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ABSTRACT

Devices in energy-limited wireless sensor networks remain in a
low-communication ‘sleep’ mode until an alarm event is detected.
It has been proposed to use ‘censoring sensors’ to reduce the prob-
ability that a sensor must transmit in this mode, thereby minimiz-
ing energy consumption when alarm events are not occurring, and
lengthening sensor lifetime. Further, since devices in multi-hop
networks are not usually in single-hop range of a fusion center,
hierarchical distributed detection can lead to further energy effi-
ciency. We report on a system that applies censoring in a hierar-
chical network to the CUSUM test of Page and Lorden, an online
abrupt change detector. In this paper, we explore via simulation
an example change detection problem and demonstrate that sig-
nificant reduction in the number of sensor transmissions can be
achieved at the cost of a small increase in mean detection delay
compared to uncensored change detection performance.

1. INTRODUCTION

Large-scale wireless sensor networks can be deployed to monitor
wide areas for changing conditions in applications such as moni-
toring of seismic or acoustic activity, inventory location and track-
ing, medical monitoring, and intrusion detection. In large scale
deployments, which may include thousands of sensors, change de-
tection algorithms must be distributed to avoid data bottlenecks
at a central decision point. Since broad coverage wireless sensor
networks will be multi-hop, decentralizing the decision process
using a hierarchy can be effective. Furthermore, as opposed to
capacity-constrained networks in which detection is distributed to
minimize the bit rate, in energy-limited wireless sensor networks
a more appropriate goal is to minimize the probability that sen-
sors must transmit. In this paper, we introduce a hierarchical ‘cen-
sored’ implementation similar to [8] for change detection. We use
simulation to illustrate the performance of the distributed censored
implementation vs. a centralized uncensored implementation.

1.1. Energy Constraint

Energy-limited devices in wireless sensor networks must use low
duty cycles, ie. low percentage of device ‘on’ time (eg., on the or-
der of 0.01% to 1%) in order to achieve long lifetimes of operation.
When necessary, a device wakes up its sensor, processor, transmit-
ter or receiver in order to sense, process, receive or transmit a mes-
sage. Each wake-up consumes significant energy. Specifically, for
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the transmitter circuitry, it has been reported that there is a tradeoff
between the time required for (and thus energy expended during)
wake-up and the energy used during sleep mode [1]. Due to the
large percentage of time spent in sleep mode, sleep mode energy
is minimized, and, as a result, wake-up energy is high. It has been
reported that wake-up energy can be significantly higher than the
energy used during transmission [2].

Much distributed detection research has focused on capacity-
constrained networks. Research has addressed quantization of sen-
sor data [3] and exploiting source correlation [4] to reduce sensor
bit rate. In particular cases, it has been shown that for aR-sensor
network with a capacity constraint ofR bits per unit time, having
each sensor send one bit is optimal [5]. However, from the per-
spective of energy, the cost of transmitting one bit involves wake-
up energy and packet overhead such as synchronization and ‘id’
bits. Considering all energy costs in an energy budget as in [6]
shows that sending one bit of data consumes only marginally less
energy than sending many bits. In fact, it can be argued that the ap-
propriate constraint to bound energy consumption for many wire-
less sensor networks is the probability of transmission from each
sensor, as used in [7].

1.2. Hierarchical Networks

In broad coverage wireless sensor networks, the devices’ limited
range makes it necessary to route communication to a fusion center
through intermediate devices in the network. Such multi-hop rout-
ing is used for energy-efficiency and reducing device cost; long-
range transmission energy is decreased due to lower1/rn losses.
Network-wide power savings in multi-hop systems can be signif-
icant, especially for large-scale networks when reception energy
costs are small compared to transmission costs. Technology scal-
ing should reduce receiver energy consumption, while transmis-
sion costs will remain constant [1]. This projection underscores
the importance of both multi-hop routing and minimization of the
probability of transmission.
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Fig. 1. Diagram of an example hierarchical network of sensors.
Subset of sensors{1, 2, 3} is also used as an example.



The use of multi-hop routing in wireless sensor networks can
also be exploited to improve detection performance. In the dis-
tributed detection literature, it is often assumed that all sensors
communicate directly with a fusion center. Intermediate nodes can
perform much of the data aggregation and make local decisions,
distributing the computation load across the network. In this paper,
we consider a hierarchical ’spanning tree’ topology (eg., Fig. 1) for
the purpose of change detection.

