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Received signal strength (RSS) or connectivity, i.e., whether or not two de-
vices can communicate, are two relatively inexpensive (in terms of device and
energy costs) measurements at the receiver that indicate the distance from
the transmitter. Such measurements can either be quickly dismissed as too
unreliable for localization, or idealized by ignoring the non-circular nature of a
transmitter’s coverage area. This chapter finds a middle ground between these
two extremes by using measurement-based statistical models to represent the
inaccuracies of RSS and connectivity.

While a particular RSS or connectivity measurement may be hard to
predict, a statistical model for RSS and connectivity can in fact be well-
characterized. Many numerical examples are used to provide the reader with
intuition about the variability of real-world RSS and connectivity measure-
ments.

This chapter then gives a description of three sensor localization algo-
rithms which are based on ‘manifold learning’, a class of non-linear dimen-
sion reduction methods. These algorithms include Isomap [1], the distributed
weighted multi-dimensional scaling (dwMDS) algorithm [2], and the Lapla-
cian Eigenmap adaptive neighbor (LEAN) algorithm [3]. The performance of
these estimators is compared via simulation using the RSS and connectivity
measurement models.

The results show that while RSS and connectivity measurements are highly
variable, these manifold learning-based algorithms demonstrate their robust-
ness by achieving location estimates with low bias and often variance close to
the lower bound. Due to their desirability as low cost, low complexity mea-
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surements, system designers should consider RSS and connectivity for sensor
network applications.

1 Introduction

As indicated in the scope of this edited volume, localization is a key technology
in wireless sensor networks. However, there is a tradeoff between accurate
sensor location and simple, low cost and energy efficient devices. In many
applications, device cost will be a more severe constraint than accuracy.

Application Example: Logistics. As an example, consider deploying a sensor
network in a warehouse. Pallets, boxes and parts to be warehoused are tagged
with wireless sensors when first brought into the facility. The sensors will allow
both monitoring of storage conditions (such as humidity and temperature) and
determination of the object location at all times. Compared to radio-frequency
identification (RFID) tags, which are only located when they pass within a
few feet of a reader, networked wireless sensors can be queried and located
as long as they are within range of the closest other wireless sensor in the
network.

The objective in warehouse logistics is allowing a human to more quickly
locate a particular object in the warehouse; thus being able to locate the
device to within a few meters will likely be acceptable. The high density of
objects to be tracked will require that each sensor must have extremely low
costs, on the order of cents, in order to make it cost effective. Connectivity
and RSS become very desirable methods.

Application Example: Traffic Monitoring. RSS and connectivity would be
valuable in vehicle traffic monitoring. If you’re stuck on the highway in a
traffic jam, and can’t get a traffic report on the radio, it would be very valu-
able to know how far the backup extends, in order to plan an alternate route
if necessary. If a small percentage of cars had a short-range wireless sensor
(with accelerometer and a compass), a message could hop forward, find the
point at which the traffic eases, and then measure backwards, via RSS or con-
nectivity, the distance to your car. Its possible that messages could propagate
backwards to alert the drivers of cars before they hit the jam. Low device
cost and long battery life would be critical to achieve a high enough density
of sensors to make this application useful.

1.1 Relevant Research

There is now a large literature of algorithms which use RSS or connectiv-
ity (a.k.a. proximity) for sensor localization. These algorithms are either dis-
tributed or centralized. A number of distributed localization algorithms are
compared in [4]. RSS-based localization has been implemented on motes and
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Besides the papers within this volume, the references within [5, 6] also provide
links to the extensive literature.

This chapter focuses on the subset of algorithms which propose mani-
fold learning-based algorithms for sensor localization, which are introduced in
Section 4. In general, manifold learning approaches can lead to distributable
algorithms that extract the information perceived to be most accurate. The
communication can often be limited to just the nearest neighbors, and there
are manifold learning algorithms guaranteed to find the global optimal solu-
tion.

1.2 Outline of Chapter

Prior to discussing the manifold learning algorithms themselves, this chapter
explores in detail statistical measurement models and their derivation from
empirical radio channel studies. Section 2.1 presents RSS measurements and
Section 2.2 presents connectivity measurements. Then, to provide more in-
tuitive understanding of the probabilities involved, Section 3 presents two
numerical examples and graphically presents results which can be derived di-
rectly from the statistical models of Section 2. Finally, Section 4 presents a
general overview and comparison of three manifold learning-based algorithms.
Section 5 makes those comparisons quantitative by using the statistical models
from Section 2 in simulations. Section 6 discusses the results and concludes.

2 Measurement Models

The key to developing reliable sensor localization systems which use pair-wise
measurements is to accurately represent the statistics of the measurements.
The system designer must design sensor networks that will be deployed in
many places and many environments, none of which are known to the designer.
Over the ensemble of these deployments, the environment-dependent errors
in the measurements are unpredictable and must be modeled as random. In
this section, we discuss what past measurements have indicated about these
statistical models.

2.1 Received Signal Strength

It is assumed that a system designer will do two things to attempt to reduce
the variability in RSS measurements. In particular, a pair of sensors will:

1. Make multiple RSS measurements over time, and
2. Use a wideband measurement of RSS.

The first assumption is that in applications in which sensors are mostly sta-
tionary, it would be acceptable to trade off some time delay for increased
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accuracy. When there are moving objects such as people or vehicles in the en-
vironment, the time averaging possible with the multiple measurements allows
us to reduce their effects.

The latter assumption helps reduce the RSS variability to frequency se-
lective fading. In multipath channels, multipath signals add constructively
or destructively at the receiver as a function of the frequency. A wideband
measurement, such as using frequency hopping spread-sprectrum (FH-SS) or
orthogonal-frequency division multiplexing (OFDM), can reduce the variabil-
ity by averaging RSS over a large frequency band.

