+
∑

j≤0
j∈H(n+1)

∣

∣

∣

∣

E

(

∂ln+1
j,n+1

∂θn+1

∂ln+1
j,n+1

∂θj

)
∣

∣

∣

∣

]

Since gur(j) = 0 if j /∈ H(n + 1), the first sum can include all j ∈ 1 . . . n. Since the

2nd sum is ≥ 0, (A.4) is true.

Diagonal dominance implies J is positive semidefinite, which proves (A.2). Note

that if H(n+ 1) includes ≥ 1 reference device, the 2nd sum is > 0 and the inequality

in (A.4) is strictly > 0,which implies positive definiteness of J and assures that the

CRB will strictly decrease.
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A.3 CRB for Location Estimation

A.3.1 RSS

For the elements of FR, using (2.2) and (3.2),

li,j = log

(

10 log 10
√

2πσ2
dB

1

Pi,j

)

− γ

8

(

log
‖zi − zj‖2

δ2
i,j

)2

.

Recall ‖zi − zj‖ =
√

(xi − xj)2 + (yi − yj)2. Thus,

∂

∂xj

li,j = −γ

2

(

log
‖zi − zj‖2

δ2
i,j

)

xj − xi

‖zi − zj‖2
.

Note that ∂
∂xj

li,j = − ∂
∂xi

li,j, thus the log-normal distribution of RSS measurements

meets condition (1) of Theorem III.5. The 2nd partials differ based on whether or

not i = j and if the partial is taken w.r.t. yi or xi. For example,

∂2li,j
∂xj∂yj

= −b
(xi − xj)(yi − yj)

‖zi − zj‖4
[

− log

(‖zi − zj‖2
δ2
i,j

)

+ 1

]

∂2li,j
∂xj∂yi

= −b
(xi − xj)(yi − yj)

‖zi − zj‖4
[

log

(‖zi − zj‖2
δ2
i,j

)

− 1

]

Note that E[log(‖zi − zj‖2/δ2
i,j)] = 0. Thus the FIM simplifies to take the form in

(3.6) with s = 4 and hk,l = 0∀k, l.

A.3.2 TOA

For the TOA case,

(A.5) li,j =

(

− log
√

2πσ2
T −

(Ti,j − ‖zi − zj‖/vp)
2

2σ2
T

)

taking the partial w.r.t. xj

(A.6)
∂

∂xj
li,j = − 1

σ2
T

(

vp Ti,j

‖zi − zj‖
− 1

)

(xj − xi),
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Note that in the TOA case it is also true that ∂
∂xj

li,j = − ∂
∂xi

li,j, meeting condition

(1) of Theorem III.5. Two examples of the second partial derivatives are given by,

∂2

∂xj∂yj

= − 1

σ2
T v2

p

cTi,j

‖zi − zj‖
(xi − xj)(yi − yj)

(xi − xj)2 + (yi − yj)2

∂2

∂xj∂xi
= − 1

σ2
T v2

p

[

vpTi,j

‖zi − zj‖
− 1− vpTi,j

‖zi − zj‖
(xi − xj)

2

‖zi − zj‖2
]

The 2nd partial derivatives depend on the term, vpTi,j/‖zi − zj‖, which has an

expected value of 1, and the terms of FR take the form in (3.6) with s = 2 and

hk,l = 0∀k, l.

A.3.3 QRSS

Next, the CRB is derived for the case when measurements are K-level QRSS. It

has already been shown that the CRB for any self-calibration estimator is a function

of the expected value of the second partial derivatives of the terms {li,j} where,

(A.7) li,j = logP[Qi,j |zi, zj].

The first partial derivatives for the QRSS case of li,j with respect to xi are

∂

∂xi
li,j =

∂
∂xi
P[Qi,j |zi, zj]

P[Qi,j |zi, zj]
.

Similarly,

∂2

∂x2
i

li,j =

∂2

∂x2
i

P[Qi,j |zi, zj]

P[Qi,j |zi, zj]
−
(

∂
∂xi
P[Qi,j |zi, zj]

P[Qi,j |zi, zj]

)2

.

Thus,

−E

[

∂2

∂x2
i

li,j

]

= −
K−1
∑

s=0

∂2

∂x2
i

P[Qi,j = s|zi, zj]

+
K−1
∑

s=0

(

∂
∂xi
P[Qi,j = s|zi, zj]

)2

P[Qi,j = s|zi, zj]
.(A.8)
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The first sum is a telescoping sum of ∂2

∂x2
i

Φ[·] terms,

K−1
∑

s=0

∂2

∂x2
i

P[Qi,j = s|zi, zj] =

K−1
∑

s=0

∂2

∂x2
i

Φ [gi,j(s + 1)]−
K−1
∑

s=0

∂2

∂x2
i

Φ [gi,j(s)]

=
∂2

∂x2
i

Φ [gi,j(K)]− ∂2

∂x2
i

Φ [gi,j(0)] = 0.

To further evaluate (A.8), note that

∂

∂xi

P[Qi,j = s|zi, zj] =

√
γ√
2π

xi − xj

‖zi − zj‖2
(A.9)

[

exp

(

−γ

2
ln2 ‖zi − zj‖

ds+1

)

− exp

(

−γ

2
ln2 ‖zi − zj‖

ds+1

)]

.

As a result of (A.9) and (A.9), (A.8) simplifies to

(A.10) −E

[

∂2

∂x2
i

li,j

]

=
γ

2π

(xi − xj)
2

‖zi − zj‖4
hi,j ,

where hi,j takes the form of (3.7). The terms depending on other second partial

derivatives are very similar to (A.10).
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ABSTRACT

Location Estimation in Sensor Networks

by

Neal Patwari

Chair: Alfred O. Hero III

In wireless sensor networks, self-localizing sensors are required in a wide variety

of applications, from environmental monitoring and manufacturing logistics to ge-

ographic routing. In sensor networks which measure high-dimensional data, data

localization is also a means to visualize the relationships between sensors’ high-

dimensional data in a low-dimensional display. This thesis considers both to be part

of the general problem of estimating the coordinates of networked sensors. Sen-

sor network localization is ‘cooperative’ in the sense that sensors work locally, with

neighboring sensors in the network, to measure relative location, and then estimate

a global map of the network.

The choice of sensor measurement technology plays a major role in the network’s

localization accuracy, energy and bandwidth efficiency, and device cost. This thesis

considers measurements of time-of-arrival (TOA), received signal strength (RSS),

quantized received signal strength (QRSS), and connectivity. Extensive RF mea-



1

surement campaigns were conducted, and the statistical characterization and mod-

els which resulted from them are reported. From these models, Cramér-Rao lower

bounds on the variance possible from unbiased location estimators are derived and

studied. Next, several cooperative location estimation algorithms are developed and

presented, for both centralized and distributed implementations. Manifold learning-

based algorithms are shown to be particularly effective, in particular, when combined

with adaptive neighbor selection methods. Finally, these cooperative localization al-

gorithms are shown to be useful in internet traffic visualization to help show when

an anomaly event (such as a port or network scan) is occurring, and to help answer

questions about the place and features affected by the anomalous event.