1.3. Previous Work

Censoring sensorswas presented in [8] and [9] as a means to re-
duce the number of sensor transmissions by requiring sensors to
transmit only ‘informative’ observations. Observations are con-
sidered informative only if their local likelihood ratio (LLR) falls
within a ‘send’ regionR. In [8], the optimal censoring region
was shown to be a single interval,̄R = [φ(i), λ(i)). Moreover, in
cases where the prior probability ofH1 is sufficiently small and
limited communication is allowed, it is optimal to setφ(i) = 0.
Sufficient conditions for the optimality ofφ(i) = 0 are given in
[9]. In previous work [10], we applied censoring sensors to static
distributed simple hypothesis test in a hierarchical sensor network
such as shown in Fig. 1. In a series of examples, we compared
ROC curves for hierarchies of 3 and 7 sensors, in which sensors
censored from 70% to 97% of their observations. Results showed
that close to optimal (ie., centralized) detection performance could
be achieved with a fraction of the transmissions. We expand the
results in this paper by applying hierarchical censoring to a dis-
tributed dynamic online abrupt change detection problem.

2. CUSUM CHANGE DETECTION

In online abrupt change detection, we measure datayi at each time
i for i ∈ 1 . . . k. The measured datayi is a vector of measure-
ments fromN sensors,yi = [y

(1)
i , . . . , y

(N)
i ]T . While i < t0,

yi ∼ p(yi|θ0), andyi ∼ p(yi|θ1) for i ≥ t0. Online abrupt
change detectors seek to detect a change as quickly as possible us-
ingy1, . . . ,yk, wherek ≥ t0, typically by thresholding a function
gk of the past observations. Specifically the detector is defined by
its stopping timeta, given by,

ta = min{k ≥ 1 : gk(y1, . . . ,yk) > λ} (1)

whereλ is a detection threshold. The stopping timeta can be
viewed as an estimate oft0. Whenta ≥ t0 the detector is said
to have correctly detected with delayta − t0; for ta < t0, the
detection is a false alarm. We consider specifically the case in
which {y(n)

i } are statistically independent∀i = 1 . . . k andn =
1 . . . N . The log-likelihood ratio (LLR) of the data at timek is
thus

Λk =

kX
i=1

NX
n=1

s
(n)
i , where s

(n)
i = ln

p(y
(n)
i |θ1)

p(y
(n)
i |θ0)

. (2)

2.1. TheN -Sensor Centralized CUSUM Test

The typical behavior ofΛk is to exhibit a negative drift while
k < t0, and then a positive drift fork ≥ t0. Thus the relevant
information can be seen to be presented by the difference between
the current valueΛk and the minimum value ofΛi, i ∈ 1 . . . k

[11]. This is the approach of the CUSUM change detector pro-
posed by Page [12] and further analyzed by Lorden [13]. In the
CUSUM test,gk of (1) is given by,

gk = Λk −mk, where mk = min
j≤k

Λj . (3)

The CUSUM test has optimality properties as the detection thresh-
old approaches infinity [11]. We discuss two figures of merit when
discussing the CUSUM test: the average mean time between false
alarms, E0[ta], and the mean delay for detection, E1[ta], where E0
denotes the expectation whenH0 is always true (t0 = ∞), and E1
denotes the expectation whent0 = 0. By raising the thresholdλ,
we can increase E0[ta] at the expense of increasing E1[ta]. The
tradeoff between E0[ta] and E1[ta] defines the performance of an
online change detector [11].

2.2. The Hierarchical Censoring CUSUM Test

In a hierarchical network ofN sensors, each sensor performs its
own local CUSUM test at each time instant. If sensorn is the
fusion center (root node in Fig. 1)FC, then its CUSUM test de-
cides whether or not a change toH1 has occurred. Ifn 6= FC
then the CUSUM test decides whether or not to transmit to the
parent ofn. We denote the set of children of noden asKn (eg.
in Fig. 1,K7 = {3, 6}). At time i, sensorn records datay(n)

i

and receives (or doesn’t receive) data reported (or censored) by
its childrenm ∈ Kn. Let k

(m)
0 denote the last time that sensor

m transmitted its data to parentn, or k
(m)
0 = 0 if m hasn’t yet

transmitted. At timei, if i > k
(m)
0 for anym ∈ Kn, then sensor

n must form its decision on whether to transmit to its parent (or
to decideH1 if it is the fusion center) on incomplete information.
The decision at sensorn is a threshold test based on its own sensor
data, data its children have reported, and estimates of the data its
non-reporting children have censored.