The RSS measurement that has been averaged is largely subject to shadow-
ing effects. Shadowing is the signal attenuation caused by stationary objects
in the radio channel, such as walls, furniture, and buildings, and can’t be
averaged out by time or frequency averaging.

Statistical Model

Typically, the ensemble mean received power in a real-world, obstructed chan-
nel decays proportional to d−np , where np is the ‘path-loss exponent’, typically
between 2 and 4 [7, 8]. The ensemble mean power at distance d is typically
modeled as

P̄ (d) = Π0 − 10np log10

d

∆0
(1)

where Π0 is the received power (dBm) at a short reference distance ∆0.
The difference between a measured received power and its ensemble av-

erage, due to the randomness of shadowing, is modeled as log-normal (i.e.,
Gaussian if expressed in dB). The log-normal model is based on many years
of radio channel measurement results [8, 7, 9] and analytical evidence [10].
This model has further been tested via experimental measurements in wire-
less sensor networks in both indoor and outdoor environments, at both 900
MHz and at 2.4 GHz [11, 12]. These measurements have verified the ensemble
mean power model from (1) and that the variation around the ensemble mean
is log-normal. Results from one of these measurement campaigns, reported in
[12], are shown in Fig. 1. This campaign measured the RSS between each pair
of sensors in a 44-node wireless sensor network.

As a result, the received power (dBm) at sensor i transmitted by j, Pi,j ,
is distributed as

f
(
Pi,j = p|{zi}N

i=1

)
= N (

p; P̄ (‖zi − zj‖), σ2
dB

)
, (2)

where N (x;µ, σ) is our notation for the value at x of a Gaussian p.d.f. with
mean µ and variance σ, and the actual transmitter-receiver separation dis-
tance ‖zi − zj‖ is given by

‖zi − zj‖ =
√

(xi − xj)2 + (yi − yj)2, (3)



Learning Sensor Location from Signal Strength and Connectivity 5

(a)
10

0
10

1

−70

−60

−50

−40

−30

Path Length (m)

P
at

h 
G

ai
n 

(d
B

)

(b)
−4 −2 0 2 4

−20

−10

0

10

20

R
S

S
 e

rr
or

s 
(d

B
)

Theoretical Normal N(0,1) Quantile

Fig. 1. RSS measurements in a wireless sensor network in [12] show that (a) mean
RSS P̄ (‖zi − zj‖) decays linearly with log distance as in (1) with np = 2.3, and
σdB = 3.92; and (b) the quantile-quantile (QQ) plot of RSS errors, Pi,j−P̄ (‖zi−zj‖)
(dB), vs. the Gaussian distribution.

for a two-dimensional location coordinate zi = [xi, yi]T . Note that the stan-
dard deviation of received power (when received power is expressed in dBm),
σdB , has units of (dB) and is relatively constant with distance. Typically, σdB

is as low as 4 and as high as 12 [7].

Estimating Range from RSS

The ‘range’, i.e., the estimated distance between devices i and j, can be esti-
mated from Pi,j . First, the maximum likelihood estimate of range is presented.
The log-likelihood of Pi,j given di,j = ‖zi − zj‖ is,

log f
(
Pi,j |{zi}N

i=1

)
= c1 −

[
Pi,j − P̄ (‖zi − zj‖)

]2
2σ2

dB

(4)

where log indicates the natural logarithm, and c1 is a constant independent
of {zi}N

i=1. Because of the quadratic form, it is clear that the maximum of the
log-likelihood occurs when Pi,j = P̄ (‖zi − zj‖), where the P̄ is given in (1).
As a direct result, the distance δMLE

i,j which best estimates ‖zi − zj‖ in the
maximum-likelihood sense is,

δMLE
i,j = ∆010

Π0−Pi,j
10np (5)

Consider what happens if we write Pi,j = P̄ (‖zi − zj‖) + ηi,j , where ηi,j is
‘noise’ in the measurement which is zero-mean, Gaussian, with variance σ2

dB .
In this case,

δMLE
i,j = ∆010

Π0−P̄ (‖zi−zj‖)−ηi,j
10np

δMLE
i,j = ‖zi − zj‖10−

ηi,j
10np . (6)
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The expected value of the MLE distance estimate is,

E
[
δMLE
i,j

]
= C‖zi − zj‖, (7)

where

C = exp
1
2γ

, where γ =
(

10np

σdB log 10

)2

. (8)

The parameter C is a multiplicative bias factor, a function of the ratio,
σdB/np. For σdB/np = 1.70, as measured in [12], C = 1.08, and for
σdB/np = 2.45, as measured in [11], C = 1.18. So, depending on the channel
parameters, this bias can be a significant factor.

Motivated by (7), a bias-corrected estimator (a pseudo-MLE) of distance
can be defined just by dividing the MLE by C,

δBC
i,j =

∆0

C
10

Π0−Pi,j
10np . (9)

The most important result of the log-normal model is that RSS-based
range estimates (from either estimator above) have standard deviation pro-
portional to their actual range. Consider the variance of the MLE distance
estimator, which can be calculated to be,

var{δMLE
i,j } = (C4 − C)‖zi − zj‖2

This is why RSS errors are referred to as multiplicative. In comparison, errors
in distance estimates based on time-of-arrival (TOA) are additive. Clearly,
RSS is most valuable between nearby sensors.

2.2 Connectivity Measurements

It is common for localization research to consider connectivity (a.k.a. proxim-
ity) measurements as a simple, inexpensive, low-bandwidth, and backward-
compatible location measurement. Whether or not devices have accurate RSS
measurement circuitry on their receivers, two devices can determine whether
or not they can communicate. Two sensors are not considered to be connected
solely based on the distance between them – two sensors are connected if the
receiving sensor can successfully demodulate packets transmitted by the other
sensor. The receiver fails to successfully demodulate packets when the received
signal strength (RSS) is too low. Since RSS is a random variable due to the
unpredictability of the fading channel, and connectivity is a function of RSS,
connectivity is also a random variable.

Binary Quantization Model

Specifically, the connectivity measurement of sensors i and j, Qi,j , is modeled
as a binary quantization of RSS,
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Qi,j =
{

1, Pi,j ≥ P1

0, Pi,j < P1
(10)

where Pi,j is the received power (dBm) at sensor i transmitted by sensor
j, and P1 is the receiver threshold (dBm) under which packets cannot be
demodulated. Note that we can both talk about a receiver power threshold
P1 and also the threshold distance d1 at which the mean received power is P1.
From (1), this threshold distance is

d1 = ∆010
Π0−P1
10np . (11)

Noise-free Connectivity Model

To generate simulation results for connectivity-based localization, the ‘noise-
free’ connectivity model is sometimes used. In this model, radio coverage is
assumed to be a perfect circle around the transmitter. Thus, pairs of devices
will have exact knowledge of whether or not they are separated by more
or less than the coverage radius. Since this is not complete knowledge of
distance itself, such a model would still result in localization uncertainty or
‘error’. However, these errors are likely to be just a small contribution to the
localization errors in a real system. While such a model might be appropriate
for the formulation or visualization of localization algorithms, it is not a means
for accurate simulation of estimator variance.

More Detailed Connectivity Models

In reality, being in-range of another device (transmitting a packet which the
other device correctly demodulates) is not a step function of received power.
Two additional sources of variation in connectivity measurements are:

1. The randomness of frame errors given the received power level, and
2. The possibility of multiple-access interference during a particular trans-

mission.

To discuss issue (1), consider that if we are given received power Pi,j , connec-
tivity Qi,j ∈ {0, 1} is a binary random variable, such that

P[Qi,j = 1|Pi,j ] = P [No Packet Error|Pi,j ] (12)

where the probability of a packet error is a function of the type of signalling
and forward error correction (FEC) used, packet length, and whether the
receiver is coherent or non-coherent. If all of these details of the transceiver
implementation were known, a more accurate model could be defined using
(12). However, note that the uncertainty in the RSS given distance is much
more significant than the uncertainty in error-free packet reception given RSS.
In typical digital receivers, there is a large range of received powers for which
the probability of packet error is very close to zero, and a large range of power
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Fig. 2. Two plots relating to the variation in proximity measurements when sensors
i and j are separated by the threshold distance d1 from (11): (- - - - -) the CDF of
Pi,j in dB above the receiver threshold P1 from (10), and (——) the probability of
no packet error given Pi,j in dB above P1 (for a packet of 200 bits and a coherent
BPSK receiver without FEC).

for which the probability is very close to one. The range of power for which the
probability of packet error is neither close to one or zero is small in comparison.
Fig. 2 plots P[No Packet Error|Pi,j ] from (12) under the following conditions:
a packet of 200 bits, a coherent BPSK receiver, with no FEC. For comparison,
Fig. 2 also plots the CDF of received power for sensors separated by d1 under
a log-normal model with σdB = 7.38 dB (as measured in [11]).

Regarding issue (2), outside interference or multiple-user interference
(MUI) from other sensors will cause packets to be lost at random times.
The interference power raises the noise floor and increases the required power
threshold for the desired signal. However, if sensors send multiple packets over
time, especially for networks of mostly stationary sensors, it will be likely that
a packet received with RSS greater than P1 will be received without MUI
during some transmission, and thus the sensors will measure that they are
connected.

Statistical Model

Given the binary quantization model for connectivity in (10) and the log-
normal model for Pi,j in (2), it can be shown that the probability mass function
of Qi,j given the coordinates of devices i and j is

P[Qi,j = s|zi, zj ] =





Φ
[√

γ log ‖zi−zj‖
d1

]
, s = 0

1− Φ
[√

γ log ‖zi−zj‖
d1

]
, s = 1

(13)
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where Φ[·] is the cumulative distribution function (CDF) of the univariate
zero-mean unit-variance Gaussian distribution, and d1 is the threshold dis-
tance given in (11), and γ is given in (8).

3 Numerical Examples

For the purposes of obtaining an intuitive understanding of the variability
of RSS and connectivity measurements, it is valuable to show some numer-
ical values for particular cases. The following examples show that RSS and
connectivity are in fact highly variable measurements. While these numbers
might scare away system designers, this is certainly not the desired effect. In
fact, these models are used to generate RSS and connectivity in Section 5 and
demonstrate the accuracy of location estimation algorithms. The ability to
achieve localization, even given the variability of the measurements, indicates
the robustness of the ‘cooperative’ localization concept.

3.1 RSS-based Distance Estimates

Consider the log-normal RSS measurement Pi,j between devices i and j. Con-
sider two different channels, with channel parameters σdB/np = 1.70 and
σdB/np = 2.48, which correspond to results from measurement campaigns
reported in [12] and [11], respectively. (The lower channel parameter was a re-
sult of using a very wideband measurement of RSS, while the higher measured
the RSS of a continuous wave (CW) signal.)