If sensorn 6= FC decides to transmit at timei, it sends
its parent a full report of previously censored data, ie.,y

(n)
i for

i = k
(n)
0 + 1 . . . i; resetsk(n)

0 := i; and restarts its test. Since the
bit rate during transmission is not constrained by (9), full data re-
porting is possible although wasteful, since, data from the distant
past is largely uninformative to the parent. For practical imple-
mentations, a sensor would likely significantly compress this data
series. Here, full reporting is used in order to explore the capabil-
ities of hierarchical censoring. Future work should compare these
results to those in which sensors report compressed time series
data.

Since a parent node has only imperfect or delayed knowledge
of its children’s data, its LLR as a function of timei can only be
estimated and updated over time. Thus for the censored case, we
adopt the somewhat bulky but necessary notation, thatΛ

(n)
i (k) is

the estimate of the LLR at timek by sensorn of what its LLR
was at timei. Then the hierarchical test at noden is defined by its
stopping timet(n)

a ,

t(n)
a = min{k > k

(n)
0 : g

(n)
k (y1, . . . ,yk) > λ(n)}, (4)

whereg
(n)
k takes the form,

g
(n)
k = Λ

(n)
k (k)−m

(n)
k , where m

(n)
k = min

k
(n)
0 ≤j≤k

Λ
(n)
j (k). (5)



At time k, the estimate of sensorn’s LLR, Λ
(n)
i (k), is

Λ
(n)
j (k) =

jX
i=1

S
(n)
i (k), (6)

S
(n)
i (k) = s

(n)
i +

X
m∈Kn:

i≤k
(m)
0

S
(m)
i (k

(m)
0 ) +

X
m∈Kn:

i>k
(m)
0

S̄
(m)
i .(7)

The three terms in (7) correspond to:

1. The log-likelihood ratios(n)
i of the data recorded at timei

by noden’s own sensor, given previously in (2),

2. The combined log-likelihood ratioS(m)
i (k

(m)
0 ) for each child

nodem which has transmitted data more recently thani,
and

3. An estimateS̄(m)
i of the (unknown) combined log-likelihood

ratioS
(m)
i for each child nodem which hasnot transmitted

data more recently thani. More specifically,

S̄
(m)
i = E0

�
s
(m)
i

�
+
X

l∈Km

S̄
(l)
i (8)

In words,S̄(m)
i is the mean LLR underH0 summed over all sen-

sorsl that are ‘descendants’ (children, children of children, etc.)
of non-reporting sensorm.

We select the thresholds,λ(n), ∀n 6= FC, so that the average
probability of sensor transmission underH0 is bounded byρ ≤ 1.
Specifically,

1

N − 1

NX
n=1

n6=F C

�
E0[t

(n)
a ]
�−1

≤ ρ ≤ 1. (9)

Note thatt(n)
a as defined in (4) is always≥ 1. We separately set the

threshold at the fusion center,λ(FC), to achieve the desired mean
time between false alarms E0[t

(FC)
a ] and mean delay for detection

E1[t
(FC)
a ].

3. SIMULATION RESULTS

In the following examples, we explore via simulation the perfor-
mance of the hierarchical censored CUSUM detector described in
Section 2.2 for the Gaussian change-of-mean case. For Gaussian
data, the LLRs

(n)
i is given by,

s
(n)
i =

µ1 − µ0

σ2
y

�
y
(n)
i − µ1 + µ0

2

�
.

To calculate the performance of a centralized CUSUM test, we use
either the Seigmund approximation given in Chapter 5 of [11], or
simulation results, since at low SNR or low thresholds, the Sieg-
mund approximation can be inaccurate.

3.1. Three-Sensor Example

We first study a simple three sensor network (the three-sensor sub-
network shown in Fig. 1) where nodes 1 and 2 are children and
node 3 is the parent and fusion center. Our first simulation studies
the case whenµ0 = 0, µ1 = 1, andσ = 1, ie., the case when
the SNR is 1 at all sensors. The communications constraint is that
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Fig. 2. Simulated performance of a 3-sensor hierarchical censoring
change detector for values ofρ = {0.20, 0.10, 0.05, 0.02, 0.01}
in the Gaussian change-of-mean example with (a) SNR = 1 and
(b) SNR = 0.1. Centralized (ρ = 1) detector is shown (—-) in (a)
using Siegmund approximation and in (b) using simulation results.
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Fig. 3. Simulated performance of a 7-sensor hierarchical censoring
change detector for values ofρ = {0.20, 0.10, 0.083, 0.05} in
the Gaussian change-of-mean example with SNR = 1. Simulated
centralized (ρ = 1) detector performance is also shown (—-).