As a numerical example, let’s calculate the probability that the bias-
corrected estimate of distance, δBC

i,j , is within an interval around the correct
distance. Specifically, consider the interval,

0.5‖zi − zj‖ < δBC
i,j < 2.0‖zi − zj‖ (14)

From (6), we can rewrite the interval from (14) as,

0.5‖zi − zj‖ <
‖zi − zj‖

C
10−

ηi,j
10np < 2.0‖zi − zj‖

log(0.5C)
log 10

< − ηi,j

10np
<

log(2.0C)
log 10

−10np
log(2.0C)

log 10
< ηi,j < −10np

log(0.5C)
log 10

Since ηi,j is zero-mean Gaussian with standard deviation σdB , the probability
that ηi,j falls in this interval is just the area under a normal curve, excluding
the tails. Specifically,

P
[‖zi − zj‖

2
< δBC

i,j < 2‖zi − zj‖
]

= Φ

[√
γ log

2
C

]
− Φ

[√
γ log

1
2C

]
(15)

where γ is given in (8).
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Numerical Solutions

For the two measured channel parameters, σdB/np = 1.70 and σdB/np = 2.48,
the numerical solutions to (15) are 0.92 and 0.76, respectively.

If instead of using half and twice the actual distance as the interval min
and max in (14) we had used 2/3 and 3/2 of the actual distance, specifically,

0.667‖zi − zj‖ < δBC
i,j < 1.5‖zi − zj‖,

then these probabilities would be reduced to 0.69 and 0.51 for the σdB/np =
1.70 and σdB/np = 2.48 channels, respectively.

What is the difference between the results using the bias-corrected estima-
tor and the MLE estimator of distance? Deriving from (5), we would arrive
at the same formula as (15), but with C = 1. The probabilities that the MLE
distance estimate would be in either the wider or narrower interval are slightly
higher than for the bias-corrected estimate (by about 0.01), using either of the
two channel parameter ratios. Thus bias correction may help with aligning the
estimator mean to the true mean, but it doesn’t help reduce the confidence
intervals.

Clearly, if RSS is to be used as an estimate of distance, system robustness
must be considered. Even in the better channel, the probability of getting a
decent estimate of distance (within 2/3 and 3/2 of the actual distance) is 69%.
A sensor localization system in a wireless network must be designed to make
many RSS measurements between many pairs of devices, such that the worst
of the errors can be discarded or down-weighted.

3.2 Connectivity and Coverage Area

Equation 13 gives the probability of connectivity for a pair of devices separated
by distance ‖zi − zj‖, given the channel parameter σdB/np and the distance
threshold d1. To make this more concrete, two examples are provided in Fig. 3.

As indicated by the figure, regardless of the channel parameter, the prob-
ability of having received power higher than the threshold when separated by
the threshold distance is 50%. But when the ratio σdB/np is higher, it is more
likely that a distant receiver will be connected. As a comparison, in Fig. 3(a),
the 10% probability contour line is about 1.65d1 away from the transmitter,
while in 3(b), the 10% probability contour line is about 2.08d1 away. Similarly,
when the ratio σdB/np is higher, it is more likely that a nearby receiver will
not be connected. To show this, in Fig. 3(a), the 90% probability contour line
is about 0.60d1 away from the transmitter, while in 3(b), this line is about
0.48d1 away. In sum, as the ratio σdB/np increases, we are less certain of
either nearby sensors measuring that they are connected or distant sensors
measuring that they are not connected.
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Fig. 3. For a transmitter at the center (0, 0), the probability that the received power
will be above the receiver threshold, as a function of the location of the receiver,
given a channel parameter σdB/np of (a) 1.70 [12] and (b) 2.48 [11]. Units are in
terms of the threshold distance d1.

4 Manifold Learning Localization Algorithms

In cooperative sensor localization, we have a network of N sensors, and we
want to estimate the coordinates {zi}n

i=1 of sensors 1 . . . n, which have un-
known location. A few sensors, n + 1 . . . N are assumed to have perfect a
priori knowledge of their coordinates, {zi}N

i=n+1 . We are given a mesh of
many pair-wise distance or connectivity estimates, from RSS or connectivity,
as discussed above. While not all pairs will make measurements, we assume
that many neighboring sensors will.

Algorithms have been developed by applying manifold learning techniques
to the sensor location estimation problem [1, 2, 3, 13, 14, 15, 16, 17]. Manifold
learning is a class of non-linear dimension reduction methods. These are an
extension of linear dimension reduction methods such as multi-dimensional
scaling (MDS) or principle components analysis (PCA). In PCA, low dimen-
sional coordinates are found by projecting the high dimensional data to the
linear subspace which best fits the data. When the high dimensional data
don’t lie in a linear subspace, the results are inaccurate. For example, for the
3-D data in Fig. 5, PCA would attempt to find a 2-D plane that, when the
data were projected to the plane, would best fit the data. Since the 3-D data
actually lie on a curved surface, no single plane would serve to fit all of the
data. In comparison, in manifold learning, the subspace is only assumed to be
locally linear. When reducing the dimension of the data, only the relationships
between neighboring high dimensional data points are preserved.
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In sensor localization, the manifold learning framework is applicable for
two reasons:

1. Measurements between nearby sensors are often more precise and less
biased than those between further apart sensors, and

2. Using only measurements between nearby sensors reduces bandwidth, en-
ergy, and computational requirements.

Determination of the Neighbor Graph

The first step in manifold learning algorithms is to determine the neighbor
graph. In the manifold learning literature, a pair are considered to be neigh-
bors if the Euclidean distance between their high-dimensional data points is
less than a threshold. For pair-wise RSS measurements, we might threshold
the measured δi,j with a pre-determined radius R, or an adaptive threshold
set to ensure at least K neighbors. These two neighbor selection methods are
called the ‘R-radius’ and the ‘K-nearest-neighbors’ (KNN) methods, respec-
tively. Note that the KNN method essentially sets a dynamic radius R for
each device depending on its local sensor density, so in either case, we can
refer to the threshold distance. For connectivity, the receiver’s power thresh-
old decides on neighbors – if Qi,j = 1, then we believe that δi,j < d1 for the
receiver threshold distance d1 given in (11), and thus we consider i and j to
be neighbors. For connectivity, our pre-determined radius R is equal to d1,
and for RSS, we may select R ≤ d1.

In wireless sensor networks, distance or connectivity between sensors is
measured in a noisy channel, so there is an additional complication – it isn’t
known which sensors are actually within R of each other. Neighbor selection
in noise is discussed in Section 4.5 and in more detail in [2, 3].

In sum, the selection of neighbors determines a graph in which neighboring
sensors’ nodes are connected, and non-neighboring sensors’ nodes are not. This
neighborhood graph is the key input into the next step.

Low-dimensional Coordinate Estimation

The second step in manifold learning algorithms is to find the low-dimension
coordinates which best represent the neighbor relationships. This search can
be represented as the minimization a cost function or as a constrained opti-
mization problem. Generally, these optimization approaches are of two types:
distance-based and similarity-based approaches. These are contrasted by anal-
ogy in Fig. 4. As the name would indicate, the distance-based methods en-
code information regarding the distances between points in the graph. The
similarity-based methods encode inverse distance, or some decreasing function
of distance. These cost functions are described in detail in the next sections.



Learning Sensor Location from Signal Strength and Connectivity 13

(a) (b)

Fig. 4. Physical analogy of manifold learning algorithms based on (a) distance or
(b) similarity between sensors. Sensors (spools) are connected by (a) springs which
have natural length equal to the measured distance and can can push and pull their
neighbors, or by (b) rubber bands with different weights (thickness of the band)
which can only pull sensors together. Scaling and rotation are constrained to match
the a priori known coordinates ⊗.
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Minimize
P
i,j

(‖zi − zj‖2 − δ̃2
i,j)

2 P
i,j

wi,j‖zi − zj‖2
P
i,j

wi,j (‖zi − zj‖ − δi,j)
2
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Computational O(N3) O(KN2) O(KLN)
Complexity
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4.1 Isomap

In Isomap [18], the distances δi,j measured between non-neighbors are ignored.
Instead, Isomap replaces distances δi,j in (16) with δ̃k,l, which is set equal to
the sum length along the shortest path on the neighbor graph between sensors
k and l, for all pairs (k, l) ∈ {1, . . . , N}2. The general idea is that the shortest
path on the neighborhood distance graph is a good approximation to the
shortest distance on the manifold, as demonstrated in Fig. 5. Isomap then
minimizes the cost,

SIsomap =
N∑

i=1

N∑

j=1

(
δ̃2
i,j − ‖zi − zj‖2

)2

. (16)
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Fig. 5. In Isomap, the distance between two devices is not the direct path in the
higher dimensional space (- - - -); rather, it is the shortest path distance between
the two points along the edges of the nearest neighbor graph (——).

An algorithm called MDS-MAP, introduced by Shang et. al. [1, 13, 14],
applies the Isomap algorithm, when measurements are connectivity, to sensor
localization.

Computation: Because the distances are squared before taking the difference,
the cost is a quadratic function of the individual coordinates. The minimum
of SIsomap can be found directly from the singular value decomposition of the
appropriate transform of the N×N distance matrix D2 = [[δ2

i,j ]]i,j , as derived
in detail in [19]. This eigen-decomposition operation has computational com-
plexity O(N3). The Isomap algorithm also requires finding of shortest path
between each pair of sensors in the network. Using Dijkstra’s algorithm, this
is an O(N2) operation, and this calculation can be performed in a distributed
manner in a wireless network.

Post-Processing: Isomap produces the relative, but not absolute map of all N
devices in the network. As a post-processing step, all coordinate estimates are
transformed (rotate, scale, and translate) by the transformation that makes
the coordinate estimates of the known-location sensors, {ẑi}N

i=n+1, best match
their a priori known coordinates in a least-squares sense.

4.2 Laplacian Eigenmap Adaptive Neighbor (LEAN)

The LEAN algorithm combines Laplacian Eigenmap (LE), a similarity-based
manifold learning method, with an an adaptive neighbor weighting algorithm.
This section first discusses the LE method given a set of weights {wi,j}. Then,
Section 4.4 discusses the initial selection of the weights, and Section 4.5 dis-
cusses the iterative adjustment of the weights in a 2-step adaptive algorithm.

The LE method considers the minimization of the cost SLE :

SLE =
∑

i,j

wi,j‖zi − zj‖2 (17)
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subject to the translation and scaling constraints,
∑

i

zi = 0 and
∑

i

‖zi‖2 = 1. (18)

where wi,j are weights representing the ‘similarity’ of devices i and j. In the
LEAN algorithm, these weights depend on the RSS or connectivity measure-
ments, and are given explicitly in Sections 4.4 and 4.5. The key fact is that
wi,j = 0 when i and j are non-neighbors (i.e., when Qi,j = 0 or δi,j > R).

The minimum of cost SLE without the constraints in (18) would occur
when all the coordinates zi were equal. The constraints remove the translation
ambiguity by setting the origin as the center, and counteract the tendency to
put all points at the origin by mandating a unit norm average coordinate.