(1/E0[t
(1)
a ] + 1/E0[t

(2)
a ])/2 ≤ ρ. Although it is not necessarily

optimal, we meet the communications constraint by settingλ(n),
n = {1, 2}, such that

E0[t
(1)
a ] = E0[t

(2)
a ] = 1/ρ. (10)

We calculate using the Siegmund approximation [11] the correct
λ(1) = λ(2) so that (10) is met, first forρ = 0.20, and in sub-
sequent simulations,ρ = 0.10, 0.05, 0.02, and 0.01. Next, for a
range of fusion center thresholds, ie.,λ(3) from 0.5 to 5.5 in 0.5 in-
crements, we simulate the hierarchical censored CUSUM detector,
first, underH0, and then, underH1. In each run, we save the value
of the stopping time,t(3)a . We run this simulation for104 trials. We
estimateT̄ (3) to be the average of all oft(3)a simulated underH0

andτ (3) to be the average of all oft(3)a simulated underH1, and
plot the pair in Fig. 2(a). We note that at worst, the hierarchical
censored CUSUM test with only 5% probability of transmission
incurs a delay of about one additional sample compared to the cen-
tralized CUSUM test. Also, atρ = 0.01, the mean detection delay
increases by a factor of 50% compared to the centralized case.

We also test the case where SNR = 0.1 (-10 dB) by setting
σ =

√
10. Due to the inaccuracy of the Siegmund approximation

at low SNR, we use simulation results to setλ(1) = λ(2) so that
(10) is met, for the same values ofρ as the previous case. Here,
λ(3) ranges from 0.5 to 5 in 0.5 increments. The results are shown
in Fig. 2(b).

3.2. Seven-Sensor Example

Next, we consider the 7-sensor case depicted in Fig. 1). Although
it may not be the optimal solution, we constrain sensors on the
same the level of the tree to have the same E0[t

(n)
a ]. Thus the

communications constraint in (9) becomes

1

6

 
4

E0[t
(L1)
a ]

+
2

E0[t
(L2)
a ]

!
≤ ρ

for any sensorL1 on level 1 ({1, 2, 4, 5} in Fig. 1) and sensorL2

on level 2 ({3, 6} in Fig. 1). First, we test two combinations of
E0[t

(L1)
a ] and E0[t

(L2)
a ] which result inρ = 1/12: (a) E0[t

(L1)
a ] =

10 and E0[t
(L2)
a ] = 20; and (b) E0[t

(L1)
a ] = E0[t

(L2)
a ] = 12.

Here,λ(7) ranges from 0.5 to 4.5 in 0.5 increments. The results,
shown in Fig. 3, show combination (b) slightly outperforms com-
bination (a). Similarly, in [10] we found that setting the probabil-
ity of transmission the same on all levels was nearly optimal for
a wide range of parameters. This is also intuitively desirable in
order to ensure constant energy consumption across all sensors in
the network. Thus for our further simulations, we setλ(L1) and
λ(L2) so that E0[t

(L1)
a ] = E0[t

(L2)
a ] = 1/ρ, for ρ ∈ {0.20, 0.05}.

The value ofλ(L1) is calculated from the Siegmund approxima-
tion, while λ(L2) is estimated from simulations. Again, we run
104 trials each underH0 andH1. SinceFC = 7, we plot E0[t

(7)
a ]

and E1[t
(7)
a ] for eachρ in Fig. 3.

4. CONCLUSION

We have demonstrated the potential of hierarchical censoring to
dramatically reduce transmissions in a quickest detection sensor
network at the price of a minor increase in overall detection de-
lay. This research motivates further study of censoring in wireless

sensor networks for detecting changes. Future research must con-
sider the amount of data that is transmitted when a child node does
decide to report to its parent. It may be possible to significantly
reduce the amount of data transmitted without impacting perfor-
mance. Furthermore, although results are already promising, no
attempt has been made to derive an optimal distributed test. An-
alytical results would greatly enhance the portability of results to
non-Gaussian change detection problems.
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