Computation: The benefit of the formulation in (17) and (18) is that the
globally optimum solution is found via eigen-decomposition. Defining the N×
N weight matrix W = [[wi,j ]]i,j and its column sums (or row sums, since W

is symmetric) ui =
∑N

j=1 wi,j , the graph Laplacian LW is given by,

LW = diag[u1, . . . , uN ]−W, (19)

where diag[u1, . . . , uN ] is the diagonal matrix with {ui} on its diagonal. Matrix
LW is sparse, since wi,j = 0 for non-neighbors, and each row or column has
at most Kmax + 1 non-zero elements, where Kmax = maxi Ki, and Ki is
the number of neighbors of sensor i. The eigen-decomposition of LW is the
set of (λk,vk), for eigenvalues λk and eigenvectors vk, k = 1 . . . N . Here, it
is assumed w.l.o.g. that the eigenvectors are sorted in increasing order by
magnitude of eigenvalue. As presented in detail by Belkin and Niyogi in [20],
the vk for i = 2 . . . r+1 provide the optimal lowest-cost, r-dimensional solution
to (17). Specifically,

ẑi = [v2(i), . . . ,vr+1(i)], (20)

where vk(i) is the ith element of the kth eigenvector.
Finding the smallest eigenvalues and eigenvectors of a sparse and sym-

metric matrix is a computational problem which has been studied for decades
for problems in physics and chemistry [21, 22], and can be solved using dis-
tributed algorithms for parallel processing. In particular, if sensors select local
cluster-heads, the distributed algorithm can use data-distribution techniques
and block-Jacobi preconditioning methods to reduce communication. Due to
the sparsity of the graph Laplacian matrix, the computational complexity
of the eigen-decomposition is O(KN2), where K is the average number of
neighbors of each sensor.

Post-Processing: As in the Isomap algorithm, the LE method produces a rel-
ative map of the coordinates. The same method as in the previous section is
used to determine the best scaling, rotation, and translation of the coordinates
based on the a priori coordinate information.
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Related Research: The locally linear embedding (LLE) [23] and the Hessian-
based LLE (HLLE) methods are also similarity-based manifold learning al-
gorithms. The HLLE method [24] expands the optimization to attempt to
preserve the local Hessian, i.e., 2nd-order differences within local neighbor-
hoods, within the final low-dimensional coordinate embedding.

4.3 Distributed Weighted Multi-dimensional Scaling (dwMDS)

The dwMDS method minimizes a cost function SdwMDS in a distributed man-
ner, by having each sensor i, for i = 1 . . . n, iteratively minimize its own local
cost function, Si [2, 16]. The global cost is additive, i.e.,

SdwMDS =
n∑

i=1

Si. (21)

Using the dwMDS algorithm to optimize Si at each unknown-location sensor
i = 1 . . . n acts to optimize SdwMDS . In the dwMDS method, Si are given by

Si = ri‖zi − zi‖2 +
N∑

j=1

w̃i,j (δi,j − ‖zi − zj‖)2 , (22)

where zi represents the mean coordinate of the a priori coordinate distribution
for sensor i, ri is the confidence in that mean coordinate, and w̃i,j is a weight
corresponding to the expected accuracy in the δi,j measurement. When ri = 0,
it indicates no prior information exists for i, and any 0 < ri < ∞ indicates
imperfect but partial prior knowledge of i’s location. Also, let w̃i,j = 2wi,j if
either i > n or j > n, and w̃i,j = wi,j otherwise. This is done so that each
measurement δi,j is treated equally, whether or not it was measured between
two unknown-location sensors or between and unknown-location and known-
location node. Weights wi,j are similar to those used in Section 4.2 and their
selection is discussed in Section 4.4.

Computation: In the dwMDS algorithm, sensors serially optimize their own
coordinate, given their neighbors most recent coordinate estimate. Sensor i,
during its turn, improves its estimate of zi. This improvement is done by op-
timizing a quadratic majorization function for Si, which guarantees that each
iteration of the optimization reduces the global cost SdwMDS . The update
function for i is simply a linear function of its neighbors’ most recent coordi-
nate estimates. We leave the detailed derivation and presentation of the cal-
culation to the references [2, 16]. Each sensor requires calculation on the order
of its number of neighbors K, in each of the L iterations required for conver-
gence, so the total network-wide computational complexity is O(LKN). The
dwMDS also has a slower increase in communication requirements than cen-
tralized localization algorithms as N increases [16]. Furthermore, since prior
information is included directly in (22), there is no need to do post-processing.
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4.4 Weight Selection

In this section, we describe the selection of weights wi,j in the LEAN and
dwMDS methods. We consider separately measurements of RSS and connec-
tivity.

RSS Measurements When distance estimates are available from RSS, weights
{wi,j} in the LE and dwMDS methods are set as follows. The LOESS method,
a non-parametric scheme, is used to set wi,j :

wi,j =
{

exp
{−δ2

i,j/h2
i,j

}
, if i and j are neighbors

0, otherwise
, (23)

where hi,j is the maximum distance δk,l measured by either sensor i or j.

Connectivity Measurements Since no pure distance estimate is available when
only connectivity is measured, it would seem that any wi,j between connected
sensors i and j should have identical weight. However, this scheme is not the
best approach because it tends to give too much ‘pull’ to sensors with many
neighbors. This ‘pull’ serves to bias other sensors’ coordinates towards itself,
as described in [6]. Here, we use a simple symmetric weight scheme that sets
weights so that the total weights for sensor i, ui =

∑
j wi,j ≈ 1:

wi,j = (1/Ki + 1/Kj)/2, (24)

where Kl is the total number of neighbors of sensor l. While ui is not iden-
tical for all i, it is slightly higher for sensors with more neighbors than their
neighbors. This behavior is desirable and helps to improve bias performance.

4.5 Adaptive Neighbor Selection:

Typically, we select neighbors closer than a threshold distance R. For RSS
measurements, this distance R can be set less than d1, the receiver threshold
distance from (11), but in connectivity, note that R = d1 is the only option.
The key issue that this section addresses is that when distances estimated
from noisy RSS or connectivity measurements are used to select neighbors,
the neighbor selection process can be the source of significant bias. The act of
selecting the neighbors with δi,j less than a threshold has a tendency to select
the δi,j which are, on average, less than the actual distances ‖zi−zj‖. And for
connectivity, we know from Section 3.2 that sensors may include as neighbors
many sensors which are further than R and may ignore sensors closer than R.

Both the dwMDS algorithm and the LE-based algorithm specifically
counter this bias effect by using a two-stage adaptive algorithm:

Stage 1: First, distances {δi,j} are measured, and those (i, j) with δi,j < R
(or Qi,j = 1 for connectivity) are selected as neighbors. The dwMDS or LEAN
algorithm then computes {z̃i}n

i=1 , which are referred to as ‘interim’ coordinate
estimates.
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Stage 2: Next, the neighborhood is adjusted based on the interim coordinate
estimates:

• In the dwMDS algorithm, the neighborhood graph is completely re-
calculated based solely on the interim coordinates. Sensors with interim
coordinates closer than R, i.e., ‖z̃i − z̃j‖ < R, are selected as neighbors.
The weight matrix W is re-calculated as given in Section 4.4 using the
new neighbor graph.

• In the LE-based localization algorithm, define Ki to be the number of
neighbors of sensor i. Also define K̃i to be the number of sensors with
interim coordinates closer than R to z̃i, i.e., |{j : ‖z̃i − z̃j‖ < R}|. Next,
set the new weights wi,j so that the new sensor weight sums ũi are given

by ũi = ui

√
Ki/K̃i, as detailed in [3]. Essentially, increase a sensor’s pull

if its estimate is in a less dense area than it should be.

Using the new neighborhood structure, the dwMDS algorithm or the LE al-
gorithm is re-run to estimate final coordinate estimates {ẑi}. Sections 5.1 and
5.2) show the dramatic effects of the adaptive neighbor selection in sensor
localization.

5 Simulation Results

Geometries: The performance of these three algorithms is first demonstrated
on a grid network, of 7× 7 sensors arranged on a uniform grid of unit area, as
shown in Fig. 6, in which the four corner devices are reference nodes and the
remaining 45 are unknown location devices, and L = 1 m. The grid geometry is
chosen first because it shows the geometric bias effects very well. Subsequently,
in Section 5.4, random geometries are explored via simulation. Note that the
choice of L = 1m is arbitrary, since any scaling of L would proportionally scale
the simulation errors and lower bound on standard deviation. Essentially, all
distances, estimator biases and standard devations can be taken in units of L.

L

L

K
 R

o
w

s
 o

f 
S

e
n

s
o

rs
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Fig. 6. Grid geometry layout of sensors.
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Simulation Input and Output: For all experiments, R = 0.4 or 0.3 is chosen as
the threshold distance, and the channel parameter ratio σdB/np is set to either
1.70 or 2.48. Independent Monte Carlo trials (200) are run to determine un-
certainty ellipses and bias performance (per sensor) of the location estimates.
The results are displayed in many figures in this section. Each figure plots
the estimator mean (H) and 1-standard deviation uncertainty ellipse of the
estimator (——), compared to the actual device location (•). One-standard
deviation uncertainty ellipses, as a coarse generalization, can be seen as a 2-D
confidence interval, within which most of the coordinate estimates will lie.

Also plotted in the simulation figures are the Cramér-Rao lower bound
(CRB) on the uncertainty ellipses (- - - - -), which were derived and presented
for RSS and connectivity measurements in [12] and [25], respectively. Any
unbiased estimator must have 1-σ uncertainty ellipse larger than that given
by the CRB. Note that the CRB may only provide a loose lower bound on
the best performance achievable by any unbiased estimator.

For comparing different estimators, let the mean bias b̄ and the RMS
standard deviation σ̄ of the estimator be defined as:

b̄ =
1
n

n∑

i=1

‖z̄i − zi‖, σ̄ =

√
1
n

trC (25)

where n is the number of unknown-location sensors, z̄i is the mean of all of the
estimates of sensor i over all trials of the simulation, zi is the actual location
of sensor i, and C is the covariance of the coordinate estimates over all trials.

5.1 RSS Results from dwMDS in Grid

To show the benefit of adaptive neighborhood selection from Section 4.5, we
show in Fig. 7 the performance of the dwMDS algorithm with and without
its 2nd adaptive stage, and with different values of σdB/np and threshold
R. Fig. 7(a) stops the algorithm after Stage 1, using the interim coordinates
as the final estimates. The biasing effect of neighborhood selection in noise
results in b̄ = 0.12, by effectively shortening the average distance estimates
and thus forcing a smaller sensor location estimate map. In contrast, Fig. 7(b)
allows the completion of Stage 2, and is nearly unbiased with b̄ = 0.02, and has
σ̄ = 0.09. Except at the edge nodes, the estimator variance is visibly close to
the lower bound. The dwMDS algorithm (and also the lower bound) degrade
with increasing ratio σdB/np as shown in Fig. 7(c), which has σ̄ = 0.16. The
algorithm is shown to be robust the change to R = 0.3 in Fig. 7(d) which
results in σ̄ = 0.11, and we note without showing additional plots that the
error performance is robust to a wide range of R.

5.2 Connectivity Results from LEAN in Grid

The same tests as performed in Section 5.1 are now performed on the LEAN
algorithm using measurements of connectivity. We should expect that the
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Fig. 7. Comparison of RSS-based dwMDS estimators using (a) single-stage or (b)
adaptive, 2-stage neighbor selection, both with σdB/np = 1.70 and R = 0.4. Also
shown is the adaptive dwMDS performance (c) when σdB/np = 2.48 and R = 0.4
or (d) when σdB/np = 1.70 and R = 0.3.

variance will increase, and we do see this in Fig. 8. Figs. 8(a) and 8(b) compare
the LEAN performance with and without the second stage of the adaptive
neighbor selection algorithm. In this comparison, the improvement is only
marginal - both the bias and standard deviation decrease only slightly, so
that b̄ = 0.03 and σ̄ = 0.14 in (b). The real benefit of the 2-stage adaptive
LEAN algorithm is its ability to keep the bias very low over a wide range
of σdB/np and R, a much wider range than possible without the adaptive
weighting. Figs. 8(c) and 8(d) show the simulation results when the 2-stage
adaptive LEAN algorithm is used with (c) σdB/np = 2.48 and R = 0.4; and
(d) σdB/np = 1.70 and R = 0.3. The bias is nearly constant in all figures
(a-d), but in (c), σ̄ = 0.20 and in (d), σ̄ is the same as in (b) at 0.14.
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Fig. 8. Comparison of LEAN estimators using (a) single-stage or (b) adaptive, 2-
stage neighbor selection, both with σdB/np = 1.70 and R = 0.4. Also shown is the
adaptive dwMDS performance (c) when σdB/np = 2.48 and R = 0.4 or (d) when
σdB/np = 1.70 and R = 0.3.

5.3 Connectivity and RSS Results from Isomap/MDS-MAP
Method in Grid

Isomap can be run either from RSS or connectivity measurements. When RSS
measurements are available, δi,j is calculated using the MLE in (5). When only
connectivity measurements are available, δi,j = 1 when i and j are connected
(as in [1]). Since Isomap computes a relative map and then scales it to match
the prior information, this choice of δi,j = 1 for two connected devices is
arbitrary and irrelevant. Simulation results are shown in Fig. 9(a-d), for the
cases of measurements of connectivity or RSS, and for the channels with
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σdB/np equal to 1.70 and 2.48. These changing parameters and the simulation
results are shown in Table 1.

Simulation Inputs Outputs
Measurements σdB/np b̄ σ̄

Fig. 9(a) RSS 1.70 0.03 0.15
Fig. 9(b) Connectivity 1.70 0.02 0.21
Fig. 9(c) RSS 2.48 0.04 0.23
Fig. 9(d) Connectivity 2.48 0.05 0.28

Table 1. Isomap simulation inputs and outputs.

In all simulations, R = 0.4. The estimator is largely unbiased, but the
variance is significantly larger than the lower bound. In general, this can be
attributed to the form of the cost in (16), which is a function of the squared
difference between squared distances, rather than just the squared difference
between distance itself. The squaring of the distance before taking the differ-
ence enables solution via eigen-decomposition as discussed in Section 4.1, but
the algorithm is more sensitive to the tails of the density of δi,j .

5.4 Simulation Results in a Random Deployment

Fig. 10 shows the performance of the dwMDS and LEAN algorithms in two
different random deployments of sensors. The 49 coordinates for the random
deployment were chosen independently from a uniform distribution on the
square area. Then, the four sensors closest to the corners are selected as ref-
erence devices. All simulations use σdB/np = 1.70 and R = 0.4. In the first
randomly-generated geometry, Fig. 10(a) shows dwMDS performance to be
b̄ = 0.03 and σ̄ = 0.10; and Fig. 10(b) shows LEAN performance to be b̄ = 0.04
and σ̄ = 0.12. In the second randomly-generated geometry, Fig. 10(c) shows
dwMDS performance to be b̄ = 0.02 and σ̄ = 0.09, while Fig. 10(d) shows the
LEAN performance to be b̄ = 0.05 and σ̄ = 0.12.

Compared to the grid geometry, there are a few sensors with very high bias
in the LEAN algorithm results. However, the dwMDS algorithm results show
very low bias, even for the most isolated sensors. Variance is slightly higher
for the dwMDS algorithm, while the LEAN algorithm has lower variance than
in the grid geometry. The LEAN algorithm may actually benefit, in terms
of variance, from the non-uniform density of sensors across the randomly-
deployed network.

6 Discussion and Conclusion

The simulation results show us particular advantages of the dwMDS and
LEAN methods compared to the Isomap-based methods, when comparing
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Fig. 9. Comparison of Isomap estimators using (a)&(c) RSS measurements and
(b)&(d) connectivity measurements. All use R = 0.4, but for (a)&(b) σdB/np = 1.70
and for (c)&(d) σdB/np = 2.48.

estimator covariance. Furthermore, the standard deviation of localization us-
ing connectivity measurements (via LEAN) is almost 60% higher than with
RSS measurements (via dwMDS). These increase in variance is approximately
the same as the increase in the lower bounds from RSS to connectivity, as re-
lated in [25]. Both estimators, except for sensors at the edge of the networks,
perform reasonably close to the lower bound.

One perspective on this analysis is that a high path loss exponent np is
actually desirable in terms of localization accuracy. If a system operates in an
environment in which np is high, but σdB is not proportionally as high, then
more location information is possible. When antennas are very close to the
ground, or when center frequencies are in oxygen absorption bands, path loss
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Fig. 10. Simulation of estimators (a)&(c) dwMDS with RSS and (b)&(d) LEAN
with connectivity measurements, in two different non-uniform, random deployment
of sensors. All use R = 0.4 and σdB/np = 1.70.

exponents are typically higher. Of course, higher path loss exponents mean
that transmit powers must be higher in order to achieve the same coverage.

Adaptive methods help dramatically improve both estimator performance
(in the dwMDS algorithm) and help increase the variety of environments and
network densities in which the estimator performs with low bias and variance
close to the lower bound (as seen in the LEAN algorithm). These benefits of
adaptive neighborhoods are demonstrated by the simulation results.

Opportunities for future research are many. While LEAN is distributable
because of its reliance on finding a few of the smallest eigen-vectors of a
sparse symmetric matrix, algorithms from the parallel processing literature
must be optimized to perform well in a energy-limited sensor network. Other
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manifold learning-based methods are possible, and can be explored for their
ability to reduce the computational or communication requirements of sensor
localization.

Regardless, though, the statistics of RSS and connectivity measurements
are critical to the determination of many measures of ‘how well’ a particular
localization system will perform. This chapter has provided a thorough back-
ground in these models, and shown how they can be used in simulation of
localization algorithms.
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